]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/expr.c
[Ada] Fold Enum_Rep attribute in evaluation and not in expansion
[thirdparty/gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
65
66
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
74
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
77 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT,
79 unsigned HOST_WIDE_INT, bool);
80 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
81 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
82 static rtx_insn *compress_float_constant (rtx, rtx);
83 static rtx get_subtarget (rtx);
84 static void store_constructor (tree, rtx, int, poly_int64, bool);
85 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
86 machine_mode, tree, alias_set_type, bool, bool);
87
88 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
89
90 static int is_aligning_offset (const_tree, const_tree);
91 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
92 static rtx do_store_flag (sepops, rtx, machine_mode);
93 #ifdef PUSH_ROUNDING
94 static void emit_single_push_insn (machine_mode, rtx, tree);
95 #endif
96 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
97 profile_probability);
98 static rtx const_vector_from_tree (tree);
99 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
100 static tree tree_expr_size (const_tree);
101 static HOST_WIDE_INT int_expr_size (tree);
102 static void convert_mode_scalar (rtx, rtx, int);
103
104 \f
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
108
109 void
110 init_expr_target (void)
111 {
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
116
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
122
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
126
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
130
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
133 {
134 int regno;
135
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
139
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
142
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
147 {
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
150
151 set_mode_and_regno (reg, mode, regno);
152
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
157
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
162
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
167
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
172 }
173 }
174
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
176
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
179 {
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
183 {
184 enum insn_code ic;
185
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
189
190 PUT_MODE (mem, srcmode);
191
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
194 }
195 }
196 }
197
198 /* This is run at the start of compiling a function. */
199
200 void
201 init_expr (void)
202 {
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
204 }
205 \f
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
211
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
214 {
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
217
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
220
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
225
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
229
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
237 {
238 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
239 from_mode = to_int_mode;
240 }
241
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
243
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
246 {
247 emit_move_insn (to, from);
248 return;
249 }
250
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
252 {
253 if (GET_MODE_UNIT_PRECISION (to_mode)
254 > GET_MODE_UNIT_PRECISION (from_mode))
255 {
256 optab op = unsignedp ? zext_optab : sext_optab;
257 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
258 if (icode != CODE_FOR_nothing)
259 {
260 emit_unop_insn (icode, to, from,
261 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
262 return;
263 }
264 }
265
266 if (GET_MODE_UNIT_PRECISION (to_mode)
267 < GET_MODE_UNIT_PRECISION (from_mode))
268 {
269 insn_code icode = convert_optab_handler (trunc_optab,
270 to_mode, from_mode);
271 if (icode != CODE_FOR_nothing)
272 {
273 emit_unop_insn (icode, to, from, TRUNCATE);
274 return;
275 }
276 }
277
278 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
279 GET_MODE_BITSIZE (to_mode)));
280
281 if (VECTOR_MODE_P (to_mode))
282 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
283 else
284 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
285
286 emit_move_insn (to, from);
287 return;
288 }
289
290 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
291 {
292 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
293 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
294 return;
295 }
296
297 convert_mode_scalar (to, from, unsignedp);
298 }
299
300 /* Like convert_move, but deals only with scalar modes. */
301
302 static void
303 convert_mode_scalar (rtx to, rtx from, int unsignedp)
304 {
305 /* Both modes should be scalar types. */
306 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
307 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
308 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
309 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
310 enum insn_code code;
311 rtx libcall;
312
313 gcc_assert (to_real == from_real);
314
315 /* rtx code for making an equivalent value. */
316 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
317 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
318
319 if (to_real)
320 {
321 rtx value;
322 rtx_insn *insns;
323 convert_optab tab;
324
325 gcc_assert ((GET_MODE_PRECISION (from_mode)
326 != GET_MODE_PRECISION (to_mode))
327 || (DECIMAL_FLOAT_MODE_P (from_mode)
328 != DECIMAL_FLOAT_MODE_P (to_mode)));
329
330 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
331 /* Conversion between decimal float and binary float, same size. */
332 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
333 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
334 tab = sext_optab;
335 else
336 tab = trunc_optab;
337
338 /* Try converting directly if the insn is supported. */
339
340 code = convert_optab_handler (tab, to_mode, from_mode);
341 if (code != CODE_FOR_nothing)
342 {
343 emit_unop_insn (code, to, from,
344 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
345 return;
346 }
347
348 /* Otherwise use a libcall. */
349 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
350
351 /* Is this conversion implemented yet? */
352 gcc_assert (libcall);
353
354 start_sequence ();
355 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
356 from, from_mode);
357 insns = get_insns ();
358 end_sequence ();
359 emit_libcall_block (insns, to, value,
360 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
361 from)
362 : gen_rtx_FLOAT_EXTEND (to_mode, from));
363 return;
364 }
365
366 /* Handle pointer conversion. */ /* SPEE 900220. */
367 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
368 {
369 convert_optab ctab;
370
371 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
372 ctab = trunc_optab;
373 else if (unsignedp)
374 ctab = zext_optab;
375 else
376 ctab = sext_optab;
377
378 if (convert_optab_handler (ctab, to_mode, from_mode)
379 != CODE_FOR_nothing)
380 {
381 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
382 to, from, UNKNOWN);
383 return;
384 }
385 }
386
387 /* Targets are expected to provide conversion insns between PxImode and
388 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
389 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
390 {
391 scalar_int_mode full_mode
392 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
393
394 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
395 != CODE_FOR_nothing);
396
397 if (full_mode != from_mode)
398 from = convert_to_mode (full_mode, from, unsignedp);
399 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
400 to, from, UNKNOWN);
401 return;
402 }
403 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
404 {
405 rtx new_from;
406 scalar_int_mode full_mode
407 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
408 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
409 enum insn_code icode;
410
411 icode = convert_optab_handler (ctab, full_mode, from_mode);
412 gcc_assert (icode != CODE_FOR_nothing);
413
414 if (to_mode == full_mode)
415 {
416 emit_unop_insn (icode, to, from, UNKNOWN);
417 return;
418 }
419
420 new_from = gen_reg_rtx (full_mode);
421 emit_unop_insn (icode, new_from, from, UNKNOWN);
422
423 /* else proceed to integer conversions below. */
424 from_mode = full_mode;
425 from = new_from;
426 }
427
428 /* Make sure both are fixed-point modes or both are not. */
429 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
430 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
431 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
432 {
433 /* If we widen from_mode to to_mode and they are in the same class,
434 we won't saturate the result.
435 Otherwise, always saturate the result to play safe. */
436 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
437 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
438 expand_fixed_convert (to, from, 0, 0);
439 else
440 expand_fixed_convert (to, from, 0, 1);
441 return;
442 }
443
444 /* Now both modes are integers. */
445
446 /* Handle expanding beyond a word. */
447 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
448 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
449 {
450 rtx_insn *insns;
451 rtx lowpart;
452 rtx fill_value;
453 rtx lowfrom;
454 int i;
455 scalar_mode lowpart_mode;
456 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
457
458 /* Try converting directly if the insn is supported. */
459 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
460 != CODE_FOR_nothing)
461 {
462 /* If FROM is a SUBREG, put it into a register. Do this
463 so that we always generate the same set of insns for
464 better cse'ing; if an intermediate assignment occurred,
465 we won't be doing the operation directly on the SUBREG. */
466 if (optimize > 0 && GET_CODE (from) == SUBREG)
467 from = force_reg (from_mode, from);
468 emit_unop_insn (code, to, from, equiv_code);
469 return;
470 }
471 /* Next, try converting via full word. */
472 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
473 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
474 != CODE_FOR_nothing))
475 {
476 rtx word_to = gen_reg_rtx (word_mode);
477 if (REG_P (to))
478 {
479 if (reg_overlap_mentioned_p (to, from))
480 from = force_reg (from_mode, from);
481 emit_clobber (to);
482 }
483 convert_move (word_to, from, unsignedp);
484 emit_unop_insn (code, to, word_to, equiv_code);
485 return;
486 }
487
488 /* No special multiword conversion insn; do it by hand. */
489 start_sequence ();
490
491 /* Since we will turn this into a no conflict block, we must ensure
492 the source does not overlap the target so force it into an isolated
493 register when maybe so. Likewise for any MEM input, since the
494 conversion sequence might require several references to it and we
495 must ensure we're getting the same value every time. */
496
497 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
498 from = force_reg (from_mode, from);
499
500 /* Get a copy of FROM widened to a word, if necessary. */
501 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
502 lowpart_mode = word_mode;
503 else
504 lowpart_mode = from_mode;
505
506 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
507
508 lowpart = gen_lowpart (lowpart_mode, to);
509 emit_move_insn (lowpart, lowfrom);
510
511 /* Compute the value to put in each remaining word. */
512 if (unsignedp)
513 fill_value = const0_rtx;
514 else
515 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
516 LT, lowfrom, const0_rtx,
517 lowpart_mode, 0, -1);
518
519 /* Fill the remaining words. */
520 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
521 {
522 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
523 rtx subword = operand_subword (to, index, 1, to_mode);
524
525 gcc_assert (subword);
526
527 if (fill_value != subword)
528 emit_move_insn (subword, fill_value);
529 }
530
531 insns = get_insns ();
532 end_sequence ();
533
534 emit_insn (insns);
535 return;
536 }
537
538 /* Truncating multi-word to a word or less. */
539 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
540 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
541 {
542 if (!((MEM_P (from)
543 && ! MEM_VOLATILE_P (from)
544 && direct_load[(int) to_mode]
545 && ! mode_dependent_address_p (XEXP (from, 0),
546 MEM_ADDR_SPACE (from)))
547 || REG_P (from)
548 || GET_CODE (from) == SUBREG))
549 from = force_reg (from_mode, from);
550 convert_move (to, gen_lowpart (word_mode, from), 0);
551 return;
552 }
553
554 /* Now follow all the conversions between integers
555 no more than a word long. */
556
557 /* For truncation, usually we can just refer to FROM in a narrower mode. */
558 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
559 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
560 {
561 if (!((MEM_P (from)
562 && ! MEM_VOLATILE_P (from)
563 && direct_load[(int) to_mode]
564 && ! mode_dependent_address_p (XEXP (from, 0),
565 MEM_ADDR_SPACE (from)))
566 || REG_P (from)
567 || GET_CODE (from) == SUBREG))
568 from = force_reg (from_mode, from);
569 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
570 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
571 from = copy_to_reg (from);
572 emit_move_insn (to, gen_lowpart (to_mode, from));
573 return;
574 }
575
576 /* Handle extension. */
577 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
578 {
579 /* Convert directly if that works. */
580 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
581 != CODE_FOR_nothing)
582 {
583 emit_unop_insn (code, to, from, equiv_code);
584 return;
585 }
586 else
587 {
588 rtx tmp;
589 int shift_amount;
590
591 /* Search for a mode to convert via. */
592 opt_scalar_mode intermediate_iter;
593 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
594 {
595 scalar_mode intermediate = intermediate_iter.require ();
596 if (((can_extend_p (to_mode, intermediate, unsignedp)
597 != CODE_FOR_nothing)
598 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
599 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
600 intermediate)))
601 && (can_extend_p (intermediate, from_mode, unsignedp)
602 != CODE_FOR_nothing))
603 {
604 convert_move (to, convert_to_mode (intermediate, from,
605 unsignedp), unsignedp);
606 return;
607 }
608 }
609
610 /* No suitable intermediate mode.
611 Generate what we need with shifts. */
612 shift_amount = (GET_MODE_PRECISION (to_mode)
613 - GET_MODE_PRECISION (from_mode));
614 from = gen_lowpart (to_mode, force_reg (from_mode, from));
615 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
616 to, unsignedp);
617 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
618 to, unsignedp);
619 if (tmp != to)
620 emit_move_insn (to, tmp);
621 return;
622 }
623 }
624
625 /* Support special truncate insns for certain modes. */
626 if (convert_optab_handler (trunc_optab, to_mode,
627 from_mode) != CODE_FOR_nothing)
628 {
629 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
630 to, from, UNKNOWN);
631 return;
632 }
633
634 /* Handle truncation of volatile memrefs, and so on;
635 the things that couldn't be truncated directly,
636 and for which there was no special instruction.
637
638 ??? Code above formerly short-circuited this, for most integer
639 mode pairs, with a force_reg in from_mode followed by a recursive
640 call to this routine. Appears always to have been wrong. */
641 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
642 {
643 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
644 emit_move_insn (to, temp);
645 return;
646 }
647
648 /* Mode combination is not recognized. */
649 gcc_unreachable ();
650 }
651
652 /* Return an rtx for a value that would result
653 from converting X to mode MODE.
654 Both X and MODE may be floating, or both integer.
655 UNSIGNEDP is nonzero if X is an unsigned value.
656 This can be done by referring to a part of X in place
657 or by copying to a new temporary with conversion. */
658
659 rtx
660 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
661 {
662 return convert_modes (mode, VOIDmode, x, unsignedp);
663 }
664
665 /* Return an rtx for a value that would result
666 from converting X from mode OLDMODE to mode MODE.
667 Both modes may be floating, or both integer.
668 UNSIGNEDP is nonzero if X is an unsigned value.
669
670 This can be done by referring to a part of X in place
671 or by copying to a new temporary with conversion.
672
673 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
674
675 rtx
676 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
677 {
678 rtx temp;
679 scalar_int_mode int_mode;
680
681 /* If FROM is a SUBREG that indicates that we have already done at least
682 the required extension, strip it. */
683
684 if (GET_CODE (x) == SUBREG
685 && SUBREG_PROMOTED_VAR_P (x)
686 && is_a <scalar_int_mode> (mode, &int_mode)
687 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
688 >= GET_MODE_PRECISION (int_mode))
689 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
690 x = gen_lowpart (int_mode, SUBREG_REG (x));
691
692 if (GET_MODE (x) != VOIDmode)
693 oldmode = GET_MODE (x);
694
695 if (mode == oldmode)
696 return x;
697
698 if (CONST_SCALAR_INT_P (x)
699 && is_int_mode (mode, &int_mode))
700 {
701 /* If the caller did not tell us the old mode, then there is not
702 much to do with respect to canonicalization. We have to
703 assume that all the bits are significant. */
704 if (GET_MODE_CLASS (oldmode) != MODE_INT)
705 oldmode = MAX_MODE_INT;
706 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
707 GET_MODE_PRECISION (int_mode),
708 unsignedp ? UNSIGNED : SIGNED);
709 return immed_wide_int_const (w, int_mode);
710 }
711
712 /* We can do this with a gen_lowpart if both desired and current modes
713 are integer, and this is either a constant integer, a register, or a
714 non-volatile MEM. */
715 scalar_int_mode int_oldmode;
716 if (is_int_mode (mode, &int_mode)
717 && is_int_mode (oldmode, &int_oldmode)
718 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
719 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
720 || CONST_POLY_INT_P (x)
721 || (REG_P (x)
722 && (!HARD_REGISTER_P (x)
723 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
724 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
725 return gen_lowpart (int_mode, x);
726
727 /* Converting from integer constant into mode is always equivalent to an
728 subreg operation. */
729 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
730 {
731 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
732 GET_MODE_BITSIZE (oldmode)));
733 return simplify_gen_subreg (mode, x, oldmode, 0);
734 }
735
736 temp = gen_reg_rtx (mode);
737 convert_move (temp, x, unsignedp);
738 return temp;
739 }
740 \f
741 /* Return the largest alignment we can use for doing a move (or store)
742 of MAX_PIECES. ALIGN is the largest alignment we could use. */
743
744 static unsigned int
745 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
746 {
747 scalar_int_mode tmode
748 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
749
750 if (align >= GET_MODE_ALIGNMENT (tmode))
751 align = GET_MODE_ALIGNMENT (tmode);
752 else
753 {
754 scalar_int_mode xmode = NARROWEST_INT_MODE;
755 opt_scalar_int_mode mode_iter;
756 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
757 {
758 tmode = mode_iter.require ();
759 if (GET_MODE_SIZE (tmode) > max_pieces
760 || targetm.slow_unaligned_access (tmode, align))
761 break;
762 xmode = tmode;
763 }
764
765 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
766 }
767
768 return align;
769 }
770
771 /* Return the widest integer mode that is narrower than SIZE bytes. */
772
773 static scalar_int_mode
774 widest_int_mode_for_size (unsigned int size)
775 {
776 scalar_int_mode result = NARROWEST_INT_MODE;
777
778 gcc_checking_assert (size > 1);
779
780 opt_scalar_int_mode tmode;
781 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
782 if (GET_MODE_SIZE (tmode.require ()) < size)
783 result = tmode.require ();
784
785 return result;
786 }
787
788 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
789 and should be performed piecewise. */
790
791 static bool
792 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
793 enum by_pieces_operation op)
794 {
795 return targetm.use_by_pieces_infrastructure_p (len, align, op,
796 optimize_insn_for_speed_p ());
797 }
798
799 /* Determine whether the LEN bytes can be moved by using several move
800 instructions. Return nonzero if a call to move_by_pieces should
801 succeed. */
802
803 bool
804 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
805 {
806 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
807 }
808
809 /* Return number of insns required to perform operation OP by pieces
810 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
811
812 unsigned HOST_WIDE_INT
813 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
814 unsigned int max_size, by_pieces_operation op)
815 {
816 unsigned HOST_WIDE_INT n_insns = 0;
817
818 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
819
820 while (max_size > 1 && l > 0)
821 {
822 scalar_int_mode mode = widest_int_mode_for_size (max_size);
823 enum insn_code icode;
824
825 unsigned int modesize = GET_MODE_SIZE (mode);
826
827 icode = optab_handler (mov_optab, mode);
828 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
829 {
830 unsigned HOST_WIDE_INT n_pieces = l / modesize;
831 l %= modesize;
832 switch (op)
833 {
834 default:
835 n_insns += n_pieces;
836 break;
837
838 case COMPARE_BY_PIECES:
839 int batch = targetm.compare_by_pieces_branch_ratio (mode);
840 int batch_ops = 4 * batch - 1;
841 unsigned HOST_WIDE_INT full = n_pieces / batch;
842 n_insns += full * batch_ops;
843 if (n_pieces % batch != 0)
844 n_insns++;
845 break;
846
847 }
848 }
849 max_size = modesize;
850 }
851
852 gcc_assert (!l);
853 return n_insns;
854 }
855
856 /* Used when performing piecewise block operations, holds information
857 about one of the memory objects involved. The member functions
858 can be used to generate code for loading from the object and
859 updating the address when iterating. */
860
861 class pieces_addr
862 {
863 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
864 stack pushes. */
865 rtx m_obj;
866 /* The address of the object. Can differ from that seen in the
867 MEM rtx if we copied the address to a register. */
868 rtx m_addr;
869 /* Nonzero if the address on the object has an autoincrement already,
870 signifies whether that was an increment or decrement. */
871 signed char m_addr_inc;
872 /* Nonzero if we intend to use autoinc without the address already
873 having autoinc form. We will insert add insns around each memory
874 reference, expecting later passes to form autoinc addressing modes.
875 The only supported options are predecrement and postincrement. */
876 signed char m_explicit_inc;
877 /* True if we have either of the two possible cases of using
878 autoincrement. */
879 bool m_auto;
880 /* True if this is an address to be used for load operations rather
881 than stores. */
882 bool m_is_load;
883
884 /* Optionally, a function to obtain constants for any given offset into
885 the objects, and data associated with it. */
886 by_pieces_constfn m_constfn;
887 void *m_cfndata;
888 public:
889 pieces_addr (rtx, bool, by_pieces_constfn, void *);
890 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
891 void increment_address (HOST_WIDE_INT);
892 void maybe_predec (HOST_WIDE_INT);
893 void maybe_postinc (HOST_WIDE_INT);
894 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
895 int get_addr_inc ()
896 {
897 return m_addr_inc;
898 }
899 };
900
901 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
902 true if the operation to be performed on this object is a load
903 rather than a store. For stores, OBJ can be NULL, in which case we
904 assume the operation is a stack push. For loads, the optional
905 CONSTFN and its associated CFNDATA can be used in place of the
906 memory load. */
907
908 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
909 void *cfndata)
910 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
911 {
912 m_addr_inc = 0;
913 m_auto = false;
914 if (obj)
915 {
916 rtx addr = XEXP (obj, 0);
917 rtx_code code = GET_CODE (addr);
918 m_addr = addr;
919 bool dec = code == PRE_DEC || code == POST_DEC;
920 bool inc = code == PRE_INC || code == POST_INC;
921 m_auto = inc || dec;
922 if (m_auto)
923 m_addr_inc = dec ? -1 : 1;
924
925 /* While we have always looked for these codes here, the code
926 implementing the memory operation has never handled them.
927 Support could be added later if necessary or beneficial. */
928 gcc_assert (code != PRE_INC && code != POST_DEC);
929 }
930 else
931 {
932 m_addr = NULL_RTX;
933 if (!is_load)
934 {
935 m_auto = true;
936 if (STACK_GROWS_DOWNWARD)
937 m_addr_inc = -1;
938 else
939 m_addr_inc = 1;
940 }
941 else
942 gcc_assert (constfn != NULL);
943 }
944 m_explicit_inc = 0;
945 if (constfn)
946 gcc_assert (is_load);
947 }
948
949 /* Decide whether to use autoinc for an address involved in a memory op.
950 MODE is the mode of the accesses, REVERSE is true if we've decided to
951 perform the operation starting from the end, and LEN is the length of
952 the operation. Don't override an earlier decision to set m_auto. */
953
954 void
955 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
956 HOST_WIDE_INT len)
957 {
958 if (m_auto || m_obj == NULL_RTX)
959 return;
960
961 bool use_predec = (m_is_load
962 ? USE_LOAD_PRE_DECREMENT (mode)
963 : USE_STORE_PRE_DECREMENT (mode));
964 bool use_postinc = (m_is_load
965 ? USE_LOAD_POST_INCREMENT (mode)
966 : USE_STORE_POST_INCREMENT (mode));
967 machine_mode addr_mode = get_address_mode (m_obj);
968
969 if (use_predec && reverse)
970 {
971 m_addr = copy_to_mode_reg (addr_mode,
972 plus_constant (addr_mode,
973 m_addr, len));
974 m_auto = true;
975 m_explicit_inc = -1;
976 }
977 else if (use_postinc && !reverse)
978 {
979 m_addr = copy_to_mode_reg (addr_mode, m_addr);
980 m_auto = true;
981 m_explicit_inc = 1;
982 }
983 else if (CONSTANT_P (m_addr))
984 m_addr = copy_to_mode_reg (addr_mode, m_addr);
985 }
986
987 /* Adjust the address to refer to the data at OFFSET in MODE. If we
988 are using autoincrement for this address, we don't add the offset,
989 but we still modify the MEM's properties. */
990
991 rtx
992 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
993 {
994 if (m_constfn)
995 return m_constfn (m_cfndata, offset, mode);
996 if (m_obj == NULL_RTX)
997 return NULL_RTX;
998 if (m_auto)
999 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1000 else
1001 return adjust_address (m_obj, mode, offset);
1002 }
1003
1004 /* Emit an add instruction to increment the address by SIZE. */
1005
1006 void
1007 pieces_addr::increment_address (HOST_WIDE_INT size)
1008 {
1009 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1010 emit_insn (gen_add2_insn (m_addr, amount));
1011 }
1012
1013 /* If we are supposed to decrement the address after each access, emit code
1014 to do so now. Increment by SIZE (which has should have the correct sign
1015 already). */
1016
1017 void
1018 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1019 {
1020 if (m_explicit_inc >= 0)
1021 return;
1022 gcc_assert (HAVE_PRE_DECREMENT);
1023 increment_address (size);
1024 }
1025
1026 /* If we are supposed to decrement the address after each access, emit code
1027 to do so now. Increment by SIZE. */
1028
1029 void
1030 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1031 {
1032 if (m_explicit_inc <= 0)
1033 return;
1034 gcc_assert (HAVE_POST_INCREMENT);
1035 increment_address (size);
1036 }
1037
1038 /* This structure is used by do_op_by_pieces to describe the operation
1039 to be performed. */
1040
1041 class op_by_pieces_d
1042 {
1043 protected:
1044 pieces_addr m_to, m_from;
1045 unsigned HOST_WIDE_INT m_len;
1046 HOST_WIDE_INT m_offset;
1047 unsigned int m_align;
1048 unsigned int m_max_size;
1049 bool m_reverse;
1050
1051 /* Virtual functions, overriden by derived classes for the specific
1052 operation. */
1053 virtual void generate (rtx, rtx, machine_mode) = 0;
1054 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1055 virtual void finish_mode (machine_mode)
1056 {
1057 }
1058
1059 public:
1060 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1061 unsigned HOST_WIDE_INT, unsigned int);
1062 void run ();
1063 };
1064
1065 /* The constructor for an op_by_pieces_d structure. We require two
1066 objects named TO and FROM, which are identified as loads or stores
1067 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1068 and its associated FROM_CFN_DATA can be used to replace loads with
1069 constant values. LEN describes the length of the operation. */
1070
1071 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1072 rtx from, bool from_load,
1073 by_pieces_constfn from_cfn,
1074 void *from_cfn_data,
1075 unsigned HOST_WIDE_INT len,
1076 unsigned int align)
1077 : m_to (to, to_load, NULL, NULL),
1078 m_from (from, from_load, from_cfn, from_cfn_data),
1079 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1080 {
1081 int toi = m_to.get_addr_inc ();
1082 int fromi = m_from.get_addr_inc ();
1083 if (toi >= 0 && fromi >= 0)
1084 m_reverse = false;
1085 else if (toi <= 0 && fromi <= 0)
1086 m_reverse = true;
1087 else
1088 gcc_unreachable ();
1089
1090 m_offset = m_reverse ? len : 0;
1091 align = MIN (to ? MEM_ALIGN (to) : align,
1092 from ? MEM_ALIGN (from) : align);
1093
1094 /* If copying requires more than two move insns,
1095 copy addresses to registers (to make displacements shorter)
1096 and use post-increment if available. */
1097 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1098 {
1099 /* Find the mode of the largest comparison. */
1100 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1101
1102 m_from.decide_autoinc (mode, m_reverse, len);
1103 m_to.decide_autoinc (mode, m_reverse, len);
1104 }
1105
1106 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1107 m_align = align;
1108 }
1109
1110 /* This function contains the main loop used for expanding a block
1111 operation. First move what we can in the largest integer mode,
1112 then go to successively smaller modes. For every access, call
1113 GENFUN with the two operands and the EXTRA_DATA. */
1114
1115 void
1116 op_by_pieces_d::run ()
1117 {
1118 while (m_max_size > 1 && m_len > 0)
1119 {
1120 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1121
1122 if (prepare_mode (mode, m_align))
1123 {
1124 unsigned int size = GET_MODE_SIZE (mode);
1125 rtx to1 = NULL_RTX, from1;
1126
1127 while (m_len >= size)
1128 {
1129 if (m_reverse)
1130 m_offset -= size;
1131
1132 to1 = m_to.adjust (mode, m_offset);
1133 from1 = m_from.adjust (mode, m_offset);
1134
1135 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1136 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1137
1138 generate (to1, from1, mode);
1139
1140 m_to.maybe_postinc (size);
1141 m_from.maybe_postinc (size);
1142
1143 if (!m_reverse)
1144 m_offset += size;
1145
1146 m_len -= size;
1147 }
1148
1149 finish_mode (mode);
1150 }
1151
1152 m_max_size = GET_MODE_SIZE (mode);
1153 }
1154
1155 /* The code above should have handled everything. */
1156 gcc_assert (!m_len);
1157 }
1158
1159 /* Derived class from op_by_pieces_d, providing support for block move
1160 operations. */
1161
1162 class move_by_pieces_d : public op_by_pieces_d
1163 {
1164 insn_gen_fn m_gen_fun;
1165 void generate (rtx, rtx, machine_mode);
1166 bool prepare_mode (machine_mode, unsigned int);
1167
1168 public:
1169 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1170 unsigned int align)
1171 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1172 {
1173 }
1174 rtx finish_retmode (memop_ret);
1175 };
1176
1177 /* Return true if MODE can be used for a set of copies, given an
1178 alignment ALIGN. Prepare whatever data is necessary for later
1179 calls to generate. */
1180
1181 bool
1182 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1183 {
1184 insn_code icode = optab_handler (mov_optab, mode);
1185 m_gen_fun = GEN_FCN (icode);
1186 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1187 }
1188
1189 /* A callback used when iterating for a compare_by_pieces_operation.
1190 OP0 and OP1 are the values that have been loaded and should be
1191 compared in MODE. If OP0 is NULL, this means we should generate a
1192 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1193 gen function that should be used to generate the mode. */
1194
1195 void
1196 move_by_pieces_d::generate (rtx op0, rtx op1,
1197 machine_mode mode ATTRIBUTE_UNUSED)
1198 {
1199 #ifdef PUSH_ROUNDING
1200 if (op0 == NULL_RTX)
1201 {
1202 emit_single_push_insn (mode, op1, NULL);
1203 return;
1204 }
1205 #endif
1206 emit_insn (m_gen_fun (op0, op1));
1207 }
1208
1209 /* Perform the final adjustment at the end of a string to obtain the
1210 correct return value for the block operation.
1211 Return value is based on RETMODE argument. */
1212
1213 rtx
1214 move_by_pieces_d::finish_retmode (memop_ret retmode)
1215 {
1216 gcc_assert (!m_reverse);
1217 if (retmode == RETURN_END_MINUS_ONE)
1218 {
1219 m_to.maybe_postinc (-1);
1220 --m_offset;
1221 }
1222 return m_to.adjust (QImode, m_offset);
1223 }
1224
1225 /* Generate several move instructions to copy LEN bytes from block FROM to
1226 block TO. (These are MEM rtx's with BLKmode).
1227
1228 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1229 used to push FROM to the stack.
1230
1231 ALIGN is maximum stack alignment we can assume.
1232
1233 Return value is based on RETMODE argument. */
1234
1235 rtx
1236 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1237 unsigned int align, memop_ret retmode)
1238 {
1239 #ifndef PUSH_ROUNDING
1240 if (to == NULL)
1241 gcc_unreachable ();
1242 #endif
1243
1244 move_by_pieces_d data (to, from, len, align);
1245
1246 data.run ();
1247
1248 if (retmode != RETURN_BEGIN)
1249 return data.finish_retmode (retmode);
1250 else
1251 return to;
1252 }
1253
1254 /* Derived class from op_by_pieces_d, providing support for block move
1255 operations. */
1256
1257 class store_by_pieces_d : public op_by_pieces_d
1258 {
1259 insn_gen_fn m_gen_fun;
1260 void generate (rtx, rtx, machine_mode);
1261 bool prepare_mode (machine_mode, unsigned int);
1262
1263 public:
1264 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1265 unsigned HOST_WIDE_INT len, unsigned int align)
1266 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1267 {
1268 }
1269 rtx finish_retmode (memop_ret);
1270 };
1271
1272 /* Return true if MODE can be used for a set of stores, given an
1273 alignment ALIGN. Prepare whatever data is necessary for later
1274 calls to generate. */
1275
1276 bool
1277 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1278 {
1279 insn_code icode = optab_handler (mov_optab, mode);
1280 m_gen_fun = GEN_FCN (icode);
1281 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1282 }
1283
1284 /* A callback used when iterating for a store_by_pieces_operation.
1285 OP0 and OP1 are the values that have been loaded and should be
1286 compared in MODE. If OP0 is NULL, this means we should generate a
1287 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1288 gen function that should be used to generate the mode. */
1289
1290 void
1291 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1292 {
1293 emit_insn (m_gen_fun (op0, op1));
1294 }
1295
1296 /* Perform the final adjustment at the end of a string to obtain the
1297 correct return value for the block operation.
1298 Return value is based on RETMODE argument. */
1299
1300 rtx
1301 store_by_pieces_d::finish_retmode (memop_ret retmode)
1302 {
1303 gcc_assert (!m_reverse);
1304 if (retmode == RETURN_END_MINUS_ONE)
1305 {
1306 m_to.maybe_postinc (-1);
1307 --m_offset;
1308 }
1309 return m_to.adjust (QImode, m_offset);
1310 }
1311
1312 /* Determine whether the LEN bytes generated by CONSTFUN can be
1313 stored to memory using several move instructions. CONSTFUNDATA is
1314 a pointer which will be passed as argument in every CONSTFUN call.
1315 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1316 a memset operation and false if it's a copy of a constant string.
1317 Return nonzero if a call to store_by_pieces should succeed. */
1318
1319 int
1320 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1321 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1322 void *constfundata, unsigned int align, bool memsetp)
1323 {
1324 unsigned HOST_WIDE_INT l;
1325 unsigned int max_size;
1326 HOST_WIDE_INT offset = 0;
1327 enum insn_code icode;
1328 int reverse;
1329 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1330 rtx cst ATTRIBUTE_UNUSED;
1331
1332 if (len == 0)
1333 return 1;
1334
1335 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1336 memsetp
1337 ? SET_BY_PIECES
1338 : STORE_BY_PIECES,
1339 optimize_insn_for_speed_p ()))
1340 return 0;
1341
1342 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1343
1344 /* We would first store what we can in the largest integer mode, then go to
1345 successively smaller modes. */
1346
1347 for (reverse = 0;
1348 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1349 reverse++)
1350 {
1351 l = len;
1352 max_size = STORE_MAX_PIECES + 1;
1353 while (max_size > 1 && l > 0)
1354 {
1355 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1356
1357 icode = optab_handler (mov_optab, mode);
1358 if (icode != CODE_FOR_nothing
1359 && align >= GET_MODE_ALIGNMENT (mode))
1360 {
1361 unsigned int size = GET_MODE_SIZE (mode);
1362
1363 while (l >= size)
1364 {
1365 if (reverse)
1366 offset -= size;
1367
1368 cst = (*constfun) (constfundata, offset, mode);
1369 if (!targetm.legitimate_constant_p (mode, cst))
1370 return 0;
1371
1372 if (!reverse)
1373 offset += size;
1374
1375 l -= size;
1376 }
1377 }
1378
1379 max_size = GET_MODE_SIZE (mode);
1380 }
1381
1382 /* The code above should have handled everything. */
1383 gcc_assert (!l);
1384 }
1385
1386 return 1;
1387 }
1388
1389 /* Generate several move instructions to store LEN bytes generated by
1390 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1391 pointer which will be passed as argument in every CONSTFUN call.
1392 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1393 a memset operation and false if it's a copy of a constant string.
1394 Return value is based on RETMODE argument. */
1395
1396 rtx
1397 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1398 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1399 void *constfundata, unsigned int align, bool memsetp,
1400 memop_ret retmode)
1401 {
1402 if (len == 0)
1403 {
1404 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1405 return to;
1406 }
1407
1408 gcc_assert (targetm.use_by_pieces_infrastructure_p
1409 (len, align,
1410 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1411 optimize_insn_for_speed_p ()));
1412
1413 store_by_pieces_d data (to, constfun, constfundata, len, align);
1414 data.run ();
1415
1416 if (retmode != RETURN_BEGIN)
1417 return data.finish_retmode (retmode);
1418 else
1419 return to;
1420 }
1421
1422 /* Callback routine for clear_by_pieces.
1423 Return const0_rtx unconditionally. */
1424
1425 static rtx
1426 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1427 {
1428 return const0_rtx;
1429 }
1430
1431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1433
1434 static void
1435 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1436 {
1437 if (len == 0)
1438 return;
1439
1440 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1441 data.run ();
1442 }
1443
1444 /* Context used by compare_by_pieces_genfn. It stores the fail label
1445 to jump to in case of miscomparison, and for branch ratios greater than 1,
1446 it stores an accumulator and the current and maximum counts before
1447 emitting another branch. */
1448
1449 class compare_by_pieces_d : public op_by_pieces_d
1450 {
1451 rtx_code_label *m_fail_label;
1452 rtx m_accumulator;
1453 int m_count, m_batch;
1454
1455 void generate (rtx, rtx, machine_mode);
1456 bool prepare_mode (machine_mode, unsigned int);
1457 void finish_mode (machine_mode);
1458 public:
1459 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1460 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1461 rtx_code_label *fail_label)
1462 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1463 {
1464 m_fail_label = fail_label;
1465 }
1466 };
1467
1468 /* A callback used when iterating for a compare_by_pieces_operation.
1469 OP0 and OP1 are the values that have been loaded and should be
1470 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1471 context structure. */
1472
1473 void
1474 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1475 {
1476 if (m_batch > 1)
1477 {
1478 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1479 true, OPTAB_LIB_WIDEN);
1480 if (m_count != 0)
1481 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1482 true, OPTAB_LIB_WIDEN);
1483 m_accumulator = temp;
1484
1485 if (++m_count < m_batch)
1486 return;
1487
1488 m_count = 0;
1489 op0 = m_accumulator;
1490 op1 = const0_rtx;
1491 m_accumulator = NULL_RTX;
1492 }
1493 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1494 m_fail_label, profile_probability::uninitialized ());
1495 }
1496
1497 /* Return true if MODE can be used for a set of moves and comparisons,
1498 given an alignment ALIGN. Prepare whatever data is necessary for
1499 later calls to generate. */
1500
1501 bool
1502 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1503 {
1504 insn_code icode = optab_handler (mov_optab, mode);
1505 if (icode == CODE_FOR_nothing
1506 || align < GET_MODE_ALIGNMENT (mode)
1507 || !can_compare_p (EQ, mode, ccp_jump))
1508 return false;
1509 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1510 if (m_batch < 0)
1511 return false;
1512 m_accumulator = NULL_RTX;
1513 m_count = 0;
1514 return true;
1515 }
1516
1517 /* Called after expanding a series of comparisons in MODE. If we have
1518 accumulated results for which we haven't emitted a branch yet, do
1519 so now. */
1520
1521 void
1522 compare_by_pieces_d::finish_mode (machine_mode mode)
1523 {
1524 if (m_accumulator != NULL_RTX)
1525 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1526 NULL_RTX, NULL, m_fail_label,
1527 profile_probability::uninitialized ());
1528 }
1529
1530 /* Generate several move instructions to compare LEN bytes from blocks
1531 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1532
1533 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1534 used to push FROM to the stack.
1535
1536 ALIGN is maximum stack alignment we can assume.
1537
1538 Optionally, the caller can pass a constfn and associated data in A1_CFN
1539 and A1_CFN_DATA. describing that the second operand being compared is a
1540 known constant and how to obtain its data. */
1541
1542 static rtx
1543 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1544 rtx target, unsigned int align,
1545 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1546 {
1547 rtx_code_label *fail_label = gen_label_rtx ();
1548 rtx_code_label *end_label = gen_label_rtx ();
1549
1550 if (target == NULL_RTX
1551 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1552 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1553
1554 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1555 fail_label);
1556
1557 data.run ();
1558
1559 emit_move_insn (target, const0_rtx);
1560 emit_jump (end_label);
1561 emit_barrier ();
1562 emit_label (fail_label);
1563 emit_move_insn (target, const1_rtx);
1564 emit_label (end_label);
1565
1566 return target;
1567 }
1568 \f
1569 /* Emit code to move a block Y to a block X. This may be done with
1570 string-move instructions, with multiple scalar move instructions,
1571 or with a library call.
1572
1573 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1574 SIZE is an rtx that says how long they are.
1575 ALIGN is the maximum alignment we can assume they have.
1576 METHOD describes what kind of copy this is, and what mechanisms may be used.
1577 MIN_SIZE is the minimal size of block to move
1578 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1579 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1580
1581 Return the address of the new block, if memcpy is called and returns it,
1582 0 otherwise. */
1583
1584 rtx
1585 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1586 unsigned int expected_align, HOST_WIDE_INT expected_size,
1587 unsigned HOST_WIDE_INT min_size,
1588 unsigned HOST_WIDE_INT max_size,
1589 unsigned HOST_WIDE_INT probable_max_size,
1590 bool bail_out_libcall, bool *is_move_done,
1591 bool might_overlap)
1592 {
1593 int may_use_call;
1594 rtx retval = 0;
1595 unsigned int align;
1596
1597 if (is_move_done)
1598 *is_move_done = true;
1599
1600 gcc_assert (size);
1601 if (CONST_INT_P (size) && INTVAL (size) == 0)
1602 return 0;
1603
1604 switch (method)
1605 {
1606 case BLOCK_OP_NORMAL:
1607 case BLOCK_OP_TAILCALL:
1608 may_use_call = 1;
1609 break;
1610
1611 case BLOCK_OP_CALL_PARM:
1612 may_use_call = block_move_libcall_safe_for_call_parm ();
1613
1614 /* Make inhibit_defer_pop nonzero around the library call
1615 to force it to pop the arguments right away. */
1616 NO_DEFER_POP;
1617 break;
1618
1619 case BLOCK_OP_NO_LIBCALL:
1620 may_use_call = 0;
1621 break;
1622
1623 case BLOCK_OP_NO_LIBCALL_RET:
1624 may_use_call = -1;
1625 break;
1626
1627 default:
1628 gcc_unreachable ();
1629 }
1630
1631 gcc_assert (MEM_P (x) && MEM_P (y));
1632 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1633 gcc_assert (align >= BITS_PER_UNIT);
1634
1635 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1636 block copy is more efficient for other large modes, e.g. DCmode. */
1637 x = adjust_address (x, BLKmode, 0);
1638 y = adjust_address (y, BLKmode, 0);
1639
1640 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1641 can be incorrect is coming from __builtin_memcpy. */
1642 poly_int64 const_size;
1643 if (poly_int_rtx_p (size, &const_size))
1644 {
1645 x = shallow_copy_rtx (x);
1646 y = shallow_copy_rtx (y);
1647 set_mem_size (x, const_size);
1648 set_mem_size (y, const_size);
1649 }
1650
1651 bool pieces_ok = CONST_INT_P (size)
1652 && can_move_by_pieces (INTVAL (size), align);
1653 bool pattern_ok = false;
1654
1655 if (!pieces_ok || might_overlap)
1656 {
1657 pattern_ok
1658 = emit_block_move_via_pattern (x, y, size, align,
1659 expected_align, expected_size,
1660 min_size, max_size, probable_max_size,
1661 might_overlap);
1662 if (!pattern_ok && might_overlap)
1663 {
1664 /* Do not try any of the other methods below as they are not safe
1665 for overlapping moves. */
1666 *is_move_done = false;
1667 return retval;
1668 }
1669 }
1670
1671 if (pattern_ok)
1672 ;
1673 else if (pieces_ok)
1674 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1675 else if (may_use_call && !might_overlap
1676 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1677 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1678 {
1679 if (bail_out_libcall)
1680 {
1681 if (is_move_done)
1682 *is_move_done = false;
1683 return retval;
1684 }
1685
1686 if (may_use_call < 0)
1687 return pc_rtx;
1688
1689 retval = emit_block_copy_via_libcall (x, y, size,
1690 method == BLOCK_OP_TAILCALL);
1691 }
1692 else if (might_overlap)
1693 *is_move_done = false;
1694 else
1695 emit_block_move_via_loop (x, y, size, align);
1696
1697 if (method == BLOCK_OP_CALL_PARM)
1698 OK_DEFER_POP;
1699
1700 return retval;
1701 }
1702
1703 rtx
1704 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1705 {
1706 unsigned HOST_WIDE_INT max, min = 0;
1707 if (GET_CODE (size) == CONST_INT)
1708 min = max = UINTVAL (size);
1709 else
1710 max = GET_MODE_MASK (GET_MODE (size));
1711 return emit_block_move_hints (x, y, size, method, 0, -1,
1712 min, max, max);
1713 }
1714
1715 /* A subroutine of emit_block_move. Returns true if calling the
1716 block move libcall will not clobber any parameters which may have
1717 already been placed on the stack. */
1718
1719 static bool
1720 block_move_libcall_safe_for_call_parm (void)
1721 {
1722 tree fn;
1723
1724 /* If arguments are pushed on the stack, then they're safe. */
1725 if (PUSH_ARGS)
1726 return true;
1727
1728 /* If registers go on the stack anyway, any argument is sure to clobber
1729 an outgoing argument. */
1730 #if defined (REG_PARM_STACK_SPACE)
1731 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1732 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1733 depend on its argument. */
1734 (void) fn;
1735 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1736 && REG_PARM_STACK_SPACE (fn) != 0)
1737 return false;
1738 #endif
1739
1740 /* If any argument goes in memory, then it might clobber an outgoing
1741 argument. */
1742 {
1743 CUMULATIVE_ARGS args_so_far_v;
1744 cumulative_args_t args_so_far;
1745 tree arg;
1746
1747 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1748 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1749 args_so_far = pack_cumulative_args (&args_so_far_v);
1750
1751 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1752 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1753 {
1754 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1755 function_arg_info arg_info (mode, /*named=*/true);
1756 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
1757 if (!tmp || !REG_P (tmp))
1758 return false;
1759 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
1760 return false;
1761 targetm.calls.function_arg_advance (args_so_far, arg_info);
1762 }
1763 }
1764 return true;
1765 }
1766
1767 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
1768 return true if successful.
1769
1770 X is the destination of the copy or move.
1771 Y is the source of the copy or move.
1772 SIZE is the size of the block to be moved.
1773
1774 MIGHT_OVERLAP indicates this originated with expansion of a
1775 builtin_memmove() and the source and destination blocks may
1776 overlap.
1777 */
1778
1779 static bool
1780 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
1781 unsigned int expected_align,
1782 HOST_WIDE_INT expected_size,
1783 unsigned HOST_WIDE_INT min_size,
1784 unsigned HOST_WIDE_INT max_size,
1785 unsigned HOST_WIDE_INT probable_max_size,
1786 bool might_overlap)
1787 {
1788 if (expected_align < align)
1789 expected_align = align;
1790 if (expected_size != -1)
1791 {
1792 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1793 expected_size = probable_max_size;
1794 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1795 expected_size = min_size;
1796 }
1797
1798 /* Since this is a move insn, we don't care about volatility. */
1799 temporary_volatile_ok v (true);
1800
1801 /* Try the most limited insn first, because there's no point
1802 including more than one in the machine description unless
1803 the more limited one has some advantage. */
1804
1805 opt_scalar_int_mode mode_iter;
1806 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1807 {
1808 scalar_int_mode mode = mode_iter.require ();
1809 enum insn_code code;
1810 if (might_overlap)
1811 code = direct_optab_handler (movmem_optab, mode);
1812 else
1813 code = direct_optab_handler (cpymem_optab, mode);
1814
1815 if (code != CODE_FOR_nothing
1816 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1817 here because if SIZE is less than the mode mask, as it is
1818 returned by the macro, it will definitely be less than the
1819 actual mode mask. Since SIZE is within the Pmode address
1820 space, we limit MODE to Pmode. */
1821 && ((CONST_INT_P (size)
1822 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1823 <= (GET_MODE_MASK (mode) >> 1)))
1824 || max_size <= (GET_MODE_MASK (mode) >> 1)
1825 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1826 {
1827 class expand_operand ops[9];
1828 unsigned int nops;
1829
1830 /* ??? When called via emit_block_move_for_call, it'd be
1831 nice if there were some way to inform the backend, so
1832 that it doesn't fail the expansion because it thinks
1833 emitting the libcall would be more efficient. */
1834 nops = insn_data[(int) code].n_generator_args;
1835 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1836
1837 create_fixed_operand (&ops[0], x);
1838 create_fixed_operand (&ops[1], y);
1839 /* The check above guarantees that this size conversion is valid. */
1840 create_convert_operand_to (&ops[2], size, mode, true);
1841 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1842 if (nops >= 6)
1843 {
1844 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1845 create_integer_operand (&ops[5], expected_size);
1846 }
1847 if (nops >= 8)
1848 {
1849 create_integer_operand (&ops[6], min_size);
1850 /* If we cannot represent the maximal size,
1851 make parameter NULL. */
1852 if ((HOST_WIDE_INT) max_size != -1)
1853 create_integer_operand (&ops[7], max_size);
1854 else
1855 create_fixed_operand (&ops[7], NULL);
1856 }
1857 if (nops == 9)
1858 {
1859 /* If we cannot represent the maximal size,
1860 make parameter NULL. */
1861 if ((HOST_WIDE_INT) probable_max_size != -1)
1862 create_integer_operand (&ops[8], probable_max_size);
1863 else
1864 create_fixed_operand (&ops[8], NULL);
1865 }
1866 if (maybe_expand_insn (code, nops, ops))
1867 return true;
1868 }
1869 }
1870
1871 return false;
1872 }
1873
1874 /* A subroutine of emit_block_move. Copy the data via an explicit
1875 loop. This is used only when libcalls are forbidden. */
1876 /* ??? It'd be nice to copy in hunks larger than QImode. */
1877
1878 static void
1879 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1880 unsigned int align ATTRIBUTE_UNUSED)
1881 {
1882 rtx_code_label *cmp_label, *top_label;
1883 rtx iter, x_addr, y_addr, tmp;
1884 machine_mode x_addr_mode = get_address_mode (x);
1885 machine_mode y_addr_mode = get_address_mode (y);
1886 machine_mode iter_mode;
1887
1888 iter_mode = GET_MODE (size);
1889 if (iter_mode == VOIDmode)
1890 iter_mode = word_mode;
1891
1892 top_label = gen_label_rtx ();
1893 cmp_label = gen_label_rtx ();
1894 iter = gen_reg_rtx (iter_mode);
1895
1896 emit_move_insn (iter, const0_rtx);
1897
1898 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1899 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1900 do_pending_stack_adjust ();
1901
1902 emit_jump (cmp_label);
1903 emit_label (top_label);
1904
1905 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1906 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1907
1908 if (x_addr_mode != y_addr_mode)
1909 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1910 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1911
1912 x = change_address (x, QImode, x_addr);
1913 y = change_address (y, QImode, y_addr);
1914
1915 emit_move_insn (x, y);
1916
1917 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1918 true, OPTAB_LIB_WIDEN);
1919 if (tmp != iter)
1920 emit_move_insn (iter, tmp);
1921
1922 emit_label (cmp_label);
1923
1924 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1925 true, top_label,
1926 profile_probability::guessed_always ()
1927 .apply_scale (9, 10));
1928 }
1929 \f
1930 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1931 TAILCALL is true if this is a tail call. */
1932
1933 rtx
1934 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1935 rtx size, bool tailcall)
1936 {
1937 rtx dst_addr, src_addr;
1938 tree call_expr, dst_tree, src_tree, size_tree;
1939 machine_mode size_mode;
1940
1941 /* Since dst and src are passed to a libcall, mark the corresponding
1942 tree EXPR as addressable. */
1943 tree dst_expr = MEM_EXPR (dst);
1944 tree src_expr = MEM_EXPR (src);
1945 if (dst_expr)
1946 mark_addressable (dst_expr);
1947 if (src_expr)
1948 mark_addressable (src_expr);
1949
1950 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1951 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1952 dst_tree = make_tree (ptr_type_node, dst_addr);
1953
1954 src_addr = copy_addr_to_reg (XEXP (src, 0));
1955 src_addr = convert_memory_address (ptr_mode, src_addr);
1956 src_tree = make_tree (ptr_type_node, src_addr);
1957
1958 size_mode = TYPE_MODE (sizetype);
1959 size = convert_to_mode (size_mode, size, 1);
1960 size = copy_to_mode_reg (size_mode, size);
1961 size_tree = make_tree (sizetype, size);
1962
1963 /* It is incorrect to use the libcall calling conventions for calls to
1964 memcpy/memmove/memcmp because they can be provided by the user. */
1965 tree fn = builtin_decl_implicit (fncode);
1966 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1967 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1968
1969 return expand_call (call_expr, NULL_RTX, false);
1970 }
1971
1972 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1973 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1974 otherwise return null. */
1975
1976 rtx
1977 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1978 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1979 HOST_WIDE_INT align)
1980 {
1981 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1982
1983 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1984 target = NULL_RTX;
1985
1986 class expand_operand ops[5];
1987 create_output_operand (&ops[0], target, insn_mode);
1988 create_fixed_operand (&ops[1], arg1_rtx);
1989 create_fixed_operand (&ops[2], arg2_rtx);
1990 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1991 TYPE_UNSIGNED (arg3_type));
1992 create_integer_operand (&ops[4], align);
1993 if (maybe_expand_insn (icode, 5, ops))
1994 return ops[0].value;
1995 return NULL_RTX;
1996 }
1997
1998 /* Expand a block compare between X and Y with length LEN using the
1999 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2000 of the expression that was used to calculate the length. ALIGN
2001 gives the known minimum common alignment. */
2002
2003 static rtx
2004 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2005 unsigned align)
2006 {
2007 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2008 implementing memcmp because it will stop if it encounters two
2009 zero bytes. */
2010 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2011
2012 if (icode == CODE_FOR_nothing)
2013 return NULL_RTX;
2014
2015 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2016 }
2017
2018 /* Emit code to compare a block Y to a block X. This may be done with
2019 string-compare instructions, with multiple scalar instructions,
2020 or with a library call.
