]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/expr.c
PR middle-end/90025
[thirdparty/gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
65
66
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
74
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT);
79 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
80 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
81 static rtx_insn *compress_float_constant (rtx, rtx);
82 static rtx get_subtarget (rtx);
83 static void store_constructor (tree, rtx, int, poly_int64, bool);
84 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
85 machine_mode, tree, alias_set_type, bool, bool);
86
87 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
88
89 static int is_aligning_offset (const_tree, const_tree);
90 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
91 static rtx do_store_flag (sepops, rtx, machine_mode);
92 #ifdef PUSH_ROUNDING
93 static void emit_single_push_insn (machine_mode, rtx, tree);
94 #endif
95 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
96 profile_probability);
97 static rtx const_vector_from_tree (tree);
98 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
99 static tree tree_expr_size (const_tree);
100 static HOST_WIDE_INT int_expr_size (tree);
101 static void convert_mode_scalar (rtx, rtx, int);
102
103 \f
104 /* This is run to set up which modes can be used
105 directly in memory and to initialize the block move optab. It is run
106 at the beginning of compilation and when the target is reinitialized. */
107
108 void
109 init_expr_target (void)
110 {
111 rtx pat;
112 int num_clobbers;
113 rtx mem, mem1;
114 rtx reg;
115
116 /* Try indexing by frame ptr and try by stack ptr.
117 It is known that on the Convex the stack ptr isn't a valid index.
118 With luck, one or the other is valid on any machine. */
119 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
120 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
121
122 /* A scratch register we can modify in-place below to avoid
123 useless RTL allocations. */
124 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
125
126 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
127 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
128 PATTERN (insn) = pat;
129
130 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
131 mode = (machine_mode) ((int) mode + 1))
132 {
133 int regno;
134
135 direct_load[(int) mode] = direct_store[(int) mode] = 0;
136 PUT_MODE (mem, mode);
137 PUT_MODE (mem1, mode);
138
139 /* See if there is some register that can be used in this mode and
140 directly loaded or stored from memory. */
141
142 if (mode != VOIDmode && mode != BLKmode)
143 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
144 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
145 regno++)
146 {
147 if (!targetm.hard_regno_mode_ok (regno, mode))
148 continue;
149
150 set_mode_and_regno (reg, mode, regno);
151
152 SET_SRC (pat) = mem;
153 SET_DEST (pat) = reg;
154 if (recog (pat, insn, &num_clobbers) >= 0)
155 direct_load[(int) mode] = 1;
156
157 SET_SRC (pat) = mem1;
158 SET_DEST (pat) = reg;
159 if (recog (pat, insn, &num_clobbers) >= 0)
160 direct_load[(int) mode] = 1;
161
162 SET_SRC (pat) = reg;
163 SET_DEST (pat) = mem;
164 if (recog (pat, insn, &num_clobbers) >= 0)
165 direct_store[(int) mode] = 1;
166
167 SET_SRC (pat) = reg;
168 SET_DEST (pat) = mem1;
169 if (recog (pat, insn, &num_clobbers) >= 0)
170 direct_store[(int) mode] = 1;
171 }
172 }
173
174 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
175
176 opt_scalar_float_mode mode_iter;
177 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
178 {
179 scalar_float_mode mode = mode_iter.require ();
180 scalar_float_mode srcmode;
181 FOR_EACH_MODE_UNTIL (srcmode, mode)
182 {
183 enum insn_code ic;
184
185 ic = can_extend_p (mode, srcmode, 0);
186 if (ic == CODE_FOR_nothing)
187 continue;
188
189 PUT_MODE (mem, srcmode);
190
191 if (insn_operand_matches (ic, 1, mem))
192 float_extend_from_mem[mode][srcmode] = true;
193 }
194 }
195 }
196
197 /* This is run at the start of compiling a function. */
198
199 void
200 init_expr (void)
201 {
202 memset (&crtl->expr, 0, sizeof (crtl->expr));
203 }
204 \f
205 /* Copy data from FROM to TO, where the machine modes are not the same.
206 Both modes may be integer, or both may be floating, or both may be
207 fixed-point.
