]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/expr.c
Remove remaining uses of CONST_DOUBLE_FROM_REAL_VALUE
[thirdparty/gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "predict.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "rtl.h"
28 #include "df.h"
29 #include "ssa.h"
30 #include "alias.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "attribs.h"
34 #include "varasm.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "except.h"
38 #include "insn-config.h"
39 #include "insn-attr.h"
40 #include "expmed.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "emit-rtl.h"
45 #include "stmt.h"
46 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
47 #include "expr.h"
48 #include "insn-codes.h"
49 #include "optabs-tree.h"
50 #include "optabs.h"
51 #include "libfuncs.h"
52 #include "recog.h"
53 #include "reload.h"
54 #include "typeclass.h"
55 #include "toplev.h"
56 #include "langhooks.h"
57 #include "intl.h"
58 #include "tm_p.h"
59 #include "tree-iterator.h"
60 #include "internal-fn.h"
61 #include "cgraph.h"
62 #include "target.h"
63 #include "common/common-target.h"
64 #include "timevar.h"
65 #include "diagnostic.h"
66 #include "tree-ssa-live.h"
67 #include "tree-outof-ssa.h"
68 #include "target-globals.h"
69 #include "params.h"
70 #include "tree-ssa-address.h"
71 #include "cfgexpand.h"
72 #include "builtins.h"
73 #include "tree-chkp.h"
74 #include "rtl-chkp.h"
75 #include "ccmp.h"
76
77
78 /* If this is nonzero, we do not bother generating VOLATILE
79 around volatile memory references, and we are willing to
80 output indirect addresses. If cse is to follow, we reject
81 indirect addresses so a useful potential cse is generated;
82 if it is used only once, instruction combination will produce
83 the same indirect address eventually. */
84 int cse_not_expected;
85
86 /* This structure is used by move_by_pieces to describe the move to
87 be performed. */
88 struct move_by_pieces_d
89 {
90 rtx to;
91 rtx to_addr;
92 int autinc_to;
93 int explicit_inc_to;
94 rtx from;
95 rtx from_addr;
96 int autinc_from;
97 int explicit_inc_from;
98 unsigned HOST_WIDE_INT len;
99 HOST_WIDE_INT offset;
100 int reverse;
101 };
102
103 /* This structure is used by store_by_pieces to describe the clear to
104 be performed. */
105
106 struct store_by_pieces_d
107 {
108 rtx to;
109 rtx to_addr;
110 int autinc_to;
111 int explicit_inc_to;
112 unsigned HOST_WIDE_INT len;
113 HOST_WIDE_INT offset;
114 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode);
115 void *constfundata;
116 int reverse;
117 };
118
119 static void move_by_pieces_1 (insn_gen_fn, machine_mode,
120 struct move_by_pieces_d *);
121 static bool block_move_libcall_safe_for_call_parm (void);
122 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
123 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
124 unsigned HOST_WIDE_INT);
125 static tree emit_block_move_libcall_fn (int);
126 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
127 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode);
128 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
129 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
130 static void store_by_pieces_2 (insn_gen_fn, machine_mode,
131 struct store_by_pieces_d *);
132 static tree clear_storage_libcall_fn (int);
133 static rtx_insn *compress_float_constant (rtx, rtx);
134 static rtx get_subtarget (rtx);
135 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
136 HOST_WIDE_INT, machine_mode,
137 tree, int, alias_set_type);
138 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
139 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
140 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
141 machine_mode, tree, alias_set_type, bool);
142
143 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
144
145 static int is_aligning_offset (const_tree, const_tree);
146 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
147 static rtx do_store_flag (sepops, rtx, machine_mode);
148 #ifdef PUSH_ROUNDING
149 static void emit_single_push_insn (machine_mode, rtx, tree);
150 #endif
151 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, int);
152 static rtx const_vector_from_tree (tree);
153 static tree tree_expr_size (const_tree);
154 static HOST_WIDE_INT int_expr_size (tree);
155
156 \f
157 /* This is run to set up which modes can be used
158 directly in memory and to initialize the block move optab. It is run
159 at the beginning of compilation and when the target is reinitialized. */
160
161 void
162 init_expr_target (void)
163 {
164 rtx insn, pat;
165 machine_mode mode;
166 int num_clobbers;
167 rtx mem, mem1;
168 rtx reg;
169
170 /* Try indexing by frame ptr and try by stack ptr.
171 It is known that on the Convex the stack ptr isn't a valid index.
172 With luck, one or the other is valid on any machine. */
173 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
174 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
175
176 /* A scratch register we can modify in-place below to avoid
177 useless RTL allocations. */
178 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
179
180 insn = rtx_alloc (INSN);
181 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
182 PATTERN (insn) = pat;
183
184 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
185 mode = (machine_mode) ((int) mode + 1))
186 {
187 int regno;
188
189 direct_load[(int) mode] = direct_store[(int) mode] = 0;
190 PUT_MODE (mem, mode);
191 PUT_MODE (mem1, mode);
192
193 /* See if there is some register that can be used in this mode and
194 directly loaded or stored from memory. */
195
196 if (mode != VOIDmode && mode != BLKmode)
197 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
198 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
199 regno++)
200 {
201 if (! HARD_REGNO_MODE_OK (regno, mode))
202 continue;
203
204 set_mode_and_regno (reg, mode, regno);
205
206 SET_SRC (pat) = mem;
207 SET_DEST (pat) = reg;
208 if (recog (pat, insn, &num_clobbers) >= 0)
209 direct_load[(int) mode] = 1;
210
211 SET_SRC (pat) = mem1;
212 SET_DEST (pat) = reg;
213 if (recog (pat, insn, &num_clobbers) >= 0)
214 direct_load[(int) mode] = 1;
215
216 SET_SRC (pat) = reg;
217 SET_DEST (pat) = mem;
218 if (recog (pat, insn, &num_clobbers) >= 0)
219 direct_store[(int) mode] = 1;
220
221 SET_SRC (pat) = reg;
222 SET_DEST (pat) = mem1;
223 if (recog (pat, insn, &num_clobbers) >= 0)
224 direct_store[(int) mode] = 1;
225 }
226 }
227
228 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
229
230 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
231 mode = GET_MODE_WIDER_MODE (mode))
232 {
233 machine_mode srcmode;
234 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
235 srcmode = GET_MODE_WIDER_MODE (srcmode))
236 {
237 enum insn_code ic;
238
239 ic = can_extend_p (mode, srcmode, 0);
240 if (ic == CODE_FOR_nothing)
241 continue;
242
243 PUT_MODE (mem, srcmode);
244
245 if (insn_operand_matches (ic, 1, mem))
246 float_extend_from_mem[mode][srcmode] = true;
247 }
248 }
249 }
250
251 /* This is run at the start of compiling a function. */
252
253 void
254 init_expr (void)
255 {
256 memset (&crtl->expr, 0, sizeof (crtl->expr));
257 }
258 \f
259 /* Copy data from FROM to TO, where the machine modes are not the same.
260 Both modes may be integer, or both may be floating, or both may be
261 fixed-point.
262 UNSIGNEDP should be nonzero if FROM is an unsigned type.
263 This causes zero-extension instead of sign-extension. */
264
265 void
266 convert_move (rtx to, rtx from, int unsignedp)
267 {
268 machine_mode to_mode = GET_MODE (to);
269 machine_mode from_mode = GET_MODE (from);
270 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
271 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
272 enum insn_code code;
273 rtx libcall;
274
275 /* rtx code for making an equivalent value. */
276 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
277 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
278
279
280 gcc_assert (to_real == from_real);
281 gcc_assert (to_mode != BLKmode);
282 gcc_assert (from_mode != BLKmode);
283
284 /* If the source and destination are already the same, then there's
285 nothing to do. */
286 if (to == from)
287 return;
288
289 /* If FROM is a SUBREG that indicates that we have already done at least
290 the required extension, strip it. We don't handle such SUBREGs as
291 TO here. */
292
293 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
294 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
295 >= GET_MODE_PRECISION (to_mode))
296 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
297 from = gen_lowpart (to_mode, from), from_mode = to_mode;
298
299 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
300
301 if (to_mode == from_mode
302 || (from_mode == VOIDmode && CONSTANT_P (from)))
303 {
304 emit_move_insn (to, from);
305 return;
306 }
307
308 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
309 {
310 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
311
312 if (VECTOR_MODE_P (to_mode))
313 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
314 else
315 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
316
317 emit_move_insn (to, from);
318 return;
319 }
320
321 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
322 {
323 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
324 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
325 return;
326 }
327
328 if (to_real)
329 {
330 rtx value;
331 rtx_insn *insns;
332 convert_optab tab;
333
334 gcc_assert ((GET_MODE_PRECISION (from_mode)
335 != GET_MODE_PRECISION (to_mode))
336 || (DECIMAL_FLOAT_MODE_P (from_mode)
337 != DECIMAL_FLOAT_MODE_P (to_mode)));
338
339 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
340 /* Conversion between decimal float and binary float, same size. */
341 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
342 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
343 tab = sext_optab;
344 else
345 tab = trunc_optab;
346
347 /* Try converting directly if the insn is supported. */
348
349 code = convert_optab_handler (tab, to_mode, from_mode);
350 if (code != CODE_FOR_nothing)
351 {
352 emit_unop_insn (code, to, from,
353 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
354 return;
355 }
356
357 /* Otherwise use a libcall. */
358 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
359
360 /* Is this conversion implemented yet? */
361 gcc_assert (libcall);
362
363 start_sequence ();
364 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
365 1, from, from_mode);
366 insns = get_insns ();
367 end_sequence ();
368 emit_libcall_block (insns, to, value,
369 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
370 from)
371 : gen_rtx_FLOAT_EXTEND (to_mode, from));
372 return;
373 }
374
375 /* Handle pointer conversion. */ /* SPEE 900220. */
376 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
377 {
378 convert_optab ctab;
379
380 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
381 ctab = trunc_optab;
382 else if (unsignedp)
383 ctab = zext_optab;
384 else
385 ctab = sext_optab;
386
387 if (convert_optab_handler (ctab, to_mode, from_mode)
388 != CODE_FOR_nothing)
389 {
390 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
391 to, from, UNKNOWN);
392 return;
393 }
394 }
395
396 /* Targets are expected to provide conversion insns between PxImode and
397 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
398 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
399 {
400 machine_mode full_mode
401 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
402
403 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
404 != CODE_FOR_nothing);
405
406 if (full_mode != from_mode)
407 from = convert_to_mode (full_mode, from, unsignedp);
408 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
409 to, from, UNKNOWN);
410 return;
411 }
412 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
413 {
414 rtx new_from;
415 machine_mode full_mode
416 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
417 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
418 enum insn_code icode;
419
420 icode = convert_optab_handler (ctab, full_mode, from_mode);
421 gcc_assert (icode != CODE_FOR_nothing);
422
423 if (to_mode == full_mode)
424 {
425 emit_unop_insn (icode, to, from, UNKNOWN);
426 return;
427 }
428
429 new_from = gen_reg_rtx (full_mode);
430 emit_unop_insn (icode, new_from, from, UNKNOWN);
431
432 /* else proceed to integer conversions below. */
433 from_mode = full_mode;
434 from = new_from;
435 }
436
437 /* Make sure both are fixed-point modes or both are not. */
438 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
439 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
440 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
441 {
442 /* If we widen from_mode to to_mode and they are in the same class,
443 we won't saturate the result.
444 Otherwise, always saturate the result to play safe. */
445 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
446 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
447 expand_fixed_convert (to, from, 0, 0);
448 else
449 expand_fixed_convert (to, from, 0, 1);
450 return;
451 }
452
453 /* Now both modes are integers. */
454
455 /* Handle expanding beyond a word. */
456 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
457 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
458 {
459 rtx_insn *insns;
460 rtx lowpart;
461 rtx fill_value;
462 rtx lowfrom;
463 int i;
464 machine_mode lowpart_mode;
465 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
466
467 /* Try converting directly if the insn is supported. */
468 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
469 != CODE_FOR_nothing)
470 {
471 /* If FROM is a SUBREG, put it into a register. Do this
472 so that we always generate the same set of insns for
473 better cse'ing; if an intermediate assignment occurred,
474 we won't be doing the operation directly on the SUBREG. */
475 if (optimize > 0 && GET_CODE (from) == SUBREG)
476 from = force_reg (from_mode, from);
477 emit_unop_insn (code, to, from, equiv_code);
478 return;
479 }
480 /* Next, try converting via full word. */
481 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
482 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
483 != CODE_FOR_nothing))
484 {
485 rtx word_to = gen_reg_rtx (word_mode);
486 if (REG_P (to))
487 {
488 if (reg_overlap_mentioned_p (to, from))
489 from = force_reg (from_mode, from);
490 emit_clobber (to);
491 }
492 convert_move (word_to, from, unsignedp);
493 emit_unop_insn (code, to, word_to, equiv_code);
494 return;
495 }
496
497 /* No special multiword conversion insn; do it by hand. */
498 start_sequence ();
499
500 /* Since we will turn this into a no conflict block, we must ensure the
501 the source does not overlap the target so force it into an isolated
502 register when maybe so. Likewise for any MEM input, since the
503 conversion sequence might require several references to it and we
504 must ensure we're getting the same value every time. */
505
506 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
507 from = force_reg (from_mode, from);
508
509 /* Get a copy of FROM widened to a word, if necessary. */
510 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
511 lowpart_mode = word_mode;
512 else
513 lowpart_mode = from_mode;
514
515 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
516
517 lowpart = gen_lowpart (lowpart_mode, to);
518 emit_move_insn (lowpart, lowfrom);
519
520 /* Compute the value to put in each remaining word. */
521 if (unsignedp)
522 fill_value = const0_rtx;
523 else
524 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
525 LT, lowfrom, const0_rtx,
526 lowpart_mode, 0, -1);
527
528 /* Fill the remaining words. */
529 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
530 {
531 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
532 rtx subword = operand_subword (to, index, 1, to_mode);
533
534 gcc_assert (subword);
535
536 if (fill_value != subword)
537 emit_move_insn (subword, fill_value);
538 }
539
540 insns = get_insns ();
541 end_sequence ();
542
543 emit_insn (insns);
544 return;
545 }
546
547 /* Truncating multi-word to a word or less. */
548 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
549 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
550 {
551 if (!((MEM_P (from)
552 && ! MEM_VOLATILE_P (from)
553 && direct_load[(int) to_mode]
554 && ! mode_dependent_address_p (XEXP (from, 0),
555 MEM_ADDR_SPACE (from)))
556 || REG_P (from)
557 || GET_CODE (from) == SUBREG))
558 from = force_reg (from_mode, from);
559 convert_move (to, gen_lowpart (word_mode, from), 0);
560 return;
561 }
562
563 /* Now follow all the conversions between integers
564 no more than a word long. */
565
566 /* For truncation, usually we can just refer to FROM in a narrower mode. */
567 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
568 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
569 {
570 if (!((MEM_P (from)
571 && ! MEM_VOLATILE_P (from)
572 && direct_load[(int) to_mode]
573 && ! mode_dependent_address_p (XEXP (from, 0),
574 MEM_ADDR_SPACE (from)))
575 || REG_P (from)
576 || GET_CODE (from) == SUBREG))
577 from = force_reg (from_mode, from);
578 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
579 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
580 from = copy_to_reg (from);
581 emit_move_insn (to, gen_lowpart (to_mode, from));
582 return;
583 }
584
585 /* Handle extension. */
586 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
587 {
588 /* Convert directly if that works. */
589 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
590 != CODE_FOR_nothing)
591 {
592 emit_unop_insn (code, to, from, equiv_code);
593 return;
594 }
595 else
596 {
597 machine_mode intermediate;
598 rtx tmp;
599 int shift_amount;
600
601 /* Search for a mode to convert via. */
602 for (intermediate = from_mode; intermediate != VOIDmode;
603 intermediate = GET_MODE_WIDER_MODE (intermediate))
604 if (((can_extend_p (to_mode, intermediate, unsignedp)
605 != CODE_FOR_nothing)
606 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
607 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
608 && (can_extend_p (intermediate, from_mode, unsignedp)
609 != CODE_FOR_nothing))
610 {
611 convert_move (to, convert_to_mode (intermediate, from,
612 unsignedp), unsignedp);
613 return;
614 }
615
616 /* No suitable intermediate mode.
617 Generate what we need with shifts. */
618 shift_amount = (GET_MODE_PRECISION (to_mode)
619 - GET_MODE_PRECISION (from_mode));
620 from = gen_lowpart (to_mode, force_reg (from_mode, from));
621 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
622 to, unsignedp);
623 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
624 to, unsignedp);
625 if (tmp != to)
626 emit_move_insn (to, tmp);
627 return;
628 }
629 }
630
631 /* Support special truncate insns for certain modes. */
632 if (convert_optab_handler (trunc_optab, to_mode,
633 from_mode) != CODE_FOR_nothing)
634 {
635 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
636 to, from, UNKNOWN);
637 return;
638 }
639
640 /* Handle truncation of volatile memrefs, and so on;
641 the things that couldn't be truncated directly,
642 and for which there was no special instruction.
643
644 ??? Code above formerly short-circuited this, for most integer
645 mode pairs, with a force_reg in from_mode followed by a recursive
646 call to this routine. Appears always to have been wrong. */
647 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
648 {
649 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
650 emit_move_insn (to, temp);
651 return;
652 }
653
654 /* Mode combination is not recognized. */
655 gcc_unreachable ();
656 }
657
658 /* Return an rtx for a value that would result
659 from converting X to mode MODE.
660 Both X and MODE may be floating, or both integer.
661 UNSIGNEDP is nonzero if X is an unsigned value.
662 This can be done by referring to a part of X in place
663 or by copying to a new temporary with conversion. */
664
665 rtx
666 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
667 {
668 return convert_modes (mode, VOIDmode, x, unsignedp);
669 }
670
671 /* Return an rtx for a value that would result
672 from converting X from mode OLDMODE to mode MODE.
673 Both modes may be floating, or both integer.
674 UNSIGNEDP is nonzero if X is an unsigned value.
675
676 This can be done by referring to a part of X in place
677 or by copying to a new temporary with conversion.
678
679 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
680
681 rtx
682 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
683 {
684 rtx temp;
685
686 /* If FROM is a SUBREG that indicates that we have already done at least
687 the required extension, strip it. */
688
689 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
690 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
691 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
692 x = gen_lowpart (mode, SUBREG_REG (x));
693
694 if (GET_MODE (x) != VOIDmode)
695 oldmode = GET_MODE (x);
696
697 if (mode == oldmode)
698 return x;
699
700 if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
701 {
702 /* If the caller did not tell us the old mode, then there is not
703 much to do with respect to canonicalization. We have to
704 assume that all the bits are significant. */
705 if (GET_MODE_CLASS (oldmode) != MODE_INT)
706 oldmode = MAX_MODE_INT;
707 wide_int w = wide_int::from (std::make_pair (x, oldmode),
708 GET_MODE_PRECISION (mode),
709 unsignedp ? UNSIGNED : SIGNED);
710 return immed_wide_int_const (w, mode);
711 }
712
713 /* We can do this with a gen_lowpart if both desired and current modes
714 are integer, and this is either a constant integer, a register, or a
715 non-volatile MEM. */
716 if (GET_MODE_CLASS (mode) == MODE_INT
717 && GET_MODE_CLASS (oldmode) == MODE_INT
718 && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
719 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
720 || (REG_P (x)
721 && (!HARD_REGISTER_P (x)
722 || HARD_REGNO_MODE_OK (REGNO (x), mode))
723 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))
724
725 return gen_lowpart (mode, x);
726
727 /* Converting from integer constant into mode is always equivalent to an
728 subreg operation. */
729 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
730 {
731 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
732 return simplify_gen_subreg (mode, x, oldmode, 0);
733 }
734
735 temp = gen_reg_rtx (mode);
736 convert_move (temp, x, unsignedp);
737 return temp;
738 }
739 \f
740 /* Return the largest alignment we can use for doing a move (or store)
741 of MAX_PIECES. ALIGN is the largest alignment we could use. */
742
743 static unsigned int
744 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
745 {
746 machine_mode tmode;
747
748 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
749 if (align >= GET_MODE_ALIGNMENT (tmode))
750 align = GET_MODE_ALIGNMENT (tmode);
751 else
752 {
753 machine_mode tmode, xmode;
754
755 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
756 tmode != VOIDmode;
757 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
758 if (GET_MODE_SIZE (tmode) > max_pieces
759 || SLOW_UNALIGNED_ACCESS (tmode, align))
760 break;
761
762 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
763 }
764
765 return align;
766 }
767
768 /* Return the widest integer mode no wider than SIZE. If no such mode
769 can be found, return VOIDmode. */
770
771 static machine_mode
772 widest_int_mode_for_size (unsigned int size)
773 {
774 machine_mode tmode, mode = VOIDmode;
775
776 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
777 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
778 if (GET_MODE_SIZE (tmode) < size)
779 mode = tmode;
780
781 return mode;
782 }
783
784 /* Determine whether the LEN bytes can be moved by using several move
785 instructions. Return nonzero if a call to move_by_pieces should
786 succeed. */
787
788 int
789 can_move_by_pieces (unsigned HOST_WIDE_INT len,
790 unsigned int align)
791 {
792 return targetm.use_by_pieces_infrastructure_p (len, align, MOVE_BY_PIECES,
793 optimize_insn_for_speed_p ());
794 }
795
796 /* Generate several move instructions to copy LEN bytes from block FROM to
797 block TO. (These are MEM rtx's with BLKmode).
798
799 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
800 used to push FROM to the stack.
801
802 ALIGN is maximum stack alignment we can assume.
803
804 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
805 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
806 stpcpy. */
807
808 rtx
809 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
810 unsigned int align, int endp)
811 {
812 struct move_by_pieces_d data;
813 machine_mode to_addr_mode;
814 machine_mode from_addr_mode = get_address_mode (from);
815 rtx to_addr, from_addr = XEXP (from, 0);
816 unsigned int max_size = MOVE_MAX_PIECES + 1;
817 enum insn_code icode;
818
819 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
820
821 data.offset = 0;
822 data.from_addr = from_addr;
823 if (to)
824 {
825 to_addr_mode = get_address_mode (to);
826 to_addr = XEXP (to, 0);
827 data.to = to;
828 data.autinc_to
829 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
830 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
831 data.reverse
832 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
833 }
834 else
835 {
836 to_addr_mode = VOIDmode;
837 to_addr = NULL_RTX;
838 data.to = NULL_RTX;
839 data.autinc_to = 1;
840 if (STACK_GROWS_DOWNWARD)
841 data.reverse = 1;
842 else
843 data.reverse = 0;
844 }
845 data.to_addr = to_addr;
846 data.from = from;
847 data.autinc_from
848 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
849 || GET_CODE (from_addr) == POST_INC
850 || GET_CODE (from_addr) == POST_DEC);
851
852 data.explicit_inc_from = 0;
853 data.explicit_inc_to = 0;
854 if (data.reverse) data.offset = len;
855 data.len = len;
856
857 /* If copying requires more than two move insns,
858 copy addresses to registers (to make displacements shorter)
859 and use post-increment if available. */
860 if (!(data.autinc_from && data.autinc_to)
861 && move_by_pieces_ninsns (len, align, max_size) > 2)
862 {
863 /* Find the mode of the largest move...
864 MODE might not be used depending on the definitions of the
865 USE_* macros below. */
866 machine_mode mode ATTRIBUTE_UNUSED
867 = widest_int_mode_for_size (max_size);
868
869 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
870 {
871 data.from_addr = copy_to_mode_reg (from_addr_mode,
872 plus_constant (from_addr_mode,
873 from_addr, len));
874 data.autinc_from = 1;
875 data.explicit_inc_from = -1;
876 }
877 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
878 {
879 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
880 data.autinc_from = 1;
881 data.explicit_inc_from = 1;
882 }
883 if (!data.autinc_from && CONSTANT_P (from_addr))
884 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
885 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
886 {
887 data.to_addr = copy_to_mode_reg (to_addr_mode,
888 plus_constant (to_addr_mode,
889 to_addr, len));
890 data.autinc_to = 1;
891 data.explicit_inc_to = -1;
892 }
893 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
894 {
895 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
896 data.autinc_to = 1;
897 data.explicit_inc_to = 1;
898 }
899 if (!data.autinc_to && CONSTANT_P (to_addr))
900 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
901 }
902
903 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
904
905 /* First move what we can in the largest integer mode, then go to
906 successively smaller modes. */
907
908 while (max_size > 1 && data.len > 0)
909 {
910 machine_mode mode = widest_int_mode_for_size (max_size);
911
912 if (mode == VOIDmode)
913 break;
914
915 icode = optab_handler (mov_optab, mode);
916 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
917 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
918
919 max_size = GET_MODE_SIZE (mode);
920 }
921
922 /* The code above should have handled everything. */
923 gcc_assert (!data.len);
924
925 if (endp)
926 {
927 rtx to1;
928
929 gcc_assert (!data.reverse);
930 if (data.autinc_to)
931 {
932 if (endp == 2)
933 {
934 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
935 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
936 else
937 data.to_addr = copy_to_mode_reg (to_addr_mode,
938 plus_constant (to_addr_mode,
939 data.to_addr,
940 -1));
941 }
942 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
943 data.offset);
944 }
945 else
946 {
947 if (endp == 2)
948 --data.offset;
949 to1 = adjust_address (data.to, QImode, data.offset);
950 }
951 return to1;
952 }
953 else
954 return data.to;
955 }
956
957 /* Return number of insns required to move L bytes by pieces.
958 ALIGN (in bits) is maximum alignment we can assume. */
959
960 unsigned HOST_WIDE_INT
961 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
962 unsigned int max_size)
963 {
964 unsigned HOST_WIDE_INT n_insns = 0;
965
966 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
967
968 while (max_size > 1 && l > 0)
969 {
970 machine_mode mode;
971 enum insn_code icode;
972
973 mode = widest_int_mode_for_size (max_size);
974
975 if (mode == VOIDmode)
976 break;
977
978 icode = optab_handler (mov_optab, mode);
979 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
980 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
981
982 max_size = GET_MODE_SIZE (mode);
983 }
984
985 gcc_assert (!l);
986 return n_insns;
987 }
988
989 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
990 with move instructions for mode MODE. GENFUN is the gen_... function
991 to make a move insn for that mode. DATA has all the other info. */
992
993 static void
994 move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode,
995 struct move_by_pieces_d *data)
996 {
997 unsigned int size = GET_MODE_SIZE (mode);
998 rtx to1 = NULL_RTX, from1;
999
1000 while (data->len >= size)
1001 {
1002 if (data->reverse)
1003 data->offset -= size;
1004
1005 if (data->to)
1006 {
1007 if (data->autinc_to)
1008 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1009 data->offset);
1010 else
1011 to1 = adjust_address (data->to, mode, data->offset);
1012 }
1013
1014 if (data->autinc_from)
1015 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1016 data->offset);
1017 else
1018 from1 = adjust_address (data->from, mode, data->offset);
1019
1020 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1021 emit_insn (gen_add2_insn (data->to_addr,
1022 gen_int_mode (-(HOST_WIDE_INT) size,
1023 GET_MODE (data->to_addr))));
1024 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1025 emit_insn (gen_add2_insn (data->from_addr,
1026 gen_int_mode (-(HOST_WIDE_INT) size,
1027 GET_MODE (data->from_addr))));
1028
1029 if (data->to)
1030 emit_insn ((*genfun) (to1, from1));
1031 else
1032 {
1033 #ifdef PUSH_ROUNDING
1034 emit_single_push_insn (mode, from1, NULL);
1035 #else
1036 gcc_unreachable ();
1037 #endif
1038 }
1039
1040 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1041 emit_insn (gen_add2_insn (data->to_addr,
1042 gen_int_mode (size,
1043 GET_MODE (data->to_addr))));
1044 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1045 emit_insn (gen_add2_insn (data->from_addr,
1046 gen_int_mode (size,
1047 GET_MODE (data->from_addr))));
1048
1049 if (! data->reverse)
1050 data->offset += size;
1051
1052 data->len -= size;
1053 }
1054 }
1055 \f
1056 /* Emit code to move a block Y to a block X. This may be done with
1057 string-move instructions, with multiple scalar move instructions,
1058 or with a library call.
1059
1060 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1061 SIZE is an rtx that says how long they are.
1062 ALIGN is the maximum alignment we can assume they have.
1063 METHOD describes what kind of copy this is, and what mechanisms may be used.
1064 MIN_SIZE is the minimal size of block to move
1065 MAX_SIZE is the maximal size of block to move, if it can not be represented
1066 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1067
1068 Return the address of the new block, if memcpy is called and returns it,
1069 0 otherwise. */
1070
1071 rtx
1072 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1073 unsigned int expected_align, HOST_WIDE_INT expected_size,
1074 unsigned HOST_WIDE_INT min_size,
1075 unsigned HOST_WIDE_INT max_size,
1076 unsigned HOST_WIDE_INT probable_max_size)
1077 {
1078 bool may_use_call;
1079 rtx retval = 0;
1080 unsigned int align;
1081
1082 gcc_assert (size);
1083 if (CONST_INT_P (size)
1084 && INTVAL (size) == 0)
1085 return 0;
1086
1087 switch (method)
1088 {
1089 case BLOCK_OP_NORMAL:
1090 case BLOCK_OP_TAILCALL:
1091 may_use_call = true;
1092 break;
1093
1094 case BLOCK_OP_CALL_PARM:
1095 may_use_call = block_move_libcall_safe_for_call_parm ();
1096
1097 /* Make inhibit_defer_pop nonzero around the library call
1098 to force it to pop the arguments right away. */
1099 NO_DEFER_POP;
1100 break;
1101
1102 case BLOCK_OP_NO_LIBCALL:
1103 may_use_call = false;
1104 break;
1105
1106 default:
1107 gcc_unreachable ();
1108 }
1109
1110 gcc_assert (MEM_P (x) && MEM_P (y));
1111 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1112 gcc_assert (align >= BITS_PER_UNIT);
1113
1114 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1115 block copy is more efficient for other large modes, e.g. DCmode. */
1116 x = adjust_address (x, BLKmode, 0);
1117 y = adjust_address (y, BLKmode, 0);
1118
1119 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1120 can be incorrect is coming from __builtin_memcpy. */
1121 if (CONST_INT_P (size))
1122 {
1123 x = shallow_copy_rtx (x);
1124 y = shallow_copy_rtx (y);
1125 set_mem_size (x, INTVAL (size));
1126 set_mem_size (y, INTVAL (size));
1127 }
1128
1129 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1130 move_by_pieces (x, y, INTVAL (size), align, 0);
1131 else if (emit_block_move_via_movmem (x, y, size, align,
1132 expected_align, expected_size,
1133 min_size, max_size, probable_max_size))
1134 ;
1135 else if (may_use_call
1136 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1137 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1138 {
1139 /* Since x and y are passed to a libcall, mark the corresponding
1140 tree EXPR as addressable. */
1141 tree y_expr = MEM_EXPR (y);
1142 tree x_expr = MEM_EXPR (x);
1143 if (y_expr)
1144 mark_addressable (y_expr);
1145 if (x_expr)
1146 mark_addressable (x_expr);
1147 retval = emit_block_move_via_libcall (x, y, size,
1148 method == BLOCK_OP_TAILCALL);
1149 }
1150
1151 else
1152 emit_block_move_via_loop (x, y, size, align);
1153
1154 if (method == BLOCK_OP_CALL_PARM)
1155 OK_DEFER_POP;
1156
1157 return retval;
1158 }
1159
1160 rtx
1161 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1162 {
1163 unsigned HOST_WIDE_INT max, min = 0;
1164 if (GET_CODE (size) == CONST_INT)
1165 min = max = UINTVAL (size);
1166 else
1167 max = GET_MODE_MASK (GET_MODE (size));
1168 return emit_block_move_hints (x, y, size, method, 0, -1,
1169 min, max, max);
1170 }
1171
1172 /* A subroutine of emit_block_move. Returns true if calling the
1173 block move libcall will not clobber any parameters which may have
1174 already been placed on the stack. */
1175
1176 static bool
1177 block_move_libcall_safe_for_call_parm (void)
1178 {
1179 #if defined (REG_PARM_STACK_SPACE)
1180 tree fn;
1181 #endif
1182
1183 /* If arguments are pushed on the stack, then they're safe. */
1184 if (PUSH_ARGS)
1185 return true;
1186
1187 /* If registers go on the stack anyway, any argument is sure to clobber
1188 an outgoing argument. */
1189 #if defined (REG_PARM_STACK_SPACE)
1190 fn = emit_block_move_libcall_fn (false);
1191 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1192 depend on its argument. */
1193 (void) fn;
1194 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1195 && REG_PARM_STACK_SPACE (fn) != 0)
1196 return false;
1197 #endif
1198
1199 /* If any argument goes in memory, then it might clobber an outgoing
1200 argument. */
1201 {
1202 CUMULATIVE_ARGS args_so_far_v;
1203 cumulative_args_t args_so_far;
1204 tree fn, arg;
1205
1206 fn = emit_block_move_libcall_fn (false);
1207 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1208 args_so_far = pack_cumulative_args (&args_so_far_v);
1209
1210 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1211 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1212 {
1213 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1214 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1215 NULL_TREE, true);
1216 if (!tmp || !REG_P (tmp))
1217 return false;
1218 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1219 return false;
1220 targetm.calls.function_arg_advance (args_so_far, mode,
1221 NULL_TREE, true);
1222 }
1223 }
1224 return true;
1225 }
1226
1227 /* A subroutine of emit_block_move. Expand a movmem pattern;
1228 return true if successful. */
1229
1230 static bool
1231 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1232 unsigned int expected_align, HOST_WIDE_INT expected_size,
1233 unsigned HOST_WIDE_INT min_size,
1234 unsigned HOST_WIDE_INT max_size,
1235 unsigned HOST_WIDE_INT probable_max_size)
1236 {
1237 int save_volatile_ok = volatile_ok;
1238 machine_mode mode;
1239
1240 if (expected_align < align)
1241 expected_align = align;
1242 if (expected_size != -1)
1243 {
1244 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1245 expected_size = probable_max_size;
1246 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1247 expected_size = min_size;
1248 }
1249
1250 /* Since this is a move insn, we don't care about volatility. */
1251 volatile_ok = 1;
1252
1253 /* Try the most limited insn first, because there's no point
1254 including more than one in the machine description unless
1255 the more limited one has some advantage. */
1256
1257 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1258 mode = GET_MODE_WIDER_MODE (mode))
1259 {
1260 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1261
1262 if (code != CODE_FOR_nothing
1263 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1264 here because if SIZE is less than the mode mask, as it is
1265 returned by the macro, it will definitely be less than the
1266 actual mode mask. Since SIZE is within the Pmode address
1267 space, we limit MODE to Pmode. */
1268 && ((CONST_INT_P (size)
1269 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1270 <= (GET_MODE_MASK (mode) >> 1)))
1271 || max_size <= (GET_MODE_MASK (mode) >> 1)
1272 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1273 {
1274 struct expand_operand ops[9];
1275 unsigned int nops;
1276
1277 /* ??? When called via emit_block_move_for_call, it'd be
1278 nice if there were some way to inform the backend, so
1279 that it doesn't fail the expansion because it thinks
1280 emitting the libcall would be more efficient. */
1281 nops = insn_data[(int) code].n_generator_args;
1282 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1283
1284 create_fixed_operand (&ops[0], x);
1285 create_fixed_operand (&ops[1], y);
1286 /* The check above guarantees that this size conversion is valid. */
1287 create_convert_operand_to (&ops[2], size, mode, true);
1288 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1289 if (nops >= 6)
1290 {
1291 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1292 create_integer_operand (&ops[5], expected_size);
1293 }
1294 if (nops >= 8)
1295 {
1296 create_integer_operand (&ops[6], min_size);
1297 /* If we can not represent the maximal size,
1298 make parameter NULL. */
1299 if ((HOST_WIDE_INT) max_size != -1)
1300 create_integer_operand (&ops[7], max_size);
1301 else
1302 create_fixed_operand (&ops[7], NULL);
1303 }
1304 if (nops == 9)
1305 {
1306 /* If we can not represent the maximal size,
1307 make parameter NULL. */
1308 if ((HOST_WIDE_INT) probable_max_size != -1)
1309 create_integer_operand (&ops[8], probable_max_size);
1310 else
1311 create_fixed_operand (&ops[8], NULL);
1312 }
1313 if (maybe_expand_insn (code, nops, ops))
1314 {
1315 volatile_ok = save_volatile_ok;
1316 return true;
1317 }
1318 }
1319 }
1320
1321 volatile_ok = save_volatile_ok;
1322 return false;
1323 }
1324
1325 /* A subroutine of emit_block_move. Expand a call to memcpy.
1326 Return the return value from memcpy, 0 otherwise. */
1327
1328 rtx
1329 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1330 {
1331 rtx dst_addr, src_addr;
1332 tree call_expr, fn, src_tree, dst_tree, size_tree;
1333 machine_mode size_mode;
1334 rtx retval;
1335
1336 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1337 pseudos. We can then place those new pseudos into a VAR_DECL and
1338 use them later. */
1339
1340 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1341 src_addr = copy_addr_to_reg (XEXP (src, 0));
1342
1343 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1344 src_addr = convert_memory_address (ptr_mode, src_addr);
1345
1346 dst_tree = make_tree (ptr_type_node, dst_addr);
1347 src_tree = make_tree (ptr_type_node, src_addr);
1348
1349 size_mode = TYPE_MODE (sizetype);
1350
1351 size = convert_to_mode (size_mode, size, 1);
1352 size = copy_to_mode_reg (size_mode, size);
1353
1354 /* It is incorrect to use the libcall calling conventions to call
1355 memcpy in this context. This could be a user call to memcpy and
1356 the user may wish to examine the return value from memcpy. For
1357 targets where libcalls and normal calls have different conventions
1358 for returning pointers, we could end up generating incorrect code. */
1359
1360 size_tree = make_tree (sizetype, size);
1361
1362 fn = emit_block_move_libcall_fn (true);
1363 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1364 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1365
1366 retval = expand_normal (call_expr);
1367
1368 return retval;
1369 }
1370
1371 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1372 for the function we use for block copies. */
1373
1374 static GTY(()) tree block_move_fn;
1375
1376 void
1377 init_block_move_fn (const char *asmspec)
1378 {
1379 if (!block_move_fn)
1380 {
1381 tree args, fn, attrs, attr_args;
1382
1383 fn = get_identifier ("memcpy");
1384 args = build_function_type_list (ptr_type_node, ptr_type_node,
1385 const_ptr_type_node, sizetype,
1386 NULL_TREE);
1387
1388 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1389 DECL_EXTERNAL (fn) = 1;
1390 TREE_PUBLIC (fn) = 1;
1391 DECL_ARTIFICIAL (fn) = 1;
1392 TREE_NOTHROW (fn) = 1;
1393 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1394 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1395
1396 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1397 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1398
1399 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1400
1401 block_move_fn = fn;
1402 }
1403
1404 if (asmspec)
1405 set_user_assembler_name (block_move_fn, asmspec);
1406 }
1407
1408 static tree
1409 emit_block_move_libcall_fn (int for_call)
1410 {
1411 static bool emitted_extern;
1412
1413 if (!block_move_fn)
1414 init_block_move_fn (NULL);
1415
1416 if (for_call && !emitted_extern)
1417 {
1418 emitted_extern = true;
1419 make_decl_rtl (block_move_fn);
1420 }
1421
1422 return block_move_fn;
1423 }
1424
1425 /* A subroutine of emit_block_move. Copy the data via an explicit
1426 loop. This is used only when libcalls are forbidden. */
1427 /* ??? It'd be nice to copy in hunks larger than QImode. */
1428
1429 static void
1430 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1431 unsigned int align ATTRIBUTE_UNUSED)
1432 {
1433 rtx_code_label *cmp_label, *top_label;
1434 rtx iter, x_addr, y_addr, tmp;
1435 machine_mode x_addr_mode = get_address_mode (x);
1436 machine_mode y_addr_mode = get_address_mode (y);
1437 machine_mode iter_mode;
1438
1439 iter_mode = GET_MODE (size);
1440 if (iter_mode == VOIDmode)
1441 iter_mode = word_mode;
1442
1443 top_label = gen_label_rtx ();
1444 cmp_label = gen_label_rtx ();
1445 iter = gen_reg_rtx (iter_mode);
1446
1447 emit_move_insn (iter, const0_rtx);
1448
1449 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1450 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1451 do_pending_stack_adjust ();
1452
1453 emit_jump (cmp_label);
1454 emit_label (top_label);
1455
1456 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1457 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1458
1459 if (x_addr_mode != y_addr_mode)
1460 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1461 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1462
1463 x = change_address (x, QImode, x_addr);
1464 y = change_address (y, QImode, y_addr);
1465
1466 emit_move_insn (x, y);
1467
1468 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1469 true, OPTAB_LIB_WIDEN);
1470 if (tmp != iter)
1471 emit_move_insn (iter, tmp);
1472
1473 emit_label (cmp_label);
1474
1475 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1476 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1477 }
1478 \f
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1481
1482 void
1483 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
1484 {
1485 if (nregs == 0)
1486 return;
1487
1488 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1489 x = validize_mem (force_const_mem (mode, x));
1490
1491 /* See if the machine can do this with a load multiple insn. */
1492 if (targetm.have_load_multiple ())
1493 {
1494 rtx_insn *last = get_last_insn ();
1495 rtx first = gen_rtx_REG (word_mode, regno);
1496 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
1497 GEN_INT (nregs)))
1498 {
1499 emit_insn (pat);
1500 return;
1501 }
1502 else
1503 delete_insns_since (last);
1504 }
1505
1506 for (int i = 0; i < nregs; i++)
1507 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1508 operand_subword_force (x, i, mode));
1509 }
1510
1511 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1512 The number of registers to be filled is NREGS. */
1513
1514 void
1515 move_block_from_reg (int regno, rtx x, int nregs)
1516 {
1517 if (nregs == 0)
1518 return;
1519
1520 /* See if the machine can do this with a store multiple insn. */
1521 if (targetm.have_store_multiple ())
1522 {
1523 rtx_insn *last = get_last_insn ();
1524 rtx first = gen_rtx_REG (word_mode, regno);
1525 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
1526 GEN_INT (nregs)))
1527 {
1528 emit_insn (pat);
1529 return;
1530 }
1531 else
1532 delete_insns_since (last);
1533 }
1534
1535 for (int i = 0; i < nregs; i++)
1536 {
1537 rtx tem = operand_subword (x, i, 1, BLKmode);
1538
1539 gcc_assert (tem);
1540
1541 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1542 }
1543 }
1544
1545 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1546 ORIG, where ORIG is a non-consecutive group of registers represented by
1547 a PARALLEL. The clone is identical to the original except in that the
1548 original set of registers is replaced by a new set of pseudo registers.
1549 The new set has the same modes as the original set. */
1550
1551 rtx
1552 gen_group_rtx (rtx orig)
1553 {
1554 int i, length;
1555 rtx *tmps;
1556
1557 gcc_assert (GET_CODE (orig) == PARALLEL);
1558
1559 length = XVECLEN (orig, 0);
1560 tmps = XALLOCAVEC (rtx, length);
1561
1562 /* Skip a NULL entry in first slot. */
1563 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1564
1565 if (i)
1566 tmps[0] = 0;
1567
1568 for (; i < length; i++)
1569 {
1570 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1571 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1572
1573 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1574 }
1575
1576 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1577 }
1578
1579 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1580 except that values are placed in TMPS[i], and must later be moved
1581 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1582
1583 static void
1584 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1585 {
1586 rtx src;
1587 int start, i;
1588 machine_mode m = GET_MODE (orig_src);
1589
1590 gcc_assert (GET_CODE (dst) == PARALLEL);
1591
1592 if (m != VOIDmode
1593 && !SCALAR_INT_MODE_P (m)
1594 && !MEM_P (orig_src)
1595 && GET_CODE (orig_src) != CONCAT)
1596 {
1597 machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1598 if (imode == BLKmode)
1599 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1600 else
1601 src = gen_reg_rtx (imode);
1602 if (imode != BLKmode)
1603 src = gen_lowpart (GET_MODE (orig_src), src);
1604 emit_move_insn (src, orig_src);
1605 /* ...and back again. */
1606 if (imode != BLKmode)
1607 src = gen_lowpart (imode, src);
1608 emit_group_load_1 (tmps, dst, src, type, ssize);
1609 return;
1610 }
1611
1612 /* Check for a NULL entry, used to indicate that the parameter goes
1613 both on the stack and in registers. */
1614 if (XEXP (XVECEXP (dst, 0, 0), 0))
1615 start = 0;
1616 else
1617 start = 1;
1618
1619 /* Process the pieces. */
1620 for (i = start; i < XVECLEN (dst, 0); i++)
1621 {
1622 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1623 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1624 unsigned int bytelen = GET_MODE_SIZE (mode);
1625 int shift = 0;
1626
1627 /* Handle trailing fragments that run over the size of the struct. */
1628 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1629 {
1630 /* Arrange to shift the fragment to where it belongs.