2021
2022 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2023 they are. LEN_TYPE is the type of the expression that was used to
2024 calculate it.
2025
2026 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2027 value of a normal memcmp call, instead we can just compare for equality.
2028 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2029 returning NULL_RTX.
2030
2031 Optionally, the caller can pass a constfn and associated data in Y_CFN
2032 and Y_CFN_DATA. describing that the second operand being compared is a
2033 known constant and how to obtain its data.
2034 Return the result of the comparison, or NULL_RTX if we failed to
2035 perform the operation. */
2036
2037 rtx
2038 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2039 bool equality_only, by_pieces_constfn y_cfn,
2040 void *y_cfndata)
2041 {
2042 rtx result = 0;
2043
2044 if (CONST_INT_P (len) && INTVAL (len) == 0)
2045 return const0_rtx;
2046
2047 gcc_assert (MEM_P (x) && MEM_P (y));
2048 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2049 gcc_assert (align >= BITS_PER_UNIT);
2050
2051 x = adjust_address (x, BLKmode, 0);
2052 y = adjust_address (y, BLKmode, 0);
2053
2054 if (equality_only
2055 && CONST_INT_P (len)
2056 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2057 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2058 y_cfn, y_cfndata);
2059 else
2060 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2061
2062 return result;
2063 }
2064 \f
2065 /* Copy all or part of a value X into registers starting at REGNO.
2066 The number of registers to be filled is NREGS. */
2067
2068 void
2069 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2070 {
2071 if (nregs == 0)
2072 return;
2073
2074 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2075 x = validize_mem (force_const_mem (mode, x));
2076
2077 /* See if the machine can do this with a load multiple insn. */
2078 if (targetm.have_load_multiple ())
2079 {
2080 rtx_insn *last = get_last_insn ();
2081 rtx first = gen_rtx_REG (word_mode, regno);
2082 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2083 GEN_INT (nregs)))
2084 {
2085 emit_insn (pat);
2086 return;
2087 }
2088 else
2089 delete_insns_since (last);
2090 }
2091
2092 for (int i = 0; i < nregs; i++)
2093 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2094 operand_subword_force (x, i, mode));
2095 }
2096
2097 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2098 The number of registers to be filled is NREGS. */
2099
2100 void
2101 move_block_from_reg (int regno, rtx x, int nregs)
2102 {
2103 if (nregs == 0)
2104 return;
2105
2106 /* See if the machine can do this with a store multiple insn. */
2107 if (targetm.have_store_multiple ())
2108 {
2109 rtx_insn *last = get_last_insn ();
2110 rtx first = gen_rtx_REG (word_mode, regno);
2111 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2112 GEN_INT (nregs)))
2113 {
2114 emit_insn (pat);
2115 return;
2116 }
2117 else
2118 delete_insns_since (last);
2119 }
2120
2121 for (int i = 0; i < nregs; i++)
2122 {
2123 rtx tem = operand_subword (x, i, 1, BLKmode);
2124
2125 gcc_assert (tem);
2126
2127 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2128 }
2129 }
2130
2131 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2132 ORIG, where ORIG is a non-consecutive group of registers represented by
2133 a PARALLEL. The clone is identical to the original except in that the
2134 original set of registers is replaced by a new set of pseudo registers.
2135 The new set has the same modes as the original set. */
2136
2137 rtx
2138 gen_group_rtx (rtx orig)
2139 {
2140 int i, length;
2141 rtx *tmps;
2142
2143 gcc_assert (GET_CODE (orig) == PARALLEL);
2144
2145 length = XVECLEN (orig, 0);
2146 tmps = XALLOCAVEC (rtx, length);
2147
2148 /* Skip a NULL entry in first slot. */
2149 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2150
2151 if (i)
2152 tmps[0] = 0;
2153
2154 for (; i < length; i++)
2155 {
2156 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2157 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2158
2159 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2160 }
2161
2162 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2163 }
2164
2165 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2166 except that values are placed in TMPS[i], and must later be moved
2167 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2168
2169 static void
2170 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2171 poly_int64 ssize)
2172 {
2173 rtx src;
2174 int start, i;
2175 machine_mode m = GET_MODE (orig_src);
2176
2177 gcc_assert (GET_CODE (dst) == PARALLEL);
2178
2179 if (m != VOIDmode
2180 && !SCALAR_INT_MODE_P (m)
2181 && !MEM_P (orig_src)
2182 && GET_CODE (orig_src) != CONCAT)
2183 {
2184 scalar_int_mode imode;
2185 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2186 {
2187 src = gen_reg_rtx (imode);
2188 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2189 }
2190 else
2191 {
2192 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2193 emit_move_insn (src, orig_src);
2194 }
2195 emit_group_load_1 (tmps, dst, src, type, ssize);
2196 return;
2197 }
2198
2199 /* Check for a NULL entry, used to indicate that the parameter goes
2200 both on the stack and in registers. */
2201 if (XEXP (XVECEXP (dst, 0, 0), 0))
2202 start = 0;
2203 else
2204 start = 1;
2205
2206 /* Process the pieces. */
2207 for (i = start; i < XVECLEN (dst, 0); i++)
2208 {
2209 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2210 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2211 poly_int64 bytelen = GET_MODE_SIZE (mode);
2212 poly_int64 shift = 0;
2213
2214 /* Handle trailing fragments that run over the size of the struct.
2215 It's the target's responsibility to make sure that the fragment
2216 cannot be strictly smaller in some cases and strictly larger
2217 in others. */
2218 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2219 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2220 {
2221 /* Arrange to shift the fragment to where it belongs.
2222 extract_bit_field loads to the lsb of the reg. */
2223 if (
2224 #ifdef BLOCK_REG_PADDING
2225 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2226 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2227 #else
2228 BYTES_BIG_ENDIAN
2229 #endif
2230 )
2231 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2232 bytelen = ssize - bytepos;
2233 gcc_assert (maybe_gt (bytelen, 0));
2234 }
2235
2236 /* If we won't be loading directly from memory, protect the real source
2237 from strange tricks we might play; but make sure that the source can
2238 be loaded directly into the destination. */
2239 src = orig_src;
2240 if (!MEM_P (orig_src)
2241 && (!CONSTANT_P (orig_src)
2242 || (GET_MODE (orig_src) != mode
2243 && GET_MODE (orig_src) != VOIDmode)))
2244 {
2245 if (GET_MODE (orig_src) == VOIDmode)
2246 src = gen_reg_rtx (mode);
2247 else
2248 src = gen_reg_rtx (GET_MODE (orig_src));
2249
2250 emit_move_insn (src, orig_src);
2251 }
2252
2253 /* Optimize the access just a bit. */
2254 if (MEM_P (src)
2255 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2256 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2257 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2258 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2259 {
2260 tmps[i] = gen_reg_rtx (mode);
2261 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2262 }
2263 else if (COMPLEX_MODE_P (mode)
2264 && GET_MODE (src) == mode
2265 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2266 /* Let emit_move_complex do the bulk of the work. */
2267 tmps[i] = src;
2268 else if (GET_CODE (src) == CONCAT)
2269 {
2270 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2271 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2272 unsigned int elt;
2273 poly_int64 subpos;
2274
2275 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2276 && known_le (subpos + bytelen, slen0))
2277 {
2278 /* The following assumes that the concatenated objects all
2279 have the same size. In this case, a simple calculation
2280 can be used to determine the object and the bit field
2281 to be extracted. */
2282 tmps[i] = XEXP (src, elt);
2283 if (maybe_ne (subpos, 0)
2284 || maybe_ne (subpos + bytelen, slen0)
2285 || (!CONSTANT_P (tmps[i])
2286 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2287 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2288 subpos * BITS_PER_UNIT,
2289 1, NULL_RTX, mode, mode, false,
2290 NULL);
2291 }
2292 else
2293 {
2294 rtx mem;
2295
2296 gcc_assert (known_eq (bytepos, 0));
2297 mem = assign_stack_temp (GET_MODE (src), slen);
2298 emit_move_insn (mem, src);
2299 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2300 0, 1, NULL_RTX, mode, mode, false,
2301 NULL);
2302 }
2303 }
2304 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2305 SIMD register, which is currently broken. While we get GCC
2306 to emit proper RTL for these cases, let's dump to memory. */
2307 else if (VECTOR_MODE_P (GET_MODE (dst))
2308 && REG_P (src))
2309 {
2310 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2311 rtx mem;
2312
2313 mem = assign_stack_temp (GET_MODE (src), slen);
2314 emit_move_insn (mem, src);
2315 tmps[i] = adjust_address (mem, mode, bytepos);
2316 }
2317 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2318 && XVECLEN (dst, 0) > 1)
2319 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2320 else if (CONSTANT_P (src))
2321 {
2322 if (known_eq (bytelen, ssize))
2323 tmps[i] = src;
2324 else
2325 {
2326 rtx first, second;
2327
2328 /* TODO: const_wide_int can have sizes other than this... */
2329 gcc_assert (known_eq (2 * bytelen, ssize));
2330 split_double (src, &first, &second);
2331 if (i)
2332 tmps[i] = second;
2333 else
2334 tmps[i] = first;
2335 }
2336 }
2337 else if (REG_P (src) && GET_MODE (src) == mode)
2338 tmps[i] = src;
2339 else
2340 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2341 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2342 mode, mode, false, NULL);
2343
2344 if (maybe_ne (shift, 0))
2345 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2346 shift, tmps[i], 0);
2347 }
2348 }
2349
2350 /* Emit code to move a block SRC of type TYPE to a block DST,
2351 where DST is non-consecutive registers represented by a PARALLEL.
2352 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2353 if not known. */
2354
2355 void
2356 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2357 {
2358 rtx *tmps;
2359 int i;
2360
2361 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2362 emit_group_load_1 (tmps, dst, src, type, ssize);
2363
2364 /* Copy the extracted pieces into the proper (probable) hard regs. */
2365 for (i = 0; i < XVECLEN (dst, 0); i++)
2366 {
2367 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2368 if (d == NULL)
2369 continue;
2370 emit_move_insn (d, tmps[i]);
2371 }
2372 }
2373
2374 /* Similar, but load SRC into new pseudos in a format that looks like
2375 PARALLEL. This can later be fed to emit_group_move to get things
2376 in the right place. */
2377
2378 rtx
2379 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2380 {
2381 rtvec vec;
2382 int i;
2383
2384 vec = rtvec_alloc (XVECLEN (parallel, 0));
2385 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2386
2387 /* Convert the vector to look just like the original PARALLEL, except
2388 with the computed values. */
2389 for (i = 0; i < XVECLEN (parallel, 0); i++)
2390 {
2391 rtx e = XVECEXP (parallel, 0, i);
2392 rtx d = XEXP (e, 0);
2393
2394 if (d)
2395 {
2396 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2397 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2398 }
2399 RTVEC_ELT (vec, i) = e;
2400 }
2401
2402 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2403 }
2404
2405 /* Emit code to move a block SRC to block DST, where SRC and DST are
2406 non-consecutive groups of registers, each represented by a PARALLEL. */
2407
2408 void
2409 emit_group_move (rtx dst, rtx src)
2410 {
2411 int i;
2412
2413 gcc_assert (GET_CODE (src) == PARALLEL
2414 && GET_CODE (dst) == PARALLEL
2415 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2416
2417 /* Skip first entry if NULL. */
2418 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2419 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2420 XEXP (XVECEXP (src, 0, i), 0));
2421 }
2422
2423 /* Move a group of registers represented by a PARALLEL into pseudos. */
2424
2425 rtx
2426 emit_group_move_into_temps (rtx src)
2427 {
2428 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2429 int i;
2430
2431 for (i = 0; i < XVECLEN (src, 0); i++)
2432 {
2433 rtx e = XVECEXP (src, 0, i);
2434 rtx d = XEXP (e, 0);
2435
2436 if (d)
2437 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2438 RTVEC_ELT (vec, i) = e;
2439 }
2440
2441 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2442 }
2443
2444 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2445 where SRC is non-consecutive registers represented by a PARALLEL.
2446 SSIZE represents the total size of block ORIG_DST, or -1 if not
2447 known. */
2448
2449 void
2450 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2451 poly_int64 ssize)
2452 {
2453 rtx *tmps, dst;
2454 int start, finish, i;
2455 machine_mode m = GET_MODE (orig_dst);
2456
2457 gcc_assert (GET_CODE (src) == PARALLEL);
2458
2459 if (!SCALAR_INT_MODE_P (m)
2460 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2461 {
2462 scalar_int_mode imode;
2463 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2464 {
2465 dst = gen_reg_rtx (imode);
2466 emit_group_store (dst, src, type, ssize);
2467 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2468 }
2469 else
2470 {
2471 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2472 emit_group_store (dst, src, type, ssize);
2473 }
2474 emit_move_insn (orig_dst, dst);
2475 return;
2476 }
2477
2478 /* Check for a NULL entry, used to indicate that the parameter goes
2479 both on the stack and in registers. */
2480 if (XEXP (XVECEXP (src, 0, 0), 0))
2481 start = 0;
2482 else
2483 start = 1;
2484 finish = XVECLEN (src, 0);
2485
2486 tmps = XALLOCAVEC (rtx, finish);
2487
2488 /* Copy the (probable) hard regs into pseudos. */
2489 for (i = start; i < finish; i++)
2490 {
2491 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2492 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2493 {
2494 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2495 emit_move_insn (tmps[i], reg);
2496 }
2497 else
2498 tmps[i] = reg;
2499 }
2500
2501 /* If we won't be storing directly into memory, protect the real destination
2502 from strange tricks we might play. */
2503 dst = orig_dst;
2504 if (GET_CODE (dst) == PARALLEL)
2505 {
2506 rtx temp;
2507
2508 /* We can get a PARALLEL dst if there is a conditional expression in
2509 a return statement. In that case, the dst and src are the same,
2510 so no action is necessary. */
2511 if (rtx_equal_p (dst, src))
2512 return;
2513
2514 /* It is unclear if we can ever reach here, but we may as well handle
2515 it. Allocate a temporary, and split this into a store/load to/from
2516 the temporary. */
2517 temp = assign_stack_temp (GET_MODE (dst), ssize);
2518 emit_group_store (temp, src, type, ssize);
2519 emit_group_load (dst, temp, type, ssize);
2520 return;
2521 }
2522 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2523 {
2524 machine_mode outer = GET_MODE (dst);
2525 machine_mode inner;
2526 poly_int64 bytepos;
2527 bool done = false;
2528 rtx temp;
2529
2530 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2531 dst = gen_reg_rtx (outer);
2532
2533 /* Make life a bit easier for combine. */
2534 /* If the first element of the vector is the low part
2535 of the destination mode, use a paradoxical subreg to
2536 initialize the destination. */
2537 if (start < finish)
2538 {
2539 inner = GET_MODE (tmps[start]);
2540 bytepos = subreg_lowpart_offset (inner, outer);
2541 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2542 bytepos))
2543 {
2544 temp = simplify_gen_subreg (outer, tmps[start],
2545 inner, 0);
2546 if (temp)
2547 {
2548 emit_move_insn (dst, temp);
2549 done = true;
2550 start++;
2551 }
2552 }
2553 }
2554
2555 /* If the first element wasn't the low part, try the last. */
2556 if (!done
2557 && start < finish - 1)
2558 {
2559 inner = GET_MODE (tmps[finish - 1]);
2560 bytepos = subreg_lowpart_offset (inner, outer);
2561 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2562 finish - 1), 1)),
2563 bytepos))
2564 {
2565 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2566 inner, 0);
2567 if (temp)
2568 {
2569 emit_move_insn (dst, temp);
2570 done = true;
2571 finish--;
2572 }
2573 }
2574 }
2575
2576 /* Otherwise, simply initialize the result to zero. */
2577 if (!done)
2578 emit_move_insn (dst, CONST0_RTX (outer));
2579 }
2580
2581 /* Process the pieces. */
2582 for (i = start; i < finish; i++)
2583 {
2584 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2585 machine_mode mode = GET_MODE (tmps[i]);
2586 poly_int64 bytelen = GET_MODE_SIZE (mode);
2587 poly_uint64 adj_bytelen;
2588 rtx dest = dst;
2589
2590 /* Handle trailing fragments that run over the size of the struct.
2591 It's the target's responsibility to make sure that the fragment
2592 cannot be strictly smaller in some cases and strictly larger
2593 in others. */
2594 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2595 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2596 adj_bytelen = ssize - bytepos;
2597 else
2598 adj_bytelen = bytelen;
2599
2600 if (GET_CODE (dst) == CONCAT)
2601 {
2602 if (known_le (bytepos + adj_bytelen,
2603 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2604 dest = XEXP (dst, 0);
2605 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2606 {
2607 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2608 dest = XEXP (dst, 1);
2609 }
2610 else
2611 {
2612 machine_mode dest_mode = GET_MODE (dest);
2613 machine_mode tmp_mode = GET_MODE (tmps[i]);
2614
2615 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2616
2617 if (GET_MODE_ALIGNMENT (dest_mode)
2618 >= GET_MODE_ALIGNMENT (tmp_mode))
2619 {
2620 dest = assign_stack_temp (dest_mode,
2621 GET_MODE_SIZE (dest_mode));
2622 emit_move_insn (adjust_address (dest,
2623 tmp_mode,
2624 bytepos),
2625 tmps[i]);
2626 dst = dest;
2627 }
2628 else
2629 {
2630 dest = assign_stack_temp (tmp_mode,
2631 GET_MODE_SIZE (tmp_mode));
2632 emit_move_insn (dest, tmps[i]);
2633 dst = adjust_address (dest, dest_mode, bytepos);
2634 }
2635 break;
2636 }
2637 }
2638
2639 /* Handle trailing fragments that run over the size of the struct. */
2640 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2641 {
2642 /* store_bit_field always takes its value from the lsb.
2643 Move the fragment to the lsb if it's not already there. */
2644 if (
2645 #ifdef BLOCK_REG_PADDING
2646 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2647 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2648 #else
2649 BYTES_BIG_ENDIAN
2650 #endif
2651 )
2652 {
2653 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2654 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2655 shift, tmps[i], 0);
2656 }
2657
2658 /* Make sure not to write past the end of the struct. */
2659 store_bit_field (dest,
2660 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2661 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2662 VOIDmode, tmps[i], false);
2663 }
2664
2665 /* Optimize the access just a bit. */
2666 else if (MEM_P (dest)
2667 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2668 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2669 && multiple_p (bytepos * BITS_PER_UNIT,
2670 GET_MODE_ALIGNMENT (mode))
2671 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2672 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2673
2674 else
2675 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2676 0, 0, mode, tmps[i], false);
2677 }
2678
2679 /* Copy from the pseudo into the (probable) hard reg. */
2680 if (orig_dst != dst)
2681 emit_move_insn (orig_dst, dst);
2682 }
2683
2684 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2685 of the value stored in X. */
2686
2687 rtx
2688 maybe_emit_group_store (rtx x, tree type)
2689 {
2690 machine_mode mode = TYPE_MODE (type);
2691 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2692 if (GET_CODE (x) == PARALLEL)
2693 {
2694 rtx result = gen_reg_rtx (mode);
2695 emit_group_store (result, x, type, int_size_in_bytes (type));
2696 return result;
2697 }
2698 return x;
2699 }
2700
2701 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2702
2703 This is used on targets that return BLKmode values in registers. */
2704
2705 static void
2706 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2707 {
2708 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2709 rtx src = NULL, dst = NULL;
2710 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2711 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2712 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2713 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2714 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2715 fixed_size_mode copy_mode;
2716
2717 /* BLKmode registers created in the back-end shouldn't have survived. */
2718 gcc_assert (mode != BLKmode);
2719
2720 /* If the structure doesn't take up a whole number of words, see whether
2721 SRCREG is padded on the left or on the right. If it's on the left,
2722 set PADDING_CORRECTION to the number of bits to skip.
2723
2724 In most ABIs, the structure will be returned at the least end of
2725 the register, which translates to right padding on little-endian
2726 targets and left padding on big-endian targets. The opposite
2727 holds if the structure is returned at the most significant
2728 end of the register. */
2729 if (bytes % UNITS_PER_WORD != 0
2730 && (targetm.calls.return_in_msb (type)
2731 ? !BYTES_BIG_ENDIAN
2732 : BYTES_BIG_ENDIAN))
2733 padding_correction
2734 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2735
2736 /* We can use a single move if we have an exact mode for the size. */
2737 else if (MEM_P (target)
2738 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2739 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2740 && bytes == GET_MODE_SIZE (mode))
2741 {
2742 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2743 return;
2744 }
2745
2746 /* And if we additionally have the same mode for a register. */
2747 else if (REG_P (target)
2748 && GET_MODE (target) == mode
2749 && bytes == GET_MODE_SIZE (mode))
2750 {
2751 emit_move_insn (target, srcreg);
2752 return;
2753 }
2754
2755 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2756 into a new pseudo which is a full word. */
2757 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2758 {
2759 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2760 mode = word_mode;
2761 }
2762
2763 /* Copy the structure BITSIZE bits at a time. If the target lives in
2764 memory, take care of not reading/writing past its end by selecting
2765 a copy mode suited to BITSIZE. This should always be possible given
2766 how it is computed.
2767
2768 If the target lives in register, make sure not to select a copy mode
2769 larger than the mode of the register.
2770
2771 We could probably emit more efficient code for machines which do not use
2772 strict alignment, but it doesn't seem worth the effort at the current
2773 time. */
2774
2775 copy_mode = word_mode;
2776 if (MEM_P (target))
2777 {
2778 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2779 if (mem_mode.exists ())
2780 copy_mode = mem_mode.require ();
2781 }
2782 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2783 copy_mode = tmode;
2784
2785 for (bitpos = 0, xbitpos = padding_correction;
2786 bitpos < bytes * BITS_PER_UNIT;
2787 bitpos += bitsize, xbitpos += bitsize)
2788 {
2789 /* We need a new source operand each time xbitpos is on a
2790 word boundary and when xbitpos == padding_correction
2791 (the first time through). */
2792 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2793 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2794
2795 /* We need a new destination operand each time bitpos is on
2796 a word boundary. */
2797 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2798 dst = target;
2799 else if (bitpos % BITS_PER_WORD == 0)
2800 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2801
2802 /* Use xbitpos for the source extraction (right justified) and
2803 bitpos for the destination store (left justified). */
2804 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2805 extract_bit_field (src, bitsize,
2806 xbitpos % BITS_PER_WORD, 1,
2807 NULL_RTX, copy_mode, copy_mode,
2808 false, NULL),
2809 false);
2810 }
2811 }
2812
2813 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2814 register if it contains any data, otherwise return null.
2815
2816 This is used on targets that return BLKmode values in registers. */
2817
2818 rtx
2819 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2820 {
2821 int i, n_regs;
2822 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2823 unsigned int bitsize;
2824 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2825 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2826 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2827 fixed_size_mode dst_mode;
2828 scalar_int_mode min_mode;
2829
2830 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2831
2832 x = expand_normal (src);
2833
2834 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2835 if (bytes == 0)
2836 return NULL_RTX;
2837
2838 /* If the structure doesn't take up a whole number of words, see
2839 whether the register value should be padded on the left or on
2840 the right. Set PADDING_CORRECTION to the number of padding
2841 bits needed on the left side.
2842
2843 In most ABIs, the structure will be returned at the least end of
2844 the register, which translates to right padding on little-endian
2845 targets and left padding on big-endian targets. The opposite
2846 holds if the structure is returned at the most significant
2847 end of the register. */
2848 if (bytes % UNITS_PER_WORD != 0
2849 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2850 ? !BYTES_BIG_ENDIAN
2851 : BYTES_BIG_ENDIAN))
2852 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2853 * BITS_PER_UNIT));
2854
2855 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2856 dst_words = XALLOCAVEC (rtx, n_regs);
2857 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2858 min_mode = smallest_int_mode_for_size (bitsize);
2859
2860 /* Copy the structure BITSIZE bits at a time. */
2861 for (bitpos = 0, xbitpos = padding_correction;
2862 bitpos < bytes * BITS_PER_UNIT;
2863 bitpos += bitsize, xbitpos += bitsize)
2864 {
2865 /* We need a new destination pseudo each time xbitpos is
2866 on a word boundary and when xbitpos == padding_correction
2867 (the first time through). */
2868 if (xbitpos % BITS_PER_WORD == 0
2869 || xbitpos == padding_correction)
2870 {
2871 /* Generate an appropriate register. */
2872 dst_word = gen_reg_rtx (word_mode);
2873 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2874
2875 /* Clear the destination before we move anything into it. */
2876 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2877 }
2878
2879 /* Find the largest integer mode that can be used to copy all or as
2880 many bits as possible of the structure if the target supports larger
2881 copies. There are too many corner cases here w.r.t to alignments on
2882 the read/writes. So if there is any padding just use single byte
2883 operations. */
2884 opt_scalar_int_mode mode_iter;
2885 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2886 {
2887 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2888 {
2889 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2890 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2891 && msize <= BITS_PER_WORD)
2892 bitsize = msize;
2893 else
2894 break;
2895 }
2896 }
2897
2898 /* We need a new source operand each time bitpos is on a word
2899 boundary. */
2900 if (bitpos % BITS_PER_WORD == 0)
2901 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2902
2903 /* Use bitpos for the source extraction (left justified) and
2904 xbitpos for the destination store (right justified). */
2905 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2906 0, 0, word_mode,
2907 extract_bit_field (src_word, bitsize,
2908 bitpos % BITS_PER_WORD, 1,
2909 NULL_RTX, word_mode, word_mode,
2910 false, NULL),
2911 false);
2912 }
2913
2914 if (mode == BLKmode)
2915 {
2916 /* Find the smallest integer mode large enough to hold the
2917 entire structure. */
2918 opt_scalar_int_mode mode_iter;
2919 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2920 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2921 break;
2922
2923 /* A suitable mode should have been found. */
2924 mode = mode_iter.require ();
2925 }
2926
2927 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2928 dst_mode = word_mode;
2929 else
2930 dst_mode = mode;
2931 dst = gen_reg_rtx (dst_mode);
2932
2933 for (i = 0; i < n_regs; i++)
2934 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2935
2936 if (mode != dst_mode)
2937 dst = gen_lowpart (mode, dst);
2938
2939 return dst;
2940 }
2941
2942 /* Add a USE expression for REG to the (possibly empty) list pointed
2943 to by CALL_FUSAGE. REG must denote a hard register. */
2944
2945 void
2946 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2947 {
2948 gcc_assert (REG_P (reg));
2949
2950 if (!HARD_REGISTER_P (reg))
2951 return;
2952
2953 *call_fusage
2954 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2955 }
2956
2957 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2958 to by CALL_FUSAGE. REG must denote a hard register. */
2959
2960 void
2961 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2962 {
2963 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2964
2965 *call_fusage
2966 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2967 }
2968
2969 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2970 starting at REGNO. All of these registers must be hard registers. */
2971
2972 void
2973 use_regs (rtx *call_fusage, int regno, int nregs)
2974 {
2975 int i;
2976
2977 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2978
2979 for (i = 0; i < nregs; i++)
2980 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2981 }
2982
2983 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2984 PARALLEL REGS. This is for calls that pass values in multiple
2985 non-contiguous locations. The Irix 6 ABI has examples of this. */
2986
2987 void
2988 use_group_regs (rtx *call_fusage, rtx regs)
2989 {
2990 int i;
2991
2992 for (i = 0; i < XVECLEN (regs, 0); i++)
2993 {
2994 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2995
2996 /* A NULL entry means the parameter goes both on the stack and in
2997 registers. This can also be a MEM for targets that pass values
2998 partially on the stack and partially in registers. */
2999 if (reg != 0 && REG_P (reg))
3000 use_reg (call_fusage, reg);
3001 }
3002 }
3003
3004 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3005 assigment and the code of the expresion on the RHS is CODE. Return
3006 NULL otherwise. */
3007
3008 static gimple *
3009 get_def_for_expr (tree name, enum tree_code code)
3010 {
3011 gimple *def_stmt;
3012
3013 if (TREE_CODE (name) != SSA_NAME)
3014 return NULL;
3015
3016 def_stmt = get_gimple_for_ssa_name (name);
3017 if (!def_stmt
3018 || gimple_assign_rhs_code (def_stmt) != code)
3019 return NULL;
3020
3021 return def_stmt;
3022 }
3023
3024 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3025 assigment and the class of the expresion on the RHS is CLASS. Return
3026 NULL otherwise. */
3027
3028 static gimple *
3029 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3030 {
3031 gimple *def_stmt;
3032
3033 if (TREE_CODE (name) != SSA_NAME)
3034 return NULL;
3035
3036 def_stmt = get_gimple_for_ssa_name (name);
3037 if (!def_stmt
3038 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3039 return NULL;
3040
3041 return def_stmt;
3042 }
3043 \f
3044 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3045 its length in bytes. */
3046
3047 rtx
3048 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3049 unsigned int expected_align, HOST_WIDE_INT expected_size,
3050 unsigned HOST_WIDE_INT min_size,
3051 unsigned HOST_WIDE_INT max_size,
3052 unsigned HOST_WIDE_INT probable_max_size)
3053 {
3054 machine_mode mode = GET_MODE (object);
3055 unsigned int align;
3056
3057 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3058
3059 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3060 just move a zero. Otherwise, do this a piece at a time. */
3061 poly_int64 size_val;
3062 if (mode != BLKmode
3063 && poly_int_rtx_p (size, &size_val)
3064 && known_eq (size_val, GET_MODE_SIZE (mode)))
3065 {
3066 rtx zero = CONST0_RTX (mode);
3067 if (zero != NULL)
3068 {
3069 emit_move_insn (object, zero);
3070 return NULL;
3071 }
3072
3073 if (COMPLEX_MODE_P (mode))
3074 {
3075 zero = CONST0_RTX (GET_MODE_INNER (mode));
3076 if (zero != NULL)
3077 {
3078 write_complex_part (object, zero, 0);
3079 write_complex_part (object, zero, 1);
3080 return NULL;
3081 }
3082 }
3083 }
3084
3085 if (size == const0_rtx)
3086 return NULL;
3087
3088 align = MEM_ALIGN (object);
3089
3090 if (CONST_INT_P (size)
3091 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3092 CLEAR_BY_PIECES,
3093 optimize_insn_for_speed_p ()))
3094 clear_by_pieces (object, INTVAL (size), align);
3095 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3096 expected_align, expected_size,
3097 min_size, max_size, probable_max_size))
3098 ;
3099 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3100 return set_storage_via_libcall (object, size, const0_rtx,
3101 method == BLOCK_OP_TAILCALL);
3102 else
3103 gcc_unreachable ();
3104
3105 return NULL;
3106 }
3107
3108 rtx
3109 clear_storage (rtx object, rtx size, enum block_op_methods method)
3110 {
3111 unsigned HOST_WIDE_INT max, min = 0;
3112 if (GET_CODE (size) == CONST_INT)
3113 min = max = UINTVAL (size);
3114 else
3115 max = GET_MODE_MASK (GET_MODE (size));
3116 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3117 }
3118
3119
3120 /* A subroutine of clear_storage. Expand a call to memset.
3121 Return the return value of memset, 0 otherwise. */
3122
3123 rtx
3124 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3125 {
3126 tree call_expr, fn, object_tree, size_tree, val_tree;
3127 machine_mode size_mode;
3128
3129 object = copy_addr_to_reg (XEXP (object, 0));
3130 object_tree = make_tree (ptr_type_node, object);
3131
3132 if (!CONST_INT_P (val))
3133 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3134 val_tree = make_tree (integer_type_node, val);
3135
3136 size_mode = TYPE_MODE (sizetype);
3137 size = convert_to_mode (size_mode, size, 1);
3138 size = copy_to_mode_reg (size_mode, size);
3139 size_tree = make_tree (sizetype, size);
3140
3141 /* It is incorrect to use the libcall calling conventions for calls to
3142 memset because it can be provided by the user. */
3143 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3144 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3145 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3146
3147 return expand_call (call_expr, NULL_RTX, false);
3148 }
3149 \f
3150 /* Expand a setmem pattern; return true if successful. */
3151
3152 bool
3153 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3154 unsigned int expected_align, HOST_WIDE_INT expected_size,
3155 unsigned HOST_WIDE_INT min_size,
3156 unsigned HOST_WIDE_INT max_size,
3157 unsigned HOST_WIDE_INT probable_max_size)
3158 {
3159 /* Try the most limited insn first, because there's no point
3160 including more than one in the machine description unless
3161 the more limited one has some advantage. */
3162
3163 if (expected_align < align)
3164 expected_align = align;
3165 if (expected_size != -1)
3166 {
3167 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3168 expected_size = max_size;
3169 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3170 expected_size = min_size;
3171 }
3172
3173 opt_scalar_int_mode mode_iter;
3174 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3175 {
3176 scalar_int_mode mode = mode_iter.require ();
3177 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3178
3179 if (code != CODE_FOR_nothing
3180 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3181 here because if SIZE is less than the mode mask, as it is
3182 returned by the macro, it will definitely be less than the
3183 actual mode mask. Since SIZE is within the Pmode address
3184 space, we limit MODE to Pmode. */
3185 && ((CONST_INT_P (size)
3186 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3187 <= (GET_MODE_MASK (mode) >> 1)))
3188 || max_size <= (GET_MODE_MASK (mode) >> 1)
3189 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3190 {
3191 class expand_operand ops[9];
3192 unsigned int nops;
3193
3194 nops = insn_data[(int) code].n_generator_args;
3195 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3196
3197 create_fixed_operand (&ops[0], object);
3198 /* The check above guarantees that this size conversion is valid. */
3199 create_convert_operand_to (&ops[1], size, mode, true);
3200 create_convert_operand_from (&ops[2], val, byte_mode, true);
3201 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3202 if (nops >= 6)
3203 {
3204 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3205 create_integer_operand (&ops[5], expected_size);
3206 }
3207 if (nops >= 8)
3208 {
3209 create_integer_operand (&ops[6], min_size);
3210 /* If we cannot represent the maximal size,
3211 make parameter NULL. */
3212 if ((HOST_WIDE_INT) max_size != -1)
3213 create_integer_operand (&ops[7], max_size);
3214 else
3215 create_fixed_operand (&ops[7], NULL);
3216 }
3217 if (nops == 9)
3218 {
3219 /* If we cannot represent the maximal size,
3220 make parameter NULL. */
3221 if ((HOST_WIDE_INT) probable_max_size != -1)
3222 create_integer_operand (&ops[8], probable_max_size);
3223 else
3224 create_fixed_operand (&ops[8], NULL);
3225 }
3226 if (maybe_expand_insn (code, nops, ops))
3227 return true;
3228 }
3229 }
3230
3231 return false;
3232 }
3233
3234 \f
3235 /* Write to one of the components of the complex value CPLX. Write VAL to
3236 the real part if IMAG_P is false, and the imaginary part if its true. */
3237
3238 void
3239 write_complex_part (rtx cplx, rtx val, bool imag_p)
3240 {
3241 machine_mode cmode;
3242 scalar_mode imode;
3243 unsigned ibitsize;
3244
3245 if (GET_CODE (cplx) == CONCAT)
3246 {
3247 emit_move_insn (XEXP (cplx, imag_p), val);
3248 return;
3249 }
3250
3251 cmode = GET_MODE (cplx);
3252 imode = GET_MODE_INNER (cmode);
3253 ibitsize = GET_MODE_BITSIZE (imode);
3254
3255 /* For MEMs simplify_gen_subreg may generate an invalid new address
3256 because, e.g., the original address is considered mode-dependent
3257 by the target, which restricts simplify_subreg from invoking
3258 adjust_address_nv. Instead of preparing fallback support for an
3259 invalid address, we call adjust_address_nv directly. */
3260 if (MEM_P (cplx))
3261 {
3262 emit_move_insn (adjust_address_nv (cplx, imode,
3263 imag_p ? GET_MODE_SIZE (imode) : 0),
3264 val);
3265 return;
3266 }
3267
3268 /* If the sub-object is at least word sized, then we know that subregging
3269 will work. This special case is important, since store_bit_field
3270 wants to operate on integer modes, and there's rarely an OImode to
3271 correspond to TCmode. */
3272 if (ibitsize >= BITS_PER_WORD
3273 /* For hard regs we have exact predicates. Assume we can split
3274 the original object if it spans an even number of hard regs.
3275 This special case is important for SCmode on 64-bit platforms
3276 where the natural size of floating-point regs is 32-bit. */
3277 || (REG_P (cplx)
3278 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3279 && REG_NREGS (cplx) % 2 == 0))
3280 {
3281 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3282 imag_p ? GET_MODE_SIZE (imode) : 0);
3283 if (part)
3284 {
3285 emit_move_insn (part, val);
3286 return;
3287 }
3288 else
3289 /* simplify_gen_subreg may fail for sub-word MEMs. */
3290 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3291 }
3292
3293 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3294 false);
3295 }
3296
3297 /* Extract one of the components of the complex value CPLX. Extract the
3298 real part if IMAG_P is false, and the imaginary part if it's true. */
3299
3300 rtx
3301 read_complex_part (rtx cplx, bool imag_p)
3302 {
3303 machine_mode cmode;
3304 scalar_mode imode;
3305 unsigned ibitsize;
3306
3307 if (GET_CODE (cplx) == CONCAT)
3308 return XEXP (cplx, imag_p);
3309
3310 cmode = GET_MODE (cplx);
3311 imode = GET_MODE_INNER (cmode);
3312 ibitsize = GET_MODE_BITSIZE (imode);
3313
3314 /* Special case reads from complex constants that got spilled to memory. */
3315 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3316 {
3317 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3318 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3319 {
3320 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3321 if (CONSTANT_CLASS_P (part))
3322 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3323 }
3324 }
3325
3326 /* For MEMs simplify_gen_subreg may generate an invalid new address
3327 because, e.g., the original address is considered mode-dependent
3328 by the target, which restricts simplify_subreg from invoking
3329 adjust_address_nv. Instead of preparing fallback support for an
3330 invalid address, we call adjust_address_nv directly. */
3331 if (MEM_P (cplx))
3332 return adjust_address_nv (cplx, imode,
3333 imag_p ? GET_MODE_SIZE (imode) : 0);
3334
3335 /* If the sub-object is at least word sized, then we know that subregging
3336 will work. This special case is important, since extract_bit_field
3337 wants to operate on integer modes, and there's rarely an OImode to
3338 correspond to TCmode. */
3339 if (ibitsize >= BITS_PER_WORD
3340 /* For hard regs we have exact predicates. Assume we can split
3341 the original object if it spans an even number of hard regs.
3342 This special case is important for SCmode on 64-bit platforms
3343 where the natural size of floating-point regs is 32-bit. */
3344 || (REG_P (cplx)
3345 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3346 && REG_NREGS (cplx) % 2 == 0))
3347 {
3348 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3349 imag_p ? GET_MODE_SIZE (imode) : 0);
3350 if (ret)
3351 return ret;
3352 else
3353 /* simplify_gen_subreg may fail for sub-word MEMs. */
3354 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3355 }
3356
3357 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3358 true, NULL_RTX, imode, imode, false, NULL);
3359 }
3360 \f
3361 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3362 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3363 represented in NEW_MODE. If FORCE is true, this will never happen, as
3364 we'll force-create a SUBREG if needed. */
3365
3366 static rtx
3367 emit_move_change_mode (machine_mode new_mode,
3368 machine_mode old_mode, rtx x, bool force)
3369 {
3370 rtx ret;
3371
3372 if (push_operand (x, GET_MODE (x)))
3373 {
3374 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3375 MEM_COPY_ATTRIBUTES (ret, x);
3376 }
3377 else if (MEM_P (x))
3378 {
3379 /* We don't have to worry about changing the address since the
3380 size in bytes is supposed to be the same. */
3381 if (reload_in_progress)
3382 {
3383 /* Copy the MEM to change the mode and move any
3384 substitutions from the old MEM to the new one. */
3385 ret = adjust_address_nv (x, new_mode, 0);
3386 copy_replacements (x, ret);
3387 }
3388 else
3389 ret = adjust_address (x, new_mode, 0);
3390 }
3391 else
3392 {
3393 /* Note that we do want simplify_subreg's behavior of validating
3394 that the new mode is ok for a hard register. If we were to use
3395 simplify_gen_subreg, we would create the subreg, but would
3396 probably run into the target not being able to implement it. */
3397 /* Except, of course, when FORCE is true, when this is exactly what
3398 we want. Which is needed for CCmodes on some targets. */
3399 if (force)
3400 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3401 else
3402 ret = simplify_subreg (new_mode, x, old_mode, 0);
3403 }
3404
3405 return ret;
3406 }
3407
3408 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3409 an integer mode of the same size as MODE. Returns the instruction
3410 emitted, or NULL if such a move could not be generated. */
3411
3412 static rtx_insn *
3413 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3414 {
3415 scalar_int_mode imode;
3416 enum insn_code code;
3417
3418 /* There must exist a mode of the exact size we require. */
3419 if (!int_mode_for_mode (mode).exists (&imode))
3420 return NULL;
3421
3422 /* The target must support moves in this mode. */
3423 code = optab_handler (mov_optab, imode);
3424 if (code == CODE_FOR_nothing)
3425 return NULL;
3426
3427 x = emit_move_change_mode (imode, mode, x, force);
3428 if (x == NULL_RTX)
3429 return NULL;
3430 y = emit_move_change_mode (imode, mode, y, force);
3431 if (y == NULL_RTX)
3432 return NULL;
3433 return emit_insn (GEN_FCN (code) (x, y));
3434 }
3435
3436 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3437 Return an equivalent MEM that does not use an auto-increment. */
3438
3439 rtx
3440 emit_move_resolve_push (machine_mode mode, rtx x)
3441 {
3442 enum rtx_code code = GET_CODE (XEXP (x, 0));
3443 rtx temp;
3444
3445 poly_int64 adjust = GET_MODE_SIZE (mode);
3446 #ifdef PUSH_ROUNDING
3447 adjust = PUSH_ROUNDING (adjust);
3448 #endif
3449 if (code == PRE_DEC || code == POST_DEC)
3450 adjust = -adjust;
3451 else if (code == PRE_MODIFY || code == POST_MODIFY)
3452 {
3453 rtx expr = XEXP (XEXP (x, 0), 1);
3454
3455 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3456 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3457 if (GET_CODE (expr) == MINUS)
3458 val = -val;
3459 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3460 adjust = val;
3461 }
3462
3463 /* Do not use anti_adjust_stack, since we don't want to update
3464 stack_pointer_delta. */
3465 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3466 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3467 0, OPTAB_LIB_WIDEN);
3468 if (temp != stack_pointer_rtx)
3469 emit_move_insn (stack_pointer_rtx, temp);
3470
3471 switch (code)
3472 {
3473 case PRE_INC:
3474 case PRE_DEC:
3475 case PRE_MODIFY:
3476 temp = stack_pointer_rtx;
3477 break;
3478 case POST_INC:
3479 case POST_DEC:
3480 case POST_MODIFY:
3481 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3482 break;
3483 default:
3484 gcc_unreachable ();
3485 }
3486
3487 return replace_equiv_address (x, temp);
3488 }
3489
3490 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3491 X is known to satisfy push_operand, and MODE is known to be complex.
3492 Returns the last instruction emitted. */
3493
3494 rtx_insn *
3495 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3496 {
3497 scalar_mode submode = GET_MODE_INNER (mode);
3498 bool imag_first;
3499
3500 #ifdef PUSH_ROUNDING
3501 poly_int64 submodesize = GET_MODE_SIZE (submode);
3502
3503 /* In case we output to the stack, but the size is smaller than the
3504 machine can push exactly, we need to use move instructions. */
3505 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3506 {
3507 x = emit_move_resolve_push (mode, x);
3508 return emit_move_insn (x, y);
3509 }
3510 #endif
3511
3512 /* Note that the real part always precedes the imag part in memory
3513 regardless of machine's endianness. */
3514 switch (GET_CODE (XEXP (x, 0)))
3515 {
3516 case PRE_DEC:
3517 case POST_DEC:
3518 imag_first = true;
3519 break;
3520 case PRE_INC:
3521 case POST_INC:
3522 imag_first = false;
3523 break;
3524 default:
3525 gcc_unreachable ();
3526 }
3527
3528 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3529 read_complex_part (y, imag_first));
3530 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3531 read_complex_part (y, !imag_first));
3532 }
3533
3534 /* A subroutine of emit_move_complex. Perform the move from Y to X
3535 via two moves of the parts. Returns the last instruction emitted. */
3536
3537 rtx_insn *
3538 emit_move_complex_parts (rtx x, rtx y)
3539 {
3540 /* Show the output dies here. This is necessary for SUBREGs
3541 of pseudos since we cannot track their lifetimes correctly;
3542 hard regs shouldn't appear here except as return values. */
3543 if (!reload_completed && !reload_in_progress
3544 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3545 emit_clobber (x);
3546
3547 write_complex_part (x, read_complex_part (y, false), false);
3548 write_complex_part (x, read_complex_part (y, true), true);
3549
3550 return get_last_insn ();
3551 }
3552
3553 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3554 MODE is known to be complex. Returns the last instruction emitted. */
3555
3556 static rtx_insn *
3557 emit_move_complex (machine_mode mode, rtx x, rtx y)
3558 {
3559 bool try_int;
3560
3561 /* Need to take special care for pushes, to maintain proper ordering
3562 of the data, and possibly extra padding. */
3563 if (push_operand (x, mode))
3564 return emit_move_complex_push (mode, x, y);
3565
3566 /* See if we can coerce the target into moving both values at once, except
3567 for floating point where we favor moving as parts if this is easy. */
3568 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3569 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3570 && !(REG_P (x)
3571 && HARD_REGISTER_P (x)
3572 && REG_NREGS (x) == 1)
3573 && !(REG_P (y)
3574 && HARD_REGISTER_P (y)
3575 && REG_NREGS (y) == 1))
3576 try_int = false;
3577 /* Not possible if the values are inherently not adjacent. */
3578 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3579 try_int = false;
3580 /* Is possible if both are registers (or subregs of registers). */
3581 else if (register_operand (x, mode) && register_operand (y, mode))
3582 try_int = true;
3583 /* If one of the operands is a memory, and alignment constraints
3584 are friendly enough, we may be able to do combined memory operations.