208 UNSIGNEDP should be nonzero if FROM is an unsigned type.
209 This causes zero-extension instead of sign-extension. */
210
211 void
212 convert_move (rtx to, rtx from, int unsignedp)
213 {
214 machine_mode to_mode = GET_MODE (to);
215 machine_mode from_mode = GET_MODE (from);
216
217 gcc_assert (to_mode != BLKmode);
218 gcc_assert (from_mode != BLKmode);
219
220 /* If the source and destination are already the same, then there's
221 nothing to do. */
222 if (to == from)
223 return;
224
225 /* If FROM is a SUBREG that indicates that we have already done at least
226 the required extension, strip it. We don't handle such SUBREGs as
227 TO here. */
228
229 scalar_int_mode to_int_mode;
230 if (GET_CODE (from) == SUBREG
231 && SUBREG_PROMOTED_VAR_P (from)
232 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
233 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
234 >= GET_MODE_PRECISION (to_int_mode))
235 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
236 {
237 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
238 from_mode = to_int_mode;
239 }
240
241 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
242
243 if (to_mode == from_mode
244 || (from_mode == VOIDmode && CONSTANT_P (from)))
245 {
246 emit_move_insn (to, from);
247 return;
248 }
249
250 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
251 {
252 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
253 GET_MODE_BITSIZE (to_mode)));
254
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
259
260 emit_move_insn (to, from);
261 return;
262 }
263
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
265 {
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
269 }
270
271 convert_mode_scalar (to, from, unsignedp);
272 }
273
274 /* Like convert_move, but deals only with scalar modes. */
275
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
278 {
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
286
287 gcc_assert (to_real == from_real);
288
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
292
293 if (to_real)
294 {
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
298
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
303
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
311
312 /* Try converting directly if the insn is supported. */
313
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
316 {
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
320 }
321
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
324
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
327
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
338 }
339
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
342 {
343 convert_optab ctab;
344
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
351
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
354 {
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
358 }
359 }
360
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
364 {
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
367
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
370
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
376 }
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
378 {
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
384
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
387
388 if (to_mode == full_mode)
389 {
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
392 }
393
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
396
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
400 }
401
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
406 {
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
416 }
417
418 /* Now both modes are integers. */
419
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
423 {
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
431
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
435 {
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
444 }
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
449 {
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
452 {
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
456 }
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
460 }
461
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
464
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
470
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
473
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
479
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
481
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
484
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
492
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
495 {
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
498
499 gcc_assert (subword);
500
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
503 }
504
505 insns = get_insns ();
506 end_sequence ();
507
508 emit_insn (insns);
509 return;
510 }
511
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
515 {
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
526 }
527
528 /* Now follow all the conversions between integers
529 no more than a word long. */
530
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
534 {
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
548 }
549
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
552 {
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
556 {
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
559 }
560 else
561 {
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
565
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
569 {
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
578 {
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
582 }
583 }
584
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
597 }
598 }
599
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
603 {
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
607 }
608
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
612
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
617 {
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
621 }
622
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
625 }
626
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
633
634 rtx
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
636 {
637 return convert_modes (mode, VOIDmode, x, unsignedp);
638 }
639
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
644
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
647
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
649
650 rtx
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
652 {
653 rtx temp;
654 scalar_int_mode int_mode;
655
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
658
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
666
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
669
670 if (mode == oldmode)
671 return x;
672
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
675 {
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
685 }
686
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || CONST_POLY_INT_P (x)