1631 extract_bit_field loads to the lsb of the reg. */
1632 if (
1633 #ifdef BLOCK_REG_PADDING
1634 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1635 == (BYTES_BIG_ENDIAN ? upward : downward)
1636 #else
1637 BYTES_BIG_ENDIAN
1638 #endif
1639 )
1640 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1641 bytelen = ssize - bytepos;
1642 gcc_assert (bytelen > 0);
1643 }
1644
1645 /* If we won't be loading directly from memory, protect the real source
1646 from strange tricks we might play; but make sure that the source can
1647 be loaded directly into the destination. */
1648 src = orig_src;
1649 if (!MEM_P (orig_src)
1650 && (!CONSTANT_P (orig_src)
1651 || (GET_MODE (orig_src) != mode
1652 && GET_MODE (orig_src) != VOIDmode)))
1653 {
1654 if (GET_MODE (orig_src) == VOIDmode)
1655 src = gen_reg_rtx (mode);
1656 else
1657 src = gen_reg_rtx (GET_MODE (orig_src));
1658
1659 emit_move_insn (src, orig_src);
1660 }
1661
1662 /* Optimize the access just a bit. */
1663 if (MEM_P (src)
1664 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1665 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1666 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1667 && bytelen == GET_MODE_SIZE (mode))
1668 {
1669 tmps[i] = gen_reg_rtx (mode);
1670 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1671 }
1672 else if (COMPLEX_MODE_P (mode)
1673 && GET_MODE (src) == mode
1674 && bytelen == GET_MODE_SIZE (mode))
1675 /* Let emit_move_complex do the bulk of the work. */
1676 tmps[i] = src;
1677 else if (GET_CODE (src) == CONCAT)
1678 {
1679 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1680 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1681
1682 if ((bytepos == 0 && bytelen == slen0)
1683 || (bytepos != 0 && bytepos + bytelen <= slen))
1684 {
1685 /* The following assumes that the concatenated objects all
1686 have the same size. In this case, a simple calculation
1687 can be used to determine the object and the bit field
1688 to be extracted. */
1689 tmps[i] = XEXP (src, bytepos / slen0);
1690 if (! CONSTANT_P (tmps[i])
1691 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1692 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1693 (bytepos % slen0) * BITS_PER_UNIT,
1694 1, NULL_RTX, mode, mode);
1695 }
1696 else
1697 {
1698 rtx mem;
1699
1700 gcc_assert (!bytepos);
1701 mem = assign_stack_temp (GET_MODE (src), slen);
1702 emit_move_insn (mem, src);
1703 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1704 0, 1, NULL_RTX, mode, mode);
1705 }
1706 }
1707 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1708 SIMD register, which is currently broken. While we get GCC
1709 to emit proper RTL for these cases, let's dump to memory. */
1710 else if (VECTOR_MODE_P (GET_MODE (dst))
1711 && REG_P (src))
1712 {
1713 int slen = GET_MODE_SIZE (GET_MODE (src));
1714 rtx mem;
1715
1716 mem = assign_stack_temp (GET_MODE (src), slen);
1717 emit_move_insn (mem, src);
1718 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1719 }
1720 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1721 && XVECLEN (dst, 0) > 1)
1722 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
1723 else if (CONSTANT_P (src))
1724 {
1725 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1726
1727 if (len == ssize)
1728 tmps[i] = src;
1729 else
1730 {
1731 rtx first, second;
1732
1733 /* TODO: const_wide_int can have sizes other than this... */
1734 gcc_assert (2 * len == ssize);
1735 split_double (src, &first, &second);
1736 if (i)
1737 tmps[i] = second;
1738 else
1739 tmps[i] = first;
1740 }
1741 }
1742 else if (REG_P (src) && GET_MODE (src) == mode)
1743 tmps[i] = src;
1744 else
1745 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1746 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1747 mode, mode);
1748
1749 if (shift)
1750 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1751 shift, tmps[i], 0);
1752 }
1753 }
1754
1755 /* Emit code to move a block SRC of type TYPE to a block DST,
1756 where DST is non-consecutive registers represented by a PARALLEL.
1757 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1758 if not known. */
1759
1760 void
1761 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1762 {
1763 rtx *tmps;
1764 int i;
1765
1766 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1767 emit_group_load_1 (tmps, dst, src, type, ssize);
1768
1769 /* Copy the extracted pieces into the proper (probable) hard regs. */
1770 for (i = 0; i < XVECLEN (dst, 0); i++)
1771 {
1772 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1773 if (d == NULL)
1774 continue;
1775 emit_move_insn (d, tmps[i]);
1776 }
1777 }
1778
1779 /* Similar, but load SRC into new pseudos in a format that looks like
1780 PARALLEL. This can later be fed to emit_group_move to get things
1781 in the right place. */
1782
1783 rtx
1784 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1785 {
1786 rtvec vec;
1787 int i;
1788
1789 vec = rtvec_alloc (XVECLEN (parallel, 0));
1790 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1791
1792 /* Convert the vector to look just like the original PARALLEL, except
1793 with the computed values. */
1794 for (i = 0; i < XVECLEN (parallel, 0); i++)
1795 {
1796 rtx e = XVECEXP (parallel, 0, i);
1797 rtx d = XEXP (e, 0);
1798
1799 if (d)
1800 {
1801 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1802 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1803 }
1804 RTVEC_ELT (vec, i) = e;
1805 }
1806
1807 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1808 }
1809
1810 /* Emit code to move a block SRC to block DST, where SRC and DST are
1811 non-consecutive groups of registers, each represented by a PARALLEL. */
1812
1813 void
1814 emit_group_move (rtx dst, rtx src)
1815 {
1816 int i;
1817
1818 gcc_assert (GET_CODE (src) == PARALLEL
1819 && GET_CODE (dst) == PARALLEL
1820 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1821
1822 /* Skip first entry if NULL. */
1823 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1824 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1825 XEXP (XVECEXP (src, 0, i), 0));
1826 }
1827
1828 /* Move a group of registers represented by a PARALLEL into pseudos. */
1829
1830 rtx
1831 emit_group_move_into_temps (rtx src)
1832 {
1833 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1834 int i;
1835
1836 for (i = 0; i < XVECLEN (src, 0); i++)
1837 {
1838 rtx e = XVECEXP (src, 0, i);
1839 rtx d = XEXP (e, 0);
1840
1841 if (d)
1842 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1843 RTVEC_ELT (vec, i) = e;
1844 }
1845
1846 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1847 }
1848
1849 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1850 where SRC is non-consecutive registers represented by a PARALLEL.
1851 SSIZE represents the total size of block ORIG_DST, or -1 if not
1852 known. */
1853
1854 void
1855 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1856 {
1857 rtx *tmps, dst;
1858 int start, finish, i;
1859 machine_mode m = GET_MODE (orig_dst);
1860
1861 gcc_assert (GET_CODE (src) == PARALLEL);
1862
1863 if (!SCALAR_INT_MODE_P (m)
1864 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1865 {
1866 machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1867 if (imode == BLKmode)
1868 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1869 else
1870 dst = gen_reg_rtx (imode);
1871 emit_group_store (dst, src, type, ssize);
1872 if (imode != BLKmode)
1873 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1874 emit_move_insn (orig_dst, dst);
1875 return;
1876 }
1877
1878 /* Check for a NULL entry, used to indicate that the parameter goes
1879 both on the stack and in registers. */
1880 if (XEXP (XVECEXP (src, 0, 0), 0))
1881 start = 0;
1882 else
1883 start = 1;
1884 finish = XVECLEN (src, 0);
1885
1886 tmps = XALLOCAVEC (rtx, finish);
1887
1888 /* Copy the (probable) hard regs into pseudos. */
1889 for (i = start; i < finish; i++)
1890 {
1891 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1892 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1893 {
1894 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1895 emit_move_insn (tmps[i], reg);
1896 }
1897 else
1898 tmps[i] = reg;
1899 }
1900
1901 /* If we won't be storing directly into memory, protect the real destination
1902 from strange tricks we might play. */
1903 dst = orig_dst;
1904 if (GET_CODE (dst) == PARALLEL)
1905 {
1906 rtx temp;
1907
1908 /* We can get a PARALLEL dst if there is a conditional expression in
1909 a return statement. In that case, the dst and src are the same,
1910 so no action is necessary. */
1911 if (rtx_equal_p (dst, src))
1912 return;
1913
1914 /* It is unclear if we can ever reach here, but we may as well handle
1915 it. Allocate a temporary, and split this into a store/load to/from
1916 the temporary. */
1917 temp = assign_stack_temp (GET_MODE (dst), ssize);
1918 emit_group_store (temp, src, type, ssize);
1919 emit_group_load (dst, temp, type, ssize);
1920 return;
1921 }
1922 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1923 {
1924 machine_mode outer = GET_MODE (dst);
1925 machine_mode inner;
1926 HOST_WIDE_INT bytepos;
1927 bool done = false;
1928 rtx temp;
1929
1930 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1931 dst = gen_reg_rtx (outer);
1932
1933 /* Make life a bit easier for combine. */
1934 /* If the first element of the vector is the low part
1935 of the destination mode, use a paradoxical subreg to
1936 initialize the destination. */
1937 if (start < finish)
1938 {
1939 inner = GET_MODE (tmps[start]);
1940 bytepos = subreg_lowpart_offset (inner, outer);
1941 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1942 {
1943 temp = simplify_gen_subreg (outer, tmps[start],
1944 inner, 0);
1945 if (temp)
1946 {
1947 emit_move_insn (dst, temp);
1948 done = true;
1949 start++;
1950 }
1951 }
1952 }
1953
1954 /* If the first element wasn't the low part, try the last. */
1955 if (!done
1956 && start < finish - 1)
1957 {
1958 inner = GET_MODE (tmps[finish - 1]);
1959 bytepos = subreg_lowpart_offset (inner, outer);
1960 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1961 {
1962 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1963 inner, 0);
1964 if (temp)
1965 {
1966 emit_move_insn (dst, temp);
1967 done = true;
1968 finish--;
1969 }
1970 }
1971 }
1972
1973 /* Otherwise, simply initialize the result to zero. */
1974 if (!done)
1975 emit_move_insn (dst, CONST0_RTX (outer));
1976 }
1977
1978 /* Process the pieces. */
1979 for (i = start; i < finish; i++)
1980 {
1981 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1982 machine_mode mode = GET_MODE (tmps[i]);
1983 unsigned int bytelen = GET_MODE_SIZE (mode);
1984 unsigned int adj_bytelen;
1985 rtx dest = dst;
1986
1987 /* Handle trailing fragments that run over the size of the struct. */
1988 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1989 adj_bytelen = ssize - bytepos;
1990 else
1991 adj_bytelen = bytelen;
1992
1993 if (GET_CODE (dst) == CONCAT)
1994 {
1995 if (bytepos + adj_bytelen
1996 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1997 dest = XEXP (dst, 0);
1998 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1999 {
2000 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2001 dest = XEXP (dst, 1);
2002 }
2003 else
2004 {
2005 machine_mode dest_mode = GET_MODE (dest);
2006 machine_mode tmp_mode = GET_MODE (tmps[i]);
2007
2008 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2009
2010 if (GET_MODE_ALIGNMENT (dest_mode)
2011 >= GET_MODE_ALIGNMENT (tmp_mode))
2012 {
2013 dest = assign_stack_temp (dest_mode,
2014 GET_MODE_SIZE (dest_mode));
2015 emit_move_insn (adjust_address (dest,
2016 tmp_mode,
2017 bytepos),
2018 tmps[i]);
2019 dst = dest;
2020 }
2021 else
2022 {
2023 dest = assign_stack_temp (tmp_mode,
2024 GET_MODE_SIZE (tmp_mode));
2025 emit_move_insn (dest, tmps[i]);
2026 dst = adjust_address (dest, dest_mode, bytepos);
2027 }
2028 break;
2029 }
2030 }
2031
2032 /* Handle trailing fragments that run over the size of the struct. */
2033 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2034 {
2035 /* store_bit_field always takes its value from the lsb.
2036 Move the fragment to the lsb if it's not already there. */
2037 if (
2038 #ifdef BLOCK_REG_PADDING
2039 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2040 == (BYTES_BIG_ENDIAN ? upward : downward)
2041 #else
2042 BYTES_BIG_ENDIAN
2043 #endif
2044 )
2045 {
2046 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2047 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2048 shift, tmps[i], 0);
2049 }
2050
2051 /* Make sure not to write past the end of the struct. */
2052 store_bit_field (dest,
2053 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2054 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2055 VOIDmode, tmps[i]);
2056 }
2057
2058 /* Optimize the access just a bit. */
2059 else if (MEM_P (dest)
2060 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2061 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2062 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2063 && bytelen == GET_MODE_SIZE (mode))
2064 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2065
2066 else
2067 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2068 0, 0, mode, tmps[i]);
2069 }
2070
2071 /* Copy from the pseudo into the (probable) hard reg. */
2072 if (orig_dst != dst)
2073 emit_move_insn (orig_dst, dst);
2074 }
2075
2076 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2077 of the value stored in X. */
2078
2079 rtx
2080 maybe_emit_group_store (rtx x, tree type)
2081 {
2082 machine_mode mode = TYPE_MODE (type);
2083 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2084 if (GET_CODE (x) == PARALLEL)
2085 {
2086 rtx result = gen_reg_rtx (mode);
2087 emit_group_store (result, x, type, int_size_in_bytes (type));
2088 return result;
2089 }
2090 return x;
2091 }
2092
2093 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2094
2095 This is used on targets that return BLKmode values in registers. */
2096
2097 void
2098 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2099 {
2100 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2101 rtx src = NULL, dst = NULL;
2102 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2103 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2104 machine_mode mode = GET_MODE (srcreg);
2105 machine_mode tmode = GET_MODE (target);
2106 machine_mode copy_mode;
2107
2108 /* BLKmode registers created in the back-end shouldn't have survived. */
2109 gcc_assert (mode != BLKmode);
2110
2111 /* If the structure doesn't take up a whole number of words, see whether
2112 SRCREG is padded on the left or on the right. If it's on the left,
2113 set PADDING_CORRECTION to the number of bits to skip.
2114
2115 In most ABIs, the structure will be returned at the least end of
2116 the register, which translates to right padding on little-endian
2117 targets and left padding on big-endian targets. The opposite
2118 holds if the structure is returned at the most significant
2119 end of the register. */
2120 if (bytes % UNITS_PER_WORD != 0
2121 && (targetm.calls.return_in_msb (type)
2122 ? !BYTES_BIG_ENDIAN
2123 : BYTES_BIG_ENDIAN))
2124 padding_correction
2125 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2126
2127 /* We can use a single move if we have an exact mode for the size. */
2128 else if (MEM_P (target)
2129 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2130 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2131 && bytes == GET_MODE_SIZE (mode))
2132 {
2133 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2134 return;
2135 }
2136
2137 /* And if we additionally have the same mode for a register. */
2138 else if (REG_P (target)
2139 && GET_MODE (target) == mode
2140 && bytes == GET_MODE_SIZE (mode))
2141 {
2142 emit_move_insn (target, srcreg);
2143 return;
2144 }
2145
2146 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2147 into a new pseudo which is a full word. */
2148 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2149 {
2150 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2151 mode = word_mode;
2152 }
2153
2154 /* Copy the structure BITSIZE bits at a time. If the target lives in
2155 memory, take care of not reading/writing past its end by selecting
2156 a copy mode suited to BITSIZE. This should always be possible given
2157 how it is computed.
2158
2159 If the target lives in register, make sure not to select a copy mode
2160 larger than the mode of the register.
2161
2162 We could probably emit more efficient code for machines which do not use
2163 strict alignment, but it doesn't seem worth the effort at the current
2164 time. */
2165
2166 copy_mode = word_mode;
2167 if (MEM_P (target))
2168 {
2169 machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2170 if (mem_mode != BLKmode)
2171 copy_mode = mem_mode;
2172 }
2173 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2174 copy_mode = tmode;
2175
2176 for (bitpos = 0, xbitpos = padding_correction;
2177 bitpos < bytes * BITS_PER_UNIT;
2178 bitpos += bitsize, xbitpos += bitsize)
2179 {
2180 /* We need a new source operand each time xbitpos is on a
2181 word boundary and when xbitpos == padding_correction
2182 (the first time through). */
2183 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2184 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2185
2186 /* We need a new destination operand each time bitpos is on
2187 a word boundary. */
2188 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2189 dst = target;
2190 else if (bitpos % BITS_PER_WORD == 0)
2191 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2192
2193 /* Use xbitpos for the source extraction (right justified) and
2194 bitpos for the destination store (left justified). */
2195 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2196 extract_bit_field (src, bitsize,
2197 xbitpos % BITS_PER_WORD, 1,
2198 NULL_RTX, copy_mode, copy_mode));
2199 }
2200 }
2201
2202 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2203 register if it contains any data, otherwise return null.
2204
2205 This is used on targets that return BLKmode values in registers. */
2206
2207 rtx
2208 copy_blkmode_to_reg (machine_mode mode, tree src)
2209 {
2210 int i, n_regs;
2211 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2212 unsigned int bitsize;
2213 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2214 machine_mode dst_mode;
2215
2216 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2217
2218 x = expand_normal (src);
2219
2220 bytes = int_size_in_bytes (TREE_TYPE (src));
2221 if (bytes == 0)
2222 return NULL_RTX;
2223
2224 /* If the structure doesn't take up a whole number of words, see
2225 whether the register value should be padded on the left or on
2226 the right. Set PADDING_CORRECTION to the number of padding
2227 bits needed on the left side.
2228
2229 In most ABIs, the structure will be returned at the least end of
2230 the register, which translates to right padding on little-endian
2231 targets and left padding on big-endian targets. The opposite
2232 holds if the structure is returned at the most significant
2233 end of the register. */
2234 if (bytes % UNITS_PER_WORD != 0
2235 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2236 ? !BYTES_BIG_ENDIAN
2237 : BYTES_BIG_ENDIAN))
2238 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2239 * BITS_PER_UNIT));
2240
2241 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2242 dst_words = XALLOCAVEC (rtx, n_regs);
2243 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2244
2245 /* Copy the structure BITSIZE bits at a time. */
2246 for (bitpos = 0, xbitpos = padding_correction;
2247 bitpos < bytes * BITS_PER_UNIT;
2248 bitpos += bitsize, xbitpos += bitsize)
2249 {
2250 /* We need a new destination pseudo each time xbitpos is
2251 on a word boundary and when xbitpos == padding_correction
2252 (the first time through). */
2253 if (xbitpos % BITS_PER_WORD == 0
2254 || xbitpos == padding_correction)
2255 {
2256 /* Generate an appropriate register. */
2257 dst_word = gen_reg_rtx (word_mode);
2258 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2259
2260 /* Clear the destination before we move anything into it. */
2261 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2262 }
2263
2264 /* We need a new source operand each time bitpos is on a word
2265 boundary. */
2266 if (bitpos % BITS_PER_WORD == 0)
2267 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2268
2269 /* Use bitpos for the source extraction (left justified) and
2270 xbitpos for the destination store (right justified). */
2271 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2272 0, 0, word_mode,
2273 extract_bit_field (src_word, bitsize,
2274 bitpos % BITS_PER_WORD, 1,
2275 NULL_RTX, word_mode, word_mode));
2276 }
2277
2278 if (mode == BLKmode)
2279 {
2280 /* Find the smallest integer mode large enough to hold the
2281 entire structure. */
2282 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2283 mode != VOIDmode;
2284 mode = GET_MODE_WIDER_MODE (mode))
2285 /* Have we found a large enough mode? */
2286 if (GET_MODE_SIZE (mode) >= bytes)
2287 break;
2288
2289 /* A suitable mode should have been found. */
2290 gcc_assert (mode != VOIDmode);
2291 }
2292
2293 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2294 dst_mode = word_mode;
2295 else
2296 dst_mode = mode;
2297 dst = gen_reg_rtx (dst_mode);
2298
2299 for (i = 0; i < n_regs; i++)
2300 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2301
2302 if (mode != dst_mode)
2303 dst = gen_lowpart (mode, dst);
2304
2305 return dst;
2306 }
2307
2308 /* Add a USE expression for REG to the (possibly empty) list pointed
2309 to by CALL_FUSAGE. REG must denote a hard register. */
2310
2311 void
2312 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2313 {
2314 gcc_assert (REG_P (reg));
2315
2316 if (!HARD_REGISTER_P (reg))
2317 return;
2318
2319 *call_fusage
2320 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2321 }
2322
2323 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2324 to by CALL_FUSAGE. REG must denote a hard register. */
2325
2326 void
2327 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2328 {
2329 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2330
2331 *call_fusage
2332 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2333 }
2334
2335 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2336 starting at REGNO. All of these registers must be hard registers. */
2337
2338 void
2339 use_regs (rtx *call_fusage, int regno, int nregs)
2340 {
2341 int i;
2342
2343 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2344
2345 for (i = 0; i < nregs; i++)
2346 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2347 }
2348
2349 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2350 PARALLEL REGS. This is for calls that pass values in multiple
2351 non-contiguous locations. The Irix 6 ABI has examples of this. */
2352
2353 void
2354 use_group_regs (rtx *call_fusage, rtx regs)
2355 {
2356 int i;
2357
2358 for (i = 0; i < XVECLEN (regs, 0); i++)
2359 {
2360 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2361
2362 /* A NULL entry means the parameter goes both on the stack and in
2363 registers. This can also be a MEM for targets that pass values
2364 partially on the stack and partially in registers. */
2365 if (reg != 0 && REG_P (reg))
2366 use_reg (call_fusage, reg);
2367 }
2368 }
2369
2370 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2371 assigment and the code of the expresion on the RHS is CODE. Return
2372 NULL otherwise. */
2373
2374 static gimple *
2375 get_def_for_expr (tree name, enum tree_code code)
2376 {
2377 gimple *def_stmt;
2378
2379 if (TREE_CODE (name) != SSA_NAME)
2380 return NULL;
2381
2382 def_stmt = get_gimple_for_ssa_name (name);
2383 if (!def_stmt
2384 || gimple_assign_rhs_code (def_stmt) != code)
2385 return NULL;
2386
2387 return def_stmt;
2388 }
2389
2390 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2391 assigment and the class of the expresion on the RHS is CLASS. Return
2392 NULL otherwise. */
2393
2394 static gimple *
2395 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2396 {
2397 gimple *def_stmt;
2398
2399 if (TREE_CODE (name) != SSA_NAME)
2400 return NULL;
2401
2402 def_stmt = get_gimple_for_ssa_name (name);
2403 if (!def_stmt
2404 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2405 return NULL;
2406
2407 return def_stmt;
2408 }
2409 \f
2410
2411 /* Determine whether the LEN bytes generated by CONSTFUN can be
2412 stored to memory using several move instructions. CONSTFUNDATA is
2413 a pointer which will be passed as argument in every CONSTFUN call.
2414 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2415 a memset operation and false if it's a copy of a constant string.
2416 Return nonzero if a call to store_by_pieces should succeed. */
2417
2418 int
2419 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2420 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
2421 void *constfundata, unsigned int align, bool memsetp)
2422 {
2423 unsigned HOST_WIDE_INT l;
2424 unsigned int max_size;
2425 HOST_WIDE_INT offset = 0;
2426 machine_mode mode;
2427 enum insn_code icode;
2428 int reverse;
2429 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2430 rtx cst ATTRIBUTE_UNUSED;
2431
2432 if (len == 0)
2433 return 1;
2434
2435 if (!targetm.use_by_pieces_infrastructure_p (len, align,
2436 memsetp
2437 ? SET_BY_PIECES
2438 : STORE_BY_PIECES,
2439 optimize_insn_for_speed_p ()))
2440 return 0;
2441
2442 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2443
2444 /* We would first store what we can in the largest integer mode, then go to
2445 successively smaller modes. */
2446
2447 for (reverse = 0;
2448 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2449 reverse++)
2450 {
2451 l = len;
2452 max_size = STORE_MAX_PIECES + 1;
2453 while (max_size > 1 && l > 0)
2454 {
2455 mode = widest_int_mode_for_size (max_size);
2456
2457 if (mode == VOIDmode)
2458 break;
2459
2460 icode = optab_handler (mov_optab, mode);
2461 if (icode != CODE_FOR_nothing
2462 && align >= GET_MODE_ALIGNMENT (mode))
2463 {
2464 unsigned int size = GET_MODE_SIZE (mode);
2465
2466 while (l >= size)
2467 {
2468 if (reverse)
2469 offset -= size;
2470
2471 cst = (*constfun) (constfundata, offset, mode);
2472 if (!targetm.legitimate_constant_p (mode, cst))
2473 return 0;
2474
2475 if (!reverse)
2476 offset += size;
2477
2478 l -= size;
2479 }
2480 }
2481
2482 max_size = GET_MODE_SIZE (mode);
2483 }
2484
2485 /* The code above should have handled everything. */
2486 gcc_assert (!l);
2487 }
2488
2489 return 1;
2490 }
2491
2492 /* Generate several move instructions to store LEN bytes generated by
2493 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2494 pointer which will be passed as argument in every CONSTFUN call.
2495 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2496 a memset operation and false if it's a copy of a constant string.
2497 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2498 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2499 stpcpy. */
2500
2501 rtx
2502 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2503 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
2504 void *constfundata, unsigned int align, bool memsetp, int endp)
2505 {
2506 machine_mode to_addr_mode = get_address_mode (to);
2507 struct store_by_pieces_d data;
2508
2509 if (len == 0)
2510 {
2511 gcc_assert (endp != 2);
2512 return to;
2513 }
2514
2515 gcc_assert (targetm.use_by_pieces_infrastructure_p
2516 (len, align,
2517 memsetp
2518 ? SET_BY_PIECES
2519 : STORE_BY_PIECES,
2520 optimize_insn_for_speed_p ()));
2521
2522 data.constfun = constfun;
2523 data.constfundata = constfundata;
2524 data.len = len;
2525 data.to = to;
2526 store_by_pieces_1 (&data, align);
2527 if (endp)
2528 {
2529 rtx to1;
2530
2531 gcc_assert (!data.reverse);
2532 if (data.autinc_to)
2533 {
2534 if (endp == 2)
2535 {
2536 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2537 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2538 else
2539 data.to_addr = copy_to_mode_reg (to_addr_mode,
2540 plus_constant (to_addr_mode,
2541 data.to_addr,
2542 -1));
2543 }
2544 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2545 data.offset);
2546 }
2547 else
2548 {
2549 if (endp == 2)
2550 --data.offset;
2551 to1 = adjust_address (data.to, QImode, data.offset);
2552 }
2553 return to1;
2554 }
2555 else
2556 return data.to;
2557 }
2558
2559 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2560 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2561
2562 static void
2563 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2564 {
2565 struct store_by_pieces_d data;
2566
2567 if (len == 0)
2568 return;
2569
2570 data.constfun = clear_by_pieces_1;
2571 data.constfundata = NULL;
2572 data.len = len;
2573 data.to = to;
2574 store_by_pieces_1 (&data, align);
2575 }
2576
2577 /* Callback routine for clear_by_pieces.
2578 Return const0_rtx unconditionally. */
2579
2580 static rtx
2581 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2582 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2583 machine_mode mode ATTRIBUTE_UNUSED)
2584 {
2585 return const0_rtx;
2586 }
2587
2588 /* Subroutine of clear_by_pieces and store_by_pieces.
2589 Generate several move instructions to store LEN bytes of block TO. (A MEM
2590 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2591
2592 static void
2593 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2594 unsigned int align ATTRIBUTE_UNUSED)
2595 {
2596 machine_mode to_addr_mode = get_address_mode (data->to);
2597 rtx to_addr = XEXP (data->to, 0);
2598 unsigned int max_size = STORE_MAX_PIECES + 1;
2599 enum insn_code icode;
2600
2601 data->offset = 0;
2602 data->to_addr = to_addr;
2603 data->autinc_to
2604 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2605 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2606
2607 data->explicit_inc_to = 0;
2608 data->reverse
2609 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2610 if (data->reverse)
2611 data->offset = data->len;
2612
2613 /* If storing requires more than two move insns,
2614 copy addresses to registers (to make displacements shorter)
2615 and use post-increment if available. */
2616 if (!data->autinc_to
2617 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2618 {
2619 /* Determine the main mode we'll be using.
2620 MODE might not be used depending on the definitions of the
2621 USE_* macros below. */
2622 machine_mode mode ATTRIBUTE_UNUSED
2623 = widest_int_mode_for_size (max_size);
2624
2625 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2626 {
2627 data->to_addr = copy_to_mode_reg (to_addr_mode,
2628 plus_constant (to_addr_mode,
2629 to_addr,
2630 data->len));
2631 data->autinc_to = 1;
2632 data->explicit_inc_to = -1;
2633 }
2634
2635 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2636 && ! data->autinc_to)
2637 {
2638 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2639 data->autinc_to = 1;
2640 data->explicit_inc_to = 1;
2641 }
2642
2643 if ( !data->autinc_to && CONSTANT_P (to_addr))
2644 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2645 }
2646
2647 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2648
2649 /* First store what we can in the largest integer mode, then go to
2650 successively smaller modes. */
2651
2652 while (max_size > 1 && data->len > 0)
2653 {
2654 machine_mode mode = widest_int_mode_for_size (max_size);
2655
2656 if (mode == VOIDmode)
2657 break;
2658
2659 icode = optab_handler (mov_optab, mode);
2660 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2661 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2662
2663 max_size = GET_MODE_SIZE (mode);
2664 }
2665
2666 /* The code above should have handled everything. */
2667 gcc_assert (!data->len);
2668 }
2669
2670 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2671 with move instructions for mode MODE. GENFUN is the gen_... function
2672 to make a move insn for that mode. DATA has all the other info. */
2673
2674 static void
2675 store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode,
2676 struct store_by_pieces_d *data)
2677 {
2678 unsigned int size = GET_MODE_SIZE (mode);
2679 rtx to1, cst;
2680
2681 while (data->len >= size)
2682 {
2683 if (data->reverse)
2684 data->offset -= size;
2685
2686 if (data->autinc_to)
2687 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2688 data->offset);
2689 else
2690 to1 = adjust_address (data->to, mode, data->offset);
2691
2692 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2693 emit_insn (gen_add2_insn (data->to_addr,
2694 gen_int_mode (-(HOST_WIDE_INT) size,
2695 GET_MODE (data->to_addr))));
2696
2697 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2698 emit_insn ((*genfun) (to1, cst));
2699
2700 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2701 emit_insn (gen_add2_insn (data->to_addr,
2702 gen_int_mode (size,
2703 GET_MODE (data->to_addr))));
2704
2705 if (! data->reverse)
2706 data->offset += size;
2707
2708 data->len -= size;
2709 }
2710 }
2711 \f
2712 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2713 its length in bytes. */
2714
2715 rtx
2716 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2717 unsigned int expected_align, HOST_WIDE_INT expected_size,
2718 unsigned HOST_WIDE_INT min_size,
2719 unsigned HOST_WIDE_INT max_size,
2720 unsigned HOST_WIDE_INT probable_max_size)
2721 {
2722 machine_mode mode = GET_MODE (object);
2723 unsigned int align;
2724
2725 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2726
2727 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2728 just move a zero. Otherwise, do this a piece at a time. */
2729 if (mode != BLKmode
2730 && CONST_INT_P (size)
2731 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2732 {
2733 rtx zero = CONST0_RTX (mode);
2734 if (zero != NULL)
2735 {
2736 emit_move_insn (object, zero);
2737 return NULL;
2738 }
2739
2740 if (COMPLEX_MODE_P (mode))
2741 {
2742 zero = CONST0_RTX (GET_MODE_INNER (mode));
2743 if (zero != NULL)
2744 {
2745 write_complex_part (object, zero, 0);
2746 write_complex_part (object, zero, 1);
2747 return NULL;
2748 }
2749 }
2750 }
2751
2752 if (size == const0_rtx)
2753 return NULL;
2754
2755 align = MEM_ALIGN (object);
2756
2757 if (CONST_INT_P (size)
2758 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2759 CLEAR_BY_PIECES,
2760 optimize_insn_for_speed_p ()))
2761 clear_by_pieces (object, INTVAL (size), align);
2762 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2763 expected_align, expected_size,
2764 min_size, max_size, probable_max_size))
2765 ;
2766 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2767 return set_storage_via_libcall (object, size, const0_rtx,
2768 method == BLOCK_OP_TAILCALL);
2769 else
2770 gcc_unreachable ();
2771
2772 return NULL;
2773 }
2774
2775 rtx
2776 clear_storage (rtx object, rtx size, enum block_op_methods method)
2777 {
2778 unsigned HOST_WIDE_INT max, min = 0;
2779 if (GET_CODE (size) == CONST_INT)
2780 min = max = UINTVAL (size);
2781 else
2782 max = GET_MODE_MASK (GET_MODE (size));
2783 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2784 }
2785
2786
2787 /* A subroutine of clear_storage. Expand a call to memset.
2788 Return the return value of memset, 0 otherwise. */
2789
2790 rtx
2791 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2792 {
2793 tree call_expr, fn, object_tree, size_tree, val_tree;
2794 machine_mode size_mode;
2795 rtx retval;
2796
2797 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2798 place those into new pseudos into a VAR_DECL and use them later. */
2799
2800 object = copy_addr_to_reg (XEXP (object, 0));
2801
2802 size_mode = TYPE_MODE (sizetype);
2803 size = convert_to_mode (size_mode, size, 1);
2804 size = copy_to_mode_reg (size_mode, size);
2805
2806 /* It is incorrect to use the libcall calling conventions to call
2807 memset in this context. This could be a user call to memset and
2808 the user may wish to examine the return value from memset. For
2809 targets where libcalls and normal calls have different conventions
2810 for returning pointers, we could end up generating incorrect code. */
2811
2812 object_tree = make_tree (ptr_type_node, object);
2813 if (!CONST_INT_P (val))
2814 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2815 size_tree = make_tree (sizetype, size);
2816 val_tree = make_tree (integer_type_node, val);
2817
2818 fn = clear_storage_libcall_fn (true);
2819 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2820 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2821
2822 retval = expand_normal (call_expr);
2823
2824 return retval;
2825 }
2826
2827 /* A subroutine of set_storage_via_libcall. Create the tree node
2828 for the function we use for block clears. */
2829
2830 tree block_clear_fn;
2831
2832 void
2833 init_block_clear_fn (const char *asmspec)
2834 {
2835 if (!block_clear_fn)
2836 {
2837 tree fn, args;
2838
2839 fn = get_identifier ("memset");
2840 args = build_function_type_list (ptr_type_node, ptr_type_node,
2841 integer_type_node, sizetype,
2842 NULL_TREE);
2843
2844 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2845 DECL_EXTERNAL (fn) = 1;
2846 TREE_PUBLIC (fn) = 1;
2847 DECL_ARTIFICIAL (fn) = 1;
2848 TREE_NOTHROW (fn) = 1;
2849 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2850 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2851
2852 block_clear_fn = fn;
2853 }
2854
2855 if (asmspec)
2856 set_user_assembler_name (block_clear_fn, asmspec);
2857 }
2858
2859 static tree
2860 clear_storage_libcall_fn (int for_call)
2861 {
2862 static bool emitted_extern;
2863
2864 if (!block_clear_fn)
2865 init_block_clear_fn (NULL);
2866
2867 if (for_call && !emitted_extern)
2868 {
2869 emitted_extern = true;
2870 make_decl_rtl (block_clear_fn);
2871 }
2872
2873 return block_clear_fn;
2874 }
2875 \f
2876 /* Expand a setmem pattern; return true if successful. */
2877
2878 bool
2879 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2880 unsigned int expected_align, HOST_WIDE_INT expected_size,
2881 unsigned HOST_WIDE_INT min_size,
2882 unsigned HOST_WIDE_INT max_size,
2883 unsigned HOST_WIDE_INT probable_max_size)
2884 {
2885 /* Try the most limited insn first, because there's no point
2886 including more than one in the machine description unless
2887 the more limited one has some advantage. */
2888
2889 machine_mode mode;
2890
2891 if (expected_align < align)
2892 expected_align = align;
2893 if (expected_size != -1)
2894 {
2895 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
2896 expected_size = max_size;
2897 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2898 expected_size = min_size;
2899 }
2900
2901 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2902 mode = GET_MODE_WIDER_MODE (mode))
2903 {
2904 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2905
2906 if (code != CODE_FOR_nothing
2907 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2908 here because if SIZE is less than the mode mask, as it is
2909 returned by the macro, it will definitely be less than the
2910 actual mode mask. Since SIZE is within the Pmode address
2911 space, we limit MODE to Pmode. */
2912 && ((CONST_INT_P (size)
2913 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2914 <= (GET_MODE_MASK (mode) >> 1)))
2915 || max_size <= (GET_MODE_MASK (mode) >> 1)
2916 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2917 {
2918 struct expand_operand ops[9];
2919 unsigned int nops;
2920
2921 nops = insn_data[(int) code].n_generator_args;
2922 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2923
2924 create_fixed_operand (&ops[0], object);
2925 /* The check above guarantees that this size conversion is valid. */
2926 create_convert_operand_to (&ops[1], size, mode, true);
2927 create_convert_operand_from (&ops[2], val, byte_mode, true);
2928 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2929 if (nops >= 6)
2930 {
2931 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2932 create_integer_operand (&ops[5], expected_size);
2933 }
2934 if (nops >= 8)
2935 {
2936 create_integer_operand (&ops[6], min_size);
2937 /* If we can not represent the maximal size,
2938 make parameter NULL. */
2939 if ((HOST_WIDE_INT) max_size != -1)
2940 create_integer_operand (&ops[7], max_size);
2941 else
2942 create_fixed_operand (&ops[7], NULL);
2943 }
2944 if (nops == 9)
2945 {
2946 /* If we can not represent the maximal size,
2947 make parameter NULL. */
2948 if ((HOST_WIDE_INT) probable_max_size != -1)
2949 create_integer_operand (&ops[8], probable_max_size);
2950 else
2951 create_fixed_operand (&ops[8], NULL);
2952 }
2953 if (maybe_expand_insn (code, nops, ops))
2954 return true;
2955 }
2956 }
2957
2958 return false;
2959 }
2960
2961 \f
2962 /* Write to one of the components of the complex value CPLX. Write VAL to
2963 the real part if IMAG_P is false, and the imaginary part if its true. */
2964
2965 void
2966 write_complex_part (rtx cplx, rtx val, bool imag_p)
2967 {
2968 machine_mode cmode;
2969 machine_mode imode;
2970 unsigned ibitsize;
2971
2972 if (GET_CODE (cplx) == CONCAT)
2973 {
2974 emit_move_insn (XEXP (cplx, imag_p), val);
2975 return;
2976 }
2977
2978 cmode = GET_MODE (cplx);
2979 imode = GET_MODE_INNER (cmode);
2980 ibitsize = GET_MODE_BITSIZE (imode);
2981
2982 /* For MEMs simplify_gen_subreg may generate an invalid new address
2983 because, e.g., the original address is considered mode-dependent
2984 by the target, which restricts simplify_subreg from invoking
2985 adjust_address_nv. Instead of preparing fallback support for an
2986 invalid address, we call adjust_address_nv directly. */
2987 if (MEM_P (cplx))
2988 {
2989 emit_move_insn (adjust_address_nv (cplx, imode,
2990 imag_p ? GET_MODE_SIZE (imode) : 0),
2991 val);
2992 return;
2993 }
2994
2995 /* If the sub-object is at least word sized, then we know that subregging
2996 will work. This special case is important, since store_bit_field
2997 wants to operate on integer modes, and there's rarely an OImode to
2998 correspond to TCmode. */
2999 if (ibitsize >= BITS_PER_WORD
3000 /* For hard regs we have exact predicates. Assume we can split
3001 the original object if it spans an even number of hard regs.
3002 This special case is important for SCmode on 64-bit platforms
3003 where the natural size of floating-point regs is 32-bit. */
3004 || (REG_P (cplx)
3005 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3006 && REG_NREGS (cplx) % 2 == 0))
3007 {
3008 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3009 imag_p ? GET_MODE_SIZE (imode) : 0);
3010 if (part)
3011 {
3012 emit_move_insn (part, val);
3013 return;
3014 }
3015 else
3016 /* simplify_gen_subreg may fail for sub-word MEMs. */
3017 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3018 }
3019
3020 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
3021 }
3022
3023 /* Extract one of the components of the complex value CPLX. Extract the
3024 real part if IMAG_P is false, and the imaginary part if it's true. */
3025
3026 rtx
3027 read_complex_part (rtx cplx, bool imag_p)
3028 {
3029 machine_mode cmode, imode;
3030 unsigned ibitsize;
3031
3032 if (GET_CODE (cplx) == CONCAT)
3033 return XEXP (cplx, imag_p);
3034
3035 cmode = GET_MODE (cplx);
3036 imode = GET_MODE_INNER (cmode);
3037 ibitsize = GET_MODE_BITSIZE (imode);
3038
3039 /* Special case reads from complex constants that got spilled to memory. */
3040 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3041 {
3042 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3043 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3044 {
3045 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3046 if (CONSTANT_CLASS_P (part))
3047 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3048 }
3049 }
3050
3051 /* For MEMs simplify_gen_subreg may generate an invalid new address
3052 because, e.g., the original address is considered mode-dependent
3053 by the target, which restricts simplify_subreg from invoking
3054 adjust_address_nv. Instead of preparing fallback support for an
3055 invalid address, we call adjust_address_nv directly. */
3056 if (MEM_P (cplx))
3057 return adjust_address_nv (cplx, imode,
3058 imag_p ? GET_MODE_SIZE (imode) : 0);
3059
3060 /* If the sub-object is at least word sized, then we know that subregging
3061 will work. This special case is important, since extract_bit_field
3062 wants to operate on integer modes, and there's rarely an OImode to
3063 correspond to TCmode. */
3064 if (ibitsize >= BITS_PER_WORD
3065 /* For hard regs we have exact predicates. Assume we can split
3066 the original object if it spans an even number of hard regs.