3585 We do not attempt this if Y is a constant because that combination is
3586 usually better with the by-parts thing below. */
3587 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3588 && (!STRICT_ALIGNMENT
3589 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3590 try_int = true;
3591 else
3592 try_int = false;
3593
3594 if (try_int)
3595 {
3596 rtx_insn *ret;
3597
3598 /* For memory to memory moves, optimal behavior can be had with the
3599 existing block move logic. But use normal expansion if optimizing
3600 for size. */
3601 if (MEM_P (x) && MEM_P (y))
3602 {
3603 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3604 (optimize_insn_for_speed_p()
3605 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
3606 return get_last_insn ();
3607 }
3608
3609 ret = emit_move_via_integer (mode, x, y, true);
3610 if (ret)
3611 return ret;
3612 }
3613
3614 return emit_move_complex_parts (x, y);
3615 }
3616
3617 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3618 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3619
3620 static rtx_insn *
3621 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3622 {
3623 rtx_insn *ret;
3624
3625 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3626 if (mode != CCmode)
3627 {
3628 enum insn_code code = optab_handler (mov_optab, CCmode);
3629 if (code != CODE_FOR_nothing)
3630 {
3631 x = emit_move_change_mode (CCmode, mode, x, true);
3632 y = emit_move_change_mode (CCmode, mode, y, true);
3633 return emit_insn (GEN_FCN (code) (x, y));
3634 }
3635 }
3636
3637 /* Otherwise, find the MODE_INT mode of the same width. */
3638 ret = emit_move_via_integer (mode, x, y, false);
3639 gcc_assert (ret != NULL);
3640 return ret;
3641 }
3642
3643 /* Return true if word I of OP lies entirely in the
3644 undefined bits of a paradoxical subreg. */
3645
3646 static bool
3647 undefined_operand_subword_p (const_rtx op, int i)
3648 {
3649 if (GET_CODE (op) != SUBREG)
3650 return false;
3651 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3652 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3653 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3654 || known_le (offset, -UNITS_PER_WORD));
3655 }
3656
3657 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3658 MODE is any multi-word or full-word mode that lacks a move_insn
3659 pattern. Note that you will get better code if you define such
3660 patterns, even if they must turn into multiple assembler instructions. */
3661
3662 static rtx_insn *
3663 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3664 {
3665 rtx_insn *last_insn = 0;
3666 rtx_insn *seq;
3667 rtx inner;
3668 bool need_clobber;
3669 int i, mode_size;
3670
3671 /* This function can only handle cases where the number of words is
3672 known at compile time. */
3673 mode_size = GET_MODE_SIZE (mode).to_constant ();
3674 gcc_assert (mode_size >= UNITS_PER_WORD);
3675
3676 /* If X is a push on the stack, do the push now and replace
3677 X with a reference to the stack pointer. */
3678 if (push_operand (x, mode))
3679 x = emit_move_resolve_push (mode, x);
3680
3681 /* If we are in reload, see if either operand is a MEM whose address
3682 is scheduled for replacement. */
3683 if (reload_in_progress && MEM_P (x)
3684 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3685 x = replace_equiv_address_nv (x, inner);
3686 if (reload_in_progress && MEM_P (y)
3687 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3688 y = replace_equiv_address_nv (y, inner);
3689
3690 start_sequence ();
3691
3692 need_clobber = false;
3693 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3694 {
3695 /* Do not generate code for a move if it would go entirely
3696 to the non-existing bits of a paradoxical subreg. */
3697 if (undefined_operand_subword_p (x, i))
3698 continue;
3699
3700 rtx xpart = operand_subword (x, i, 1, mode);
3701 rtx ypart;
3702
3703 /* Do not generate code for a move if it would come entirely
3704 from the undefined bits of a paradoxical subreg. */
3705 if (undefined_operand_subword_p (y, i))
3706 continue;
3707
3708 ypart = operand_subword (y, i, 1, mode);
3709
3710 /* If we can't get a part of Y, put Y into memory if it is a
3711 constant. Otherwise, force it into a register. Then we must
3712 be able to get a part of Y. */
3713 if (ypart == 0 && CONSTANT_P (y))
3714 {
3715 y = use_anchored_address (force_const_mem (mode, y));
3716 ypart = operand_subword (y, i, 1, mode);
3717 }
3718 else if (ypart == 0)
3719 ypart = operand_subword_force (y, i, mode);
3720
3721 gcc_assert (xpart && ypart);
3722
3723 need_clobber |= (GET_CODE (xpart) == SUBREG);
3724
3725 last_insn = emit_move_insn (xpart, ypart);
3726 }
3727
3728 seq = get_insns ();
3729 end_sequence ();
3730
3731 /* Show the output dies here. This is necessary for SUBREGs
3732 of pseudos since we cannot track their lifetimes correctly;
3733 hard regs shouldn't appear here except as return values.
3734 We never want to emit such a clobber after reload. */
3735 if (x != y
3736 && ! (reload_in_progress || reload_completed)
3737 && need_clobber != 0)
3738 emit_clobber (x);
3739
3740 emit_insn (seq);
3741
3742 return last_insn;
3743 }
3744
3745 /* Low level part of emit_move_insn.
3746 Called just like emit_move_insn, but assumes X and Y
3747 are basically valid. */
3748
3749 rtx_insn *
3750 emit_move_insn_1 (rtx x, rtx y)
3751 {
3752 machine_mode mode = GET_MODE (x);
3753 enum insn_code code;
3754
3755 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3756
3757 code = optab_handler (mov_optab, mode);
3758 if (code != CODE_FOR_nothing)
3759 return emit_insn (GEN_FCN (code) (x, y));
3760
3761 /* Expand complex moves by moving real part and imag part. */
3762 if (COMPLEX_MODE_P (mode))
3763 return emit_move_complex (mode, x, y);
3764
3765 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3766 || ALL_FIXED_POINT_MODE_P (mode))
3767 {
3768 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3769
3770 /* If we can't find an integer mode, use multi words. */
3771 if (result)
3772 return result;
3773 else
3774 return emit_move_multi_word (mode, x, y);
3775 }
3776
3777 if (GET_MODE_CLASS (mode) == MODE_CC)
3778 return emit_move_ccmode (mode, x, y);
3779
3780 /* Try using a move pattern for the corresponding integer mode. This is
3781 only safe when simplify_subreg can convert MODE constants into integer
3782 constants. At present, it can only do this reliably if the value
3783 fits within a HOST_WIDE_INT. */
3784 if (!CONSTANT_P (y)
3785 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3786 {
3787 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3788
3789 if (ret)
3790 {
3791 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3792 return ret;
3793 }
3794 }
3795
3796 return emit_move_multi_word (mode, x, y);
3797 }
3798
3799 /* Generate code to copy Y into X.
3800 Both Y and X must have the same mode, except that
3801 Y can be a constant with VOIDmode.
3802 This mode cannot be BLKmode; use emit_block_move for that.
3803
3804 Return the last instruction emitted. */
3805
3806 rtx_insn *
3807 emit_move_insn (rtx x, rtx y)
3808 {
3809 machine_mode mode = GET_MODE (x);
3810 rtx y_cst = NULL_RTX;
3811 rtx_insn *last_insn;
3812 rtx set;
3813
3814 gcc_assert (mode != BLKmode
3815 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3816
3817 /* If we have a copy that looks like one of the following patterns:
3818 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
3819 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
3820 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
3821 (set (subreg:M1 (reg:M2 ...)) (constant C))
3822 where mode M1 is equal in size to M2, try to detect whether the
3823 mode change involves an implicit round trip through memory.
3824 If so, see if we can avoid that by removing the subregs and
3825 doing the move in mode M2 instead. */
3826
3827 rtx x_inner = NULL_RTX;
3828 rtx y_inner = NULL_RTX;
3829
3830 auto candidate_subreg_p = [&](rtx subreg) {
3831 return (REG_P (SUBREG_REG (subreg))
3832 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
3833 GET_MODE_SIZE (GET_MODE (subreg)))
3834 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
3835 != CODE_FOR_nothing);
3836 };
3837
3838 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
3839 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
3840 && !push_operand (mem, GET_MODE (mem))
3841 /* Not a candiate if innermode requires too much alignment. */
3842 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
3843 || targetm.slow_unaligned_access (GET_MODE (mem),
3844 MEM_ALIGN (mem))
3845 || !targetm.slow_unaligned_access (innermode,
3846 MEM_ALIGN (mem))));
3847 };
3848
3849 if (SUBREG_P (x) && candidate_subreg_p (x))
3850 x_inner = SUBREG_REG (x);
3851
3852 if (SUBREG_P (y) && candidate_subreg_p (y))
3853 y_inner = SUBREG_REG (y);
3854
3855 if (x_inner != NULL_RTX
3856 && y_inner != NULL_RTX
3857 && GET_MODE (x_inner) == GET_MODE (y_inner)
3858 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
3859 {
3860 x = x_inner;
3861 y = y_inner;
3862 mode = GET_MODE (x_inner);
3863 }
3864 else if (x_inner != NULL_RTX
3865 && MEM_P (y)
3866 && candidate_mem_p (GET_MODE (x_inner), y))
3867 {
3868 x = x_inner;
3869 y = adjust_address (y, GET_MODE (x_inner), 0);
3870 mode = GET_MODE (x_inner);
3871 }
3872 else if (y_inner != NULL_RTX
3873 && MEM_P (x)
3874 && candidate_mem_p (GET_MODE (y_inner), x))
3875 {
3876 x = adjust_address (x, GET_MODE (y_inner), 0);
3877 y = y_inner;
3878 mode = GET_MODE (y_inner);
3879 }
3880 else if (x_inner != NULL_RTX
3881 && CONSTANT_P (y)
3882 && !targetm.can_change_mode_class (GET_MODE (x_inner),
3883 mode, ALL_REGS)
3884 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
3885 {
3886 x = x_inner;
3887 y = y_inner;
3888 mode = GET_MODE (x_inner);
3889 }
3890
3891 if (CONSTANT_P (y))
3892 {
3893 if (optimize
3894 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3895 && (last_insn = compress_float_constant (x, y)))
3896 return last_insn;
3897
3898 y_cst = y;
3899
3900 if (!targetm.legitimate_constant_p (mode, y))
3901 {
3902 y = force_const_mem (mode, y);
3903
3904 /* If the target's cannot_force_const_mem prevented the spill,
3905 assume that the target's move expanders will also take care
3906 of the non-legitimate constant. */
3907 if (!y)
3908 y = y_cst;
3909 else
3910 y = use_anchored_address (y);
3911 }
3912 }
3913
3914 /* If X or Y are memory references, verify that their addresses are valid
3915 for the machine. */
3916 if (MEM_P (x)
3917 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3918 MEM_ADDR_SPACE (x))
3919 && ! push_operand (x, GET_MODE (x))))
3920 x = validize_mem (x);
3921
3922 if (MEM_P (y)
3923 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3924 MEM_ADDR_SPACE (y)))
3925 y = validize_mem (y);
3926
3927 gcc_assert (mode != BLKmode);
3928
3929 last_insn = emit_move_insn_1 (x, y);
3930
3931 if (y_cst && REG_P (x)
3932 && (set = single_set (last_insn)) != NULL_RTX
3933 && SET_DEST (set) == x
3934 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3935 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3936
3937 return last_insn;
3938 }
3939
3940 /* Generate the body of an instruction to copy Y into X.
3941 It may be a list of insns, if one insn isn't enough. */
3942
3943 rtx_insn *
3944 gen_move_insn (rtx x, rtx y)
3945 {
3946 rtx_insn *seq;
3947
3948 start_sequence ();
3949 emit_move_insn_1 (x, y);
3950 seq = get_insns ();
3951 end_sequence ();
3952 return seq;
3953 }
3954
3955 /* If Y is representable exactly in a narrower mode, and the target can
3956 perform the extension directly from constant or memory, then emit the
3957 move as an extension. */
3958
3959 static rtx_insn *
3960 compress_float_constant (rtx x, rtx y)
3961 {
3962 machine_mode dstmode = GET_MODE (x);
3963 machine_mode orig_srcmode = GET_MODE (y);
3964 machine_mode srcmode;
3965 const REAL_VALUE_TYPE *r;
3966 int oldcost, newcost;
3967 bool speed = optimize_insn_for_speed_p ();
3968
3969 r = CONST_DOUBLE_REAL_VALUE (y);
3970
3971 if (targetm.legitimate_constant_p (dstmode, y))
3972 oldcost = set_src_cost (y, orig_srcmode, speed);
3973 else
3974 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3975
3976 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3977 {
3978 enum insn_code ic;
3979 rtx trunc_y;
3980 rtx_insn *last_insn;
3981
3982 /* Skip if the target can't extend this way. */
3983 ic = can_extend_p (dstmode, srcmode, 0);
3984 if (ic == CODE_FOR_nothing)
3985 continue;
3986
3987 /* Skip if the narrowed value isn't exact. */
3988 if (! exact_real_truncate (srcmode, r))
3989 continue;
3990
3991 trunc_y = const_double_from_real_value (*r, srcmode);
3992
3993 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3994 {
3995 /* Skip if the target needs extra instructions to perform
3996 the extension. */
3997 if (!insn_operand_matches (ic, 1, trunc_y))
3998 continue;
3999 /* This is valid, but may not be cheaper than the original. */
4000 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4001 dstmode, speed);
4002 if (oldcost < newcost)
4003 continue;
4004 }
4005 else if (float_extend_from_mem[dstmode][srcmode])
4006 {
4007 trunc_y = force_const_mem (srcmode, trunc_y);
4008 /* This is valid, but may not be cheaper than the original. */
4009 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4010 dstmode, speed);
4011 if (oldcost < newcost)
4012 continue;
4013 trunc_y = validize_mem (trunc_y);
4014 }
4015 else
4016 continue;
4017
4018 /* For CSE's benefit, force the compressed constant pool entry
4019 into a new pseudo. This constant may be used in different modes,
4020 and if not, combine will put things back together for us. */
4021 trunc_y = force_reg (srcmode, trunc_y);
4022
4023 /* If x is a hard register, perform the extension into a pseudo,
4024 so that e.g. stack realignment code is aware of it. */
4025 rtx target = x;
4026 if (REG_P (x) && HARD_REGISTER_P (x))
4027 target = gen_reg_rtx (dstmode);
4028
4029 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4030 last_insn = get_last_insn ();
4031
4032 if (REG_P (target))
4033 set_unique_reg_note (last_insn, REG_EQUAL, y);
4034
4035 if (target != x)
4036 return emit_move_insn (x, target);
4037 return last_insn;
4038 }
4039
4040 return NULL;
4041 }
4042 \f
4043 /* Pushing data onto the stack. */
4044
4045 /* Push a block of length SIZE (perhaps variable)
4046 and return an rtx to address the beginning of the block.
4047 The value may be virtual_outgoing_args_rtx.
4048
4049 EXTRA is the number of bytes of padding to push in addition to SIZE.
4050 BELOW nonzero means this padding comes at low addresses;
4051 otherwise, the padding comes at high addresses. */
4052
4053 rtx
4054 push_block (rtx size, poly_int64 extra, int below)
4055 {
4056 rtx temp;
4057
4058 size = convert_modes (Pmode, ptr_mode, size, 1);
4059 if (CONSTANT_P (size))
4060 anti_adjust_stack (plus_constant (Pmode, size, extra));
4061 else if (REG_P (size) && known_eq (extra, 0))
4062 anti_adjust_stack (size);
4063 else
4064 {
4065 temp = copy_to_mode_reg (Pmode, size);
4066 if (maybe_ne (extra, 0))
4067 temp = expand_binop (Pmode, add_optab, temp,
4068 gen_int_mode (extra, Pmode),
4069 temp, 0, OPTAB_LIB_WIDEN);
4070 anti_adjust_stack (temp);
4071 }
4072
4073 if (STACK_GROWS_DOWNWARD)
4074 {
4075 temp = virtual_outgoing_args_rtx;
4076 if (maybe_ne (extra, 0) && below)
4077 temp = plus_constant (Pmode, temp, extra);
4078 }
4079 else
4080 {
4081 poly_int64 csize;
4082 if (poly_int_rtx_p (size, &csize))
4083 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4084 -csize - (below ? 0 : extra));
4085 else if (maybe_ne (extra, 0) && !below)
4086 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4087 negate_rtx (Pmode, plus_constant (Pmode, size,
4088 extra)));
4089 else
4090 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4091 negate_rtx (Pmode, size));
4092 }
4093
4094 return memory_address (NARROWEST_INT_MODE, temp);
4095 }
4096
4097 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4098
4099 static rtx
4100 mem_autoinc_base (rtx mem)
4101 {
4102 if (MEM_P (mem))
4103 {
4104 rtx addr = XEXP (mem, 0);
4105 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4106 return XEXP (addr, 0);
4107 }
4108 return NULL;
4109 }
4110
4111 /* A utility routine used here, in reload, and in try_split. The insns
4112 after PREV up to and including LAST are known to adjust the stack,
4113 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4114 placing notes as appropriate. PREV may be NULL, indicating the
4115 entire insn sequence prior to LAST should be scanned.
4116
4117 The set of allowed stack pointer modifications is small:
4118 (1) One or more auto-inc style memory references (aka pushes),
4119 (2) One or more addition/subtraction with the SP as destination,
4120 (3) A single move insn with the SP as destination,
4121 (4) A call_pop insn,
4122 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4123
4124 Insns in the sequence that do not modify the SP are ignored,
4125 except for noreturn calls.
4126
4127 The return value is the amount of adjustment that can be trivially
4128 verified, via immediate operand or auto-inc. If the adjustment
4129 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4130
4131 poly_int64
4132 find_args_size_adjust (rtx_insn *insn)
4133 {
4134 rtx dest, set, pat;
4135 int i;
4136
4137 pat = PATTERN (insn);
4138 set = NULL;
4139
4140 /* Look for a call_pop pattern. */
4141 if (CALL_P (insn))
4142 {
4143 /* We have to allow non-call_pop patterns for the case
4144 of emit_single_push_insn of a TLS address. */
4145 if (GET_CODE (pat) != PARALLEL)
4146 return 0;
4147
4148 /* All call_pop have a stack pointer adjust in the parallel.
4149 The call itself is always first, and the stack adjust is
4150 usually last, so search from the end. */
4151 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4152 {
4153 set = XVECEXP (pat, 0, i);
4154 if (GET_CODE (set) != SET)
4155 continue;
4156 dest = SET_DEST (set);
4157 if (dest == stack_pointer_rtx)
4158 break;
4159 }
4160 /* We'd better have found the stack pointer adjust. */
4161 if (i == 0)
4162 return 0;
4163 /* Fall through to process the extracted SET and DEST
4164 as if it was a standalone insn. */
4165 }
4166 else if (GET_CODE (pat) == SET)
4167 set = pat;
4168 else if ((set = single_set (insn)) != NULL)
4169 ;
4170 else if (GET_CODE (pat) == PARALLEL)
4171 {
4172 /* ??? Some older ports use a parallel with a stack adjust
4173 and a store for a PUSH_ROUNDING pattern, rather than a
4174 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4175 /* ??? See h8300 and m68k, pushqi1. */
4176 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4177 {
4178 set = XVECEXP (pat, 0, i);
4179 if (GET_CODE (set) != SET)
4180 continue;
4181 dest = SET_DEST (set);
4182 if (dest == stack_pointer_rtx)
4183 break;
4184
4185 /* We do not expect an auto-inc of the sp in the parallel. */
4186 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4187 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4188 != stack_pointer_rtx);
4189 }
4190 if (i < 0)
4191 return 0;
4192 }
4193 else
4194 return 0;
4195
4196 dest = SET_DEST (set);
4197
4198 /* Look for direct modifications of the stack pointer. */
4199 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4200 {
4201 /* Look for a trivial adjustment, otherwise assume nothing. */
4202 /* Note that the SPU restore_stack_block pattern refers to
4203 the stack pointer in V4SImode. Consider that non-trivial. */
4204 poly_int64 offset;
4205 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4206 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4207 return offset;
4208 /* ??? Reload can generate no-op moves, which will be cleaned
4209 up later. Recognize it and continue searching. */
4210 else if (rtx_equal_p (dest, SET_SRC (set)))
4211 return 0;
4212 else
4213 return HOST_WIDE_INT_MIN;
4214 }
4215 else
4216 {
4217 rtx mem, addr;
4218
4219 /* Otherwise only think about autoinc patterns. */
4220 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4221 {
4222 mem = dest;
4223 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4224 != stack_pointer_rtx);
4225 }
4226 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4227 mem = SET_SRC (set);
4228 else
4229 return 0;
4230
4231 addr = XEXP (mem, 0);
4232 switch (GET_CODE (addr))
4233 {
4234 case PRE_INC:
4235 case POST_INC:
4236 return GET_MODE_SIZE (GET_MODE (mem));
4237 case PRE_DEC:
4238 case POST_DEC:
4239 return -GET_MODE_SIZE (GET_MODE (mem));
4240 case PRE_MODIFY:
4241 case POST_MODIFY:
4242 addr = XEXP (addr, 1);
4243 gcc_assert (GET_CODE (addr) == PLUS);
4244 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4245 return rtx_to_poly_int64 (XEXP (addr, 1));
4246 default:
4247 gcc_unreachable ();
4248 }
4249 }
4250 }
4251
4252 poly_int64
4253 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4254 poly_int64 end_args_size)
4255 {
4256 poly_int64 args_size = end_args_size;
4257 bool saw_unknown = false;
4258 rtx_insn *insn;
4259
4260 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4261 {
4262 if (!NONDEBUG_INSN_P (insn))
4263 continue;
4264
4265 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4266 a call argument containing a TLS address that itself requires
4267 a call to __tls_get_addr. The handling of stack_pointer_delta
4268 in emit_single_push_insn is supposed to ensure that any such
4269 notes are already correct. */
4270 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4271 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4272
4273 poly_int64 this_delta = find_args_size_adjust (insn);
4274 if (known_eq (this_delta, 0))
4275 {
4276 if (!CALL_P (insn)
4277 || ACCUMULATE_OUTGOING_ARGS
4278 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4279 continue;
4280 }
4281
4282 gcc_assert (!saw_unknown);
4283 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4284 saw_unknown = true;
4285
4286 if (!note)
4287 add_args_size_note (insn, args_size);
4288 if (STACK_GROWS_DOWNWARD)
4289 this_delta = -poly_uint64 (this_delta);
4290
4291 if (saw_unknown)
4292 args_size = HOST_WIDE_INT_MIN;
4293 else
4294 args_size -= this_delta;
4295 }
4296
4297 return args_size;
4298 }
4299
4300 #ifdef PUSH_ROUNDING
4301 /* Emit single push insn. */
4302
4303 static void
4304 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4305 {
4306 rtx dest_addr;
4307 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4308 rtx dest;
4309 enum insn_code icode;
4310
4311 /* If there is push pattern, use it. Otherwise try old way of throwing
4312 MEM representing push operation to move expander. */
4313 icode = optab_handler (push_optab, mode);
4314 if (icode != CODE_FOR_nothing)
4315 {
4316 class expand_operand ops[1];
4317
4318 create_input_operand (&ops[0], x, mode);
4319 if (maybe_expand_insn (icode, 1, ops))
4320 return;
4321 }
4322 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4323 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4324 /* If we are to pad downward, adjust the stack pointer first and
4325 then store X into the stack location using an offset. This is
4326 because emit_move_insn does not know how to pad; it does not have
4327 access to type. */
4328 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4329 {
4330 emit_move_insn (stack_pointer_rtx,
4331 expand_binop (Pmode,
4332 STACK_GROWS_DOWNWARD ? sub_optab
4333 : add_optab,
4334 stack_pointer_rtx,
4335 gen_int_mode (rounded_size, Pmode),
4336 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4337
4338 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4339 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4340 /* We have already decremented the stack pointer, so get the
4341 previous value. */
4342 offset += rounded_size;
4343
4344 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4345 /* We have already incremented the stack pointer, so get the
4346 previous value. */
4347 offset -= rounded_size;
4348
4349 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4350 }
4351 else
4352 {
4353 if (STACK_GROWS_DOWNWARD)
4354 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4355 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4356 else
4357 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4358 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4359
4360 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4361 }
4362
4363 dest = gen_rtx_MEM (mode, dest_addr);
4364
4365 if (type != 0)
4366 {
4367 set_mem_attributes (dest, type, 1);
4368
4369 if (cfun->tail_call_marked)
4370 /* Function incoming arguments may overlap with sibling call
4371 outgoing arguments and we cannot allow reordering of reads
4372 from function arguments with stores to outgoing arguments
4373 of sibling calls. */
4374 set_mem_alias_set (dest, 0);
4375 }
4376 emit_move_insn (dest, x);
4377 }
4378
4379 /* Emit and annotate a single push insn. */
4380
4381 static void
4382 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4383 {
4384 poly_int64 delta, old_delta = stack_pointer_delta;
4385 rtx_insn *prev = get_last_insn ();
4386 rtx_insn *last;
4387
4388 emit_single_push_insn_1 (mode, x, type);
4389
4390 /* Adjust stack_pointer_delta to describe the situation after the push
4391 we just performed. Note that we must do this after the push rather
4392 than before the push in case calculating X needs pushes and pops of
4393 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4394 for such pushes and pops must not include the effect of the future
4395 push of X. */
4396 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4397
4398 last = get_last_insn ();
4399
4400 /* Notice the common case where we emitted exactly one insn. */
4401 if (PREV_INSN (last) == prev)
4402 {
4403 add_args_size_note (last, stack_pointer_delta);
4404 return;
4405 }
4406
4407 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4408 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4409 || known_eq (delta, old_delta));
4410 }
4411 #endif
4412
4413 /* If reading SIZE bytes from X will end up reading from
4414 Y return the number of bytes that overlap. Return -1
4415 if there is no overlap or -2 if we can't determine
4416 (for example when X and Y have different base registers). */
4417
4418 static int
4419 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4420 {
4421 rtx tmp = plus_constant (Pmode, x, size);
4422 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4423
4424 if (!CONST_INT_P (sub))
4425 return -2;
4426
4427 HOST_WIDE_INT val = INTVAL (sub);
4428
4429 return IN_RANGE (val, 1, size) ? val : -1;
4430 }
4431
4432 /* Generate code to push X onto the stack, assuming it has mode MODE and
4433 type TYPE.
4434 MODE is redundant except when X is a CONST_INT (since they don't
4435 carry mode info).
4436 SIZE is an rtx for the size of data to be copied (in bytes),
4437 needed only if X is BLKmode.
4438 Return true if successful. May return false if asked to push a
4439 partial argument during a sibcall optimization (as specified by
4440 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4441 to not overlap.
4442
4443 ALIGN (in bits) is maximum alignment we can assume.
4444
4445 If PARTIAL and REG are both nonzero, then copy that many of the first
4446 bytes of X into registers starting with REG, and push the rest of X.
4447 The amount of space pushed is decreased by PARTIAL bytes.
4448 REG must be a hard register in this case.
4449 If REG is zero but PARTIAL is not, take any all others actions for an
4450 argument partially in registers, but do not actually load any
4451 registers.
4452
4453 EXTRA is the amount in bytes of extra space to leave next to this arg.
4454 This is ignored if an argument block has already been allocated.
4455
4456 On a machine that lacks real push insns, ARGS_ADDR is the address of
4457 the bottom of the argument block for this call. We use indexing off there
4458 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4459 argument block has not been preallocated.
4460
4461 ARGS_SO_FAR is the size of args previously pushed for this call.
4462
4463 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4464 for arguments passed in registers. If nonzero, it will be the number
4465 of bytes required. */
4466
4467 bool
4468 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4469 unsigned int align, int partial, rtx reg, poly_int64 extra,
4470 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4471 rtx alignment_pad, bool sibcall_p)
4472 {
4473 rtx xinner;
4474 pad_direction stack_direction
4475 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4476
4477 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4478 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4479 Default is below for small data on big-endian machines; else above. */
4480 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4481
4482 /* Invert direction if stack is post-decrement.
4483 FIXME: why? */
4484 if (STACK_PUSH_CODE == POST_DEC)
4485 if (where_pad != PAD_NONE)
4486 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4487
4488 xinner = x;
4489
4490 int nregs = partial / UNITS_PER_WORD;
4491 rtx *tmp_regs = NULL;
4492 int overlapping = 0;
4493
4494 if (mode == BLKmode
4495 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4496 {
4497 /* Copy a block into the stack, entirely or partially. */
4498
4499 rtx temp;
4500 int used;
4501 int offset;
4502 int skip;
4503
4504 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4505 used = partial - offset;
4506
4507 if (mode != BLKmode)
4508 {
4509 /* A value is to be stored in an insufficiently aligned
4510 stack slot; copy via a suitably aligned slot if
4511 necessary. */
4512 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4513 if (!MEM_P (xinner))
4514 {
4515 temp = assign_temp (type, 1, 1);
4516 emit_move_insn (temp, xinner);
4517 xinner = temp;
4518 }
4519 }
4520
4521 gcc_assert (size);
4522
4523 /* USED is now the # of bytes we need not copy to the stack
4524 because registers will take care of them. */
4525
4526 if (partial != 0)
4527 xinner = adjust_address (xinner, BLKmode, used);
4528
4529 /* If the partial register-part of the arg counts in its stack size,
4530 skip the part of stack space corresponding to the registers.
4531 Otherwise, start copying to the beginning of the stack space,
4532 by setting SKIP to 0. */
4533 skip = (reg_parm_stack_space == 0) ? 0 : used;
4534
4535 #ifdef PUSH_ROUNDING
4536 /* Do it with several push insns if that doesn't take lots of insns
4537 and if there is no difficulty with push insns that skip bytes
4538 on the stack for alignment purposes. */
4539 if (args_addr == 0
4540 && PUSH_ARGS
4541 && CONST_INT_P (size)
4542 && skip == 0
4543 && MEM_ALIGN (xinner) >= align
4544 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4545 /* Here we avoid the case of a structure whose weak alignment
4546 forces many pushes of a small amount of data,
4547 and such small pushes do rounding that causes trouble. */
4548 && ((!targetm.slow_unaligned_access (word_mode, align))
4549 || align >= BIGGEST_ALIGNMENT
4550 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4551 align / BITS_PER_UNIT))
4552 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4553 {
4554 /* Push padding now if padding above and stack grows down,
4555 or if padding below and stack grows up.
4556 But if space already allocated, this has already been done. */
4557 if (maybe_ne (extra, 0)
4558 && args_addr == 0
4559 && where_pad != PAD_NONE
4560 && where_pad != stack_direction)
4561 anti_adjust_stack (gen_int_mode (extra, Pmode));
4562
4563 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4564 RETURN_BEGIN);
4565 }
4566 else
4567 #endif /* PUSH_ROUNDING */
4568 {
4569 rtx target;
4570
4571 /* Otherwise make space on the stack and copy the data
4572 to the address of that space. */
4573
4574 /* Deduct words put into registers from the size we must copy. */
4575 if (partial != 0)
4576 {
4577 if (CONST_INT_P (size))
4578 size = GEN_INT (INTVAL (size) - used);
4579 else
4580 size = expand_binop (GET_MODE (size), sub_optab, size,
4581 gen_int_mode (used, GET_MODE (size)),
4582 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4583 }
4584
4585 /* Get the address of the stack space.
4586 In this case, we do not deal with EXTRA separately.
4587 A single stack adjust will do. */
4588 poly_int64 const_args_so_far;
4589 if (! args_addr)
4590 {
4591 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4592 extra = 0;
4593 }
4594 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
4595 temp = memory_address (BLKmode,
4596 plus_constant (Pmode, args_addr,
4597 skip + const_args_so_far));
4598 else
4599 temp = memory_address (BLKmode,
4600 plus_constant (Pmode,
4601 gen_rtx_PLUS (Pmode,
4602 args_addr,
4603 args_so_far),
4604 skip));
4605
4606 if (!ACCUMULATE_OUTGOING_ARGS)
4607 {
4608 /* If the source is referenced relative to the stack pointer,
4609 copy it to another register to stabilize it. We do not need
4610 to do this if we know that we won't be changing sp. */
4611
4612 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4613 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4614 temp = copy_to_reg (temp);
4615 }
4616
4617 target = gen_rtx_MEM (BLKmode, temp);
4618
4619 /* We do *not* set_mem_attributes here, because incoming arguments
4620 may overlap with sibling call outgoing arguments and we cannot
4621 allow reordering of reads from function arguments with stores
4622 to outgoing arguments of sibling calls. We do, however, want
4623 to record the alignment of the stack slot. */
4624 /* ALIGN may well be better aligned than TYPE, e.g. due to
4625 PARM_BOUNDARY. Assume the caller isn't lying. */
4626 set_mem_align (target, align);
4627
4628 /* If part should go in registers and pushing to that part would
4629 overwrite some of the values that need to go into regs, load the
4630 overlapping values into temporary pseudos to be moved into the hard
4631 regs at the end after the stack pushing has completed.
4632 We cannot load them directly into the hard regs here because
4633 they can be clobbered by the block move expansions.
4634 See PR 65358. */
4635
4636 if (partial > 0 && reg != 0 && mode == BLKmode
4637 && GET_CODE (reg) != PARALLEL)
4638 {
4639 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4640 if (overlapping > 0)
4641 {
4642 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4643 overlapping /= UNITS_PER_WORD;
4644
4645 tmp_regs = XALLOCAVEC (rtx, overlapping);
4646
4647 for (int i = 0; i < overlapping; i++)
4648 tmp_regs[i] = gen_reg_rtx (word_mode);
4649
4650 for (int i = 0; i < overlapping; i++)
4651 emit_move_insn (tmp_regs[i],
4652 operand_subword_force (target, i, mode));
4653 }
4654 else if (overlapping == -1)
4655 overlapping = 0;
4656 /* Could not determine whether there is overlap.
4657 Fail the sibcall. */
4658 else
4659 {
4660 overlapping = 0;
4661 if (sibcall_p)
4662 return false;
4663 }
4664 }
4665 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4666 }
4667 }
4668 else if (partial > 0)
4669 {
4670 /* Scalar partly in registers. This case is only supported
4671 for fixed-wdth modes. */
4672 int num_words = GET_MODE_SIZE (mode).to_constant ();
4673 num_words /= UNITS_PER_WORD;
4674 int i;
4675 int not_stack;
4676 /* # bytes of start of argument
4677 that we must make space for but need not store. */
4678 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4679 int args_offset = INTVAL (args_so_far);
4680 int skip;
4681
4682 /* Push padding now if padding above and stack grows down,
4683 or if padding below and stack grows up.
4684 But if space already allocated, this has already been done. */
4685 if (maybe_ne (extra, 0)
4686 && args_addr == 0
4687 && where_pad != PAD_NONE
4688 && where_pad != stack_direction)
4689 anti_adjust_stack (gen_int_mode (extra, Pmode));
4690
4691 /* If we make space by pushing it, we might as well push
4692 the real data. Otherwise, we can leave OFFSET nonzero
4693 and leave the space uninitialized. */
4694 if (args_addr == 0)
4695 offset = 0;
4696
4697 /* Now NOT_STACK gets the number of words that we don't need to
4698 allocate on the stack. Convert OFFSET to words too. */
4699 not_stack = (partial - offset) / UNITS_PER_WORD;
4700 offset /= UNITS_PER_WORD;
4701
4702 /* If the partial register-part of the arg counts in its stack size,
4703 skip the part of stack space corresponding to the registers.
4704 Otherwise, start copying to the beginning of the stack space,
4705 by setting SKIP to 0. */
4706 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4707
4708 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4709 x = validize_mem (force_const_mem (mode, x));
4710
4711 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4712 SUBREGs of such registers are not allowed. */
4713 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4714 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4715 x = copy_to_reg (x);
4716
4717 /* Loop over all the words allocated on the stack for this arg. */
4718 /* We can do it by words, because any scalar bigger than a word
4719 has a size a multiple of a word. */
4720 for (i = num_words - 1; i >= not_stack; i--)
4721 if (i >= not_stack + offset)
4722 if (!emit_push_insn (operand_subword_force (x, i, mode),
4723 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4724 0, args_addr,
4725 GEN_INT (args_offset + ((i - not_stack + skip)
4726 * UNITS_PER_WORD)),
4727 reg_parm_stack_space, alignment_pad, sibcall_p))
4728 return false;
4729 }
4730 else
4731 {
4732 rtx addr;
4733 rtx dest;
4734
4735 /* Push padding now if padding above and stack grows down,
4736 or if padding below and stack grows up.
4737 But if space already allocated, this has already been done. */
4738 if (maybe_ne (extra, 0)
4739 && args_addr == 0
4740 && where_pad != PAD_NONE
4741 && where_pad != stack_direction)
4742 anti_adjust_stack (gen_int_mode (extra, Pmode));
4743
4744 #ifdef PUSH_ROUNDING
4745 if (args_addr == 0 && PUSH_ARGS)
4746 emit_single_push_insn (mode, x, type);
4747 else
4748 #endif
4749 {
4750 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4751 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4752
4753 /* We do *not* set_mem_attributes here, because incoming arguments
4754 may overlap with sibling call outgoing arguments and we cannot
4755 allow reordering of reads from function arguments with stores
4756 to outgoing arguments of sibling calls. We do, however, want
4757 to record the alignment of the stack slot. */
4758 /* ALIGN may well be better aligned than TYPE, e.g. due to
4759 PARM_BOUNDARY. Assume the caller isn't lying. */
4760 set_mem_align (dest, align);
4761
4762 emit_move_insn (dest, x);
4763 }
4764 }
4765
4766 /* Move the partial arguments into the registers and any overlapping
4767 values that we moved into the pseudos in tmp_regs. */
4768 if (partial > 0 && reg != 0)
4769 {
4770 /* Handle calls that pass values in multiple non-contiguous locations.
4771 The Irix 6 ABI has examples of this. */
4772 if (GET_CODE (reg) == PARALLEL)
4773 emit_group_load (reg, x, type, -1);
4774 else
4775 {
4776 gcc_assert (partial % UNITS_PER_WORD == 0);
4777 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4778
4779 for (int i = 0; i < overlapping; i++)
4780 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4781 + nregs - overlapping + i),
4782 tmp_regs[i]);
4783
4784 }
4785 }
4786
4787 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4788 anti_adjust_stack (gen_int_mode (extra, Pmode));
4789
4790 if (alignment_pad && args_addr == 0)
4791 anti_adjust_stack (alignment_pad);
4792
4793 return true;
4794 }
4795 \f
4796 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4797 operations. */
4798
4799 static rtx
4800 get_subtarget (rtx x)
4801 {
4802 return (optimize
4803 || x == 0
4804 /* Only registers can be subtargets. */
4805 || !REG_P (x)
4806 /* Don't use hard regs to avoid extending their life. */
4807 || REGNO (x) < FIRST_PSEUDO_REGISTER
4808 ? 0 : x);
4809 }
4810
4811 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4812 FIELD is a bitfield. Returns true if the optimization was successful,
4813 and there's nothing else to do. */
4814
4815 static bool
4816 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4817 poly_uint64 pbitpos,
4818 poly_uint64 pbitregion_start,
4819 poly_uint64 pbitregion_end,
4820 machine_mode mode1, rtx str_rtx,
4821 tree to, tree src, bool reverse)
4822 {
4823 /* str_mode is not guaranteed to be a scalar type. */
4824 machine_mode str_mode = GET_MODE (str_rtx);
4825 unsigned int str_bitsize;
4826 tree op0, op1;
4827 rtx value, result;
4828 optab binop;
4829 gimple *srcstmt;
4830 enum tree_code code;
4831
4832 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4833 if (mode1 != VOIDmode
4834 || !pbitsize.is_constant (&bitsize)
4835 || !pbitpos.is_constant (&bitpos)
4836 || !pbitregion_start.is_constant (&bitregion_start)
4837 || !pbitregion_end.is_constant (&bitregion_end)
4838 || bitsize >= BITS_PER_WORD
4839 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4840 || str_bitsize > BITS_PER_WORD
4841 || TREE_SIDE_EFFECTS (to)
4842 || TREE_THIS_VOLATILE (to))
4843 return false;
4844
4845 STRIP_NOPS (src);
4846 if (TREE_CODE (src) != SSA_NAME)
4847 return false;
4848 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4849 return false;
4850
4851 srcstmt = get_gimple_for_ssa_name (src);
4852 if (!srcstmt
4853 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4854 return false;
4855
4856 code = gimple_assign_rhs_code (srcstmt);
4857
4858 op0 = gimple_assign_rhs1 (srcstmt);
4859
4860 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4861 to find its initialization. Hopefully the initialization will
4862 be from a bitfield load. */
4863 if (TREE_CODE (op0) == SSA_NAME)
4864 {
4865 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4866
4867 /* We want to eventually have OP0 be the same as TO, which
4868 should be a bitfield. */
4869 if (!op0stmt
4870 || !is_gimple_assign (op0stmt)
4871 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4872 return false;
4873 op0 = gimple_assign_rhs1 (op0stmt);
4874 }
4875
4876 op1 = gimple_assign_rhs2 (srcstmt);
4877
4878 if (!operand_equal_p (to, op0, 0))
4879 return false;
4880
4881 if (MEM_P (str_rtx))
4882 {
4883 unsigned HOST_WIDE_INT offset1;
4884
4885 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4886 str_bitsize = BITS_PER_WORD;
4887
4888 scalar_int_mode best_mode;
4889 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4890 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4891 return false;
4892 str_mode = best_mode;
4893 str_bitsize = GET_MODE_BITSIZE (best_mode);
4894
4895 offset1 = bitpos;
4896 bitpos %= str_bitsize;
4897 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4898 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4899 }
4900 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4901 return false;
4902
4903 /* If the bit field covers the whole REG/MEM, store_field
4904 will likely generate better code. */
4905 if (bitsize >= str_bitsize)
4906 return false;
4907
4908 /* We can't handle fields split across multiple entities. */
4909 if (bitpos + bitsize > str_bitsize)
4910 return false;
4911
4912 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4913 bitpos = str_bitsize - bitpos - bitsize;
4914
4915 switch (code)
4916 {
4917 case PLUS_EXPR:
4918 case MINUS_EXPR:
4919 /* For now, just optimize the case of the topmost bitfield
4920 where we don't need to do any masking and also
4921 1 bit bitfields where xor can be used.
4922 We might win by one instruction for the other bitfields
4923 too if insv/extv instructions aren't used, so that
4924 can be added later. */
4925 if ((reverse || bitpos + bitsize != str_bitsize)
4926 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4927 break;
4928
4929 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4930 value = convert_modes (str_mode,
4931 TYPE_MODE (TREE_TYPE (op1)), value,
4932 TYPE_UNSIGNED (TREE_TYPE (op1)));
4933
4934 /* We may be accessing data outside the field, which means
4935 we can alias adjacent data. */
4936 if (MEM_P (str_rtx))
4937 {
4938 str_rtx = shallow_copy_rtx (str_rtx);
4939 set_mem_alias_set (str_rtx, 0);
4940 set_mem_expr (str_rtx, 0);
4941 }
4942
4943 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4944 {
4945 value = expand_and (str_mode, value, const1_rtx, NULL);
4946 binop = xor_optab;
4947 }
4948 else
4949 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4950
4951 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4952 if (reverse)
4953 value = flip_storage_order (str_mode, value);
4954 result = expand_binop (str_mode, binop, str_rtx,
4955 value, str_rtx, 1, OPTAB_WIDEN);
4956 if (result != str_rtx)
4957 emit_move_insn (str_rtx, result);
4958 return true;
4959
4960 case BIT_IOR_EXPR:
4961 case BIT_XOR_EXPR:
4962 if (TREE_CODE (op1) != INTEGER_CST)
4963 break;
4964 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4965 value = convert_modes (str_mode,
4966 TYPE_MODE (TREE_TYPE (op1)), value,
4967 TYPE_UNSIGNED (TREE_TYPE (op1)));
4968
4969 /* We may be accessing data outside the field, which means
4970 we can alias adjacent data. */
4971 if (MEM_P (str_rtx))
4972 {
4973 str_rtx = shallow_copy_rtx (str_rtx);
4974 set_mem_alias_set (str_rtx, 0);
4975 set_mem_expr (str_rtx, 0);
4976 }
4977
4978 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4979 if (bitpos + bitsize != str_bitsize)
4980 {
4981 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4982 str_mode);
4983 value = expand_and (str_mode, value, mask, NULL_RTX);
4984 }
4985 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4986 if (reverse)
4987 value = flip_storage_order (str_mode, value);
4988 result = expand_binop (str_mode, binop, str_rtx,
4989 value, str_rtx, 1, OPTAB_WIDEN);
4990 if (result != str_rtx)
4991 emit_move_insn (str_rtx, result);
4992 return true;
4993
4994 default:
4995 break;
4996 }
4997
4998 return false;
4999 }
5000
5001 /* In the C++ memory model, consecutive bit fields in a structure are
5002 considered one memory location.
5003
5004 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5005 returns the bit range of consecutive bits in which this COMPONENT_REF
5006 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5007 and *OFFSET may be adjusted in the process.
5008
5009 If the access does not need to be restricted, 0 is returned in both
5010 *BITSTART and *BITEND. */
5011
5012 void
5013 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
5014 poly_int64_pod *bitpos, tree *offset)
5015 {
5016 poly_int64 bitoffset;
5017 tree field, repr;
5018
5019 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5020
5021 field = TREE_OPERAND (exp, 1);
5022 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5023 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5024 need to limit the range we can access. */
5025 if (!repr)
5026 {
5027 *bitstart = *bitend = 0;
5028 return;
5029 }
5030
5031 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5032 part of a larger bit field, then the representative does not serve any
5033 useful purpose. This can occur in Ada. */
5034 if (handled_component_p (TREE_OPERAND (exp, 0)))
5035 {
5036 machine_mode rmode;
5037 poly_int64 rbitsize, rbitpos;
5038 tree roffset;
5039 int unsignedp, reversep, volatilep = 0;
5040 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5041 &roffset, &rmode, &unsignedp, &reversep,
5042 &volatilep);
5043 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5044 {
5045 *bitstart = *bitend = 0;
5046 return;
5047 }
5048 }
5049
5050 /* Compute the adjustment to bitpos from the offset of the field
5051 relative to the representative. DECL_FIELD_OFFSET of field and
5052 repr are the same by construction if they are not constants,
5053 see finish_bitfield_layout. */
5054 poly_uint64 field_offset, repr_offset;
5055 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5056 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5057 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5058 else
5059 bitoffset = 0;
5060 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5061 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5062
5063 /* If the adjustment is larger than bitpos, we would have a negative bit
5064 position for the lower bound and this may wreak havoc later. Adjust
5065 offset and bitpos to make the lower bound non-negative in that case. */
5066 if (maybe_gt (bitoffset, *bitpos))
5067 {
5068 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5069 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5070
5071 *bitpos += adjust_bits;
5072 if (*offset == NULL_TREE)
5073 *offset = size_int (-adjust_bytes);
5074 else
5075 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5076 *bitstart = 0;
5077 }
5078 else
5079 *bitstart = *bitpos - bitoffset;
5080
5081 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5082 }
5083
5084 /* Returns true if BASE is a DECL that does not reside in memory and
5085 has non-BLKmode. DECL_RTL must not be a MEM; if
5086 DECL_RTL was not set yet, return false. */
5087
5088 static inline bool
5089 non_mem_decl_p (tree base)
5090 {
5091 if (!DECL_P (base)
5092 || TREE_ADDRESSABLE (base)
5093 || DECL_MODE (base) == BLKmode)
5094 return false;
5095
5096 if (!DECL_RTL_SET_P (base))
5097 return false;
5098
5099 return (!MEM_P (DECL_RTL (base)));
5100 }
5101
5102 /* Returns true if REF refers to an object that does not
5103 reside in memory and has non-BLKmode. */
5104
5105 static inline bool
5106 mem_ref_refers_to_non_mem_p (tree ref)
5107 {
5108 tree base;
5109
5110 if (TREE_CODE (ref) == MEM_REF
5111 || TREE_CODE (ref) == TARGET_MEM_REF)
5112 {
5113 tree addr = TREE_OPERAND (ref, 0);
5114
5115 if (TREE_CODE (addr) != ADDR_EXPR)
5116 return false;
5117
5118 base = TREE_OPERAND (addr, 0);
5119 }
5120 else
5121 base = ref;
5122
5123 return non_mem_decl_p (base);
5124 }
5125
5126 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5127 is true, try generating a nontemporal store. */
5128
5129 void
5130 expand_assignment (tree to, tree from, bool nontemporal)
5131 {
5132 rtx to_rtx = 0;
5133 rtx result;
5134 machine_mode mode;
5135 unsigned int align;
5136 enum insn_code icode;
5137
5138 /* Don't crash if the lhs of the assignment was erroneous. */
5139 if (TREE_CODE (to) == ERROR_MARK)
5140 {
5141 expand_normal (from);
5142 return;
5143 }
5144
5145 /* Optimize away no-op moves without side-effects. */
5146 if (operand_equal_p (to, from, 0))
5147 return;
5148
5149 /* Handle misaligned stores. */
5150 mode = TYPE_MODE (TREE_TYPE (to));
5151 if ((TREE_CODE (to) == MEM_REF
5152 || TREE_CODE (to) == TARGET_MEM_REF
5153 || DECL_P (to))
5154 && mode != BLKmode
5155 && !mem_ref_refers_to_non_mem_p (to)
5156 && ((align = get_object_alignment (to))
5157 < GET_MODE_ALIGNMENT (mode))
5158 && (((icode = optab_handler (movmisalign_optab, mode))
5159 != CODE_FOR_nothing)
5160 || targetm.slow_unaligned_access (mode, align)))
5161 {
5162 rtx reg, mem;
5163
5164 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5165 reg = force_not_mem (reg);
5166 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5167 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5168 reg = flip_storage_order (mode, reg);
5169
5170 if (icode != CODE_FOR_nothing)
5171 {
5172 class expand_operand ops[2];
5173
5174 create_fixed_operand (&ops[0], mem);
5175 create_input_operand (&ops[1], reg, mode);
5176 /* The movmisalign<mode> pattern cannot fail, else the assignment
5177 would silently be omitted. */
5178 expand_insn (icode, 2, ops);
5179 }
5180 else
5181 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5182 false);
5183 return;
5184 }
5185
5186 /* Assignment of a structure component needs special treatment
5187 if the structure component's rtx is not simply a MEM.