696 || (REG_P (x)
697 && (!HARD_REGISTER_P (x)
698 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
699 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
700 return gen_lowpart (int_mode, x);
701
702 /* Converting from integer constant into mode is always equivalent to an
703 subreg operation. */
704 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
705 {
706 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
707 GET_MODE_BITSIZE (oldmode)));
708 return simplify_gen_subreg (mode, x, oldmode, 0);
709 }
710
711 temp = gen_reg_rtx (mode);
712 convert_move (temp, x, unsignedp);
713 return temp;
714 }
715 \f
716 /* Return the largest alignment we can use for doing a move (or store)
717 of MAX_PIECES. ALIGN is the largest alignment we could use. */
718
719 static unsigned int
720 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
721 {
722 scalar_int_mode tmode
723 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
724
725 if (align >= GET_MODE_ALIGNMENT (tmode))
726 align = GET_MODE_ALIGNMENT (tmode);
727 else
728 {
729 scalar_int_mode xmode = NARROWEST_INT_MODE;
730 opt_scalar_int_mode mode_iter;
731 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
732 {
733 tmode = mode_iter.require ();
734 if (GET_MODE_SIZE (tmode) > max_pieces
735 || targetm.slow_unaligned_access (tmode, align))
736 break;
737 xmode = tmode;
738 }
739
740 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
741 }
742
743 return align;
744 }
745
746 /* Return the widest integer mode that is narrower than SIZE bytes. */
747
748 static scalar_int_mode
749 widest_int_mode_for_size (unsigned int size)
750 {
751 scalar_int_mode result = NARROWEST_INT_MODE;
752
753 gcc_checking_assert (size > 1);
754
755 opt_scalar_int_mode tmode;
756 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
757 if (GET_MODE_SIZE (tmode.require ()) < size)
758 result = tmode.require ();
759
760 return result;
761 }
762
763 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
764 and should be performed piecewise. */
765
766 static bool
767 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
768 enum by_pieces_operation op)
769 {
770 return targetm.use_by_pieces_infrastructure_p (len, align, op,
771 optimize_insn_for_speed_p ());
772 }
773
774 /* Determine whether the LEN bytes can be moved by using several move
775 instructions. Return nonzero if a call to move_by_pieces should
776 succeed. */
777
778 bool
779 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
780 {
781 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
782 }
783
784 /* Return number of insns required to perform operation OP by pieces
785 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
786
787 unsigned HOST_WIDE_INT
788 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
789 unsigned int max_size, by_pieces_operation op)
790 {
791 unsigned HOST_WIDE_INT n_insns = 0;
792
793 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
794
795 while (max_size > 1 && l > 0)
796 {
797 scalar_int_mode mode = widest_int_mode_for_size (max_size);
798 enum insn_code icode;
799
800 unsigned int modesize = GET_MODE_SIZE (mode);
801
802 icode = optab_handler (mov_optab, mode);
803 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
804 {
805 unsigned HOST_WIDE_INT n_pieces = l / modesize;
806 l %= modesize;
807 switch (op)
808 {
809 default:
810 n_insns += n_pieces;
811 break;
812
813 case COMPARE_BY_PIECES:
814 int batch = targetm.compare_by_pieces_branch_ratio (mode);
815 int batch_ops = 4 * batch - 1;
816 unsigned HOST_WIDE_INT full = n_pieces / batch;
817 n_insns += full * batch_ops;
818 if (n_pieces % batch != 0)
819 n_insns++;
820 break;
821
822 }
823 }
824 max_size = modesize;
825 }
826
827 gcc_assert (!l);
828 return n_insns;
829 }
830
831 /* Used when performing piecewise block operations, holds information
832 about one of the memory objects involved. The member functions
833 can be used to generate code for loading from the object and
834 updating the address when iterating. */
835
836 class pieces_addr
837 {
838 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
839 stack pushes. */
840 rtx m_obj;
841 /* The address of the object. Can differ from that seen in the
842 MEM rtx if we copied the address to a register. */
843 rtx m_addr;
844 /* Nonzero if the address on the object has an autoincrement already,
845 signifies whether that was an increment or decrement. */
846 signed char m_addr_inc;
847 /* Nonzero if we intend to use autoinc without the address already
848 having autoinc form. We will insert add insns around each memory
849 reference, expecting later passes to form autoinc addressing modes.
850 The only supported options are predecrement and postincrement. */
851 signed char m_explicit_inc;
852 /* True if we have either of the two possible cases of using
853 autoincrement. */
854 bool m_auto;
855 /* True if this is an address to be used for load operations rather
856 than stores. */
857 bool m_is_load;
858
859 /* Optionally, a function to obtain constants for any given offset into
860 the objects, and data associated with it. */
861 by_pieces_constfn m_constfn;
862 void *m_cfndata;
863 public:
864 pieces_addr (rtx, bool, by_pieces_constfn, void *);
865 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
866 void increment_address (HOST_WIDE_INT);
867 void maybe_predec (HOST_WIDE_INT);
868 void maybe_postinc (HOST_WIDE_INT);
869 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
870 int get_addr_inc ()
871 {
872 return m_addr_inc;
873 }
874 };
875
876 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
877 true if the operation to be performed on this object is a load
878 rather than a store. For stores, OBJ can be NULL, in which case we
879 assume the operation is a stack push. For loads, the optional
880 CONSTFN and its associated CFNDATA can be used in place of the
881 memory load. */
882
883 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
884 void *cfndata)
885 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
886 {
887 m_addr_inc = 0;
888 m_auto = false;
889 if (obj)
890 {
891 rtx addr = XEXP (obj, 0);
892 rtx_code code = GET_CODE (addr);
893 m_addr = addr;
894 bool dec = code == PRE_DEC || code == POST_DEC;
895 bool inc = code == PRE_INC || code == POST_INC;
896 m_auto = inc || dec;
897 if (m_auto)
898 m_addr_inc = dec ? -1 : 1;
899
900 /* While we have always looked for these codes here, the code
901 implementing the memory operation has never handled them.
902 Support could be added later if necessary or beneficial. */
903 gcc_assert (code != PRE_INC && code != POST_DEC);
904 }
905 else
906 {
907 m_addr = NULL_RTX;
908 if (!is_load)
909 {
910 m_auto = true;
911 if (STACK_GROWS_DOWNWARD)
912 m_addr_inc = -1;
913 else
914 m_addr_inc = 1;
915 }
916 else
917 gcc_assert (constfn != NULL);
918 }
919 m_explicit_inc = 0;
920 if (constfn)
921 gcc_assert (is_load);
922 }
923
924 /* Decide whether to use autoinc for an address involved in a memory op.