3067 This special case is important for SCmode on 64-bit platforms
3068 where the natural size of floating-point regs is 32-bit. */
3069 || (REG_P (cplx)
3070 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3071 && REG_NREGS (cplx) % 2 == 0))
3072 {
3073 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3074 imag_p ? GET_MODE_SIZE (imode) : 0);
3075 if (ret)
3076 return ret;
3077 else
3078 /* simplify_gen_subreg may fail for sub-word MEMs. */
3079 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3080 }
3081
3082 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3083 true, NULL_RTX, imode, imode);
3084 }
3085 \f
3086 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3087 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3088 represented in NEW_MODE. If FORCE is true, this will never happen, as
3089 we'll force-create a SUBREG if needed. */
3090
3091 static rtx
3092 emit_move_change_mode (machine_mode new_mode,
3093 machine_mode old_mode, rtx x, bool force)
3094 {
3095 rtx ret;
3096
3097 if (push_operand (x, GET_MODE (x)))
3098 {
3099 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3100 MEM_COPY_ATTRIBUTES (ret, x);
3101 }
3102 else if (MEM_P (x))
3103 {
3104 /* We don't have to worry about changing the address since the
3105 size in bytes is supposed to be the same. */
3106 if (reload_in_progress)
3107 {
3108 /* Copy the MEM to change the mode and move any
3109 substitutions from the old MEM to the new one. */
3110 ret = adjust_address_nv (x, new_mode, 0);
3111 copy_replacements (x, ret);
3112 }
3113 else
3114 ret = adjust_address (x, new_mode, 0);
3115 }
3116 else
3117 {
3118 /* Note that we do want simplify_subreg's behavior of validating
3119 that the new mode is ok for a hard register. If we were to use
3120 simplify_gen_subreg, we would create the subreg, but would
3121 probably run into the target not being able to implement it. */
3122 /* Except, of course, when FORCE is true, when this is exactly what
3123 we want. Which is needed for CCmodes on some targets. */
3124 if (force)
3125 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3126 else
3127 ret = simplify_subreg (new_mode, x, old_mode, 0);
3128 }
3129
3130 return ret;
3131 }
3132
3133 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3134 an integer mode of the same size as MODE. Returns the instruction
3135 emitted, or NULL if such a move could not be generated. */
3136
3137 static rtx_insn *
3138 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3139 {
3140 machine_mode imode;
3141 enum insn_code code;
3142
3143 /* There must exist a mode of the exact size we require. */
3144 imode = int_mode_for_mode (mode);
3145 if (imode == BLKmode)
3146 return NULL;
3147
3148 /* The target must support moves in this mode. */
3149 code = optab_handler (mov_optab, imode);
3150 if (code == CODE_FOR_nothing)
3151 return NULL;
3152
3153 x = emit_move_change_mode (imode, mode, x, force);
3154 if (x == NULL_RTX)
3155 return NULL;
3156 y = emit_move_change_mode (imode, mode, y, force);
3157 if (y == NULL_RTX)
3158 return NULL;
3159 return emit_insn (GEN_FCN (code) (x, y));
3160 }
3161
3162 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3163 Return an equivalent MEM that does not use an auto-increment. */
3164
3165 rtx
3166 emit_move_resolve_push (machine_mode mode, rtx x)
3167 {
3168 enum rtx_code code = GET_CODE (XEXP (x, 0));
3169 HOST_WIDE_INT adjust;
3170 rtx temp;
3171
3172 adjust = GET_MODE_SIZE (mode);
3173 #ifdef PUSH_ROUNDING
3174 adjust = PUSH_ROUNDING (adjust);
3175 #endif
3176 if (code == PRE_DEC || code == POST_DEC)
3177 adjust = -adjust;
3178 else if (code == PRE_MODIFY || code == POST_MODIFY)
3179 {
3180 rtx expr = XEXP (XEXP (x, 0), 1);
3181 HOST_WIDE_INT val;
3182
3183 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3184 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3185 val = INTVAL (XEXP (expr, 1));
3186 if (GET_CODE (expr) == MINUS)
3187 val = -val;
3188 gcc_assert (adjust == val || adjust == -val);
3189 adjust = val;
3190 }
3191
3192 /* Do not use anti_adjust_stack, since we don't want to update
3193 stack_pointer_delta. */
3194 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3195 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3196 0, OPTAB_LIB_WIDEN);
3197 if (temp != stack_pointer_rtx)
3198 emit_move_insn (stack_pointer_rtx, temp);
3199
3200 switch (code)
3201 {
3202 case PRE_INC:
3203 case PRE_DEC:
3204 case PRE_MODIFY:
3205 temp = stack_pointer_rtx;
3206 break;
3207 case POST_INC:
3208 case POST_DEC:
3209 case POST_MODIFY:
3210 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3211 break;
3212 default:
3213 gcc_unreachable ();
3214 }
3215
3216 return replace_equiv_address (x, temp);
3217 }
3218
3219 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3220 X is known to satisfy push_operand, and MODE is known to be complex.
3221 Returns the last instruction emitted. */
3222
3223 rtx_insn *
3224 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3225 {
3226 machine_mode submode = GET_MODE_INNER (mode);
3227 bool imag_first;
3228
3229 #ifdef PUSH_ROUNDING
3230 unsigned int submodesize = GET_MODE_SIZE (submode);
3231
3232 /* In case we output to the stack, but the size is smaller than the
3233 machine can push exactly, we need to use move instructions. */
3234 if (PUSH_ROUNDING (submodesize) != submodesize)
3235 {
3236 x = emit_move_resolve_push (mode, x);
3237 return emit_move_insn (x, y);
3238 }
3239 #endif
3240
3241 /* Note that the real part always precedes the imag part in memory
3242 regardless of machine's endianness. */
3243 switch (GET_CODE (XEXP (x, 0)))
3244 {
3245 case PRE_DEC:
3246 case POST_DEC:
3247 imag_first = true;
3248 break;
3249 case PRE_INC:
3250 case POST_INC:
3251 imag_first = false;
3252 break;
3253 default:
3254 gcc_unreachable ();
3255 }
3256
3257 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3258 read_complex_part (y, imag_first));
3259 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3260 read_complex_part (y, !imag_first));
3261 }
3262
3263 /* A subroutine of emit_move_complex. Perform the move from Y to X
3264 via two moves of the parts. Returns the last instruction emitted. */
3265
3266 rtx_insn *
3267 emit_move_complex_parts (rtx x, rtx y)
3268 {
3269 /* Show the output dies here. This is necessary for SUBREGs
3270 of pseudos since we cannot track their lifetimes correctly;
3271 hard regs shouldn't appear here except as return values. */
3272 if (!reload_completed && !reload_in_progress
3273 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3274 emit_clobber (x);
3275
3276 write_complex_part (x, read_complex_part (y, false), false);
3277 write_complex_part (x, read_complex_part (y, true), true);
3278
3279 return get_last_insn ();
3280 }
3281
3282 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3283 MODE is known to be complex. Returns the last instruction emitted. */
3284
3285 static rtx_insn *
3286 emit_move_complex (machine_mode mode, rtx x, rtx y)
3287 {
3288 bool try_int;
3289
3290 /* Need to take special care for pushes, to maintain proper ordering
3291 of the data, and possibly extra padding. */
3292 if (push_operand (x, mode))
3293 return emit_move_complex_push (mode, x, y);
3294
3295 /* See if we can coerce the target into moving both values at once, except
3296 for floating point where we favor moving as parts if this is easy. */
3297 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3298 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3299 && !(REG_P (x)
3300 && HARD_REGISTER_P (x)
3301 && REG_NREGS (x) == 1)
3302 && !(REG_P (y)
3303 && HARD_REGISTER_P (y)
3304 && REG_NREGS (y) == 1))
3305 try_int = false;
3306 /* Not possible if the values are inherently not adjacent. */
3307 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3308 try_int = false;
3309 /* Is possible if both are registers (or subregs of registers). */
3310 else if (register_operand (x, mode) && register_operand (y, mode))
3311 try_int = true;
3312 /* If one of the operands is a memory, and alignment constraints
3313 are friendly enough, we may be able to do combined memory operations.
3314 We do not attempt this if Y is a constant because that combination is
3315 usually better with the by-parts thing below. */
3316 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3317 && (!STRICT_ALIGNMENT
3318 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3319 try_int = true;
3320 else
3321 try_int = false;
3322
3323 if (try_int)
3324 {
3325 rtx_insn *ret;
3326
3327 /* For memory to memory moves, optimal behavior can be had with the
3328 existing block move logic. */
3329 if (MEM_P (x) && MEM_P (y))
3330 {
3331 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3332 BLOCK_OP_NO_LIBCALL);
3333 return get_last_insn ();
3334 }
3335
3336 ret = emit_move_via_integer (mode, x, y, true);
3337 if (ret)
3338 return ret;
3339 }
3340
3341 return emit_move_complex_parts (x, y);
3342 }
3343
3344 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3345 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3346
3347 static rtx_insn *
3348 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3349 {
3350 rtx_insn *ret;
3351
3352 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3353 if (mode != CCmode)
3354 {
3355 enum insn_code code = optab_handler (mov_optab, CCmode);
3356 if (code != CODE_FOR_nothing)
3357 {
3358 x = emit_move_change_mode (CCmode, mode, x, true);
3359 y = emit_move_change_mode (CCmode, mode, y, true);
3360 return emit_insn (GEN_FCN (code) (x, y));
3361 }
3362 }
3363
3364 /* Otherwise, find the MODE_INT mode of the same width. */
3365 ret = emit_move_via_integer (mode, x, y, false);
3366 gcc_assert (ret != NULL);
3367 return ret;
3368 }
3369
3370 /* Return true if word I of OP lies entirely in the
3371 undefined bits of a paradoxical subreg. */
3372
3373 static bool
3374 undefined_operand_subword_p (const_rtx op, int i)
3375 {
3376 machine_mode innermode, innermostmode;
3377 int offset;
3378 if (GET_CODE (op) != SUBREG)
3379 return false;
3380 innermode = GET_MODE (op);
3381 innermostmode = GET_MODE (SUBREG_REG (op));
3382 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3383 /* The SUBREG_BYTE represents offset, as if the value were stored in
3384 memory, except for a paradoxical subreg where we define
3385 SUBREG_BYTE to be 0; undo this exception as in
3386 simplify_subreg. */
3387 if (SUBREG_BYTE (op) == 0
3388 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3389 {
3390 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3391 if (WORDS_BIG_ENDIAN)
3392 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3393 if (BYTES_BIG_ENDIAN)
3394 offset += difference % UNITS_PER_WORD;
3395 }
3396 if (offset >= GET_MODE_SIZE (innermostmode)
3397 || offset <= -GET_MODE_SIZE (word_mode))
3398 return true;
3399 return false;
3400 }
3401
3402 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3403 MODE is any multi-word or full-word mode that lacks a move_insn
3404 pattern. Note that you will get better code if you define such
3405 patterns, even if they must turn into multiple assembler instructions. */
3406
3407 static rtx_insn *
3408 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3409 {
3410 rtx_insn *last_insn = 0;
3411 rtx_insn *seq;
3412 rtx inner;
3413 bool need_clobber;
3414 int i;
3415
3416 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3417
3418 /* If X is a push on the stack, do the push now and replace
3419 X with a reference to the stack pointer. */
3420 if (push_operand (x, mode))
3421 x = emit_move_resolve_push (mode, x);
3422
3423 /* If we are in reload, see if either operand is a MEM whose address
3424 is scheduled for replacement. */
3425 if (reload_in_progress && MEM_P (x)
3426 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3427 x = replace_equiv_address_nv (x, inner);
3428 if (reload_in_progress && MEM_P (y)
3429 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3430 y = replace_equiv_address_nv (y, inner);
3431
3432 start_sequence ();
3433
3434 need_clobber = false;
3435 for (i = 0;
3436 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3437 i++)
3438 {
3439 rtx xpart = operand_subword (x, i, 1, mode);
3440 rtx ypart;
3441
3442 /* Do not generate code for a move if it would come entirely
3443 from the undefined bits of a paradoxical subreg. */
3444 if (undefined_operand_subword_p (y, i))
3445 continue;
3446
3447 ypart = operand_subword (y, i, 1, mode);
3448
3449 /* If we can't get a part of Y, put Y into memory if it is a
3450 constant. Otherwise, force it into a register. Then we must
3451 be able to get a part of Y. */
3452 if (ypart == 0 && CONSTANT_P (y))
3453 {
3454 y = use_anchored_address (force_const_mem (mode, y));
3455 ypart = operand_subword (y, i, 1, mode);
3456 }
3457 else if (ypart == 0)
3458 ypart = operand_subword_force (y, i, mode);
3459
3460 gcc_assert (xpart && ypart);
3461
3462 need_clobber |= (GET_CODE (xpart) == SUBREG);
3463
3464 last_insn = emit_move_insn (xpart, ypart);
3465 }
3466
3467 seq = get_insns ();
3468 end_sequence ();
3469
3470 /* Show the output dies here. This is necessary for SUBREGs
3471 of pseudos since we cannot track their lifetimes correctly;
3472 hard regs shouldn't appear here except as return values.
3473 We never want to emit such a clobber after reload. */
3474 if (x != y
3475 && ! (reload_in_progress || reload_completed)
3476 && need_clobber != 0)
3477 emit_clobber (x);
3478
3479 emit_insn (seq);
3480
3481 return last_insn;
3482 }
3483
3484 /* Low level part of emit_move_insn.
3485 Called just like emit_move_insn, but assumes X and Y
3486 are basically valid. */
3487
3488 rtx_insn *
3489 emit_move_insn_1 (rtx x, rtx y)
3490 {
3491 machine_mode mode = GET_MODE (x);
3492 enum insn_code code;
3493
3494 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3495
3496 code = optab_handler (mov_optab, mode);
3497 if (code != CODE_FOR_nothing)
3498 return emit_insn (GEN_FCN (code) (x, y));
3499
3500 /* Expand complex moves by moving real part and imag part. */
3501 if (COMPLEX_MODE_P (mode))
3502 return emit_move_complex (mode, x, y);
3503
3504 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3505 || ALL_FIXED_POINT_MODE_P (mode))
3506 {
3507 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3508
3509 /* If we can't find an integer mode, use multi words. */
3510 if (result)
3511 return result;
3512 else
3513 return emit_move_multi_word (mode, x, y);
3514 }
3515
3516 if (GET_MODE_CLASS (mode) == MODE_CC)
3517 return emit_move_ccmode (mode, x, y);
3518
3519 /* Try using a move pattern for the corresponding integer mode. This is
3520 only safe when simplify_subreg can convert MODE constants into integer
3521 constants. At present, it can only do this reliably if the value
3522 fits within a HOST_WIDE_INT. */
3523 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3524 {
3525 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3526
3527 if (ret)
3528 {
3529 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3530 return ret;
3531 }
3532 }
3533
3534 return emit_move_multi_word (mode, x, y);
3535 }
3536
3537 /* Generate code to copy Y into X.
3538 Both Y and X must have the same mode, except that
3539 Y can be a constant with VOIDmode.
3540 This mode cannot be BLKmode; use emit_block_move for that.
3541
3542 Return the last instruction emitted. */
3543
3544 rtx_insn *
3545 emit_move_insn (rtx x, rtx y)
3546 {
3547 machine_mode mode = GET_MODE (x);
3548 rtx y_cst = NULL_RTX;
3549 rtx_insn *last_insn;
3550 rtx set;
3551
3552 gcc_assert (mode != BLKmode
3553 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3554
3555 if (CONSTANT_P (y))
3556 {
3557 if (optimize
3558 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3559 && (last_insn = compress_float_constant (x, y)))
3560 return last_insn;
3561
3562 y_cst = y;
3563
3564 if (!targetm.legitimate_constant_p (mode, y))
3565 {
3566 y = force_const_mem (mode, y);
3567
3568 /* If the target's cannot_force_const_mem prevented the spill,
3569 assume that the target's move expanders will also take care
3570 of the non-legitimate constant. */
3571 if (!y)
3572 y = y_cst;
3573 else
3574 y = use_anchored_address (y);
3575 }
3576 }
3577
3578 /* If X or Y are memory references, verify that their addresses are valid
3579 for the machine. */
3580 if (MEM_P (x)
3581 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3582 MEM_ADDR_SPACE (x))
3583 && ! push_operand (x, GET_MODE (x))))
3584 x = validize_mem (x);
3585
3586 if (MEM_P (y)
3587 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3588 MEM_ADDR_SPACE (y)))
3589 y = validize_mem (y);
3590
3591 gcc_assert (mode != BLKmode);
3592
3593 last_insn = emit_move_insn_1 (x, y);
3594
3595 if (y_cst && REG_P (x)
3596 && (set = single_set (last_insn)) != NULL_RTX
3597 && SET_DEST (set) == x
3598 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3599 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3600
3601 return last_insn;
3602 }
3603
3604 /* Generate the body of an instruction to copy Y into X.
3605 It may be a list of insns, if one insn isn't enough. */
3606
3607 rtx_insn *
3608 gen_move_insn (rtx x, rtx y)
3609 {
3610 rtx_insn *seq;
3611
3612 start_sequence ();
3613 emit_move_insn_1 (x, y);
3614 seq = get_insns ();
3615 end_sequence ();
3616 return seq;
3617 }
3618
3619 /* If Y is representable exactly in a narrower mode, and the target can
3620 perform the extension directly from constant or memory, then emit the
3621 move as an extension. */
3622
3623 static rtx_insn *
3624 compress_float_constant (rtx x, rtx y)
3625 {
3626 machine_mode dstmode = GET_MODE (x);
3627 machine_mode orig_srcmode = GET_MODE (y);
3628 machine_mode srcmode;
3629 REAL_VALUE_TYPE r;
3630 int oldcost, newcost;
3631 bool speed = optimize_insn_for_speed_p ();
3632
3633 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3634
3635 if (targetm.legitimate_constant_p (dstmode, y))
3636 oldcost = set_src_cost (y, orig_srcmode, speed);
3637 else
3638 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3639
3640 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3641 srcmode != orig_srcmode;
3642 srcmode = GET_MODE_WIDER_MODE (srcmode))
3643 {
3644 enum insn_code ic;
3645 rtx trunc_y;
3646 rtx_insn *last_insn;
3647
3648 /* Skip if the target can't extend this way. */
3649 ic = can_extend_p (dstmode, srcmode, 0);
3650 if (ic == CODE_FOR_nothing)
3651 continue;
3652
3653 /* Skip if the narrowed value isn't exact. */
3654 if (! exact_real_truncate (srcmode, &r))
3655 continue;
3656
3657 trunc_y = const_double_from_real_value (r, srcmode);
3658
3659 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3660 {
3661 /* Skip if the target needs extra instructions to perform
3662 the extension. */
3663 if (!insn_operand_matches (ic, 1, trunc_y))
3664 continue;
3665 /* This is valid, but may not be cheaper than the original. */
3666 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3667 dstmode, speed);
3668 if (oldcost < newcost)
3669 continue;
3670 }
3671 else if (float_extend_from_mem[dstmode][srcmode])
3672 {
3673 trunc_y = force_const_mem (srcmode, trunc_y);
3674 /* This is valid, but may not be cheaper than the original. */
3675 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3676 dstmode, speed);
3677 if (oldcost < newcost)
3678 continue;
3679 trunc_y = validize_mem (trunc_y);
3680 }
3681 else
3682 continue;
3683
3684 /* For CSE's benefit, force the compressed constant pool entry
3685 into a new pseudo. This constant may be used in different modes,
3686 and if not, combine will put things back together for us. */
3687 trunc_y = force_reg (srcmode, trunc_y);
3688
3689 /* If x is a hard register, perform the extension into a pseudo,
3690 so that e.g. stack realignment code is aware of it. */
3691 rtx target = x;
3692 if (REG_P (x) && HARD_REGISTER_P (x))
3693 target = gen_reg_rtx (dstmode);
3694
3695 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3696 last_insn = get_last_insn ();
3697
3698 if (REG_P (target))
3699 set_unique_reg_note (last_insn, REG_EQUAL, y);
3700
3701 if (target != x)
3702 return emit_move_insn (x, target);
3703 return last_insn;
3704 }
3705
3706 return NULL;
3707 }
3708 \f
3709 /* Pushing data onto the stack. */
3710
3711 /* Push a block of length SIZE (perhaps variable)
3712 and return an rtx to address the beginning of the block.
3713 The value may be virtual_outgoing_args_rtx.
3714
3715 EXTRA is the number of bytes of padding to push in addition to SIZE.
3716 BELOW nonzero means this padding comes at low addresses;
3717 otherwise, the padding comes at high addresses. */
3718
3719 rtx
3720 push_block (rtx size, int extra, int below)
3721 {
3722 rtx temp;
3723
3724 size = convert_modes (Pmode, ptr_mode, size, 1);
3725 if (CONSTANT_P (size))
3726 anti_adjust_stack (plus_constant (Pmode, size, extra));
3727 else if (REG_P (size) && extra == 0)
3728 anti_adjust_stack (size);
3729 else
3730 {
3731 temp = copy_to_mode_reg (Pmode, size);
3732 if (extra != 0)
3733 temp = expand_binop (Pmode, add_optab, temp,
3734 gen_int_mode (extra, Pmode),
3735 temp, 0, OPTAB_LIB_WIDEN);
3736 anti_adjust_stack (temp);
3737 }
3738
3739 if (STACK_GROWS_DOWNWARD)
3740 {
3741 temp = virtual_outgoing_args_rtx;
3742 if (extra != 0 && below)
3743 temp = plus_constant (Pmode, temp, extra);
3744 }
3745 else
3746 {
3747 if (CONST_INT_P (size))
3748 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3749 -INTVAL (size) - (below ? 0 : extra));
3750 else if (extra != 0 && !below)
3751 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3752 negate_rtx (Pmode, plus_constant (Pmode, size,
3753 extra)));
3754 else
3755 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3756 negate_rtx (Pmode, size));
3757 }
3758
3759 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3760 }
3761
3762 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3763
3764 static rtx
3765 mem_autoinc_base (rtx mem)
3766 {
3767 if (MEM_P (mem))
3768 {
3769 rtx addr = XEXP (mem, 0);
3770 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3771 return XEXP (addr, 0);
3772 }
3773 return NULL;
3774 }
3775
3776 /* A utility routine used here, in reload, and in try_split. The insns
3777 after PREV up to and including LAST are known to adjust the stack,
3778 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3779 placing notes as appropriate. PREV may be NULL, indicating the
3780 entire insn sequence prior to LAST should be scanned.
3781
3782 The set of allowed stack pointer modifications is small:
3783 (1) One or more auto-inc style memory references (aka pushes),
3784 (2) One or more addition/subtraction with the SP as destination,
3785 (3) A single move insn with the SP as destination,
3786 (4) A call_pop insn,
3787 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3788
3789 Insns in the sequence that do not modify the SP are ignored,
3790 except for noreturn calls.
3791
3792 The return value is the amount of adjustment that can be trivially
3793 verified, via immediate operand or auto-inc. If the adjustment
3794 cannot be trivially extracted, the return value is INT_MIN. */
3795
3796 HOST_WIDE_INT
3797 find_args_size_adjust (rtx_insn *insn)
3798 {
3799 rtx dest, set, pat;
3800 int i;
3801
3802 pat = PATTERN (insn);
3803 set = NULL;
3804
3805 /* Look for a call_pop pattern. */
3806 if (CALL_P (insn))
3807 {
3808 /* We have to allow non-call_pop patterns for the case
3809 of emit_single_push_insn of a TLS address. */
3810 if (GET_CODE (pat) != PARALLEL)
3811 return 0;
3812
3813 /* All call_pop have a stack pointer adjust in the parallel.
3814 The call itself is always first, and the stack adjust is
3815 usually last, so search from the end. */
3816 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3817 {
3818 set = XVECEXP (pat, 0, i);
3819 if (GET_CODE (set) != SET)
3820 continue;
3821 dest = SET_DEST (set);
3822 if (dest == stack_pointer_rtx)
3823 break;
3824 }
3825 /* We'd better have found the stack pointer adjust. */
3826 if (i == 0)
3827 return 0;
3828 /* Fall through to process the extracted SET and DEST
3829 as if it was a standalone insn. */
3830 }
3831 else if (GET_CODE (pat) == SET)
3832 set = pat;
3833 else if ((set = single_set (insn)) != NULL)
3834 ;
3835 else if (GET_CODE (pat) == PARALLEL)
3836 {
3837 /* ??? Some older ports use a parallel with a stack adjust
3838 and a store for a PUSH_ROUNDING pattern, rather than a
3839 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3840 /* ??? See h8300 and m68k, pushqi1. */
3841 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3842 {
3843 set = XVECEXP (pat, 0, i);
3844 if (GET_CODE (set) != SET)
3845 continue;
3846 dest = SET_DEST (set);
3847 if (dest == stack_pointer_rtx)
3848 break;
3849
3850 /* We do not expect an auto-inc of the sp in the parallel. */
3851 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3852 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3853 != stack_pointer_rtx);
3854 }
3855 if (i < 0)
3856 return 0;
3857 }
3858 else
3859 return 0;
3860
3861 dest = SET_DEST (set);
3862
3863 /* Look for direct modifications of the stack pointer. */
3864 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3865 {
3866 /* Look for a trivial adjustment, otherwise assume nothing. */
3867 /* Note that the SPU restore_stack_block pattern refers to
3868 the stack pointer in V4SImode. Consider that non-trivial. */
3869 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3870 && GET_CODE (SET_SRC (set)) == PLUS
3871 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3872 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3873 return INTVAL (XEXP (SET_SRC (set), 1));
3874 /* ??? Reload can generate no-op moves, which will be cleaned
3875 up later. Recognize it and continue searching. */
3876 else if (rtx_equal_p (dest, SET_SRC (set)))
3877 return 0;
3878 else
3879 return HOST_WIDE_INT_MIN;
3880 }
3881 else
3882 {
3883 rtx mem, addr;
3884
3885 /* Otherwise only think about autoinc patterns. */
3886 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3887 {
3888 mem = dest;
3889 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3890 != stack_pointer_rtx);
3891 }
3892 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3893 mem = SET_SRC (set);
3894 else
3895 return 0;
3896
3897 addr = XEXP (mem, 0);
3898 switch (GET_CODE (addr))
3899 {
3900 case PRE_INC:
3901 case POST_INC:
3902 return GET_MODE_SIZE (GET_MODE (mem));
3903 case PRE_DEC:
3904 case POST_DEC:
3905 return -GET_MODE_SIZE (GET_MODE (mem));
3906 case PRE_MODIFY:
3907 case POST_MODIFY:
3908 addr = XEXP (addr, 1);
3909 gcc_assert (GET_CODE (addr) == PLUS);
3910 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3911 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3912 return INTVAL (XEXP (addr, 1));
3913 default:
3914 gcc_unreachable ();
3915 }
3916 }
3917 }
3918
3919 int
3920 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
3921 {
3922 int args_size = end_args_size;
3923 bool saw_unknown = false;
3924 rtx_insn *insn;
3925
3926 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3927 {
3928 HOST_WIDE_INT this_delta;
3929
3930 if (!NONDEBUG_INSN_P (insn))
3931 continue;
3932
3933 this_delta = find_args_size_adjust (insn);
3934 if (this_delta == 0)
3935 {
3936 if (!CALL_P (insn)
3937 || ACCUMULATE_OUTGOING_ARGS
3938 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3939 continue;
3940 }
3941
3942 gcc_assert (!saw_unknown);
3943 if (this_delta == HOST_WIDE_INT_MIN)
3944 saw_unknown = true;
3945
3946 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3947 if (STACK_GROWS_DOWNWARD)
3948 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
3949
3950 args_size -= this_delta;
3951 }
3952
3953 return saw_unknown ? INT_MIN : args_size;
3954 }
3955
3956 #ifdef PUSH_ROUNDING
3957 /* Emit single push insn. */
3958
3959 static void
3960 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
3961 {
3962 rtx dest_addr;
3963 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3964 rtx dest;
3965 enum insn_code icode;
3966
3967 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3968 /* If there is push pattern, use it. Otherwise try old way of throwing
3969 MEM representing push operation to move expander. */
3970 icode = optab_handler (push_optab, mode);
3971 if (icode != CODE_FOR_nothing)
3972 {
3973 struct expand_operand ops[1];
3974
3975 create_input_operand (&ops[0], x, mode);
3976 if (maybe_expand_insn (icode, 1, ops))
3977 return;
3978 }
3979 if (GET_MODE_SIZE (mode) == rounded_size)
3980 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3981 /* If we are to pad downward, adjust the stack pointer first and
3982 then store X into the stack location using an offset. This is
3983 because emit_move_insn does not know how to pad; it does not have
3984 access to type. */
3985 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3986 {
3987 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3988 HOST_WIDE_INT offset;
3989
3990 emit_move_insn (stack_pointer_rtx,
3991 expand_binop (Pmode,
3992 STACK_GROWS_DOWNWARD ? sub_optab
3993 : add_optab,
3994 stack_pointer_rtx,
3995 gen_int_mode (rounded_size, Pmode),
3996 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3997
3998 offset = (HOST_WIDE_INT) padding_size;
3999 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4000 /* We have already decremented the stack pointer, so get the
4001 previous value. */
4002 offset += (HOST_WIDE_INT) rounded_size;
4003
4004 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4005 /* We have already incremented the stack pointer, so get the
4006 previous value. */
4007 offset -= (HOST_WIDE_INT) rounded_size;
4008
4009 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4010 gen_int_mode (offset, Pmode));
4011 }
4012 else
4013 {
4014 if (STACK_GROWS_DOWNWARD)
4015 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4016 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4017 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4018 Pmode));
4019 else
4020 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4021 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4022 gen_int_mode (rounded_size, Pmode));
4023
4024 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4025 }
4026
4027 dest = gen_rtx_MEM (mode, dest_addr);
4028
4029 if (type != 0)
4030 {
4031 set_mem_attributes (dest, type, 1);
4032
4033 if (cfun->tail_call_marked)
4034 /* Function incoming arguments may overlap with sibling call
4035 outgoing arguments and we cannot allow reordering of reads
4036 from function arguments with stores to outgoing arguments
4037 of sibling calls. */
4038 set_mem_alias_set (dest, 0);
4039 }
4040 emit_move_insn (dest, x);
4041 }
4042
4043 /* Emit and annotate a single push insn. */
4044
4045 static void
4046 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4047 {
4048 int delta, old_delta = stack_pointer_delta;
4049 rtx_insn *prev = get_last_insn ();
4050 rtx_insn *last;
4051
4052 emit_single_push_insn_1 (mode, x, type);
4053
4054 last = get_last_insn ();
4055
4056 /* Notice the common case where we emitted exactly one insn. */
4057 if (PREV_INSN (last) == prev)
4058 {
4059 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4060 return;
4061 }
4062
4063 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4064 gcc_assert (delta == INT_MIN || delta == old_delta);
4065 }
4066 #endif
4067
4068 /* If reading SIZE bytes from X will end up reading from
4069 Y return the number of bytes that overlap. Return -1
4070 if there is no overlap or -2 if we can't determine
4071 (for example when X and Y have different base registers). */
4072
4073 static int
4074 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4075 {
4076 rtx tmp = plus_constant (Pmode, x, size);
4077 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4078
4079 if (!CONST_INT_P (sub))
4080 return -2;
4081
4082 HOST_WIDE_INT val = INTVAL (sub);
4083
4084 return IN_RANGE (val, 1, size) ? val : -1;
4085 }
4086
4087 /* Generate code to push X onto the stack, assuming it has mode MODE and
4088 type TYPE.
4089 MODE is redundant except when X is a CONST_INT (since they don't
4090 carry mode info).
4091 SIZE is an rtx for the size of data to be copied (in bytes),
4092 needed only if X is BLKmode.
4093 Return true if successful. May return false if asked to push a
4094 partial argument during a sibcall optimization (as specified by
4095 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4096 to not overlap.
4097
4098 ALIGN (in bits) is maximum alignment we can assume.
4099
4100 If PARTIAL and REG are both nonzero, then copy that many of the first
4101 bytes of X into registers starting with REG, and push the rest of X.
4102 The amount of space pushed is decreased by PARTIAL bytes.
4103 REG must be a hard register in this case.
4104 If REG is zero but PARTIAL is not, take any all others actions for an
4105 argument partially in registers, but do not actually load any
4106 registers.
4107
4108 EXTRA is the amount in bytes of extra space to leave next to this arg.
4109 This is ignored if an argument block has already been allocated.
4110
4111 On a machine that lacks real push insns, ARGS_ADDR is the address of
4112 the bottom of the argument block for this call. We use indexing off there
4113 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4114 argument block has not been preallocated.
4115
4116 ARGS_SO_FAR is the size of args previously pushed for this call.
4117
4118 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4119 for arguments passed in registers. If nonzero, it will be the number
4120 of bytes required. */
4121
4122 bool
4123 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4124 unsigned int align, int partial, rtx reg, int extra,
4125 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4126 rtx alignment_pad, bool sibcall_p)
4127 {
4128 rtx xinner;
4129 enum direction stack_direction = STACK_GROWS_DOWNWARD ? downward : upward;
4130
4131 /* Decide where to pad the argument: `downward' for below,
4132 `upward' for above, or `none' for don't pad it.
4133 Default is below for small data on big-endian machines; else above. */
4134 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4135
4136 /* Invert direction if stack is post-decrement.
4137 FIXME: why? */
4138 if (STACK_PUSH_CODE == POST_DEC)
4139 if (where_pad != none)
4140 where_pad = (where_pad == downward ? upward : downward);
4141
4142 xinner = x;
4143
4144 int nregs = partial / UNITS_PER_WORD;
4145 rtx *tmp_regs = NULL;
4146 int overlapping = 0;
4147
4148 if (mode == BLKmode
4149 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4150 {
4151 /* Copy a block into the stack, entirely or partially. */
4152
4153 rtx temp;
4154 int used;
4155 int offset;
4156 int skip;
4157
4158 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4159 used = partial - offset;
4160
4161 if (mode != BLKmode)
4162 {
4163 /* A value is to be stored in an insufficiently aligned
4164 stack slot; copy via a suitably aligned slot if
4165 necessary. */
4166 size = GEN_INT (GET_MODE_SIZE (mode));
4167 if (!MEM_P (xinner))
4168 {
4169 temp = assign_temp (type, 1, 1);
4170 emit_move_insn (temp, xinner);
4171 xinner = temp;
4172 }
4173 }
4174
4175 gcc_assert (size);
4176
4177 /* USED is now the # of bytes we need not copy to the stack
4178 because registers will take care of them. */
4179
4180 if (partial != 0)
4181 xinner = adjust_address (xinner, BLKmode, used);
4182
4183 /* If the partial register-part of the arg counts in its stack size,
4184 skip the part of stack space corresponding to the registers.
4185 Otherwise, start copying to the beginning of the stack space,
4186 by setting SKIP to 0. */
4187 skip = (reg_parm_stack_space == 0) ? 0 : used;
4188
4189 #ifdef PUSH_ROUNDING
4190 /* Do it with several push insns if that doesn't take lots of insns
4191 and if there is no difficulty with push insns that skip bytes
4192 on the stack for alignment purposes. */
4193 if (args_addr == 0
4194 && PUSH_ARGS
4195 && CONST_INT_P (size)
4196 && skip == 0
4197 && MEM_ALIGN (xinner) >= align
4198 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4199 /* Here we avoid the case of a structure whose weak alignment
4200 forces many pushes of a small amount of data,
4201 and such small pushes do rounding that causes trouble. */
4202 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4203 || align >= BIGGEST_ALIGNMENT
4204 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4205 == (align / BITS_PER_UNIT)))
4206 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4207 {
4208 /* Push padding now if padding above and stack grows down,
4209 or if padding below and stack grows up.
4210 But if space already allocated, this has already been done. */
4211 if (extra && args_addr == 0
4212 && where_pad != none && where_pad != stack_direction)
4213 anti_adjust_stack (GEN_INT (extra));
4214
4215 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4216 }
4217 else
4218 #endif /* PUSH_ROUNDING */
4219 {
4220 rtx target;
4221
4222 /* Otherwise make space on the stack and copy the data
4223 to the address of that space. */
4224
4225 /* Deduct words put into registers from the size we must copy. */
4226 if (partial != 0)
4227 {
4228 if (CONST_INT_P (size))
4229 size = GEN_INT (INTVAL (size) - used);
4230 else
4231 size = expand_binop (GET_MODE (size), sub_optab, size,
4232 gen_int_mode (used, GET_MODE (size)),
4233 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4234 }
4235
4236 /* Get the address of the stack space.
4237 In this case, we do not deal with EXTRA separately.
4238 A single stack adjust will do. */
4239 if (! args_addr)
4240 {
4241 temp = push_block (size, extra, where_pad == downward);
4242 extra = 0;
4243 }
4244 else if (CONST_INT_P (args_so_far))
4245 temp = memory_address (BLKmode,
4246 plus_constant (Pmode, args_addr,
4247 skip + INTVAL (args_so_far)));
4248 else
4249 temp = memory_address (BLKmode,
4250 plus_constant (Pmode,
4251 gen_rtx_PLUS (Pmode,
4252 args_addr,
4253 args_so_far),
4254 skip));
4255
4256 if (!ACCUMULATE_OUTGOING_ARGS)
4257 {
4258 /* If the source is referenced relative to the stack pointer,
4259 copy it to another register to stabilize it. We do not need
4260 to do this if we know that we won't be changing sp. */
4261
4262 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4263 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4264 temp = copy_to_reg (temp);
4265 }
4266
4267 target = gen_rtx_MEM (BLKmode, temp);
4268
4269 /* We do *not* set_mem_attributes here, because incoming arguments
4270 may overlap with sibling call outgoing arguments and we cannot
4271 allow reordering of reads from function arguments with stores
4272 to outgoing arguments of sibling calls. We do, however, want
4273 to record the alignment of the stack slot. */
4274 /* ALIGN may well be better aligned than TYPE, e.g. due to
4275 PARM_BOUNDARY. Assume the caller isn't lying. */
4276 set_mem_align (target, align);
4277
4278 /* If part should go in registers and pushing to that part would
4279 overwrite some of the values that need to go into regs, load the
4280 overlapping values into temporary pseudos to be moved into the hard
4281 regs at the end after the stack pushing has completed.
4282 We cannot load them directly into the hard regs here because
4283 they can be clobbered by the block move expansions.
4284 See PR 65358. */
4285
4286 if (partial > 0 && reg != 0 && mode == BLKmode
4287 && GET_CODE (reg) != PARALLEL)
4288 {
4289 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4290 if (overlapping > 0)
4291 {
4292 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4293 overlapping /= UNITS_PER_WORD;
4294
4295 tmp_regs = XALLOCAVEC (rtx, overlapping);
4296
4297 for (int i = 0; i < overlapping; i++)
4298 tmp_regs[i] = gen_reg_rtx (word_mode);
4299
4300 for (int i = 0; i < overlapping; i++)
4301 emit_move_insn (tmp_regs[i],
4302 operand_subword_force (target, i, mode));
4303 }
4304 else if (overlapping == -1)
4305 overlapping = 0;
4306 /* Could not determine whether there is overlap.
4307 Fail the sibcall. */
4308 else
4309 {
4310 overlapping = 0;
4311 if (sibcall_p)
4312 return false;
4313 }
4314 }
4315 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4316 }
4317 }
4318 else if (partial > 0)
4319 {
4320 /* Scalar partly in registers. */
4321
4322 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4323 int i;
4324 int not_stack;
4325 /* # bytes of start of argument
4326 that we must make space for but need not store. */
4327 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4328 int args_offset = INTVAL (args_so_far);
4329 int skip;
4330
4331 /* Push padding now if padding above and stack grows down,
4332 or if padding below and stack grows up.
4333 But if space already allocated, this has already been done. */
4334 if (extra && args_addr == 0
4335 && where_pad != none && where_pad != stack_direction)
4336 anti_adjust_stack (GEN_INT (extra));
4337
4338 /* If we make space by pushing it, we might as well push
4339 the real data. Otherwise, we can leave OFFSET nonzero
4340 and leave the space uninitialized. */
4341 if (args_addr == 0)
4342 offset = 0;
4343
4344 /* Now NOT_STACK gets the number of words that we don't need to
4345 allocate on the stack. Convert OFFSET to words too. */
4346 not_stack = (partial - offset) / UNITS_PER_WORD;
4347 offset /= UNITS_PER_WORD;
4348
4349 /* If the partial register-part of the arg counts in its stack size,
4350 skip the part of stack space corresponding to the registers.
4351 Otherwise, start copying to the beginning of the stack space,
4352 by setting SKIP to 0. */
4353 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4354
4355 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4356 x = validize_mem (force_const_mem (mode, x));
4357
4358 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4359 SUBREGs of such registers are not allowed. */
4360 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4361 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4362 x = copy_to_reg (x);
4363
4364 /* Loop over all the words allocated on the stack for this arg. */
4365 /* We can do it by words, because any scalar bigger than a word
4366 has a size a multiple of a word. */
4367 for (i = size - 1; i >= not_stack; i--)
4368 if (i >= not_stack + offset)
4369 if (!emit_push_insn (operand_subword_force (x, i, mode),
4370 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4371 0, args_addr,
4372 GEN_INT (args_offset + ((i - not_stack + skip)
4373 * UNITS_PER_WORD)),
4374 reg_parm_stack_space, alignment_pad, sibcall_p))
4375 return false;
4376 }
4377 else
4378 {
4379 rtx addr;
4380 rtx dest;
4381
4382 /* Push padding now if padding above and stack grows down,
4383 or if padding below and stack grows up.
4384 But if space already allocated, this has already been done. */
4385 if (extra && args_addr == 0
4386 && where_pad != none && where_pad != stack_direction)
4387 anti_adjust_stack (GEN_INT (extra));
4388
4389 #ifdef PUSH_ROUNDING
4390 if (args_addr == 0 && PUSH_ARGS)
4391 emit_single_push_insn (mode, x, type);
4392 else
4393 #endif
4394 {
4395 if (CONST_INT_P (args_so_far))
4396 addr
4397 = memory_address (mode,
4398 plus_constant (Pmode, args_addr,
4399 INTVAL (args_so_far)));
4400 else
4401 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4402 args_so_far));
4403 dest = gen_rtx_MEM (mode, addr);
4404
4405 /* We do *not* set_mem_attributes here, because incoming arguments
4406 may overlap with sibling call outgoing arguments and we cannot
4407 allow reordering of reads from function arguments with stores
4408 to outgoing arguments of sibling calls. We do, however, want
4409 to record the alignment of the stack slot. */
4410 /* ALIGN may well be better aligned than TYPE, e.g. due to
4411 PARM_BOUNDARY. Assume the caller isn't lying. */
4412 set_mem_align (dest, align);
4413
4414 emit_move_insn (dest, x);
4415 }
4416 }
4417
4418 /* Move the partial arguments into the registers and any overlapping
4419 values that we moved into the pseudos in tmp_regs. */
4420 if (partial > 0 && reg != 0)
4421 {
4422 /* Handle calls that pass values in multiple non-contiguous locations.
4423 The Irix 6 ABI has examples of this. */
4424 if (GET_CODE (reg) == PARALLEL)
4425 emit_group_load (reg, x, type, -1);
4426 else
4427 {
4428 gcc_assert (partial % UNITS_PER_WORD == 0);
4429 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4430
4431 for (int i = 0; i < overlapping; i++)
4432 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4433 + nregs - overlapping + i),
4434 tmp_regs[i]);
4435
4436 }
4437 }
4438
4439 if (extra && args_addr == 0 && where_pad == stack_direction)
4440 anti_adjust_stack (GEN_INT (extra));
4441
4442 if (alignment_pad && args_addr == 0)
4443 anti_adjust_stack (alignment_pad);
4444
4445 return true;
4446 }
4447 \f
4448 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4449 operations. */
4450
4451 static rtx
4452 get_subtarget (rtx x)
4453 {
4454 return (optimize
4455 || x == 0
4456 /* Only registers can be subtargets. */
4457 || !REG_P (x)
4458 /* Don't use hard regs to avoid extending their life. */
4459 || REGNO (x) < FIRST_PSEUDO_REGISTER
4460 ? 0 : x);
4461 }
4462
4463 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4464 FIELD is a bitfield. Returns true if the optimization was successful,
4465 and there's nothing else to do. */
4466
4467 static bool
4468 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4469 unsigned HOST_WIDE_INT bitpos,
4470 unsigned HOST_WIDE_INT bitregion_start,
4471 unsigned HOST_WIDE_INT bitregion_end,
4472 machine_mode mode1, rtx str_rtx,
4473 tree to, tree src)
4474 {
4475 machine_mode str_mode = GET_MODE (str_rtx);
4476 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4477 tree op0, op1;
4478 rtx value, result;
4479 optab binop;
4480 gimple *srcstmt;
4481 enum tree_code code;
4482
4483 if (mode1 != VOIDmode
4484 || bitsize >= BITS_PER_WORD
4485 || str_bitsize > BITS_PER_WORD
4486 || TREE_SIDE_EFFECTS (to)
4487 || TREE_THIS_VOLATILE (to))
4488 return false;
4489
4490 STRIP_NOPS (src);
4491 if (TREE_CODE (src) != SSA_NAME)
4492 return false;
4493 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4494 return false;
4495
4496 srcstmt = get_gimple_for_ssa_name (src);
4497 if (!srcstmt
4498 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4499 return false;
4500
4501 code = gimple_assign_rhs_code (srcstmt);
4502
4503 op0 = gimple_assign_rhs1 (srcstmt);
4504
4505 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4506 to find its initialization. Hopefully the initialization will
4507 be from a bitfield load. */
4508 if (TREE_CODE (op0) == SSA_NAME)
4509 {
4510 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4511
4512 /* We want to eventually have OP0 be the same as TO, which
4513 should be a bitfield. */
4514 if (!op0stmt
4515 || !is_gimple_assign (op0stmt)
4516 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4517 return false;
4518 op0 = gimple_assign_rhs1 (op0stmt);
4519 }
4520
4521 op1 = gimple_assign_rhs2 (srcstmt);
4522
4523 if (!operand_equal_p (to, op0, 0))
4524 return false;
4525
4526 if (MEM_P (str_rtx))
4527 {
4528 unsigned HOST_WIDE_INT offset1;
4529
4530 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4531 str_mode = word_mode;
4532 str_mode = get_best_mode (bitsize, bitpos,
4533 bitregion_start, bitregion_end,
4534 MEM_ALIGN (str_rtx), str_mode, 0);
4535 if (str_mode == VOIDmode)
4536 return false;
4537 str_bitsize = GET_MODE_BITSIZE (str_mode);
4538
4539 offset1 = bitpos;
4540 bitpos %= str_bitsize;
4541 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4542 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4543 }
4544 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4545 return false;
4546
4547 /* If the bit field covers the whole REG/MEM, store_field
4548 will likely generate better code. */
4549 if (bitsize >= str_bitsize)
4550 return false;
4551
4552 /* We can't handle fields split across multiple entities. */
4553 if (bitpos + bitsize > str_bitsize)
4554 return false;
4555
4556 if (BYTES_BIG_ENDIAN)
4557 bitpos = str_bitsize - bitpos - bitsize;
4558
4559 switch (code)
4560 {
4561 case PLUS_EXPR:
4562 case MINUS_EXPR:
4563 /* For now, just optimize the case of the topmost bitfield
4564 where we don't need to do any masking and also
4565 1 bit bitfields where xor can be used.