5188 Assignment of an array element at a constant index, and assignment of
5189 an array element in an unaligned packed structure field, has the same
5190 problem. Same for (partially) storing into a non-memory object. */
5191 if (handled_component_p (to)
5192 || (TREE_CODE (to) == MEM_REF
5193 && (REF_REVERSE_STORAGE_ORDER (to)
5194 || mem_ref_refers_to_non_mem_p (to)))
5195 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5196 {
5197 machine_mode mode1;
5198 poly_int64 bitsize, bitpos;
5199 poly_uint64 bitregion_start = 0;
5200 poly_uint64 bitregion_end = 0;
5201 tree offset;
5202 int unsignedp, reversep, volatilep = 0;
5203 tree tem;
5204
5205 push_temp_slots ();
5206 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5207 &unsignedp, &reversep, &volatilep);
5208
5209 /* Make sure bitpos is not negative, it can wreak havoc later. */
5210 if (maybe_lt (bitpos, 0))
5211 {
5212 gcc_assert (offset == NULL_TREE);
5213 offset = size_int (bits_to_bytes_round_down (bitpos));
5214 bitpos = num_trailing_bits (bitpos);
5215 }
5216
5217 if (TREE_CODE (to) == COMPONENT_REF
5218 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5219 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5220 /* The C++ memory model naturally applies to byte-aligned fields.
5221 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5222 BITSIZE are not byte-aligned, there is no need to limit the range
5223 we can access. This can occur with packed structures in Ada. */
5224 else if (maybe_gt (bitsize, 0)
5225 && multiple_p (bitsize, BITS_PER_UNIT)
5226 && multiple_p (bitpos, BITS_PER_UNIT))
5227 {
5228 bitregion_start = bitpos;
5229 bitregion_end = bitpos + bitsize - 1;
5230 }
5231
5232 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5233
5234 /* If the field has a mode, we want to access it in the
5235 field's mode, not the computed mode.
5236 If a MEM has VOIDmode (external with incomplete type),
5237 use BLKmode for it instead. */
5238 if (MEM_P (to_rtx))
5239 {
5240 if (mode1 != VOIDmode)
5241 to_rtx = adjust_address (to_rtx, mode1, 0);
5242 else if (GET_MODE (to_rtx) == VOIDmode)
5243 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5244 }
5245
5246 if (offset != 0)
5247 {
5248 machine_mode address_mode;
5249 rtx offset_rtx;
5250
5251 if (!MEM_P (to_rtx))
5252 {
5253 /* We can get constant negative offsets into arrays with broken
5254 user code. Translate this to a trap instead of ICEing. */
5255 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5256 expand_builtin_trap ();
5257 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5258 }
5259
5260 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5261 address_mode = get_address_mode (to_rtx);
5262 if (GET_MODE (offset_rtx) != address_mode)
5263 {
5264 /* We cannot be sure that the RTL in offset_rtx is valid outside
5265 of a memory address context, so force it into a register
5266 before attempting to convert it to the desired mode. */
5267 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5268 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5269 }
5270
5271 /* If we have an expression in OFFSET_RTX and a non-zero
5272 byte offset in BITPOS, adding the byte offset before the
5273 OFFSET_RTX results in better intermediate code, which makes
5274 later rtl optimization passes perform better.
5275
5276 We prefer intermediate code like this:
5277
5278 r124:DI=r123:DI+0x18
5279 [r124:DI]=r121:DI
5280
5281 ... instead of ...
5282
5283 r124:DI=r123:DI+0x10
5284 [r124:DI+0x8]=r121:DI
5285
5286 This is only done for aligned data values, as these can
5287 be expected to result in single move instructions. */
5288 poly_int64 bytepos;
5289 if (mode1 != VOIDmode
5290 && maybe_ne (bitpos, 0)
5291 && maybe_gt (bitsize, 0)
5292 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5293 && multiple_p (bitpos, bitsize)
5294 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5295 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5296 {
5297 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5298 bitregion_start = 0;
5299 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5300 bitregion_end -= bitpos;
5301 bitpos = 0;
5302 }
5303
5304 to_rtx = offset_address (to_rtx, offset_rtx,
5305 highest_pow2_factor_for_target (to,
5306 offset));
5307 }
5308
5309 /* No action is needed if the target is not a memory and the field
5310 lies completely outside that target. This can occur if the source
5311 code contains an out-of-bounds access to a small array. */
5312 if (!MEM_P (to_rtx)
5313 && GET_MODE (to_rtx) != BLKmode
5314 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5315 {
5316 expand_normal (from);
5317 result = NULL;
5318 }
5319 /* Handle expand_expr of a complex value returning a CONCAT. */
5320 else if (GET_CODE (to_rtx) == CONCAT)
5321 {
5322 machine_mode to_mode = GET_MODE (to_rtx);
5323 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5324 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5325 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5326 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5327 && known_eq (bitpos, 0)
5328 && known_eq (bitsize, mode_bitsize))
5329 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5330 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5331 && known_eq (bitsize, inner_bitsize)
5332 && (known_eq (bitpos, 0)
5333 || known_eq (bitpos, inner_bitsize)))
5334 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5335 false, nontemporal, reversep);
5336 else if (known_le (bitpos + bitsize, inner_bitsize))
5337 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5338 bitregion_start, bitregion_end,
5339 mode1, from, get_alias_set (to),
5340 nontemporal, reversep);
5341 else if (known_ge (bitpos, inner_bitsize))
5342 result = store_field (XEXP (to_rtx, 1), bitsize,
5343 bitpos - inner_bitsize,
5344 bitregion_start, bitregion_end,
5345 mode1, from, get_alias_set (to),
5346 nontemporal, reversep);
5347 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5348 {
5349 result = expand_normal (from);
5350 if (GET_CODE (result) == CONCAT)
5351 {
5352 to_mode = GET_MODE_INNER (to_mode);
5353 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5354 rtx from_real
5355 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5356 from_mode, 0);
5357 rtx from_imag
5358 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5359 from_mode, 0);
5360 if (!from_real || !from_imag)
5361 goto concat_store_slow;
5362 emit_move_insn (XEXP (to_rtx, 0), from_real);
5363 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5364 }
5365 else
5366 {
5367 machine_mode from_mode
5368 = GET_MODE (result) == VOIDmode
5369 ? TYPE_MODE (TREE_TYPE (from))
5370 : GET_MODE (result);
5371 rtx from_rtx;
5372 if (MEM_P (result))
5373 from_rtx = change_address (result, to_mode, NULL_RTX);
5374 else
5375 from_rtx
5376 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5377 if (from_rtx)
5378 {
5379 emit_move_insn (XEXP (to_rtx, 0),
5380 read_complex_part (from_rtx, false));
5381 emit_move_insn (XEXP (to_rtx, 1),
5382 read_complex_part (from_rtx, true));
5383 }
5384 else
5385 {
5386 to_mode = GET_MODE_INNER (to_mode);
5387 rtx from_real
5388 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5389 rtx from_imag
5390 = simplify_gen_subreg (to_mode, result, from_mode,
5391 GET_MODE_SIZE (to_mode));
5392 if (!from_real || !from_imag)
5393 goto concat_store_slow;
5394 emit_move_insn (XEXP (to_rtx, 0), from_real);
5395 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5396 }
5397 }
5398 }
5399 else
5400 {
5401 concat_store_slow:;
5402 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5403 GET_MODE_SIZE (GET_MODE (to_rtx)));
5404 write_complex_part (temp, XEXP (to_rtx, 0), false);
5405 write_complex_part (temp, XEXP (to_rtx, 1), true);
5406 result = store_field (temp, bitsize, bitpos,
5407 bitregion_start, bitregion_end,
5408 mode1, from, get_alias_set (to),
5409 nontemporal, reversep);
5410 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5411 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5412 }
5413 }
5414 /* For calls to functions returning variable length structures, if TO_RTX
5415 is not a MEM, go through a MEM because we must not create temporaries
5416 of the VLA type. */
5417 else if (!MEM_P (to_rtx)
5418 && TREE_CODE (from) == CALL_EXPR
5419 && COMPLETE_TYPE_P (TREE_TYPE (from))
5420 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5421 {
5422 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5423 GET_MODE_SIZE (GET_MODE (to_rtx)));
5424 result = store_field (temp, bitsize, bitpos, bitregion_start,
5425 bitregion_end, mode1, from, get_alias_set (to),
5426 nontemporal, reversep);
5427 emit_move_insn (to_rtx, temp);
5428 }
5429 else
5430 {
5431 if (MEM_P (to_rtx))
5432 {
5433 /* If the field is at offset zero, we could have been given the
5434 DECL_RTX of the parent struct. Don't munge it. */
5435 to_rtx = shallow_copy_rtx (to_rtx);
5436 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5437 if (volatilep)
5438 MEM_VOLATILE_P (to_rtx) = 1;
5439 }
5440
5441 gcc_checking_assert (known_ge (bitpos, 0));
5442 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5443 bitregion_start, bitregion_end,
5444 mode1, to_rtx, to, from,
5445 reversep))
5446 result = NULL;
5447 else
5448 result = store_field (to_rtx, bitsize, bitpos,
5449 bitregion_start, bitregion_end,
5450 mode1, from, get_alias_set (to),
5451 nontemporal, reversep);
5452 }
5453
5454 if (result)
5455 preserve_temp_slots (result);
5456 pop_temp_slots ();
5457 return;
5458 }
5459
5460 /* If the rhs is a function call and its value is not an aggregate,
5461 call the function before we start to compute the lhs.
5462 This is needed for correct code for cases such as
5463 val = setjmp (buf) on machines where reference to val
5464 requires loading up part of an address in a separate insn.
5465
5466 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5467 since it might be a promoted variable where the zero- or sign- extension
5468 needs to be done. Handling this in the normal way is safe because no
5469 computation is done before the call. The same is true for SSA names. */
5470 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5471 && COMPLETE_TYPE_P (TREE_TYPE (from))
5472 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5473 && ! (((VAR_P (to)
5474 || TREE_CODE (to) == PARM_DECL
5475 || TREE_CODE (to) == RESULT_DECL)
5476 && REG_P (DECL_RTL (to)))
5477 || TREE_CODE (to) == SSA_NAME))
5478 {
5479 rtx value;
5480
5481 push_temp_slots ();
5482 value = expand_normal (from);
5483
5484 if (to_rtx == 0)
5485 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5486
5487 /* Handle calls that return values in multiple non-contiguous locations.
5488 The Irix 6 ABI has examples of this. */
5489 if (GET_CODE (to_rtx) == PARALLEL)
5490 {
5491 if (GET_CODE (value) == PARALLEL)
5492 emit_group_move (to_rtx, value);
5493 else
5494 emit_group_load (to_rtx, value, TREE_TYPE (from),
5495 int_size_in_bytes (TREE_TYPE (from)));
5496 }
5497 else if (GET_CODE (value) == PARALLEL)
5498 emit_group_store (to_rtx, value, TREE_TYPE (from),
5499 int_size_in_bytes (TREE_TYPE (from)));
5500 else if (GET_MODE (to_rtx) == BLKmode)
5501 {
5502 /* Handle calls that return BLKmode values in registers. */
5503 if (REG_P (value))
5504 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5505 else
5506 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5507 }
5508 else
5509 {
5510 if (POINTER_TYPE_P (TREE_TYPE (to)))
5511 value = convert_memory_address_addr_space
5512 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5513 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5514
5515 emit_move_insn (to_rtx, value);
5516 }
5517
5518 preserve_temp_slots (to_rtx);
5519 pop_temp_slots ();
5520 return;
5521 }
5522
5523 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5524 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5525
5526 /* Don't move directly into a return register. */
5527 if (TREE_CODE (to) == RESULT_DECL
5528 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5529 {
5530 rtx temp;
5531
5532 push_temp_slots ();
5533
5534 /* If the source is itself a return value, it still is in a pseudo at
5535 this point so we can move it back to the return register directly. */
5536 if (REG_P (to_rtx)
5537 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5538 && TREE_CODE (from) != CALL_EXPR)
5539 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5540 else
5541 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5542
5543 /* Handle calls that return values in multiple non-contiguous locations.
5544 The Irix 6 ABI has examples of this. */
5545 if (GET_CODE (to_rtx) == PARALLEL)
5546 {
5547 if (GET_CODE (temp) == PARALLEL)
5548 emit_group_move (to_rtx, temp);
5549 else
5550 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5551 int_size_in_bytes (TREE_TYPE (from)));
5552 }
5553 else if (temp)
5554 emit_move_insn (to_rtx, temp);
5555
5556 preserve_temp_slots (to_rtx);
5557 pop_temp_slots ();
5558 return;
5559 }
5560
5561 /* In case we are returning the contents of an object which overlaps
5562 the place the value is being stored, use a safe function when copying
5563 a value through a pointer into a structure value return block. */
5564 if (TREE_CODE (to) == RESULT_DECL
5565 && TREE_CODE (from) == INDIRECT_REF
5566 && ADDR_SPACE_GENERIC_P
5567 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5568 && refs_may_alias_p (to, from)
5569 && cfun->returns_struct
5570 && !cfun->returns_pcc_struct)
5571 {
5572 rtx from_rtx, size;
5573
5574 push_temp_slots ();
5575 size = expr_size (from);
5576 from_rtx = expand_normal (from);
5577
5578 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5579
5580 preserve_temp_slots (to_rtx);
5581 pop_temp_slots ();
5582 return;
5583 }
5584
5585 /* Compute FROM and store the value in the rtx we got. */
5586
5587 push_temp_slots ();
5588 result = store_expr (from, to_rtx, 0, nontemporal, false);
5589 preserve_temp_slots (result);
5590 pop_temp_slots ();
5591 return;
5592 }
5593
5594 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5595 succeeded, false otherwise. */
5596
5597 bool
5598 emit_storent_insn (rtx to, rtx from)
5599 {
5600 class expand_operand ops[2];
5601 machine_mode mode = GET_MODE (to);
5602 enum insn_code code = optab_handler (storent_optab, mode);
5603
5604 if (code == CODE_FOR_nothing)
5605 return false;
5606
5607 create_fixed_operand (&ops[0], to);
5608 create_input_operand (&ops[1], from, mode);
5609 return maybe_expand_insn (code, 2, ops);
5610 }
5611
5612 /* Helper function for store_expr storing of STRING_CST. */
5613
5614 static rtx
5615 string_cst_read_str (void *data, HOST_WIDE_INT offset, scalar_int_mode mode)
5616 {
5617 tree str = (tree) data;
5618
5619 gcc_assert (offset >= 0);
5620 if (offset >= TREE_STRING_LENGTH (str))
5621 return const0_rtx;
5622
5623 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
5624 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
5625 {
5626 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
5627 size_t l = TREE_STRING_LENGTH (str) - offset;
5628 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
5629 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
5630 return c_readstr (p, mode, false);
5631 }
5632
5633 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
5634 }
5635
5636 /* Generate code for computing expression EXP,
5637 and storing the value into TARGET.
5638
5639 If the mode is BLKmode then we may return TARGET itself.
5640 It turns out that in BLKmode it doesn't cause a problem.
5641 because C has no operators that could combine two different
5642 assignments into the same BLKmode object with different values
5643 with no sequence point. Will other languages need this to
5644 be more thorough?
5645
5646 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5647 stack, and block moves may need to be treated specially.
5648
5649 If NONTEMPORAL is true, try using a nontemporal store instruction.
5650
5651 If REVERSE is true, the store is to be done in reverse order. */
5652
5653 rtx
5654 store_expr (tree exp, rtx target, int call_param_p,
5655 bool nontemporal, bool reverse)
5656 {
5657 rtx temp;
5658 rtx alt_rtl = NULL_RTX;
5659 location_t loc = curr_insn_location ();
5660 bool shortened_string_cst = false;
5661
5662 if (VOID_TYPE_P (TREE_TYPE (exp)))
5663 {
5664 /* C++ can generate ?: expressions with a throw expression in one
5665 branch and an rvalue in the other. Here, we resolve attempts to
5666 store the throw expression's nonexistent result. */
5667 gcc_assert (!call_param_p);
5668 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5669 return NULL_RTX;
5670 }
5671 if (TREE_CODE (exp) == COMPOUND_EXPR)
5672 {
5673 /* Perform first part of compound expression, then assign from second
5674 part. */
5675 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5676 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5677 return store_expr (TREE_OPERAND (exp, 1), target,
5678 call_param_p, nontemporal, reverse);
5679 }
5680 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5681 {
5682 /* For conditional expression, get safe form of the target. Then
5683 test the condition, doing the appropriate assignment on either
5684 side. This avoids the creation of unnecessary temporaries.
5685 For non-BLKmode, it is more efficient not to do this. */
5686
5687 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5688
5689 do_pending_stack_adjust ();
5690 NO_DEFER_POP;
5691 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5692 profile_probability::uninitialized ());
5693 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5694 nontemporal, reverse);
5695 emit_jump_insn (targetm.gen_jump (lab2));
5696 emit_barrier ();
5697 emit_label (lab1);
5698 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5699 nontemporal, reverse);
5700 emit_label (lab2);
5701 OK_DEFER_POP;
5702
5703 return NULL_RTX;
5704 }
5705 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5706 /* If this is a scalar in a register that is stored in a wider mode
5707 than the declared mode, compute the result into its declared mode
5708 and then convert to the wider mode. Our value is the computed
5709 expression. */
5710 {
5711 rtx inner_target = 0;
5712 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5713 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5714
5715 /* We can do the conversion inside EXP, which will often result
5716 in some optimizations. Do the conversion in two steps: first
5717 change the signedness, if needed, then the extend. But don't
5718 do this if the type of EXP is a subtype of something else
5719 since then the conversion might involve more than just
5720 converting modes. */
5721 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5722 && TREE_TYPE (TREE_TYPE (exp)) == 0
5723 && GET_MODE_PRECISION (outer_mode)
5724 == TYPE_PRECISION (TREE_TYPE (exp)))
5725 {
5726 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5727 TYPE_UNSIGNED (TREE_TYPE (exp))))
5728 {
5729 /* Some types, e.g. Fortran's logical*4, won't have a signed
5730 version, so use the mode instead. */
5731 tree ntype
5732 = (signed_or_unsigned_type_for
5733 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5734 if (ntype == NULL)
5735 ntype = lang_hooks.types.type_for_mode
5736 (TYPE_MODE (TREE_TYPE (exp)),
5737 SUBREG_PROMOTED_SIGN (target));
5738
5739 exp = fold_convert_loc (loc, ntype, exp);
5740 }
5741
5742 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5743 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5744 exp);
5745
5746 inner_target = SUBREG_REG (target);
5747 }
5748
5749 temp = expand_expr (exp, inner_target, VOIDmode,
5750 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5751
5752
5753 /* If TEMP is a VOIDmode constant, use convert_modes to make
5754 sure that we properly convert it. */
5755 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5756 {
5757 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5758 temp, SUBREG_PROMOTED_SIGN (target));
5759 temp = convert_modes (inner_mode, outer_mode, temp,
5760 SUBREG_PROMOTED_SIGN (target));
5761 }
5762
5763 convert_move (SUBREG_REG (target), temp,
5764 SUBREG_PROMOTED_SIGN (target));
5765
5766 return NULL_RTX;
5767 }
5768 else if ((TREE_CODE (exp) == STRING_CST
5769 || (TREE_CODE (exp) == MEM_REF
5770 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5771 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5772 == STRING_CST
5773 && integer_zerop (TREE_OPERAND (exp, 1))))
5774 && !nontemporal && !call_param_p
5775 && MEM_P (target))
5776 {
5777 /* Optimize initialization of an array with a STRING_CST. */
5778 HOST_WIDE_INT exp_len, str_copy_len;
5779 rtx dest_mem;
5780 tree str = TREE_CODE (exp) == STRING_CST
5781 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5782
5783 exp_len = int_expr_size (exp);
5784 if (exp_len <= 0)
5785 goto normal_expr;
5786
5787 if (TREE_STRING_LENGTH (str) <= 0)
5788 goto normal_expr;
5789
5790 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
5791 MEM_ALIGN (target), false))
5792 {
5793 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
5794 MEM_ALIGN (target), false, RETURN_BEGIN);
5795 return NULL_RTX;
5796 }
5797
5798 str_copy_len = TREE_STRING_LENGTH (str);
5799 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
5800 {
5801 str_copy_len += STORE_MAX_PIECES - 1;
5802 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5803 }
5804 if (str_copy_len >= exp_len)
5805 goto normal_expr;
5806
5807 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
5808 (void *) str, MEM_ALIGN (target), false))
5809 goto normal_expr;
5810
5811 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
5812 (void *) str, MEM_ALIGN (target), false,
5813 RETURN_END);
5814 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
5815 exp_len - str_copy_len),
5816 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
5817 return NULL_RTX;
5818 }
5819 else
5820 {
5821 rtx tmp_target;
5822
5823 normal_expr:
5824 /* If we want to use a nontemporal or a reverse order store, force the
5825 value into a register first. */
5826 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5827 tree rexp = exp;
5828 if (TREE_CODE (exp) == STRING_CST
5829 && tmp_target == target
5830 && GET_MODE (target) == BLKmode
5831 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
5832 {
5833 rtx size = expr_size (exp);
5834 if (CONST_INT_P (size)
5835 && size != const0_rtx
5836 && (UINTVAL (size)
5837 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
5838 {
5839 /* If the STRING_CST has much larger array type than
5840 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
5841 it into the rodata section as the code later on will use
5842 memset zero for the remainder anyway. See PR95052. */
5843 tmp_target = NULL_RTX;
5844 rexp = copy_node (exp);
5845 tree index
5846 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
5847 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
5848 index);
5849 shortened_string_cst = true;
5850 }
5851 }
5852 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
5853 (call_param_p
5854 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5855 &alt_rtl, false);
5856 if (shortened_string_cst)
5857 {
5858 gcc_assert (MEM_P (temp));
5859 temp = change_address (temp, BLKmode, NULL_RTX);
5860 }
5861 }
5862
5863 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5864 the same as that of TARGET, adjust the constant. This is needed, for
5865 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5866 only a word-sized value. */
5867 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5868 && TREE_CODE (exp) != ERROR_MARK
5869 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5870 {
5871 gcc_assert (!shortened_string_cst);
5872 if (GET_MODE_CLASS (GET_MODE (target))
5873 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5874 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5875 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5876 {
5877 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5878 TYPE_MODE (TREE_TYPE (exp)), 0);
5879 if (t)
5880 temp = t;
5881 }
5882 if (GET_MODE (temp) == VOIDmode)
5883 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5884 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5885 }
5886
5887 /* If value was not generated in the target, store it there.
5888 Convert the value to TARGET's type first if necessary and emit the
5889 pending incrementations that have been queued when expanding EXP.
5890 Note that we cannot emit the whole queue blindly because this will
5891 effectively disable the POST_INC optimization later.
5892
5893 If TEMP and TARGET compare equal according to rtx_equal_p, but
5894 one or both of them are volatile memory refs, we have to distinguish
5895 two cases:
5896 - expand_expr has used TARGET. In this case, we must not generate
5897 another copy. This can be detected by TARGET being equal according
5898 to == .
5899 - expand_expr has not used TARGET - that means that the source just
5900 happens to have the same RTX form. Since temp will have been created
5901 by expand_expr, it will compare unequal according to == .
5902 We must generate a copy in this case, to reach the correct number
5903 of volatile memory references. */
5904
5905 if ((! rtx_equal_p (temp, target)
5906 || (temp != target && (side_effects_p (temp)
5907 || side_effects_p (target))))
5908 && TREE_CODE (exp) != ERROR_MARK
5909 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5910 but TARGET is not valid memory reference, TEMP will differ
5911 from TARGET although it is really the same location. */
5912 && !(alt_rtl
5913 && rtx_equal_p (alt_rtl, target)
5914 && !side_effects_p (alt_rtl)
5915 && !side_effects_p (target))
5916 /* If there's nothing to copy, don't bother. Don't call
5917 expr_size unless necessary, because some front-ends (C++)
5918 expr_size-hook must not be given objects that are not
5919 supposed to be bit-copied or bit-initialized. */
5920 && expr_size (exp) != const0_rtx)
5921 {
5922 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5923 {
5924 gcc_assert (!shortened_string_cst);
5925 if (GET_MODE (target) == BLKmode)
5926 {
5927 /* Handle calls that return BLKmode values in registers. */
5928 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5929 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5930 else
5931 store_bit_field (target,
5932 rtx_to_poly_int64 (expr_size (exp))
5933 * BITS_PER_UNIT,
5934 0, 0, 0, GET_MODE (temp), temp, reverse);
5935 }
5936 else
5937 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5938 }
5939
5940 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5941 {
5942 /* Handle copying a string constant into an array. The string
5943 constant may be shorter than the array. So copy just the string's
5944 actual length, and clear the rest. First get the size of the data
5945 type of the string, which is actually the size of the target. */
5946 rtx size = expr_size (exp);
5947
5948 if (CONST_INT_P (size)
5949 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5950 emit_block_move (target, temp, size,
5951 (call_param_p
5952 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5953 else
5954 {
5955 machine_mode pointer_mode
5956 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5957 machine_mode address_mode = get_address_mode (target);
5958
5959 /* Compute the size of the data to copy from the string. */
5960 tree copy_size
5961 = size_binop_loc (loc, MIN_EXPR,
5962 make_tree (sizetype, size),
5963 size_int (TREE_STRING_LENGTH (exp)));
5964 rtx copy_size_rtx
5965 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5966 (call_param_p
5967 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5968 rtx_code_label *label = 0;
5969
5970 /* Copy that much. */
5971 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5972 TYPE_UNSIGNED (sizetype));
5973 emit_block_move (target, temp, copy_size_rtx,
5974 (call_param_p
5975 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5976
5977 /* Figure out how much is left in TARGET that we have to clear.
5978 Do all calculations in pointer_mode. */
5979 poly_int64 const_copy_size;
5980 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5981 {
5982 size = plus_constant (address_mode, size, -const_copy_size);
5983 target = adjust_address (target, BLKmode, const_copy_size);
5984 }
5985 else
5986 {
5987 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5988 copy_size_rtx, NULL_RTX, 0,
5989 OPTAB_LIB_WIDEN);
5990
5991 if (GET_MODE (copy_size_rtx) != address_mode)
5992 copy_size_rtx = convert_to_mode (address_mode,
5993 copy_size_rtx,
5994 TYPE_UNSIGNED (sizetype));
5995
5996 target = offset_address (target, copy_size_rtx,
5997 highest_pow2_factor (copy_size));
5998 label = gen_label_rtx ();
5999 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6000 GET_MODE (size), 0, label);
6001 }
6002
6003 if (size != const0_rtx)
6004 clear_storage (target, size, BLOCK_OP_NORMAL);
6005
6006 if (label)
6007 emit_label (label);
6008 }
6009 }
6010 else if (shortened_string_cst)
6011 gcc_unreachable ();
6012 /* Handle calls that return values in multiple non-contiguous locations.
6013 The Irix 6 ABI has examples of this. */
6014 else if (GET_CODE (target) == PARALLEL)
6015 {
6016 if (GET_CODE (temp) == PARALLEL)
6017 emit_group_move (target, temp);
6018 else
6019 emit_group_load (target, temp, TREE_TYPE (exp),
6020 int_size_in_bytes (TREE_TYPE (exp)));
6021 }
6022 else if (GET_CODE (temp) == PARALLEL)
6023 emit_group_store (target, temp, TREE_TYPE (exp),
6024 int_size_in_bytes (TREE_TYPE (exp)));
6025 else if (GET_MODE (temp) == BLKmode)
6026 emit_block_move (target, temp, expr_size (exp),
6027 (call_param_p
6028 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6029 /* If we emit a nontemporal store, there is nothing else to do. */
6030 else if (nontemporal && emit_storent_insn (target, temp))
6031 ;
6032 else
6033 {
6034 if (reverse)
6035 temp = flip_storage_order (GET_MODE (target), temp);
6036 temp = force_operand (temp, target);
6037 if (temp != target)
6038 emit_move_insn (target, temp);
6039 }
6040 }
6041 else
6042 gcc_assert (!shortened_string_cst);
6043
6044 return NULL_RTX;
6045 }
6046 \f
6047 /* Return true if field F of structure TYPE is a flexible array. */
6048
6049 static bool
6050 flexible_array_member_p (const_tree f, const_tree type)
6051 {
6052 const_tree tf;
6053
6054 tf = TREE_TYPE (f);
6055 return (DECL_CHAIN (f) == NULL
6056 && TREE_CODE (tf) == ARRAY_TYPE
6057 && TYPE_DOMAIN (tf)
6058 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6059 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6060 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6061 && int_size_in_bytes (type) >= 0);
6062 }
6063
6064 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6065 must have in order for it to completely initialize a value of type TYPE.
6066 Return -1 if the number isn't known.
6067
6068 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6069
6070 static HOST_WIDE_INT
6071 count_type_elements (const_tree type, bool for_ctor_p)
6072 {
6073 switch (TREE_CODE (type))
6074 {
6075 case ARRAY_TYPE:
6076 {
6077 tree nelts;
6078
6079 nelts = array_type_nelts (type);
6080 if (nelts && tree_fits_uhwi_p (nelts))
6081 {
6082 unsigned HOST_WIDE_INT n;
6083
6084 n = tree_to_uhwi (nelts) + 1;
6085 if (n == 0 || for_ctor_p)
6086 return n;
6087 else
6088 return n * count_type_elements (TREE_TYPE (type), false);
6089 }
6090 return for_ctor_p ? -1 : 1;
6091 }
6092
6093 case RECORD_TYPE:
6094 {
6095 unsigned HOST_WIDE_INT n;
6096 tree f;
6097
6098 n = 0;
6099 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6100 if (TREE_CODE (f) == FIELD_DECL)
6101 {
6102 if (!for_ctor_p)
6103 n += count_type_elements (TREE_TYPE (f), false);
6104 else if (!flexible_array_member_p (f, type))
6105 /* Don't count flexible arrays, which are not supposed
6106 to be initialized. */
6107 n += 1;
6108 }
6109
6110 return n;
6111 }
6112
6113 case UNION_TYPE:
6114 case QUAL_UNION_TYPE:
6115 {
6116 tree f;
6117 HOST_WIDE_INT n, m;
6118
6119 gcc_assert (!for_ctor_p);
6120 /* Estimate the number of scalars in each field and pick the
6121 maximum. Other estimates would do instead; the idea is simply
6122 to make sure that the estimate is not sensitive to the ordering
6123 of the fields. */
6124 n = 1;
6125 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6126 if (TREE_CODE (f) == FIELD_DECL)
6127 {
6128 m = count_type_elements (TREE_TYPE (f), false);
6129 /* If the field doesn't span the whole union, add an extra
6130 scalar for the rest. */
6131 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
6132 TYPE_SIZE (type)) != 1)
6133 m++;
6134 if (n < m)
6135 n = m;
6136 }
6137 return n;
6138 }
6139
6140 case COMPLEX_TYPE:
6141 return 2;
6142
6143 case VECTOR_TYPE:
6144 {
6145 unsigned HOST_WIDE_INT nelts;
6146 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6147 return nelts;
6148 else
6149 return -1;
6150 }
6151
6152 case INTEGER_TYPE:
6153 case REAL_TYPE:
6154 case FIXED_POINT_TYPE:
6155 case ENUMERAL_TYPE:
6156 case BOOLEAN_TYPE:
6157 case POINTER_TYPE:
6158 case OFFSET_TYPE:
6159 case REFERENCE_TYPE:
6160 case NULLPTR_TYPE:
6161 return 1;
6162
6163 case ERROR_MARK:
6164 return 0;
6165
6166 case VOID_TYPE:
6167 case METHOD_TYPE:
6168 case FUNCTION_TYPE:
6169 case LANG_TYPE:
6170 default:
6171 gcc_unreachable ();
6172 }
6173 }
6174
6175 /* Helper for categorize_ctor_elements. Identical interface. */
6176
6177 static bool
6178 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6179 HOST_WIDE_INT *p_unique_nz_elts,
6180 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6181 {
6182 unsigned HOST_WIDE_INT idx;
6183 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6184 tree value, purpose, elt_type;
6185
6186 /* Whether CTOR is a valid constant initializer, in accordance with what
6187 initializer_constant_valid_p does. If inferred from the constructor
6188 elements, true until proven otherwise. */
6189 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6190 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6191
6192 nz_elts = 0;
6193 unique_nz_elts = 0;
6194 init_elts = 0;
6195 num_fields = 0;
6196 elt_type = NULL_TREE;
6197
6198 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6199 {
6200 HOST_WIDE_INT mult = 1;
6201
6202 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6203 {
6204 tree lo_index = TREE_OPERAND (purpose, 0);
6205 tree hi_index = TREE_OPERAND (purpose, 1);
6206
6207 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6208 mult = (tree_to_uhwi (hi_index)
6209 - tree_to_uhwi (lo_index) + 1);
6210 }
6211 num_fields += mult;
6212 elt_type = TREE_TYPE (value);
6213
6214 switch (TREE_CODE (value))
6215 {
6216 case CONSTRUCTOR:
6217 {
6218 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6219
6220 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6221 &ic, p_complete);
6222
6223 nz_elts += mult * nz;
6224 unique_nz_elts += unz;
6225 init_elts += mult * ic;
6226
6227 if (const_from_elts_p && const_p)
6228 const_p = const_elt_p;
6229 }
6230 break;
6231
6232 case INTEGER_CST:
6233 case REAL_CST:
6234 case FIXED_CST:
6235 if (!initializer_zerop (value))
6236 {
6237 nz_elts += mult;
6238 unique_nz_elts++;
6239 }
6240 init_elts += mult;
6241 break;
6242
6243 case STRING_CST:
6244 nz_elts += mult * TREE_STRING_LENGTH (value);
6245 unique_nz_elts += TREE_STRING_LENGTH (value);
6246 init_elts += mult * TREE_STRING_LENGTH (value);
6247 break;
6248
6249 case COMPLEX_CST:
6250 if (!initializer_zerop (TREE_REALPART (value)))
6251 {
6252 nz_elts += mult;
6253 unique_nz_elts++;
6254 }
6255 if (!initializer_zerop (TREE_IMAGPART (value)))
6256 {
6257 nz_elts += mult;
6258 unique_nz_elts++;
6259 }
6260 init_elts += 2 * mult;
6261 break;
6262
6263 case VECTOR_CST:
6264 {
6265 /* We can only construct constant-length vectors using
6266 CONSTRUCTOR. */
6267 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6268 for (unsigned int i = 0; i < nunits; ++i)
6269 {
6270 tree v = VECTOR_CST_ELT (value, i);
6271 if (!initializer_zerop (v))
6272 {
6273 nz_elts += mult;
6274 unique_nz_elts++;
6275 }
6276 init_elts += mult;
6277 }
6278 }
6279 break;
6280
6281 default:
6282 {
6283 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6284 nz_elts += mult * tc;
6285 unique_nz_elts += tc;
6286 init_elts += mult * tc;
6287
6288 if (const_from_elts_p && const_p)
6289 const_p
6290 = initializer_constant_valid_p (value,
6291 elt_type,
6292 TYPE_REVERSE_STORAGE_ORDER
6293 (TREE_TYPE (ctor)))
6294 != NULL_TREE;
6295 }
6296 break;
6297 }
6298 }
6299
6300 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6301 num_fields, elt_type))
6302 *p_complete = false;
6303
6304 *p_nz_elts += nz_elts;
6305 *p_unique_nz_elts += unique_nz_elts;
6306 *p_init_elts += init_elts;
6307
6308 return const_p;
6309 }
6310
6311 /* Examine CTOR to discover:
6312 * how many scalar fields are set to nonzero values,
6313 and place it in *P_NZ_ELTS;
6314 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6315 high - low + 1 (this can be useful for callers to determine ctors
6316 that could be cheaply initialized with - perhaps nested - loops
6317 compared to copied from huge read-only data),
6318 and place it in *P_UNIQUE_NZ_ELTS;
6319 * how many scalar fields in total are in CTOR,
6320 and place it in *P_ELT_COUNT.
6321 * whether the constructor is complete -- in the sense that every
6322 meaningful byte is explicitly given a value --
6323 and place it in *P_COMPLETE.
6324
6325 Return whether or not CTOR is a valid static constant initializer, the same
6326 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6327
6328 bool
6329 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6330 HOST_WIDE_INT *p_unique_nz_elts,
6331 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6332 {
6333 *p_nz_elts = 0;
6334 *p_unique_nz_elts = 0;
6335 *p_init_elts = 0;
6336 *p_complete = true;
6337
6338 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6339 p_init_elts, p_complete);
6340 }
6341
6342 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6343 of which had type LAST_TYPE. Each element was itself a complete
6344 initializer, in the sense that every meaningful byte was explicitly
6345 given a value. Return true if the same is true for the constructor
6346 as a whole. */
6347
6348 bool
6349 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6350 const_tree last_type)
6351 {
6352 if (TREE_CODE (type) == UNION_TYPE
6353 || TREE_CODE (type) == QUAL_UNION_TYPE)
6354 {
6355 if (num_elts == 0)
6356 return false;
6357
6358 gcc_assert (num_elts == 1 && last_type);
6359
6360 /* ??? We could look at each element of the union, and find the
6361 largest element. Which would avoid comparing the size of the
6362 initialized element against any tail padding in the union.
6363 Doesn't seem worth the effort... */
6364 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6365 }
6366
6367 return count_type_elements (type, true) == num_elts;
6368 }
6369
6370 /* Return 1 if EXP contains mostly (3/4) zeros. */
6371
6372 static int
6373 mostly_zeros_p (const_tree exp)
6374 {
6375 if (TREE_CODE (exp) == CONSTRUCTOR)
6376 {
6377 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6378 bool complete_p;
6379
6380 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6381 &complete_p);
6382 return !complete_p || nz_elts < init_elts / 4;
6383 }
6384
6385 return initializer_zerop (exp);
6386 }
6387
6388 /* Return 1 if EXP contains all zeros. */
6389
6390 static int
6391 all_zeros_p (const_tree exp)
6392 {
6393 if (TREE_CODE (exp) == CONSTRUCTOR)
6394 {
6395 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6396 bool complete_p;
6397
6398 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6399 &complete_p);
6400 return nz_elts == 0;
6401 }
6402
6403 return initializer_zerop (exp);
6404 }
6405 \f
6406 /* Helper function for store_constructor.
6407 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6408 CLEARED is as for store_constructor.
6409 ALIAS_SET is the alias set to use for any stores.
6410 If REVERSE is true, the store is to be done in reverse order.
6411
6412 This provides a recursive shortcut back to store_constructor when it isn't
6413 necessary to go through store_field. This is so that we can pass through
6414 the cleared field to let store_constructor know that we may not have to
6415 clear a substructure if the outer structure has already been cleared. */
6416
6417 static void
6418 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6419 poly_uint64 bitregion_start,
6420 poly_uint64 bitregion_end,
6421 machine_mode mode,
6422 tree exp, int cleared,
6423 alias_set_type alias_set, bool reverse)
6424 {
6425 poly_int64 bytepos;
6426 poly_uint64 bytesize;
6427 if (TREE_CODE (exp) == CONSTRUCTOR
6428 /* We can only call store_constructor recursively if the size and
6429 bit position are on a byte boundary. */
6430 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6431 && maybe_ne (bitsize, 0U)
6432 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6433 /* If we have a nonzero bitpos for a register target, then we just
6434 let store_field do the bitfield handling. This is unlikely to
6435 generate unnecessary clear instructions anyways. */
6436 && (known_eq (bitpos, 0) || MEM_P (target)))
6437 {
6438 if (MEM_P (target))
6439 {
6440 machine_mode target_mode = GET_MODE (target);
6441 if (target_mode != BLKmode
6442 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6443 target_mode = BLKmode;
6444 target = adjust_address (target, target_mode, bytepos);
6445 }
6446
6447
6448 /* Update the alias set, if required. */
6449 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6450 && MEM_ALIAS_SET (target) != 0)
6451 {
6452 target = copy_rtx (target);
6453 set_mem_alias_set (target, alias_set);
6454 }
6455
6456 store_constructor (exp, target, cleared, bytesize, reverse);
6457 }
6458 else
6459 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6460 exp, alias_set, false, reverse);
6461 }
6462
6463
6464 /* Returns the number of FIELD_DECLs in TYPE. */
6465
6466 static int
6467 fields_length (const_tree type)
6468 {
6469 tree t = TYPE_FIELDS (type);
6470 int count = 0;
6471
6472 for (; t; t = DECL_CHAIN (t))
6473 if (TREE_CODE (t) == FIELD_DECL)
6474 ++count;
6475
6476 return count;
6477 }
6478
6479
6480 /* Store the value of constructor EXP into the rtx TARGET.
6481 TARGET is either a REG or a MEM; we know it cannot conflict, since
6482 safe_from_p has been called.
6483 CLEARED is true if TARGET is known to have been zero'd.
6484 SIZE is the number of bytes of TARGET we are allowed to modify: this
6485 may not be the same as the size of EXP if we are assigning to a field
6486 which has been packed to exclude padding bits.
6487 If REVERSE is true, the store is to be done in reverse order. */
6488
6489 static void
6490 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6491 bool reverse)
6492 {
6493 tree type = TREE_TYPE (exp);
6494 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6495 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6496
6497 switch (TREE_CODE (type))
6498 {
6499 case RECORD_TYPE:
6500 case UNION_TYPE:
6501 case QUAL_UNION_TYPE:
6502 {
6503 unsigned HOST_WIDE_INT idx;
6504 tree field, value;
6505
6506 /* The storage order is specified for every aggregate type. */
6507 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6508
6509 /* If size is zero or the target is already cleared, do nothing. */
6510 if (known_eq (size, 0) || cleared)
6511 cleared = 1;
6512 /* We either clear the aggregate or indicate the value is dead. */
6513 else if ((TREE_CODE (type) == UNION_TYPE
6514 || TREE_CODE (type) == QUAL_UNION_TYPE)
6515 && ! CONSTRUCTOR_ELTS (exp))
6516 /* If the constructor is empty, clear the union. */
6517 {
6518 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6519 cleared = 1;
6520 }
6521
6522 /* If we are building a static constructor into a register,
6523 set the initial value as zero so we can fold the value into
6524 a constant. But if more than one register is involved,
6525 this probably loses. */
6526 else if (REG_P (target) && TREE_STATIC (exp)
6527 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6528 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6529 {
6530 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6531 cleared = 1;
6532 }
6533
6534 /* If the constructor has fewer fields than the structure or
6535 if we are initializing the structure to mostly zeros, clear
6536 the whole structure first. Don't do this if TARGET is a
6537 register whose mode size isn't equal to SIZE since
6538 clear_storage can't handle this case. */
6539 else if (known_size_p (size)
6540 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6541 || mostly_zeros_p (exp))
6542 && (!REG_P (target)
6543 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6544 {
6545 clear_storage (target, gen_int_mode (size, Pmode),
6546 BLOCK_OP_NORMAL);
6547 cleared = 1;
6548 }
6549
6550 if (REG_P (target) && !cleared)
6551 emit_clobber (target);
6552
6553 /* Store each element of the constructor into the
6554 corresponding field of TARGET. */
6555 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6556 {
6557 machine_mode mode;
6558 HOST_WIDE_INT bitsize;
6559 HOST_WIDE_INT bitpos = 0;
6560 tree offset;
6561 rtx to_rtx = target;
6562
6563 /* Just ignore missing fields. We cleared the whole
6564 structure, above, if any fields are missing. */
6565 if (field == 0)
6566 continue;
6567
6568 if (cleared && initializer_zerop (value))
6569 continue;
6570
6571 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6572 bitsize = tree_to_uhwi (DECL_SIZE (field));
6573 else
6574 gcc_unreachable ();
6575
6576 mode = DECL_MODE (field);
6577 if (DECL_BIT_FIELD (field))
6578 mode = VOIDmode;
6579
6580 offset = DECL_FIELD_OFFSET (field);
6581 if (tree_fits_shwi_p (offset)
6582 && tree_fits_shwi_p (bit_position (field)))
6583 {
6584 bitpos = int_bit_position (field);
6585 offset = NULL_TREE;
6586 }
6587 else
6588 gcc_unreachable ();
6589
6590 /* If this initializes a field that is smaller than a
6591 word, at the start of a word, try to widen it to a full
6592 word. This special case allows us to output C++ member
6593 function initializations in a form that the optimizers
6594 can understand. */
6595 if (WORD_REGISTER_OPERATIONS
6596 && REG_P (target)
6597 && bitsize < BITS_PER_WORD
6598 && bitpos % BITS_PER_WORD == 0
6599 && GET_MODE_CLASS (mode) == MODE_INT
6600 && TREE_CODE (value) == INTEGER_CST
6601 && exp_size >= 0
6602 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6603 {
6604 type = TREE_TYPE (value);
6605
6606 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6607 {
6608 type = lang_hooks.types.type_for_mode
6609 (word_mode, TYPE_UNSIGNED (type));
6610 value = fold_convert (type, value);
6611 /* Make sure the bits beyond the original bitsize are zero
6612 so that we can correctly avoid extra zeroing stores in
6613 later constructor elements. */
6614 tree bitsize_mask
6615 = wide_int_to_tree (type, wi::mask (bitsize, false,
6616 BITS_PER_WORD));
6617 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6618 }
6619
6620 if (BYTES_BIG_ENDIAN)
6621 value
6622 = fold_build2 (LSHIFT_EXPR, type, value,
6623 build_int_cst (type,
6624 BITS_PER_WORD - bitsize));
6625 bitsize = BITS_PER_WORD;
6626 mode = word_mode;
6627 }
6628
6629 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6630 && DECL_NONADDRESSABLE_P (field))
6631 {
6632 to_rtx = copy_rtx (to_rtx);
6633 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6634 }
6635
6636 store_constructor_field (to_rtx, bitsize, bitpos,
6637 0, bitregion_end, mode,
6638 value, cleared,
6639 get_alias_set (TREE_TYPE (field)),
6640 reverse);
6641 }
6642 break;
6643 }
6644 case ARRAY_TYPE:
6645 {
6646 tree value, index;
6647 unsigned HOST_WIDE_INT i;
6648 int need_to_clear;
6649 tree domain;
6650 tree elttype = TREE_TYPE (type);
6651 int const_bounds_p;
6652 HOST_WIDE_INT minelt = 0;
6653 HOST_WIDE_INT maxelt = 0;
6654
6655 /* The storage order is specified for every aggregate type. */
6656 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6657
6658 domain = TYPE_DOMAIN (type);
6659 const_bounds_p = (TYPE_MIN_VALUE (domain)
6660 && TYPE_MAX_VALUE (domain)
6661 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6662 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6663
6664 /* If we have constant bounds for the range of the type, get them. */
6665 if (const_bounds_p)
6666 {
6667 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6668 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6669 }
6670
6671 /* If the constructor has fewer elements than the array, clear
6672 the whole array first. Similarly if this is static
6673 constructor of a non-BLKmode object. */
6674 if (cleared)
6675 need_to_clear = 0;
6676 else if (REG_P (target) && TREE_STATIC (exp))
6677 need_to_clear = 1;
6678 else
6679 {
6680 unsigned HOST_WIDE_INT idx;
6681 HOST_WIDE_INT count = 0, zero_count = 0;
6682 need_to_clear = ! const_bounds_p;
6683
6684 /* This loop is a more accurate version of the loop in
6685 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6686 is also needed to check for missing elements. */
6687 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6688 {
6689 HOST_WIDE_INT this_node_count;
6690
6691 if (need_to_clear)
6692 break;
6693
6694 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6695 {
6696 tree lo_index = TREE_OPERAND (index, 0);
6697 tree hi_index = TREE_OPERAND (index, 1);
6698
6699 if (! tree_fits_uhwi_p (lo_index)
6700 || ! tree_fits_uhwi_p (hi_index))
6701 {
6702 need_to_clear = 1;
6703 break;
6704 }
6705
6706 this_node_count = (tree_to_uhwi (hi_index)
6707 - tree_to_uhwi (lo_index) + 1);
6708 }
6709 else
6710 this_node_count = 1;
6711
6712 count += this_node_count;
6713 if (mostly_zeros_p (value))
6714 zero_count += this_node_count;
6715 }
6716
6717 /* Clear the entire array first if there are any missing
6718 elements, or if the incidence of zero elements is >=
6719 75%. */
6720 if (! need_to_clear
6721 && (count < maxelt - minelt + 1
6722 || 4 * zero_count >= 3 * count))
6723 need_to_clear = 1;
6724 }
6725
6726 if (need_to_clear && maybe_gt (size, 0))
6727 {
6728 if (REG_P (target))
6729 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6730 else
6731 clear_storage (target, gen_int_mode (size, Pmode),
6732 BLOCK_OP_NORMAL);
6733 cleared = 1;
6734 }
6735
6736 if (!cleared && REG_P (target))
6737 /* Inform later passes that the old value is dead. */
6738 emit_clobber (target);
6739
6740 /* Store each element of the constructor into the
6741 corresponding element of TARGET, determined by counting the
6742 elements. */
6743 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6744 {
6745 machine_mode mode;
6746 poly_int64 bitsize;
6747 HOST_WIDE_INT bitpos;
6748 rtx xtarget = target;
6749
6750 if (cleared && initializer_zerop (value))
6751 continue;
6752
6753 mode = TYPE_MODE (elttype);
6754 if (mode != BLKmode)
6755 bitsize = GET_MODE_BITSIZE (mode);
6756 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6757 bitsize = -1;
6758
6759 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6760 {
6761 tree lo_index = TREE_OPERAND (index, 0);
6762 tree hi_index = TREE_OPERAND (index, 1);
6763 rtx index_r, pos_rtx;
6764 HOST_WIDE_INT lo, hi, count;
6765 tree position;
6766
6767 /* If the range is constant and "small", unroll the loop. */
6768 if (const_bounds_p
6769 && tree_fits_shwi_p (lo_index)
6770 && tree_fits_shwi_p (hi_index)
6771 && (lo = tree_to_shwi (lo_index),
6772 hi = tree_to_shwi (hi_index),
6773 count = hi - lo + 1,
6774 (!MEM_P (target)
6775 || count <= 2
6776 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6777 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6778 <= 40 * 8)))))
6779 {
6780 lo -= minelt; hi -= minelt;
6781 for (; lo <= hi; lo++)
6782 {
6783 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6784
6785 if (MEM_P (target)
6786 && !MEM_KEEP_ALIAS_SET_P (target)
6787 && TREE_CODE (type) == ARRAY_TYPE
6788 && TYPE_NONALIASED_COMPONENT (type))
6789 {
6790 target = copy_rtx (target);
6791 MEM_KEEP_ALIAS_SET_P (target) = 1;
6792 }
6793
6794 store_constructor_field
6795 (target, bitsize, bitpos, 0, bitregion_end,
6796 mode, value, cleared,
6797 get_alias_set (elttype), reverse);
6798 }
6799 }
6800 else
6801 {
6802 rtx_code_label *loop_start = gen_label_rtx ();
6803 rtx_code_label *loop_end = gen_label_rtx ();
6804 tree exit_cond;
6805
6806 expand_normal (hi_index);
6807
6808 index = build_decl (EXPR_LOCATION (exp),
6809 VAR_DECL, NULL_TREE, domain);
6810 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6811 SET_DECL_RTL (index, index_r);
6812 store_expr (lo_index, index_r, 0, false, reverse);
6813
6814 /* Build the head of the loop. */
6815 do_pending_stack_adjust ();
6816 emit_label (loop_start);
6817
6818 /* Assign value to element index. */
6819 position =
6820 fold_convert (ssizetype,
6821 fold_build2 (MINUS_EXPR,
6822 TREE_TYPE (index),
6823 index,
6824 TYPE_MIN_VALUE (domain)));
6825
6826 position =
6827 size_binop (MULT_EXPR, position,
6828 fold_convert (ssizetype,
6829 TYPE_SIZE_UNIT (elttype)));
6830
6831 pos_rtx = expand_normal (position);
6832 xtarget = offset_address (target, pos_rtx,
6833 highest_pow2_factor (position));
6834 xtarget = adjust_address (xtarget, mode, 0);
6835 if (TREE_CODE (value) == CONSTRUCTOR)
6836 store_constructor (value, xtarget, cleared,
6837 exact_div (bitsize, BITS_PER_UNIT),
6838 reverse);
6839 else
6840 store_expr (value, xtarget, 0, false, reverse);
6841
6842 /* Generate a conditional jump to exit the loop. */
6843 exit_cond = build2 (LT_EXPR, integer_type_node,
6844 index, hi_index);
6845 jumpif (exit_cond, loop_end,
6846 profile_probability::uninitialized ());
6847
6848 /* Update the loop counter, and jump to the head of
6849 the loop. */
6850 expand_assignment (index,
6851 build2 (PLUS_EXPR, TREE_TYPE (index),
6852 index, integer_one_node),
6853 false);
6854
6855 emit_jump (loop_start);
6856
6857 /* Build the end of the loop. */
6858 emit_label (loop_end);
6859 }
6860 }
6861 else if ((index != 0 && ! tree_fits_shwi_p (index))
6862 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6863 {
6864 tree position;
6865
6866 if (index == 0)
6867 index = ssize_int (1);
6868
6869 if (minelt)
6870 index = fold_convert (ssizetype,
6871 fold_build2 (MINUS_EXPR,
6872 TREE_TYPE (index),
6873 index,
6874 TYPE_MIN_VALUE (domain)));
6875
6876 position =
6877 size_binop (MULT_EXPR, index,
6878 fold_convert (ssizetype,
6879 TYPE_SIZE_UNIT (elttype)));
6880 xtarget = offset_address (target,
6881 expand_normal (position),
6882 highest_pow2_factor (position));
6883 xtarget = adjust_address (xtarget, mode, 0);
6884 store_expr (value, xtarget, 0, false, reverse);
6885 }
6886 else
6887 {
6888 if (index != 0)
6889 bitpos = ((tree_to_shwi (index) - minelt)
6890 * tree_to_uhwi (TYPE_SIZE (elttype)));
6891 else
6892 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6893
6894 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6895 && TREE_CODE (type) == ARRAY_TYPE
6896 && TYPE_NONALIASED_COMPONENT (type))
6897 {
6898 target = copy_rtx (target);
6899 MEM_KEEP_ALIAS_SET_P (target) = 1;
6900 }
6901 store_constructor_field (target, bitsize, bitpos, 0,
6902 bitregion_end, mode, value,
6903 cleared, get_alias_set (elttype),
6904 reverse);
6905 }
6906 }
6907 break;
6908 }
6909
6910 case VECTOR_TYPE:
6911 {
6912 unsigned HOST_WIDE_INT idx;
6913 constructor_elt *ce;
6914 int i;
6915 int need_to_clear;
6916 insn_code icode = CODE_FOR_nothing;
6917 tree elt;
6918 tree elttype = TREE_TYPE (type);
6919 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6920 machine_mode eltmode = TYPE_MODE (elttype);
6921 HOST_WIDE_INT bitsize;
6922 HOST_WIDE_INT bitpos;
6923 rtvec vector = NULL;
6924 poly_uint64 n_elts;
6925 unsigned HOST_WIDE_INT const_n_elts;
6926 alias_set_type alias;
6927 bool vec_vec_init_p = false;
6928 machine_mode mode = GET_MODE (target);
6929
6930 gcc_assert (eltmode != BLKmode);
6931
6932 /* Try using vec_duplicate_optab for uniform vectors. */
6933 if (!TREE_SIDE_EFFECTS (exp)
6934 && VECTOR_MODE_P (mode)
6935 && eltmode == GET_MODE_INNER (mode)
6936 && ((icode = optab_handler (vec_duplicate_optab, mode))
6937 != CODE_FOR_nothing)
6938 && (elt = uniform_vector_p (exp)))
6939 {
6940 class expand_operand ops[2];
6941 create_output_operand (&ops[0], target, mode);
6942 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6943 expand_insn (icode, 2, ops);
6944 if (!rtx_equal_p (target, ops[0].value))
6945 emit_move_insn (target, ops[0].value);
6946 break;
6947 }
6948
6949 n_elts = TYPE_VECTOR_SUBPARTS (type);
6950 if (REG_P (target)
6951 && VECTOR_MODE_P (mode)
6952 && n_elts.is_constant (&const_n_elts))
6953 {
6954 machine_mode emode = eltmode;
6955 bool vector_typed_elts_p = false;
6956
6957 if (CONSTRUCTOR_NELTS (exp)
6958 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6959 == VECTOR_TYPE))
6960 {
6961 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6962 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6963 * TYPE_VECTOR_SUBPARTS (etype),
6964 n_elts));
6965 emode = TYPE_MODE (etype);
6966 vector_typed_elts_p = true;
6967 }
6968 icode = convert_optab_handler (vec_init_optab, mode, emode);
6969 if (icode != CODE_FOR_nothing)
6970 {
6971 unsigned int n = const_n_elts;
6972
6973 if (vector_typed_elts_p)
6974 {
6975 n = CONSTRUCTOR_NELTS (exp);
6976 vec_vec_init_p = true;
6977 }
6978 vector = rtvec_alloc (n);
6979 for (unsigned int k = 0; k < n; k++)
6980 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
6981 }
6982 }
6983
6984 /* If the constructor has fewer elements than the vector,
6985 clear the whole array first. Similarly if this is static
6986 constructor of a non-BLKmode object. */
6987 if (cleared)
6988 need_to_clear = 0;
6989 else if (REG_P (target) && TREE_STATIC (exp))
6990 need_to_clear = 1;
6991 else
6992 {
6993 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6994 tree value;
6995
6996 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6997 {
6998 tree sz = TYPE_SIZE (TREE_TYPE (value));
6999 int n_elts_here
7000 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
7001 TYPE_SIZE (elttype)));
7002
7003 count += n_elts_here;
7004 if (mostly_zeros_p (value))
7005 zero_count += n_elts_here;
7006 }
7007
7008 /* Clear the entire vector first if there are any missing elements,
7009 or if the incidence of zero elements is >= 75%. */
7010 need_to_clear = (maybe_lt (count, n_elts)
7011 || 4 * zero_count >= 3 * count);
7012 }
7013
7014 if (need_to_clear && maybe_gt (size, 0) && !vector)
7015 {
7016 if (REG_P (target))
7017 emit_move_insn (target, CONST0_RTX (mode));
7018 else
7019 clear_storage (target, gen_int_mode (size, Pmode),
7020 BLOCK_OP_NORMAL);
7021 cleared = 1;
7022 }
7023
7024 /* Inform later passes that the old value is dead. */
7025 if (!cleared && !vector && REG_P (target))
7026 emit_move_insn (target, CONST0_RTX (mode));
7027
7028 if (MEM_P (target))
7029 alias = MEM_ALIAS_SET (target);
7030 else
7031 alias = get_alias_set (elttype);
7032
7033 /* Store each element of the constructor into the corresponding
7034 element of TARGET, determined by counting the elements. */
7035 for (idx = 0, i = 0;
7036 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7037 idx++, i += bitsize / elt_size)
7038 {
7039 HOST_WIDE_INT eltpos;
7040 tree value = ce->value;
7041
7042 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
7043 if (cleared && initializer_zerop (value))
7044 continue;
7045
7046 if (ce->index)
7047 eltpos = tree_to_uhwi (ce->index);
7048 else
7049 eltpos = i;
7050
7051 if (vector)
7052 {
7053 if (vec_vec_init_p)
7054 {
7055 gcc_assert (ce->index == NULL_TREE);
7056 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
7057 eltpos = idx;
7058 }
7059 else
7060 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
7061 RTVEC_ELT (vector, eltpos) = expand_normal (value);
7062 }
7063 else
7064 {
7065 machine_mode value_mode
7066 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
7067 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
7068 bitpos = eltpos * elt_size;
7069 store_constructor_field (target, bitsize, bitpos, 0,
7070 bitregion_end, value_mode,
7071 value, cleared, alias, reverse);
7072 }
7073 }
7074
7075 if (vector)
7076 emit_insn (GEN_FCN (icode) (target,
7077 gen_rtx_PARALLEL (mode, vector)));
7078 break;
7079 }
7080
7081 default:
7082 gcc_unreachable ();
7083 }
7084 }
7085
7086 /* Store the value of EXP (an expression tree)
7087 into a subfield of TARGET which has mode MODE and occupies
7088 BITSIZE bits, starting BITPOS bits from the start of TARGET.
7089 If MODE is VOIDmode, it means that we are storing into a bit-field.
7090
7091 BITREGION_START is bitpos of the first bitfield in this region.
7092 BITREGION_END is the bitpos of the ending bitfield in this region.
7093 These two fields are 0, if the C++ memory model does not apply,
7094 or we are not interested in keeping track of bitfield regions.
7095
7096 Always return const0_rtx unless we have something particular to
7097 return.
7098
7099 ALIAS_SET is the alias set for the destination. This value will
7100 (in general) be different from that for TARGET, since TARGET is a
7101 reference to the containing structure.
7102
7103 If NONTEMPORAL is true, try generating a nontemporal store.
7104
7105 If REVERSE is true, the store is to be done in reverse order. */
7106
7107 static rtx
7108 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
7109 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
7110 machine_mode mode, tree exp,
7111 alias_set_type alias_set, bool nontemporal, bool reverse)
7112 {
7113 if (TREE_CODE (exp) == ERROR_MARK)
7114 return const0_rtx;
7115
7116 /* If we have nothing to store, do nothing unless the expression has
7117 side-effects. Don't do that for zero sized addressable lhs of
7118 calls. */
7119 if (known_eq (bitsize, 0)
7120 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7121 || TREE_CODE (exp) != CALL_EXPR))
7122 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
7123
7124 if (GET_CODE (target) == CONCAT)
7125 {
7126 /* We're storing into a struct containing a single __complex. */
7127
7128 gcc_assert (known_eq (bitpos, 0));
7129 return store_expr (exp, target, 0, nontemporal, reverse);
7130 }
7131
7132 /* If the structure is in a register or if the component
7133 is a bit field, we cannot use addressing to access it.
7134 Use bit-field techniques or SUBREG to store in it. */
7135
7136 poly_int64 decl_bitsize;
7137 if (mode == VOIDmode
7138 || (mode != BLKmode && ! direct_store[(int) mode]
7139 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7140 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
7141 || REG_P (target)
7142 || GET_CODE (target) == SUBREG
7143 /* If the field isn't aligned enough to store as an ordinary memref,
7144 store it as a bit field. */
7145 || (mode != BLKmode
7146 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7147 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7148 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7149 || !multiple_p (bitpos, BITS_PER_UNIT)))
7150 || (known_size_p (bitsize)
7151 && mode != BLKmode
7152 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7153 /* If the RHS and field are a constant size and the size of the
7154 RHS isn't the same size as the bitfield, we must use bitfield
7155 operations. */
7156 || (known_size_p (bitsize)
7157 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7158 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7159 bitsize)
7160 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7161 we will handle specially below. */
7162 && !(TREE_CODE (exp) == CONSTRUCTOR
7163 && multiple_p (bitsize, BITS_PER_UNIT))
7164 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7165 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7166 includes some extra padding. store_expr / expand_expr will in
7167 that case call get_inner_reference that will have the bitsize
7168 we check here and thus the block move will not clobber the
7169 padding that shouldn't be clobbered. In the future we could
7170 replace the TREE_ADDRESSABLE check with a check that
7171 get_base_address needs to live in memory. */
7172 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7173 || TREE_CODE (exp) != COMPONENT_REF
7174 || !multiple_p (bitsize, BITS_PER_UNIT)
7175 || !multiple_p (bitpos, BITS_PER_UNIT)
7176 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7177 &decl_bitsize)
7178 || maybe_ne (decl_bitsize, bitsize)))
7179 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7180 decl we must use bitfield operations. */
7181 || (known_size_p (bitsize)
7182 && TREE_CODE (exp) == MEM_REF
7183 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7184 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7185 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7186 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7187 {
7188 rtx temp;
7189 gimple *nop_def;
7190
7191 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7192 implies a mask operation. If the precision is the same size as
7193 the field we're storing into, that mask is redundant. This is
7194 particularly common with bit field assignments generated by the
7195 C front end. */
7196 nop_def = get_def_for_expr (exp, NOP_EXPR);
7197 if (nop_def)
7198 {
7199 tree type = TREE_TYPE (exp);
7200 if (INTEGRAL_TYPE_P (type)
7201 && maybe_ne (TYPE_PRECISION (type),
7202 GET_MODE_BITSIZE (TYPE_MODE (type)))
7203 && known_eq (bitsize, TYPE_PRECISION (type)))
7204 {
7205 tree op = gimple_assign_rhs1 (nop_def);
7206 type = TREE_TYPE (op);
7207 if (INTEGRAL_TYPE_P (type)
7208 && known_ge (TYPE_PRECISION (type), bitsize))
7209 exp = op;
7210 }
7211 }
7212
7213 temp = expand_normal (exp);
7214
7215 /* We don't support variable-sized BLKmode bitfields, since our
7216 handling of BLKmode is bound up with the ability to break
7217 things into words. */
7218 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7219
7220 /* Handle calls that return values in multiple non-contiguous locations.
7221 The Irix 6 ABI has examples of this. */
7222 if (GET_CODE (temp) == PARALLEL)
7223 {
7224 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7225 machine_mode temp_mode = GET_MODE (temp);
7226 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7227 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7228 rtx temp_target = gen_reg_rtx (temp_mode);
7229 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7230 temp = temp_target;
7231 }
7232
7233 /* Handle calls that return BLKmode values in registers. */
7234 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7235 {
7236 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7237 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7238 temp = temp_target;
7239 }
7240
7241 /* If the value has aggregate type and an integral mode then, if BITSIZE
7242 is narrower than this mode and this is for big-endian data, we first
7243 need to put the value into the low-order bits for store_bit_field,
7244 except when MODE is BLKmode and BITSIZE larger than the word size
7245 (see the handling of fields larger than a word in store_bit_field).
7246 Moreover, the field may be not aligned on a byte boundary; in this
7247 case, if it has reverse storage order, it needs to be accessed as a
7248 scalar field with reverse storage order and we must first put the
7249 value into target order. */
7250 scalar_int_mode temp_mode;
7251 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7252 && is_int_mode (GET_MODE (temp), &temp_mode))
7253 {
7254 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7255
7256 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7257
7258 if (reverse)
7259 temp = flip_storage_order (temp_mode, temp);
7260
7261 gcc_checking_assert (known_le (bitsize, size));
7262 if (maybe_lt (bitsize, size)
7263 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7264 /* Use of to_constant for BLKmode was checked above. */
7265 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7266 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7267 size - bitsize, NULL_RTX, 1);
7268 }
7269
7270 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7271 if (mode != VOIDmode && mode != BLKmode
7272 && mode != TYPE_MODE (TREE_TYPE (exp)))
7273 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7274
7275 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7276 and BITPOS must be aligned on a byte boundary. If so, we simply do
7277 a block copy. Likewise for a BLKmode-like TARGET. */
7278 if (GET_MODE (temp) == BLKmode
7279 && (GET_MODE (target) == BLKmode
7280 || (MEM_P (target)
7281 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7282 && multiple_p (bitpos, BITS_PER_UNIT)
7283 && multiple_p (bitsize, BITS_PER_UNIT))))
7284 {
7285 gcc_assert (MEM_P (target) && MEM_P (temp));
7286 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7287 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7288
7289 target = adjust_address (target, VOIDmode, bytepos);
7290 emit_block_move (target, temp,
7291 gen_int_mode (bytesize, Pmode),
7292 BLOCK_OP_NORMAL);
7293
7294 return const0_rtx;
7295 }
7296
7297 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7298 word size, we need to load the value (see again store_bit_field). */
7299 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7300 {
7301 temp_mode = smallest_int_mode_for_size (bitsize);
7302 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7303 temp_mode, false, NULL);
7304 }
7305
7306 /* Store the value in the bitfield. */
7307 gcc_checking_assert (known_ge (bitpos, 0));
7308 store_bit_field (target, bitsize, bitpos,
7309 bitregion_start, bitregion_end,
7310 mode, temp, reverse);
7311
7312 return const0_rtx;
7313 }
7314 else
7315 {
7316 /* Now build a reference to just the desired component. */
7317 rtx to_rtx = adjust_address (target, mode,
7318 exact_div (bitpos, BITS_PER_UNIT));
7319
7320 if (to_rtx == target)
7321 to_rtx = copy_rtx (to_rtx);
7322
7323 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7324 set_mem_alias_set (to_rtx, alias_set);
7325
7326 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7327 into a target smaller than its type; handle that case now. */
7328 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7329 {
7330 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7331 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7332 return to_rtx;
7333 }
7334
7335 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7336 }
7337 }
7338 \f
7339 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7340 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7341 codes and find the ultimate containing object, which we return.
7342
7343 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7344 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7345 storage order of the field.
7346 If the position of the field is variable, we store a tree
7347 giving the variable offset (in units) in *POFFSET.
7348 This offset is in addition to the bit position.
7349 If the position is not variable, we store 0 in *POFFSET.
7350
7351 If any of the extraction expressions is volatile,
7352 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7353
7354 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7355 Otherwise, it is a mode that can be used to access the field.
7356
7357 If the field describes a variable-sized object, *PMODE is set to
7358 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7359 this case, but the address of the object can be found. */
7360
7361 tree
7362 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7363 poly_int64_pod *pbitpos, tree *poffset,
7364 machine_mode *pmode, int *punsignedp,
7365 int *preversep, int *pvolatilep)
7366 {
7367 tree size_tree = 0;
7368 machine_mode mode = VOIDmode;
7369 bool blkmode_bitfield = false;
7370 tree offset = size_zero_node;
7371 poly_offset_int bit_offset = 0;
7372
7373 /* First get the mode, signedness, storage order and size. We do this from
7374 just the outermost expression. */
7375 *pbitsize = -1;
7376 if (TREE_CODE (exp) == COMPONENT_REF)
7377 {
7378 tree field = TREE_OPERAND (exp, 1);
7379 size_tree = DECL_SIZE (field);
7380 if (flag_strict_volatile_bitfields > 0
7381 && TREE_THIS_VOLATILE (exp)
7382 && DECL_BIT_FIELD_TYPE (field)
7383 && DECL_MODE (field) != BLKmode)
7384 /* Volatile bitfields should be accessed in the mode of the
7385 field's type, not the mode computed based on the bit
7386 size. */
7387 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7388 else if (!DECL_BIT_FIELD (field))
7389 {
7390 mode = DECL_MODE (field);
7391 /* For vector fields re-check the target flags, as DECL_MODE
7392 could have been set with different target flags than
7393 the current function has. */
7394 if (mode == BLKmode
7395 && VECTOR_TYPE_P (TREE_TYPE (field))
7396 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7397 mode = TYPE_MODE (TREE_TYPE (field));
7398 }
7399 else if (DECL_MODE (field) == BLKmode)
7400 blkmode_bitfield = true;
7401
7402 *punsignedp = DECL_UNSIGNED (field);
7403 }
7404 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7405 {
7406 size_tree = TREE_OPERAND (exp, 1);
7407 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7408 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7409
7410 /* For vector element types with the correct size of access or for
7411 vector typed accesses use the mode of the access type. */
7412 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7413 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7414 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7415 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7416 mode = TYPE_MODE (TREE_TYPE (exp));
7417 }
7418 else
7419 {
7420 mode = TYPE_MODE (TREE_TYPE (exp));
7421 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7422
7423 if (mode == BLKmode)
7424 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7425 else
7426 *pbitsize = GET_MODE_BITSIZE (mode);
7427 }
7428
7429 if (size_tree != 0)
7430 {
7431 if (! tree_fits_uhwi_p (size_tree))
7432 mode = BLKmode, *pbitsize = -1;
7433 else
7434 *pbitsize = tree_to_uhwi (size_tree);
7435 }
7436
7437 *preversep = reverse_storage_order_for_component_p (exp);
7438
7439 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7440 and find the ultimate containing object. */
7441 while (1)
7442 {
7443 switch (TREE_CODE (exp))
7444 {
7445 case BIT_FIELD_REF:
7446 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7447 break;
7448
7449 case COMPONENT_REF:
7450 {
7451 tree field = TREE_OPERAND (exp, 1);
7452 tree this_offset = component_ref_field_offset (exp);
7453
7454 /* If this field hasn't been filled in yet, don't go past it.
7455 This should only happen when folding expressions made during
7456 type construction. */
7457 if (this_offset == 0)
7458 break;
7459
7460 offset = size_binop (PLUS_EXPR, offset, this_offset);
7461 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7462
7463 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7464 }
7465 break;
7466
7467 case ARRAY_REF:
7468 case ARRAY_RANGE_REF:
7469 {
7470 tree index = TREE_OPERAND (exp, 1);
7471 tree low_bound = array_ref_low_bound (exp);
7472 tree unit_size = array_ref_element_size (exp);
7473
7474 /* We assume all arrays have sizes that are a multiple of a byte.
7475 First subtract the lower bound, if any, in the type of the
7476 index, then convert to sizetype and multiply by the size of
7477 the array element. */
7478 if (! integer_zerop (low_bound))
7479 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7480 index, low_bound);
7481
7482 offset = size_binop (PLUS_EXPR, offset,
7483 size_binop (MULT_EXPR,
7484 fold_convert (sizetype, index),
7485 unit_size));
7486 }
7487 break;
7488
7489 case REALPART_EXPR:
7490 break;
7491
7492 case IMAGPART_EXPR:
7493 bit_offset += *pbitsize;
7494 break;
7495
7496 case VIEW_CONVERT_EXPR:
7497 break;
7498
7499 case MEM_REF:
7500 /* Hand back the decl for MEM[&decl, off]. */
7501 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7502 {
7503 tree off = TREE_OPERAND (exp, 1);
7504 if (!integer_zerop (off))
7505 {
7506 poly_offset_int boff = mem_ref_offset (exp);
7507 boff <<= LOG2_BITS_PER_UNIT;
7508 bit_offset += boff;
7509 }
7510 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7511 }
7512 goto done;
7513
7514 default:
7515 goto done;
7516 }
7517
7518 /* If any reference in the chain is volatile, the effect is volatile. */
7519 if (TREE_THIS_VOLATILE (exp))
7520 *pvolatilep = 1;
7521
7522 exp = TREE_OPERAND (exp, 0);
7523 }
7524 done:
7525
7526 /* If OFFSET is constant, see if we can return the whole thing as a
7527 constant bit position. Make sure to handle overflow during
7528 this conversion. */
7529 if (poly_int_tree_p (offset))
7530 {
7531 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7532 TYPE_PRECISION (sizetype));
7533 tem <<= LOG2_BITS_PER_UNIT;
7534 tem += bit_offset;
7535 if (tem.to_shwi (pbitpos))
7536 *poffset = offset = NULL_TREE;
7537 }
7538
7539 /* Otherwise, split it up. */
7540 if (offset)
7541 {
7542 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7543 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7544 {
7545 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7546 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7547 offset = size_binop (PLUS_EXPR, offset,
7548 build_int_cst (sizetype, bytes.force_shwi ()));
7549 }
7550
7551 *poffset = offset;
7552 }
7553
7554 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7555 if (mode == VOIDmode
7556 && blkmode_bitfield
7557 && multiple_p (*pbitpos, BITS_PER_UNIT)
7558 && multiple_p (*pbitsize, BITS_PER_UNIT))
7559 *pmode = BLKmode;
7560 else
7561 *pmode = mode;
7562
7563 return exp;
7564 }
7565
7566 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7567
7568 static unsigned HOST_WIDE_INT
7569 target_align (const_tree target)
7570 {
7571 /* We might have a chain of nested references with intermediate misaligning
7572 bitfields components, so need to recurse to find out. */
7573
7574 unsigned HOST_WIDE_INT this_align, outer_align;
7575
7576 switch (TREE_CODE (target))
7577 {
7578 case BIT_FIELD_REF:
7579 return 1;
7580
7581 case COMPONENT_REF:
7582 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7583 outer_align = target_align (TREE_OPERAND (target, 0));
7584 return MIN (this_align, outer_align);
7585
7586 case ARRAY_REF:
7587 case ARRAY_RANGE_REF:
7588 this_align = TYPE_ALIGN (TREE_TYPE (target));
7589 outer_align = target_align (TREE_OPERAND (target, 0));
7590 return MIN (this_align, outer_align);
7591
7592 CASE_CONVERT:
7593 case NON_LVALUE_EXPR:
7594 case VIEW_CONVERT_EXPR:
7595 this_align = TYPE_ALIGN (TREE_TYPE (target));
7596 outer_align = target_align (TREE_OPERAND (target, 0));
7597 return MAX (this_align, outer_align);
7598
7599 default:
7600 return TYPE_ALIGN (TREE_TYPE (target));
7601 }
7602 }
7603
7604 \f
7605 /* Given an rtx VALUE that may contain additions and multiplications, return
7606 an equivalent value that just refers to a register, memory, or constant.
7607 This is done by generating instructions to perform the arithmetic and
7608 returning a pseudo-register containing the value.
7609
7610 The returned value may be a REG, SUBREG, MEM or constant. */
7611
7612 rtx
7613 force_operand (rtx value, rtx target)
7614 {
7615 rtx op1, op2;
7616 /* Use subtarget as the target for operand 0 of a binary operation. */
7617 rtx subtarget = get_subtarget (target);
7618 enum rtx_code code = GET_CODE (value);
7619
7620 /* Check for subreg applied to an expression produced by loop optimizer. */
7621 if (code == SUBREG
7622 && !REG_P (SUBREG_REG (value))
7623 && !MEM_P (SUBREG_REG (value)))
7624 {
7625 value
7626 = simplify_gen_subreg (GET_MODE (value),
7627 force_reg (GET_MODE (SUBREG_REG (value)),
7628 force_operand (SUBREG_REG (value),
7629 NULL_RTX)),
7630 GET_MODE (SUBREG_REG (value)),
7631 SUBREG_BYTE (value));
7632 code = GET_CODE (value);
7633 }
7634
7635 /* Check for a PIC address load. */
7636 if ((code == PLUS || code == MINUS)
7637 && XEXP (value, 0) == pic_offset_table_rtx
7638 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7639 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7640 || GET_CODE (XEXP (value, 1)) == CONST))
7641 {
7642 if (!subtarget)
7643 subtarget = gen_reg_rtx (GET_MODE (value));
7644 emit_move_insn (subtarget, value);
7645 return subtarget;
7646 }
7647
7648 if (ARITHMETIC_P (value))
7649 {
7650 op2 = XEXP (value, 1);
7651 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7652 subtarget = 0;
7653 if (code == MINUS && CONST_INT_P (op2))
7654 {
7655 code = PLUS;
7656 op2 = negate_rtx (GET_MODE (value), op2);
7657 }
7658
7659 /* Check for an addition with OP2 a constant integer and our first
7660 operand a PLUS of a virtual register and something else. In that
7661 case, we want to emit the sum of the virtual register and the
7662 constant first and then add the other value. This allows virtual
7663 register instantiation to simply modify the constant rather than
7664 creating another one around this addition. */
7665 if (code == PLUS && CONST_INT_P (op2)
7666 && GET_CODE (XEXP (value, 0)) == PLUS
7667 && REG_P (XEXP (XEXP (value, 0), 0))
7668 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7669 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7670 {
7671 rtx temp = expand_simple_binop (GET_MODE (value), code,
7672 XEXP (XEXP (value, 0), 0), op2,
7673 subtarget, 0, OPTAB_LIB_WIDEN);
7674 return expand_simple_binop (GET_MODE (value), code, temp,
7675 force_operand (XEXP (XEXP (value,
7676 0), 1), 0),
7677 target, 0, OPTAB_LIB_WIDEN);
7678 }
7679
7680 op1 = force_operand (XEXP (value, 0), subtarget);
7681 op2 = force_operand (op2, NULL_RTX);
7682 switch (code)
7683 {
7684 case MULT:
7685 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7686 case DIV:
7687 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7688 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7689 target, 1, OPTAB_LIB_WIDEN);
7690 else
7691 return expand_divmod (0,
7692 FLOAT_MODE_P (GET_MODE (value))
7693 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7694 GET_MODE (value), op1, op2, target, 0);
7695 case MOD:
7696 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7697 target, 0);
7698 case UDIV:
7699 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7700 target, 1);
7701 case UMOD:
7702 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7703 target, 1);
7704 case ASHIFTRT:
7705 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7706 target, 0, OPTAB_LIB_WIDEN);
7707 default:
7708 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7709 target, 1, OPTAB_LIB_WIDEN);
7710 }
7711 }
7712 if (UNARY_P (value))
7713 {
7714 if (!target)
7715 target = gen_reg_rtx (GET_MODE (value));
7716 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7717 switch (code)
7718 {
7719 case ZERO_EXTEND:
7720 case SIGN_EXTEND:
7721 case TRUNCATE:
7722 case FLOAT_EXTEND:
7723 case FLOAT_TRUNCATE:
7724 convert_move (target, op1, code == ZERO_EXTEND);
7725 return target;
7726
7727 case FIX:
7728 case UNSIGNED_FIX:
7729 expand_fix (target, op1, code == UNSIGNED_FIX);
7730 return target;
7731
7732 case FLOAT:
7733 case UNSIGNED_FLOAT:
7734 expand_float (target, op1, code == UNSIGNED_FLOAT);
7735 return target;
7736
7737 default:
7738 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7739 }
7740 }
7741
7742 #ifdef INSN_SCHEDULING
7743 /* On machines that have insn scheduling, we want all memory reference to be
7744 explicit, so we need to deal with such paradoxical SUBREGs. */
7745 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7746 value
7747 = simplify_gen_subreg (GET_MODE (value),
7748 force_reg (GET_MODE (SUBREG_REG (value)),
7749 force_operand (SUBREG_REG (value),
7750 NULL_RTX)),
7751 GET_MODE (SUBREG_REG (value)),
7752 SUBREG_BYTE (value));
7753 #endif
7754
7755 return value;
7756 }
7757 \f
7758 /* Subroutine of expand_expr: return nonzero iff there is no way that
7759 EXP can reference X, which is being modified. TOP_P is nonzero if this
7760 call is going to be used to determine whether we need a temporary
7761 for EXP, as opposed to a recursive call to this function.
7762
7763 It is always safe for this routine to return zero since it merely
7764 searches for optimization opportunities. */
7765
7766 int
7767 safe_from_p (const_rtx x, tree exp, int top_p)
7768 {
7769 rtx exp_rtl = 0;
7770 int i, nops;
7771
7772 if (x == 0
7773 /* If EXP has varying size, we MUST use a target since we currently
7774 have no way of allocating temporaries of variable size
7775 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7776 So we assume here that something at a higher level has prevented a
7777 clash. This is somewhat bogus, but the best we can do. Only
7778 do this when X is BLKmode and when we are at the top level. */
7779 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7780 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7781 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7782 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7783 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7784 != INTEGER_CST)
7785 && GET_MODE (x) == BLKmode)
7786 /* If X is in the outgoing argument area, it is always safe. */
7787 || (MEM_P (x)
7788 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7789 || (GET_CODE (XEXP (x, 0)) == PLUS
7790 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7791 return 1;
7792
7793 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7794 find the underlying pseudo. */
7795 if (GET_CODE (x) == SUBREG)
7796 {
7797 x = SUBREG_REG (x);
7798 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7799 return 0;
7800 }
7801
7802 /* Now look at our tree code and possibly recurse. */
7803 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7804 {
7805 case tcc_declaration:
7806 exp_rtl = DECL_RTL_IF_SET (exp);
7807 break;
7808
7809 case tcc_constant:
7810 return 1;
7811
7812 case tcc_exceptional:
7813 if (TREE_CODE (exp) == TREE_LIST)
7814 {
7815 while (1)
7816 {
7817 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7818 return 0;
7819 exp = TREE_CHAIN (exp);
7820 if (!exp)
7821 return 1;
7822 if (TREE_CODE (exp) != TREE_LIST)
7823 return safe_from_p (x, exp, 0);
7824 }
7825 }
7826 else if (TREE_CODE (exp) == CONSTRUCTOR)
7827 {
7828 constructor_elt *ce;
7829 unsigned HOST_WIDE_INT idx;
7830
7831 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7832 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7833 || !safe_from_p (x, ce->value, 0))
7834 return 0;
7835 return 1;
7836 }
7837 else if (TREE_CODE (exp) == ERROR_MARK)
7838 return 1; /* An already-visited SAVE_EXPR? */
7839 else
7840 return 0;
7841
7842 case tcc_statement:
7843 /* The only case we look at here is the DECL_INITIAL inside a
7844 DECL_EXPR. */
7845 return (TREE_CODE (exp) != DECL_EXPR
7846 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7847 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7848 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7849
7850 case tcc_binary:
7851 case tcc_comparison:
7852 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7853 return 0;
7854 /* Fall through. */
7855
7856 case tcc_unary:
7857 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7858
7859 case tcc_expression:
7860 case tcc_reference:
7861 case tcc_vl_exp:
7862 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7863 the expression. If it is set, we conflict iff we are that rtx or
7864 both are in memory. Otherwise, we check all operands of the
7865 expression recursively. */
7866
7867 switch (TREE_CODE (exp))
7868 {
7869 case ADDR_EXPR:
7870 /* If the operand is static or we are static, we can't conflict.
7871 Likewise if we don't conflict with the operand at all. */
7872 if (staticp (TREE_OPERAND (exp, 0))
7873 || TREE_STATIC (exp)
7874 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7875 return 1;
7876
7877 /* Otherwise, the only way this can conflict is if we are taking
7878 the address of a DECL a that address if part of X, which is
7879 very rare. */
7880 exp = TREE_OPERAND (exp, 0);
7881 if (DECL_P (exp))
7882 {
7883 if (!DECL_RTL_SET_P (exp)
7884 || !MEM_P (DECL_RTL (exp)))
7885 return 0;
7886 else
7887 exp_rtl = XEXP (DECL_RTL (exp), 0);
7888 }
7889 break;
7890
7891 case MEM_REF:
7892 if (MEM_P (x)
7893 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7894 get_alias_set (exp)))
7895 return 0;
7896 break;
7897
7898 case CALL_EXPR:
7899 /* Assume that the call will clobber all hard registers and
7900 all of memory. */
7901 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7902 || MEM_P (x))
7903 return 0;
7904 break;
7905
7906 case WITH_CLEANUP_EXPR:
7907 case CLEANUP_POINT_EXPR:
7908 /* Lowered by gimplify.c. */
7909 gcc_unreachable ();
7910
7911 case SAVE_EXPR:
7912 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7913
7914 default:
7915 break;
7916 }
7917
7918 /* If we have an rtx, we do not need to scan our operands. */
7919 if (exp_rtl)
7920 break;
7921
7922 nops = TREE_OPERAND_LENGTH (exp);
7923 for (i = 0; i < nops; i++)
7924 if (TREE_OPERAND (exp, i) != 0
7925 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7926 return 0;
7927
7928 break;
7929
7930 case tcc_type:
7931 /* Should never get a type here. */
7932 gcc_unreachable ();
7933 }
7934
7935 /* If we have an rtl, find any enclosed object. Then see if we conflict
7936 with it. */
7937 if (exp_rtl)
7938 {
7939 if (GET_CODE (exp_rtl) == SUBREG)
7940 {
7941 exp_rtl = SUBREG_REG (exp_rtl);
7942 if (REG_P (exp_rtl)
7943 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7944 return 0;
7945 }
7946
7947 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7948 are memory and they conflict. */
7949 return ! (rtx_equal_p (x, exp_rtl)
7950 || (MEM_P (x) && MEM_P (exp_rtl)
7951 && true_dependence (exp_rtl, VOIDmode, x)));
7952 }
7953
7954 /* If we reach here, it is safe. */
7955 return 1;
7956 }
7957
7958 \f
7959 /* Return the highest power of two that EXP is known to be a multiple of.
7960 This is used in updating alignment of MEMs in array references. */
7961
7962 unsigned HOST_WIDE_INT
7963 highest_pow2_factor (const_tree exp)
7964 {
7965 unsigned HOST_WIDE_INT ret;
7966 int trailing_zeros = tree_ctz (exp);
7967 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7968 return BIGGEST_ALIGNMENT;
7969 ret = HOST_WIDE_INT_1U << trailing_zeros;
7970 if (ret > BIGGEST_ALIGNMENT)
7971 return BIGGEST_ALIGNMENT;
7972 return ret;
7973 }
7974
7975 /* Similar, except that the alignment requirements of TARGET are
7976 taken into account. Assume it is at least as aligned as its
7977 type, unless it is a COMPONENT_REF in which case the layout of
7978 the structure gives the alignment. */
7979
7980 static unsigned HOST_WIDE_INT
7981 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7982 {
7983 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7984 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7985
7986 return MAX (factor, talign);
7987 }
7988 \f
7989 /* Convert the tree comparison code TCODE to the rtl one where the
7990 signedness is UNSIGNEDP. */
7991
7992 static enum rtx_code
7993 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7994 {
7995 enum rtx_code code;
7996 switch (tcode)
7997 {
7998 case EQ_EXPR:
7999 code = EQ;
8000 break;
8001 case NE_EXPR:
8002 code = NE;
8003 break;
8004 case LT_EXPR:
8005 code = unsignedp ? LTU : LT;
8006 break;
8007 case LE_EXPR:
8008 code = unsignedp ? LEU : LE;
8009 break;
8010 case GT_EXPR:
8011 code = unsignedp ? GTU : GT;
8012 break;
8013 case GE_EXPR:
8014 code = unsignedp ? GEU : GE;
8015 break;
8016 case UNORDERED_EXPR:
8017 code = UNORDERED;
8018 break;
8019 case ORDERED_EXPR:
8020 code = ORDERED;
8021 break;
8022 case UNLT_EXPR:
8023 code = UNLT;
8024 break;
8025 case UNLE_EXPR:
8026 code = UNLE;
8027 break;
8028 case UNGT_EXPR:
8029 code = UNGT;
8030 break;
8031 case UNGE_EXPR:
8032 code = UNGE;
8033 break;
8034 case UNEQ_EXPR:
8035 code = UNEQ;
8036 break;
8037 case LTGT_EXPR:
8038 code = LTGT;
8039 break;
8040
8041 default:
8042 gcc_unreachable ();
8043 }
8044 return code;
8045 }
8046
8047 /* Subroutine of expand_expr. Expand the two operands of a binary
8048 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8049 The value may be stored in TARGET if TARGET is nonzero. The
8050 MODIFIER argument is as documented by expand_expr. */
8051
8052 void
8053 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
8054 enum expand_modifier modifier)
8055 {
8056 if (! safe_from_p (target, exp1, 1))
8057 target = 0;
8058 if (operand_equal_p (exp0, exp1, 0))
8059 {
8060 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8061 *op1 = copy_rtx (*op0);
8062 }
8063 else
8064 {
8065 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8066 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
8067 }
8068 }
8069
8070 \f
8071 /* Return a MEM that contains constant EXP. DEFER is as for
8072 output_constant_def and MODIFIER is as for expand_expr. */
8073
8074 static rtx
8075 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
8076 {
8077 rtx mem;
8078
8079 mem = output_constant_def (exp, defer);
8080 if (modifier != EXPAND_INITIALIZER)
8081 mem = use_anchored_address (mem);
8082 return mem;
8083 }
8084
8085 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
8086 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8087
8088 static rtx
8089 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
8090 enum expand_modifier modifier, addr_space_t as)
8091 {
8092 rtx result, subtarget;
8093 tree inner, offset;
8094 poly_int64 bitsize, bitpos;
8095 int unsignedp, reversep, volatilep = 0;
8096 machine_mode mode1;
8097
8098 /* If we are taking the address of a constant and are at the top level,
8099 we have to use output_constant_def since we can't call force_const_mem
8100 at top level. */
8101 /* ??? This should be considered a front-end bug. We should not be
8102 generating ADDR_EXPR of something that isn't an LVALUE. The only
8103 exception here is STRING_CST. */
8104 if (CONSTANT_CLASS_P (exp))
8105 {
8106 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
8107 if (modifier < EXPAND_SUM)
8108 result = force_operand (result, target);
8109 return result;
8110 }
8111
8112 /* Everything must be something allowed by is_gimple_addressable. */
8113 switch (TREE_CODE (exp))
8114 {
8115 case INDIRECT_REF:
8116 /* This case will happen via recursion for &a->b. */
8117 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
8118
8119 case MEM_REF:
8120 {
8121 tree tem = TREE_OPERAND (exp, 0);
8122 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8123 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
8124 return expand_expr (tem, target, tmode, modifier);
8125 }
8126
8127 case TARGET_MEM_REF:
8128 return addr_for_mem_ref (exp, as, true);
8129
8130 case CONST_DECL:
8131 /* Expand the initializer like constants above. */
8132 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
8133 0, modifier), 0);
8134 if (modifier < EXPAND_SUM)
8135 result = force_operand (result, target);
8136 return result;
8137
8138 case REALPART_EXPR:
8139 /* The real part of the complex number is always first, therefore
8140 the address is the same as the address of the parent object. */
8141 offset = 0;
8142 bitpos = 0;
8143 inner = TREE_OPERAND (exp, 0);
8144 break;
8145
8146 case IMAGPART_EXPR:
8147 /* The imaginary part of the complex number is always second.
8148 The expression is therefore always offset by the size of the
8149 scalar type. */
8150 offset = 0;
8151 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8152 inner = TREE_OPERAND (exp, 0);
8153 break;
8154
8155 case COMPOUND_LITERAL_EXPR:
8156 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8157 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8158 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8159 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8160 the initializers aren't gimplified. */
8161 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8162 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
8163 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8164 target, tmode, modifier, as);
8165 /* FALLTHRU */
8166 default:
8167 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8168 expand_expr, as that can have various side effects; LABEL_DECLs for
8169 example, may not have their DECL_RTL set yet. Expand the rtl of
8170 CONSTRUCTORs too, which should yield a memory reference for the
8171 constructor's contents. Assume language specific tree nodes can
8172 be expanded in some interesting way. */
8173 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8174 if (DECL_P (exp)
8175 || TREE_CODE (exp) == CONSTRUCTOR
8176 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8177 {
8178 result = expand_expr (exp, target, tmode,
8179 modifier == EXPAND_INITIALIZER
8180 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8181
8182 /* If the DECL isn't in memory, then the DECL wasn't properly
8183 marked TREE_ADDRESSABLE, which will be either a front-end
8184 or a tree optimizer bug. */
8185
8186 gcc_assert (MEM_P (result));
8187 result = XEXP (result, 0);
8188
8189 /* ??? Is this needed anymore? */
8190 if (DECL_P (exp))
8191 TREE_USED (exp) = 1;
8192
8193 if (modifier != EXPAND_INITIALIZER
8194 && modifier != EXPAND_CONST_ADDRESS
8195 && modifier != EXPAND_SUM)
8196 result = force_operand (result, target);
8197 return result;
8198 }
8199
8200 /* Pass FALSE as the last argument to get_inner_reference although
8201 we are expanding to RTL. The rationale is that we know how to
8202 handle "aligning nodes" here: we can just bypass them because
8203 they won't change the final object whose address will be returned
8204 (they actually exist only for that purpose). */
8205 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8206 &unsignedp, &reversep, &volatilep);
8207 break;
8208 }
8209
8210 /* We must have made progress. */
8211 gcc_assert (inner != exp);
8212
8213 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8214 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8215 inner alignment, force the inner to be sufficiently aligned. */
8216 if (CONSTANT_CLASS_P (inner)
8217 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8218 {
8219 inner = copy_node (inner);
8220 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8221 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8222 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8223 }
8224 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8225
8226 if (offset)
8227 {
8228 rtx tmp;
8229
8230 if (modifier != EXPAND_NORMAL)
8231 result = force_operand (result, NULL);
8232 tmp = expand_expr (offset, NULL_RTX, tmode,
8233 modifier == EXPAND_INITIALIZER
8234 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8235
8236 /* expand_expr is allowed to return an object in a mode other
8237 than TMODE. If it did, we need to convert. */
8238 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8239 tmp = convert_modes (tmode, GET_MODE (tmp),
8240 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8241 result = convert_memory_address_addr_space (tmode, result, as);
8242 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8243
8244 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8245 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8246 else
8247 {
8248 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8249 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8250 1, OPTAB_LIB_WIDEN);
8251 }
8252 }
8253
8254 if (maybe_ne (bitpos, 0))
8255 {
8256 /* Someone beforehand should have rejected taking the address
8257 of an object that isn't byte-aligned. */
8258 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8259 result = convert_memory_address_addr_space (tmode, result, as);
8260 result = plus_constant (tmode, result, bytepos);
8261 if (modifier < EXPAND_SUM)
8262 result = force_operand (result, target);
8263 }
8264
8265 return result;
8266 }
8267
8268 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8269 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8270
8271 static rtx
8272 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8273 enum expand_modifier modifier)
8274 {
8275 addr_space_t as = ADDR_SPACE_GENERIC;
8276 scalar_int_mode address_mode = Pmode;
8277 scalar_int_mode pointer_mode = ptr_mode;
8278 machine_mode rmode;
8279 rtx result;
8280
8281 /* Target mode of VOIDmode says "whatever's natural". */
8282 if (tmode == VOIDmode)
8283 tmode = TYPE_MODE (TREE_TYPE (exp));
8284
8285 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8286 {
8287 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8288 address_mode = targetm.addr_space.address_mode (as);
8289 pointer_mode = targetm.addr_space.pointer_mode (as);
8290 }
8291
8292 /* We can get called with some Weird Things if the user does silliness
8293 like "(short) &a". In that case, convert_memory_address won't do
8294 the right thing, so ignore the given target mode. */
8295 scalar_int_mode new_tmode = (tmode == pointer_mode
8296 ? pointer_mode
8297 : address_mode);
8298
8299 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8300 new_tmode, modifier, as);
8301
8302 /* Despite expand_expr claims concerning ignoring TMODE when not
8303 strictly convenient, stuff breaks if we don't honor it. Note
8304 that combined with the above, we only do this for pointer modes. */
8305 rmode = GET_MODE (result);
8306 if (rmode == VOIDmode)
8307 rmode = new_tmode;
8308 if (rmode != new_tmode)
8309 result = convert_memory_address_addr_space (new_tmode, result, as);
8310
8311 return result;
8312 }
8313
8314 /* Generate code for computing CONSTRUCTOR EXP.