4566 We might win by one instruction for the other bitfields
4567 too if insv/extv instructions aren't used, so that
4568 can be added later. */
4569 if (bitpos + bitsize != str_bitsize
4570 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4571 break;
4572
4573 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4574 value = convert_modes (str_mode,
4575 TYPE_MODE (TREE_TYPE (op1)), value,
4576 TYPE_UNSIGNED (TREE_TYPE (op1)));
4577
4578 /* We may be accessing data outside the field, which means
4579 we can alias adjacent data. */
4580 if (MEM_P (str_rtx))
4581 {
4582 str_rtx = shallow_copy_rtx (str_rtx);
4583 set_mem_alias_set (str_rtx, 0);
4584 set_mem_expr (str_rtx, 0);
4585 }
4586
4587 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4588 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4589 {
4590 value = expand_and (str_mode, value, const1_rtx, NULL);
4591 binop = xor_optab;
4592 }
4593 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4594 result = expand_binop (str_mode, binop, str_rtx,
4595 value, str_rtx, 1, OPTAB_WIDEN);
4596 if (result != str_rtx)
4597 emit_move_insn (str_rtx, result);
4598 return true;
4599
4600 case BIT_IOR_EXPR:
4601 case BIT_XOR_EXPR:
4602 if (TREE_CODE (op1) != INTEGER_CST)
4603 break;
4604 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4605 value = convert_modes (str_mode,
4606 TYPE_MODE (TREE_TYPE (op1)), value,
4607 TYPE_UNSIGNED (TREE_TYPE (op1)));
4608
4609 /* We may be accessing data outside the field, which means
4610 we can alias adjacent data. */
4611 if (MEM_P (str_rtx))
4612 {
4613 str_rtx = shallow_copy_rtx (str_rtx);
4614 set_mem_alias_set (str_rtx, 0);
4615 set_mem_expr (str_rtx, 0);
4616 }
4617
4618 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4619 if (bitpos + bitsize != str_bitsize)
4620 {
4621 rtx mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1,
4622 str_mode);
4623 value = expand_and (str_mode, value, mask, NULL_RTX);
4624 }
4625 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4626 result = expand_binop (str_mode, binop, str_rtx,
4627 value, str_rtx, 1, OPTAB_WIDEN);
4628 if (result != str_rtx)
4629 emit_move_insn (str_rtx, result);
4630 return true;
4631
4632 default:
4633 break;
4634 }
4635
4636 return false;
4637 }
4638
4639 /* In the C++ memory model, consecutive bit fields in a structure are
4640 considered one memory location.
4641
4642 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4643 returns the bit range of consecutive bits in which this COMPONENT_REF
4644 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4645 and *OFFSET may be adjusted in the process.
4646
4647 If the access does not need to be restricted, 0 is returned in both
4648 *BITSTART and *BITEND. */
4649
4650 static void
4651 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4652 unsigned HOST_WIDE_INT *bitend,
4653 tree exp,
4654 HOST_WIDE_INT *bitpos,
4655 tree *offset)
4656 {
4657 HOST_WIDE_INT bitoffset;
4658 tree field, repr;
4659
4660 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4661
4662 field = TREE_OPERAND (exp, 1);
4663 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4664 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4665 need to limit the range we can access. */
4666 if (!repr)
4667 {
4668 *bitstart = *bitend = 0;
4669 return;
4670 }
4671
4672 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4673 part of a larger bit field, then the representative does not serve any
4674 useful purpose. This can occur in Ada. */
4675 if (handled_component_p (TREE_OPERAND (exp, 0)))
4676 {
4677 machine_mode rmode;
4678 HOST_WIDE_INT rbitsize, rbitpos;
4679 tree roffset;
4680 int unsignedp;
4681 int volatilep = 0;
4682 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4683 &roffset, &rmode, &unsignedp, &volatilep, false);
4684 if ((rbitpos % BITS_PER_UNIT) != 0)
4685 {
4686 *bitstart = *bitend = 0;
4687 return;
4688 }
4689 }
4690
4691 /* Compute the adjustment to bitpos from the offset of the field
4692 relative to the representative. DECL_FIELD_OFFSET of field and
4693 repr are the same by construction if they are not constants,
4694 see finish_bitfield_layout. */
4695 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4696 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4697 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4698 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4699 else
4700 bitoffset = 0;
4701 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4702 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4703
4704 /* If the adjustment is larger than bitpos, we would have a negative bit
4705 position for the lower bound and this may wreak havoc later. Adjust
4706 offset and bitpos to make the lower bound non-negative in that case. */
4707 if (bitoffset > *bitpos)
4708 {
4709 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4710 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4711
4712 *bitpos += adjust;
4713 if (*offset == NULL_TREE)
4714 *offset = size_int (-adjust / BITS_PER_UNIT);
4715 else
4716 *offset
4717 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4718 *bitstart = 0;
4719 }
4720 else
4721 *bitstart = *bitpos - bitoffset;
4722
4723 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4724 }
4725
4726 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4727 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4728 DECL_RTL was not set yet, return NORTL. */
4729
4730 static inline bool
4731 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4732 {
4733 if (TREE_CODE (addr) != ADDR_EXPR)
4734 return false;
4735
4736 tree base = TREE_OPERAND (addr, 0);
4737
4738 if (!DECL_P (base)
4739 || TREE_ADDRESSABLE (base)
4740 || DECL_MODE (base) == BLKmode)
4741 return false;
4742
4743 if (!DECL_RTL_SET_P (base))
4744 return nortl;
4745
4746 return (!MEM_P (DECL_RTL (base)));
4747 }
4748
4749 /* Returns true if the MEM_REF REF refers to an object that does not
4750 reside in memory and has non-BLKmode. */
4751
4752 static inline bool
4753 mem_ref_refers_to_non_mem_p (tree ref)
4754 {
4755 tree base = TREE_OPERAND (ref, 0);
4756 return addr_expr_of_non_mem_decl_p_1 (base, false);
4757 }
4758
4759 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4760 is true, try generating a nontemporal store. */
4761
4762 void
4763 expand_assignment (tree to, tree from, bool nontemporal)
4764 {
4765 rtx to_rtx = 0;
4766 rtx result;
4767 machine_mode mode;
4768 unsigned int align;
4769 enum insn_code icode;
4770
4771 /* Don't crash if the lhs of the assignment was erroneous. */
4772 if (TREE_CODE (to) == ERROR_MARK)
4773 {
4774 expand_normal (from);
4775 return;
4776 }
4777
4778 /* Optimize away no-op moves without side-effects. */
4779 if (operand_equal_p (to, from, 0))
4780 return;
4781
4782 /* Handle misaligned stores. */
4783 mode = TYPE_MODE (TREE_TYPE (to));
4784 if ((TREE_CODE (to) == MEM_REF
4785 || TREE_CODE (to) == TARGET_MEM_REF)
4786 && mode != BLKmode
4787 && !mem_ref_refers_to_non_mem_p (to)
4788 && ((align = get_object_alignment (to))
4789 < GET_MODE_ALIGNMENT (mode))
4790 && (((icode = optab_handler (movmisalign_optab, mode))
4791 != CODE_FOR_nothing)
4792 || SLOW_UNALIGNED_ACCESS (mode, align)))
4793 {
4794 rtx reg, mem;
4795
4796 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4797 reg = force_not_mem (reg);
4798 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4799
4800 if (icode != CODE_FOR_nothing)
4801 {
4802 struct expand_operand ops[2];
4803
4804 create_fixed_operand (&ops[0], mem);
4805 create_input_operand (&ops[1], reg, mode);
4806 /* The movmisalign<mode> pattern cannot fail, else the assignment
4807 would silently be omitted. */
4808 expand_insn (icode, 2, ops);
4809 }
4810 else
4811 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg);
4812 return;
4813 }
4814
4815 /* Assignment of a structure component needs special treatment
4816 if the structure component's rtx is not simply a MEM.
4817 Assignment of an array element at a constant index, and assignment of
4818 an array element in an unaligned packed structure field, has the same
4819 problem. Same for (partially) storing into a non-memory object. */
4820 if (handled_component_p (to)
4821 || (TREE_CODE (to) == MEM_REF
4822 && mem_ref_refers_to_non_mem_p (to))
4823 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4824 {
4825 machine_mode mode1;
4826 HOST_WIDE_INT bitsize, bitpos;
4827 unsigned HOST_WIDE_INT bitregion_start = 0;
4828 unsigned HOST_WIDE_INT bitregion_end = 0;
4829 tree offset;
4830 int unsignedp;
4831 int volatilep = 0;
4832 tree tem;
4833
4834 push_temp_slots ();
4835 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4836 &unsignedp, &volatilep, true);
4837
4838 /* Make sure bitpos is not negative, it can wreak havoc later. */
4839 if (bitpos < 0)
4840 {
4841 gcc_assert (offset == NULL_TREE);
4842 offset = size_int (bitpos >> (BITS_PER_UNIT == 8
4843 ? 3 : exact_log2 (BITS_PER_UNIT)));
4844 bitpos &= BITS_PER_UNIT - 1;
4845 }
4846
4847 if (TREE_CODE (to) == COMPONENT_REF
4848 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4849 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4850 /* The C++ memory model naturally applies to byte-aligned fields.
4851 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4852 BITSIZE are not byte-aligned, there is no need to limit the range
4853 we can access. This can occur with packed structures in Ada. */
4854 else if (bitsize > 0
4855 && bitsize % BITS_PER_UNIT == 0
4856 && bitpos % BITS_PER_UNIT == 0)
4857 {
4858 bitregion_start = bitpos;
4859 bitregion_end = bitpos + bitsize - 1;
4860 }
4861
4862 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4863
4864 /* If the field has a mode, we want to access it in the
4865 field's mode, not the computed mode.
4866 If a MEM has VOIDmode (external with incomplete type),
4867 use BLKmode for it instead. */
4868 if (MEM_P (to_rtx))
4869 {
4870 if (mode1 != VOIDmode)
4871 to_rtx = adjust_address (to_rtx, mode1, 0);
4872 else if (GET_MODE (to_rtx) == VOIDmode)
4873 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4874 }
4875
4876 if (offset != 0)
4877 {
4878 machine_mode address_mode;
4879 rtx offset_rtx;
4880
4881 if (!MEM_P (to_rtx))
4882 {
4883 /* We can get constant negative offsets into arrays with broken
4884 user code. Translate this to a trap instead of ICEing. */
4885 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4886 expand_builtin_trap ();
4887 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4888 }
4889
4890 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4891 address_mode = get_address_mode (to_rtx);
4892 if (GET_MODE (offset_rtx) != address_mode)
4893 {
4894 /* We cannot be sure that the RTL in offset_rtx is valid outside
4895 of a memory address context, so force it into a register
4896 before attempting to convert it to the desired mode. */
4897 offset_rtx = force_operand (offset_rtx, NULL_RTX);
4898 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4899 }
4900
4901 /* If we have an expression in OFFSET_RTX and a non-zero
4902 byte offset in BITPOS, adding the byte offset before the
4903 OFFSET_RTX results in better intermediate code, which makes
4904 later rtl optimization passes perform better.
4905
4906 We prefer intermediate code like this:
4907
4908 r124:DI=r123:DI+0x18
4909 [r124:DI]=r121:DI
4910
4911 ... instead of ...
4912
4913 r124:DI=r123:DI+0x10
4914 [r124:DI+0x8]=r121:DI
4915
4916 This is only done for aligned data values, as these can
4917 be expected to result in single move instructions. */
4918 if (mode1 != VOIDmode
4919 && bitpos != 0
4920 && bitsize > 0
4921 && (bitpos % bitsize) == 0
4922 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4923 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
4924 {
4925 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4926 bitregion_start = 0;
4927 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
4928 bitregion_end -= bitpos;
4929 bitpos = 0;
4930 }
4931
4932 to_rtx = offset_address (to_rtx, offset_rtx,
4933 highest_pow2_factor_for_target (to,
4934 offset));
4935 }
4936
4937 /* No action is needed if the target is not a memory and the field
4938 lies completely outside that target. This can occur if the source
4939 code contains an out-of-bounds access to a small array. */
4940 if (!MEM_P (to_rtx)
4941 && GET_MODE (to_rtx) != BLKmode
4942 && (unsigned HOST_WIDE_INT) bitpos
4943 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4944 {
4945 expand_normal (from);
4946 result = NULL;
4947 }
4948 /* Handle expand_expr of a complex value returning a CONCAT. */
4949 else if (GET_CODE (to_rtx) == CONCAT)
4950 {
4951 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4952 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4953 && bitpos == 0
4954 && bitsize == mode_bitsize)
4955 result = store_expr (from, to_rtx, false, nontemporal);
4956 else if (bitsize == mode_bitsize / 2
4957 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4958 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4959 nontemporal);
4960 else if (bitpos + bitsize <= mode_bitsize / 2)
4961 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4962 bitregion_start, bitregion_end,
4963 mode1, from,
4964 get_alias_set (to), nontemporal);
4965 else if (bitpos >= mode_bitsize / 2)
4966 result = store_field (XEXP (to_rtx, 1), bitsize,
4967 bitpos - mode_bitsize / 2,
4968 bitregion_start, bitregion_end,
4969 mode1, from,
4970 get_alias_set (to), nontemporal);
4971 else if (bitpos == 0 && bitsize == mode_bitsize)
4972 {
4973 rtx from_rtx;
4974 result = expand_normal (from);
4975 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4976 TYPE_MODE (TREE_TYPE (from)), 0);
4977 emit_move_insn (XEXP (to_rtx, 0),
4978 read_complex_part (from_rtx, false));
4979 emit_move_insn (XEXP (to_rtx, 1),
4980 read_complex_part (from_rtx, true));
4981 }
4982 else
4983 {
4984 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4985 GET_MODE_SIZE (GET_MODE (to_rtx)));
4986 write_complex_part (temp, XEXP (to_rtx, 0), false);
4987 write_complex_part (temp, XEXP (to_rtx, 1), true);
4988 result = store_field (temp, bitsize, bitpos,
4989 bitregion_start, bitregion_end,
4990 mode1, from,
4991 get_alias_set (to), nontemporal);
4992 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4993 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4994 }
4995 }
4996 else
4997 {
4998 if (MEM_P (to_rtx))
4999 {
5000 /* If the field is at offset zero, we could have been given the
5001 DECL_RTX of the parent struct. Don't munge it. */
5002 to_rtx = shallow_copy_rtx (to_rtx);
5003 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5004 if (volatilep)
5005 MEM_VOLATILE_P (to_rtx) = 1;
5006 }
5007
5008 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5009 bitregion_start, bitregion_end,
5010 mode1,
5011 to_rtx, to, from))
5012 result = NULL;
5013 else
5014 result = store_field (to_rtx, bitsize, bitpos,
5015 bitregion_start, bitregion_end,
5016 mode1, from,
5017 get_alias_set (to), nontemporal);
5018 }
5019
5020 if (result)
5021 preserve_temp_slots (result);
5022 pop_temp_slots ();
5023 return;
5024 }
5025
5026 /* If the rhs is a function call and its value is not an aggregate,
5027 call the function before we start to compute the lhs.
5028 This is needed for correct code for cases such as
5029 val = setjmp (buf) on machines where reference to val
5030 requires loading up part of an address in a separate insn.
5031
5032 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5033 since it might be a promoted variable where the zero- or sign- extension
5034 needs to be done. Handling this in the normal way is safe because no
5035 computation is done before the call. The same is true for SSA names. */
5036 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5037 && COMPLETE_TYPE_P (TREE_TYPE (from))
5038 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5039 && ! (((TREE_CODE (to) == VAR_DECL
5040 || TREE_CODE (to) == PARM_DECL
5041 || TREE_CODE (to) == RESULT_DECL)
5042 && REG_P (DECL_RTL (to)))
5043 || TREE_CODE (to) == SSA_NAME))
5044 {
5045 rtx value;
5046 rtx bounds;
5047
5048 push_temp_slots ();
5049 value = expand_normal (from);
5050
5051 /* Split value and bounds to store them separately. */
5052 chkp_split_slot (value, &value, &bounds);
5053
5054 if (to_rtx == 0)
5055 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5056
5057 /* Handle calls that return values in multiple non-contiguous locations.
5058 The Irix 6 ABI has examples of this. */
5059 if (GET_CODE (to_rtx) == PARALLEL)
5060 {
5061 if (GET_CODE (value) == PARALLEL)
5062 emit_group_move (to_rtx, value);
5063 else
5064 emit_group_load (to_rtx, value, TREE_TYPE (from),
5065 int_size_in_bytes (TREE_TYPE (from)));
5066 }
5067 else if (GET_CODE (value) == PARALLEL)
5068 emit_group_store (to_rtx, value, TREE_TYPE (from),
5069 int_size_in_bytes (TREE_TYPE (from)));
5070 else if (GET_MODE (to_rtx) == BLKmode)
5071 {
5072 /* Handle calls that return BLKmode values in registers. */
5073 if (REG_P (value))
5074 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5075 else
5076 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5077 }
5078 else
5079 {
5080 if (POINTER_TYPE_P (TREE_TYPE (to)))
5081 value = convert_memory_address_addr_space
5082 (GET_MODE (to_rtx), value,
5083 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5084
5085 emit_move_insn (to_rtx, value);
5086 }
5087
5088 /* Store bounds if required. */
5089 if (bounds
5090 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5091 {
5092 gcc_assert (MEM_P (to_rtx));
5093 chkp_emit_bounds_store (bounds, value, to_rtx);
5094 }
5095
5096 preserve_temp_slots (to_rtx);
5097 pop_temp_slots ();
5098 return;
5099 }
5100
5101 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5102 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5103
5104 /* Don't move directly into a return register. */
5105 if (TREE_CODE (to) == RESULT_DECL
5106 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5107 {
5108 rtx temp;
5109
5110 push_temp_slots ();
5111
5112 /* If the source is itself a return value, it still is in a pseudo at
5113 this point so we can move it back to the return register directly. */
5114 if (REG_P (to_rtx)
5115 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5116 && TREE_CODE (from) != CALL_EXPR)
5117 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5118 else
5119 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5120
5121 /* Handle calls that return values in multiple non-contiguous locations.
5122 The Irix 6 ABI has examples of this. */
5123 if (GET_CODE (to_rtx) == PARALLEL)
5124 {
5125 if (GET_CODE (temp) == PARALLEL)
5126 emit_group_move (to_rtx, temp);
5127 else
5128 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5129 int_size_in_bytes (TREE_TYPE (from)));
5130 }
5131 else if (temp)
5132 emit_move_insn (to_rtx, temp);
5133
5134 preserve_temp_slots (to_rtx);
5135 pop_temp_slots ();
5136 return;
5137 }
5138
5139 /* In case we are returning the contents of an object which overlaps
5140 the place the value is being stored, use a safe function when copying
5141 a value through a pointer into a structure value return block. */
5142 if (TREE_CODE (to) == RESULT_DECL
5143 && TREE_CODE (from) == INDIRECT_REF
5144 && ADDR_SPACE_GENERIC_P
5145 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5146 && refs_may_alias_p (to, from)
5147 && cfun->returns_struct
5148 && !cfun->returns_pcc_struct)
5149 {
5150 rtx from_rtx, size;
5151
5152 push_temp_slots ();
5153 size = expr_size (from);
5154 from_rtx = expand_normal (from);
5155
5156 emit_library_call (memmove_libfunc, LCT_NORMAL,
5157 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
5158 XEXP (from_rtx, 0), Pmode,
5159 convert_to_mode (TYPE_MODE (sizetype),
5160 size, TYPE_UNSIGNED (sizetype)),
5161 TYPE_MODE (sizetype));
5162
5163 preserve_temp_slots (to_rtx);
5164 pop_temp_slots ();
5165 return;
5166 }
5167
5168 /* Compute FROM and store the value in the rtx we got. */
5169
5170 push_temp_slots ();
5171 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, to);
5172 preserve_temp_slots (result);
5173 pop_temp_slots ();
5174 return;
5175 }
5176
5177 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5178 succeeded, false otherwise. */
5179
5180 bool
5181 emit_storent_insn (rtx to, rtx from)
5182 {
5183 struct expand_operand ops[2];
5184 machine_mode mode = GET_MODE (to);
5185 enum insn_code code = optab_handler (storent_optab, mode);
5186
5187 if (code == CODE_FOR_nothing)
5188 return false;
5189
5190 create_fixed_operand (&ops[0], to);
5191 create_input_operand (&ops[1], from, mode);
5192 return maybe_expand_insn (code, 2, ops);
5193 }
5194
5195 /* Generate code for computing expression EXP,
5196 and storing the value into TARGET.
5197
5198 If the mode is BLKmode then we may return TARGET itself.
5199 It turns out that in BLKmode it doesn't cause a problem.
5200 because C has no operators that could combine two different
5201 assignments into the same BLKmode object with different values
5202 with no sequence point. Will other languages need this to
5203 be more thorough?
5204
5205 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5206 stack, and block moves may need to be treated specially.
5207
5208 If NONTEMPORAL is true, try using a nontemporal store instruction.
5209
5210 If BTARGET is not NULL then computed bounds of EXP are
5211 associated with BTARGET. */
5212
5213 rtx
5214 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5215 bool nontemporal, tree btarget)
5216 {
5217 rtx temp;
5218 rtx alt_rtl = NULL_RTX;
5219 location_t loc = curr_insn_location ();
5220
5221 if (VOID_TYPE_P (TREE_TYPE (exp)))
5222 {
5223 /* C++ can generate ?: expressions with a throw expression in one
5224 branch and an rvalue in the other. Here, we resolve attempts to
5225 store the throw expression's nonexistent result. */
5226 gcc_assert (!call_param_p);
5227 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5228 return NULL_RTX;
5229 }
5230 if (TREE_CODE (exp) == COMPOUND_EXPR)
5231 {
5232 /* Perform first part of compound expression, then assign from second
5233 part. */
5234 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5235 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5236 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5237 call_param_p, nontemporal, btarget);
5238 }
5239 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5240 {
5241 /* For conditional expression, get safe form of the target. Then
5242 test the condition, doing the appropriate assignment on either
5243 side. This avoids the creation of unnecessary temporaries.
5244 For non-BLKmode, it is more efficient not to do this. */
5245
5246 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5247
5248 do_pending_stack_adjust ();
5249 NO_DEFER_POP;
5250 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5251 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5252 nontemporal, btarget);
5253 emit_jump_insn (targetm.gen_jump (lab2));
5254 emit_barrier ();
5255 emit_label (lab1);
5256 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5257 nontemporal, btarget);
5258 emit_label (lab2);
5259 OK_DEFER_POP;
5260
5261 return NULL_RTX;
5262 }
5263 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5264 /* If this is a scalar in a register that is stored in a wider mode
5265 than the declared mode, compute the result into its declared mode
5266 and then convert to the wider mode. Our value is the computed
5267 expression. */
5268 {
5269 rtx inner_target = 0;
5270
5271 /* We can do the conversion inside EXP, which will often result
5272 in some optimizations. Do the conversion in two steps: first
5273 change the signedness, if needed, then the extend. But don't
5274 do this if the type of EXP is a subtype of something else
5275 since then the conversion might involve more than just
5276 converting modes. */
5277 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5278 && TREE_TYPE (TREE_TYPE (exp)) == 0
5279 && GET_MODE_PRECISION (GET_MODE (target))
5280 == TYPE_PRECISION (TREE_TYPE (exp)))
5281 {
5282 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5283 TYPE_UNSIGNED (TREE_TYPE (exp))))
5284 {
5285 /* Some types, e.g. Fortran's logical*4, won't have a signed
5286 version, so use the mode instead. */
5287 tree ntype
5288 = (signed_or_unsigned_type_for
5289 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5290 if (ntype == NULL)
5291 ntype = lang_hooks.types.type_for_mode
5292 (TYPE_MODE (TREE_TYPE (exp)),
5293 SUBREG_PROMOTED_SIGN (target));
5294
5295 exp = fold_convert_loc (loc, ntype, exp);
5296 }
5297
5298 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5299 (GET_MODE (SUBREG_REG (target)),
5300 SUBREG_PROMOTED_SIGN (target)),
5301 exp);
5302
5303 inner_target = SUBREG_REG (target);
5304 }
5305
5306 temp = expand_expr (exp, inner_target, VOIDmode,
5307 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5308
5309 /* Handle bounds returned by call. */
5310 if (TREE_CODE (exp) == CALL_EXPR)
5311 {
5312 rtx bounds;
5313 chkp_split_slot (temp, &temp, &bounds);
5314 if (bounds && btarget)
5315 {
5316 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5317 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5318 chkp_set_rtl_bounds (btarget, tmp);
5319 }
5320 }
5321
5322 /* If TEMP is a VOIDmode constant, use convert_modes to make
5323 sure that we properly convert it. */
5324 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5325 {
5326 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5327 temp, SUBREG_PROMOTED_SIGN (target));
5328 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5329 GET_MODE (target), temp,
5330 SUBREG_PROMOTED_SIGN (target));
5331 }
5332
5333 convert_move (SUBREG_REG (target), temp,
5334 SUBREG_PROMOTED_SIGN (target));
5335
5336 return NULL_RTX;
5337 }
5338 else if ((TREE_CODE (exp) == STRING_CST
5339 || (TREE_CODE (exp) == MEM_REF
5340 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5341 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5342 == STRING_CST
5343 && integer_zerop (TREE_OPERAND (exp, 1))))
5344 && !nontemporal && !call_param_p
5345 && MEM_P (target))
5346 {
5347 /* Optimize initialization of an array with a STRING_CST. */
5348 HOST_WIDE_INT exp_len, str_copy_len;
5349 rtx dest_mem;
5350 tree str = TREE_CODE (exp) == STRING_CST
5351 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5352
5353 exp_len = int_expr_size (exp);
5354 if (exp_len <= 0)
5355 goto normal_expr;
5356
5357 if (TREE_STRING_LENGTH (str) <= 0)
5358 goto normal_expr;
5359
5360 str_copy_len = strlen (TREE_STRING_POINTER (str));
5361 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5362 goto normal_expr;
5363
5364 str_copy_len = TREE_STRING_LENGTH (str);
5365 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5366 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5367 {
5368 str_copy_len += STORE_MAX_PIECES - 1;
5369 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5370 }
5371 str_copy_len = MIN (str_copy_len, exp_len);
5372 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5373 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5374 MEM_ALIGN (target), false))
5375 goto normal_expr;
5376
5377 dest_mem = target;
5378
5379 dest_mem = store_by_pieces (dest_mem,
5380 str_copy_len, builtin_strncpy_read_str,
5381 CONST_CAST (char *,
5382 TREE_STRING_POINTER (str)),
5383 MEM_ALIGN (target), false,
5384 exp_len > str_copy_len ? 1 : 0);
5385 if (exp_len > str_copy_len)
5386 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5387 GEN_INT (exp_len - str_copy_len),
5388 BLOCK_OP_NORMAL);
5389 return NULL_RTX;
5390 }
5391 else
5392 {
5393 rtx tmp_target;
5394
5395 normal_expr:
5396 /* If we want to use a nontemporal store, force the value to
5397 register first. */
5398 tmp_target = nontemporal ? NULL_RTX : target;
5399 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5400 (call_param_p
5401 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5402 &alt_rtl, false);
5403
5404 /* Handle bounds returned by call. */
5405 if (TREE_CODE (exp) == CALL_EXPR)
5406 {
5407 rtx bounds;
5408 chkp_split_slot (temp, &temp, &bounds);
5409 if (bounds && btarget)
5410 {
5411 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5412 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5413 chkp_set_rtl_bounds (btarget, tmp);
5414 }
5415 }
5416 }
5417
5418 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5419 the same as that of TARGET, adjust the constant. This is needed, for
5420 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5421 only a word-sized value. */
5422 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5423 && TREE_CODE (exp) != ERROR_MARK
5424 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5425 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5426 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5427
5428 /* If value was not generated in the target, store it there.
5429 Convert the value to TARGET's type first if necessary and emit the
5430 pending incrementations that have been queued when expanding EXP.
5431 Note that we cannot emit the whole queue blindly because this will
5432 effectively disable the POST_INC optimization later.
5433
5434 If TEMP and TARGET compare equal according to rtx_equal_p, but
5435 one or both of them are volatile memory refs, we have to distinguish
5436 two cases:
5437 - expand_expr has used TARGET. In this case, we must not generate
5438 another copy. This can be detected by TARGET being equal according
5439 to == .
5440 - expand_expr has not used TARGET - that means that the source just
5441 happens to have the same RTX form. Since temp will have been created
5442 by expand_expr, it will compare unequal according to == .
5443 We must generate a copy in this case, to reach the correct number
5444 of volatile memory references. */
5445
5446 if ((! rtx_equal_p (temp, target)
5447 || (temp != target && (side_effects_p (temp)
5448 || side_effects_p (target))))
5449 && TREE_CODE (exp) != ERROR_MARK
5450 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5451 but TARGET is not valid memory reference, TEMP will differ
5452 from TARGET although it is really the same location. */
5453 && !(alt_rtl
5454 && rtx_equal_p (alt_rtl, target)
5455 && !side_effects_p (alt_rtl)
5456 && !side_effects_p (target))
5457 /* If there's nothing to copy, don't bother. Don't call
5458 expr_size unless necessary, because some front-ends (C++)
5459 expr_size-hook must not be given objects that are not
5460 supposed to be bit-copied or bit-initialized. */
5461 && expr_size (exp) != const0_rtx)
5462 {
5463 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5464 {
5465 if (GET_MODE (target) == BLKmode)
5466 {
5467 /* Handle calls that return BLKmode values in registers. */
5468 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5469 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5470 else
5471 store_bit_field (target,
5472 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5473 0, 0, 0, GET_MODE (temp), temp);
5474 }
5475 else
5476 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5477 }
5478
5479 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5480 {
5481 /* Handle copying a string constant into an array. The string
5482 constant may be shorter than the array. So copy just the string's
5483 actual length, and clear the rest. First get the size of the data
5484 type of the string, which is actually the size of the target. */
5485 rtx size = expr_size (exp);
5486
5487 if (CONST_INT_P (size)
5488 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5489 emit_block_move (target, temp, size,
5490 (call_param_p
5491 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5492 else
5493 {
5494 machine_mode pointer_mode
5495 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5496 machine_mode address_mode = get_address_mode (target);
5497
5498 /* Compute the size of the data to copy from the string. */
5499 tree copy_size
5500 = size_binop_loc (loc, MIN_EXPR,
5501 make_tree (sizetype, size),
5502 size_int (TREE_STRING_LENGTH (exp)));
5503 rtx copy_size_rtx
5504 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5505 (call_param_p
5506 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5507 rtx_code_label *label = 0;
5508
5509 /* Copy that much. */
5510 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5511 TYPE_UNSIGNED (sizetype));
5512 emit_block_move (target, temp, copy_size_rtx,
5513 (call_param_p
5514 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5515
5516 /* Figure out how much is left in TARGET that we have to clear.
5517 Do all calculations in pointer_mode. */
5518 if (CONST_INT_P (copy_size_rtx))
5519 {
5520 size = plus_constant (address_mode, size,
5521 -INTVAL (copy_size_rtx));
5522 target = adjust_address (target, BLKmode,
5523 INTVAL (copy_size_rtx));
5524 }
5525 else
5526 {
5527 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5528 copy_size_rtx, NULL_RTX, 0,
5529 OPTAB_LIB_WIDEN);
5530
5531 if (GET_MODE (copy_size_rtx) != address_mode)
5532 copy_size_rtx = convert_to_mode (address_mode,
5533 copy_size_rtx,
5534 TYPE_UNSIGNED (sizetype));
5535
5536 target = offset_address (target, copy_size_rtx,
5537 highest_pow2_factor (copy_size));
5538 label = gen_label_rtx ();
5539 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5540 GET_MODE (size), 0, label);
5541 }
5542
5543 if (size != const0_rtx)
5544 clear_storage (target, size, BLOCK_OP_NORMAL);
5545
5546 if (label)
5547 emit_label (label);
5548 }
5549 }
5550 /* Handle calls that return values in multiple non-contiguous locations.
5551 The Irix 6 ABI has examples of this. */
5552 else if (GET_CODE (target) == PARALLEL)
5553 {
5554 if (GET_CODE (temp) == PARALLEL)
5555 emit_group_move (target, temp);
5556 else
5557 emit_group_load (target, temp, TREE_TYPE (exp),
5558 int_size_in_bytes (TREE_TYPE (exp)));
5559 }
5560 else if (GET_CODE (temp) == PARALLEL)
5561 emit_group_store (target, temp, TREE_TYPE (exp),
5562 int_size_in_bytes (TREE_TYPE (exp)));
5563 else if (GET_MODE (temp) == BLKmode)
5564 emit_block_move (target, temp, expr_size (exp),
5565 (call_param_p
5566 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5567 /* If we emit a nontemporal store, there is nothing else to do. */
5568 else if (nontemporal && emit_storent_insn (target, temp))
5569 ;
5570 else
5571 {
5572 temp = force_operand (temp, target);
5573 if (temp != target)
5574 emit_move_insn (target, temp);
5575 }
5576 }
5577
5578 return NULL_RTX;
5579 }
5580
5581 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5582 rtx
5583 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5584 {
5585 return store_expr_with_bounds (exp, target, call_param_p, nontemporal, NULL);
5586 }
5587 \f
5588 /* Return true if field F of structure TYPE is a flexible array. */
5589
5590 static bool
5591 flexible_array_member_p (const_tree f, const_tree type)
5592 {
5593 const_tree tf;
5594
5595 tf = TREE_TYPE (f);
5596 return (DECL_CHAIN (f) == NULL
5597 && TREE_CODE (tf) == ARRAY_TYPE
5598 && TYPE_DOMAIN (tf)
5599 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5600 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5601 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5602 && int_size_in_bytes (type) >= 0);
5603 }
5604
5605 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5606 must have in order for it to completely initialize a value of type TYPE.
5607 Return -1 if the number isn't known.
5608
5609 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5610
5611 static HOST_WIDE_INT
5612 count_type_elements (const_tree type, bool for_ctor_p)
5613 {
5614 switch (TREE_CODE (type))
5615 {
5616 case ARRAY_TYPE:
5617 {
5618 tree nelts;
5619
5620 nelts = array_type_nelts (type);
5621 if (nelts && tree_fits_uhwi_p (nelts))
5622 {
5623 unsigned HOST_WIDE_INT n;
5624
5625 n = tree_to_uhwi (nelts) + 1;
5626 if (n == 0 || for_ctor_p)
5627 return n;
5628 else
5629 return n * count_type_elements (TREE_TYPE (type), false);
5630 }
5631 return for_ctor_p ? -1 : 1;
5632 }
5633
5634 case RECORD_TYPE:
5635 {
5636 unsigned HOST_WIDE_INT n;
5637 tree f;
5638
5639 n = 0;
5640 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5641 if (TREE_CODE (f) == FIELD_DECL)
5642 {
5643 if (!for_ctor_p)
5644 n += count_type_elements (TREE_TYPE (f), false);
5645 else if (!flexible_array_member_p (f, type))
5646 /* Don't count flexible arrays, which are not supposed
5647 to be initialized. */
5648 n += 1;
5649 }
5650
5651 return n;
5652 }
5653
5654 case UNION_TYPE:
5655 case QUAL_UNION_TYPE:
5656 {
5657 tree f;
5658 HOST_WIDE_INT n, m;
5659
5660 gcc_assert (!for_ctor_p);
5661 /* Estimate the number of scalars in each field and pick the
5662 maximum. Other estimates would do instead; the idea is simply
5663 to make sure that the estimate is not sensitive to the ordering
5664 of the fields. */
5665 n = 1;
5666 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5667 if (TREE_CODE (f) == FIELD_DECL)
5668 {
5669 m = count_type_elements (TREE_TYPE (f), false);
5670 /* If the field doesn't span the whole union, add an extra
5671 scalar for the rest. */
5672 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5673 TYPE_SIZE (type)) != 1)
5674 m++;
5675 if (n < m)
5676 n = m;
5677 }
5678 return n;
5679 }
5680
5681 case COMPLEX_TYPE:
5682 return 2;
5683
5684 case VECTOR_TYPE:
5685 return TYPE_VECTOR_SUBPARTS (type);
5686
5687 case INTEGER_TYPE:
5688 case REAL_TYPE:
5689 case FIXED_POINT_TYPE:
5690 case ENUMERAL_TYPE:
5691 case BOOLEAN_TYPE:
5692 case POINTER_TYPE:
5693 case OFFSET_TYPE:
5694 case REFERENCE_TYPE:
5695 case NULLPTR_TYPE:
5696 return 1;
5697
5698 case ERROR_MARK:
5699 return 0;
5700
5701 case VOID_TYPE:
5702 case METHOD_TYPE:
5703 case FUNCTION_TYPE:
5704 case LANG_TYPE:
5705 default:
5706 gcc_unreachable ();
5707 }
5708 }
5709
5710 /* Helper for categorize_ctor_elements. Identical interface. */
5711
5712 static bool
5713 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5714 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5715 {
5716 unsigned HOST_WIDE_INT idx;
5717 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5718 tree value, purpose, elt_type;
5719
5720 /* Whether CTOR is a valid constant initializer, in accordance with what
5721 initializer_constant_valid_p does. If inferred from the constructor
5722 elements, true until proven otherwise. */
5723 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5724 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5725
5726 nz_elts = 0;
5727 init_elts = 0;
5728 num_fields = 0;
5729 elt_type = NULL_TREE;
5730
5731 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5732 {
5733 HOST_WIDE_INT mult = 1;
5734
5735 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5736 {
5737 tree lo_index = TREE_OPERAND (purpose, 0);
5738 tree hi_index = TREE_OPERAND (purpose, 1);
5739
5740 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5741 mult = (tree_to_uhwi (hi_index)
5742 - tree_to_uhwi (lo_index) + 1);
5743 }
5744 num_fields += mult;
5745 elt_type = TREE_TYPE (value);
5746
5747 switch (TREE_CODE (value))
5748 {
5749 case CONSTRUCTOR:
5750 {
5751 HOST_WIDE_INT nz = 0, ic = 0;
5752
5753 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5754 p_complete);
5755
5756 nz_elts += mult * nz;
5757 init_elts += mult * ic;
5758
5759 if (const_from_elts_p && const_p)
5760 const_p = const_elt_p;
5761 }
5762 break;
5763
5764 case INTEGER_CST:
5765 case REAL_CST:
5766 case FIXED_CST:
5767 if (!initializer_zerop (value))
5768 nz_elts += mult;
5769 init_elts += mult;
5770 break;
5771
5772 case STRING_CST:
5773 nz_elts += mult * TREE_STRING_LENGTH (value);
5774 init_elts += mult * TREE_STRING_LENGTH (value);
5775 break;
5776
5777 case COMPLEX_CST:
5778 if (!initializer_zerop (TREE_REALPART (value)))
5779 nz_elts += mult;
5780 if (!initializer_zerop (TREE_IMAGPART (value)))
5781 nz_elts += mult;
5782 init_elts += mult;
5783 break;
5784
5785 case VECTOR_CST:
5786 {
5787 unsigned i;
5788 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5789 {
5790 tree v = VECTOR_CST_ELT (value, i);
5791 if (!initializer_zerop (v))
5792 nz_elts += mult;
5793 init_elts += mult;
5794 }
5795 }
5796 break;
5797
5798 default:
5799 {
5800 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5801 nz_elts += mult * tc;
5802 init_elts += mult * tc;
5803
5804 if (const_from_elts_p && const_p)
5805 const_p = initializer_constant_valid_p (value, elt_type)
5806 != NULL_TREE;
5807 }
5808 break;
5809 }
5810 }
5811
5812 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5813 num_fields, elt_type))
5814 *p_complete = false;
5815
5816 *p_nz_elts += nz_elts;
5817 *p_init_elts += init_elts;
5818
5819 return const_p;
5820 }
5821
5822 /* Examine CTOR to discover:
5823 * how many scalar fields are set to nonzero values,
5824 and place it in *P_NZ_ELTS;
5825 * how many scalar fields in total are in CTOR,
5826 and place it in *P_ELT_COUNT.
5827 * whether the constructor is complete -- in the sense that every
5828 meaningful byte is explicitly given a value --
5829 and place it in *P_COMPLETE.
5830
5831 Return whether or not CTOR is a valid static constant initializer, the same
5832 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5833
5834 bool
5835 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5836 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5837 {
5838 *p_nz_elts = 0;
5839 *p_init_elts = 0;
5840 *p_complete = true;
5841
5842 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5843 }
5844
5845 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5846 of which had type LAST_TYPE. Each element was itself a complete
5847 initializer, in the sense that every meaningful byte was explicitly
5848 given a value. Return true if the same is true for the constructor
5849 as a whole. */
5850
5851 bool
5852 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5853 const_tree last_type)
5854 {
5855 if (TREE_CODE (type) == UNION_TYPE
5856 || TREE_CODE (type) == QUAL_UNION_TYPE)
5857 {
5858 if (num_elts == 0)
5859 return false;
5860
5861 gcc_assert (num_elts == 1 && last_type);
5862
5863 /* ??? We could look at each element of the union, and find the
5864 largest element. Which would avoid comparing the size of the
5865 initialized element against any tail padding in the union.
5866 Doesn't seem worth the effort... */
5867 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5868 }
5869
5870 return count_type_elements (type, true) == num_elts;
5871 }
5872
5873 /* Return 1 if EXP contains mostly (3/4) zeros. */
5874
5875 static int
5876 mostly_zeros_p (const_tree exp)
5877 {
5878 if (TREE_CODE (exp) == CONSTRUCTOR)
5879 {
5880 HOST_WIDE_INT nz_elts, init_elts;
5881 bool complete_p;
5882
5883 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5884 return !complete_p || nz_elts < init_elts / 4;
5885 }
5886
5887 return initializer_zerop (exp);
5888 }
5889
5890 /* Return 1 if EXP contains all zeros. */
5891
5892 static int
5893 all_zeros_p (const_tree exp)
5894 {
5895 if (TREE_CODE (exp) == CONSTRUCTOR)
5896 {
5897 HOST_WIDE_INT nz_elts, init_elts;
5898 bool complete_p;
5899
5900 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5901 return nz_elts == 0;
5902 }
5903
5904 return initializer_zerop (exp);
5905 }
5906 \f
5907 /* Helper function for store_constructor.
5908 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5909 CLEARED is as for store_constructor.