8315 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8316 is TRUE, instead of creating a temporary variable in memory
8317 NULL is returned and the caller needs to handle it differently. */
8318
8319 static rtx
8320 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8321 bool avoid_temp_mem)
8322 {
8323 tree type = TREE_TYPE (exp);
8324 machine_mode mode = TYPE_MODE (type);
8325
8326 /* Try to avoid creating a temporary at all. This is possible
8327 if all of the initializer is zero.
8328 FIXME: try to handle all [0..255] initializers we can handle
8329 with memset. */
8330 if (TREE_STATIC (exp)
8331 && !TREE_ADDRESSABLE (exp)
8332 && target != 0 && mode == BLKmode
8333 && all_zeros_p (exp))
8334 {
8335 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8336 return target;
8337 }
8338
8339 /* All elts simple constants => refer to a constant in memory. But
8340 if this is a non-BLKmode mode, let it store a field at a time
8341 since that should make a CONST_INT, CONST_WIDE_INT or
8342 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8343 use, it is best to store directly into the target unless the type
8344 is large enough that memcpy will be used. If we are making an
8345 initializer and all operands are constant, put it in memory as
8346 well.
8347
8348 FIXME: Avoid trying to fill vector constructors piece-meal.
8349 Output them with output_constant_def below unless we're sure
8350 they're zeros. This should go away when vector initializers
8351 are treated like VECTOR_CST instead of arrays. */
8352 if ((TREE_STATIC (exp)
8353 && ((mode == BLKmode
8354 && ! (target != 0 && safe_from_p (target, exp, 1)))
8355 || TREE_ADDRESSABLE (exp)
8356 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8357 && (! can_move_by_pieces
8358 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8359 TYPE_ALIGN (type)))
8360 && ! mostly_zeros_p (exp))))
8361 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8362 && TREE_CONSTANT (exp)))
8363 {
8364 rtx constructor;
8365
8366 if (avoid_temp_mem)
8367 return NULL_RTX;
8368
8369 constructor = expand_expr_constant (exp, 1, modifier);
8370
8371 if (modifier != EXPAND_CONST_ADDRESS
8372 && modifier != EXPAND_INITIALIZER
8373 && modifier != EXPAND_SUM)
8374 constructor = validize_mem (constructor);
8375
8376 return constructor;
8377 }
8378
8379 /* Handle calls that pass values in multiple non-contiguous
8380 locations. The Irix 6 ABI has examples of this. */
8381 if (target == 0 || ! safe_from_p (target, exp, 1)
8382 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8383 {
8384 if (avoid_temp_mem)
8385 return NULL_RTX;
8386
8387 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8388 }
8389
8390 store_constructor (exp, target, 0, int_expr_size (exp), false);
8391 return target;
8392 }
8393
8394
8395 /* expand_expr: generate code for computing expression EXP.
8396 An rtx for the computed value is returned. The value is never null.
8397 In the case of a void EXP, const0_rtx is returned.
8398
8399 The value may be stored in TARGET if TARGET is nonzero.
8400 TARGET is just a suggestion; callers must assume that
8401 the rtx returned may not be the same as TARGET.
8402
8403 If TARGET is CONST0_RTX, it means that the value will be ignored.
8404
8405 If TMODE is not VOIDmode, it suggests generating the
8406 result in mode TMODE. But this is done only when convenient.
8407 Otherwise, TMODE is ignored and the value generated in its natural mode.
8408 TMODE is just a suggestion; callers must assume that
8409 the rtx returned may not have mode TMODE.
8410
8411 Note that TARGET may have neither TMODE nor MODE. In that case, it
8412 probably will not be used.
8413
8414 If MODIFIER is EXPAND_SUM then when EXP is an addition
8415 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8416 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8417 products as above, or REG or MEM, or constant.
8418 Ordinarily in such cases we would output mul or add instructions
8419 and then return a pseudo reg containing the sum.
8420
8421 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8422 it also marks a label as absolutely required (it can't be dead).
8423 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8424 This is used for outputting expressions used in initializers.
8425
8426 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8427 with a constant address even if that address is not normally legitimate.
8428 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8429
8430 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8431 a call parameter. Such targets require special care as we haven't yet
8432 marked TARGET so that it's safe from being trashed by libcalls. We
8433 don't want to use TARGET for anything but the final result;
8434 Intermediate values must go elsewhere. Additionally, calls to
8435 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8436
8437 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8438 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8439 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8440 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8441 recursively.
8442 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8443 then *ALT_RTL is set to TARGET (before legitimziation).
8444
8445 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8446 In this case, we don't adjust a returned MEM rtx that wouldn't be
8447 sufficiently aligned for its mode; instead, it's up to the caller
8448 to deal with it afterwards. This is used to make sure that unaligned
8449 base objects for which out-of-bounds accesses are supported, for
8450 example record types with trailing arrays, aren't realigned behind
8451 the back of the caller.
8452 The normal operating mode is to pass FALSE for this parameter. */
8453
8454 rtx
8455 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8456 enum expand_modifier modifier, rtx *alt_rtl,
8457 bool inner_reference_p)
8458 {
8459 rtx ret;
8460
8461 /* Handle ERROR_MARK before anybody tries to access its type. */
8462 if (TREE_CODE (exp) == ERROR_MARK
8463 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8464 {
8465 ret = CONST0_RTX (tmode);
8466 return ret ? ret : const0_rtx;
8467 }
8468
8469 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8470 inner_reference_p);
8471 return ret;
8472 }
8473
8474 /* Try to expand the conditional expression which is represented by
8475 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8476 return the rtl reg which represents the result. Otherwise return
8477 NULL_RTX. */
8478
8479 static rtx
8480 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8481 tree treeop1 ATTRIBUTE_UNUSED,
8482 tree treeop2 ATTRIBUTE_UNUSED)
8483 {
8484 rtx insn;
8485 rtx op00, op01, op1, op2;
8486 enum rtx_code comparison_code;
8487 machine_mode comparison_mode;
8488 gimple *srcstmt;
8489 rtx temp;
8490 tree type = TREE_TYPE (treeop1);
8491 int unsignedp = TYPE_UNSIGNED (type);
8492 machine_mode mode = TYPE_MODE (type);
8493 machine_mode orig_mode = mode;
8494 static bool expanding_cond_expr_using_cmove = false;
8495
8496 /* Conditional move expansion can end up TERing two operands which,
8497 when recursively hitting conditional expressions can result in
8498 exponential behavior if the cmove expansion ultimatively fails.
8499 It's hardly profitable to TER a cmove into a cmove so avoid doing
8500 that by failing early if we end up recursing. */
8501 if (expanding_cond_expr_using_cmove)
8502 return NULL_RTX;
8503
8504 /* If we cannot do a conditional move on the mode, try doing it
8505 with the promoted mode. */
8506 if (!can_conditionally_move_p (mode))
8507 {
8508 mode = promote_mode (type, mode, &unsignedp);
8509 if (!can_conditionally_move_p (mode))
8510 return NULL_RTX;
8511 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8512 }
8513 else
8514 temp = assign_temp (type, 0, 1);
8515
8516 expanding_cond_expr_using_cmove = true;
8517 start_sequence ();
8518 expand_operands (treeop1, treeop2,
8519 temp, &op1, &op2, EXPAND_NORMAL);
8520
8521 if (TREE_CODE (treeop0) == SSA_NAME
8522 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8523 {
8524 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8525 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8526 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8527 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8528 comparison_mode = TYPE_MODE (type);
8529 unsignedp = TYPE_UNSIGNED (type);
8530 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8531 }
8532 else if (COMPARISON_CLASS_P (treeop0))
8533 {
8534 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8535 enum tree_code cmpcode = TREE_CODE (treeop0);
8536 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8537 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8538 unsignedp = TYPE_UNSIGNED (type);
8539 comparison_mode = TYPE_MODE (type);
8540 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8541 }
8542 else
8543 {
8544 op00 = expand_normal (treeop0);
8545 op01 = const0_rtx;
8546 comparison_code = NE;
8547 comparison_mode = GET_MODE (op00);
8548 if (comparison_mode == VOIDmode)
8549 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8550 }
8551 expanding_cond_expr_using_cmove = false;
8552
8553 if (GET_MODE (op1) != mode)
8554 op1 = gen_lowpart (mode, op1);
8555
8556 if (GET_MODE (op2) != mode)
8557 op2 = gen_lowpart (mode, op2);
8558
8559 /* Try to emit the conditional move. */
8560 insn = emit_conditional_move (temp, comparison_code,
8561 op00, op01, comparison_mode,
8562 op1, op2, mode,
8563 unsignedp);
8564
8565 /* If we could do the conditional move, emit the sequence,
8566 and return. */
8567 if (insn)
8568 {
8569 rtx_insn *seq = get_insns ();
8570 end_sequence ();
8571 emit_insn (seq);
8572 return convert_modes (orig_mode, mode, temp, 0);
8573 }
8574
8575 /* Otherwise discard the sequence and fall back to code with
8576 branches. */
8577 end_sequence ();
8578 return NULL_RTX;
8579 }
8580
8581 /* A helper function for expand_expr_real_2 to be used with a
8582 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
8583 is nonzero, with alignment ALIGN in bits.
8584 Store the value at TARGET if possible (if TARGET is nonzero).
8585 Regardless of TARGET, we return the rtx for where the value is placed.
8586 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8587 then *ALT_RTL is set to TARGET (before legitimziation). */
8588
8589 static rtx
8590 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
8591 unsigned int align, rtx target, rtx *alt_rtl)
8592 {
8593 enum insn_code icode;
8594
8595 if ((icode = optab_handler (movmisalign_optab, mode))
8596 != CODE_FOR_nothing)
8597 {
8598 class expand_operand ops[2];
8599
8600 /* We've already validated the memory, and we're creating a
8601 new pseudo destination. The predicates really can't fail,
8602 nor can the generator. */
8603 create_output_operand (&ops[0], NULL_RTX, mode);
8604 create_fixed_operand (&ops[1], temp);
8605 expand_insn (icode, 2, ops);
8606 temp = ops[0].value;
8607 }
8608 else if (targetm.slow_unaligned_access (mode, align))
8609 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
8610 0, unsignedp, target,
8611 mode, mode, false, alt_rtl);
8612 return temp;
8613 }
8614
8615 rtx
8616 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8617 enum expand_modifier modifier)
8618 {
8619 rtx op0, op1, op2, temp;
8620 rtx_code_label *lab;
8621 tree type;
8622 int unsignedp;
8623 machine_mode mode;
8624 scalar_int_mode int_mode;
8625 enum tree_code code = ops->code;
8626 optab this_optab;
8627 rtx subtarget, original_target;
8628 int ignore;
8629 bool reduce_bit_field;
8630 location_t loc = ops->location;
8631 tree treeop0, treeop1, treeop2;
8632 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8633 ? reduce_to_bit_field_precision ((expr), \
8634 target, \
8635 type) \
8636 : (expr))
8637
8638 type = ops->type;
8639 mode = TYPE_MODE (type);
8640 unsignedp = TYPE_UNSIGNED (type);
8641
8642 treeop0 = ops->op0;
8643 treeop1 = ops->op1;
8644 treeop2 = ops->op2;
8645
8646 /* We should be called only on simple (binary or unary) expressions,
8647 exactly those that are valid in gimple expressions that aren't
8648 GIMPLE_SINGLE_RHS (or invalid). */
8649 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8650 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8651 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8652
8653 ignore = (target == const0_rtx
8654 || ((CONVERT_EXPR_CODE_P (code)
8655 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8656 && TREE_CODE (type) == VOID_TYPE));
8657
8658 /* We should be called only if we need the result. */
8659 gcc_assert (!ignore);
8660
8661 /* An operation in what may be a bit-field type needs the
8662 result to be reduced to the precision of the bit-field type,
8663 which is narrower than that of the type's mode. */
8664 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8665 && !type_has_mode_precision_p (type));
8666
8667 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8668 target = 0;
8669
8670 /* Use subtarget as the target for operand 0 of a binary operation. */
8671 subtarget = get_subtarget (target);
8672 original_target = target;
8673
8674 switch (code)
8675 {
8676 case NON_LVALUE_EXPR:
8677 case PAREN_EXPR:
8678 CASE_CONVERT:
8679 if (treeop0 == error_mark_node)
8680 return const0_rtx;
8681
8682 if (TREE_CODE (type) == UNION_TYPE)
8683 {
8684 tree valtype = TREE_TYPE (treeop0);
8685
8686 /* If both input and output are BLKmode, this conversion isn't doing
8687 anything except possibly changing memory attribute. */
8688 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8689 {
8690 rtx result = expand_expr (treeop0, target, tmode,
8691 modifier);
8692
8693 result = copy_rtx (result);
8694 set_mem_attributes (result, type, 0);
8695 return result;
8696 }
8697
8698 if (target == 0)
8699 {
8700 if (TYPE_MODE (type) != BLKmode)
8701 target = gen_reg_rtx (TYPE_MODE (type));
8702 else
8703 target = assign_temp (type, 1, 1);
8704 }
8705
8706 if (MEM_P (target))
8707 /* Store data into beginning of memory target. */
8708 store_expr (treeop0,
8709 adjust_address (target, TYPE_MODE (valtype), 0),
8710 modifier == EXPAND_STACK_PARM,
8711 false, TYPE_REVERSE_STORAGE_ORDER (type));
8712
8713 else
8714 {
8715 gcc_assert (REG_P (target)
8716 && !TYPE_REVERSE_STORAGE_ORDER (type));
8717
8718 /* Store this field into a union of the proper type. */
8719 poly_uint64 op0_size
8720 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8721 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8722 store_field (target,
8723 /* The conversion must be constructed so that
8724 we know at compile time how many bits
8725 to preserve. */
8726 ordered_min (op0_size, union_size),
8727 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8728 false, false);
8729 }
8730
8731 /* Return the entire union. */
8732 return target;
8733 }
8734
8735 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8736 {
8737 op0 = expand_expr (treeop0, target, VOIDmode,
8738 modifier);
8739
8740 /* If the signedness of the conversion differs and OP0 is
8741 a promoted SUBREG, clear that indication since we now
8742 have to do the proper extension. */
8743 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8744 && GET_CODE (op0) == SUBREG)
8745 SUBREG_PROMOTED_VAR_P (op0) = 0;
8746
8747 return REDUCE_BIT_FIELD (op0);
8748 }
8749
8750 op0 = expand_expr (treeop0, NULL_RTX, mode,
8751 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8752 if (GET_MODE (op0) == mode)
8753 ;
8754
8755 /* If OP0 is a constant, just convert it into the proper mode. */
8756 else if (CONSTANT_P (op0))
8757 {
8758 tree inner_type = TREE_TYPE (treeop0);
8759 machine_mode inner_mode = GET_MODE (op0);
8760
8761 if (inner_mode == VOIDmode)
8762 inner_mode = TYPE_MODE (inner_type);
8763
8764 if (modifier == EXPAND_INITIALIZER)
8765 op0 = lowpart_subreg (mode, op0, inner_mode);
8766 else
8767 op0= convert_modes (mode, inner_mode, op0,
8768 TYPE_UNSIGNED (inner_type));
8769 }
8770
8771 else if (modifier == EXPAND_INITIALIZER)
8772 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8773 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8774
8775 else if (target == 0)
8776 op0 = convert_to_mode (mode, op0,
8777 TYPE_UNSIGNED (TREE_TYPE
8778 (treeop0)));
8779 else
8780 {
8781 convert_move (target, op0,
8782 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8783 op0 = target;
8784 }
8785
8786 return REDUCE_BIT_FIELD (op0);
8787
8788 case ADDR_SPACE_CONVERT_EXPR:
8789 {
8790 tree treeop0_type = TREE_TYPE (treeop0);
8791
8792 gcc_assert (POINTER_TYPE_P (type));
8793 gcc_assert (POINTER_TYPE_P (treeop0_type));
8794
8795 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8796 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8797
8798 /* Conversions between pointers to the same address space should
8799 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8800 gcc_assert (as_to != as_from);
8801
8802 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8803
8804 /* Ask target code to handle conversion between pointers
8805 to overlapping address spaces. */
8806 if (targetm.addr_space.subset_p (as_to, as_from)
8807 || targetm.addr_space.subset_p (as_from, as_to))
8808 {
8809 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8810 }
8811 else
8812 {
8813 /* For disjoint address spaces, converting anything but a null
8814 pointer invokes undefined behavior. We truncate or extend the
8815 value as if we'd converted via integers, which handles 0 as
8816 required, and all others as the programmer likely expects. */
8817 #ifndef POINTERS_EXTEND_UNSIGNED
8818 const int POINTERS_EXTEND_UNSIGNED = 1;
8819 #endif
8820 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8821 op0, POINTERS_EXTEND_UNSIGNED);
8822 }
8823 gcc_assert (op0);
8824 return op0;
8825 }
8826
8827 case POINTER_PLUS_EXPR:
8828 /* Even though the sizetype mode and the pointer's mode can be different
8829 expand is able to handle this correctly and get the correct result out
8830 of the PLUS_EXPR code. */
8831 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8832 if sizetype precision is smaller than pointer precision. */
8833 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8834 treeop1 = fold_convert_loc (loc, type,
8835 fold_convert_loc (loc, ssizetype,
8836 treeop1));
8837 /* If sizetype precision is larger than pointer precision, truncate the
8838 offset to have matching modes. */
8839 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8840 treeop1 = fold_convert_loc (loc, type, treeop1);
8841 /* FALLTHRU */
8842
8843 case PLUS_EXPR:
8844 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8845 something else, make sure we add the register to the constant and
8846 then to the other thing. This case can occur during strength
8847 reduction and doing it this way will produce better code if the
8848 frame pointer or argument pointer is eliminated.
8849
8850 fold-const.c will ensure that the constant is always in the inner
8851 PLUS_EXPR, so the only case we need to do anything about is if
8852 sp, ap, or fp is our second argument, in which case we must swap
8853 the innermost first argument and our second argument. */
8854
8855 if (TREE_CODE (treeop0) == PLUS_EXPR
8856 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8857 && VAR_P (treeop1)
8858 && (DECL_RTL (treeop1) == frame_pointer_rtx
8859 || DECL_RTL (treeop1) == stack_pointer_rtx
8860 || DECL_RTL (treeop1) == arg_pointer_rtx))
8861 {
8862 gcc_unreachable ();
8863 }
8864
8865 /* If the result is to be ptr_mode and we are adding an integer to
8866 something, we might be forming a constant. So try to use
8867 plus_constant. If it produces a sum and we can't accept it,
8868 use force_operand. This allows P = &ARR[const] to generate
8869 efficient code on machines where a SYMBOL_REF is not a valid
8870 address.
8871
8872 If this is an EXPAND_SUM call, always return the sum. */
8873 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8874 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8875 {
8876 if (modifier == EXPAND_STACK_PARM)
8877 target = 0;
8878 if (TREE_CODE (treeop0) == INTEGER_CST
8879 && HWI_COMPUTABLE_MODE_P (mode)
8880 && TREE_CONSTANT (treeop1))
8881 {
8882 rtx constant_part;
8883 HOST_WIDE_INT wc;
8884 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8885
8886 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8887 EXPAND_SUM);
8888 /* Use wi::shwi to ensure that the constant is
8889 truncated according to the mode of OP1, then sign extended
8890 to a HOST_WIDE_INT. Using the constant directly can result
8891 in non-canonical RTL in a 64x32 cross compile. */
8892 wc = TREE_INT_CST_LOW (treeop0);
8893 constant_part =
8894 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8895 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8896 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8897 op1 = force_operand (op1, target);
8898 return REDUCE_BIT_FIELD (op1);
8899 }
8900
8901 else if (TREE_CODE (treeop1) == INTEGER_CST
8902 && HWI_COMPUTABLE_MODE_P (mode)
8903 && TREE_CONSTANT (treeop0))
8904 {
8905 rtx constant_part;
8906 HOST_WIDE_INT wc;
8907 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8908
8909 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8910 (modifier == EXPAND_INITIALIZER
8911 ? EXPAND_INITIALIZER : EXPAND_SUM));
8912 if (! CONSTANT_P (op0))
8913 {
8914 op1 = expand_expr (treeop1, NULL_RTX,
8915 VOIDmode, modifier);
8916 /* Return a PLUS if modifier says it's OK. */
8917 if (modifier == EXPAND_SUM
8918 || modifier == EXPAND_INITIALIZER)
8919 return simplify_gen_binary (PLUS, mode, op0, op1);
8920 goto binop2;
8921 }
8922 /* Use wi::shwi to ensure that the constant is
8923 truncated according to the mode of OP1, then sign extended
8924 to a HOST_WIDE_INT. Using the constant directly can result
8925 in non-canonical RTL in a 64x32 cross compile. */
8926 wc = TREE_INT_CST_LOW (treeop1);
8927 constant_part
8928 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8929 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8930 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8931 op0 = force_operand (op0, target);
8932 return REDUCE_BIT_FIELD (op0);
8933 }
8934 }
8935
8936 /* Use TER to expand pointer addition of a negated value
8937 as pointer subtraction. */
8938 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8939 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8940 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8941 && TREE_CODE (treeop1) == SSA_NAME
8942 && TYPE_MODE (TREE_TYPE (treeop0))
8943 == TYPE_MODE (TREE_TYPE (treeop1)))
8944 {
8945 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8946 if (def)
8947 {
8948 treeop1 = gimple_assign_rhs1 (def);
8949 code = MINUS_EXPR;
8950 goto do_minus;
8951 }
8952 }
8953
8954 /* No sense saving up arithmetic to be done
8955 if it's all in the wrong mode to form part of an address.
8956 And force_operand won't know whether to sign-extend or
8957 zero-extend. */
8958 if (modifier != EXPAND_INITIALIZER
8959 && (modifier != EXPAND_SUM || mode != ptr_mode))
8960 {
8961 expand_operands (treeop0, treeop1,
8962 subtarget, &op0, &op1, modifier);
8963 if (op0 == const0_rtx)
8964 return op1;
8965 if (op1 == const0_rtx)
8966 return op0;
8967 goto binop2;
8968 }
8969
8970 expand_operands (treeop0, treeop1,
8971 subtarget, &op0, &op1, modifier);
8972 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8973
8974 case MINUS_EXPR:
8975 case POINTER_DIFF_EXPR:
8976 do_minus:
8977 /* For initializers, we are allowed to return a MINUS of two
8978 symbolic constants. Here we handle all cases when both operands
8979 are constant. */
8980 /* Handle difference of two symbolic constants,
8981 for the sake of an initializer. */
8982 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8983 && really_constant_p (treeop0)
8984 && really_constant_p (treeop1))
8985 {
8986 expand_operands (treeop0, treeop1,
8987 NULL_RTX, &op0, &op1, modifier);
8988 return simplify_gen_binary (MINUS, mode, op0, op1);
8989 }
8990
8991 /* No sense saving up arithmetic to be done
8992 if it's all in the wrong mode to form part of an address.
8993 And force_operand won't know whether to sign-extend or
8994 zero-extend. */
8995 if (modifier != EXPAND_INITIALIZER
8996 && (modifier != EXPAND_SUM || mode != ptr_mode))
8997 goto binop;
8998
8999 expand_operands (treeop0, treeop1,
9000 subtarget, &op0, &op1, modifier);
9001
9002 /* Convert A - const to A + (-const). */
9003 if (CONST_INT_P (op1))
9004 {
9005 op1 = negate_rtx (mode, op1);
9006 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9007 }
9008
9009 goto binop2;
9010
9011 case WIDEN_MULT_PLUS_EXPR:
9012 case WIDEN_MULT_MINUS_EXPR:
9013 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9014 op2 = expand_normal (treeop2);
9015 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9016 target, unsignedp);
9017 return target;
9018
9019 case WIDEN_MULT_EXPR:
9020 /* If first operand is constant, swap them.
9021 Thus the following special case checks need only
9022 check the second operand. */
9023 if (TREE_CODE (treeop0) == INTEGER_CST)
9024 std::swap (treeop0, treeop1);
9025
9026 /* First, check if we have a multiplication of one signed and one
9027 unsigned operand. */
9028 if (TREE_CODE (treeop1) != INTEGER_CST
9029 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9030 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
9031 {
9032 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
9033 this_optab = usmul_widen_optab;
9034 if (find_widening_optab_handler (this_optab, mode, innermode)
9035 != CODE_FOR_nothing)
9036 {
9037 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9038 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9039 EXPAND_NORMAL);
9040 else
9041 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
9042 EXPAND_NORMAL);
9043 /* op0 and op1 might still be constant, despite the above
9044 != INTEGER_CST check. Handle it. */
9045 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9046 {
9047 op0 = convert_modes (mode, innermode, op0, true);
9048 op1 = convert_modes (mode, innermode, op1, false);
9049 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9050 target, unsignedp));
9051 }
9052 goto binop3;
9053 }
9054 }
9055 /* Check for a multiplication with matching signedness. */
9056 else if ((TREE_CODE (treeop1) == INTEGER_CST
9057 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
9058 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
9059 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
9060 {
9061 tree op0type = TREE_TYPE (treeop0);
9062 machine_mode innermode = TYPE_MODE (op0type);
9063 bool zextend_p = TYPE_UNSIGNED (op0type);
9064 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
9065 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
9066
9067 if (TREE_CODE (treeop0) != INTEGER_CST)
9068 {
9069 if (find_widening_optab_handler (this_optab, mode, innermode)
9070 != CODE_FOR_nothing)
9071 {
9072 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9073 EXPAND_NORMAL);
9074 /* op0 and op1 might still be constant, despite the above
9075 != INTEGER_CST check. Handle it. */
9076 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9077 {
9078 widen_mult_const:
9079 op0 = convert_modes (mode, innermode, op0, zextend_p);
9080 op1
9081 = convert_modes (mode, innermode, op1,
9082 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
9083 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9084 target,
9085 unsignedp));
9086 }
9087 temp = expand_widening_mult (mode, op0, op1, target,
9088 unsignedp, this_optab);
9089 return REDUCE_BIT_FIELD (temp);
9090 }
9091 if (find_widening_optab_handler (other_optab, mode, innermode)
9092 != CODE_FOR_nothing
9093 && innermode == word_mode)
9094 {
9095 rtx htem, hipart;
9096 op0 = expand_normal (treeop0);
9097 op1 = expand_normal (treeop1);
9098 /* op0 and op1 might be constants, despite the above
9099 != INTEGER_CST check. Handle it. */
9100 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9101 goto widen_mult_const;
9102 temp = expand_binop (mode, other_optab, op0, op1, target,
9103 unsignedp, OPTAB_LIB_WIDEN);
9104 hipart = gen_highpart (word_mode, temp);
9105 htem = expand_mult_highpart_adjust (word_mode, hipart,
9106 op0, op1, hipart,
9107 zextend_p);
9108 if (htem != hipart)
9109 emit_move_insn (hipart, htem);
9110 return REDUCE_BIT_FIELD (temp);
9111 }
9112 }
9113 }
9114 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
9115 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
9116 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9117 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9118
9119 case MULT_EXPR:
9120 /* If this is a fixed-point operation, then we cannot use the code
9121 below because "expand_mult" doesn't support sat/no-sat fixed-point
9122 multiplications. */
9123 if (ALL_FIXED_POINT_MODE_P (mode))
9124 goto binop;
9125
9126 /* If first operand is constant, swap them.
9127 Thus the following special case checks need only
9128 check the second operand. */
9129 if (TREE_CODE (treeop0) == INTEGER_CST)
9130 std::swap (treeop0, treeop1);
9131
9132 /* Attempt to return something suitable for generating an
9133 indexed address, for machines that support that. */
9134
9135 if (modifier == EXPAND_SUM && mode == ptr_mode
9136 && tree_fits_shwi_p (treeop1))
9137 {
9138 tree exp1 = treeop1;
9139
9140 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9141 EXPAND_SUM);
9142
9143 if (!REG_P (op0))
9144 op0 = force_operand (op0, NULL_RTX);
9145 if (!REG_P (op0))
9146 op0 = copy_to_mode_reg (mode, op0);
9147
9148 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
9149 gen_int_mode (tree_to_shwi (exp1),
9150 TYPE_MODE (TREE_TYPE (exp1)))));
9151 }
9152
9153 if (modifier == EXPAND_STACK_PARM)
9154 target = 0;
9155
9156 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9157 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9158
9159 case TRUNC_MOD_EXPR:
9160 case FLOOR_MOD_EXPR:
9161 case CEIL_MOD_EXPR:
9162 case ROUND_MOD_EXPR:
9163
9164 case TRUNC_DIV_EXPR:
9165 case FLOOR_DIV_EXPR:
9166 case CEIL_DIV_EXPR:
9167 case ROUND_DIV_EXPR:
9168 case EXACT_DIV_EXPR:
9169 {
9170 /* If this is a fixed-point operation, then we cannot use the code
9171 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9172 divisions. */
9173 if (ALL_FIXED_POINT_MODE_P (mode))
9174 goto binop;
9175
9176 if (modifier == EXPAND_STACK_PARM)
9177 target = 0;
9178 /* Possible optimization: compute the dividend with EXPAND_SUM
9179 then if the divisor is constant can optimize the case
9180 where some terms of the dividend have coeffs divisible by it. */
9181 expand_operands (treeop0, treeop1,
9182 subtarget, &op0, &op1, EXPAND_NORMAL);
9183 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9184 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
9185 if (SCALAR_INT_MODE_P (mode)
9186 && optimize >= 2
9187 && get_range_pos_neg (treeop0) == 1
9188 && get_range_pos_neg (treeop1) == 1)
9189 {
9190 /* If both arguments are known to be positive when interpreted
9191 as signed, we can expand it as both signed and unsigned
9192 division or modulo. Choose the cheaper sequence in that case. */
9193 bool speed_p = optimize_insn_for_speed_p ();
9194 do_pending_stack_adjust ();
9195 start_sequence ();
9196 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9197 rtx_insn *uns_insns = get_insns ();
9198 end_sequence ();
9199 start_sequence ();
9200 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9201 rtx_insn *sgn_insns = get_insns ();
9202 end_sequence ();
9203 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9204 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9205
9206 /* If costs are the same then use as tie breaker the other
9207 other factor. */
9208 if (uns_cost == sgn_cost)
9209 {
9210 uns_cost = seq_cost (uns_insns, !speed_p);
9211 sgn_cost = seq_cost (sgn_insns, !speed_p);
9212 }
9213
9214 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9215 {
9216 emit_insn (uns_insns);
9217 return uns_ret;
9218 }
9219 emit_insn (sgn_insns);
9220 return sgn_ret;
9221 }
9222 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9223 }
9224 case RDIV_EXPR:
9225 goto binop;
9226
9227 case MULT_HIGHPART_EXPR:
9228 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9229 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9230 gcc_assert (temp);
9231 return temp;
9232
9233 case FIXED_CONVERT_EXPR:
9234 op0 = expand_normal (treeop0);
9235 if (target == 0 || modifier == EXPAND_STACK_PARM)
9236 target = gen_reg_rtx (mode);
9237
9238 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9239 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9240 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9241 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9242 else
9243 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9244 return target;
9245
9246 case FIX_TRUNC_EXPR:
9247 op0 = expand_normal (treeop0);
9248 if (target == 0 || modifier == EXPAND_STACK_PARM)
9249 target = gen_reg_rtx (mode);
9250 expand_fix (target, op0, unsignedp);
9251 return target;
9252
9253 case FLOAT_EXPR:
9254 op0 = expand_normal (treeop0);
9255 if (target == 0 || modifier == EXPAND_STACK_PARM)
9256 target = gen_reg_rtx (mode);
9257 /* expand_float can't figure out what to do if FROM has VOIDmode.
9258 So give it the correct mode. With -O, cse will optimize this. */
9259 if (GET_MODE (op0) == VOIDmode)
9260 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9261 op0);
9262 expand_float (target, op0,
9263 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9264 return target;
9265
9266 case NEGATE_EXPR:
9267 op0 = expand_expr (treeop0, subtarget,
9268 VOIDmode, EXPAND_NORMAL);
9269 if (modifier == EXPAND_STACK_PARM)
9270 target = 0;
9271 temp = expand_unop (mode,
9272 optab_for_tree_code (NEGATE_EXPR, type,
9273 optab_default),
9274 op0, target, 0);
9275 gcc_assert (temp);
9276 return REDUCE_BIT_FIELD (temp);
9277
9278 case ABS_EXPR:
9279 case ABSU_EXPR:
9280 op0 = expand_expr (treeop0, subtarget,
9281 VOIDmode, EXPAND_NORMAL);
9282 if (modifier == EXPAND_STACK_PARM)
9283 target = 0;
9284
9285 /* ABS_EXPR is not valid for complex arguments. */
9286 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9287 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9288
9289 /* Unsigned abs is simply the operand. Testing here means we don't
9290 risk generating incorrect code below. */
9291 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9292 return op0;
9293
9294 return expand_abs (mode, op0, target, unsignedp,
9295 safe_from_p (target, treeop0, 1));
9296
9297 case MAX_EXPR:
9298 case MIN_EXPR:
9299 target = original_target;
9300 if (target == 0
9301 || modifier == EXPAND_STACK_PARM
9302 || (MEM_P (target) && MEM_VOLATILE_P (target))
9303 || GET_MODE (target) != mode
9304 || (REG_P (target)
9305 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9306 target = gen_reg_rtx (mode);
9307 expand_operands (treeop0, treeop1,
9308 target, &op0, &op1, EXPAND_NORMAL);
9309
9310 /* First try to do it with a special MIN or MAX instruction.
9311 If that does not win, use a conditional jump to select the proper
9312 value. */
9313 this_optab = optab_for_tree_code (code, type, optab_default);
9314 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9315 OPTAB_WIDEN);
9316 if (temp != 0)
9317 return temp;
9318
9319 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9320 and similarly for MAX <x, y>. */
9321 if (VECTOR_TYPE_P (type))
9322 {
9323 tree t0 = make_tree (type, op0);
9324 tree t1 = make_tree (type, op1);
9325 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
9326 type, t0, t1);
9327 return expand_vec_cond_expr (type, comparison, t0, t1,
9328 original_target);
9329 }
9330
9331 /* At this point, a MEM target is no longer useful; we will get better
9332 code without it. */
9333
9334 if (! REG_P (target))
9335 target = gen_reg_rtx (mode);
9336
9337 /* If op1 was placed in target, swap op0 and op1. */
9338 if (target != op0 && target == op1)
9339 std::swap (op0, op1);
9340
9341 /* We generate better code and avoid problems with op1 mentioning
9342 target by forcing op1 into a pseudo if it isn't a constant. */
9343 if (! CONSTANT_P (op1))
9344 op1 = force_reg (mode, op1);
9345
9346 {
9347 enum rtx_code comparison_code;
9348 rtx cmpop1 = op1;
9349
9350 if (code == MAX_EXPR)
9351 comparison_code = unsignedp ? GEU : GE;
9352 else
9353 comparison_code = unsignedp ? LEU : LE;
9354
9355 /* Canonicalize to comparisons against 0. */
9356 if (op1 == const1_rtx)
9357 {
9358 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9359 or (a != 0 ? a : 1) for unsigned.
9360 For MIN we are safe converting (a <= 1 ? a : 1)
9361 into (a <= 0 ? a : 1) */
9362 cmpop1 = const0_rtx;
9363 if (code == MAX_EXPR)
9364 comparison_code = unsignedp ? NE : GT;
9365 }
9366 if (op1 == constm1_rtx && !unsignedp)
9367 {
9368 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9369 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9370 cmpop1 = const0_rtx;
9371 if (code == MIN_EXPR)
9372 comparison_code = LT;
9373 }
9374
9375 /* Use a conditional move if possible. */
9376 if (can_conditionally_move_p (mode))
9377 {
9378 rtx insn;
9379
9380 start_sequence ();
9381
9382 /* Try to emit the conditional move. */
9383 insn = emit_conditional_move (target, comparison_code,
9384 op0, cmpop1, mode,
9385 op0, op1, mode,
9386 unsignedp);
9387
9388 /* If we could do the conditional move, emit the sequence,
9389 and return. */
9390 if (insn)
9391 {
9392 rtx_insn *seq = get_insns ();
9393 end_sequence ();
9394 emit_insn (seq);
9395 return target;
9396 }
9397
9398 /* Otherwise discard the sequence and fall back to code with
9399 branches. */
9400 end_sequence ();
9401 }
9402
9403 if (target != op0)
9404 emit_move_insn (target, op0);
9405
9406 lab = gen_label_rtx ();
9407 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9408 unsignedp, mode, NULL_RTX, NULL, lab,
9409 profile_probability::uninitialized ());
9410 }
9411 emit_move_insn (target, op1);
9412 emit_label (lab);
9413 return target;
9414
9415 case BIT_NOT_EXPR:
9416 op0 = expand_expr (treeop0, subtarget,
9417 VOIDmode, EXPAND_NORMAL);
9418 if (modifier == EXPAND_STACK_PARM)
9419 target = 0;
9420 /* In case we have to reduce the result to bitfield precision
9421 for unsigned bitfield expand this as XOR with a proper constant
9422 instead. */
9423 if (reduce_bit_field && TYPE_UNSIGNED (type))
9424 {
9425 int_mode = SCALAR_INT_TYPE_MODE (type);
9426 wide_int mask = wi::mask (TYPE_PRECISION (type),
9427 false, GET_MODE_PRECISION (int_mode));
9428
9429 temp = expand_binop (int_mode, xor_optab, op0,
9430 immed_wide_int_const (mask, int_mode),
9431 target, 1, OPTAB_LIB_WIDEN);
9432 }
9433 else
9434 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9435 gcc_assert (temp);
9436 return temp;
9437
9438 /* ??? Can optimize bitwise operations with one arg constant.
9439 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9440 and (a bitwise1 b) bitwise2 b (etc)
9441 but that is probably not worth while. */
9442
9443 case BIT_AND_EXPR:
9444 case BIT_IOR_EXPR:
9445 case BIT_XOR_EXPR:
9446 goto binop;
9447
9448 case LROTATE_EXPR:
9449 case RROTATE_EXPR:
9450 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9451 || type_has_mode_precision_p (type));
9452 /* fall through */
9453
9454 case LSHIFT_EXPR:
9455 case RSHIFT_EXPR:
9456 {
9457 /* If this is a fixed-point operation, then we cannot use the code
9458 below because "expand_shift" doesn't support sat/no-sat fixed-point
9459 shifts. */
9460 if (ALL_FIXED_POINT_MODE_P (mode))
9461 goto binop;
9462
9463 if (! safe_from_p (subtarget, treeop1, 1))
9464 subtarget = 0;
9465 if (modifier == EXPAND_STACK_PARM)
9466 target = 0;
9467 op0 = expand_expr (treeop0, subtarget,
9468 VOIDmode, EXPAND_NORMAL);
9469
9470 /* Left shift optimization when shifting across word_size boundary.
9471
9472 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9473 there isn't native instruction to support this wide mode
9474 left shift. Given below scenario:
9475
9476 Type A = (Type) B << C
9477
9478 |< T >|
9479 | dest_high | dest_low |
9480
9481 | word_size |
9482
9483 If the shift amount C caused we shift B to across the word
9484 size boundary, i.e part of B shifted into high half of
9485 destination register, and part of B remains in the low
9486 half, then GCC will use the following left shift expand
9487 logic:
9488
9489 1. Initialize dest_low to B.
9490 2. Initialize every bit of dest_high to the sign bit of B.
9491 3. Logic left shift dest_low by C bit to finalize dest_low.
9492 The value of dest_low before this shift is kept in a temp D.
9493 4. Logic left shift dest_high by C.
9494 5. Logic right shift D by (word_size - C).
9495 6. Or the result of 4 and 5 to finalize dest_high.
9496
9497 While, by checking gimple statements, if operand B is
9498 coming from signed extension, then we can simplify above
9499 expand logic into:
9500
9501 1. dest_high = src_low >> (word_size - C).
9502 2. dest_low = src_low << C.
9503
9504 We can use one arithmetic right shift to finish all the
9505 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9506 needed from 6 into 2.
9507
9508 The case is similar for zero extension, except that we
9509 initialize dest_high to zero rather than copies of the sign
9510 bit from B. Furthermore, we need to use a logical right shift
9511 in this case.