5910 ALIAS_SET is the alias set to use for any stores.
5911
5912 This provides a recursive shortcut back to store_constructor when it isn't
5913 necessary to go through store_field. This is so that we can pass through
5914 the cleared field to let store_constructor know that we may not have to
5915 clear a substructure if the outer structure has already been cleared. */
5916
5917 static void
5918 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5919 HOST_WIDE_INT bitpos, machine_mode mode,
5920 tree exp, int cleared, alias_set_type alias_set)
5921 {
5922 if (TREE_CODE (exp) == CONSTRUCTOR
5923 /* We can only call store_constructor recursively if the size and
5924 bit position are on a byte boundary. */
5925 && bitpos % BITS_PER_UNIT == 0
5926 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5927 /* If we have a nonzero bitpos for a register target, then we just
5928 let store_field do the bitfield handling. This is unlikely to
5929 generate unnecessary clear instructions anyways. */
5930 && (bitpos == 0 || MEM_P (target)))
5931 {
5932 if (MEM_P (target))
5933 target
5934 = adjust_address (target,
5935 GET_MODE (target) == BLKmode
5936 || 0 != (bitpos
5937 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5938 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5939
5940
5941 /* Update the alias set, if required. */
5942 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5943 && MEM_ALIAS_SET (target) != 0)
5944 {
5945 target = copy_rtx (target);
5946 set_mem_alias_set (target, alias_set);
5947 }
5948
5949 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5950 }
5951 else
5952 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false);
5953 }
5954
5955
5956 /* Returns the number of FIELD_DECLs in TYPE. */
5957
5958 static int
5959 fields_length (const_tree type)
5960 {
5961 tree t = TYPE_FIELDS (type);
5962 int count = 0;
5963
5964 for (; t; t = DECL_CHAIN (t))
5965 if (TREE_CODE (t) == FIELD_DECL)
5966 ++count;
5967
5968 return count;
5969 }
5970
5971
5972 /* Store the value of constructor EXP into the rtx TARGET.
5973 TARGET is either a REG or a MEM; we know it cannot conflict, since
5974 safe_from_p has been called.
5975 CLEARED is true if TARGET is known to have been zero'd.
5976 SIZE is the number of bytes of TARGET we are allowed to modify: this
5977 may not be the same as the size of EXP if we are assigning to a field
5978 which has been packed to exclude padding bits. */
5979
5980 static void
5981 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5982 {
5983 tree type = TREE_TYPE (exp);
5984 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5985
5986 switch (TREE_CODE (type))
5987 {
5988 case RECORD_TYPE:
5989 case UNION_TYPE:
5990 case QUAL_UNION_TYPE:
5991 {
5992 unsigned HOST_WIDE_INT idx;
5993 tree field, value;
5994
5995 /* If size is zero or the target is already cleared, do nothing. */
5996 if (size == 0 || cleared)
5997 cleared = 1;
5998 /* We either clear the aggregate or indicate the value is dead. */
5999 else if ((TREE_CODE (type) == UNION_TYPE
6000 || TREE_CODE (type) == QUAL_UNION_TYPE)
6001 && ! CONSTRUCTOR_ELTS (exp))
6002 /* If the constructor is empty, clear the union. */
6003 {
6004 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6005 cleared = 1;
6006 }
6007
6008 /* If we are building a static constructor into a register,
6009 set the initial value as zero so we can fold the value into
6010 a constant. But if more than one register is involved,
6011 this probably loses. */
6012 else if (REG_P (target) && TREE_STATIC (exp)
6013 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
6014 {
6015 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6016 cleared = 1;
6017 }
6018
6019 /* If the constructor has fewer fields than the structure or
6020 if we are initializing the structure to mostly zeros, clear
6021 the whole structure first. Don't do this if TARGET is a
6022 register whose mode size isn't equal to SIZE since
6023 clear_storage can't handle this case. */
6024 else if (size > 0
6025 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp))
6026 != fields_length (type))
6027 || mostly_zeros_p (exp))
6028 && (!REG_P (target)
6029 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6030 == size)))
6031 {
6032 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6033 cleared = 1;
6034 }
6035
6036 if (REG_P (target) && !cleared)
6037 emit_clobber (target);
6038
6039 /* Store each element of the constructor into the
6040 corresponding field of TARGET. */
6041 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6042 {
6043 machine_mode mode;
6044 HOST_WIDE_INT bitsize;
6045 HOST_WIDE_INT bitpos = 0;
6046 tree offset;
6047 rtx to_rtx = target;
6048
6049 /* Just ignore missing fields. We cleared the whole
6050 structure, above, if any fields are missing. */
6051 if (field == 0)
6052 continue;
6053
6054 if (cleared && initializer_zerop (value))
6055 continue;
6056
6057 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6058 bitsize = tree_to_uhwi (DECL_SIZE (field));
6059 else
6060 bitsize = -1;
6061
6062 mode = DECL_MODE (field);
6063 if (DECL_BIT_FIELD (field))
6064 mode = VOIDmode;
6065
6066 offset = DECL_FIELD_OFFSET (field);
6067 if (tree_fits_shwi_p (offset)
6068 && tree_fits_shwi_p (bit_position (field)))
6069 {
6070 bitpos = int_bit_position (field);
6071 offset = 0;
6072 }
6073 else
6074 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
6075
6076 if (offset)
6077 {
6078 machine_mode address_mode;
6079 rtx offset_rtx;
6080
6081 offset
6082 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
6083 make_tree (TREE_TYPE (exp),
6084 target));
6085
6086 offset_rtx = expand_normal (offset);
6087 gcc_assert (MEM_P (to_rtx));
6088
6089 address_mode = get_address_mode (to_rtx);
6090 if (GET_MODE (offset_rtx) != address_mode)
6091 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6092
6093 to_rtx = offset_address (to_rtx, offset_rtx,
6094 highest_pow2_factor (offset));
6095 }
6096
6097 /* If this initializes a field that is smaller than a
6098 word, at the start of a word, try to widen it to a full
6099 word. This special case allows us to output C++ member
6100 function initializations in a form that the optimizers
6101 can understand. */
6102 if (WORD_REGISTER_OPERATIONS
6103 && REG_P (target)
6104 && bitsize < BITS_PER_WORD
6105 && bitpos % BITS_PER_WORD == 0
6106 && GET_MODE_CLASS (mode) == MODE_INT
6107 && TREE_CODE (value) == INTEGER_CST
6108 && exp_size >= 0
6109 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6110 {
6111 tree type = TREE_TYPE (value);
6112
6113 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6114 {
6115 type = lang_hooks.types.type_for_mode
6116 (word_mode, TYPE_UNSIGNED (type));
6117 value = fold_convert (type, value);
6118 }
6119
6120 if (BYTES_BIG_ENDIAN)
6121 value
6122 = fold_build2 (LSHIFT_EXPR, type, value,
6123 build_int_cst (type,
6124 BITS_PER_WORD - bitsize));
6125 bitsize = BITS_PER_WORD;
6126 mode = word_mode;
6127 }
6128
6129 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6130 && DECL_NONADDRESSABLE_P (field))
6131 {
6132 to_rtx = copy_rtx (to_rtx);
6133 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6134 }
6135
6136 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6137 value, cleared,
6138 get_alias_set (TREE_TYPE (field)));
6139 }
6140 break;
6141 }
6142 case ARRAY_TYPE:
6143 {
6144 tree value, index;
6145 unsigned HOST_WIDE_INT i;
6146 int need_to_clear;
6147 tree domain;
6148 tree elttype = TREE_TYPE (type);
6149 int const_bounds_p;
6150 HOST_WIDE_INT minelt = 0;
6151 HOST_WIDE_INT maxelt = 0;
6152
6153 domain = TYPE_DOMAIN (type);
6154 const_bounds_p = (TYPE_MIN_VALUE (domain)
6155 && TYPE_MAX_VALUE (domain)
6156 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6157 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6158
6159 /* If we have constant bounds for the range of the type, get them. */
6160 if (const_bounds_p)
6161 {
6162 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6163 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6164 }
6165
6166 /* If the constructor has fewer elements than the array, clear
6167 the whole array first. Similarly if this is static
6168 constructor of a non-BLKmode object. */
6169 if (cleared)
6170 need_to_clear = 0;
6171 else if (REG_P (target) && TREE_STATIC (exp))
6172 need_to_clear = 1;
6173 else
6174 {
6175 unsigned HOST_WIDE_INT idx;
6176 tree index, value;
6177 HOST_WIDE_INT count = 0, zero_count = 0;
6178 need_to_clear = ! const_bounds_p;
6179
6180 /* This loop is a more accurate version of the loop in
6181 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6182 is also needed to check for missing elements. */
6183 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6184 {
6185 HOST_WIDE_INT this_node_count;
6186
6187 if (need_to_clear)
6188 break;
6189
6190 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6191 {
6192 tree lo_index = TREE_OPERAND (index, 0);
6193 tree hi_index = TREE_OPERAND (index, 1);
6194
6195 if (! tree_fits_uhwi_p (lo_index)
6196 || ! tree_fits_uhwi_p (hi_index))
6197 {
6198 need_to_clear = 1;
6199 break;
6200 }
6201
6202 this_node_count = (tree_to_uhwi (hi_index)
6203 - tree_to_uhwi (lo_index) + 1);
6204 }
6205 else
6206 this_node_count = 1;
6207
6208 count += this_node_count;
6209 if (mostly_zeros_p (value))
6210 zero_count += this_node_count;
6211 }
6212
6213 /* Clear the entire array first if there are any missing
6214 elements, or if the incidence of zero elements is >=
6215 75%. */
6216 if (! need_to_clear
6217 && (count < maxelt - minelt + 1
6218 || 4 * zero_count >= 3 * count))
6219 need_to_clear = 1;
6220 }
6221
6222 if (need_to_clear && size > 0)
6223 {
6224 if (REG_P (target))
6225 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6226 else
6227 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6228 cleared = 1;
6229 }
6230
6231 if (!cleared && REG_P (target))
6232 /* Inform later passes that the old value is dead. */
6233 emit_clobber (target);
6234
6235 /* Store each element of the constructor into the
6236 corresponding element of TARGET, determined by counting the
6237 elements. */
6238 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6239 {
6240 machine_mode mode;
6241 HOST_WIDE_INT bitsize;
6242 HOST_WIDE_INT bitpos;
6243 rtx xtarget = target;
6244
6245 if (cleared && initializer_zerop (value))
6246 continue;
6247
6248 mode = TYPE_MODE (elttype);
6249 if (mode == BLKmode)
6250 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6251 ? tree_to_uhwi (TYPE_SIZE (elttype))
6252 : -1);
6253 else
6254 bitsize = GET_MODE_BITSIZE (mode);
6255
6256 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6257 {
6258 tree lo_index = TREE_OPERAND (index, 0);
6259 tree hi_index = TREE_OPERAND (index, 1);
6260 rtx index_r, pos_rtx;
6261 HOST_WIDE_INT lo, hi, count;
6262 tree position;
6263
6264 /* If the range is constant and "small", unroll the loop. */
6265 if (const_bounds_p
6266 && tree_fits_shwi_p (lo_index)
6267 && tree_fits_shwi_p (hi_index)
6268 && (lo = tree_to_shwi (lo_index),
6269 hi = tree_to_shwi (hi_index),
6270 count = hi - lo + 1,
6271 (!MEM_P (target)
6272 || count <= 2
6273 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6274 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6275 <= 40 * 8)))))
6276 {
6277 lo -= minelt; hi -= minelt;
6278 for (; lo <= hi; lo++)
6279 {
6280 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6281
6282 if (MEM_P (target)
6283 && !MEM_KEEP_ALIAS_SET_P (target)
6284 && TREE_CODE (type) == ARRAY_TYPE
6285 && TYPE_NONALIASED_COMPONENT (type))
6286 {
6287 target = copy_rtx (target);
6288 MEM_KEEP_ALIAS_SET_P (target) = 1;
6289 }
6290
6291 store_constructor_field
6292 (target, bitsize, bitpos, mode, value, cleared,
6293 get_alias_set (elttype));
6294 }
6295 }
6296 else
6297 {
6298 rtx_code_label *loop_start = gen_label_rtx ();
6299 rtx_code_label *loop_end = gen_label_rtx ();
6300 tree exit_cond;
6301
6302 expand_normal (hi_index);
6303
6304 index = build_decl (EXPR_LOCATION (exp),
6305 VAR_DECL, NULL_TREE, domain);
6306 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6307 SET_DECL_RTL (index, index_r);
6308 store_expr (lo_index, index_r, 0, false);
6309
6310 /* Build the head of the loop. */
6311 do_pending_stack_adjust ();
6312 emit_label (loop_start);
6313
6314 /* Assign value to element index. */
6315 position =
6316 fold_convert (ssizetype,
6317 fold_build2 (MINUS_EXPR,
6318 TREE_TYPE (index),
6319 index,
6320 TYPE_MIN_VALUE (domain)));
6321
6322 position =
6323 size_binop (MULT_EXPR, position,
6324 fold_convert (ssizetype,
6325 TYPE_SIZE_UNIT (elttype)));
6326
6327 pos_rtx = expand_normal (position);
6328 xtarget = offset_address (target, pos_rtx,
6329 highest_pow2_factor (position));
6330 xtarget = adjust_address (xtarget, mode, 0);
6331 if (TREE_CODE (value) == CONSTRUCTOR)
6332 store_constructor (value, xtarget, cleared,
6333 bitsize / BITS_PER_UNIT);
6334 else
6335 store_expr (value, xtarget, 0, false);
6336
6337 /* Generate a conditional jump to exit the loop. */
6338 exit_cond = build2 (LT_EXPR, integer_type_node,
6339 index, hi_index);
6340 jumpif (exit_cond, loop_end, -1);
6341
6342 /* Update the loop counter, and jump to the head of
6343 the loop. */
6344 expand_assignment (index,
6345 build2 (PLUS_EXPR, TREE_TYPE (index),
6346 index, integer_one_node),
6347 false);
6348
6349 emit_jump (loop_start);
6350
6351 /* Build the end of the loop. */
6352 emit_label (loop_end);
6353 }
6354 }
6355 else if ((index != 0 && ! tree_fits_shwi_p (index))
6356 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6357 {
6358 tree position;
6359
6360 if (index == 0)
6361 index = ssize_int (1);
6362
6363 if (minelt)
6364 index = fold_convert (ssizetype,
6365 fold_build2 (MINUS_EXPR,
6366 TREE_TYPE (index),
6367 index,
6368 TYPE_MIN_VALUE (domain)));
6369
6370 position =
6371 size_binop (MULT_EXPR, index,
6372 fold_convert (ssizetype,
6373 TYPE_SIZE_UNIT (elttype)));
6374 xtarget = offset_address (target,
6375 expand_normal (position),
6376 highest_pow2_factor (position));
6377 xtarget = adjust_address (xtarget, mode, 0);
6378 store_expr (value, xtarget, 0, false);
6379 }
6380 else
6381 {
6382 if (index != 0)
6383 bitpos = ((tree_to_shwi (index) - minelt)
6384 * tree_to_uhwi (TYPE_SIZE (elttype)));
6385 else
6386 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6387
6388 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6389 && TREE_CODE (type) == ARRAY_TYPE
6390 && TYPE_NONALIASED_COMPONENT (type))
6391 {
6392 target = copy_rtx (target);
6393 MEM_KEEP_ALIAS_SET_P (target) = 1;
6394 }
6395 store_constructor_field (target, bitsize, bitpos, mode, value,
6396 cleared, get_alias_set (elttype));
6397 }
6398 }
6399 break;
6400 }
6401
6402 case VECTOR_TYPE:
6403 {
6404 unsigned HOST_WIDE_INT idx;
6405 constructor_elt *ce;
6406 int i;
6407 int need_to_clear;
6408 int icode = CODE_FOR_nothing;
6409 tree elttype = TREE_TYPE (type);
6410 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6411 machine_mode eltmode = TYPE_MODE (elttype);
6412 HOST_WIDE_INT bitsize;
6413 HOST_WIDE_INT bitpos;
6414 rtvec vector = NULL;
6415 unsigned n_elts;
6416 alias_set_type alias;
6417
6418 gcc_assert (eltmode != BLKmode);
6419
6420 n_elts = TYPE_VECTOR_SUBPARTS (type);
6421 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6422 {
6423 machine_mode mode = GET_MODE (target);
6424
6425 icode = (int) optab_handler (vec_init_optab, mode);
6426 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6427 if (icode != CODE_FOR_nothing)
6428 {
6429 tree value;
6430
6431 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6432 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6433 {
6434 icode = CODE_FOR_nothing;
6435 break;
6436 }
6437 }
6438 if (icode != CODE_FOR_nothing)
6439 {
6440 unsigned int i;
6441
6442 vector = rtvec_alloc (n_elts);
6443 for (i = 0; i < n_elts; i++)
6444 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6445 }
6446 }
6447
6448 /* If the constructor has fewer elements than the vector,
6449 clear the whole array first. Similarly if this is static
6450 constructor of a non-BLKmode object. */
6451 if (cleared)
6452 need_to_clear = 0;
6453 else if (REG_P (target) && TREE_STATIC (exp))
6454 need_to_clear = 1;
6455 else
6456 {
6457 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6458 tree value;
6459
6460 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6461 {
6462 int n_elts_here = tree_to_uhwi
6463 (int_const_binop (TRUNC_DIV_EXPR,
6464 TYPE_SIZE (TREE_TYPE (value)),
6465 TYPE_SIZE (elttype)));
6466
6467 count += n_elts_here;
6468 if (mostly_zeros_p (value))
6469 zero_count += n_elts_here;
6470 }
6471
6472 /* Clear the entire vector first if there are any missing elements,
6473 or if the incidence of zero elements is >= 75%. */
6474 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6475 }
6476
6477 if (need_to_clear && size > 0 && !vector)
6478 {
6479 if (REG_P (target))
6480 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6481 else
6482 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6483 cleared = 1;
6484 }
6485
6486 /* Inform later passes that the old value is dead. */
6487 if (!cleared && !vector && REG_P (target))
6488 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6489
6490 if (MEM_P (target))
6491 alias = MEM_ALIAS_SET (target);
6492 else
6493 alias = get_alias_set (elttype);
6494
6495 /* Store each element of the constructor into the corresponding
6496 element of TARGET, determined by counting the elements. */
6497 for (idx = 0, i = 0;
6498 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6499 idx++, i += bitsize / elt_size)
6500 {
6501 HOST_WIDE_INT eltpos;
6502 tree value = ce->value;
6503
6504 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6505 if (cleared && initializer_zerop (value))
6506 continue;
6507
6508 if (ce->index)
6509 eltpos = tree_to_uhwi (ce->index);
6510 else
6511 eltpos = i;
6512
6513 if (vector)
6514 {
6515 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6516 elements. */
6517 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6518 RTVEC_ELT (vector, eltpos)
6519 = expand_normal (value);
6520 }
6521 else
6522 {
6523 machine_mode value_mode =
6524 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6525 ? TYPE_MODE (TREE_TYPE (value))
6526 : eltmode;
6527 bitpos = eltpos * elt_size;
6528 store_constructor_field (target, bitsize, bitpos, value_mode,
6529 value, cleared, alias);
6530 }
6531 }
6532
6533 if (vector)
6534 emit_insn (GEN_FCN (icode)
6535 (target,
6536 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6537 break;
6538 }
6539
6540 default:
6541 gcc_unreachable ();
6542 }
6543 }
6544
6545 /* Store the value of EXP (an expression tree)
6546 into a subfield of TARGET which has mode MODE and occupies
6547 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6548 If MODE is VOIDmode, it means that we are storing into a bit-field.
6549
6550 BITREGION_START is bitpos of the first bitfield in this region.
6551 BITREGION_END is the bitpos of the ending bitfield in this region.
6552 These two fields are 0, if the C++ memory model does not apply,
6553 or we are not interested in keeping track of bitfield regions.
6554
6555 Always return const0_rtx unless we have something particular to
6556 return.
6557
6558 ALIAS_SET is the alias set for the destination. This value will
6559 (in general) be different from that for TARGET, since TARGET is a
6560 reference to the containing structure.
6561
6562 If NONTEMPORAL is true, try generating a nontemporal store. */
6563
6564 static rtx
6565 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6566 unsigned HOST_WIDE_INT bitregion_start,
6567 unsigned HOST_WIDE_INT bitregion_end,
6568 machine_mode mode, tree exp,
6569 alias_set_type alias_set, bool nontemporal)
6570 {
6571 if (TREE_CODE (exp) == ERROR_MARK)
6572 return const0_rtx;
6573
6574 /* If we have nothing to store, do nothing unless the expression has
6575 side-effects. */
6576 if (bitsize == 0)
6577 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6578
6579 if (GET_CODE (target) == CONCAT)
6580 {
6581 /* We're storing into a struct containing a single __complex. */
6582
6583 gcc_assert (!bitpos);
6584 return store_expr (exp, target, 0, nontemporal);
6585 }
6586
6587 /* If the structure is in a register or if the component
6588 is a bit field, we cannot use addressing to access it.
6589 Use bit-field techniques or SUBREG to store in it. */
6590
6591 if (mode == VOIDmode
6592 || (mode != BLKmode && ! direct_store[(int) mode]
6593 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6594 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6595 || REG_P (target)
6596 || GET_CODE (target) == SUBREG
6597 /* If the field isn't aligned enough to store as an ordinary memref,
6598 store it as a bit field. */
6599 || (mode != BLKmode
6600 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6601 || bitpos % GET_MODE_ALIGNMENT (mode))
6602 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6603 || (bitpos % BITS_PER_UNIT != 0)))
6604 || (bitsize >= 0 && mode != BLKmode
6605 && GET_MODE_BITSIZE (mode) > bitsize)
6606 /* If the RHS and field are a constant size and the size of the
6607 RHS isn't the same size as the bitfield, we must use bitfield
6608 operations. */
6609 || (bitsize >= 0
6610 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6611 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6612 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6613 decl we must use bitfield operations. */
6614 || (bitsize >= 0
6615 && TREE_CODE (exp) == MEM_REF
6616 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6617 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6618 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6619 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6620 {
6621 rtx temp;
6622 gimple *nop_def;
6623
6624 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6625 implies a mask operation. If the precision is the same size as
6626 the field we're storing into, that mask is redundant. This is
6627 particularly common with bit field assignments generated by the
6628 C front end. */
6629 nop_def = get_def_for_expr (exp, NOP_EXPR);
6630 if (nop_def)
6631 {
6632 tree type = TREE_TYPE (exp);
6633 if (INTEGRAL_TYPE_P (type)
6634 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6635 && bitsize == TYPE_PRECISION (type))
6636 {
6637 tree op = gimple_assign_rhs1 (nop_def);
6638 type = TREE_TYPE (op);
6639 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6640 exp = op;
6641 }
6642 }
6643
6644 temp = expand_normal (exp);
6645
6646 /* If BITSIZE is narrower than the size of the type of EXP
6647 we will be narrowing TEMP. Normally, what's wanted are the
6648 low-order bits. However, if EXP's type is a record and this is
6649 big-endian machine, we want the upper BITSIZE bits. */
6650 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6651 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6652 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6653 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6654 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6655 NULL_RTX, 1);
6656
6657 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6658 if (mode != VOIDmode && mode != BLKmode
6659 && mode != TYPE_MODE (TREE_TYPE (exp)))
6660 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6661
6662 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6663 are both BLKmode, both must be in memory and BITPOS must be aligned
6664 on a byte boundary. If so, we simply do a block copy. Likewise for
6665 a BLKmode-like TARGET. */
6666 if (GET_CODE (temp) != PARALLEL
6667 && GET_MODE (temp) == BLKmode
6668 && (GET_MODE (target) == BLKmode
6669 || (MEM_P (target)
6670 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6671 && (bitpos % BITS_PER_UNIT) == 0
6672 && (bitsize % BITS_PER_UNIT) == 0)))
6673 {
6674 gcc_assert (MEM_P (target) && MEM_P (temp)
6675 && (bitpos % BITS_PER_UNIT) == 0);
6676
6677 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6678 emit_block_move (target, temp,
6679 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6680 / BITS_PER_UNIT),
6681 BLOCK_OP_NORMAL);
6682
6683 return const0_rtx;
6684 }
6685
6686 /* Handle calls that return values in multiple non-contiguous locations.
6687 The Irix 6 ABI has examples of this. */
6688 if (GET_CODE (temp) == PARALLEL)
6689 {
6690 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6691 rtx temp_target;
6692 if (mode == BLKmode || mode == VOIDmode)
6693 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6694 temp_target = gen_reg_rtx (mode);
6695 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6696 temp = temp_target;
6697 }
6698 else if (mode == BLKmode)
6699 {
6700 /* Handle calls that return BLKmode values in registers. */
6701 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6702 {
6703 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6704 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6705 temp = temp_target;
6706 }
6707 else
6708 {
6709 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6710 rtx temp_target;
6711 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6712 temp_target = gen_reg_rtx (mode);
6713 temp_target
6714 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6715 temp_target, mode, mode);
6716 temp = temp_target;
6717 }
6718 }
6719
6720 /* Store the value in the bitfield. */
6721 store_bit_field (target, bitsize, bitpos,
6722 bitregion_start, bitregion_end,
6723 mode, temp);
6724
6725 return const0_rtx;
6726 }
6727 else
6728 {
6729 /* Now build a reference to just the desired component. */
6730 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6731
6732 if (to_rtx == target)
6733 to_rtx = copy_rtx (to_rtx);
6734
6735 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6736 set_mem_alias_set (to_rtx, alias_set);
6737
6738 return store_expr (exp, to_rtx, 0, nontemporal);
6739 }
6740 }
6741 \f
6742 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6743 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6744 codes and find the ultimate containing object, which we return.
6745
6746 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6747 bit position, and *PUNSIGNEDP to the signedness of the field.
6748 If the position of the field is variable, we store a tree
6749 giving the variable offset (in units) in *POFFSET.
6750 This offset is in addition to the bit position.
6751 If the position is not variable, we store 0 in *POFFSET.
6752
6753 If any of the extraction expressions is volatile,
6754 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6755
6756 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6757 Otherwise, it is a mode that can be used to access the field.
6758
6759 If the field describes a variable-sized object, *PMODE is set to
6760 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6761 this case, but the address of the object can be found.
6762
6763 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6764 look through nodes that serve as markers of a greater alignment than
6765 the one that can be deduced from the expression. These nodes make it
6766 possible for front-ends to prevent temporaries from being created by
6767 the middle-end on alignment considerations. For that purpose, the
6768 normal operating mode at high-level is to always pass FALSE so that
6769 the ultimate containing object is really returned; moreover, the
6770 associated predicate handled_component_p will always return TRUE
6771 on these nodes, thus indicating that they are essentially handled
6772 by get_inner_reference. TRUE should only be passed when the caller
6773 is scanning the expression in order to build another representation
6774 and specifically knows how to handle these nodes; as such, this is
6775 the normal operating mode in the RTL expanders. */
6776
6777 tree
6778 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6779 HOST_WIDE_INT *pbitpos, tree *poffset,
6780 machine_mode *pmode, int *punsignedp,
6781 int *pvolatilep, bool keep_aligning)
6782 {
6783 tree size_tree = 0;
6784 machine_mode mode = VOIDmode;
6785 bool blkmode_bitfield = false;
6786 tree offset = size_zero_node;
6787 offset_int bit_offset = 0;
6788
6789 /* First get the mode, signedness, and size. We do this from just the
6790 outermost expression. */
6791 *pbitsize = -1;
6792 if (TREE_CODE (exp) == COMPONENT_REF)
6793 {
6794 tree field = TREE_OPERAND (exp, 1);
6795 size_tree = DECL_SIZE (field);
6796 if (flag_strict_volatile_bitfields > 0
6797 && TREE_THIS_VOLATILE (exp)
6798 && DECL_BIT_FIELD_TYPE (field)
6799 && DECL_MODE (field) != BLKmode)
6800 /* Volatile bitfields should be accessed in the mode of the
6801 field's type, not the mode computed based on the bit
6802 size. */
6803 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6804 else if (!DECL_BIT_FIELD (field))
6805 mode = DECL_MODE (field);
6806 else if (DECL_MODE (field) == BLKmode)
6807 blkmode_bitfield = true;
6808
6809 *punsignedp = DECL_UNSIGNED (field);
6810 }
6811 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6812 {
6813 size_tree = TREE_OPERAND (exp, 1);
6814 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6815 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6816
6817 /* For vector types, with the correct size of access, use the mode of
6818 inner type. */
6819 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6820 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6821 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6822 mode = TYPE_MODE (TREE_TYPE (exp));
6823 }
6824 else
6825 {
6826 mode = TYPE_MODE (TREE_TYPE (exp));
6827 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6828
6829 if (mode == BLKmode)
6830 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6831 else
6832 *pbitsize = GET_MODE_BITSIZE (mode);
6833 }
6834
6835 if (size_tree != 0)
6836 {
6837 if (! tree_fits_uhwi_p (size_tree))
6838 mode = BLKmode, *pbitsize = -1;
6839 else
6840 *pbitsize = tree_to_uhwi (size_tree);
6841 }
6842
6843 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6844 and find the ultimate containing object. */
6845 while (1)
6846 {
6847 switch (TREE_CODE (exp))
6848 {
6849 case BIT_FIELD_REF:
6850 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
6851 break;
6852
6853 case COMPONENT_REF:
6854 {
6855 tree field = TREE_OPERAND (exp, 1);
6856 tree this_offset = component_ref_field_offset (exp);
6857
6858 /* If this field hasn't been filled in yet, don't go past it.
6859 This should only happen when folding expressions made during
6860 type construction. */
6861 if (this_offset == 0)
6862 break;
6863
6864 offset = size_binop (PLUS_EXPR, offset, this_offset);
6865 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
6866
6867 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6868 }
6869 break;
6870
6871 case ARRAY_REF:
6872 case ARRAY_RANGE_REF:
6873 {
6874 tree index = TREE_OPERAND (exp, 1);
6875 tree low_bound = array_ref_low_bound (exp);
6876 tree unit_size = array_ref_element_size (exp);
6877
6878 /* We assume all arrays have sizes that are a multiple of a byte.
6879 First subtract the lower bound, if any, in the type of the
6880 index, then convert to sizetype and multiply by the size of
6881 the array element. */
6882 if (! integer_zerop (low_bound))
6883 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6884 index, low_bound);
6885
6886 offset = size_binop (PLUS_EXPR, offset,
6887 size_binop (MULT_EXPR,
6888 fold_convert (sizetype, index),
6889 unit_size));
6890 }
6891 break;
6892
6893 case REALPART_EXPR:
6894 break;
6895
6896 case IMAGPART_EXPR:
6897 bit_offset += *pbitsize;
6898 break;
6899
6900 case VIEW_CONVERT_EXPR:
6901 if (keep_aligning && STRICT_ALIGNMENT
6902 && (TYPE_ALIGN (TREE_TYPE (exp))
6903 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6904 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6905 < BIGGEST_ALIGNMENT)
6906 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6907 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6908 goto done;
6909 break;
6910
6911 case MEM_REF:
6912 /* Hand back the decl for MEM[&decl, off]. */
6913 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6914 {
6915 tree off = TREE_OPERAND (exp, 1);
6916 if (!integer_zerop (off))
6917 {
6918 offset_int boff, coff = mem_ref_offset (exp);
6919 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
6920 bit_offset += boff;
6921 }
6922 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6923 }
6924 goto done;
6925
6926 default:
6927 goto done;
6928 }
6929
6930 /* If any reference in the chain is volatile, the effect is volatile. */
6931 if (TREE_THIS_VOLATILE (exp))
6932 *pvolatilep = 1;
6933
6934 exp = TREE_OPERAND (exp, 0);
6935 }
6936 done:
6937
6938 /* If OFFSET is constant, see if we can return the whole thing as a
6939 constant bit position. Make sure to handle overflow during
6940 this conversion. */
6941 if (TREE_CODE (offset) == INTEGER_CST)
6942 {
6943 offset_int tem = wi::sext (wi::to_offset (offset),
6944 TYPE_PRECISION (sizetype));
6945 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
6946 tem += bit_offset;
6947 if (wi::fits_shwi_p (tem))
6948 {
6949 *pbitpos = tem.to_shwi ();
6950 *poffset = offset = NULL_TREE;
6951 }
6952 }
6953
6954 /* Otherwise, split it up. */
6955 if (offset)
6956 {
6957 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6958 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
6959 {
6960 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
6961 offset_int tem = bit_offset.and_not (mask);
6962 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6963 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6964 bit_offset -= tem;
6965 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
6966 offset = size_binop (PLUS_EXPR, offset,
6967 wide_int_to_tree (sizetype, tem));
6968 }
6969
6970 *pbitpos = bit_offset.to_shwi ();
6971 *poffset = offset;
6972 }
6973
6974 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6975 if (mode == VOIDmode
6976 && blkmode_bitfield
6977 && (*pbitpos % BITS_PER_UNIT) == 0
6978 && (*pbitsize % BITS_PER_UNIT) == 0)
6979 *pmode = BLKmode;
6980 else
6981 *pmode = mode;
6982
6983 return exp;
6984 }
6985
6986 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6987
6988 static unsigned HOST_WIDE_INT
6989 target_align (const_tree target)
6990 {
6991 /* We might have a chain of nested references with intermediate misaligning
6992 bitfields components, so need to recurse to find out. */
6993
6994 unsigned HOST_WIDE_INT this_align, outer_align;
6995
6996 switch (TREE_CODE (target))
6997 {
6998 case BIT_FIELD_REF:
6999 return 1;
7000
7001 case COMPONENT_REF:
7002 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7003 outer_align = target_align (TREE_OPERAND (target, 0));
7004 return MIN (this_align, outer_align);
7005
7006 case ARRAY_REF:
7007 case ARRAY_RANGE_REF:
7008 this_align = TYPE_ALIGN (TREE_TYPE (target));
7009 outer_align = target_align (TREE_OPERAND (target, 0));
7010 return MIN (this_align, outer_align);
7011
7012 CASE_CONVERT:
7013 case NON_LVALUE_EXPR:
7014 case VIEW_CONVERT_EXPR:
7015 this_align = TYPE_ALIGN (TREE_TYPE (target));
7016 outer_align = target_align (TREE_OPERAND (target, 0));
7017 return MAX (this_align, outer_align);
7018
7019 default:
7020 return TYPE_ALIGN (TREE_TYPE (target));
7021 }
7022 }
7023
7024 \f
7025 /* Given an rtx VALUE that may contain additions and multiplications, return
7026 an equivalent value that just refers to a register, memory, or constant.
7027 This is done by generating instructions to perform the arithmetic and
7028 returning a pseudo-register containing the value.
7029
7030 The returned value may be a REG, SUBREG, MEM or constant. */
7031
7032 rtx
7033 force_operand (rtx value, rtx target)
7034 {
7035 rtx op1, op2;
7036 /* Use subtarget as the target for operand 0 of a binary operation. */
7037 rtx subtarget = get_subtarget (target);
7038 enum rtx_code code = GET_CODE (value);
7039
7040 /* Check for subreg applied to an expression produced by loop optimizer. */
7041 if (code == SUBREG
7042 && !REG_P (SUBREG_REG (value))
7043 && !MEM_P (SUBREG_REG (value)))
7044 {
7045 value
7046 = simplify_gen_subreg (GET_MODE (value),
7047 force_reg (GET_MODE (SUBREG_REG (value)),
7048 force_operand (SUBREG_REG (value),
7049 NULL_RTX)),
7050 GET_MODE (SUBREG_REG (value)),
7051 SUBREG_BYTE (value));
7052 code = GET_CODE (value);
7053 }
7054
7055 /* Check for a PIC address load. */
7056 if ((code == PLUS || code == MINUS)
7057 && XEXP (value, 0) == pic_offset_table_rtx
7058 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7059 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7060 || GET_CODE (XEXP (value, 1)) == CONST))
7061 {
7062 if (!subtarget)
7063 subtarget = gen_reg_rtx (GET_MODE (value));
7064 emit_move_insn (subtarget, value);
7065 return subtarget;
7066 }
7067
7068 if (ARITHMETIC_P (value))
7069 {
7070 op2 = XEXP (value, 1);
7071 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7072 subtarget = 0;
7073 if (code == MINUS && CONST_INT_P (op2))
7074 {
7075 code = PLUS;
7076 op2 = negate_rtx (GET_MODE (value), op2);
7077 }
7078
7079 /* Check for an addition with OP2 a constant integer and our first
7080 operand a PLUS of a virtual register and something else. In that
7081 case, we want to emit the sum of the virtual register and the
7082 constant first and then add the other value. This allows virtual
7083 register instantiation to simply modify the constant rather than
7084 creating another one around this addition. */
7085 if (code == PLUS && CONST_INT_P (op2)
7086 && GET_CODE (XEXP (value, 0)) == PLUS
7087 && REG_P (XEXP (XEXP (value, 0), 0))
7088 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7089 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7090 {
7091 rtx temp = expand_simple_binop (GET_MODE (value), code,
7092 XEXP (XEXP (value, 0), 0), op2,
7093 subtarget, 0, OPTAB_LIB_WIDEN);
7094 return expand_simple_binop (GET_MODE (value), code, temp,
7095 force_operand (XEXP (XEXP (value,
7096 0), 1), 0),
7097 target, 0, OPTAB_LIB_WIDEN);
7098 }
7099
7100 op1 = force_operand (XEXP (value, 0), subtarget);
7101 op2 = force_operand (op2, NULL_RTX);
7102 switch (code)
7103 {
7104 case MULT:
7105 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7106 case DIV:
7107 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7108 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7109 target, 1, OPTAB_LIB_WIDEN);
7110 else
7111 return expand_divmod (0,
7112 FLOAT_MODE_P (GET_MODE (value))
7113 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7114 GET_MODE (value), op1, op2, target, 0);
7115 case MOD:
7116 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7117 target, 0);
7118 case UDIV:
7119 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7120 target, 1);
7121 case UMOD:
7122 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7123 target, 1);
7124 case ASHIFTRT:
7125 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7126 target, 0, OPTAB_LIB_WIDEN);
7127 default:
7128 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7129 target, 1, OPTAB_LIB_WIDEN);
7130 }
7131 }
7132 if (UNARY_P (value))
7133 {
7134 if (!target)
7135 target = gen_reg_rtx (GET_MODE (value));
7136 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7137 switch (code)
7138 {
7139 case ZERO_EXTEND:
7140 case SIGN_EXTEND:
7141 case TRUNCATE:
7142 case FLOAT_EXTEND:
7143 case FLOAT_TRUNCATE:
7144 convert_move (target, op1, code == ZERO_EXTEND);
7145 return target;
7146
7147 case FIX:
7148 case UNSIGNED_FIX:
7149 expand_fix (target, op1, code == UNSIGNED_FIX);
7150 return target;
7151
7152 case FLOAT:
7153 case UNSIGNED_FLOAT:
7154 expand_float (target, op1, code == UNSIGNED_FLOAT);
7155 return target;
7156
7157 default:
7158 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7159 }
7160 }
7161
7162 #ifdef INSN_SCHEDULING
7163 /* On machines that have insn scheduling, we want all memory reference to be
7164 explicit, so we need to deal with such paradoxical SUBREGs. */
7165 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7166 value
7167 = simplify_gen_subreg (GET_MODE (value),
7168 force_reg (GET_MODE (SUBREG_REG (value)),
7169 force_operand (SUBREG_REG (value),
7170 NULL_RTX)),
7171 GET_MODE (SUBREG_REG (value)),
7172 SUBREG_BYTE (value));
7173 #endif
7174
7175 return value;
7176 }
7177 \f
7178 /* Subroutine of expand_expr: return nonzero iff there is no way that
7179 EXP can reference X, which is being modified. TOP_P is nonzero if this
7180 call is going to be used to determine whether we need a temporary
7181 for EXP, as opposed to a recursive call to this function.
7182
7183 It is always safe for this routine to return zero since it merely
7184 searches for optimization opportunities. */
7185
7186 int
7187 safe_from_p (const_rtx x, tree exp, int top_p)
7188 {
7189 rtx exp_rtl = 0;
7190 int i, nops;
7191
7192 if (x == 0
7193 /* If EXP has varying size, we MUST use a target since we currently
7194 have no way of allocating temporaries of variable size
7195 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7196 So we assume here that something at a higher level has prevented a
7197 clash. This is somewhat bogus, but the best we can do. Only
7198 do this when X is BLKmode and when we are at the top level. */
7199 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7200 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7201 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7202 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7203 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7204 != INTEGER_CST)
7205 && GET_MODE (x) == BLKmode)
7206 /* If X is in the outgoing argument area, it is always safe. */
7207 || (MEM_P (x)
7208 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7209 || (GET_CODE (XEXP (x, 0)) == PLUS
7210 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7211 return 1;
7212
7213 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7214 find the underlying pseudo. */
7215 if (GET_CODE (x) == SUBREG)
7216 {
7217 x = SUBREG_REG (x);
7218 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7219 return 0;
7220 }
7221
7222 /* Now look at our tree code and possibly recurse. */
7223 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7224 {
7225 case tcc_declaration:
7226 exp_rtl = DECL_RTL_IF_SET (exp);
7227 break;
7228
7229 case tcc_constant:
7230 return 1;
7231
7232 case tcc_exceptional:
7233 if (TREE_CODE (exp) == TREE_LIST)
7234 {
7235 while (1)
7236 {
7237 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7238 return 0;
7239 exp = TREE_CHAIN (exp);
7240 if (!exp)
7241 return 1;
7242 if (TREE_CODE (exp) != TREE_LIST)
7243 return safe_from_p (x, exp, 0);
7244 }
7245 }
7246 else if (TREE_CODE (exp) == CONSTRUCTOR)
7247 {
7248 constructor_elt *ce;
7249 unsigned HOST_WIDE_INT idx;
7250
7251 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7252 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7253 || !safe_from_p (x, ce->value, 0))
7254 return 0;
7255 return 1;
7256 }
7257 else if (TREE_CODE (exp) == ERROR_MARK)
7258 return 1; /* An already-visited SAVE_EXPR? */
7259 else
7260 return 0;
7261
7262 case tcc_statement:
7263 /* The only case we look at here is the DECL_INITIAL inside a
7264 DECL_EXPR. */
7265 return (TREE_CODE (exp) != DECL_EXPR
7266 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7267 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7268 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7269
7270 case tcc_binary:
7271 case tcc_comparison:
7272 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7273 return 0;
7274 /* Fall through. */
7275
7276 case tcc_unary:
7277 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7278
7279 case tcc_expression:
7280 case tcc_reference:
7281 case tcc_vl_exp:
7282 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7283 the expression. If it is set, we conflict iff we are that rtx or
7284 both are in memory. Otherwise, we check all operands of the
7285 expression recursively. */
7286
7287 switch (TREE_CODE (exp))
7288 {
7289 case ADDR_EXPR:
7290 /* If the operand is static or we are static, we can't conflict.
7291 Likewise if we don't conflict with the operand at all. */
7292 if (staticp (TREE_OPERAND (exp, 0))
7293 || TREE_STATIC (exp)
7294 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7295 return 1;
7296
7297 /* Otherwise, the only way this can conflict is if we are taking
7298 the address of a DECL a that address if part of X, which is
7299 very rare. */
7300 exp = TREE_OPERAND (exp, 0);
7301 if (DECL_P (exp))
7302 {
7303 if (!DECL_RTL_SET_P (exp)
7304 || !MEM_P (DECL_RTL (exp)))
7305 return 0;
7306 else
7307 exp_rtl = XEXP (DECL_RTL (exp), 0);
7308 }
7309 break;
7310
7311 case MEM_REF:
7312 if (MEM_P (x)
7313 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7314 get_alias_set (exp)))
7315 return 0;
7316 break;
7317
7318 case CALL_EXPR:
7319 /* Assume that the call will clobber all hard registers and
7320 all of memory. */
7321 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7322 || MEM_P (x))
7323 return 0;
7324 break;
7325
7326 case WITH_CLEANUP_EXPR:
7327 case CLEANUP_POINT_EXPR:
7328 /* Lowered by gimplify.c. */
7329 gcc_unreachable ();
7330
7331 case SAVE_EXPR:
7332 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7333
7334 default:
7335 break;
7336 }
7337
7338 /* If we have an rtx, we do not need to scan our operands. */
7339 if (exp_rtl)
7340 break;
7341
7342 nops = TREE_OPERAND_LENGTH (exp);
7343 for (i = 0; i < nops; i++)
7344 if (TREE_OPERAND (exp, i) != 0
7345 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7346 return 0;
7347
7348 break;
7349
7350 case tcc_type:
7351 /* Should never get a type here. */
7352 gcc_unreachable ();
7353 }
7354
7355 /* If we have an rtl, find any enclosed object. Then see if we conflict
7356 with it. */
7357 if (exp_rtl)
7358 {
7359 if (GET_CODE (exp_rtl) == SUBREG)
7360 {
7361 exp_rtl = SUBREG_REG (exp_rtl);
7362 if (REG_P (exp_rtl)
7363 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7364 return 0;
7365 }
7366
7367 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7368 are memory and they conflict. */
7369 return ! (rtx_equal_p (x, exp_rtl)
7370 || (MEM_P (x) && MEM_P (exp_rtl)
7371 && true_dependence (exp_rtl, VOIDmode, x)));
7372 }
7373
7374 /* If we reach here, it is safe. */
7375 return 1;
7376 }
7377
7378 \f
7379 /* Return the highest power of two that EXP is known to be a multiple of.
7380 This is used in updating alignment of MEMs in array references. */
7381
7382 unsigned HOST_WIDE_INT
7383 highest_pow2_factor (const_tree exp)
7384 {
7385 unsigned HOST_WIDE_INT ret;
7386 int trailing_zeros = tree_ctz (exp);
7387 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7388 return BIGGEST_ALIGNMENT;
7389 ret = (unsigned HOST_WIDE_INT) 1 << trailing_zeros;
7390 if (ret > BIGGEST_ALIGNMENT)
7391 return BIGGEST_ALIGNMENT;
7392 return ret;
7393 }
7394
7395 /* Similar, except that the alignment requirements of TARGET are
7396 taken into account. Assume it is at least as aligned as its
7397 type, unless it is a COMPONENT_REF in which case the layout of
7398 the structure gives the alignment. */
7399
7400 static unsigned HOST_WIDE_INT
7401 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7402 {
7403 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7404 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7405
7406 return MAX (factor, talign);
7407 }
7408 \f
7409 /* Convert the tree comparison code TCODE to the rtl one where the
7410 signedness is UNSIGNEDP. */
7411
7412 static enum rtx_code
7413 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7414 {
7415 enum rtx_code code;
7416 switch (tcode)
7417 {
7418 case EQ_EXPR:
7419 code = EQ;
7420 break;
7421 case NE_EXPR:
7422 code = NE;
7423 break;
7424 case LT_EXPR:
7425 code = unsignedp ? LTU : LT;
7426 break;
7427 case LE_EXPR:
7428 code = unsignedp ? LEU : LE;
7429 break;
7430 case GT_EXPR:
7431 code = unsignedp ? GTU : GT;
7432 break;
7433 case GE_EXPR:
7434 code = unsignedp ? GEU : GE;
7435 break;
7436 case UNORDERED_EXPR:
7437 code = UNORDERED;
7438 break;
7439 case ORDERED_EXPR:
7440 code = ORDERED;
7441 break;
7442 case UNLT_EXPR:
7443 code = UNLT;
7444 break;
7445 case UNLE_EXPR:
7446 code = UNLE;
7447 break;
7448 case UNGT_EXPR:
7449 code = UNGT;
7450 break;
7451 case UNGE_EXPR:
7452 code = UNGE;
7453 break;
7454 case UNEQ_EXPR:
7455 code = UNEQ;
7456 break;
7457 case LTGT_EXPR:
7458 code = LTGT;
7459 break;
7460
7461 default:
7462 gcc_unreachable ();
7463 }
7464 return code;
7465 }
7466
7467 /* Subroutine of expand_expr. Expand the two operands of a binary
7468 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7469 The value may be stored in TARGET if TARGET is nonzero. The
7470 MODIFIER argument is as documented by expand_expr. */
7471
7472 void
7473 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7474 enum expand_modifier modifier)
7475 {
7476 if (! safe_from_p (target, exp1, 1))
7477 target = 0;
7478 if (operand_equal_p (exp0, exp1, 0))
7479 {
7480 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7481 *op1 = copy_rtx (*op0);
7482 }
7483 else
7484 {
7485 /* If we need to preserve evaluation order, copy exp0 into its own
7486 temporary variable so that it can't be clobbered by exp1. */
7487 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7488 exp0 = save_expr (exp0);
7489 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7490 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7491 }
7492 }
7493
7494 \f
7495 /* Return a MEM that contains constant EXP. DEFER is as for
7496 output_constant_def and MODIFIER is as for expand_expr. */
7497
7498 static rtx
7499 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7500 {
7501 rtx mem;
7502
7503 mem = output_constant_def (exp, defer);
7504 if (modifier != EXPAND_INITIALIZER)
7505 mem = use_anchored_address (mem);
7506 return mem;
7507 }
7508
7509 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7510 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7511
7512 static rtx
7513 expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode,
7514 enum expand_modifier modifier, addr_space_t as)
7515 {
7516 rtx result, subtarget;
7517 tree inner, offset;
7518 HOST_WIDE_INT bitsize, bitpos;
7519 int volatilep, unsignedp;
7520 machine_mode mode1;
7521
7522 /* If we are taking the address of a constant and are at the top level,
7523 we have to use output_constant_def since we can't call force_const_mem
7524 at top level. */
7525 /* ??? This should be considered a front-end bug. We should not be
7526 generating ADDR_EXPR of something that isn't an LVALUE. The only
7527 exception here is STRING_CST. */
7528 if (CONSTANT_CLASS_P (exp))
7529 {
7530 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7531 if (modifier < EXPAND_SUM)
7532 result = force_operand (result, target);
7533 return result;
7534 }
7535
7536 /* Everything must be something allowed by is_gimple_addressable. */
7537 switch (TREE_CODE (exp))
7538 {
7539 case INDIRECT_REF:
7540 /* This case will happen via recursion for &a->b. */
7541 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7542
7543 case MEM_REF:
7544 {
7545 tree tem = TREE_OPERAND (exp, 0);
7546 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7547 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7548 return expand_expr (tem, target, tmode, modifier);
7549 }
7550
7551 case CONST_DECL:
7552 /* Expand the initializer like constants above. */
7553 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7554 0, modifier), 0);
7555 if (modifier < EXPAND_SUM)
7556 result = force_operand (result, target);
7557 return result;
7558
7559 case REALPART_EXPR:
7560 /* The real part of the complex number is always first, therefore
7561 the address is the same as the address of the parent object. */
7562 offset = 0;
7563 bitpos = 0;
7564 inner = TREE_OPERAND (exp, 0);
7565 break;
7566
7567 case IMAGPART_EXPR:
7568 /* The imaginary part of the complex number is always second.
7569 The expression is therefore always offset by the size of the
7570 scalar type. */
7571 offset = 0;
7572 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7573 inner = TREE_OPERAND (exp, 0);
7574 break;
7575
7576 case COMPOUND_LITERAL_EXPR:
7577 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7578 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7579 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7580 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7581 the initializers aren't gimplified. */
7582 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7583 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7584 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7585 target, tmode, modifier, as);
7586 /* FALLTHRU */
7587 default:
7588 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7589 expand_expr, as that can have various side effects; LABEL_DECLs for
7590 example, may not have their DECL_RTL set yet. Expand the rtl of
7591 CONSTRUCTORs too, which should yield a memory reference for the
7592 constructor's contents. Assume language specific tree nodes can
7593 be expanded in some interesting way. */
7594 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7595 if (DECL_P (exp)
7596 || TREE_CODE (exp) == CONSTRUCTOR
7597 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7598 {
7599 result = expand_expr (exp, target, tmode,
7600 modifier == EXPAND_INITIALIZER
7601 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7602
7603 /* If the DECL isn't in memory, then the DECL wasn't properly
7604 marked TREE_ADDRESSABLE, which will be either a front-end
7605 or a tree optimizer bug. */
7606
7607 gcc_assert (MEM_P (result));
7608 result = XEXP (result, 0);
7609
7610 /* ??? Is this needed anymore? */
7611 if (DECL_P (exp))
7612 TREE_USED (exp) = 1;
7613
7614 if (modifier != EXPAND_INITIALIZER
7615 && modifier != EXPAND_CONST_ADDRESS
7616 && modifier != EXPAND_SUM)
7617 result = force_operand (result, target);
7618 return result;
7619 }
7620
7621 /* Pass FALSE as the last argument to get_inner_reference although
7622 we are expanding to RTL. The rationale is that we know how to
7623 handle "aligning nodes" here: we can just bypass them because
7624 they won't change the final object whose address will be returned
7625 (they actually exist only for that purpose). */
7626 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7627 &mode1, &unsignedp, &volatilep, false);
7628 break;
7629 }
7630
7631 /* We must have made progress. */
7632 gcc_assert (inner != exp);
7633
7634 subtarget = offset || bitpos ? NULL_RTX : target;
7635 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7636 inner alignment, force the inner to be sufficiently aligned. */
7637 if (CONSTANT_CLASS_P (inner)
7638 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7639 {
7640 inner = copy_node (inner);
7641 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7642 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7643 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7644 }
7645 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7646
7647 if (offset)
7648 {
7649 rtx tmp;
7650
7651 if (modifier != EXPAND_NORMAL)
7652 result = force_operand (result, NULL);
7653 tmp = expand_expr (offset, NULL_RTX, tmode,
7654 modifier == EXPAND_INITIALIZER
7655 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7656
7657 /* expand_expr is allowed to return an object in a mode other
7658 than TMODE. If it did, we need to convert. */
7659 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7660 tmp = convert_modes (tmode, GET_MODE (tmp),
7661 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7662 result = convert_memory_address_addr_space (tmode, result, as);
7663 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7664
7665 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7666 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7667 else
7668 {
7669 subtarget = bitpos ? NULL_RTX : target;
7670 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7671 1, OPTAB_LIB_WIDEN);
7672 }
7673 }
7674
7675 if (bitpos)
7676 {
7677 /* Someone beforehand should have rejected taking the address
7678 of such an object. */
7679 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7680
7681 result = convert_memory_address_addr_space (tmode, result, as);
7682 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7683 if (modifier < EXPAND_SUM)
7684 result = force_operand (result, target);
7685 }
7686
7687 return result;
7688 }
7689
7690 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7691 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7692
7693 static rtx
7694 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7695 enum expand_modifier modifier)
7696 {
7697 addr_space_t as = ADDR_SPACE_GENERIC;
7698 machine_mode address_mode = Pmode;
7699 machine_mode pointer_mode = ptr_mode;
7700 machine_mode rmode;
7701 rtx result;
7702
7703 /* Target mode of VOIDmode says "whatever's natural". */
7704 if (tmode == VOIDmode)
7705 tmode = TYPE_MODE (TREE_TYPE (exp));
7706
7707 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7708 {
7709 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7710 address_mode = targetm.addr_space.address_mode (as);
7711 pointer_mode = targetm.addr_space.pointer_mode (as);
7712 }
7713
7714 /* We can get called with some Weird Things if the user does silliness
7715 like "(short) &a". In that case, convert_memory_address won't do
7716 the right thing, so ignore the given target mode. */
7717 if (tmode != address_mode && tmode != pointer_mode)
7718 tmode = address_mode;
7719
7720 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7721 tmode, modifier, as);
7722
7723 /* Despite expand_expr claims concerning ignoring TMODE when not
7724 strictly convenient, stuff breaks if we don't honor it. Note
7725 that combined with the above, we only do this for pointer modes. */
7726 rmode = GET_MODE (result);
7727 if (rmode == VOIDmode)
7728 rmode = tmode;
7729 if (rmode != tmode)
7730 result = convert_memory_address_addr_space (tmode, result, as);
7731
7732 return result;
7733 }
7734
7735 /* Generate code for computing CONSTRUCTOR EXP.
7736 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7737 is TRUE, instead of creating a temporary variable in memory
7738 NULL is returned and the caller needs to handle it differently. */
7739
7740 static rtx
7741 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7742 bool avoid_temp_mem)
7743 {
7744 tree type = TREE_TYPE (exp);
7745 machine_mode mode = TYPE_MODE (type);
7746
7747 /* Try to avoid creating a temporary at all. This is possible
7748 if all of the initializer is zero.
7749 FIXME: try to handle all [0..255] initializers we can handle
7750 with memset. */
7751 if (TREE_STATIC (exp)
7752 && !TREE_ADDRESSABLE (exp)
7753 && target != 0 && mode == BLKmode
7754 && all_zeros_p (exp))
7755 {
7756 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7757 return target;
7758 }
7759
7760 /* All elts simple constants => refer to a constant in memory. But
7761 if this is a non-BLKmode mode, let it store a field at a time
7762 since that should make a CONST_INT, CONST_WIDE_INT or
7763 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7764 use, it is best to store directly into the target unless the type
7765 is large enough that memcpy will be used. If we are making an
7766 initializer and all operands are constant, put it in memory as
7767 well.
7768
7769 FIXME: Avoid trying to fill vector constructors piece-meal.
7770 Output them with output_constant_def below unless we're sure
7771 they're zeros. This should go away when vector initializers
7772 are treated like VECTOR_CST instead of arrays. */
7773 if ((TREE_STATIC (exp)
7774 && ((mode == BLKmode
7775 && ! (target != 0 && safe_from_p (target, exp, 1)))
7776 || TREE_ADDRESSABLE (exp)
7777 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7778 && (! can_move_by_pieces
7779 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7780 TYPE_ALIGN (type)))
7781 && ! mostly_zeros_p (exp))))
7782 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7783 && TREE_CONSTANT (exp)))
7784 {
7785 rtx constructor;
7786
7787 if (avoid_temp_mem)
7788 return NULL_RTX;
7789
7790 constructor = expand_expr_constant (exp, 1, modifier);
7791
7792 if (modifier != EXPAND_CONST_ADDRESS
7793 && modifier != EXPAND_INITIALIZER
7794 && modifier != EXPAND_SUM)
7795 constructor = validize_mem (constructor);
7796
7797 return constructor;
7798 }
7799
7800 /* Handle calls that pass values in multiple non-contiguous
7801 locations. The Irix 6 ABI has examples of this. */
7802 if (target == 0 || ! safe_from_p (target, exp, 1)
7803 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7804 {
7805 if (avoid_temp_mem)
7806 return NULL_RTX;
7807
7808 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
7809 }
7810
7811 store_constructor (exp, target, 0, int_expr_size (exp));
7812 return target;
7813 }
7814
7815
7816 /* expand_expr: generate code for computing expression EXP.
7817 An rtx for the computed value is returned. The value is never null.
7818 In the case of a void EXP, const0_rtx is returned.
7819
7820 The value may be stored in TARGET if TARGET is nonzero.
7821 TARGET is just a suggestion; callers must assume that
7822 the rtx returned may not be the same as TARGET.
7823
7824 If TARGET is CONST0_RTX, it means that the value will be ignored.
7825
7826 If TMODE is not VOIDmode, it suggests generating the
7827 result in mode TMODE. But this is done only when convenient.
7828 Otherwise, TMODE is ignored and the value generated in its natural mode.
7829 TMODE is just a suggestion; callers must assume that
7830 the rtx returned may not have mode TMODE.
7831
7832 Note that TARGET may have neither TMODE nor MODE. In that case, it
7833 probably will not be used.
7834
7835 If MODIFIER is EXPAND_SUM then when EXP is an addition
7836 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7837 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7838 products as above, or REG or MEM, or constant.
7839 Ordinarily in such cases we would output mul or add instructions
7840 and then return a pseudo reg containing the sum.
7841
7842 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7843 it also marks a label as absolutely required (it can't be dead).
7844 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7845 This is used for outputting expressions used in initializers.
7846
7847 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7848 with a constant address even if that address is not normally legitimate.
7849 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7850
7851 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7852 a call parameter. Such targets require special care as we haven't yet
7853 marked TARGET so that it's safe from being trashed by libcalls. We
7854 don't want to use TARGET for anything but the final result;
7855 Intermediate values must go elsewhere. Additionally, calls to
7856 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7857
7858 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7859 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7860 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7861 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7862 recursively.
7863
7864 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7865 In this case, we don't adjust a returned MEM rtx that wouldn't be
7866 sufficiently aligned for its mode; instead, it's up to the caller
7867 to deal with it afterwards. This is used to make sure that unaligned
7868 base objects for which out-of-bounds accesses are supported, for
7869 example record types with trailing arrays, aren't realigned behind
7870 the back of the caller.
7871 The normal operating mode is to pass FALSE for this parameter. */
7872
7873 rtx
7874 expand_expr_real (tree exp, rtx target, machine_mode tmode,
7875 enum expand_modifier modifier, rtx *alt_rtl,
7876 bool inner_reference_p)
7877 {
7878 rtx ret;
7879
7880 /* Handle ERROR_MARK before anybody tries to access its type. */
7881 if (TREE_CODE (exp) == ERROR_MARK
7882 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7883 {
7884 ret = CONST0_RTX (tmode);
7885 return ret ? ret : const0_rtx;
7886 }
7887
7888 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
7889 inner_reference_p);
7890 return ret;
7891 }
7892
7893 /* Try to expand the conditional expression which is represented by
7894 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
7895 return the rtl reg which represents the result. Otherwise return
7896 NULL_RTX. */
7897
7898 static rtx
7899 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
7900 tree treeop1 ATTRIBUTE_UNUSED,
7901 tree treeop2 ATTRIBUTE_UNUSED)
7902 {
7903 rtx insn;
7904 rtx op00, op01, op1, op2;
7905 enum rtx_code comparison_code;
7906 machine_mode comparison_mode;
7907 gimple *srcstmt;
7908 rtx temp;
7909 tree type = TREE_TYPE (treeop1);
7910 int unsignedp = TYPE_UNSIGNED (type);
7911 machine_mode mode = TYPE_MODE (type);
7912 machine_mode orig_mode = mode;
7913
7914 /* If we cannot do a conditional move on the mode, try doing it
7915 with the promoted mode. */
7916 if (!can_conditionally_move_p (mode))
7917 {
7918 mode = promote_mode (type, mode, &unsignedp);
7919 if (!can_conditionally_move_p (mode))
7920 return NULL_RTX;
7921 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
7922 }
7923 else
7924 temp = assign_temp (type, 0, 1);
7925
7926 start_sequence ();
7927 expand_operands (treeop1, treeop2,
7928 temp, &op1, &op2, EXPAND_NORMAL);
7929
7930 if (TREE_CODE (treeop0) == SSA_NAME
7931 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
7932 {
7933 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
7934 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
7935 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
7936 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
7937 comparison_mode = TYPE_MODE (type);
7938 unsignedp = TYPE_UNSIGNED (type);
7939 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
7940 }
7941 else if (COMPARISON_CLASS_P (treeop0))
7942 {
7943 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
7944 enum tree_code cmpcode = TREE_CODE (treeop0);
7945 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
7946 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
7947 unsignedp = TYPE_UNSIGNED (type);
7948 comparison_mode = TYPE_MODE (type);
7949 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
7950 }
7951 else
7952 {
7953 op00 = expand_normal (treeop0);
7954 op01 = const0_rtx;
7955 comparison_code = NE;
7956 comparison_mode = GET_MODE (op00);
7957 if (comparison_mode == VOIDmode)
7958 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
7959 }
7960
7961 if (GET_MODE (op1) != mode)
7962 op1 = gen_lowpart (mode, op1);
7963
7964 if (GET_MODE (op2) != mode)
7965 op2 = gen_lowpart (mode, op2);
7966
7967 /* Try to emit the conditional move. */
7968 insn = emit_conditional_move (temp, comparison_code,
7969 op00, op01, comparison_mode,
7970 op1, op2, mode,
7971 unsignedp);
7972
7973 /* If we could do the conditional move, emit the sequence,
7974 and return. */
7975 if (insn)
7976 {
7977 rtx_insn *seq = get_insns ();
7978 end_sequence ();
7979 emit_insn (seq);
7980 return convert_modes (orig_mode, mode, temp, 0);
7981 }
7982
7983 /* Otherwise discard the sequence and fall back to code with
7984 branches. */
7985 end_sequence ();
7986 return NULL_RTX;
7987 }
7988
7989 rtx
7990 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
7991 enum expand_modifier modifier)
7992 {
7993 rtx op0, op1, op2, temp;
7994 rtx_code_label *lab;
7995 tree type;
7996 int unsignedp;
7997 machine_mode mode;
7998 enum tree_code code = ops->code;
7999 optab this_optab;
8000 rtx subtarget, original_target;
8001 int ignore;
8002 bool reduce_bit_field;
8003 location_t loc = ops->location;
8004 tree treeop0, treeop1, treeop2;
8005 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8006 ? reduce_to_bit_field_precision ((expr), \
8007 target, \
8008 type) \
8009 : (expr))
8010
8011 type = ops->type;
8012 mode = TYPE_MODE (type);
8013 unsignedp = TYPE_UNSIGNED (type);
8014
8015 treeop0 = ops->op0;
8016 treeop1 = ops->op1;
8017 treeop2 = ops->op2;
8018
8019 /* We should be called only on simple (binary or unary) expressions,
8020 exactly those that are valid in gimple expressions that aren't
8021 GIMPLE_SINGLE_RHS (or invalid). */
8022 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8023 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8024 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8025
8026 ignore = (target == const0_rtx
8027 || ((CONVERT_EXPR_CODE_P (code)
8028 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8029 && TREE_CODE (type) == VOID_TYPE));
8030
8031 /* We should be called only if we need the result. */
8032 gcc_assert (!ignore);
8033
8034 /* An operation in what may be a bit-field type needs the
8035 result to be reduced to the precision of the bit-field type,
8036 which is narrower than that of the type's mode. */
8037 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8038 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8039
8040 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8041 target = 0;
8042
8043 /* Use subtarget as the target for operand 0 of a binary operation. */
8044 subtarget = get_subtarget (target);
8045 original_target = target;
8046
8047 switch (code)
8048 {
8049 case NON_LVALUE_EXPR:
8050 case PAREN_EXPR:
8051 CASE_CONVERT:
8052 if (treeop0 == error_mark_node)
8053 return const0_rtx;
8054
8055 if (TREE_CODE (type) == UNION_TYPE)
8056 {
8057 tree valtype = TREE_TYPE (treeop0);
8058
8059 /* If both input and output are BLKmode, this conversion isn't doing
8060 anything except possibly changing memory attribute. */
8061 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8062 {
8063 rtx result = expand_expr (treeop0, target, tmode,
8064 modifier);
8065
8066 result = copy_rtx (result);
8067 set_mem_attributes (result, type, 0);
8068 return result;
8069 }
8070
8071 if (target == 0)
8072 {
8073 if (TYPE_MODE (type) != BLKmode)
8074 target = gen_reg_rtx (TYPE_MODE (type));
8075 else
8076 target = assign_temp (type, 1, 1);
8077 }
8078
8079 if (MEM_P (target))
8080 /* Store data into beginning of memory target. */
8081 store_expr (treeop0,
8082 adjust_address (target, TYPE_MODE (valtype), 0),
8083 modifier == EXPAND_STACK_PARM,
8084 false);
8085
8086 else
8087 {
8088 gcc_assert (REG_P (target));
8089
8090 /* Store this field into a union of the proper type. */
8091 store_field (target,
8092 MIN ((int_size_in_bytes (TREE_TYPE
8093 (treeop0))
8094 * BITS_PER_UNIT),
8095 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8096 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false);
8097 }
8098
8099 /* Return the entire union. */
8100 return target;
8101 }
8102
8103 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8104 {
8105 op0 = expand_expr (treeop0, target, VOIDmode,
8106 modifier);
8107
8108 /* If the signedness of the conversion differs and OP0 is
8109 a promoted SUBREG, clear that indication since we now
8110 have to do the proper extension. */
8111 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8112 && GET_CODE (op0) == SUBREG)
8113 SUBREG_PROMOTED_VAR_P (op0) = 0;
8114
8115 return REDUCE_BIT_FIELD (op0);
8116 }
8117
8118 op0 = expand_expr (treeop0, NULL_RTX, mode,
8119 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8120 if (GET_MODE (op0) == mode)
8121 ;
8122
8123 /* If OP0 is a constant, just convert it into the proper mode. */
8124 else if (CONSTANT_P (op0))
8125 {
8126 tree inner_type = TREE_TYPE (treeop0);
8127 machine_mode inner_mode = GET_MODE (op0);
8128
8129 if (inner_mode == VOIDmode)
8130 inner_mode = TYPE_MODE (inner_type);
8131
8132 if (modifier == EXPAND_INITIALIZER)
8133 op0 = lowpart_subreg (mode, op0, inner_mode);
8134 else
8135 op0= convert_modes (mode, inner_mode, op0,
8136 TYPE_UNSIGNED (inner_type));
8137 }
8138
8139 else if (modifier == EXPAND_INITIALIZER)
8140 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8141
8142 else if (target == 0)
8143 op0 = convert_to_mode (mode, op0,
8144 TYPE_UNSIGNED (TREE_TYPE
8145 (treeop0)));
8146 else
8147 {
8148 convert_move (target, op0,
8149 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8150 op0 = target;
8151 }
8152
8153 return REDUCE_BIT_FIELD (op0);
8154
8155 case ADDR_SPACE_CONVERT_EXPR:
8156 {
8157 tree treeop0_type = TREE_TYPE (treeop0);
8158 addr_space_t as_to;
8159 addr_space_t as_from;
8160
8161 gcc_assert (POINTER_TYPE_P (type));
8162 gcc_assert (POINTER_TYPE_P (treeop0_type));
8163
8164 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8165 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8166
8167 /* Conversions between pointers to the same address space should
8168 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8169 gcc_assert (as_to != as_from);
8170
8171 /* Ask target code to handle conversion between pointers
8172 to overlapping address spaces. */
8173 if (targetm.addr_space.subset_p (as_to, as_from)
8174 || targetm.addr_space.subset_p (as_from, as_to))
8175 {
8176 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8177 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8178 gcc_assert (op0);
8179 return op0;
8180 }
8181
8182 /* For disjoint address spaces, converting anything but
8183 a null pointer invokes undefined behaviour. We simply
8184 always return a null pointer here. */
8185 return CONST0_RTX (mode);
8186 }
8187
8188 case POINTER_PLUS_EXPR:
8189 /* Even though the sizetype mode and the pointer's mode can be different
8190 expand is able to handle this correctly and get the correct result out
8191 of the PLUS_EXPR code. */
8192 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8193 if sizetype precision is smaller than pointer precision. */
8194 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8195 treeop1 = fold_convert_loc (loc, type,
8196 fold_convert_loc (loc, ssizetype,
8197 treeop1));
8198 /* If sizetype precision is larger than pointer precision, truncate the
8199 offset to have matching modes. */
8200 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8201 treeop1 = fold_convert_loc (loc, type, treeop1);
8202
8203 case PLUS_EXPR:
8204 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8205 something else, make sure we add the register to the constant and
8206 then to the other thing. This case can occur during strength
8207 reduction and doing it this way will produce better code if the
8208 frame pointer or argument pointer is eliminated.
8209
8210 fold-const.c will ensure that the constant is always in the inner
8211 PLUS_EXPR, so the only case we need to do anything about is if
8212 sp, ap, or fp is our second argument, in which case we must swap
8213 the innermost first argument and our second argument. */
8214
8215 if (TREE_CODE (treeop0) == PLUS_EXPR
8216 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8217 && TREE_CODE (treeop1) == VAR_DECL
8218 && (DECL_RTL (treeop1) == frame_pointer_rtx
8219 || DECL_RTL (treeop1) == stack_pointer_rtx
8220 || DECL_RTL (treeop1) == arg_pointer_rtx))
8221 {
8222 gcc_unreachable ();
8223 }
8224
8225 /* If the result is to be ptr_mode and we are adding an integer to
8226 something, we might be forming a constant. So try to use
8227 plus_constant. If it produces a sum and we can't accept it,
8228 use force_operand. This allows P = &ARR[const] to generate
8229 efficient code on machines where a SYMBOL_REF is not a valid
8230 address.
8231
8232 If this is an EXPAND_SUM call, always return the sum. */
8233 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8234 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8235 {
8236 if (modifier == EXPAND_STACK_PARM)
8237 target = 0;
8238 if (TREE_CODE (treeop0) == INTEGER_CST
8239 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8240 && TREE_CONSTANT (treeop1))
8241 {
8242 rtx constant_part;
8243 HOST_WIDE_INT wc;
8244 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8245
8246 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8247 EXPAND_SUM);
8248 /* Use wi::shwi to ensure that the constant is
8249 truncated according to the mode of OP1, then sign extended
8250 to a HOST_WIDE_INT. Using the constant directly can result
8251 in non-canonical RTL in a 64x32 cross compile. */
8252 wc = TREE_INT_CST_LOW (treeop0);
8253 constant_part =
8254 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8255 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8256 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8257 op1 = force_operand (op1, target);
8258 return REDUCE_BIT_FIELD (op1);
8259 }
8260
8261 else if (TREE_CODE (treeop1) == INTEGER_CST
8262 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8263 && TREE_CONSTANT (treeop0))
8264 {
8265 rtx constant_part;
8266 HOST_WIDE_INT wc;
8267 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8268
8269 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8270 (modifier == EXPAND_INITIALIZER
8271 ? EXPAND_INITIALIZER : EXPAND_SUM));
8272 if (! CONSTANT_P (op0))
8273 {
8274 op1 = expand_expr (treeop1, NULL_RTX,
8275 VOIDmode, modifier);
8276 /* Return a PLUS if modifier says it's OK. */
8277 if (modifier == EXPAND_SUM
8278 || modifier == EXPAND_INITIALIZER)
8279 return simplify_gen_binary (PLUS, mode, op0, op1);
8280 goto binop2;
8281 }
8282 /* Use wi::shwi to ensure that the constant is
8283 truncated according to the mode of OP1, then sign extended
8284 to a HOST_WIDE_INT. Using the constant directly can result
8285 in non-canonical RTL in a 64x32 cross compile. */
8286 wc = TREE_INT_CST_LOW (treeop1);
8287 constant_part
8288 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8289 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8290 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8291 op0 = force_operand (op0, target);
8292 return REDUCE_BIT_FIELD (op0);
8293 }
8294 }
8295
8296 /* Use TER to expand pointer addition of a negated value
8297 as pointer subtraction. */
8298 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8299 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8300 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8301 && TREE_CODE (treeop1) == SSA_NAME
8302 && TYPE_MODE (TREE_TYPE (treeop0))
8303 == TYPE_MODE (TREE_TYPE (treeop1)))
8304 {
8305 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8306 if (def)
8307 {
8308 treeop1 = gimple_assign_rhs1 (def);
8309 code = MINUS_EXPR;
8310 goto do_minus;
8311 }
8312 }
8313
8314 /* No sense saving up arithmetic to be done
8315 if it's all in the wrong mode to form part of an address.
8316 And force_operand won't know whether to sign-extend or
8317 zero-extend. */
8318 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8319 || mode != ptr_mode)
8320 {
8321 expand_operands (treeop0, treeop1,
8322 subtarget, &op0, &op1, EXPAND_NORMAL);
8323 if (op0 == const0_rtx)
8324 return op1;
8325 if (op1 == const0_rtx)
8326 return op0;
8327 goto binop2;
8328 }
8329
8330 expand_operands (treeop0, treeop1,
8331 subtarget, &op0, &op1, modifier);
8332 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8333
8334 case MINUS_EXPR:
8335 do_minus:
8336 /* For initializers, we are allowed to return a MINUS of two
8337 symbolic constants. Here we handle all cases when both operands
8338 are constant. */
8339 /* Handle difference of two symbolic constants,
8340 for the sake of an initializer. */
8341 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8342 && really_constant_p (treeop0)
8343 && really_constant_p (treeop1))
8344 {
8345 expand_operands (treeop0, treeop1,
8346 NULL_RTX, &op0, &op1, modifier);
8347
8348 /* If the last operand is a CONST_INT, use plus_constant of
8349 the negated constant. Else make the MINUS. */
8350 if (CONST_INT_P (op1))
8351 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8352 -INTVAL (op1)));
8353 else
8354 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8355 }
8356
8357 /* No sense saving up arithmetic to be done
8358 if it's all in the wrong mode to form part of an address.
8359 And force_operand won't know whether to sign-extend or
8360 zero-extend. */
8361 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8362 || mode != ptr_mode)
8363 goto binop;
8364
8365 expand_operands (treeop0, treeop1,
8366 subtarget, &op0, &op1, modifier);
8367
8368 /* Convert A - const to A + (-const). */
8369 if (CONST_INT_P (op1))
8370 {
8371 op1 = negate_rtx (mode, op1);
8372 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8373 }
8374
8375 goto binop2;
8376
8377 case WIDEN_MULT_PLUS_EXPR:
8378 case WIDEN_MULT_MINUS_EXPR:
8379 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8380 op2 = expand_normal (treeop2);
8381 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8382 target, unsignedp);
8383 return target;
8384
8385 case WIDEN_MULT_EXPR:
8386 /* If first operand is constant, swap them.
8387 Thus the following special case checks need only
8388 check the second operand. */
8389 if (TREE_CODE (treeop0) == INTEGER_CST)
8390 std::swap (treeop0, treeop1);
8391
8392 /* First, check if we have a multiplication of one signed and one
8393 unsigned operand. */
8394 if (TREE_CODE (treeop1) != INTEGER_CST
8395 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8396 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8397 {
8398 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8399 this_optab = usmul_widen_optab;
8400 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8401 != CODE_FOR_nothing)
8402 {
8403 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8404 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8405 EXPAND_NORMAL);
8406 else
8407 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8408 EXPAND_NORMAL);
8409 /* op0 and op1 might still be constant, despite the above
8410 != INTEGER_CST check. Handle it. */
8411 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8412 {
8413 op0 = convert_modes (innermode, mode, op0, true);
8414 op1 = convert_modes (innermode, mode, op1, false);
8415 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8416 target, unsignedp));
8417 }
8418 goto binop3;
8419 }
8420 }
8421 /* Check for a multiplication with matching signedness. */
8422 else if ((TREE_CODE (treeop1) == INTEGER_CST
8423 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8424 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8425 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8426 {
8427 tree op0type = TREE_TYPE (treeop0);
8428 machine_mode innermode = TYPE_MODE (op0type);
8429 bool zextend_p = TYPE_UNSIGNED (op0type);
8430 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8431 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8432
8433 if (TREE_CODE (treeop0) != INTEGER_CST)
8434 {
8435 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8436 != CODE_FOR_nothing)
8437 {
8438 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8439 EXPAND_NORMAL);
8440 /* op0 and op1 might still be constant, despite the above
8441 != INTEGER_CST check. Handle it. */
8442 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8443 {
8444 widen_mult_const:
8445 op0 = convert_modes (innermode, mode, op0, zextend_p);
8446 op1
8447 = convert_modes (innermode, mode, op1,
8448 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8449 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8450 target,
8451 unsignedp));
8452 }
8453 temp = expand_widening_mult (mode, op0, op1, target,
8454 unsignedp, this_optab);
8455 return REDUCE_BIT_FIELD (temp);
8456 }
8457 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8458 != CODE_FOR_nothing
8459 && innermode == word_mode)
8460 {
8461 rtx htem, hipart;
8462 op0 = expand_normal (treeop0);
8463 if (TREE_CODE (treeop1) == INTEGER_CST)
8464 op1 = convert_modes (innermode, mode,
8465 expand_normal (treeop1),
8466 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8467 else
8468 op1 = expand_normal (treeop1);
8469 /* op0 and op1 might still be constant, despite the above
8470 != INTEGER_CST check. Handle it. */
8471 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8472 goto widen_mult_const;
8473 temp = expand_binop (mode, other_optab, op0, op1, target,
8474 unsignedp, OPTAB_LIB_WIDEN);
8475 hipart = gen_highpart (innermode, temp);
8476 htem = expand_mult_highpart_adjust (innermode, hipart,
8477 op0, op1, hipart,
8478 zextend_p);
8479 if (htem != hipart)
8480 emit_move_insn (hipart, htem);
8481 return REDUCE_BIT_FIELD (temp);
8482 }
8483 }
8484 }
8485 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8486 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8487 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8488 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8489
8490 case FMA_EXPR:
8491 {
8492 optab opt = fma_optab;
8493 gimple *def0, *def2;
8494
8495 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8496 call. */
8497 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8498 {
8499 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8500 tree call_expr;
8501
8502 gcc_assert (fn != NULL_TREE);
8503 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8504 return expand_builtin (call_expr, target, subtarget, mode, false);
8505 }
8506
8507 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8508 /* The multiplication is commutative - look at its 2nd operand
8509 if the first isn't fed by a negate. */
8510 if (!def0)
8511 {
8512 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8513 /* Swap operands if the 2nd operand is fed by a negate. */
8514 if (def0)
8515 std::swap (treeop0, treeop1);
8516 }
8517 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8518
8519 op0 = op2 = NULL;
8520
8521 if (def0 && def2
8522 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8523 {
8524 opt = fnms_optab;
8525 op0 = expand_normal (gimple_assign_rhs1 (def0));
8526 op2 = expand_normal (gimple_assign_rhs1 (def2));
8527 }
8528 else if (def0
8529 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8530 {
8531 opt = fnma_optab;
8532 op0 = expand_normal (gimple_assign_rhs1 (def0));
8533 }
8534 else if (def2
8535 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8536 {
8537 opt = fms_optab;
8538 op2 = expand_normal (gimple_assign_rhs1 (def2));
8539 }
8540
8541 if (op0 == NULL)
8542 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8543 if (op2 == NULL)
8544 op2 = expand_normal (treeop2);
8545 op1 = expand_normal (treeop1);
8546
8547 return expand_ternary_op (TYPE_MODE (type), opt,
8548 op0, op1, op2, target, 0);
8549 }
8550
8551 case MULT_EXPR:
8552 /* If this is a fixed-point operation, then we cannot use the code
8553 below because "expand_mult" doesn't support sat/no-sat fixed-point
8554 multiplications. */
8555 if (ALL_FIXED_POINT_MODE_P (mode))
8556 goto binop;
8557
8558 /* If first operand is constant, swap them.
8559 Thus the following special case checks need only
8560 check the second operand. */
8561 if (TREE_CODE (treeop0) == INTEGER_CST)
8562 std::swap (treeop0, treeop1);
8563
8564 /* Attempt to return something suitable for generating an
8565 indexed address, for machines that support that. */
8566
8567 if (modifier == EXPAND_SUM && mode == ptr_mode
8568 && tree_fits_shwi_p (treeop1))
8569 {
8570 tree exp1 = treeop1;
8571
8572 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8573 EXPAND_SUM);
8574
8575 if (!REG_P (op0))
8576 op0 = force_operand (op0, NULL_RTX);
8577 if (!REG_P (op0))
8578 op0 = copy_to_mode_reg (mode, op0);
8579
8580 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8581 gen_int_mode (tree_to_shwi (exp1),
8582 TYPE_MODE (TREE_TYPE (exp1)))));
8583 }
8584
8585 if (modifier == EXPAND_STACK_PARM)
8586 target = 0;
8587
8588 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8589 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8590
8591 case TRUNC_DIV_EXPR:
8592 case FLOOR_DIV_EXPR:
8593 case CEIL_DIV_EXPR:
8594 case ROUND_DIV_EXPR:
8595 case EXACT_DIV_EXPR:
8596 /* If this is a fixed-point operation, then we cannot use the code
8597 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8598 divisions. */
8599 if (ALL_FIXED_POINT_MODE_P (mode))
8600 goto binop;
8601
8602 if (modifier == EXPAND_STACK_PARM)
8603 target = 0;
8604 /* Possible optimization: compute the dividend with EXPAND_SUM
8605 then if the divisor is constant can optimize the case
8606 where some terms of the dividend have coeffs divisible by it. */
8607 expand_operands (treeop0, treeop1,
8608 subtarget, &op0, &op1, EXPAND_NORMAL);
8609 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8610
8611 case RDIV_EXPR:
8612 goto binop;
8613
8614 case MULT_HIGHPART_EXPR:
8615 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8616 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8617 gcc_assert (temp);
8618 return temp;
8619
8620 case TRUNC_MOD_EXPR:
8621 case FLOOR_MOD_EXPR:
8622 case CEIL_MOD_EXPR:
8623 case ROUND_MOD_EXPR:
8624 if (modifier == EXPAND_STACK_PARM)
8625 target = 0;
8626 expand_operands (treeop0, treeop1,
8627 subtarget, &op0, &op1, EXPAND_NORMAL);
8628 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8629
8630 case FIXED_CONVERT_EXPR:
8631 op0 = expand_normal (treeop0);
8632 if (target == 0 || modifier == EXPAND_STACK_PARM)
8633 target = gen_reg_rtx (mode);
8634
8635 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8636 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8637 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8638 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8639 else
8640 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8641 return target;
8642
8643 case FIX_TRUNC_EXPR:
8644 op0 = expand_normal (treeop0);
8645 if (target == 0 || modifier == EXPAND_STACK_PARM)
8646 target = gen_reg_rtx (mode);
8647 expand_fix (target, op0, unsignedp);
8648 return target;
8649
8650 case FLOAT_EXPR:
8651 op0 = expand_normal (treeop0);
8652 if (target == 0 || modifier == EXPAND_STACK_PARM)
8653 target = gen_reg_rtx (mode);
8654 /* expand_float can't figure out what to do if FROM has VOIDmode.
8655 So give it the correct mode. With -O, cse will optimize this. */
8656 if (GET_MODE (op0) == VOIDmode)
8657 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8658 op0);
8659 expand_float (target, op0,
8660 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8661 return target;
8662
8663 case NEGATE_EXPR:
8664 op0 = expand_expr (treeop0, subtarget,
8665 VOIDmode, EXPAND_NORMAL);
8666 if (modifier == EXPAND_STACK_PARM)
8667 target = 0;
8668 temp = expand_unop (mode,
8669 optab_for_tree_code (NEGATE_EXPR, type,
8670 optab_default),
8671 op0, target, 0);
8672 gcc_assert (temp);
8673 return REDUCE_BIT_FIELD (temp);
8674
8675 case ABS_EXPR:
8676 op0 = expand_expr (treeop0, subtarget,
8677 VOIDmode, EXPAND_NORMAL);
8678 if (modifier == EXPAND_STACK_PARM)
8679 target = 0;
8680
8681 /* ABS_EXPR is not valid for complex arguments. */
8682 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8683 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8684
8685 /* Unsigned abs is simply the operand. Testing here means we don't
8686 risk generating incorrect code below. */
8687 if (TYPE_UNSIGNED (type))
8688 return op0;
8689
8690 return expand_abs (mode, op0, target, unsignedp,
8691 safe_from_p (target, treeop0, 1));
8692
8693 case MAX_EXPR:
8694 case MIN_EXPR:
8695 target = original_target;
8696 if (target == 0
8697 || modifier == EXPAND_STACK_PARM
8698 || (MEM_P (target) && MEM_VOLATILE_P (target))
8699 || GET_MODE (target) != mode
8700 || (REG_P (target)
8701 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8702 target = gen_reg_rtx (mode);
8703 expand_operands (treeop0, treeop1,
8704 target, &op0, &op1, EXPAND_NORMAL);
8705
8706 /* First try to do it with a special MIN or MAX instruction.
8707 If that does not win, use a conditional jump to select the proper
8708 value. */
8709 this_optab = optab_for_tree_code (code, type, optab_default);
8710 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8711 OPTAB_WIDEN);
8712 if (temp != 0)
8713 return temp;
8714
8715 /* At this point, a MEM target is no longer useful; we will get better
8716 code without it. */
8717
8718 if (! REG_P (target))
8719 target = gen_reg_rtx (mode);
8720
8721 /* If op1 was placed in target, swap op0 and op1. */
8722 if (target != op0 && target == op1)
8723 std::swap (op0, op1);
8724
8725 /* We generate better code and avoid problems with op1 mentioning
8726 target by forcing op1 into a pseudo if it isn't a constant. */
8727 if (! CONSTANT_P (op1))
8728 op1 = force_reg (mode, op1);
8729
8730 {
8731 enum rtx_code comparison_code;
8732 rtx cmpop1 = op1;
8733
8734 if (code == MAX_EXPR)
8735 comparison_code = unsignedp ? GEU : GE;
8736 else
8737 comparison_code = unsignedp ? LEU : LE;
8738
8739 /* Canonicalize to comparisons against 0. */
8740 if (op1 == const1_rtx)
8741 {
8742 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8743 or (a != 0 ? a : 1) for unsigned.