9512
9513 The choice of sign-extension versus zero-extension is
9514 determined entirely by whether or not B is signed and is
9515 independent of the current setting of unsignedp. */
9516
9517 temp = NULL_RTX;
9518 if (code == LSHIFT_EXPR
9519 && target
9520 && REG_P (target)
9521 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9522 && mode == int_mode
9523 && TREE_CONSTANT (treeop1)
9524 && TREE_CODE (treeop0) == SSA_NAME)
9525 {
9526 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9527 if (is_gimple_assign (def)
9528 && gimple_assign_rhs_code (def) == NOP_EXPR)
9529 {
9530 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9531 (TREE_TYPE (gimple_assign_rhs1 (def)));
9532
9533 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9534 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9535 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9536 >= GET_MODE_BITSIZE (word_mode)))
9537 {
9538 rtx_insn *seq, *seq_old;
9539 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9540 int_mode);
9541 bool extend_unsigned
9542 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9543 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9544 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9545 rtx dest_high = simplify_gen_subreg (word_mode, target,
9546 int_mode, high_off);
9547 HOST_WIDE_INT ramount = (BITS_PER_WORD
9548 - TREE_INT_CST_LOW (treeop1));
9549 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9550
9551 start_sequence ();
9552 /* dest_high = src_low >> (word_size - C). */
9553 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9554 rshift, dest_high,
9555 extend_unsigned);
9556 if (temp != dest_high)
9557 emit_move_insn (dest_high, temp);
9558
9559 /* dest_low = src_low << C. */
9560 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9561 treeop1, dest_low, unsignedp);
9562 if (temp != dest_low)
9563 emit_move_insn (dest_low, temp);
9564
9565 seq = get_insns ();
9566 end_sequence ();
9567 temp = target ;
9568
9569 if (have_insn_for (ASHIFT, int_mode))
9570 {
9571 bool speed_p = optimize_insn_for_speed_p ();
9572 start_sequence ();
9573 rtx ret_old = expand_variable_shift (code, int_mode,
9574 op0, treeop1,
9575 target,
9576 unsignedp);
9577
9578 seq_old = get_insns ();
9579 end_sequence ();
9580 if (seq_cost (seq, speed_p)
9581 >= seq_cost (seq_old, speed_p))
9582 {
9583 seq = seq_old;
9584 temp = ret_old;
9585 }
9586 }
9587 emit_insn (seq);
9588 }
9589 }
9590 }
9591
9592 if (temp == NULL_RTX)
9593 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9594 unsignedp);
9595 if (code == LSHIFT_EXPR)
9596 temp = REDUCE_BIT_FIELD (temp);
9597 return temp;
9598 }
9599
9600 /* Could determine the answer when only additive constants differ. Also,
9601 the addition of one can be handled by changing the condition. */
9602 case LT_EXPR:
9603 case LE_EXPR:
9604 case GT_EXPR:
9605 case GE_EXPR:
9606 case EQ_EXPR:
9607 case NE_EXPR:
9608 case UNORDERED_EXPR:
9609 case ORDERED_EXPR:
9610 case UNLT_EXPR:
9611 case UNLE_EXPR:
9612 case UNGT_EXPR:
9613 case UNGE_EXPR:
9614 case UNEQ_EXPR:
9615 case LTGT_EXPR:
9616 {
9617 temp = do_store_flag (ops,
9618 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9619 tmode != VOIDmode ? tmode : mode);
9620 if (temp)
9621 return temp;
9622
9623 /* Use a compare and a jump for BLKmode comparisons, or for function
9624 type comparisons is have_canonicalize_funcptr_for_compare. */
9625
9626 if ((target == 0
9627 || modifier == EXPAND_STACK_PARM
9628 || ! safe_from_p (target, treeop0, 1)
9629 || ! safe_from_p (target, treeop1, 1)
9630 /* Make sure we don't have a hard reg (such as function's return
9631 value) live across basic blocks, if not optimizing. */
9632 || (!optimize && REG_P (target)
9633 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9634 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9635
9636 emit_move_insn (target, const0_rtx);
9637
9638 rtx_code_label *lab1 = gen_label_rtx ();
9639 jumpifnot_1 (code, treeop0, treeop1, lab1,
9640 profile_probability::uninitialized ());
9641
9642 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9643 emit_move_insn (target, constm1_rtx);
9644 else
9645 emit_move_insn (target, const1_rtx);
9646
9647 emit_label (lab1);
9648 return target;
9649 }
9650 case COMPLEX_EXPR:
9651 /* Get the rtx code of the operands. */
9652 op0 = expand_normal (treeop0);
9653 op1 = expand_normal (treeop1);
9654
9655 if (!target)
9656 target = gen_reg_rtx (TYPE_MODE (type));
9657 else
9658 /* If target overlaps with op1, then either we need to force
9659 op1 into a pseudo (if target also overlaps with op0),
9660 or write the complex parts in reverse order. */
9661 switch (GET_CODE (target))
9662 {
9663 case CONCAT:
9664 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9665 {
9666 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9667 {
9668 complex_expr_force_op1:
9669 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9670 emit_move_insn (temp, op1);
9671 op1 = temp;
9672 break;
9673 }
9674 complex_expr_swap_order:
9675 /* Move the imaginary (op1) and real (op0) parts to their
9676 location. */
9677 write_complex_part (target, op1, true);
9678 write_complex_part (target, op0, false);
9679
9680 return target;
9681 }
9682 break;
9683 case MEM:
9684 temp = adjust_address_nv (target,
9685 GET_MODE_INNER (GET_MODE (target)), 0);
9686 if (reg_overlap_mentioned_p (temp, op1))
9687 {
9688 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9689 temp = adjust_address_nv (target, imode,
9690 GET_MODE_SIZE (imode));
9691 if (reg_overlap_mentioned_p (temp, op0))
9692 goto complex_expr_force_op1;
9693 goto complex_expr_swap_order;
9694 }
9695 break;
9696 default:
9697 if (reg_overlap_mentioned_p (target, op1))
9698 {
9699 if (reg_overlap_mentioned_p (target, op0))
9700 goto complex_expr_force_op1;
9701 goto complex_expr_swap_order;
9702 }
9703 break;
9704 }
9705
9706 /* Move the real (op0) and imaginary (op1) parts to their location. */
9707 write_complex_part (target, op0, false);
9708 write_complex_part (target, op1, true);
9709
9710 return target;
9711
9712 case WIDEN_SUM_EXPR:
9713 {
9714 tree oprnd0 = treeop0;
9715 tree oprnd1 = treeop1;
9716
9717 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9718 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9719 target, unsignedp);
9720 return target;
9721 }
9722
9723 case VEC_UNPACK_HI_EXPR:
9724 case VEC_UNPACK_LO_EXPR:
9725 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9726 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9727 {
9728 op0 = expand_normal (treeop0);
9729 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9730 target, unsignedp);
9731 gcc_assert (temp);
9732 return temp;
9733 }
9734
9735 case VEC_UNPACK_FLOAT_HI_EXPR:
9736 case VEC_UNPACK_FLOAT_LO_EXPR:
9737 {
9738 op0 = expand_normal (treeop0);
9739 /* The signedness is determined from input operand. */
9740 temp = expand_widen_pattern_expr
9741 (ops, op0, NULL_RTX, NULL_RTX,
9742 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9743
9744 gcc_assert (temp);
9745 return temp;
9746 }
9747
9748 case VEC_WIDEN_MULT_HI_EXPR:
9749 case VEC_WIDEN_MULT_LO_EXPR:
9750 case VEC_WIDEN_MULT_EVEN_EXPR:
9751 case VEC_WIDEN_MULT_ODD_EXPR:
9752 case VEC_WIDEN_LSHIFT_HI_EXPR:
9753 case VEC_WIDEN_LSHIFT_LO_EXPR:
9754 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9755 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9756 target, unsignedp);
9757 gcc_assert (target);
9758 return target;
9759
9760 case VEC_PACK_SAT_EXPR:
9761 case VEC_PACK_FIX_TRUNC_EXPR:
9762 mode = TYPE_MODE (TREE_TYPE (treeop0));
9763 goto binop;
9764
9765 case VEC_PACK_TRUNC_EXPR:
9766 if (VECTOR_BOOLEAN_TYPE_P (type)
9767 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
9768 && mode == TYPE_MODE (TREE_TYPE (treeop0))
9769 && SCALAR_INT_MODE_P (mode))
9770 {
9771 class expand_operand eops[4];
9772 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
9773 expand_operands (treeop0, treeop1,
9774 subtarget, &op0, &op1, EXPAND_NORMAL);
9775 this_optab = vec_pack_sbool_trunc_optab;
9776 enum insn_code icode = optab_handler (this_optab, imode);
9777 create_output_operand (&eops[0], target, mode);
9778 create_convert_operand_from (&eops[1], op0, imode, false);
9779 create_convert_operand_from (&eops[2], op1, imode, false);
9780 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
9781 create_input_operand (&eops[3], temp, imode);
9782 expand_insn (icode, 4, eops);
9783 return eops[0].value;
9784 }
9785 mode = TYPE_MODE (TREE_TYPE (treeop0));
9786 goto binop;
9787
9788 case VEC_PACK_FLOAT_EXPR:
9789 mode = TYPE_MODE (TREE_TYPE (treeop0));
9790 expand_operands (treeop0, treeop1,
9791 subtarget, &op0, &op1, EXPAND_NORMAL);
9792 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9793 optab_default);
9794 target = expand_binop (mode, this_optab, op0, op1, target,
9795 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9796 OPTAB_LIB_WIDEN);
9797 gcc_assert (target);
9798 return target;
9799
9800 case VEC_PERM_EXPR:
9801 {
9802 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9803 vec_perm_builder sel;
9804 if (TREE_CODE (treeop2) == VECTOR_CST
9805 && tree_to_vec_perm_builder (&sel, treeop2))
9806 {
9807 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9808 temp = expand_vec_perm_const (mode, op0, op1, sel,
9809 sel_mode, target);
9810 }
9811 else
9812 {
9813 op2 = expand_normal (treeop2);
9814 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9815 }
9816 gcc_assert (temp);
9817 return temp;
9818 }
9819
9820 case DOT_PROD_EXPR:
9821 {
9822 tree oprnd0 = treeop0;
9823 tree oprnd1 = treeop1;
9824 tree oprnd2 = treeop2;
9825
9826 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9827 op2 = expand_normal (oprnd2);
9828 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9829 target, unsignedp);
9830 return target;
9831 }
9832
9833 case SAD_EXPR:
9834 {
9835 tree oprnd0 = treeop0;
9836 tree oprnd1 = treeop1;
9837 tree oprnd2 = treeop2;
9838
9839 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9840 op2 = expand_normal (oprnd2);
9841 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9842 target, unsignedp);
9843 return target;
9844 }
9845
9846 case REALIGN_LOAD_EXPR:
9847 {
9848 tree oprnd0 = treeop0;
9849 tree oprnd1 = treeop1;
9850 tree oprnd2 = treeop2;
9851
9852 this_optab = optab_for_tree_code (code, type, optab_default);
9853 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9854 op2 = expand_normal (oprnd2);
9855 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9856 target, unsignedp);
9857 gcc_assert (temp);
9858 return temp;
9859 }
9860
9861 case COND_EXPR:
9862 {
9863 /* A COND_EXPR with its type being VOID_TYPE represents a
9864 conditional jump and is handled in
9865 expand_gimple_cond_expr. */
9866 gcc_assert (!VOID_TYPE_P (type));
9867
9868 /* Note that COND_EXPRs whose type is a structure or union
9869 are required to be constructed to contain assignments of
9870 a temporary variable, so that we can evaluate them here
9871 for side effect only. If type is void, we must do likewise. */
9872
9873 gcc_assert (!TREE_ADDRESSABLE (type)
9874 && !ignore
9875 && TREE_TYPE (treeop1) != void_type_node
9876 && TREE_TYPE (treeop2) != void_type_node);
9877
9878 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9879 if (temp)
9880 return temp;
9881
9882 /* If we are not to produce a result, we have no target. Otherwise,
9883 if a target was specified use it; it will not be used as an
9884 intermediate target unless it is safe. If no target, use a
9885 temporary. */
9886
9887 if (modifier != EXPAND_STACK_PARM
9888 && original_target
9889 && safe_from_p (original_target, treeop0, 1)
9890 && GET_MODE (original_target) == mode
9891 && !MEM_P (original_target))
9892 temp = original_target;
9893 else
9894 temp = assign_temp (type, 0, 1);
9895
9896 do_pending_stack_adjust ();
9897 NO_DEFER_POP;
9898 rtx_code_label *lab0 = gen_label_rtx ();
9899 rtx_code_label *lab1 = gen_label_rtx ();
9900 jumpifnot (treeop0, lab0,
9901 profile_probability::uninitialized ());
9902 store_expr (treeop1, temp,
9903 modifier == EXPAND_STACK_PARM,
9904 false, false);
9905
9906 emit_jump_insn (targetm.gen_jump (lab1));
9907 emit_barrier ();
9908 emit_label (lab0);
9909 store_expr (treeop2, temp,
9910 modifier == EXPAND_STACK_PARM,
9911 false, false);
9912
9913 emit_label (lab1);
9914 OK_DEFER_POP;
9915 return temp;
9916 }
9917
9918 case VEC_COND_EXPR:
9919 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9920 return target;
9921
9922 case VEC_DUPLICATE_EXPR:
9923 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9924 target = expand_vector_broadcast (mode, op0);
9925 gcc_assert (target);
9926 return target;
9927
9928 case VEC_SERIES_EXPR:
9929 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9930 return expand_vec_series_expr (mode, op0, op1, target);
9931
9932 case BIT_INSERT_EXPR:
9933 {
9934 unsigned bitpos = tree_to_uhwi (treeop2);
9935 unsigned bitsize;
9936 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9937 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9938 else
9939 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9940 op0 = expand_normal (treeop0);
9941 op1 = expand_normal (treeop1);
9942 rtx dst = gen_reg_rtx (mode);
9943 emit_move_insn (dst, op0);
9944 store_bit_field (dst, bitsize, bitpos, 0, 0,
9945 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9946 return dst;
9947 }
9948
9949 default:
9950 gcc_unreachable ();
9951 }
9952
9953 /* Here to do an ordinary binary operator. */
9954 binop:
9955 expand_operands (treeop0, treeop1,
9956 subtarget, &op0, &op1, EXPAND_NORMAL);
9957 binop2:
9958 this_optab = optab_for_tree_code (code, type, optab_default);
9959 binop3:
9960 if (modifier == EXPAND_STACK_PARM)
9961 target = 0;
9962 temp = expand_binop (mode, this_optab, op0, op1, target,
9963 unsignedp, OPTAB_LIB_WIDEN);
9964 gcc_assert (temp);
9965 /* Bitwise operations do not need bitfield reduction as we expect their
9966 operands being properly truncated. */
9967 if (code == BIT_XOR_EXPR
9968 || code == BIT_AND_EXPR
9969 || code == BIT_IOR_EXPR)
9970 return temp;
9971 return REDUCE_BIT_FIELD (temp);
9972 }
9973 #undef REDUCE_BIT_FIELD
9974
9975
9976 /* Return TRUE if expression STMT is suitable for replacement.
9977 Never consider memory loads as replaceable, because those don't ever lead
9978 into constant expressions. */
9979
9980 static bool
9981 stmt_is_replaceable_p (gimple *stmt)
9982 {
9983 if (ssa_is_replaceable_p (stmt))
9984 {
9985 /* Don't move around loads. */
9986 if (!gimple_assign_single_p (stmt)
9987 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9988 return true;
9989 }
9990 return false;
9991 }
9992
9993 rtx
9994 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9995 enum expand_modifier modifier, rtx *alt_rtl,
9996 bool inner_reference_p)
9997 {
9998 rtx op0, op1, temp, decl_rtl;
9999 tree type;
10000 int unsignedp;
10001 machine_mode mode, dmode;
10002 enum tree_code code = TREE_CODE (exp);
10003 rtx subtarget, original_target;
10004 int ignore;
10005 tree context;
10006 bool reduce_bit_field;
10007 location_t loc = EXPR_LOCATION (exp);
10008 struct separate_ops ops;
10009 tree treeop0, treeop1, treeop2;
10010 tree ssa_name = NULL_TREE;
10011 gimple *g;
10012
10013 type = TREE_TYPE (exp);
10014 mode = TYPE_MODE (type);
10015 unsignedp = TYPE_UNSIGNED (type);
10016
10017 treeop0 = treeop1 = treeop2 = NULL_TREE;
10018 if (!VL_EXP_CLASS_P (exp))
10019 switch (TREE_CODE_LENGTH (code))
10020 {
10021 default:
10022 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
10023 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
10024 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
10025 case 0: break;
10026 }
10027 ops.code = code;
10028 ops.type = type;
10029 ops.op0 = treeop0;
10030 ops.op1 = treeop1;
10031 ops.op2 = treeop2;
10032 ops.location = loc;
10033
10034 ignore = (target == const0_rtx
10035 || ((CONVERT_EXPR_CODE_P (code)
10036 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
10037 && TREE_CODE (type) == VOID_TYPE));
10038
10039 /* An operation in what may be a bit-field type needs the
10040 result to be reduced to the precision of the bit-field type,
10041 which is narrower than that of the type's mode. */
10042 reduce_bit_field = (!ignore
10043 && INTEGRAL_TYPE_P (type)
10044 && !type_has_mode_precision_p (type));
10045
10046 /* If we are going to ignore this result, we need only do something
10047 if there is a side-effect somewhere in the expression. If there
10048 is, short-circuit the most common cases here. Note that we must
10049 not call expand_expr with anything but const0_rtx in case this
10050 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
10051
10052 if (ignore)
10053 {
10054 if (! TREE_SIDE_EFFECTS (exp))
10055 return const0_rtx;
10056
10057 /* Ensure we reference a volatile object even if value is ignored, but
10058 don't do this if all we are doing is taking its address. */
10059 if (TREE_THIS_VOLATILE (exp)
10060 && TREE_CODE (exp) != FUNCTION_DECL
10061 && mode != VOIDmode && mode != BLKmode
10062 && modifier != EXPAND_CONST_ADDRESS)
10063 {
10064 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
10065 if (MEM_P (temp))
10066 copy_to_reg (temp);
10067 return const0_rtx;
10068 }
10069
10070 if (TREE_CODE_CLASS (code) == tcc_unary
10071 || code == BIT_FIELD_REF
10072 || code == COMPONENT_REF
10073 || code == INDIRECT_REF)
10074 return expand_expr (treeop0, const0_rtx, VOIDmode,
10075 modifier);
10076
10077 else if (TREE_CODE_CLASS (code) == tcc_binary
10078 || TREE_CODE_CLASS (code) == tcc_comparison
10079 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
10080 {
10081 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
10082 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
10083 return const0_rtx;
10084 }
10085
10086 target = 0;
10087 }
10088
10089 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
10090 target = 0;
10091
10092 /* Use subtarget as the target for operand 0 of a binary operation. */
10093 subtarget = get_subtarget (target);
10094 original_target = target;
10095
10096 switch (code)
10097 {
10098 case LABEL_DECL:
10099 {
10100 tree function = decl_function_context (exp);
10101
10102 temp = label_rtx (exp);
10103 temp = gen_rtx_LABEL_REF (Pmode, temp);
10104
10105 if (function != current_function_decl
10106 && function != 0)
10107 LABEL_REF_NONLOCAL_P (temp) = 1;
10108
10109 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
10110 return temp;
10111 }
10112
10113 case SSA_NAME:
10114 /* ??? ivopts calls expander, without any preparation from
10115 out-of-ssa. So fake instructions as if this was an access to the
10116 base variable. This unnecessarily allocates a pseudo, see how we can
10117 reuse it, if partition base vars have it set already. */
10118 if (!currently_expanding_to_rtl)
10119 {
10120 tree var = SSA_NAME_VAR (exp);
10121 if (var && DECL_RTL_SET_P (var))
10122 return DECL_RTL (var);
10123 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
10124 LAST_VIRTUAL_REGISTER + 1);
10125 }
10126
10127 g = get_gimple_for_ssa_name (exp);
10128 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10129 if (g == NULL
10130 && modifier == EXPAND_INITIALIZER
10131 && !SSA_NAME_IS_DEFAULT_DEF (exp)
10132 && (optimize || !SSA_NAME_VAR (exp)
10133 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
10134 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
10135 g = SSA_NAME_DEF_STMT (exp);
10136 if (g)
10137 {
10138 rtx r;
10139 location_t saved_loc = curr_insn_location ();
10140 loc = gimple_location (g);
10141 if (loc != UNKNOWN_LOCATION)
10142 set_curr_insn_location (loc);
10143 ops.code = gimple_assign_rhs_code (g);
10144 switch (get_gimple_rhs_class (ops.code))
10145 {
10146 case GIMPLE_TERNARY_RHS:
10147 ops.op2 = gimple_assign_rhs3 (g);
10148 /* Fallthru */
10149 case GIMPLE_BINARY_RHS:
10150 ops.op1 = gimple_assign_rhs2 (g);
10151
10152 /* Try to expand conditonal compare. */
10153 if (targetm.gen_ccmp_first)
10154 {
10155 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10156 r = expand_ccmp_expr (g, mode);
10157 if (r)
10158 break;
10159 }
10160 /* Fallthru */
10161 case GIMPLE_UNARY_RHS:
10162 ops.op0 = gimple_assign_rhs1 (g);
10163 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10164 ops.location = loc;
10165 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10166 break;
10167 case GIMPLE_SINGLE_RHS:
10168 {
10169 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10170 tmode, modifier, alt_rtl,
10171 inner_reference_p);
10172 break;
10173 }
10174 default:
10175 gcc_unreachable ();
10176 }
10177 set_curr_insn_location (saved_loc);
10178 if (REG_P (r) && !REG_EXPR (r))
10179 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10180 return r;
10181 }
10182
10183 ssa_name = exp;
10184 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10185 exp = SSA_NAME_VAR (ssa_name);
10186 goto expand_decl_rtl;
10187
10188 case PARM_DECL:
10189 case VAR_DECL:
10190 /* If a static var's type was incomplete when the decl was written,
10191 but the type is complete now, lay out the decl now. */
10192 if (DECL_SIZE (exp) == 0
10193 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10194 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10195 layout_decl (exp, 0);
10196
10197 /* fall through */
10198
10199 case FUNCTION_DECL:
10200 case RESULT_DECL:
10201 decl_rtl = DECL_RTL (exp);
10202 expand_decl_rtl:
10203 gcc_assert (decl_rtl);
10204
10205 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10206 settings for VECTOR_TYPE_P that might switch for the function. */
10207 if (currently_expanding_to_rtl
10208 && code == VAR_DECL && MEM_P (decl_rtl)
10209 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10210 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10211 else
10212 decl_rtl = copy_rtx (decl_rtl);
10213
10214 /* Record writes to register variables. */
10215 if (modifier == EXPAND_WRITE
10216 && REG_P (decl_rtl)
10217 && HARD_REGISTER_P (decl_rtl))
10218 add_to_hard_reg_set (&crtl->asm_clobbers,
10219 GET_MODE (decl_rtl), REGNO (decl_rtl));
10220
10221 /* Ensure variable marked as used even if it doesn't go through
10222 a parser. If it hasn't be used yet, write out an external
10223 definition. */
10224 if (exp)
10225 TREE_USED (exp) = 1;
10226
10227 /* Show we haven't gotten RTL for this yet. */
10228 temp = 0;
10229
10230 /* Variables inherited from containing functions should have
10231 been lowered by this point. */
10232 if (exp)
10233 context = decl_function_context (exp);
10234 gcc_assert (!exp
10235 || SCOPE_FILE_SCOPE_P (context)
10236 || context == current_function_decl
10237 || TREE_STATIC (exp)
10238 || DECL_EXTERNAL (exp)
10239 /* ??? C++ creates functions that are not TREE_STATIC. */
10240 || TREE_CODE (exp) == FUNCTION_DECL);
10241
10242 /* This is the case of an array whose size is to be determined
10243 from its initializer, while the initializer is still being parsed.
10244 ??? We aren't parsing while expanding anymore. */
10245
10246 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10247 temp = validize_mem (decl_rtl);
10248
10249 /* If DECL_RTL is memory, we are in the normal case and the
10250 address is not valid, get the address into a register. */
10251
10252 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10253 {
10254 if (alt_rtl)
10255 *alt_rtl = decl_rtl;
10256 decl_rtl = use_anchored_address (decl_rtl);
10257 if (modifier != EXPAND_CONST_ADDRESS
10258 && modifier != EXPAND_SUM
10259 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10260 : GET_MODE (decl_rtl),
10261 XEXP (decl_rtl, 0),
10262 MEM_ADDR_SPACE (decl_rtl)))
10263 temp = replace_equiv_address (decl_rtl,
10264 copy_rtx (XEXP (decl_rtl, 0)));
10265 }
10266
10267 /* If we got something, return it. But first, set the alignment
10268 if the address is a register. */
10269 if (temp != 0)
10270 {
10271 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10272 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10273 }
10274 else if (MEM_P (decl_rtl))
10275 temp = decl_rtl;
10276
10277 if (temp != 0)
10278 {
10279 if (MEM_P (temp)
10280 && modifier != EXPAND_WRITE
10281 && modifier != EXPAND_MEMORY
10282 && modifier != EXPAND_INITIALIZER
10283 && modifier != EXPAND_CONST_ADDRESS
10284 && modifier != EXPAND_SUM
10285 && !inner_reference_p
10286 && mode != BLKmode
10287 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10288 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10289 MEM_ALIGN (temp), NULL_RTX, NULL);
10290
10291 return temp;
10292 }
10293
10294 if (exp)
10295 dmode = DECL_MODE (exp);
10296 else
10297 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10298
10299 /* If the mode of DECL_RTL does not match that of the decl,
10300 there are two cases: we are dealing with a BLKmode value
10301 that is returned in a register, or we are dealing with
10302 a promoted value. In the latter case, return a SUBREG
10303 of the wanted mode, but mark it so that we know that it
10304 was already extended. */
10305 if (REG_P (decl_rtl)
10306 && dmode != BLKmode
10307 && GET_MODE (decl_rtl) != dmode)
10308 {
10309 machine_mode pmode;
10310
10311 /* Get the signedness to be used for this variable. Ensure we get
10312 the same mode we got when the variable was declared. */
10313 if (code != SSA_NAME)
10314 pmode = promote_decl_mode (exp, &unsignedp);
10315 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10316 && gimple_code (g) == GIMPLE_CALL
10317 && !gimple_call_internal_p (g))
10318 pmode = promote_function_mode (type, mode, &unsignedp,
10319 gimple_call_fntype (g),
10320 2);
10321 else
10322 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10323 gcc_assert (GET_MODE (decl_rtl) == pmode);
10324
10325 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10326 SUBREG_PROMOTED_VAR_P (temp) = 1;
10327 SUBREG_PROMOTED_SET (temp, unsignedp);
10328 return temp;
10329 }
10330
10331 return decl_rtl;
10332
10333 case INTEGER_CST:
10334 {
10335 /* Given that TYPE_PRECISION (type) is not always equal to
10336 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10337 the former to the latter according to the signedness of the
10338 type. */
10339 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
10340 temp = immed_wide_int_const
10341 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
10342 return temp;
10343 }
10344
10345 case VECTOR_CST:
10346 {
10347 tree tmp = NULL_TREE;
10348 if (VECTOR_MODE_P (mode))
10349 return const_vector_from_tree (exp);
10350 scalar_int_mode int_mode;
10351 if (is_int_mode (mode, &int_mode))
10352 {
10353 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10354 return const_scalar_mask_from_tree (int_mode, exp);
10355 else
10356 {
10357 tree type_for_mode
10358 = lang_hooks.types.type_for_mode (int_mode, 1);
10359 if (type_for_mode)
10360 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10361 type_for_mode, exp);
10362 }
10363 }
10364 if (!tmp)
10365 {
10366 vec<constructor_elt, va_gc> *v;
10367 /* Constructors need to be fixed-length. FIXME. */
10368 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10369 vec_alloc (v, nunits);
10370 for (unsigned int i = 0; i < nunits; ++i)
10371 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10372 tmp = build_constructor (type, v);
10373 }
10374 return expand_expr (tmp, ignore ? const0_rtx : target,
10375 tmode, modifier);
10376 }
10377
10378 case CONST_DECL:
10379 if (modifier == EXPAND_WRITE)
10380 {
10381 /* Writing into CONST_DECL is always invalid, but handle it
10382 gracefully. */
10383 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10384 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10385 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10386 EXPAND_NORMAL, as);
10387 op0 = memory_address_addr_space (mode, op0, as);
10388 temp = gen_rtx_MEM (mode, op0);
10389 set_mem_addr_space (temp, as);
10390 return temp;
10391 }
10392 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10393
10394 case REAL_CST:
10395 /* If optimized, generate immediate CONST_DOUBLE
10396 which will be turned into memory by reload if necessary.
10397
10398 We used to force a register so that loop.c could see it. But
10399 this does not allow gen_* patterns to perform optimizations with
10400 the constants. It also produces two insns in cases like "x = 1.0;".
10401 On most machines, floating-point constants are not permitted in
10402 many insns, so we'd end up copying it to a register in any case.
10403
10404 Now, we do the copying in expand_binop, if appropriate. */
10405 return const_double_from_real_value (TREE_REAL_CST (exp),
10406 TYPE_MODE (TREE_TYPE (exp)));
10407
10408 case FIXED_CST:
10409 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10410 TYPE_MODE (TREE_TYPE (exp)));
10411
10412 case COMPLEX_CST:
10413 /* Handle evaluating a complex constant in a CONCAT target. */
10414 if (original_target && GET_CODE (original_target) == CONCAT)
10415 {
10416 rtx rtarg, itarg;
10417
10418 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10419 rtarg = XEXP (original_target, 0);
10420 itarg = XEXP (original_target, 1);
10421
10422 /* Move the real and imaginary parts separately. */
10423 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10424 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10425
10426 if (op0 != rtarg)
10427 emit_move_insn (rtarg, op0);
10428 if (op1 != itarg)
10429 emit_move_insn (itarg, op1);
10430
10431 return original_target;
10432 }
10433
10434 /* fall through */
10435
10436 case STRING_CST:
10437 temp = expand_expr_constant (exp, 1, modifier);
10438
10439 /* temp contains a constant address.
10440 On RISC machines where a constant address isn't valid,
10441 make some insns to get that address into a register. */
10442 if (modifier != EXPAND_CONST_ADDRESS
10443 && modifier != EXPAND_INITIALIZER
10444 && modifier != EXPAND_SUM
10445 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10446 MEM_ADDR_SPACE (temp)))
10447 return replace_equiv_address (temp,
10448 copy_rtx (XEXP (temp, 0)));
10449 return temp;
10450
10451 case POLY_INT_CST:
10452 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10453
10454 case SAVE_EXPR:
10455 {
10456 tree val = treeop0;
10457 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10458 inner_reference_p);
10459
10460 if (!SAVE_EXPR_RESOLVED_P (exp))
10461 {
10462 /* We can indeed still hit this case, typically via builtin
10463 expanders calling save_expr immediately before expanding
10464 something. Assume this means that we only have to deal
10465 with non-BLKmode values. */
10466 gcc_assert (GET_MODE (ret) != BLKmode);
10467
10468 val = build_decl (curr_insn_location (),
10469 VAR_DECL, NULL, TREE_TYPE (exp));
10470 DECL_ARTIFICIAL (val) = 1;
10471 DECL_IGNORED_P (val) = 1;
10472 treeop0 = val;
10473 TREE_OPERAND (exp, 0) = treeop0;
10474 SAVE_EXPR_RESOLVED_P (exp) = 1;
10475
10476 if (!CONSTANT_P (ret))
10477 ret = copy_to_reg (ret);
10478 SET_DECL_RTL (val, ret);
10479 }
10480
10481 return ret;
10482 }
10483
10484
10485 case CONSTRUCTOR:
10486 /* If we don't need the result, just ensure we evaluate any
10487 subexpressions. */
10488 if (ignore)
10489 {
10490 unsigned HOST_WIDE_INT idx;
10491 tree value;
10492
10493 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10494 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10495
10496 return const0_rtx;
10497 }
10498
10499 return expand_constructor (exp, target, modifier, false);
10500
10501 case TARGET_MEM_REF:
10502 {
10503 addr_space_t as
10504 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10505 unsigned int align;
10506
10507 op0 = addr_for_mem_ref (exp, as, true);
10508 op0 = memory_address_addr_space (mode, op0, as);
10509 temp = gen_rtx_MEM (mode, op0);
10510 set_mem_attributes (temp, exp, 0);
10511 set_mem_addr_space (temp, as);
10512 align = get_object_alignment (exp);
10513 if (modifier != EXPAND_WRITE
10514 && modifier != EXPAND_MEMORY
10515 && mode != BLKmode
10516 && align < GET_MODE_ALIGNMENT (mode))
10517 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10518 align, NULL_RTX, NULL);
10519 return temp;
10520 }
10521
10522 case MEM_REF:
10523 {
10524 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10525 addr_space_t as
10526 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10527 machine_mode address_mode;
10528 tree base = TREE_OPERAND (exp, 0);
10529 gimple *def_stmt;
10530 unsigned align;
10531 /* Handle expansion of non-aliased memory with non-BLKmode. That
10532 might end up in a register. */
10533 if (mem_ref_refers_to_non_mem_p (exp))
10534 {
10535 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10536 base = TREE_OPERAND (base, 0);
10537 poly_uint64 type_size;
10538 if (known_eq (offset, 0)
10539 && !reverse
10540 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10541 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10542 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10543 target, tmode, modifier);
10544 if (TYPE_MODE (type) == BLKmode)
10545 {
10546 temp = assign_stack_temp (DECL_MODE (base),
10547 GET_MODE_SIZE (DECL_MODE (base)));
10548 store_expr (base, temp, 0, false, false);
10549 temp = adjust_address (temp, BLKmode, offset);
10550 set_mem_size (temp, int_size_in_bytes (type));
10551 return temp;
10552 }
10553 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10554 bitsize_int (offset * BITS_PER_UNIT));
10555 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10556 return expand_expr (exp, target, tmode, modifier);
10557 }
10558 address_mode = targetm.addr_space.address_mode (as);
10559 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10560 {
10561 tree mask = gimple_assign_rhs2 (def_stmt);
10562 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10563 gimple_assign_rhs1 (def_stmt), mask);
10564 TREE_OPERAND (exp, 0) = base;
10565 }
10566 align = get_object_alignment (exp);
10567 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10568 op0 = memory_address_addr_space (mode, op0, as);
10569 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10570 {
10571 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10572 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10573 op0 = memory_address_addr_space (mode, op0, as);
10574 }
10575 temp = gen_rtx_MEM (mode, op0);
10576 set_mem_attributes (temp, exp, 0);
10577 set_mem_addr_space (temp, as);
10578 if (TREE_THIS_VOLATILE (exp))
10579 MEM_VOLATILE_P (temp) = 1;
10580 if (modifier != EXPAND_WRITE
10581 && modifier != EXPAND_MEMORY
10582 && !inner_reference_p
10583 && mode != BLKmode
10584 && align < GET_MODE_ALIGNMENT (mode))
10585 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
10586 modifier == EXPAND_STACK_PARM
10587 ? NULL_RTX : target, alt_rtl);
10588 if (reverse
10589 && modifier != EXPAND_MEMORY
10590 && modifier != EXPAND_WRITE)
10591 temp = flip_storage_order (mode, temp);
10592 return temp;
10593 }
10594
10595 case ARRAY_REF:
10596
10597 {
10598 tree array = treeop0;
10599 tree index = treeop1;
10600 tree init;
10601
10602 /* Fold an expression like: "foo"[2].
10603 This is not done in fold so it won't happen inside &.
10604 Don't fold if this is for wide characters since it's too
10605 difficult to do correctly and this is a very rare case. */
10606
10607 if (modifier != EXPAND_CONST_ADDRESS
10608 && modifier != EXPAND_INITIALIZER
10609 && modifier != EXPAND_MEMORY)
10610 {
10611 tree t = fold_read_from_constant_string (exp);
10612
10613 if (t)
10614 return expand_expr (t, target, tmode, modifier);
10615 }
10616
10617 /* If this is a constant index into a constant array,
10618 just get the value from the array. Handle both the cases when
10619 we have an explicit constructor and when our operand is a variable
10620 that was declared const. */
10621
10622 if (modifier != EXPAND_CONST_ADDRESS
10623 && modifier != EXPAND_INITIALIZER
10624 && modifier != EXPAND_MEMORY
10625 && TREE_CODE (array) == CONSTRUCTOR
10626 && ! TREE_SIDE_EFFECTS (array)
10627 && TREE_CODE (index) == INTEGER_CST)
10628 {
10629 unsigned HOST_WIDE_INT ix;
10630 tree field, value;
10631
10632 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10633 field, value)
10634 if (tree_int_cst_equal (field, index))
10635 {
10636 if (!TREE_SIDE_EFFECTS (value))
10637 return expand_expr (fold (value), target, tmode, modifier);
10638 break;
10639 }
10640 }
10641
10642 else if (optimize >= 1
10643 && modifier != EXPAND_CONST_ADDRESS
10644 && modifier != EXPAND_INITIALIZER
10645 && modifier != EXPAND_MEMORY
10646 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10647 && TREE_CODE (index) == INTEGER_CST
10648 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10649 && (init = ctor_for_folding (array)) != error_mark_node)
10650 {
10651 if (init == NULL_TREE)
10652 {
10653 tree value = build_zero_cst (type);
10654 if (TREE_CODE (value) == CONSTRUCTOR)
10655 {
10656 /* If VALUE is a CONSTRUCTOR, this optimization is only
10657 useful if this doesn't store the CONSTRUCTOR into
10658 memory. If it does, it is more efficient to just
10659 load the data from the array directly. */
10660 rtx ret = expand_constructor (value, target,
10661 modifier, true);
10662 if (ret == NULL_RTX)
10663 value = NULL_TREE;
10664 }
10665
10666 if (value)
10667 return expand_expr (value, target, tmode, modifier);
10668 }
10669 else if (TREE_CODE (init) == CONSTRUCTOR)
10670 {
10671 unsigned HOST_WIDE_INT ix;
10672 tree field, value;
10673
10674 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10675 field, value)
10676 if (tree_int_cst_equal (field, index))
10677 {
10678 if (TREE_SIDE_EFFECTS (value))
10679 break;
10680
10681 if (TREE_CODE (value) == CONSTRUCTOR)
10682 {
10683 /* If VALUE is a CONSTRUCTOR, this
10684 optimization is only useful if
10685 this doesn't store the CONSTRUCTOR
10686 into memory. If it does, it is more
10687 efficient to just load the data from
10688 the array directly. */
10689 rtx ret = expand_constructor (value, target,
10690 modifier, true);
10691 if (ret == NULL_RTX)
10692 break;
10693 }
10694
10695 return
10696 expand_expr (fold (value), target, tmode, modifier);
10697 }
10698 }
10699 else if (TREE_CODE (init) == STRING_CST)
10700 {
10701 tree low_bound = array_ref_low_bound (exp);
10702 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10703
10704 /* Optimize the special case of a zero lower bound.
10705
10706 We convert the lower bound to sizetype to avoid problems
10707 with constant folding. E.g. suppose the lower bound is
10708 1 and its mode is QI. Without the conversion
10709 (ARRAY + (INDEX - (unsigned char)1))
10710 becomes
10711 (ARRAY + (-(unsigned char)1) + INDEX)
10712 which becomes
10713 (ARRAY + 255 + INDEX). Oops! */
10714 if (!integer_zerop (low_bound))
10715 index1 = size_diffop_loc (loc, index1,
10716 fold_convert_loc (loc, sizetype,
10717 low_bound));
10718
10719 if (tree_fits_uhwi_p (index1)
10720 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10721 {
10722 tree char_type = TREE_TYPE (TREE_TYPE (init));
10723 scalar_int_mode char_mode;
10724
10725 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
10726 && GET_MODE_SIZE (char_mode) == 1)
10727 return gen_int_mode (TREE_STRING_POINTER (init)
10728 [TREE_INT_CST_LOW (index1)],
10729 char_mode);
10730 }
10731 }
10732 }
10733 }
10734 goto normal_inner_ref;
10735
10736 case COMPONENT_REF:
10737 /* If the operand is a CONSTRUCTOR, we can just extract the
10738 appropriate field if it is present. */
10739 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10740 {
10741 unsigned HOST_WIDE_INT idx;
10742 tree field, value;
10743 scalar_int_mode field_mode;
10744
10745 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10746 idx, field, value)
10747 if (field == treeop1
10748 /* We can normally use the value of the field in the
10749 CONSTRUCTOR. However, if this is a bitfield in
10750 an integral mode that we can fit in a HOST_WIDE_INT,
10751 we must mask only the number of bits in the bitfield,
10752 since this is done implicitly by the constructor. If
10753 the bitfield does not meet either of those conditions,
10754 we can't do this optimization. */
10755 && (! DECL_BIT_FIELD (field)
10756 || (is_int_mode (DECL_MODE (field), &field_mode)
10757 && (GET_MODE_PRECISION (field_mode)
10758 <= HOST_BITS_PER_WIDE_INT))))
10759 {
10760 if (DECL_BIT_FIELD (field)
10761 && modifier == EXPAND_STACK_PARM)
10762 target = 0;
10763 op0 = expand_expr (value, target, tmode, modifier);
10764 if (DECL_BIT_FIELD (field))
10765 {
10766 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10767 scalar_int_mode imode
10768 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10769
10770 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10771 {
10772 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10773 imode);
10774 op0 = expand_and (imode, op0, op1, target);
10775 }
10776 else
10777 {
10778 int count = GET_MODE_PRECISION (imode) - bitsize;
10779
10780 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10781 target, 0);
10782 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10783 target, 0);
10784 }
10785 }
10786
10787 return op0;
10788 }
10789 }
10790 goto normal_inner_ref;
10791
10792 case BIT_FIELD_REF:
10793 case ARRAY_RANGE_REF:
10794 normal_inner_ref:
10795 {
10796 machine_mode mode1, mode2;
10797 poly_int64 bitsize, bitpos, bytepos;
10798 tree offset;
10799 int reversep, volatilep = 0, must_force_mem;
10800 tree tem
10801 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10802 &unsignedp, &reversep, &volatilep);
10803 rtx orig_op0, memloc;
10804 bool clear_mem_expr = false;
10805
10806 /* If we got back the original object, something is wrong. Perhaps
10807 we are evaluating an expression too early. In any event, don't
10808 infinitely recurse. */
10809 gcc_assert (tem != exp);
10810
10811 /* If TEM's type is a union of variable size, pass TARGET to the inner
10812 computation, since it will need a temporary and TARGET is known
10813 to have to do. This occurs in unchecked conversion in Ada. */
10814 orig_op0 = op0
10815 = expand_expr_real (tem,
10816 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10817 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10818 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10819 != INTEGER_CST)
10820 && modifier != EXPAND_STACK_PARM
10821 ? target : NULL_RTX),
10822 VOIDmode,
10823 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10824 NULL, true);
10825
10826 /* If the field has a mode, we want to access it in the
10827 field's mode, not the computed mode.
10828 If a MEM has VOIDmode (external with incomplete type),
10829 use BLKmode for it instead. */
10830 if (MEM_P (op0))
10831 {
10832 if (mode1 != VOIDmode)
10833 op0 = adjust_address (op0, mode1, 0);
10834 else if (GET_MODE (op0) == VOIDmode)
10835 op0 = adjust_address (op0, BLKmode, 0);
10836 }
10837
10838 mode2
10839 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10840
10841 /* Make sure bitpos is not negative, it can wreak havoc later. */
10842 if (maybe_lt (bitpos, 0))
10843 {
10844 gcc_checking_assert (offset == NULL_TREE);
10845 offset = size_int (bits_to_bytes_round_down (bitpos));
10846 bitpos = num_trailing_bits (bitpos);
10847 }
10848
10849 /* If we have either an offset, a BLKmode result, or a reference
10850 outside the underlying object, we must force it to memory.
10851 Such a case can occur in Ada if we have unchecked conversion
10852 of an expression from a scalar type to an aggregate type or
10853 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10854 passed a partially uninitialized object or a view-conversion
10855 to a larger size. */
10856 must_force_mem = (offset
10857 || mode1 == BLKmode
10858 || (mode == BLKmode
10859 && !int_mode_for_size (bitsize, 1).exists ())
10860 || maybe_gt (bitpos + bitsize,
10861 GET_MODE_BITSIZE (mode2)));
10862
10863 /* Handle CONCAT first. */
10864 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10865 {
10866 if (known_eq (bitpos, 0)
10867 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10868 && COMPLEX_MODE_P (mode1)
10869 && COMPLEX_MODE_P (GET_MODE (op0))
10870 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10871 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10872 {
10873 if (reversep)
10874 op0 = flip_storage_order (GET_MODE (op0), op0);
10875 if (mode1 != GET_MODE (op0))
10876 {
10877 rtx parts[2];
10878 for (int i = 0; i < 2; i++)
10879 {
10880 rtx op = read_complex_part (op0, i != 0);
10881 if (GET_CODE (op) == SUBREG)
10882 op = force_reg (GET_MODE (op), op);
10883 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
10884 if (temp)
10885 op = temp;
10886 else
10887 {
10888 if (!REG_P (op) && !MEM_P (op))
10889 op = force_reg (GET_MODE (op), op);
10890 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10891 }
10892 parts[i] = op;
10893 }
10894 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10895 }
10896 return op0;
10897 }
10898 if (known_eq (bitpos, 0)
10899 && known_eq (bitsize,
10900 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10901 && maybe_ne (bitsize, 0))
10902 {
10903 op0 = XEXP (op0, 0);
10904 mode2 = GET_MODE (op0);
10905 }
10906 else if (known_eq (bitpos,
10907 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10908 && known_eq (bitsize,
10909 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10910 && maybe_ne (bitpos, 0)
10911 && maybe_ne (bitsize, 0))
10912 {
10913 op0 = XEXP (op0, 1);
10914 bitpos = 0;
10915 mode2 = GET_MODE (op0);
10916 }
10917 else
10918 /* Otherwise force into memory. */
10919 must_force_mem = 1;
10920 }
10921
10922 /* If this is a constant, put it in a register if it is a legitimate
10923 constant and we don't need a memory reference. */
10924 if (CONSTANT_P (op0)
10925 && mode2 != BLKmode
10926 && targetm.legitimate_constant_p (mode2, op0)
10927 && !must_force_mem)
10928 op0 = force_reg (mode2, op0);
10929
10930 /* Otherwise, if this is a constant, try to force it to the constant
10931 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10932 is a legitimate constant. */
10933 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10934 op0 = validize_mem (memloc);
10935
10936 /* Otherwise, if this is a constant or the object is not in memory
10937 and need be, put it there. */
10938 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10939 {
10940 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10941 emit_move_insn (memloc, op0);
10942 op0 = memloc;
10943 clear_mem_expr = true;
10944 }
10945
10946 if (offset)
10947 {
10948 machine_mode address_mode;
10949 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10950 EXPAND_SUM);
10951
10952 gcc_assert (MEM_P (op0));
10953
10954 address_mode = get_address_mode (op0);
10955 if (GET_MODE (offset_rtx) != address_mode)
10956 {
10957 /* We cannot be sure that the RTL in offset_rtx is valid outside
10958 of a memory address context, so force it into a register
10959 before attempting to convert it to the desired mode. */
10960 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10961 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10962 }
10963
10964 /* See the comment in expand_assignment for the rationale. */
10965 if (mode1 != VOIDmode
10966 && maybe_ne (bitpos, 0)
10967 && maybe_gt (bitsize, 0)
10968 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10969 && multiple_p (bitpos, bitsize)
10970 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10971 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10972 {
10973 op0 = adjust_address (op0, mode1, bytepos);
10974 bitpos = 0;
10975 }
10976
10977 op0 = offset_address (op0, offset_rtx,
10978 highest_pow2_factor (offset));
10979 }
10980
10981 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10982 record its alignment as BIGGEST_ALIGNMENT. */
10983 if (MEM_P (op0)
10984 && known_eq (bitpos, 0)
10985 && offset != 0
10986 && is_aligning_offset (offset, tem))
10987 set_mem_align (op0, BIGGEST_ALIGNMENT);
10988
10989 /* Don't forget about volatility even if this is a bitfield. */
10990 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10991 {
10992 if (op0 == orig_op0)
10993 op0 = copy_rtx (op0);
10994
10995 MEM_VOLATILE_P (op0) = 1;
10996 }
10997
10998 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
10999 {
11000 if (op0 == orig_op0)
11001 op0 = copy_rtx (op0);
11002
11003 set_mem_align (op0, BITS_PER_UNIT);
11004 }
11005
11006 /* In cases where an aligned union has an unaligned object
11007 as a field, we might be extracting a BLKmode value from
11008 an integer-mode (e.g., SImode) object. Handle this case
11009 by doing the extract into an object as wide as the field
11010 (which we know to be the width of a basic mode), then
11011 storing into memory, and changing the mode to BLKmode. */
11012 if (mode1 == VOIDmode
11013 || REG_P (op0) || GET_CODE (op0) == SUBREG
11014 || (mode1 != BLKmode && ! direct_load[(int) mode1]
11015 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
11016 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
11017 && modifier != EXPAND_CONST_ADDRESS
11018 && modifier != EXPAND_INITIALIZER
11019 && modifier != EXPAND_MEMORY)
11020 /* If the bitfield is volatile and the bitsize
11021 is narrower than the access size of the bitfield,
11022 we need to extract bitfields from the access. */
11023 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
11024 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
11025 && mode1 != BLKmode
11026 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
11027 /* If the field isn't aligned enough to fetch as a memref,
11028 fetch it as a bit field. */
11029 || (mode1 != BLKmode
11030 && (((MEM_P (op0)
11031 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
11032 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
11033 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
11034 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
11035 && modifier != EXPAND_MEMORY
11036 && ((modifier == EXPAND_CONST_ADDRESS
11037 || modifier == EXPAND_INITIALIZER)
11038 ? STRICT_ALIGNMENT
11039 : targetm.slow_unaligned_access (mode1,
11040 MEM_ALIGN (op0))))
11041 || !multiple_p (bitpos, BITS_PER_UNIT)))
11042 /* If the type and the field are a constant size and the
11043 size of the type isn't the same size as the bitfield,
11044 we must use bitfield operations. */
11045 || (known_size_p (bitsize)
11046 && TYPE_SIZE (TREE_TYPE (exp))
11047 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
11048 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
11049 bitsize)))
11050 {
11051 machine_mode ext_mode = mode;
11052
11053 if (ext_mode == BLKmode
11054 && ! (target != 0 && MEM_P (op0)
11055 && MEM_P (target)
11056 && multiple_p (bitpos, BITS_PER_UNIT)))
11057 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
11058
11059 if (ext_mode == BLKmode)
11060 {
11061 if (target == 0)
11062 target = assign_temp (type, 1, 1);
11063
11064 /* ??? Unlike the similar test a few lines below, this one is
11065 very likely obsolete. */
11066 if (known_eq (bitsize, 0))
11067 return target;
11068
11069 /* In this case, BITPOS must start at a byte boundary and
11070 TARGET, if specified, must be a MEM. */
11071 gcc_assert (MEM_P (op0)
11072 && (!target || MEM_P (target)));
11073
11074 bytepos = exact_div (bitpos, BITS_PER_UNIT);
11075 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
11076 emit_block_move (target,
11077 adjust_address (op0, VOIDmode, bytepos),
11078 gen_int_mode (bytesize, Pmode),
11079 (modifier == EXPAND_STACK_PARM
11080 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11081
11082 return target;
11083 }
11084
11085 /* If we have nothing to extract, the result will be 0 for targets
11086 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
11087 return 0 for the sake of consistency, as reading a zero-sized
11088 bitfield is valid in Ada and the value is fully specified. */
11089 if (known_eq (bitsize, 0))
11090 return const0_rtx;
11091
11092 op0 = validize_mem (op0);
11093
11094 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
11095 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11096
11097 /* If the result has aggregate type and the extraction is done in
11098 an integral mode, then the field may be not aligned on a byte
11099 boundary; in this case, if it has reverse storage order, it
11100 needs to be extracted as a scalar field with reverse storage
11101 order and put back into memory order afterwards. */
11102 if (AGGREGATE_TYPE_P (type)
11103 && GET_MODE_CLASS (ext_mode) == MODE_INT)
11104 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
11105
11106 gcc_checking_assert (known_ge (bitpos, 0));
11107 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
11108 (modifier == EXPAND_STACK_PARM
11109 ? NULL_RTX : target),
11110 ext_mode, ext_mode, reversep, alt_rtl);
11111
11112 /* If the result has aggregate type and the mode of OP0 is an
11113 integral mode then, if BITSIZE is narrower than this mode
11114 and this is for big-endian data, we must put the field
11115 into the high-order bits. And we must also put it back
11116 into memory order if it has been previously reversed. */
11117 scalar_int_mode op0_mode;
11118 if (AGGREGATE_TYPE_P (type)
11119 && is_int_mode (GET_MODE (op0), &op0_mode))
11120 {
11121 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
11122
11123 gcc_checking_assert (known_le (bitsize, size));
11124 if (maybe_lt (bitsize, size)
11125 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
11126 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
11127 size - bitsize, op0, 1);
11128
11129 if (reversep)
11130 op0 = flip_storage_order (op0_mode, op0);
11131 }
11132
11133 /* If the result type is BLKmode, store the data into a temporary
11134 of the appropriate type, but with the mode corresponding to the
11135 mode for the data we have (op0's mode). */
11136 if (mode == BLKmode)
11137 {
11138 rtx new_rtx
11139 = assign_stack_temp_for_type (ext_mode,
11140 GET_MODE_BITSIZE (ext_mode),
11141 type);
11142 emit_move_insn (new_rtx, op0);
11143 op0 = copy_rtx (new_rtx);
11144 PUT_MODE (op0, BLKmode);
11145 }
11146
11147 return op0;
11148 }
11149
11150 /* If the result is BLKmode, use that to access the object
11151 now as well. */
11152 if (mode == BLKmode)
11153 mode1 = BLKmode;
11154
11155 /* Get a reference to just this component. */
11156 bytepos = bits_to_bytes_round_down (bitpos);
11157 if (modifier == EXPAND_CONST_ADDRESS
11158 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11159 op0 = adjust_address_nv (op0, mode1, bytepos);
11160 else
11161 op0 = adjust_address (op0, mode1, bytepos);
11162
11163 if (op0 == orig_op0)
11164 op0 = copy_rtx (op0);
11165
11166 /* Don't set memory attributes if the base expression is
11167 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11168 we should just honor its original memory attributes. */
11169 if (!(TREE_CODE (tem) == SSA_NAME
11170 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11171 set_mem_attributes (op0, exp, 0);
11172
11173 if (REG_P (XEXP (op0, 0)))
11174 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11175
11176 /* If op0 is a temporary because the original expressions was forced
11177 to memory, clear MEM_EXPR so that the original expression cannot
11178 be marked as addressable through MEM_EXPR of the temporary. */
11179 if (clear_mem_expr)
11180 set_mem_expr (op0, NULL_TREE);
11181
11182 MEM_VOLATILE_P (op0) |= volatilep;
11183
11184 if (reversep
11185 && modifier != EXPAND_MEMORY
11186 && modifier != EXPAND_WRITE)
11187 op0 = flip_storage_order (mode1, op0);
11188
11189 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11190 || modifier == EXPAND_CONST_ADDRESS
11191 || modifier == EXPAND_INITIALIZER)
11192 return op0;
11193
11194 if (target == 0)
11195 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11196
11197 convert_move (target, op0, unsignedp);
11198 return target;
11199 }
11200
11201 case OBJ_TYPE_REF:
11202 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11203
11204 case CALL_EXPR:
11205 /* All valid uses of __builtin_va_arg_pack () are removed during
11206 inlining. */
11207 if (CALL_EXPR_VA_ARG_PACK (exp))
11208 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
11209 {
11210 tree fndecl = get_callee_fndecl (exp), attr;
11211
11212 if (fndecl
11213 /* Don't diagnose the error attribute in thunks, those are
11214 artificially created. */
11215 && !CALL_FROM_THUNK_P (exp)
11216 && (attr = lookup_attribute ("error",
11217 DECL_ATTRIBUTES (fndecl))) != NULL)
11218 {
11219 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11220 error ("%Kcall to %qs declared with attribute error: %s", exp,
11221 identifier_to_locale (ident),
11222 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11223 }
11224 if (fndecl
11225 /* Don't diagnose the warning attribute in thunks, those are
11226 artificially created. */
11227 && !CALL_FROM_THUNK_P (exp)
11228 && (attr = lookup_attribute ("warning",
11229 DECL_ATTRIBUTES (fndecl))) != NULL)
11230 {
11231 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11232 warning_at (tree_nonartificial_location (exp),
11233 OPT_Wattribute_warning,
11234 "%Kcall to %qs declared with attribute warning: %s",
11235 exp, identifier_to_locale (ident),
11236 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11237 }
11238
11239 /* Check for a built-in function. */
11240 if (fndecl && fndecl_built_in_p (fndecl))
11241 {
11242 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11243 return expand_builtin (exp, target, subtarget, tmode, ignore);
11244 }
11245 }
11246 return expand_call (exp, target, ignore);
11247
11248 case VIEW_CONVERT_EXPR:
11249 op0 = NULL_RTX;
11250
11251 /* If we are converting to BLKmode, try to avoid an intermediate
11252 temporary by fetching an inner memory reference. */
11253 if (mode == BLKmode
11254 && poly_int_tree_p (TYPE_SIZE (type))
11255 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11256 && handled_component_p (treeop0))
11257 {
11258 machine_mode mode1;
11259 poly_int64 bitsize, bitpos, bytepos;
11260 tree offset;
11261 int reversep, volatilep = 0;
11262 tree tem
11263 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11264 &unsignedp, &reversep, &volatilep);
11265
11266 /* ??? We should work harder and deal with non-zero offsets. */
11267 if (!offset
11268 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11269 && !reversep
11270 && known_size_p (bitsize)
11271 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11272 {
11273 /* See the normal_inner_ref case for the rationale. */
11274 rtx orig_op0
11275 = expand_expr_real (tem,
11276 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11277 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11278 != INTEGER_CST)
11279 && modifier != EXPAND_STACK_PARM
11280 ? target : NULL_RTX),
11281 VOIDmode,
11282 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11283 NULL, true);
11284
11285 if (MEM_P (orig_op0))
11286 {
11287 op0 = orig_op0;
11288
11289 /* Get a reference to just this component. */
11290 if (modifier == EXPAND_CONST_ADDRESS
11291 || modifier == EXPAND_SUM
11292 || modifier == EXPAND_INITIALIZER)
11293 op0 = adjust_address_nv (op0, mode, bytepos);
11294 else
11295 op0 = adjust_address (op0, mode, bytepos);
11296
11297 if (op0 == orig_op0)
11298 op0 = copy_rtx (op0);
11299
11300 set_mem_attributes (op0, treeop0, 0);
11301 if (REG_P (XEXP (op0, 0)))
11302 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11303
11304 MEM_VOLATILE_P (op0) |= volatilep;
11305 }
11306 }
11307 }
11308
11309 if (!op0)
11310 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11311 NULL, inner_reference_p);
11312
11313 /* If the input and output modes are both the same, we are done. */
11314 if (mode == GET_MODE (op0))
11315 ;
11316 /* If neither mode is BLKmode, and both modes are the same size
11317 then we can use gen_lowpart. */
11318 else if (mode != BLKmode
11319 && GET_MODE (op0) != BLKmode
11320 && known_eq (GET_MODE_PRECISION (mode),
11321 GET_MODE_PRECISION (GET_MODE (op0)))
11322 && !COMPLEX_MODE_P (GET_MODE (op0)))
11323 {
11324 if (GET_CODE (op0) == SUBREG)
11325 op0 = force_reg (GET_MODE (op0), op0);
11326 temp = gen_lowpart_common (mode, op0);
11327 if (temp)
11328 op0 = temp;
11329 else
11330 {
11331 if (!REG_P (op0) && !MEM_P (op0))
11332 op0 = force_reg (GET_MODE (op0), op0);
11333 op0 = gen_lowpart (mode, op0);
11334 }
11335 }
11336 /* If both types are integral, convert from one mode to the other. */
11337 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11338 op0 = convert_modes (mode, GET_MODE (op0), op0,
11339 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11340 /* If the output type is a bit-field type, do an extraction. */
11341 else if (reduce_bit_field)
11342 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11343 TYPE_UNSIGNED (type), NULL_RTX,
11344 mode, mode, false, NULL);
11345 /* As a last resort, spill op0 to memory, and reload it in a
11346 different mode. */
11347 else if (!MEM_P (op0))
11348 {
11349 /* If the operand is not a MEM, force it into memory. Since we
11350 are going to be changing the mode of the MEM, don't call
11351 force_const_mem for constants because we don't allow pool
11352 constants to change mode. */
11353 tree inner_type = TREE_TYPE (treeop0);
11354
11355 gcc_assert (!TREE_ADDRESSABLE (exp));
11356
11357 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11358 target
11359 = assign_stack_temp_for_type
11360 (TYPE_MODE (inner_type),
11361 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11362
11363 emit_move_insn (target, op0);
11364 op0 = target;
11365 }
11366
11367 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11368 output type is such that the operand is known to be aligned, indicate
11369 that it is. Otherwise, we need only be concerned about alignment for
11370 non-BLKmode results. */
11371 if (MEM_P (op0))
11372 {
11373 enum insn_code icode;
11374
11375 if (modifier != EXPAND_WRITE
11376 && modifier != EXPAND_MEMORY
11377 && !inner_reference_p
11378 && mode != BLKmode
11379 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11380 {
11381 /* If the target does have special handling for unaligned
11382 loads of mode then use them. */
11383 if ((icode = optab_handler (movmisalign_optab, mode))
11384 != CODE_FOR_nothing)
11385 {
11386 rtx reg;
11387
11388 op0 = adjust_address (op0, mode, 0);
11389 /* We've already validated the memory, and we're creating a
11390 new pseudo destination. The predicates really can't
11391 fail. */
11392 reg = gen_reg_rtx (mode);
11393
11394 /* Nor can the insn generator. */
11395 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11396 emit_insn (insn);
11397 return reg;
11398 }
11399 else if (STRICT_ALIGNMENT)
11400 {
11401 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11402 poly_uint64 temp_size = mode_size;
11403 if (GET_MODE (op0) != BLKmode)
11404 temp_size = upper_bound (temp_size,
11405 GET_MODE_SIZE (GET_MODE (op0)));
11406 rtx new_rtx
11407 = assign_stack_temp_for_type (mode, temp_size, type);
11408 rtx new_with_op0_mode
11409 = adjust_address (new_rtx, GET_MODE (op0), 0);
11410
11411 gcc_assert (!TREE_ADDRESSABLE (exp));
11412
11413 if (GET_MODE (op0) == BLKmode)
11414 {
11415 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11416 emit_block_move (new_with_op0_mode, op0, size_rtx,
11417 (modifier == EXPAND_STACK_PARM
11418 ? BLOCK_OP_CALL_PARM
11419 : BLOCK_OP_NORMAL));
11420 }
11421 else
11422 emit_move_insn (new_with_op0_mode, op0);
11423
11424 op0 = new_rtx;
11425 }
11426 }
11427
11428 op0 = adjust_address (op0, mode, 0);
11429 }
11430
11431 return op0;
11432
11433 case MODIFY_EXPR:
11434 {
11435 tree lhs = treeop0;
11436 tree rhs = treeop1;
11437 gcc_assert (ignore);
11438
11439 /* Check for |= or &= of a bitfield of size one into another bitfield
11440 of size 1. In this case, (unless we need the result of the
11441 assignment) we can do this more efficiently with a
11442 test followed by an assignment, if necessary.