8744 For MIN we are safe converting (a <= 1 ? a : 1)
8745 into (a <= 0 ? a : 1) */
8746 cmpop1 = const0_rtx;
8747 if (code == MAX_EXPR)
8748 comparison_code = unsignedp ? NE : GT;
8749 }
8750 if (op1 == constm1_rtx && !unsignedp)
8751 {
8752 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8753 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8754 cmpop1 = const0_rtx;
8755 if (code == MIN_EXPR)
8756 comparison_code = LT;
8757 }
8758
8759 /* Use a conditional move if possible. */
8760 if (can_conditionally_move_p (mode))
8761 {
8762 rtx insn;
8763
8764 start_sequence ();
8765
8766 /* Try to emit the conditional move. */
8767 insn = emit_conditional_move (target, comparison_code,
8768 op0, cmpop1, mode,
8769 op0, op1, mode,
8770 unsignedp);
8771
8772 /* If we could do the conditional move, emit the sequence,
8773 and return. */
8774 if (insn)
8775 {
8776 rtx_insn *seq = get_insns ();
8777 end_sequence ();
8778 emit_insn (seq);
8779 return target;
8780 }
8781
8782 /* Otherwise discard the sequence and fall back to code with
8783 branches. */
8784 end_sequence ();
8785 }
8786
8787 if (target != op0)
8788 emit_move_insn (target, op0);
8789
8790 lab = gen_label_rtx ();
8791 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8792 unsignedp, mode, NULL_RTX, NULL, lab,
8793 -1);
8794 }
8795 emit_move_insn (target, op1);
8796 emit_label (lab);
8797 return target;
8798
8799 case BIT_NOT_EXPR:
8800 op0 = expand_expr (treeop0, subtarget,
8801 VOIDmode, EXPAND_NORMAL);
8802 if (modifier == EXPAND_STACK_PARM)
8803 target = 0;
8804 /* In case we have to reduce the result to bitfield precision
8805 for unsigned bitfield expand this as XOR with a proper constant
8806 instead. */
8807 if (reduce_bit_field && TYPE_UNSIGNED (type))
8808 {
8809 wide_int mask = wi::mask (TYPE_PRECISION (type),
8810 false, GET_MODE_PRECISION (mode));
8811
8812 temp = expand_binop (mode, xor_optab, op0,
8813 immed_wide_int_const (mask, mode),
8814 target, 1, OPTAB_LIB_WIDEN);
8815 }
8816 else
8817 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8818 gcc_assert (temp);
8819 return temp;
8820
8821 /* ??? Can optimize bitwise operations with one arg constant.
8822 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8823 and (a bitwise1 b) bitwise2 b (etc)
8824 but that is probably not worth while. */
8825
8826 case BIT_AND_EXPR:
8827 case BIT_IOR_EXPR:
8828 case BIT_XOR_EXPR:
8829 goto binop;
8830
8831 case LROTATE_EXPR:
8832 case RROTATE_EXPR:
8833 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8834 || (GET_MODE_PRECISION (TYPE_MODE (type))
8835 == TYPE_PRECISION (type)));
8836 /* fall through */
8837
8838 case LSHIFT_EXPR:
8839 case RSHIFT_EXPR:
8840 {
8841 /* If this is a fixed-point operation, then we cannot use the code
8842 below because "expand_shift" doesn't support sat/no-sat fixed-point
8843 shifts. */
8844 if (ALL_FIXED_POINT_MODE_P (mode))
8845 goto binop;
8846
8847 if (! safe_from_p (subtarget, treeop1, 1))
8848 subtarget = 0;
8849 if (modifier == EXPAND_STACK_PARM)
8850 target = 0;
8851 op0 = expand_expr (treeop0, subtarget,
8852 VOIDmode, EXPAND_NORMAL);
8853
8854 /* Left shift optimization when shifting across word_size boundary.
8855
8856 If mode == GET_MODE_WIDER_MODE (word_mode), then normally there isn't
8857 native instruction to support this wide mode left shift. Given below
8858 scenario:
8859
8860 Type A = (Type) B << C
8861
8862 |< T >|
8863 | dest_high | dest_low |
8864
8865 | word_size |
8866
8867 If the shift amount C caused we shift B to across the word size
8868 boundary, i.e part of B shifted into high half of destination
8869 register, and part of B remains in the low half, then GCC will use
8870 the following left shift expand logic:
8871
8872 1. Initialize dest_low to B.
8873 2. Initialize every bit of dest_high to the sign bit of B.
8874 3. Logic left shift dest_low by C bit to finalize dest_low.
8875 The value of dest_low before this shift is kept in a temp D.
8876 4. Logic left shift dest_high by C.
8877 5. Logic right shift D by (word_size - C).
8878 6. Or the result of 4 and 5 to finalize dest_high.
8879
8880 While, by checking gimple statements, if operand B is coming from
8881 signed extension, then we can simplify above expand logic into:
8882
8883 1. dest_high = src_low >> (word_size - C).
8884 2. dest_low = src_low << C.
8885
8886 We can use one arithmetic right shift to finish all the purpose of
8887 steps 2, 4, 5, 6, thus we reduce the steps needed from 6 into 2. */
8888
8889 temp = NULL_RTX;
8890 if (code == LSHIFT_EXPR
8891 && target
8892 && REG_P (target)
8893 && ! unsignedp
8894 && mode == GET_MODE_WIDER_MODE (word_mode)
8895 && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode)
8896 && TREE_CONSTANT (treeop1)
8897 && TREE_CODE (treeop0) == SSA_NAME)
8898 {
8899 gimple *def = SSA_NAME_DEF_STMT (treeop0);
8900 if (is_gimple_assign (def)
8901 && gimple_assign_rhs_code (def) == NOP_EXPR)
8902 {
8903 machine_mode rmode = TYPE_MODE
8904 (TREE_TYPE (gimple_assign_rhs1 (def)));
8905
8906 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (mode)
8907 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
8908 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
8909 >= GET_MODE_BITSIZE (word_mode)))
8910 {
8911 rtx_insn *seq, *seq_old;
8912 unsigned int high_off = subreg_highpart_offset (word_mode,
8913 mode);
8914 rtx low = lowpart_subreg (word_mode, op0, mode);
8915 rtx dest_low = lowpart_subreg (word_mode, target, mode);
8916 rtx dest_high = simplify_gen_subreg (word_mode, target,
8917 mode, high_off);
8918 HOST_WIDE_INT ramount = (BITS_PER_WORD
8919 - TREE_INT_CST_LOW (treeop1));
8920 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
8921
8922 start_sequence ();
8923 /* dest_high = src_low >> (word_size - C). */
8924 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
8925 rshift, dest_high, unsignedp);
8926 if (temp != dest_high)
8927 emit_move_insn (dest_high, temp);
8928
8929 /* dest_low = src_low << C. */
8930 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
8931 treeop1, dest_low, unsignedp);
8932 if (temp != dest_low)
8933 emit_move_insn (dest_low, temp);
8934
8935 seq = get_insns ();
8936 end_sequence ();
8937 temp = target ;
8938
8939 if (have_insn_for (ASHIFT, mode))
8940 {
8941 bool speed_p = optimize_insn_for_speed_p ();
8942 start_sequence ();
8943 rtx ret_old = expand_variable_shift (code, mode, op0,
8944 treeop1, target,
8945 unsignedp);
8946
8947 seq_old = get_insns ();
8948 end_sequence ();
8949 if (seq_cost (seq, speed_p)
8950 >= seq_cost (seq_old, speed_p))
8951 {
8952 seq = seq_old;
8953 temp = ret_old;
8954 }
8955 }
8956 emit_insn (seq);
8957 }
8958 }
8959 }
8960
8961 if (temp == NULL_RTX)
8962 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8963 unsignedp);
8964 if (code == LSHIFT_EXPR)
8965 temp = REDUCE_BIT_FIELD (temp);
8966 return temp;
8967 }
8968
8969 /* Could determine the answer when only additive constants differ. Also,
8970 the addition of one can be handled by changing the condition. */
8971 case LT_EXPR:
8972 case LE_EXPR:
8973 case GT_EXPR:
8974 case GE_EXPR:
8975 case EQ_EXPR:
8976 case NE_EXPR:
8977 case UNORDERED_EXPR:
8978 case ORDERED_EXPR:
8979 case UNLT_EXPR:
8980 case UNLE_EXPR:
8981 case UNGT_EXPR:
8982 case UNGE_EXPR:
8983 case UNEQ_EXPR:
8984 case LTGT_EXPR:
8985 {
8986 temp = do_store_flag (ops,
8987 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8988 tmode != VOIDmode ? tmode : mode);
8989 if (temp)
8990 return temp;
8991
8992 /* Use a compare and a jump for BLKmode comparisons, or for function
8993 type comparisons is have_canonicalize_funcptr_for_compare. */
8994
8995 if ((target == 0
8996 || modifier == EXPAND_STACK_PARM
8997 || ! safe_from_p (target, treeop0, 1)
8998 || ! safe_from_p (target, treeop1, 1)
8999 /* Make sure we don't have a hard reg (such as function's return
9000 value) live across basic blocks, if not optimizing. */
9001 || (!optimize && REG_P (target)
9002 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9003 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9004
9005 emit_move_insn (target, const0_rtx);
9006
9007 rtx_code_label *lab1 = gen_label_rtx ();
9008 jumpifnot_1 (code, treeop0, treeop1, lab1, -1);
9009
9010 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9011 emit_move_insn (target, constm1_rtx);
9012 else
9013 emit_move_insn (target, const1_rtx);
9014
9015 emit_label (lab1);
9016 return target;
9017 }
9018 case COMPLEX_EXPR:
9019 /* Get the rtx code of the operands. */
9020 op0 = expand_normal (treeop0);
9021 op1 = expand_normal (treeop1);
9022
9023 if (!target)
9024 target = gen_reg_rtx (TYPE_MODE (type));
9025 else
9026 /* If target overlaps with op1, then either we need to force
9027 op1 into a pseudo (if target also overlaps with op0),
9028 or write the complex parts in reverse order. */
9029 switch (GET_CODE (target))
9030 {
9031 case CONCAT:
9032 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9033 {
9034 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9035 {
9036 complex_expr_force_op1:
9037 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9038 emit_move_insn (temp, op1);
9039 op1 = temp;
9040 break;
9041 }
9042 complex_expr_swap_order:
9043 /* Move the imaginary (op1) and real (op0) parts to their
9044 location. */
9045 write_complex_part (target, op1, true);
9046 write_complex_part (target, op0, false);
9047
9048 return target;
9049 }
9050 break;
9051 case MEM:
9052 temp = adjust_address_nv (target,
9053 GET_MODE_INNER (GET_MODE (target)), 0);
9054 if (reg_overlap_mentioned_p (temp, op1))
9055 {
9056 machine_mode imode = GET_MODE_INNER (GET_MODE (target));
9057 temp = adjust_address_nv (target, imode,
9058 GET_MODE_SIZE (imode));
9059 if (reg_overlap_mentioned_p (temp, op0))
9060 goto complex_expr_force_op1;
9061 goto complex_expr_swap_order;
9062 }
9063 break;
9064 default:
9065 if (reg_overlap_mentioned_p (target, op1))
9066 {
9067 if (reg_overlap_mentioned_p (target, op0))
9068 goto complex_expr_force_op1;
9069 goto complex_expr_swap_order;
9070 }
9071 break;
9072 }
9073
9074 /* Move the real (op0) and imaginary (op1) parts to their location. */
9075 write_complex_part (target, op0, false);
9076 write_complex_part (target, op1, true);
9077
9078 return target;
9079
9080 case WIDEN_SUM_EXPR:
9081 {
9082 tree oprnd0 = treeop0;
9083 tree oprnd1 = treeop1;
9084
9085 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9086 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9087 target, unsignedp);
9088 return target;
9089 }
9090
9091 case REDUC_MAX_EXPR:
9092 case REDUC_MIN_EXPR:
9093 case REDUC_PLUS_EXPR:
9094 {
9095 op0 = expand_normal (treeop0);
9096 this_optab = optab_for_tree_code (code, type, optab_default);
9097 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9098
9099 if (optab_handler (this_optab, vec_mode) != CODE_FOR_nothing)
9100 {
9101 struct expand_operand ops[2];
9102 enum insn_code icode = optab_handler (this_optab, vec_mode);
9103
9104 create_output_operand (&ops[0], target, mode);
9105 create_input_operand (&ops[1], op0, vec_mode);
9106 if (maybe_expand_insn (icode, 2, ops))
9107 {
9108 target = ops[0].value;
9109 if (GET_MODE (target) != mode)
9110 return gen_lowpart (tmode, target);
9111 return target;
9112 }
9113 }
9114 /* Fall back to optab with vector result, and then extract scalar. */
9115 this_optab = scalar_reduc_to_vector (this_optab, type);
9116 temp = expand_unop (vec_mode, this_optab, op0, NULL_RTX, unsignedp);
9117 gcc_assert (temp);
9118 /* The tree code produces a scalar result, but (somewhat by convention)
9119 the optab produces a vector with the result in element 0 if
9120 little-endian, or element N-1 if big-endian. So pull the scalar
9121 result out of that element. */
9122 int index = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (vec_mode) - 1 : 0;
9123 int bitsize = GET_MODE_UNIT_BITSIZE (vec_mode);
9124 temp = extract_bit_field (temp, bitsize, bitsize * index, unsignedp,
9125 target, mode, mode);
9126 gcc_assert (temp);
9127 return temp;
9128 }
9129
9130 case VEC_UNPACK_HI_EXPR:
9131 case VEC_UNPACK_LO_EXPR:
9132 {
9133 op0 = expand_normal (treeop0);
9134 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9135 target, unsignedp);
9136 gcc_assert (temp);
9137 return temp;
9138 }
9139
9140 case VEC_UNPACK_FLOAT_HI_EXPR:
9141 case VEC_UNPACK_FLOAT_LO_EXPR:
9142 {
9143 op0 = expand_normal (treeop0);
9144 /* The signedness is determined from input operand. */
9145 temp = expand_widen_pattern_expr
9146 (ops, op0, NULL_RTX, NULL_RTX,
9147 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9148
9149 gcc_assert (temp);
9150 return temp;
9151 }
9152
9153 case VEC_WIDEN_MULT_HI_EXPR:
9154 case VEC_WIDEN_MULT_LO_EXPR:
9155 case VEC_WIDEN_MULT_EVEN_EXPR:
9156 case VEC_WIDEN_MULT_ODD_EXPR:
9157 case VEC_WIDEN_LSHIFT_HI_EXPR:
9158 case VEC_WIDEN_LSHIFT_LO_EXPR:
9159 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9160 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9161 target, unsignedp);
9162 gcc_assert (target);
9163 return target;
9164
9165 case VEC_PACK_TRUNC_EXPR:
9166 case VEC_PACK_SAT_EXPR:
9167 case VEC_PACK_FIX_TRUNC_EXPR:
9168 mode = TYPE_MODE (TREE_TYPE (treeop0));
9169 goto binop;
9170
9171 case VEC_PERM_EXPR:
9172 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9173 op2 = expand_normal (treeop2);
9174
9175 /* Careful here: if the target doesn't support integral vector modes,
9176 a constant selection vector could wind up smooshed into a normal
9177 integral constant. */
9178 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9179 {
9180 tree sel_type = TREE_TYPE (treeop2);
9181 machine_mode vmode
9182 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9183 TYPE_VECTOR_SUBPARTS (sel_type));
9184 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9185 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9186 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9187 }
9188 else
9189 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9190
9191 temp = expand_vec_perm (mode, op0, op1, op2, target);
9192 gcc_assert (temp);
9193 return temp;
9194
9195 case DOT_PROD_EXPR:
9196 {
9197 tree oprnd0 = treeop0;
9198 tree oprnd1 = treeop1;
9199 tree oprnd2 = treeop2;
9200 rtx op2;
9201
9202 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9203 op2 = expand_normal (oprnd2);
9204 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9205 target, unsignedp);
9206 return target;
9207 }
9208
9209 case SAD_EXPR:
9210 {
9211 tree oprnd0 = treeop0;
9212 tree oprnd1 = treeop1;
9213 tree oprnd2 = treeop2;
9214 rtx op2;
9215
9216 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9217 op2 = expand_normal (oprnd2);
9218 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9219 target, unsignedp);
9220 return target;
9221 }
9222
9223 case REALIGN_LOAD_EXPR:
9224 {
9225 tree oprnd0 = treeop0;
9226 tree oprnd1 = treeop1;
9227 tree oprnd2 = treeop2;
9228 rtx op2;
9229
9230 this_optab = optab_for_tree_code (code, type, optab_default);
9231 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9232 op2 = expand_normal (oprnd2);
9233 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9234 target, unsignedp);
9235 gcc_assert (temp);
9236 return temp;
9237 }
9238
9239 case COND_EXPR:
9240 {
9241 /* A COND_EXPR with its type being VOID_TYPE represents a
9242 conditional jump and is handled in
9243 expand_gimple_cond_expr. */
9244 gcc_assert (!VOID_TYPE_P (type));
9245
9246 /* Note that COND_EXPRs whose type is a structure or union
9247 are required to be constructed to contain assignments of
9248 a temporary variable, so that we can evaluate them here
9249 for side effect only. If type is void, we must do likewise. */
9250
9251 gcc_assert (!TREE_ADDRESSABLE (type)
9252 && !ignore
9253 && TREE_TYPE (treeop1) != void_type_node
9254 && TREE_TYPE (treeop2) != void_type_node);
9255
9256 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9257 if (temp)
9258 return temp;
9259
9260 /* If we are not to produce a result, we have no target. Otherwise,
9261 if a target was specified use it; it will not be used as an
9262 intermediate target unless it is safe. If no target, use a
9263 temporary. */
9264
9265 if (modifier != EXPAND_STACK_PARM
9266 && original_target
9267 && safe_from_p (original_target, treeop0, 1)
9268 && GET_MODE (original_target) == mode
9269 && !MEM_P (original_target))
9270 temp = original_target;
9271 else
9272 temp = assign_temp (type, 0, 1);
9273
9274 do_pending_stack_adjust ();
9275 NO_DEFER_POP;
9276 rtx_code_label *lab0 = gen_label_rtx ();
9277 rtx_code_label *lab1 = gen_label_rtx ();
9278 jumpifnot (treeop0, lab0, -1);
9279 store_expr (treeop1, temp,
9280 modifier == EXPAND_STACK_PARM,
9281 false);
9282
9283 emit_jump_insn (targetm.gen_jump (lab1));
9284 emit_barrier ();
9285 emit_label (lab0);
9286 store_expr (treeop2, temp,
9287 modifier == EXPAND_STACK_PARM,
9288 false);
9289
9290 emit_label (lab1);
9291 OK_DEFER_POP;
9292 return temp;
9293 }
9294
9295 case VEC_COND_EXPR:
9296 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9297 return target;
9298
9299 default:
9300 gcc_unreachable ();
9301 }
9302
9303 /* Here to do an ordinary binary operator. */
9304 binop:
9305 expand_operands (treeop0, treeop1,
9306 subtarget, &op0, &op1, EXPAND_NORMAL);
9307 binop2:
9308 this_optab = optab_for_tree_code (code, type, optab_default);
9309 binop3:
9310 if (modifier == EXPAND_STACK_PARM)
9311 target = 0;
9312 temp = expand_binop (mode, this_optab, op0, op1, target,
9313 unsignedp, OPTAB_LIB_WIDEN);
9314 gcc_assert (temp);
9315 /* Bitwise operations do not need bitfield reduction as we expect their
9316 operands being properly truncated. */
9317 if (code == BIT_XOR_EXPR
9318 || code == BIT_AND_EXPR
9319 || code == BIT_IOR_EXPR)
9320 return temp;
9321 return REDUCE_BIT_FIELD (temp);
9322 }
9323 #undef REDUCE_BIT_FIELD
9324
9325
9326 /* Return TRUE if expression STMT is suitable for replacement.
9327 Never consider memory loads as replaceable, because those don't ever lead
9328 into constant expressions. */
9329
9330 static bool
9331 stmt_is_replaceable_p (gimple *stmt)
9332 {
9333 if (ssa_is_replaceable_p (stmt))
9334 {
9335 /* Don't move around loads. */
9336 if (!gimple_assign_single_p (stmt)
9337 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9338 return true;
9339 }
9340 return false;
9341 }
9342
9343 rtx
9344 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9345 enum expand_modifier modifier, rtx *alt_rtl,
9346 bool inner_reference_p)
9347 {
9348 rtx op0, op1, temp, decl_rtl;
9349 tree type;
9350 int unsignedp;
9351 machine_mode mode, dmode;
9352 enum tree_code code = TREE_CODE (exp);
9353 rtx subtarget, original_target;
9354 int ignore;
9355 tree context;
9356 bool reduce_bit_field;
9357 location_t loc = EXPR_LOCATION (exp);
9358 struct separate_ops ops;
9359 tree treeop0, treeop1, treeop2;
9360 tree ssa_name = NULL_TREE;
9361 gimple *g;
9362
9363 type = TREE_TYPE (exp);
9364 mode = TYPE_MODE (type);
9365 unsignedp = TYPE_UNSIGNED (type);
9366
9367 treeop0 = treeop1 = treeop2 = NULL_TREE;
9368 if (!VL_EXP_CLASS_P (exp))
9369 switch (TREE_CODE_LENGTH (code))
9370 {
9371 default:
9372 case 3: treeop2 = TREE_OPERAND (exp, 2);
9373 case 2: treeop1 = TREE_OPERAND (exp, 1);
9374 case 1: treeop0 = TREE_OPERAND (exp, 0);
9375 case 0: break;
9376 }
9377 ops.code = code;
9378 ops.type = type;
9379 ops.op0 = treeop0;
9380 ops.op1 = treeop1;
9381 ops.op2 = treeop2;
9382 ops.location = loc;
9383
9384 ignore = (target == const0_rtx
9385 || ((CONVERT_EXPR_CODE_P (code)
9386 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9387 && TREE_CODE (type) == VOID_TYPE));
9388
9389 /* An operation in what may be a bit-field type needs the
9390 result to be reduced to the precision of the bit-field type,
9391 which is narrower than that of the type's mode. */
9392 reduce_bit_field = (!ignore
9393 && INTEGRAL_TYPE_P (type)
9394 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9395
9396 /* If we are going to ignore this result, we need only do something
9397 if there is a side-effect somewhere in the expression. If there
9398 is, short-circuit the most common cases here. Note that we must
9399 not call expand_expr with anything but const0_rtx in case this
9400 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9401
9402 if (ignore)
9403 {
9404 if (! TREE_SIDE_EFFECTS (exp))
9405 return const0_rtx;
9406
9407 /* Ensure we reference a volatile object even if value is ignored, but
9408 don't do this if all we are doing is taking its address. */
9409 if (TREE_THIS_VOLATILE (exp)
9410 && TREE_CODE (exp) != FUNCTION_DECL
9411 && mode != VOIDmode && mode != BLKmode
9412 && modifier != EXPAND_CONST_ADDRESS)
9413 {
9414 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9415 if (MEM_P (temp))
9416 copy_to_reg (temp);
9417 return const0_rtx;
9418 }
9419
9420 if (TREE_CODE_CLASS (code) == tcc_unary
9421 || code == BIT_FIELD_REF
9422 || code == COMPONENT_REF
9423 || code == INDIRECT_REF)
9424 return expand_expr (treeop0, const0_rtx, VOIDmode,
9425 modifier);
9426
9427 else if (TREE_CODE_CLASS (code) == tcc_binary
9428 || TREE_CODE_CLASS (code) == tcc_comparison
9429 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9430 {
9431 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9432 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9433 return const0_rtx;
9434 }
9435
9436 target = 0;
9437 }
9438
9439 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9440 target = 0;
9441
9442 /* Use subtarget as the target for operand 0 of a binary operation. */
9443 subtarget = get_subtarget (target);
9444 original_target = target;
9445
9446 switch (code)
9447 {
9448 case LABEL_DECL:
9449 {
9450 tree function = decl_function_context (exp);
9451
9452 temp = label_rtx (exp);
9453 temp = gen_rtx_LABEL_REF (Pmode, temp);
9454
9455 if (function != current_function_decl
9456 && function != 0)
9457 LABEL_REF_NONLOCAL_P (temp) = 1;
9458
9459 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9460 return temp;
9461 }
9462
9463 case SSA_NAME:
9464 /* ??? ivopts calls expander, without any preparation from
9465 out-of-ssa. So fake instructions as if this was an access to the
9466 base variable. This unnecessarily allocates a pseudo, see how we can
9467 reuse it, if partition base vars have it set already. */
9468 if (!currently_expanding_to_rtl)
9469 {
9470 tree var = SSA_NAME_VAR (exp);
9471 if (var && DECL_RTL_SET_P (var))
9472 return DECL_RTL (var);
9473 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9474 LAST_VIRTUAL_REGISTER + 1);
9475 }
9476
9477 g = get_gimple_for_ssa_name (exp);
9478 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9479 if (g == NULL
9480 && modifier == EXPAND_INITIALIZER
9481 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9482 && (optimize || !SSA_NAME_VAR (exp)
9483 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9484 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9485 g = SSA_NAME_DEF_STMT (exp);
9486 if (g)
9487 {
9488 rtx r;
9489 location_t saved_loc = curr_insn_location ();
9490 location_t loc = gimple_location (g);
9491 if (loc != UNKNOWN_LOCATION)
9492 set_curr_insn_location (loc);
9493 ops.code = gimple_assign_rhs_code (g);
9494 switch (get_gimple_rhs_class (ops.code))
9495 {
9496 case GIMPLE_TERNARY_RHS:
9497 ops.op2 = gimple_assign_rhs3 (g);
9498 /* Fallthru */
9499 case GIMPLE_BINARY_RHS:
9500 ops.op1 = gimple_assign_rhs2 (g);
9501
9502 /* Try to expand conditonal compare. */
9503 if (targetm.gen_ccmp_first)
9504 {
9505 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9506 r = expand_ccmp_expr (g);
9507 if (r)
9508 break;
9509 }
9510 /* Fallthru */
9511 case GIMPLE_UNARY_RHS:
9512 ops.op0 = gimple_assign_rhs1 (g);
9513 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9514 ops.location = loc;
9515 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9516 break;
9517 case GIMPLE_SINGLE_RHS:
9518 {
9519 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9520 tmode, modifier, NULL, inner_reference_p);
9521 break;
9522 }
9523 default:
9524 gcc_unreachable ();
9525 }
9526 set_curr_insn_location (saved_loc);
9527 if (REG_P (r) && !REG_EXPR (r))
9528 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9529 return r;
9530 }
9531
9532 ssa_name = exp;
9533 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9534 exp = SSA_NAME_VAR (ssa_name);
9535 goto expand_decl_rtl;
9536
9537 case PARM_DECL:
9538 case VAR_DECL:
9539 /* If a static var's type was incomplete when the decl was written,
9540 but the type is complete now, lay out the decl now. */
9541 if (DECL_SIZE (exp) == 0
9542 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9543 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9544 layout_decl (exp, 0);
9545
9546 /* ... fall through ... */
9547
9548 case FUNCTION_DECL:
9549 case RESULT_DECL:
9550 decl_rtl = DECL_RTL (exp);
9551 expand_decl_rtl:
9552 gcc_assert (decl_rtl);
9553 decl_rtl = copy_rtx (decl_rtl);
9554 /* Record writes to register variables. */
9555 if (modifier == EXPAND_WRITE
9556 && REG_P (decl_rtl)
9557 && HARD_REGISTER_P (decl_rtl))
9558 add_to_hard_reg_set (&crtl->asm_clobbers,
9559 GET_MODE (decl_rtl), REGNO (decl_rtl));
9560
9561 /* Ensure variable marked as used even if it doesn't go through
9562 a parser. If it hasn't be used yet, write out an external
9563 definition. */
9564 if (exp)
9565 TREE_USED (exp) = 1;
9566
9567 /* Show we haven't gotten RTL for this yet. */
9568 temp = 0;
9569
9570 /* Variables inherited from containing functions should have
9571 been lowered by this point. */
9572 if (exp)
9573 context = decl_function_context (exp);
9574 gcc_assert (!exp
9575 || SCOPE_FILE_SCOPE_P (context)
9576 || context == current_function_decl
9577 || TREE_STATIC (exp)
9578 || DECL_EXTERNAL (exp)
9579 /* ??? C++ creates functions that are not TREE_STATIC. */
9580 || TREE_CODE (exp) == FUNCTION_DECL);
9581
9582 /* This is the case of an array whose size is to be determined
9583 from its initializer, while the initializer is still being parsed.
9584 ??? We aren't parsing while expanding anymore. */
9585
9586 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9587 temp = validize_mem (decl_rtl);
9588
9589 /* If DECL_RTL is memory, we are in the normal case and the
9590 address is not valid, get the address into a register. */
9591
9592 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9593 {
9594 if (alt_rtl)
9595 *alt_rtl = decl_rtl;
9596 decl_rtl = use_anchored_address (decl_rtl);
9597 if (modifier != EXPAND_CONST_ADDRESS
9598 && modifier != EXPAND_SUM
9599 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9600 : GET_MODE (decl_rtl),
9601 XEXP (decl_rtl, 0),
9602 MEM_ADDR_SPACE (decl_rtl)))
9603 temp = replace_equiv_address (decl_rtl,
9604 copy_rtx (XEXP (decl_rtl, 0)));
9605 }
9606
9607 /* If we got something, return it. But first, set the alignment
9608 if the address is a register. */
9609 if (temp != 0)
9610 {
9611 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9612 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9613
9614 return temp;
9615 }
9616
9617 if (exp)
9618 dmode = DECL_MODE (exp);
9619 else
9620 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9621
9622 /* If the mode of DECL_RTL does not match that of the decl,
9623 there are two cases: we are dealing with a BLKmode value
9624 that is returned in a register, or we are dealing with
9625 a promoted value. In the latter case, return a SUBREG
9626 of the wanted mode, but mark it so that we know that it
9627 was already extended. */
9628 if (REG_P (decl_rtl)
9629 && dmode != BLKmode
9630 && GET_MODE (decl_rtl) != dmode)
9631 {
9632 machine_mode pmode;
9633
9634 /* Get the signedness to be used for this variable. Ensure we get
9635 the same mode we got when the variable was declared. */
9636 if (code != SSA_NAME)
9637 pmode = promote_decl_mode (exp, &unsignedp);
9638 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9639 && gimple_code (g) == GIMPLE_CALL
9640 && !gimple_call_internal_p (g))
9641 pmode = promote_function_mode (type, mode, &unsignedp,
9642 gimple_call_fntype (g),
9643 2);
9644 else
9645 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9646 gcc_assert (GET_MODE (decl_rtl) == pmode);
9647
9648 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9649 SUBREG_PROMOTED_VAR_P (temp) = 1;
9650 SUBREG_PROMOTED_SET (temp, unsignedp);
9651 return temp;
9652 }
9653
9654 return decl_rtl;
9655
9656 case INTEGER_CST:
9657 /* Given that TYPE_PRECISION (type) is not always equal to
9658 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9659 the former to the latter according to the signedness of the
9660 type. */
9661 temp = immed_wide_int_const (wide_int::from
9662 (exp,
9663 GET_MODE_PRECISION (TYPE_MODE (type)),
9664 TYPE_SIGN (type)),
9665 TYPE_MODE (type));
9666 return temp;
9667
9668 case VECTOR_CST:
9669 {
9670 tree tmp = NULL_TREE;
9671 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9672 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9673 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9674 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9675 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9676 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9677 return const_vector_from_tree (exp);
9678 if (GET_MODE_CLASS (mode) == MODE_INT)
9679 {
9680 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9681 if (type_for_mode)
9682 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9683 }
9684 if (!tmp)
9685 {
9686 vec<constructor_elt, va_gc> *v;
9687 unsigned i;
9688 vec_alloc (v, VECTOR_CST_NELTS (exp));
9689 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9690 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9691 tmp = build_constructor (type, v);
9692 }
9693 return expand_expr (tmp, ignore ? const0_rtx : target,
9694 tmode, modifier);
9695 }
9696
9697 case CONST_DECL:
9698 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9699
9700 case REAL_CST:
9701 /* If optimized, generate immediate CONST_DOUBLE
9702 which will be turned into memory by reload if necessary.
9703
9704 We used to force a register so that loop.c could see it. But
9705 this does not allow gen_* patterns to perform optimizations with
9706 the constants. It also produces two insns in cases like "x = 1.0;".
9707 On most machines, floating-point constants are not permitted in
9708 many insns, so we'd end up copying it to a register in any case.
9709
9710 Now, we do the copying in expand_binop, if appropriate. */
9711 return const_double_from_real_value (TREE_REAL_CST (exp),
9712 TYPE_MODE (TREE_TYPE (exp)));
9713
9714 case FIXED_CST:
9715 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9716 TYPE_MODE (TREE_TYPE (exp)));
9717
9718 case COMPLEX_CST:
9719 /* Handle evaluating a complex constant in a CONCAT target. */
9720 if (original_target && GET_CODE (original_target) == CONCAT)
9721 {
9722 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9723 rtx rtarg, itarg;
9724
9725 rtarg = XEXP (original_target, 0);
9726 itarg = XEXP (original_target, 1);
9727
9728 /* Move the real and imaginary parts separately. */
9729 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9730 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9731
9732 if (op0 != rtarg)
9733 emit_move_insn (rtarg, op0);
9734 if (op1 != itarg)
9735 emit_move_insn (itarg, op1);
9736
9737 return original_target;
9738 }
9739
9740 /* ... fall through ... */
9741
9742 case STRING_CST:
9743 temp = expand_expr_constant (exp, 1, modifier);
9744
9745 /* temp contains a constant address.
9746 On RISC machines where a constant address isn't valid,
9747 make some insns to get that address into a register. */
9748 if (modifier != EXPAND_CONST_ADDRESS
9749 && modifier != EXPAND_INITIALIZER
9750 && modifier != EXPAND_SUM
9751 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9752 MEM_ADDR_SPACE (temp)))
9753 return replace_equiv_address (temp,
9754 copy_rtx (XEXP (temp, 0)));
9755 return temp;
9756
9757 case SAVE_EXPR:
9758 {
9759 tree val = treeop0;
9760 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
9761 inner_reference_p);
9762
9763 if (!SAVE_EXPR_RESOLVED_P (exp))
9764 {
9765 /* We can indeed still hit this case, typically via builtin
9766 expanders calling save_expr immediately before expanding
9767 something. Assume this means that we only have to deal
9768 with non-BLKmode values. */
9769 gcc_assert (GET_MODE (ret) != BLKmode);
9770
9771 val = build_decl (curr_insn_location (),
9772 VAR_DECL, NULL, TREE_TYPE (exp));
9773 DECL_ARTIFICIAL (val) = 1;
9774 DECL_IGNORED_P (val) = 1;
9775 treeop0 = val;
9776 TREE_OPERAND (exp, 0) = treeop0;
9777 SAVE_EXPR_RESOLVED_P (exp) = 1;
9778
9779 if (!CONSTANT_P (ret))
9780 ret = copy_to_reg (ret);
9781 SET_DECL_RTL (val, ret);
9782 }
9783
9784 return ret;
9785 }
9786
9787
9788 case CONSTRUCTOR:
9789 /* If we don't need the result, just ensure we evaluate any
9790 subexpressions. */
9791 if (ignore)
9792 {
9793 unsigned HOST_WIDE_INT idx;
9794 tree value;
9795
9796 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9797 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9798
9799 return const0_rtx;
9800 }
9801
9802 return expand_constructor (exp, target, modifier, false);
9803
9804 case TARGET_MEM_REF:
9805 {
9806 addr_space_t as
9807 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9808 enum insn_code icode;
9809 unsigned int align;
9810
9811 op0 = addr_for_mem_ref (exp, as, true);
9812 op0 = memory_address_addr_space (mode, op0, as);
9813 temp = gen_rtx_MEM (mode, op0);
9814 set_mem_attributes (temp, exp, 0);
9815 set_mem_addr_space (temp, as);
9816 align = get_object_alignment (exp);
9817 if (modifier != EXPAND_WRITE
9818 && modifier != EXPAND_MEMORY
9819 && mode != BLKmode
9820 && align < GET_MODE_ALIGNMENT (mode)
9821 /* If the target does not have special handling for unaligned
9822 loads of mode then it can use regular moves for them. */
9823 && ((icode = optab_handler (movmisalign_optab, mode))
9824 != CODE_FOR_nothing))
9825 {
9826 struct expand_operand ops[2];
9827
9828 /* We've already validated the memory, and we're creating a
9829 new pseudo destination. The predicates really can't fail,
9830 nor can the generator. */
9831 create_output_operand (&ops[0], NULL_RTX, mode);
9832 create_fixed_operand (&ops[1], temp);
9833 expand_insn (icode, 2, ops);
9834 temp = ops[0].value;
9835 }
9836 return temp;
9837 }
9838
9839 case MEM_REF:
9840 {
9841 addr_space_t as
9842 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9843 machine_mode address_mode;
9844 tree base = TREE_OPERAND (exp, 0);
9845 gimple *def_stmt;
9846 enum insn_code icode;
9847 unsigned align;
9848 /* Handle expansion of non-aliased memory with non-BLKmode. That
9849 might end up in a register. */
9850 if (mem_ref_refers_to_non_mem_p (exp))
9851 {
9852 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
9853 base = TREE_OPERAND (base, 0);
9854 if (offset == 0
9855 && tree_fits_uhwi_p (TYPE_SIZE (type))
9856 && (GET_MODE_BITSIZE (DECL_MODE (base))
9857 == tree_to_uhwi (TYPE_SIZE (type))))
9858 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
9859 target, tmode, modifier);
9860 if (TYPE_MODE (type) == BLKmode)
9861 {
9862 temp = assign_stack_temp (DECL_MODE (base),
9863 GET_MODE_SIZE (DECL_MODE (base)));
9864 store_expr (base, temp, 0, false);
9865 temp = adjust_address (temp, BLKmode, offset);
9866 set_mem_size (temp, int_size_in_bytes (type));
9867 return temp;
9868 }
9869 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
9870 bitsize_int (offset * BITS_PER_UNIT));
9871 return expand_expr (exp, target, tmode, modifier);
9872 }
9873 address_mode = targetm.addr_space.address_mode (as);
9874 base = TREE_OPERAND (exp, 0);
9875 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9876 {
9877 tree mask = gimple_assign_rhs2 (def_stmt);
9878 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9879 gimple_assign_rhs1 (def_stmt), mask);
9880 TREE_OPERAND (exp, 0) = base;
9881 }
9882 align = get_object_alignment (exp);
9883 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9884 op0 = memory_address_addr_space (mode, op0, as);
9885 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9886 {
9887 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
9888 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9889 op0 = memory_address_addr_space (mode, op0, as);
9890 }
9891 temp = gen_rtx_MEM (mode, op0);
9892 set_mem_attributes (temp, exp, 0);
9893 set_mem_addr_space (temp, as);
9894 if (TREE_THIS_VOLATILE (exp))
9895 MEM_VOLATILE_P (temp) = 1;
9896 if (modifier != EXPAND_WRITE
9897 && modifier != EXPAND_MEMORY
9898 && !inner_reference_p
9899 && mode != BLKmode
9900 && align < GET_MODE_ALIGNMENT (mode))
9901 {
9902 if ((icode = optab_handler (movmisalign_optab, mode))
9903 != CODE_FOR_nothing)
9904 {
9905 struct expand_operand ops[2];
9906
9907 /* We've already validated the memory, and we're creating a
9908 new pseudo destination. The predicates really can't fail,
9909 nor can the generator. */
9910 create_output_operand (&ops[0], NULL_RTX, mode);
9911 create_fixed_operand (&ops[1], temp);
9912 expand_insn (icode, 2, ops);
9913 temp = ops[0].value;
9914 }
9915 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9916 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9917 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9918 (modifier == EXPAND_STACK_PARM
9919 ? NULL_RTX : target),
9920 mode, mode);
9921 }
9922 return temp;
9923 }
9924
9925 case ARRAY_REF:
9926
9927 {
9928 tree array = treeop0;
9929 tree index = treeop1;
9930 tree init;
9931
9932 /* Fold an expression like: "foo"[2].
9933 This is not done in fold so it won't happen inside &.
9934 Don't fold if this is for wide characters since it's too
9935 difficult to do correctly and this is a very rare case. */
9936
9937 if (modifier != EXPAND_CONST_ADDRESS
9938 && modifier != EXPAND_INITIALIZER
9939 && modifier != EXPAND_MEMORY)
9940 {
9941 tree t = fold_read_from_constant_string (exp);
9942
9943 if (t)
9944 return expand_expr (t, target, tmode, modifier);
9945 }
9946
9947 /* If this is a constant index into a constant array,
9948 just get the value from the array. Handle both the cases when
9949 we have an explicit constructor and when our operand is a variable
9950 that was declared const. */
9951
9952 if (modifier != EXPAND_CONST_ADDRESS
9953 && modifier != EXPAND_INITIALIZER
9954 && modifier != EXPAND_MEMORY
9955 && TREE_CODE (array) == CONSTRUCTOR
9956 && ! TREE_SIDE_EFFECTS (array)
9957 && TREE_CODE (index) == INTEGER_CST)
9958 {
9959 unsigned HOST_WIDE_INT ix;
9960 tree field, value;
9961
9962 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9963 field, value)
9964 if (tree_int_cst_equal (field, index))
9965 {
9966 if (!TREE_SIDE_EFFECTS (value))
9967 return expand_expr (fold (value), target, tmode, modifier);
9968 break;
9969 }
9970 }
9971
9972 else if (optimize >= 1
9973 && modifier != EXPAND_CONST_ADDRESS
9974 && modifier != EXPAND_INITIALIZER
9975 && modifier != EXPAND_MEMORY
9976 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9977 && TREE_CODE (index) == INTEGER_CST
9978 && (TREE_CODE (array) == VAR_DECL
9979 || TREE_CODE (array) == CONST_DECL)
9980 && (init = ctor_for_folding (array)) != error_mark_node)
9981 {
9982 if (init == NULL_TREE)
9983 {
9984 tree value = build_zero_cst (type);
9985 if (TREE_CODE (value) == CONSTRUCTOR)
9986 {
9987 /* If VALUE is a CONSTRUCTOR, this optimization is only
9988 useful if this doesn't store the CONSTRUCTOR into
9989 memory. If it does, it is more efficient to just
9990 load the data from the array directly. */
9991 rtx ret = expand_constructor (value, target,
9992 modifier, true);
9993 if (ret == NULL_RTX)
9994 value = NULL_TREE;
9995 }
9996
9997 if (value)
9998 return expand_expr (value, target, tmode, modifier);
9999 }
10000 else if (TREE_CODE (init) == CONSTRUCTOR)
10001 {
10002 unsigned HOST_WIDE_INT ix;
10003 tree field, value;
10004
10005 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10006 field, value)
10007 if (tree_int_cst_equal (field, index))
10008 {
10009 if (TREE_SIDE_EFFECTS (value))
10010 break;
10011
10012 if (TREE_CODE (value) == CONSTRUCTOR)
10013 {
10014 /* If VALUE is a CONSTRUCTOR, this
10015 optimization is only useful if
10016 this doesn't store the CONSTRUCTOR
10017 into memory. If it does, it is more
10018 efficient to just load the data from
10019 the array directly. */
10020 rtx ret = expand_constructor (value, target,
10021 modifier, true);
10022 if (ret == NULL_RTX)
10023 break;
10024 }
10025
10026 return
10027 expand_expr (fold (value), target, tmode, modifier);
10028 }
10029 }
10030 else if (TREE_CODE (init) == STRING_CST)
10031 {
10032 tree low_bound = array_ref_low_bound (exp);
10033 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10034
10035 /* Optimize the special case of a zero lower bound.