11443
11444 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11445 things change so we do, this code should be enhanced to
11446 support it. */
11447 if (TREE_CODE (lhs) == COMPONENT_REF
11448 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11449 || TREE_CODE (rhs) == BIT_AND_EXPR)
11450 && TREE_OPERAND (rhs, 0) == lhs
11451 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11452 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11453 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11454 {
11455 rtx_code_label *label = gen_label_rtx ();
11456 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11457 profile_probability prob = profile_probability::uninitialized ();
11458 if (value)
11459 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11460 else
11461 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11462 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11463 false);
11464 do_pending_stack_adjust ();
11465 emit_label (label);
11466 return const0_rtx;
11467 }
11468
11469 expand_assignment (lhs, rhs, false);
11470 return const0_rtx;
11471 }
11472
11473 case ADDR_EXPR:
11474 return expand_expr_addr_expr (exp, target, tmode, modifier);
11475
11476 case REALPART_EXPR:
11477 op0 = expand_normal (treeop0);
11478 return read_complex_part (op0, false);
11479
11480 case IMAGPART_EXPR:
11481 op0 = expand_normal (treeop0);
11482 return read_complex_part (op0, true);
11483
11484 case RETURN_EXPR:
11485 case LABEL_EXPR:
11486 case GOTO_EXPR:
11487 case SWITCH_EXPR:
11488 case ASM_EXPR:
11489 /* Expanded in cfgexpand.c. */
11490 gcc_unreachable ();
11491
11492 case TRY_CATCH_EXPR:
11493 case CATCH_EXPR:
11494 case EH_FILTER_EXPR:
11495 case TRY_FINALLY_EXPR:
11496 case EH_ELSE_EXPR:
11497 /* Lowered by tree-eh.c. */
11498 gcc_unreachable ();
11499
11500 case WITH_CLEANUP_EXPR:
11501 case CLEANUP_POINT_EXPR:
11502 case TARGET_EXPR:
11503 case CASE_LABEL_EXPR:
11504 case VA_ARG_EXPR:
11505 case BIND_EXPR:
11506 case INIT_EXPR:
11507 case CONJ_EXPR:
11508 case COMPOUND_EXPR:
11509 case PREINCREMENT_EXPR:
11510 case PREDECREMENT_EXPR:
11511 case POSTINCREMENT_EXPR:
11512 case POSTDECREMENT_EXPR:
11513 case LOOP_EXPR:
11514 case EXIT_EXPR:
11515 case COMPOUND_LITERAL_EXPR:
11516 /* Lowered by gimplify.c. */
11517 gcc_unreachable ();
11518
11519 case FDESC_EXPR:
11520 /* Function descriptors are not valid except for as
11521 initialization constants, and should not be expanded. */
11522 gcc_unreachable ();
11523
11524 case WITH_SIZE_EXPR:
11525 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11526 have pulled out the size to use in whatever context it needed. */
11527 return expand_expr_real (treeop0, original_target, tmode,
11528 modifier, alt_rtl, inner_reference_p);
11529
11530 default:
11531 return expand_expr_real_2 (&ops, target, tmode, modifier);
11532 }
11533 }
11534 \f
11535 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11536 signedness of TYPE), possibly returning the result in TARGET.
11537 TYPE is known to be a partial integer type. */
11538 static rtx
11539 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11540 {
11541 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11542 if (target && GET_MODE (target) != GET_MODE (exp))
11543 target = 0;
11544 /* For constant values, reduce using build_int_cst_type. */
11545 poly_int64 const_exp;
11546 if (poly_int_rtx_p (exp, &const_exp))
11547 {
11548 tree t = build_int_cst_type (type, const_exp);
11549 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11550 }
11551 else if (TYPE_UNSIGNED (type))
11552 {
11553 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11554 rtx mask = immed_wide_int_const
11555 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11556 return expand_and (mode, exp, mask, target);
11557 }
11558 else
11559 {
11560 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11561 int count = GET_MODE_PRECISION (mode) - prec;
11562 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11563 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11564 }
11565 }
11566 \f
11567 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11568 when applied to the address of EXP produces an address known to be
11569 aligned more than BIGGEST_ALIGNMENT. */
11570
11571 static int
11572 is_aligning_offset (const_tree offset, const_tree exp)
11573 {
11574 /* Strip off any conversions. */
11575 while (CONVERT_EXPR_P (offset))
11576 offset = TREE_OPERAND (offset, 0);
11577
11578 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11579 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11580 if (TREE_CODE (offset) != BIT_AND_EXPR
11581 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11582 || compare_tree_int (TREE_OPERAND (offset, 1),
11583 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11584 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11585 return 0;
11586
11587 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11588 It must be NEGATE_EXPR. Then strip any more conversions. */
11589 offset = TREE_OPERAND (offset, 0);
11590 while (CONVERT_EXPR_P (offset))
11591 offset = TREE_OPERAND (offset, 0);
11592
11593 if (TREE_CODE (offset) != NEGATE_EXPR)
11594 return 0;
11595
11596 offset = TREE_OPERAND (offset, 0);
11597 while (CONVERT_EXPR_P (offset))
11598 offset = TREE_OPERAND (offset, 0);
11599
11600 /* This must now be the address of EXP. */
11601 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11602 }
11603 \f
11604 /* Return the tree node if an ARG corresponds to a string constant or zero
11605 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11606 non-constant) offset in bytes within the string that ARG is accessing.
11607 If MEM_SIZE is non-zero the storage size of the memory is returned.
11608 If DECL is non-zero the constant declaration is returned if available. */
11609
11610 tree
11611 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
11612 {
11613 tree dummy = NULL_TREE;;
11614 if (!mem_size)
11615 mem_size = &dummy;
11616
11617 /* Store the type of the original expression before conversions
11618 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
11619 removed. */
11620 tree argtype = TREE_TYPE (arg);
11621
11622 tree array;
11623 STRIP_NOPS (arg);
11624
11625 /* Non-constant index into the character array in an ARRAY_REF
11626 expression or null. */
11627 tree varidx = NULL_TREE;
11628
11629 poly_int64 base_off = 0;
11630
11631 if (TREE_CODE (arg) == ADDR_EXPR)
11632 {
11633 arg = TREE_OPERAND (arg, 0);
11634 tree ref = arg;
11635 if (TREE_CODE (arg) == ARRAY_REF)
11636 {
11637 tree idx = TREE_OPERAND (arg, 1);
11638 if (TREE_CODE (idx) != INTEGER_CST)
11639 {
11640 /* From a pointer (but not array) argument extract the variable
11641 index to prevent get_addr_base_and_unit_offset() from failing
11642 due to it. Use it later to compute the non-constant offset
11643 into the string and return it to the caller. */
11644 varidx = idx;
11645 ref = TREE_OPERAND (arg, 0);
11646
11647 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11648 return NULL_TREE;
11649
11650 if (!integer_zerop (array_ref_low_bound (arg)))
11651 return NULL_TREE;
11652
11653 if (!integer_onep (array_ref_element_size (arg)))
11654 return NULL_TREE;
11655 }
11656 }
11657 array = get_addr_base_and_unit_offset (ref, &base_off);
11658 if (!array
11659 || (TREE_CODE (array) != VAR_DECL
11660 && TREE_CODE (array) != CONST_DECL
11661 && TREE_CODE (array) != STRING_CST))
11662 return NULL_TREE;
11663 }
11664 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11665 {
11666 tree arg0 = TREE_OPERAND (arg, 0);
11667 tree arg1 = TREE_OPERAND (arg, 1);
11668
11669 tree offset;
11670 tree str = string_constant (arg0, &offset, mem_size, decl);
11671 if (!str)
11672 {
11673 str = string_constant (arg1, &offset, mem_size, decl);
11674 arg1 = arg0;
11675 }
11676
11677 if (str)
11678 {
11679 /* Avoid pointers to arrays (see bug 86622). */
11680 if (POINTER_TYPE_P (TREE_TYPE (arg))
11681 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11682 && !(decl && !*decl)
11683 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11684 && tree_fits_uhwi_p (*mem_size)
11685 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11686 return NULL_TREE;
11687
11688 tree type = TREE_TYPE (offset);
11689 arg1 = fold_convert (type, arg1);
11690 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11691 return str;
11692 }
11693 return NULL_TREE;
11694 }
11695 else if (TREE_CODE (arg) == SSA_NAME)
11696 {
11697 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11698 if (!is_gimple_assign (stmt))
11699 return NULL_TREE;
11700
11701 tree rhs1 = gimple_assign_rhs1 (stmt);
11702 tree_code code = gimple_assign_rhs_code (stmt);
11703 if (code == ADDR_EXPR)
11704 return string_constant (rhs1, ptr_offset, mem_size, decl);
11705 else if (code != POINTER_PLUS_EXPR)
11706 return NULL_TREE;
11707
11708 tree offset;
11709 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11710 {
11711 /* Avoid pointers to arrays (see bug 86622). */
11712 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11713 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11714 && !(decl && !*decl)
11715 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11716 && tree_fits_uhwi_p (*mem_size)
11717 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11718 return NULL_TREE;
11719
11720 tree rhs2 = gimple_assign_rhs2 (stmt);
11721 tree type = TREE_TYPE (offset);
11722 rhs2 = fold_convert (type, rhs2);
11723 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11724 return str;
11725 }
11726 return NULL_TREE;
11727 }
11728 else if (DECL_P (arg))
11729 array = arg;
11730 else
11731 return NULL_TREE;
11732
11733 tree offset = wide_int_to_tree (sizetype, base_off);
11734 if (varidx)
11735 {
11736 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11737 return NULL_TREE;
11738
11739 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11740 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11741 if (TREE_CODE (chartype) != INTEGER_TYPE)
11742 return NULL;
11743
11744 offset = fold_convert (sizetype, varidx);
11745 }
11746
11747 if (TREE_CODE (array) == STRING_CST)
11748 {
11749 *ptr_offset = fold_convert (sizetype, offset);
11750 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11751 if (decl)
11752 *decl = NULL_TREE;
11753 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11754 >= TREE_STRING_LENGTH (array));
11755 return array;
11756 }
11757
11758 if (!VAR_P (array) && TREE_CODE (array) != CONST_DECL)
11759 return NULL_TREE;
11760
11761 tree init = ctor_for_folding (array);
11762
11763 /* Handle variables initialized with string literals. */
11764 if (!init || init == error_mark_node)
11765 return NULL_TREE;
11766 if (TREE_CODE (init) == CONSTRUCTOR)
11767 {
11768 /* Convert the 64-bit constant offset to a wider type to avoid
11769 overflow. */
11770 offset_int wioff;
11771 if (!base_off.is_constant (&wioff))
11772 return NULL_TREE;
11773
11774 wioff *= BITS_PER_UNIT;
11775 if (!wi::fits_uhwi_p (wioff))
11776 return NULL_TREE;
11777
11778 base_off = wioff.to_uhwi ();
11779 unsigned HOST_WIDE_INT fieldoff = 0;
11780 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
11781 &fieldoff);
11782 HOST_WIDE_INT cstoff;
11783 if (!base_off.is_constant (&cstoff))
11784 return NULL_TREE;
11785
11786 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11787 tree off = build_int_cst (sizetype, cstoff);
11788 if (varidx)
11789 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11790 else
11791 offset = off;
11792 }
11793
11794 if (!init)
11795 return NULL_TREE;
11796
11797 *ptr_offset = offset;
11798
11799 tree inittype = TREE_TYPE (init);
11800
11801 if (TREE_CODE (init) == INTEGER_CST
11802 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11803 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
11804 {
11805 /* For a reference to (address of) a single constant character,
11806 store the native representation of the character in CHARBUF.
11807 If the reference is to an element of an array or a member
11808 of a struct, only consider narrow characters until ctors
11809 for wide character arrays are transformed to STRING_CSTs
11810 like those for narrow arrays. */
11811 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11812 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11813 if (len > 0)
11814 {
11815 /* Construct a string literal with elements of INITTYPE and
11816 the representation above. Then strip
11817 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11818 init = build_string_literal (len, (char *)charbuf, inittype);
11819 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11820 }
11821 }
11822
11823 tree initsize = TYPE_SIZE_UNIT (inittype);
11824
11825 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
11826 {
11827 /* Fold an empty/zero constructor for an implicitly initialized
11828 object or subobject into the empty string. */
11829
11830 /* Determine the character type from that of the original
11831 expression. */
11832 tree chartype = argtype;
11833 if (POINTER_TYPE_P (chartype))
11834 chartype = TREE_TYPE (chartype);
11835 while (TREE_CODE (chartype) == ARRAY_TYPE)
11836 chartype = TREE_TYPE (chartype);
11837 /* Convert a char array to an empty STRING_CST having an array
11838 of the expected type. */
11839 if (!initsize)
11840 initsize = integer_zero_node;
11841
11842 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
11843 init = build_string_literal (size ? 1 : 0, "", chartype, size);
11844 init = TREE_OPERAND (init, 0);
11845 init = TREE_OPERAND (init, 0);
11846
11847 *ptr_offset = integer_zero_node;
11848 }
11849
11850 if (decl)
11851 *decl = array;
11852
11853 if (TREE_CODE (init) != STRING_CST)
11854 return NULL_TREE;
11855
11856 *mem_size = initsize;
11857
11858 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
11859
11860 return init;
11861 }
11862 \f
11863 /* Compute the modular multiplicative inverse of A modulo M
11864 using extended Euclid's algorithm. Assumes A and M are coprime. */
11865 static wide_int
11866 mod_inv (const wide_int &a, const wide_int &b)
11867 {
11868 /* Verify the assumption. */
11869 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
11870
11871 unsigned int p = a.get_precision () + 1;
11872 gcc_checking_assert (b.get_precision () + 1 == p);
11873 wide_int c = wide_int::from (a, p, UNSIGNED);
11874 wide_int d = wide_int::from (b, p, UNSIGNED);
11875 wide_int x0 = wide_int::from (0, p, UNSIGNED);
11876 wide_int x1 = wide_int::from (1, p, UNSIGNED);
11877
11878 if (wi::eq_p (b, 1))
11879 return wide_int::from (1, p, UNSIGNED);
11880
11881 while (wi::gt_p (c, 1, UNSIGNED))
11882 {
11883 wide_int t = d;
11884 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
11885 c = t;
11886 wide_int s = x0;
11887 x0 = wi::sub (x1, wi::mul (q, x0));
11888 x1 = s;
11889 }
11890 if (wi::lt_p (x1, 0, SIGNED))
11891 x1 += d;
11892 return x1;
11893 }
11894
11895 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11896 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11897 for C2 > 0 to x & C3 == C2
11898 for C2 < 0 to x & C3 == (C2 & C3). */
11899 enum tree_code
11900 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11901 {
11902 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11903 tree treeop0 = gimple_assign_rhs1 (stmt);
11904 tree treeop1 = gimple_assign_rhs2 (stmt);
11905 tree type = TREE_TYPE (*arg0);
11906 scalar_int_mode mode;
11907 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11908 return code;
11909 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11910 || TYPE_PRECISION (type) <= 1
11911 || TYPE_UNSIGNED (type)
11912 /* Signed x % c == 0 should have been optimized into unsigned modulo
11913 earlier. */
11914 || integer_zerop (*arg1)
11915 /* If c is known to be non-negative, modulo will be expanded as unsigned
11916 modulo. */
11917 || get_range_pos_neg (treeop0) == 1)
11918 return code;
11919
11920 /* x % c == d where d < 0 && d <= -c should be always false. */
11921 if (tree_int_cst_sgn (*arg1) == -1
11922 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
11923 return code;
11924
11925 int prec = TYPE_PRECISION (type);
11926 wide_int w = wi::to_wide (treeop1) - 1;
11927 w |= wi::shifted_mask (0, prec - 1, true, prec);
11928 tree c3 = wide_int_to_tree (type, w);
11929 tree c4 = *arg1;
11930 if (tree_int_cst_sgn (*arg1) == -1)
11931 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
11932
11933 rtx op0 = expand_normal (treeop0);
11934 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11935
11936 bool speed_p = optimize_insn_for_speed_p ();
11937
11938 do_pending_stack_adjust ();
11939
11940 location_t loc = gimple_location (stmt);
11941 struct separate_ops ops;
11942 ops.code = TRUNC_MOD_EXPR;
11943 ops.location = loc;
11944 ops.type = TREE_TYPE (treeop0);
11945 ops.op0 = treeop0;
11946 ops.op1 = treeop1;
11947 ops.op2 = NULL_TREE;
11948 start_sequence ();
11949 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11950 EXPAND_NORMAL);
11951 rtx_insn *moinsns = get_insns ();
11952 end_sequence ();
11953
11954 unsigned mocost = seq_cost (moinsns, speed_p);
11955 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11956 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11957
11958 ops.code = BIT_AND_EXPR;
11959 ops.location = loc;
11960 ops.type = TREE_TYPE (treeop0);
11961 ops.op0 = treeop0;
11962 ops.op1 = c3;
11963 ops.op2 = NULL_TREE;
11964 start_sequence ();
11965 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11966 EXPAND_NORMAL);
11967 rtx_insn *muinsns = get_insns ();
11968 end_sequence ();
11969
11970 unsigned mucost = seq_cost (muinsns, speed_p);
11971 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
11972 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
11973
11974 if (mocost <= mucost)
11975 {
11976 emit_insn (moinsns);
11977 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11978 return code;
11979 }
11980
11981 emit_insn (muinsns);
11982 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
11983 *arg1 = c4;
11984 return code;
11985 }
11986
11987 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11988 If C1 is odd to:
11989 (X - C2) * C3 <= C4 (or >), where
11990 C3 is modular multiplicative inverse of C1 and 1<<prec and
11991 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11992 if C2 > ((1<<prec) - 1) % C1).
11993 If C1 is even, S = ctz (C1) and C2 is 0, use
11994 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11995 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11996
11997 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11998 unsigned):
11999 (X * C3) + C4 <= 2 * C4, where
12000 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
12001 C4 is ((1<<(prec - 1) - 1) / C1).
12002 If C1 is even, S = ctz(C1), use
12003 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
12004 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
12005 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
12006
12007 See the Hacker's Delight book, section 10-17. */
12008 enum tree_code
12009 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12010 {
12011 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
12012 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
12013
12014 if (optimize < 2)
12015 return code;
12016
12017 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12018 if (stmt == NULL)
12019 return code;
12020
12021 tree treeop0 = gimple_assign_rhs1 (stmt);
12022 tree treeop1 = gimple_assign_rhs2 (stmt);
12023 if (TREE_CODE (treeop0) != SSA_NAME
12024 || TREE_CODE (treeop1) != INTEGER_CST
12025 /* Don't optimize the undefined behavior case x % 0;
12026 x % 1 should have been optimized into zero, punt if
12027 it makes it here for whatever reason;
12028 x % -c should have been optimized into x % c. */
12029 || compare_tree_int (treeop1, 2) <= 0
12030 /* Likewise x % c == d where d >= c should be always false. */
12031 || tree_int_cst_le (treeop1, *arg1))
12032 return code;
12033
12034 /* Unsigned x % pow2 is handled right already, for signed
12035 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
12036 if (integer_pow2p (treeop1))
12037 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
12038
12039 tree type = TREE_TYPE (*arg0);
12040 scalar_int_mode mode;
12041 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12042 return code;
12043 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12044 || TYPE_PRECISION (type) <= 1)
12045 return code;
12046
12047 signop sgn = UNSIGNED;
12048 /* If both operands are known to have the sign bit clear, handle
12049 even the signed modulo case as unsigned. treeop1 is always
12050 positive >= 2, checked above. */
12051 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
12052 sgn = SIGNED;
12053
12054 if (!TYPE_UNSIGNED (type))
12055 {
12056 if (tree_int_cst_sgn (*arg1) == -1)
12057 return code;
12058 type = unsigned_type_for (type);
12059 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
12060 return code;
12061 }
12062
12063 int prec = TYPE_PRECISION (type);
12064 wide_int w = wi::to_wide (treeop1);
12065 int shift = wi::ctz (w);
12066 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
12067 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
12068 If C1 is odd, we can handle all cases by subtracting
12069 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
12070 e.g. by testing for overflow on the subtraction, punt on that for now
12071 though. */
12072 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
12073 {
12074 if (sgn == SIGNED)
12075 return code;
12076 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
12077 if (wi::gtu_p (wi::to_wide (*arg1), x))
12078 return code;
12079 }
12080
12081 imm_use_iterator imm_iter;
12082 use_operand_p use_p;
12083 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
12084 {
12085 gimple *use_stmt = USE_STMT (use_p);
12086 /* Punt if treeop0 is used in the same bb in a division
12087 or another modulo with the same divisor. We should expect
12088 the division and modulo combined together. */
12089 if (use_stmt == stmt
12090 || gimple_bb (use_stmt) != gimple_bb (stmt))
12091 continue;
12092 if (!is_gimple_assign (use_stmt)
12093 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
12094 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
12095 continue;
12096 if (gimple_assign_rhs1 (use_stmt) != treeop0
12097 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
12098 continue;
12099 return code;
12100 }
12101
12102 w = wi::lrshift (w, shift);
12103 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
12104 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
12105 wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED);
12106 tree c3 = wide_int_to_tree (type, m);
12107 tree c5 = NULL_TREE;
12108 wide_int d, e;
12109 if (sgn == UNSIGNED)
12110 {
12111 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
12112 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12113 otherwise use < or subtract one from C4. E.g. for
12114 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12115 x % 3U == 1 already needs to be
12116 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12117 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
12118 d -= 1;
12119 if (shift)
12120 d = wi::lrshift (d, shift);
12121 }
12122 else
12123 {
12124 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
12125 if (!shift)
12126 d = wi::lshift (e, 1);
12127 else
12128 {
12129 e = wi::bit_and (e, wi::mask (shift, true, prec));
12130 d = wi::lrshift (e, shift - 1);
12131 }
12132 c5 = wide_int_to_tree (type, e);
12133 }
12134 tree c4 = wide_int_to_tree (type, d);
12135
12136 rtx op0 = expand_normal (treeop0);
12137 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12138
12139 bool speed_p = optimize_insn_for_speed_p ();
12140
12141 do_pending_stack_adjust ();
12142
12143 location_t loc = gimple_location (stmt);
12144 struct separate_ops ops;
12145 ops.code = TRUNC_MOD_EXPR;
12146 ops.location = loc;
12147 ops.type = TREE_TYPE (treeop0);
12148 ops.op0 = treeop0;
12149 ops.op1 = treeop1;
12150 ops.op2 = NULL_TREE;
12151 start_sequence ();
12152 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12153 EXPAND_NORMAL);
12154 rtx_insn *moinsns = get_insns ();
12155 end_sequence ();
12156
12157 unsigned mocost = seq_cost (moinsns, speed_p);
12158 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12159 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12160
12161 tree t = fold_convert_loc (loc, type, treeop0);
12162 if (!integer_zerop (*arg1))
12163 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12164 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12165 if (sgn == SIGNED)
12166 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12167 if (shift)
12168 {
12169 tree s = build_int_cst (NULL_TREE, shift);
12170 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12171 }
12172
12173 start_sequence ();
12174 rtx mur = expand_normal (t);
12175 rtx_insn *muinsns = get_insns ();
12176 end_sequence ();
12177
12178 unsigned mucost = seq_cost (muinsns, speed_p);
12179 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12180 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12181
12182 if (mocost <= mucost)
12183 {
12184 emit_insn (moinsns);
12185 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12186 return code;
12187 }
12188
12189 emit_insn (muinsns);
12190 *arg0 = make_tree (type, mur);
12191 *arg1 = c4;
12192 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12193 }
12194 \f
12195 /* Generate code to calculate OPS, and exploded expression
12196 using a store-flag instruction and return an rtx for the result.
12197 OPS reflects a comparison.
12198
12199 If TARGET is nonzero, store the result there if convenient.
12200
12201 Return zero if there is no suitable set-flag instruction
12202 available on this machine.
12203
12204 Once expand_expr has been called on the arguments of the comparison,
12205 we are committed to doing the store flag, since it is not safe to
12206 re-evaluate the expression. We emit the store-flag insn by calling
12207 emit_store_flag, but only expand the arguments if we have a reason
12208 to believe that emit_store_flag will be successful. If we think that
12209 it will, but it isn't, we have to simulate the store-flag with a
12210 set/jump/set sequence. */
12211
12212 static rtx
12213 do_store_flag (sepops ops, rtx target, machine_mode mode)
12214 {
12215 enum rtx_code code;
12216 tree arg0, arg1, type;
12217 machine_mode operand_mode;
12218 int unsignedp;
12219 rtx op0, op1;
12220 rtx subtarget = target;
12221 location_t loc = ops->location;
12222
12223 arg0 = ops->op0;
12224 arg1 = ops->op1;
12225
12226 /* Don't crash if the comparison was erroneous. */
12227 if (arg0 == error_mark_node || arg1 == error_mark_node)
12228 return const0_rtx;
12229
12230 type = TREE_TYPE (arg0);
12231 operand_mode = TYPE_MODE (type);
12232 unsignedp = TYPE_UNSIGNED (type);
12233
12234 /* We won't bother with BLKmode store-flag operations because it would mean
12235 passing a lot of information to emit_store_flag. */
12236 if (operand_mode == BLKmode)
12237 return 0;
12238
12239 /* We won't bother with store-flag operations involving function pointers
12240 when function pointers must be canonicalized before comparisons. */
12241 if (targetm.have_canonicalize_funcptr_for_compare ()
12242 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
12243 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
12244 || (POINTER_TYPE_P (TREE_TYPE (arg1))
12245 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
12246 return 0;
12247
12248 STRIP_NOPS (arg0);
12249 STRIP_NOPS (arg1);
12250
12251 /* For vector typed comparisons emit code to generate the desired
12252 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
12253 expander for this. */
12254 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12255 {
12256 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12257 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12258 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12259 return expand_vec_cmp_expr (ops->type, ifexp, target);
12260 else
12261 {
12262 tree if_true = constant_boolean_node (true, ops->type);
12263 tree if_false = constant_boolean_node (false, ops->type);
12264 return expand_vec_cond_expr (ops->type, ifexp, if_true,
12265 if_false, target);
12266 }
12267 }
12268
12269 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12270 into (x - C2) * C3 < C4. */
12271 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12272 && TREE_CODE (arg0) == SSA_NAME
12273 && TREE_CODE (arg1) == INTEGER_CST)
12274 {
12275 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
12276 &arg0, &arg1);
12277 if (new_code != ops->code)
12278 {
12279 struct separate_ops nops = *ops;
12280 nops.code = ops->code = new_code;
12281 nops.op0 = arg0;
12282 nops.op1 = arg1;
12283 nops.type = TREE_TYPE (arg0);
12284 return do_store_flag (&nops, target, mode);
12285 }
12286 }
12287
12288 /* Get the rtx comparison code to use. We know that EXP is a comparison
12289 operation of some type. Some comparisons against 1 and -1 can be
12290 converted to comparisons with zero. Do so here so that the tests
12291 below will be aware that we have a comparison with zero. These
12292 tests will not catch constants in the first operand, but constants
12293 are rarely passed as the first operand. */
12294
12295 switch (ops->code)
12296 {
12297 case EQ_EXPR:
12298 code = EQ;
12299 break;
12300 case NE_EXPR:
12301 code = NE;
12302 break;
12303 case LT_EXPR:
12304 if (integer_onep (arg1))
12305 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
12306 else
12307 code = unsignedp ? LTU : LT;
12308 break;
12309 case LE_EXPR:
12310 if (! unsignedp && integer_all_onesp (arg1))
12311 arg1 = integer_zero_node, code = LT;
12312 else
12313 code = unsignedp ? LEU : LE;
12314 break;
12315 case GT_EXPR:
12316 if (! unsignedp && integer_all_onesp (arg1))
12317 arg1 = integer_zero_node, code = GE;
12318 else
12319 code = unsignedp ? GTU : GT;
12320 break;
12321 case GE_EXPR:
12322 if (integer_onep (arg1))
12323 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
12324 else
12325 code = unsignedp ? GEU : GE;
12326 break;
12327
12328 case UNORDERED_EXPR:
12329 code = UNORDERED;
12330 break;
12331 case ORDERED_EXPR:
12332 code = ORDERED;
12333 break;
12334 case UNLT_EXPR:
12335 code = UNLT;
12336 break;
12337 case UNLE_EXPR:
12338 code = UNLE;
12339 break;
12340 case UNGT_EXPR:
12341 code = UNGT;
12342 break;
12343 case UNGE_EXPR:
12344 code = UNGE;
12345 break;
12346 case UNEQ_EXPR:
12347 code = UNEQ;
12348 break;
12349 case LTGT_EXPR:
12350 code = LTGT;
12351 break;
12352
12353 default:
12354 gcc_unreachable ();
12355 }
12356
12357 /* Put a constant second. */
12358 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12359 || TREE_CODE (arg0) == FIXED_CST)
12360 {
12361 std::swap (arg0, arg1);
12362 code = swap_condition (code);
12363 }
12364
12365 /* If this is an equality or inequality test of a single bit, we can
12366 do this by shifting the bit being tested to the low-order bit and
12367 masking the result with the constant 1. If the condition was EQ,
12368 we xor it with 1. This does not require an scc insn and is faster
12369 than an scc insn even if we have it.
12370
12371 The code to make this transformation was moved into fold_single_bit_test,
12372 so we just call into the folder and expand its result. */
12373
12374 if ((code == NE || code == EQ)
12375 && integer_zerop (arg1)
12376 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12377 {
12378 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12379 if (srcstmt
12380 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12381 {
12382 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12383 type = lang_hooks.types.type_for_mode (mode, unsignedp);
12384 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12385 gimple_assign_rhs1 (srcstmt),
12386 gimple_assign_rhs2 (srcstmt));
12387 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12388 if (temp)
12389 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12390 }
12391 }
12392
12393 if (! get_subtarget (target)
12394 || GET_MODE (subtarget) != operand_mode)
12395 subtarget = 0;
12396
12397 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12398
12399 if (target == 0)
12400 target = gen_reg_rtx (mode);
12401
12402 /* Try a cstore if possible. */
12403 return emit_store_flag_force (target, code, op0, op1,
12404 operand_mode, unsignedp,
12405 (TYPE_PRECISION (ops->type) == 1
12406 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12407 }
12408 \f
12409 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12410 0 otherwise (i.e. if there is no casesi instruction).
12411
12412 DEFAULT_PROBABILITY is the probability of jumping to the default
12413 label. */
12414 int
12415 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12416 rtx table_label, rtx default_label, rtx fallback_label,
12417 profile_probability default_probability)
12418 {
12419 class expand_operand ops[5];
12420 scalar_int_mode index_mode = SImode;
12421 rtx op1, op2, index;
12422
12423 if (! targetm.have_casesi ())
12424 return 0;
12425
12426 /* The index must be some form of integer. Convert it to SImode. */
12427 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12428 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12429 {
12430 rtx rangertx = expand_normal (range);
12431
12432 /* We must handle the endpoints in the original mode. */
12433 index_expr = build2 (MINUS_EXPR, index_type,
12434 index_expr, minval);
12435 minval = integer_zero_node;
12436 index = expand_normal (index_expr);
12437 if (default_label)
12438 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12439 omode, 1, default_label,
12440 default_probability);
12441 /* Now we can safely truncate. */
12442 index = convert_to_mode (index_mode, index, 0);
12443 }
12444 else
12445 {
12446 if (omode != index_mode)
12447 {
12448 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12449 index_expr = fold_convert (index_type, index_expr);
12450 }
12451
12452 index = expand_normal (index_expr);
12453 }
12454
12455 do_pending_stack_adjust ();
12456
12457 op1 = expand_normal (minval);
12458 op2 = expand_normal (range);
12459
12460 create_input_operand (&ops[0], index, index_mode);
12461 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12462 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12463 create_fixed_operand (&ops[3], table_label);
12464 create_fixed_operand (&ops[4], (default_label
12465 ? default_label
12466 : fallback_label));
12467 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12468 return 1;
12469 }
12470
12471 /* Attempt to generate a tablejump instruction; same concept. */
12472 /* Subroutine of the next function.
12473
12474 INDEX is the value being switched on, with the lowest value
12475 in the table already subtracted.
12476 MODE is its expected mode (needed if INDEX is constant).
12477 RANGE is the length of the jump table.
12478 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12479
12480 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12481 index value is out of range.
12482 DEFAULT_PROBABILITY is the probability of jumping to
12483 the default label. */
12484
12485 static void
12486 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12487 rtx default_label, profile_probability default_probability)
12488 {
12489 rtx temp, vector;
12490
12491 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12492 cfun->cfg->max_jumptable_ents = INTVAL (range);
12493
12494 /* Do an unsigned comparison (in the proper mode) between the index
12495 expression and the value which represents the length of the range.
12496 Since we just finished subtracting the lower bound of the range
12497 from the index expression, this comparison allows us to simultaneously
12498 check that the original index expression value is both greater than
12499 or equal to the minimum value of the range and less than or equal to
12500 the maximum value of the range. */
12501
12502 if (default_label)
12503 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12504 default_label, default_probability);
12505
12506 /* If index is in range, it must fit in Pmode.
12507 Convert to Pmode so we can index with it. */
12508 if (mode != Pmode)
12509 {
12510 unsigned int width;
12511
12512 /* We know the value of INDEX is between 0 and RANGE. If we have a
12513 sign-extended subreg, and RANGE does not have the sign bit set, then
12514 we have a value that is valid for both sign and zero extension. In
12515 this case, we get better code if we sign extend. */
12516 if (GET_CODE (index) == SUBREG
12517 && SUBREG_PROMOTED_VAR_P (index)
12518 && SUBREG_PROMOTED_SIGNED_P (index)
12519 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12520 <= HOST_BITS_PER_WIDE_INT)
12521 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12522 index = convert_to_mode (Pmode, index, 0);
12523 else
12524 index = convert_to_mode (Pmode, index, 1);
12525 }
12526
12527 /* Don't let a MEM slip through, because then INDEX that comes
12528 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12529 and break_out_memory_refs will go to work on it and mess it up. */
12530 #ifdef PIC_CASE_VECTOR_ADDRESS
12531 if (flag_pic && !REG_P (index))
12532 index = copy_to_mode_reg (Pmode, index);
12533 #endif
12534
12535 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12536 GET_MODE_SIZE, because this indicates how large insns are. The other
12537 uses should all be Pmode, because they are addresses. This code
12538 could fail if addresses and insns are not the same size. */
12539 index = simplify_gen_binary (MULT, Pmode, index,
12540 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12541 Pmode));
12542 index = simplify_gen_binary (PLUS, Pmode, index,
12543 gen_rtx_LABEL_REF (Pmode, table_label));
12544
12545 #ifdef PIC_CASE_VECTOR_ADDRESS
12546 if (flag_pic)
12547 index = PIC_CASE_VECTOR_ADDRESS (index);
12548 else
12549 #endif
12550 index = memory_address (CASE_VECTOR_MODE, index);
12551 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12552 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12553 convert_move (temp, vector, 0);
12554
12555 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12556
12557 /* If we are generating PIC code or if the table is PC-relative, the
12558 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12559 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12560 emit_barrier ();
12561 }
12562
12563 int
12564 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12565 rtx table_label, rtx default_label,
12566 profile_probability default_probability)
12567 {
12568 rtx index;
12569
12570 if (! targetm.have_tablejump ())
12571 return 0;
12572
12573 index_expr = fold_build2 (MINUS_EXPR, index_type,
12574 fold_convert (index_type, index_expr),
12575 fold_convert (index_type, minval));
12576 index = expand_normal (index_expr);
12577 do_pending_stack_adjust ();
12578
12579 do_tablejump (index, TYPE_MODE (index_type),
12580 convert_modes (TYPE_MODE (index_type),
12581 TYPE_MODE (TREE_TYPE (range)),
12582 expand_normal (range),
12583 TYPE_UNSIGNED (TREE_TYPE (range))),
12584 table_label, default_label, default_probability);
12585 return 1;
12586 }
12587
12588 /* Return a CONST_VECTOR rtx representing vector mask for
12589 a VECTOR_CST of booleans. */
12590 static rtx
12591 const_vector_mask_from_tree (tree exp)
12592 {
12593 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12594 machine_mode inner = GET_MODE_INNER (mode);
12595
12596 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12597 VECTOR_CST_NELTS_PER_PATTERN (exp));
12598 unsigned int count = builder.encoded_nelts ();
12599 for (unsigned int i = 0; i < count; ++i)
12600 {
12601 tree elt = VECTOR_CST_ELT (exp, i);
12602 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12603 if (integer_zerop (elt))
12604 builder.quick_push (CONST0_RTX (inner));
12605 else if (integer_onep (elt)
12606 || integer_minus_onep (elt))
12607 builder.quick_push (CONSTM1_RTX (inner));
12608 else
12609 gcc_unreachable ();
12610 }
12611 return builder.build ();
12612 }
12613
12614 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12615 Return a constant scalar rtx of mode MODE in which bit X is set if element
12616 X of EXP is nonzero. */
12617 static rtx
12618 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12619 {
12620 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12621 tree elt;
12622
12623 /* The result has a fixed number of bits so the input must too. */
12624 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12625 for (unsigned int i = 0; i < nunits; ++i)
12626 {
12627 elt = VECTOR_CST_ELT (exp, i);
12628 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12629 if (integer_all_onesp (elt))
12630 res = wi::set_bit (res, i);
12631 else
12632 gcc_assert (integer_zerop (elt));
12633 }
12634
12635 return immed_wide_int_const (res, mode);
12636 }
12637
12638 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12639 static rtx
12640 const_vector_from_tree (tree exp)
12641 {
12642 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12643
12644 if (initializer_zerop (exp))
12645 return CONST0_RTX (mode);
12646
12647 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12648 return const_vector_mask_from_tree (exp);
12649
12650 machine_mode inner = GET_MODE_INNER (mode);
12651
12652 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12653 VECTOR_CST_NELTS_PER_PATTERN (exp));
12654 unsigned int count = builder.encoded_nelts ();
12655 for (unsigned int i = 0; i < count; ++i)
12656 {
12657 tree elt = VECTOR_CST_ELT (exp, i);
12658 if (TREE_CODE (elt) == REAL_CST)
12659 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12660 inner));
12661 else if (TREE_CODE (elt) == FIXED_CST)
12662 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12663 inner));
12664 else
12665 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12666 inner));
12667 }
12668 return builder.build ();
12669 }
12670
12671 /* Build a decl for a personality function given a language prefix. */
12672
12673 tree
12674 build_personality_function (const char *lang)
12675 {
12676 const char *unwind_and_version;
12677 tree decl, type;
12678 char *name;
12679
12680 switch (targetm_common.except_unwind_info (&global_options))
12681 {
12682 case UI_NONE:
12683 return NULL;
12684 case UI_SJLJ:
12685 unwind_and_version = "_sj0";
12686 break;
12687 case UI_DWARF2:
12688 case UI_TARGET:
12689 unwind_and_version = "_v0";
12690 break;
12691 case UI_SEH:
12692 unwind_and_version = "_seh0";
12693 break;
12694 default:
12695 gcc_unreachable ();
12696 }
12697
12698 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12699
12700 type = build_function_type_list (unsigned_type_node,
12701 integer_type_node, integer_type_node,
12702 long_long_unsigned_type_node,
12703 ptr_type_node, ptr_type_node, NULL_TREE);
12704 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12705 get_identifier (name), type);
12706 DECL_ARTIFICIAL (decl) = 1;
12707 DECL_EXTERNAL (decl) = 1;
12708 TREE_PUBLIC (decl) = 1;
12709
12710 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12711 are the flags assigned by targetm.encode_section_info. */
12712 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12713
12714 return decl;
12715 }
12716
12717 /* Extracts the personality function of DECL and returns the corresponding
12718 libfunc. */
12719
12720 rtx
12721 get_personality_function (tree decl)
12722 {
12723 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12724 enum eh_personality_kind pk;
12725
12726 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12727 if (pk == eh_personality_none)
12728 return NULL;
12729
12730 if (!personality
12731 && pk == eh_personality_any)
12732 personality = lang_hooks.eh_personality ();
12733
12734 if (pk == eh_personality_lang)
12735 gcc_assert (personality != NULL_TREE);
12736
12737 return XEXP (DECL_RTL (personality), 0);
12738 }
12739
12740 /* Returns a tree for the size of EXP in bytes. */
12741
12742 static tree
12743 tree_expr_size (const_tree exp)
12744 {
12745 if (DECL_P (exp)
12746 && DECL_SIZE_UNIT (exp) != 0)
12747 return DECL_SIZE_UNIT (exp);
12748 else
12749 return size_in_bytes (TREE_TYPE (exp));
12750 }
12751
12752 /* Return an rtx for the size in bytes of the value of EXP. */
12753
12754 rtx
12755 expr_size (tree exp)
12756 {
12757 tree size;
12758
12759 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12760 size = TREE_OPERAND (exp, 1);
12761 else
12762 {
12763 size = tree_expr_size (exp);
12764 gcc_assert (size);
12765 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12766 }
12767
12768 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12769 }
12770
12771 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12772 if the size can vary or is larger than an integer. */
12773
12774 static HOST_WIDE_INT
12775 int_expr_size (tree exp)
12776 {
12777 tree size;
12778
12779 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12780 size = TREE_OPERAND (exp, 1);
12781 else
12782 {
12783 size = tree_expr_size (exp);
12784 gcc_assert (size);
12785 }
12786
12787 if (size == 0 || !tree_fits_shwi_p (size))
12788 return -1;
12789
12790 return tree_to_shwi (size);
12791 }