10036
10037 We convert the lower bound to sizetype to avoid problems
10038 with constant folding. E.g. suppose the lower bound is
10039 1 and its mode is QI. Without the conversion
10040 (ARRAY + (INDEX - (unsigned char)1))
10041 becomes
10042 (ARRAY + (-(unsigned char)1) + INDEX)
10043 which becomes
10044 (ARRAY + 255 + INDEX). Oops! */
10045 if (!integer_zerop (low_bound))
10046 index1 = size_diffop_loc (loc, index1,
10047 fold_convert_loc (loc, sizetype,
10048 low_bound));
10049
10050 if (compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10051 {
10052 tree type = TREE_TYPE (TREE_TYPE (init));
10053 machine_mode mode = TYPE_MODE (type);
10054
10055 if (GET_MODE_CLASS (mode) == MODE_INT
10056 && GET_MODE_SIZE (mode) == 1)
10057 return gen_int_mode (TREE_STRING_POINTER (init)
10058 [TREE_INT_CST_LOW (index1)],
10059 mode);
10060 }
10061 }
10062 }
10063 }
10064 goto normal_inner_ref;
10065
10066 case COMPONENT_REF:
10067 /* If the operand is a CONSTRUCTOR, we can just extract the
10068 appropriate field if it is present. */
10069 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10070 {
10071 unsigned HOST_WIDE_INT idx;
10072 tree field, value;
10073
10074 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10075 idx, field, value)
10076 if (field == treeop1
10077 /* We can normally use the value of the field in the
10078 CONSTRUCTOR. However, if this is a bitfield in
10079 an integral mode that we can fit in a HOST_WIDE_INT,
10080 we must mask only the number of bits in the bitfield,
10081 since this is done implicitly by the constructor. If
10082 the bitfield does not meet either of those conditions,
10083 we can't do this optimization. */
10084 && (! DECL_BIT_FIELD (field)
10085 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
10086 && (GET_MODE_PRECISION (DECL_MODE (field))
10087 <= HOST_BITS_PER_WIDE_INT))))
10088 {
10089 if (DECL_BIT_FIELD (field)
10090 && modifier == EXPAND_STACK_PARM)
10091 target = 0;
10092 op0 = expand_expr (value, target, tmode, modifier);
10093 if (DECL_BIT_FIELD (field))
10094 {
10095 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10096 machine_mode imode = TYPE_MODE (TREE_TYPE (field));
10097
10098 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10099 {
10100 op1 = gen_int_mode (((HOST_WIDE_INT) 1 << bitsize) - 1,
10101 imode);
10102 op0 = expand_and (imode, op0, op1, target);
10103 }
10104 else
10105 {
10106 int count = GET_MODE_PRECISION (imode) - bitsize;
10107
10108 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10109 target, 0);
10110 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10111 target, 0);
10112 }
10113 }
10114
10115 return op0;
10116 }
10117 }
10118 goto normal_inner_ref;
10119
10120 case BIT_FIELD_REF:
10121 case ARRAY_RANGE_REF:
10122 normal_inner_ref:
10123 {
10124 machine_mode mode1, mode2;
10125 HOST_WIDE_INT bitsize, bitpos;
10126 tree offset;
10127 int volatilep = 0, must_force_mem;
10128 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
10129 &mode1, &unsignedp, &volatilep, true);
10130 rtx orig_op0, memloc;
10131 bool clear_mem_expr = false;
10132
10133 /* If we got back the original object, something is wrong. Perhaps
10134 we are evaluating an expression too early. In any event, don't
10135 infinitely recurse. */
10136 gcc_assert (tem != exp);
10137
10138 /* If TEM's type is a union of variable size, pass TARGET to the inner
10139 computation, since it will need a temporary and TARGET is known
10140 to have to do. This occurs in unchecked conversion in Ada. */
10141 orig_op0 = op0
10142 = expand_expr_real (tem,
10143 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10144 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10145 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10146 != INTEGER_CST)
10147 && modifier != EXPAND_STACK_PARM
10148 ? target : NULL_RTX),
10149 VOIDmode,
10150 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10151 NULL, true);
10152
10153 /* If the field has a mode, we want to access it in the
10154 field's mode, not the computed mode.
10155 If a MEM has VOIDmode (external with incomplete type),
10156 use BLKmode for it instead. */
10157 if (MEM_P (op0))
10158 {
10159 if (mode1 != VOIDmode)
10160 op0 = adjust_address (op0, mode1, 0);
10161 else if (GET_MODE (op0) == VOIDmode)
10162 op0 = adjust_address (op0, BLKmode, 0);
10163 }
10164
10165 mode2
10166 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10167
10168 /* If we have either an offset, a BLKmode result, or a reference
10169 outside the underlying object, we must force it to memory.
10170 Such a case can occur in Ada if we have unchecked conversion
10171 of an expression from a scalar type to an aggregate type or
10172 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10173 passed a partially uninitialized object or a view-conversion
10174 to a larger size. */
10175 must_force_mem = (offset
10176 || mode1 == BLKmode
10177 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10178
10179 /* Handle CONCAT first. */
10180 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10181 {
10182 if (bitpos == 0
10183 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10184 return op0;
10185 if (bitpos == 0
10186 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10187 && bitsize)
10188 {
10189 op0 = XEXP (op0, 0);
10190 mode2 = GET_MODE (op0);
10191 }
10192 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10193 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10194 && bitpos
10195 && bitsize)
10196 {
10197 op0 = XEXP (op0, 1);
10198 bitpos = 0;
10199 mode2 = GET_MODE (op0);
10200 }
10201 else
10202 /* Otherwise force into memory. */
10203 must_force_mem = 1;
10204 }
10205
10206 /* If this is a constant, put it in a register if it is a legitimate
10207 constant and we don't need a memory reference. */
10208 if (CONSTANT_P (op0)
10209 && mode2 != BLKmode
10210 && targetm.legitimate_constant_p (mode2, op0)
10211 && !must_force_mem)
10212 op0 = force_reg (mode2, op0);
10213
10214 /* Otherwise, if this is a constant, try to force it to the constant
10215 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10216 is a legitimate constant. */
10217 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10218 op0 = validize_mem (memloc);
10219
10220 /* Otherwise, if this is a constant or the object is not in memory
10221 and need be, put it there. */
10222 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10223 {
10224 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10225 emit_move_insn (memloc, op0);
10226 op0 = memloc;
10227 clear_mem_expr = true;
10228 }
10229
10230 if (offset)
10231 {
10232 machine_mode address_mode;
10233 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10234 EXPAND_SUM);
10235
10236 gcc_assert (MEM_P (op0));
10237
10238 address_mode = get_address_mode (op0);
10239 if (GET_MODE (offset_rtx) != address_mode)
10240 {
10241 /* We cannot be sure that the RTL in offset_rtx is valid outside
10242 of a memory address context, so force it into a register
10243 before attempting to convert it to the desired mode. */
10244 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10245 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10246 }
10247
10248 /* See the comment in expand_assignment for the rationale. */
10249 if (mode1 != VOIDmode
10250 && bitpos != 0
10251 && bitsize > 0
10252 && (bitpos % bitsize) == 0
10253 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10254 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10255 {
10256 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10257 bitpos = 0;
10258 }
10259
10260 op0 = offset_address (op0, offset_rtx,
10261 highest_pow2_factor (offset));
10262 }
10263
10264 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10265 record its alignment as BIGGEST_ALIGNMENT. */
10266 if (MEM_P (op0) && bitpos == 0 && offset != 0
10267 && is_aligning_offset (offset, tem))
10268 set_mem_align (op0, BIGGEST_ALIGNMENT);
10269
10270 /* Don't forget about volatility even if this is a bitfield. */
10271 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10272 {
10273 if (op0 == orig_op0)
10274 op0 = copy_rtx (op0);
10275
10276 MEM_VOLATILE_P (op0) = 1;
10277 }
10278
10279 /* In cases where an aligned union has an unaligned object
10280 as a field, we might be extracting a BLKmode value from
10281 an integer-mode (e.g., SImode) object. Handle this case
10282 by doing the extract into an object as wide as the field
10283 (which we know to be the width of a basic mode), then
10284 storing into memory, and changing the mode to BLKmode. */
10285 if (mode1 == VOIDmode
10286 || REG_P (op0) || GET_CODE (op0) == SUBREG
10287 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10288 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10289 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10290 && modifier != EXPAND_CONST_ADDRESS
10291 && modifier != EXPAND_INITIALIZER
10292 && modifier != EXPAND_MEMORY)
10293 /* If the bitfield is volatile and the bitsize
10294 is narrower than the access size of the bitfield,
10295 we need to extract bitfields from the access. */
10296 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10297 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10298 && mode1 != BLKmode
10299 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10300 /* If the field isn't aligned enough to fetch as a memref,
10301 fetch it as a bit field. */
10302 || (mode1 != BLKmode
10303 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10304 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10305 || (MEM_P (op0)
10306 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10307 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10308 && modifier != EXPAND_MEMORY
10309 && ((modifier == EXPAND_CONST_ADDRESS
10310 || modifier == EXPAND_INITIALIZER)
10311 ? STRICT_ALIGNMENT
10312 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10313 || (bitpos % BITS_PER_UNIT != 0)))
10314 /* If the type and the field are a constant size and the
10315 size of the type isn't the same size as the bitfield,
10316 we must use bitfield operations. */
10317 || (bitsize >= 0
10318 && TYPE_SIZE (TREE_TYPE (exp))
10319 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10320 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10321 bitsize)))
10322 {
10323 machine_mode ext_mode = mode;
10324
10325 if (ext_mode == BLKmode
10326 && ! (target != 0 && MEM_P (op0)
10327 && MEM_P (target)
10328 && bitpos % BITS_PER_UNIT == 0))
10329 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10330
10331 if (ext_mode == BLKmode)
10332 {
10333 if (target == 0)
10334 target = assign_temp (type, 1, 1);
10335
10336 /* ??? Unlike the similar test a few lines below, this one is
10337 very likely obsolete. */
10338 if (bitsize == 0)
10339 return target;
10340
10341 /* In this case, BITPOS must start at a byte boundary and
10342 TARGET, if specified, must be a MEM. */
10343 gcc_assert (MEM_P (op0)
10344 && (!target || MEM_P (target))
10345 && !(bitpos % BITS_PER_UNIT));
10346
10347 emit_block_move (target,
10348 adjust_address (op0, VOIDmode,
10349 bitpos / BITS_PER_UNIT),
10350 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10351 / BITS_PER_UNIT),
10352 (modifier == EXPAND_STACK_PARM
10353 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10354
10355 return target;
10356 }
10357
10358 /* If we have nothing to extract, the result will be 0 for targets
10359 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10360 return 0 for the sake of consistency, as reading a zero-sized
10361 bitfield is valid in Ada and the value is fully specified. */
10362 if (bitsize == 0)
10363 return const0_rtx;
10364
10365 op0 = validize_mem (op0);
10366
10367 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10368 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10369
10370 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10371 (modifier == EXPAND_STACK_PARM
10372 ? NULL_RTX : target),
10373 ext_mode, ext_mode);
10374
10375 /* If the result is a record type and BITSIZE is narrower than
10376 the mode of OP0, an integral mode, and this is a big endian
10377 machine, we must put the field into the high-order bits. */
10378 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10379 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10380 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10381 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10382 GET_MODE_BITSIZE (GET_MODE (op0))
10383 - bitsize, op0, 1);
10384
10385 /* If the result type is BLKmode, store the data into a temporary
10386 of the appropriate type, but with the mode corresponding to the
10387 mode for the data we have (op0's mode). */
10388 if (mode == BLKmode)
10389 {
10390 rtx new_rtx
10391 = assign_stack_temp_for_type (ext_mode,
10392 GET_MODE_BITSIZE (ext_mode),
10393 type);
10394 emit_move_insn (new_rtx, op0);
10395 op0 = copy_rtx (new_rtx);
10396 PUT_MODE (op0, BLKmode);
10397 }
10398
10399 return op0;
10400 }
10401
10402 /* If the result is BLKmode, use that to access the object
10403 now as well. */
10404 if (mode == BLKmode)
10405 mode1 = BLKmode;
10406
10407 /* Get a reference to just this component. */
10408 if (modifier == EXPAND_CONST_ADDRESS
10409 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10410 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10411 else
10412 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10413
10414 if (op0 == orig_op0)
10415 op0 = copy_rtx (op0);
10416
10417 set_mem_attributes (op0, exp, 0);
10418
10419 if (REG_P (XEXP (op0, 0)))
10420 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10421
10422 /* If op0 is a temporary because the original expressions was forced
10423 to memory, clear MEM_EXPR so that the original expression cannot
10424 be marked as addressable through MEM_EXPR of the temporary. */
10425 if (clear_mem_expr)
10426 set_mem_expr (op0, NULL_TREE);
10427
10428 MEM_VOLATILE_P (op0) |= volatilep;
10429 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10430 || modifier == EXPAND_CONST_ADDRESS
10431 || modifier == EXPAND_INITIALIZER)
10432 return op0;
10433
10434 if (target == 0)
10435 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10436
10437 convert_move (target, op0, unsignedp);
10438 return target;
10439 }
10440
10441 case OBJ_TYPE_REF:
10442 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10443
10444 case CALL_EXPR:
10445 /* All valid uses of __builtin_va_arg_pack () are removed during
10446 inlining. */
10447 if (CALL_EXPR_VA_ARG_PACK (exp))
10448 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10449 {
10450 tree fndecl = get_callee_fndecl (exp), attr;
10451
10452 if (fndecl
10453 && (attr = lookup_attribute ("error",
10454 DECL_ATTRIBUTES (fndecl))) != NULL)
10455 error ("%Kcall to %qs declared with attribute error: %s",
10456 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10457 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10458 if (fndecl
10459 && (attr = lookup_attribute ("warning",
10460 DECL_ATTRIBUTES (fndecl))) != NULL)
10461 warning_at (tree_nonartificial_location (exp),
10462 0, "%Kcall to %qs declared with attribute warning: %s",
10463 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10464 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10465
10466 /* Check for a built-in function. */
10467 if (fndecl && DECL_BUILT_IN (fndecl))
10468 {
10469 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10470 if (CALL_WITH_BOUNDS_P (exp))
10471 return expand_builtin_with_bounds (exp, target, subtarget,
10472 tmode, ignore);
10473 else
10474 return expand_builtin (exp, target, subtarget, tmode, ignore);
10475 }
10476 }
10477 return expand_call (exp, target, ignore);
10478
10479 case VIEW_CONVERT_EXPR:
10480 op0 = NULL_RTX;
10481
10482 /* If we are converting to BLKmode, try to avoid an intermediate
10483 temporary by fetching an inner memory reference. */
10484 if (mode == BLKmode
10485 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10486 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10487 && handled_component_p (treeop0))
10488 {
10489 machine_mode mode1;
10490 HOST_WIDE_INT bitsize, bitpos;
10491 tree offset;
10492 int unsignedp;
10493 int volatilep = 0;
10494 tree tem
10495 = get_inner_reference (treeop0, &bitsize, &bitpos,
10496 &offset, &mode1, &unsignedp, &volatilep,
10497 true);
10498 rtx orig_op0;
10499
10500 /* ??? We should work harder and deal with non-zero offsets. */
10501 if (!offset
10502 && (bitpos % BITS_PER_UNIT) == 0
10503 && bitsize >= 0
10504 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10505 {
10506 /* See the normal_inner_ref case for the rationale. */
10507 orig_op0
10508 = expand_expr_real (tem,
10509 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10510 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10511 != INTEGER_CST)
10512 && modifier != EXPAND_STACK_PARM
10513 ? target : NULL_RTX),
10514 VOIDmode,
10515 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10516 NULL, true);
10517
10518 if (MEM_P (orig_op0))
10519 {
10520 op0 = orig_op0;
10521
10522 /* Get a reference to just this component. */
10523 if (modifier == EXPAND_CONST_ADDRESS
10524 || modifier == EXPAND_SUM
10525 || modifier == EXPAND_INITIALIZER)
10526 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10527 else
10528 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10529
10530 if (op0 == orig_op0)
10531 op0 = copy_rtx (op0);
10532
10533 set_mem_attributes (op0, treeop0, 0);
10534 if (REG_P (XEXP (op0, 0)))
10535 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10536
10537 MEM_VOLATILE_P (op0) |= volatilep;
10538 }
10539 }
10540 }
10541
10542 if (!op0)
10543 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10544 NULL, inner_reference_p);
10545
10546 /* If the input and output modes are both the same, we are done. */
10547 if (mode == GET_MODE (op0))
10548 ;
10549 /* If neither mode is BLKmode, and both modes are the same size
10550 then we can use gen_lowpart. */
10551 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10552 && (GET_MODE_PRECISION (mode)
10553 == GET_MODE_PRECISION (GET_MODE (op0)))
10554 && !COMPLEX_MODE_P (GET_MODE (op0)))
10555 {
10556 if (GET_CODE (op0) == SUBREG)
10557 op0 = force_reg (GET_MODE (op0), op0);
10558 temp = gen_lowpart_common (mode, op0);
10559 if (temp)
10560 op0 = temp;
10561 else
10562 {
10563 if (!REG_P (op0) && !MEM_P (op0))
10564 op0 = force_reg (GET_MODE (op0), op0);
10565 op0 = gen_lowpart (mode, op0);
10566 }
10567 }
10568 /* If both types are integral, convert from one mode to the other. */
10569 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10570 op0 = convert_modes (mode, GET_MODE (op0), op0,
10571 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10572 /* If the output type is a bit-field type, do an extraction. */
10573 else if (reduce_bit_field)
10574 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10575 TYPE_UNSIGNED (type), NULL_RTX,
10576 mode, mode);
10577 /* As a last resort, spill op0 to memory, and reload it in a
10578 different mode. */
10579 else if (!MEM_P (op0))
10580 {
10581 /* If the operand is not a MEM, force it into memory. Since we
10582 are going to be changing the mode of the MEM, don't call
10583 force_const_mem for constants because we don't allow pool
10584 constants to change mode. */
10585 tree inner_type = TREE_TYPE (treeop0);
10586
10587 gcc_assert (!TREE_ADDRESSABLE (exp));
10588
10589 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10590 target
10591 = assign_stack_temp_for_type
10592 (TYPE_MODE (inner_type),
10593 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10594
10595 emit_move_insn (target, op0);
10596 op0 = target;
10597 }
10598
10599 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10600 output type is such that the operand is known to be aligned, indicate
10601 that it is. Otherwise, we need only be concerned about alignment for
10602 non-BLKmode results. */
10603 if (MEM_P (op0))
10604 {
10605 enum insn_code icode;
10606
10607 if (TYPE_ALIGN_OK (type))
10608 {
10609 /* ??? Copying the MEM without substantially changing it might
10610 run afoul of the code handling volatile memory references in
10611 store_expr, which assumes that TARGET is returned unmodified
10612 if it has been used. */
10613 op0 = copy_rtx (op0);
10614 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10615 }
10616 else if (modifier != EXPAND_WRITE
10617 && modifier != EXPAND_MEMORY
10618 && !inner_reference_p
10619 && mode != BLKmode
10620 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10621 {
10622 /* If the target does have special handling for unaligned
10623 loads of mode then use them. */
10624 if ((icode = optab_handler (movmisalign_optab, mode))
10625 != CODE_FOR_nothing)
10626 {
10627 rtx reg;
10628
10629 op0 = adjust_address (op0, mode, 0);
10630 /* We've already validated the memory, and we're creating a
10631 new pseudo destination. The predicates really can't
10632 fail. */
10633 reg = gen_reg_rtx (mode);
10634
10635 /* Nor can the insn generator. */
10636 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
10637 emit_insn (insn);
10638 return reg;
10639 }
10640 else if (STRICT_ALIGNMENT)
10641 {
10642 tree inner_type = TREE_TYPE (treeop0);
10643 HOST_WIDE_INT temp_size
10644 = MAX (int_size_in_bytes (inner_type),
10645 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10646 rtx new_rtx
10647 = assign_stack_temp_for_type (mode, temp_size, type);
10648 rtx new_with_op0_mode
10649 = adjust_address (new_rtx, GET_MODE (op0), 0);
10650
10651 gcc_assert (!TREE_ADDRESSABLE (exp));
10652
10653 if (GET_MODE (op0) == BLKmode)
10654 emit_block_move (new_with_op0_mode, op0,
10655 GEN_INT (GET_MODE_SIZE (mode)),
10656 (modifier == EXPAND_STACK_PARM
10657 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10658 else
10659 emit_move_insn (new_with_op0_mode, op0);
10660
10661 op0 = new_rtx;
10662 }
10663 }
10664
10665 op0 = adjust_address (op0, mode, 0);
10666 }
10667
10668 return op0;
10669
10670 case MODIFY_EXPR:
10671 {
10672 tree lhs = treeop0;
10673 tree rhs = treeop1;
10674 gcc_assert (ignore);
10675
10676 /* Check for |= or &= of a bitfield of size one into another bitfield
10677 of size 1. In this case, (unless we need the result of the
10678 assignment) we can do this more efficiently with a
10679 test followed by an assignment, if necessary.
10680
10681 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10682 things change so we do, this code should be enhanced to
10683 support it. */
10684 if (TREE_CODE (lhs) == COMPONENT_REF
10685 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10686 || TREE_CODE (rhs) == BIT_AND_EXPR)
10687 && TREE_OPERAND (rhs, 0) == lhs
10688 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10689 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10690 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10691 {
10692 rtx_code_label *label = gen_label_rtx ();
10693 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10694 do_jump (TREE_OPERAND (rhs, 1),
10695 value ? label : 0,
10696 value ? 0 : label, -1);
10697 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10698 false);
10699 do_pending_stack_adjust ();
10700 emit_label (label);
10701 return const0_rtx;
10702 }
10703
10704 expand_assignment (lhs, rhs, false);
10705 return const0_rtx;
10706 }
10707
10708 case ADDR_EXPR:
10709 return expand_expr_addr_expr (exp, target, tmode, modifier);
10710
10711 case REALPART_EXPR:
10712 op0 = expand_normal (treeop0);
10713 return read_complex_part (op0, false);
10714
10715 case IMAGPART_EXPR:
10716 op0 = expand_normal (treeop0);
10717 return read_complex_part (op0, true);
10718
10719 case RETURN_EXPR:
10720 case LABEL_EXPR:
10721 case GOTO_EXPR:
10722 case SWITCH_EXPR:
10723 case ASM_EXPR:
10724 /* Expanded in cfgexpand.c. */
10725 gcc_unreachable ();
10726
10727 case TRY_CATCH_EXPR:
10728 case CATCH_EXPR:
10729 case EH_FILTER_EXPR:
10730 case TRY_FINALLY_EXPR:
10731 /* Lowered by tree-eh.c. */
10732 gcc_unreachable ();
10733
10734 case WITH_CLEANUP_EXPR:
10735 case CLEANUP_POINT_EXPR:
10736 case TARGET_EXPR:
10737 case CASE_LABEL_EXPR:
10738 case VA_ARG_EXPR:
10739 case BIND_EXPR:
10740 case INIT_EXPR:
10741 case CONJ_EXPR:
10742 case COMPOUND_EXPR:
10743 case PREINCREMENT_EXPR:
10744 case PREDECREMENT_EXPR:
10745 case POSTINCREMENT_EXPR:
10746 case POSTDECREMENT_EXPR:
10747 case LOOP_EXPR:
10748 case EXIT_EXPR:
10749 case COMPOUND_LITERAL_EXPR:
10750 /* Lowered by gimplify.c. */
10751 gcc_unreachable ();
10752
10753 case FDESC_EXPR:
10754 /* Function descriptors are not valid except for as
10755 initialization constants, and should not be expanded. */
10756 gcc_unreachable ();
10757
10758 case WITH_SIZE_EXPR:
10759 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10760 have pulled out the size to use in whatever context it needed. */
10761 return expand_expr_real (treeop0, original_target, tmode,
10762 modifier, alt_rtl, inner_reference_p);
10763
10764 default:
10765 return expand_expr_real_2 (&ops, target, tmode, modifier);
10766 }
10767 }
10768 \f
10769 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10770 signedness of TYPE), possibly returning the result in TARGET. */
10771 static rtx
10772 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10773 {
10774 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10775 if (target && GET_MODE (target) != GET_MODE (exp))
10776 target = 0;
10777 /* For constant values, reduce using build_int_cst_type. */
10778 if (CONST_INT_P (exp))
10779 {
10780 HOST_WIDE_INT value = INTVAL (exp);
10781 tree t = build_int_cst_type (type, value);
10782 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10783 }
10784 else if (TYPE_UNSIGNED (type))
10785 {
10786 machine_mode mode = GET_MODE (exp);
10787 rtx mask = immed_wide_int_const
10788 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
10789 return expand_and (mode, exp, mask, target);
10790 }
10791 else
10792 {
10793 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10794 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10795 exp, count, target, 0);
10796 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10797 exp, count, target, 0);
10798 }
10799 }
10800 \f
10801 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10802 when applied to the address of EXP produces an address known to be
10803 aligned more than BIGGEST_ALIGNMENT. */
10804
10805 static int
10806 is_aligning_offset (const_tree offset, const_tree exp)
10807 {
10808 /* Strip off any conversions. */
10809 while (CONVERT_EXPR_P (offset))
10810 offset = TREE_OPERAND (offset, 0);
10811
10812 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10813 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10814 if (TREE_CODE (offset) != BIT_AND_EXPR
10815 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
10816 || compare_tree_int (TREE_OPERAND (offset, 1),
10817 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10818 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1) < 0)
10819 return 0;
10820
10821 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10822 It must be NEGATE_EXPR. Then strip any more conversions. */
10823 offset = TREE_OPERAND (offset, 0);
10824 while (CONVERT_EXPR_P (offset))
10825 offset = TREE_OPERAND (offset, 0);
10826
10827 if (TREE_CODE (offset) != NEGATE_EXPR)
10828 return 0;
10829
10830 offset = TREE_OPERAND (offset, 0);
10831 while (CONVERT_EXPR_P (offset))
10832 offset = TREE_OPERAND (offset, 0);
10833
10834 /* This must now be the address of EXP. */
10835 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10836 }
10837 \f
10838 /* Return the tree node if an ARG corresponds to a string constant or zero
10839 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10840 in bytes within the string that ARG is accessing. The type of the
10841 offset will be `sizetype'. */
10842
10843 tree
10844 string_constant (tree arg, tree *ptr_offset)
10845 {
10846 tree array, offset, lower_bound;
10847 STRIP_NOPS (arg);
10848
10849 if (TREE_CODE (arg) == ADDR_EXPR)
10850 {
10851 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10852 {
10853 *ptr_offset = size_zero_node;
10854 return TREE_OPERAND (arg, 0);
10855 }
10856 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10857 {
10858 array = TREE_OPERAND (arg, 0);
10859 offset = size_zero_node;
10860 }
10861 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10862 {
10863 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10864 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10865 if (TREE_CODE (array) != STRING_CST
10866 && TREE_CODE (array) != VAR_DECL)
10867 return 0;
10868
10869 /* Check if the array has a nonzero lower bound. */
10870 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10871 if (!integer_zerop (lower_bound))
10872 {
10873 /* If the offset and base aren't both constants, return 0. */
10874 if (TREE_CODE (lower_bound) != INTEGER_CST)
10875 return 0;
10876 if (TREE_CODE (offset) != INTEGER_CST)
10877 return 0;
10878 /* Adjust offset by the lower bound. */
10879 offset = size_diffop (fold_convert (sizetype, offset),
10880 fold_convert (sizetype, lower_bound));
10881 }
10882 }
10883 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10884 {
10885 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10886 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10887 if (TREE_CODE (array) != ADDR_EXPR)
10888 return 0;
10889 array = TREE_OPERAND (array, 0);
10890 if (TREE_CODE (array) != STRING_CST
10891 && TREE_CODE (array) != VAR_DECL)
10892 return 0;
10893 }
10894 else
10895 return 0;
10896 }
10897 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10898 {
10899 tree arg0 = TREE_OPERAND (arg, 0);
10900 tree arg1 = TREE_OPERAND (arg, 1);
10901
10902 STRIP_NOPS (arg0);
10903 STRIP_NOPS (arg1);
10904
10905 if (TREE_CODE (arg0) == ADDR_EXPR
10906 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10907 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10908 {
10909 array = TREE_OPERAND (arg0, 0);
10910 offset = arg1;
10911 }
10912 else if (TREE_CODE (arg1) == ADDR_EXPR
10913 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10914 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10915 {
10916 array = TREE_OPERAND (arg1, 0);
10917 offset = arg0;
10918 }
10919 else
10920 return 0;
10921 }
10922 else
10923 return 0;
10924
10925 if (TREE_CODE (array) == STRING_CST)
10926 {
10927 *ptr_offset = fold_convert (sizetype, offset);
10928 return array;
10929 }
10930 else if (TREE_CODE (array) == VAR_DECL
10931 || TREE_CODE (array) == CONST_DECL)
10932 {
10933 int length;
10934 tree init = ctor_for_folding (array);
10935
10936 /* Variables initialized to string literals can be handled too. */
10937 if (init == error_mark_node
10938 || !init
10939 || TREE_CODE (init) != STRING_CST)
10940 return 0;
10941
10942 /* Avoid const char foo[4] = "abcde"; */
10943 if (DECL_SIZE_UNIT (array) == NULL_TREE
10944 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10945 || (length = TREE_STRING_LENGTH (init)) <= 0
10946 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10947 return 0;
10948
10949 /* If variable is bigger than the string literal, OFFSET must be constant
10950 and inside of the bounds of the string literal. */
10951 offset = fold_convert (sizetype, offset);
10952 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10953 && (! tree_fits_uhwi_p (offset)
10954 || compare_tree_int (offset, length) >= 0))
10955 return 0;
10956
10957 *ptr_offset = offset;
10958 return init;
10959 }
10960
10961 return 0;
10962 }
10963 \f
10964 /* Generate code to calculate OPS, and exploded expression
10965 using a store-flag instruction and return an rtx for the result.
10966 OPS reflects a comparison.
10967
10968 If TARGET is nonzero, store the result there if convenient.
10969
10970 Return zero if there is no suitable set-flag instruction
10971 available on this machine.
10972
10973 Once expand_expr has been called on the arguments of the comparison,
10974 we are committed to doing the store flag, since it is not safe to
10975 re-evaluate the expression. We emit the store-flag insn by calling
10976 emit_store_flag, but only expand the arguments if we have a reason
10977 to believe that emit_store_flag will be successful. If we think that
10978 it will, but it isn't, we have to simulate the store-flag with a
10979 set/jump/set sequence. */
10980
10981 static rtx
10982 do_store_flag (sepops ops, rtx target, machine_mode mode)
10983 {
10984 enum rtx_code code;
10985 tree arg0, arg1, type;
10986 machine_mode operand_mode;
10987 int unsignedp;
10988 rtx op0, op1;
10989 rtx subtarget = target;
10990 location_t loc = ops->location;
10991
10992 arg0 = ops->op0;
10993 arg1 = ops->op1;
10994
10995 /* Don't crash if the comparison was erroneous. */
10996 if (arg0 == error_mark_node || arg1 == error_mark_node)
10997 return const0_rtx;
10998
10999 type = TREE_TYPE (arg0);
11000 operand_mode = TYPE_MODE (type);
11001 unsignedp = TYPE_UNSIGNED (type);
11002
11003 /* We won't bother with BLKmode store-flag operations because it would mean
11004 passing a lot of information to emit_store_flag. */
11005 if (operand_mode == BLKmode)
11006 return 0;
11007
11008 /* We won't bother with store-flag operations involving function pointers
11009 when function pointers must be canonicalized before comparisons. */
11010 if (targetm.have_canonicalize_funcptr_for_compare ()
11011 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11012 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11013 == FUNCTION_TYPE))
11014 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11015 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11016 == FUNCTION_TYPE))))
11017 return 0;
11018
11019 STRIP_NOPS (arg0);
11020 STRIP_NOPS (arg1);
11021
11022 /* For vector typed comparisons emit code to generate the desired
11023 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11024 expander for this. */
11025 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11026 {
11027 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11028 tree if_true = constant_boolean_node (true, ops->type);
11029 tree if_false = constant_boolean_node (false, ops->type);
11030 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
11031 }
11032
11033 /* Get the rtx comparison code to use. We know that EXP is a comparison
11034 operation of some type. Some comparisons against 1 and -1 can be
11035 converted to comparisons with zero. Do so here so that the tests
11036 below will be aware that we have a comparison with zero. These
11037 tests will not catch constants in the first operand, but constants
11038 are rarely passed as the first operand. */
11039
11040 switch (ops->code)
11041 {
11042 case EQ_EXPR:
11043 code = EQ;
11044 break;
11045 case NE_EXPR:
11046 code = NE;
11047 break;
11048 case LT_EXPR:
11049 if (integer_onep (arg1))
11050 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11051 else
11052 code = unsignedp ? LTU : LT;
11053 break;
11054 case LE_EXPR:
11055 if (! unsignedp && integer_all_onesp (arg1))
11056 arg1 = integer_zero_node, code = LT;
11057 else
11058 code = unsignedp ? LEU : LE;
11059 break;
11060 case GT_EXPR:
11061 if (! unsignedp && integer_all_onesp (arg1))
11062 arg1 = integer_zero_node, code = GE;
11063 else
11064 code = unsignedp ? GTU : GT;
11065 break;
11066 case GE_EXPR:
11067 if (integer_onep (arg1))
11068 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11069 else
11070 code = unsignedp ? GEU : GE;
11071 break;
11072
11073 case UNORDERED_EXPR:
11074 code = UNORDERED;
11075 break;
11076 case ORDERED_EXPR:
11077 code = ORDERED;
11078 break;
11079 case UNLT_EXPR:
11080 code = UNLT;
11081 break;
11082 case UNLE_EXPR:
11083 code = UNLE;
11084 break;
11085 case UNGT_EXPR:
11086 code = UNGT;
11087 break;
11088 case UNGE_EXPR:
11089 code = UNGE;
11090 break;
11091 case UNEQ_EXPR:
11092 code = UNEQ;
11093 break;
11094 case LTGT_EXPR:
11095 code = LTGT;
11096 break;
11097
11098 default:
11099 gcc_unreachable ();
11100 }
11101
11102 /* Put a constant second. */
11103 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11104 || TREE_CODE (arg0) == FIXED_CST)
11105 {
11106 std::swap (arg0, arg1);
11107 code = swap_condition (code);
11108 }
11109
11110 /* If this is an equality or inequality test of a single bit, we can
11111 do this by shifting the bit being tested to the low-order bit and
11112 masking the result with the constant 1. If the condition was EQ,
11113 we xor it with 1. This does not require an scc insn and is faster
11114 than an scc insn even if we have it.
11115
11116 The code to make this transformation was moved into fold_single_bit_test,
11117 so we just call into the folder and expand its result. */
11118
11119 if ((code == NE || code == EQ)
11120 && integer_zerop (arg1)
11121 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11122 {
11123 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11124 if (srcstmt
11125 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11126 {
11127 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11128 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11129 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11130 gimple_assign_rhs1 (srcstmt),
11131 gimple_assign_rhs2 (srcstmt));
11132 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11133 if (temp)
11134 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11135 }
11136 }
11137
11138 if (! get_subtarget (target)
11139 || GET_MODE (subtarget) != operand_mode)
11140 subtarget = 0;
11141
11142 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11143
11144 if (target == 0)
11145 target = gen_reg_rtx (mode);
11146
11147 /* Try a cstore if possible. */
11148 return emit_store_flag_force (target, code, op0, op1,
11149 operand_mode, unsignedp,
11150 (TYPE_PRECISION (ops->type) == 1
11151 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11152 }
11153 \f
11154 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11155 0 otherwise (i.e. if there is no casesi instruction).
11156
11157 DEFAULT_PROBABILITY is the probability of jumping to the default
11158 label. */
11159 int
11160 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11161 rtx table_label, rtx default_label, rtx fallback_label,
11162 int default_probability)
11163 {
11164 struct expand_operand ops[5];
11165 machine_mode index_mode = SImode;
11166 rtx op1, op2, index;
11167
11168 if (! targetm.have_casesi ())
11169 return 0;
11170
11171 /* Convert the index to SImode. */
11172 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11173 {
11174 machine_mode omode = TYPE_MODE (index_type);
11175 rtx rangertx = expand_normal (range);
11176
11177 /* We must handle the endpoints in the original mode. */
11178 index_expr = build2 (MINUS_EXPR, index_type,
11179 index_expr, minval);
11180 minval = integer_zero_node;
11181 index = expand_normal (index_expr);
11182 if (default_label)
11183 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11184 omode, 1, default_label,
11185 default_probability);
11186 /* Now we can safely truncate. */
11187 index = convert_to_mode (index_mode, index, 0);
11188 }
11189 else
11190 {
11191 if (TYPE_MODE (index_type) != index_mode)
11192 {
11193 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11194 index_expr = fold_convert (index_type, index_expr);
11195 }
11196
11197 index = expand_normal (index_expr);
11198 }
11199
11200 do_pending_stack_adjust ();
11201
11202 op1 = expand_normal (minval);
11203 op2 = expand_normal (range);
11204
11205 create_input_operand (&ops[0], index, index_mode);
11206 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11207 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11208 create_fixed_operand (&ops[3], table_label);
11209 create_fixed_operand (&ops[4], (default_label
11210 ? default_label
11211 : fallback_label));
11212 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11213 return 1;
11214 }
11215
11216 /* Attempt to generate a tablejump instruction; same concept. */
11217 /* Subroutine of the next function.
11218
11219 INDEX is the value being switched on, with the lowest value
11220 in the table already subtracted.
11221 MODE is its expected mode (needed if INDEX is constant).
11222 RANGE is the length of the jump table.
11223 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11224
11225 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11226 index value is out of range.
11227 DEFAULT_PROBABILITY is the probability of jumping to
11228 the default label. */
11229
11230 static void
11231 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11232 rtx default_label, int default_probability)
11233 {
11234 rtx temp, vector;
11235
11236 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11237 cfun->cfg->max_jumptable_ents = INTVAL (range);
11238
11239 /* Do an unsigned comparison (in the proper mode) between the index
11240 expression and the value which represents the length of the range.
11241 Since we just finished subtracting the lower bound of the range
11242 from the index expression, this comparison allows us to simultaneously
11243 check that the original index expression value is both greater than
11244 or equal to the minimum value of the range and less than or equal to
11245 the maximum value of the range. */
11246
11247 if (default_label)
11248 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11249 default_label, default_probability);
11250
11251
11252 /* If index is in range, it must fit in Pmode.
11253 Convert to Pmode so we can index with it. */
11254 if (mode != Pmode)
11255 index = convert_to_mode (Pmode, index, 1);
11256
11257 /* Don't let a MEM slip through, because then INDEX that comes
11258 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11259 and break_out_memory_refs will go to work on it and mess it up. */
11260 #ifdef PIC_CASE_VECTOR_ADDRESS
11261 if (flag_pic && !REG_P (index))
11262 index = copy_to_mode_reg (Pmode, index);
11263 #endif
11264
11265 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11266 GET_MODE_SIZE, because this indicates how large insns are. The other
11267 uses should all be Pmode, because they are addresses. This code
11268 could fail if addresses and insns are not the same size. */
11269 index = simplify_gen_binary (MULT, Pmode, index,
11270 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11271 Pmode));
11272 index = simplify_gen_binary (PLUS, Pmode, index,
11273 gen_rtx_LABEL_REF (Pmode, table_label));
11274
11275 #ifdef PIC_CASE_VECTOR_ADDRESS
11276 if (flag_pic)
11277 index = PIC_CASE_VECTOR_ADDRESS (index);
11278 else
11279 #endif
11280 index = memory_address (CASE_VECTOR_MODE, index);
11281 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11282 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11283 convert_move (temp, vector, 0);
11284
11285 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11286
11287 /* If we are generating PIC code or if the table is PC-relative, the
11288 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11289 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11290 emit_barrier ();
11291 }
11292
11293 int
11294 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11295 rtx table_label, rtx default_label, int default_probability)
11296 {
11297 rtx index;
11298
11299 if (! targetm.have_tablejump ())
11300 return 0;
11301
11302 index_expr = fold_build2 (MINUS_EXPR, index_type,
11303 fold_convert (index_type, index_expr),
11304 fold_convert (index_type, minval));
11305 index = expand_normal (index_expr);
11306 do_pending_stack_adjust ();
11307
11308 do_tablejump (index, TYPE_MODE (index_type),
11309 convert_modes (TYPE_MODE (index_type),
11310 TYPE_MODE (TREE_TYPE (range)),
11311 expand_normal (range),
11312 TYPE_UNSIGNED (TREE_TYPE (range))),
11313 table_label, default_label, default_probability);
11314 return 1;
11315 }
11316
11317 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11318 static rtx
11319 const_vector_from_tree (tree exp)
11320 {
11321 rtvec v;
11322 unsigned i;
11323 int units;
11324 tree elt;
11325 machine_mode inner, mode;
11326
11327 mode = TYPE_MODE (TREE_TYPE (exp));
11328
11329 if (initializer_zerop (exp))
11330 return CONST0_RTX (mode);
11331
11332 units = GET_MODE_NUNITS (mode);
11333 inner = GET_MODE_INNER (mode);
11334
11335 v = rtvec_alloc (units);
11336
11337 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11338 {
11339 elt = VECTOR_CST_ELT (exp, i);
11340
11341 if (TREE_CODE (elt) == REAL_CST)
11342 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
11343 inner);
11344 else if (TREE_CODE (elt) == FIXED_CST)
11345 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11346 inner);
11347 else
11348 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
11349 }
11350
11351 return gen_rtx_CONST_VECTOR (mode, v);
11352 }
11353
11354 /* Build a decl for a personality function given a language prefix. */
11355
11356 tree
11357 build_personality_function (const char *lang)
11358 {
11359 const char *unwind_and_version;
11360 tree decl, type;
11361 char *name;
11362
11363 switch (targetm_common.except_unwind_info (&global_options))
11364 {
11365 case UI_NONE:
11366 return NULL;
11367 case UI_SJLJ:
11368 unwind_and_version = "_sj0";
11369 break;
11370 case UI_DWARF2:
11371 case UI_TARGET:
11372 unwind_and_version = "_v0";
11373 break;
11374 case UI_SEH:
11375 unwind_and_version = "_seh0";
11376 break;
11377 default:
11378 gcc_unreachable ();
11379 }
11380
11381 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11382
11383 type = build_function_type_list (integer_type_node, integer_type_node,
11384 long_long_unsigned_type_node,
11385 ptr_type_node, ptr_type_node, NULL_TREE);
11386 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11387 get_identifier (name), type);
11388 DECL_ARTIFICIAL (decl) = 1;
11389 DECL_EXTERNAL (decl) = 1;
11390 TREE_PUBLIC (decl) = 1;
11391
11392 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11393 are the flags assigned by targetm.encode_section_info. */
11394 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11395
11396 return decl;
11397 }
11398
11399 /* Extracts the personality function of DECL and returns the corresponding
11400 libfunc. */
11401
11402 rtx
11403 get_personality_function (tree decl)
11404 {
11405 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11406 enum eh_personality_kind pk;
11407
11408 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11409 if (pk == eh_personality_none)
11410 return NULL;
11411
11412 if (!personality
11413 && pk == eh_personality_any)
11414 personality = lang_hooks.eh_personality ();
11415
11416 if (pk == eh_personality_lang)
11417 gcc_assert (personality != NULL_TREE);
11418
11419 return XEXP (DECL_RTL (personality), 0);
11420 }
11421
11422 /* Returns a tree for the size of EXP in bytes. */
11423
11424 static tree
11425 tree_expr_size (const_tree exp)
11426 {
11427 if (DECL_P (exp)
11428 && DECL_SIZE_UNIT (exp) != 0)
11429 return DECL_SIZE_UNIT (exp);
11430 else
11431 return size_in_bytes (TREE_TYPE (exp));
11432 }
11433
11434 /* Return an rtx for the size in bytes of the value of EXP. */
11435
11436 rtx
11437 expr_size (tree exp)
11438 {
11439 tree size;
11440
11441 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11442 size = TREE_OPERAND (exp, 1);
11443 else
11444 {
11445 size = tree_expr_size (exp);
11446 gcc_assert (size);
11447 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11448 }
11449
11450 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11451 }
11452
11453 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11454 if the size can vary or is larger than an integer. */
11455
11456 static HOST_WIDE_INT
11457 int_expr_size (tree exp)
11458 {
11459 tree size;
11460
11461 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11462 size = TREE_OPERAND (exp, 1);
11463 else
11464 {
11465 size = tree_expr_size (exp);
11466 gcc_assert (size);
11467 }
11468
11469 if (size == 0 || !tree_fits_shwi_p (size))
11470 return -1;
11471
11472 return tree_to_shwi (size);
11473 }
11474
11475 #include "gt-expr.h"