925 MODE is the mode of the accesses, REVERSE is true if we've decided to
926 perform the operation starting from the end, and LEN is the length of
927 the operation. Don't override an earlier decision to set m_auto. */
928
929 void
930 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
931 HOST_WIDE_INT len)
932 {
933 if (m_auto || m_obj == NULL_RTX)
934 return;
935
936 bool use_predec = (m_is_load
937 ? USE_LOAD_PRE_DECREMENT (mode)
938 : USE_STORE_PRE_DECREMENT (mode));
939 bool use_postinc = (m_is_load
940 ? USE_LOAD_POST_INCREMENT (mode)
941 : USE_STORE_POST_INCREMENT (mode));
942 machine_mode addr_mode = get_address_mode (m_obj);
943
944 if (use_predec && reverse)
945 {
946 m_addr = copy_to_mode_reg (addr_mode,
947 plus_constant (addr_mode,
948 m_addr, len));
949 m_auto = true;
950 m_explicit_inc = -1;
951 }
952 else if (use_postinc && !reverse)
953 {
954 m_addr = copy_to_mode_reg (addr_mode, m_addr);
955 m_auto = true;
956 m_explicit_inc = 1;
957 }
958 else if (CONSTANT_P (m_addr))
959 m_addr = copy_to_mode_reg (addr_mode, m_addr);
960 }
961
962 /* Adjust the address to refer to the data at OFFSET in MODE. If we
963 are using autoincrement for this address, we don't add the offset,
964 but we still modify the MEM's properties. */
965
966 rtx
967 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
968 {
969 if (m_constfn)
970 return m_constfn (m_cfndata, offset, mode);
971 if (m_obj == NULL_RTX)
972 return NULL_RTX;
973 if (m_auto)
974 return adjust_automodify_address (m_obj, mode, m_addr, offset);
975 else
976 return adjust_address (m_obj, mode, offset);
977 }
978
979 /* Emit an add instruction to increment the address by SIZE. */
980
981 void
982 pieces_addr::increment_address (HOST_WIDE_INT size)
983 {
984 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
985 emit_insn (gen_add2_insn (m_addr, amount));
986 }
987
988 /* If we are supposed to decrement the address after each access, emit code
989 to do so now. Increment by SIZE (which has should have the correct sign
990 already). */
991
992 void
993 pieces_addr::maybe_predec (HOST_WIDE_INT size)
994 {
995 if (m_explicit_inc >= 0)
996 return;
997 gcc_assert (HAVE_PRE_DECREMENT);
998 increment_address (size);
999 }
1000
1001 /* If we are supposed to decrement the address after each access, emit code
1002 to do so now. Increment by SIZE. */
1003
1004 void
1005 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1006 {
1007 if (m_explicit_inc <= 0)
1008 return;
1009 gcc_assert (HAVE_POST_INCREMENT);
1010 increment_address (size);
1011 }
1012
1013 /* This structure is used by do_op_by_pieces to describe the operation
1014 to be performed. */
1015
1016 class op_by_pieces_d
1017 {
1018 protected:
1019 pieces_addr m_to, m_from;
1020 unsigned HOST_WIDE_INT m_len;
1021 HOST_WIDE_INT m_offset;
1022 unsigned int m_align;
1023 unsigned int m_max_size;
1024 bool m_reverse;
1025
1026 /* Virtual functions, overriden by derived classes for the specific
1027 operation. */
1028 virtual void generate (rtx, rtx, machine_mode) = 0;
1029 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1030 virtual void finish_mode (machine_mode)
1031 {
1032 }
1033
1034 public:
1035 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1036 unsigned HOST_WIDE_INT, unsigned int);
1037 void run ();
1038 };
1039
1040 /* The constructor for an op_by_pieces_d structure. We require two
1041 objects named TO and FROM, which are identified as loads or stores
1042 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1043 and its associated FROM_CFN_DATA can be used to replace loads with
1044 constant values. LEN describes the length of the operation. */
1045
1046 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1047 rtx from, bool from_load,
1048 by_pieces_constfn from_cfn,
1049 void *from_cfn_data,
1050 unsigned HOST_WIDE_INT len,
1051 unsigned int align)
1052 : m_to (to, to_load, NULL, NULL),
1053 m_from (from, from_load, from_cfn, from_cfn_data),
1054 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1055 {
1056 int toi = m_to.get_addr_inc ();
1057 int fromi = m_from.get_addr_inc ();
1058 if (toi >= 0 && fromi >= 0)
1059 m_reverse = false;
1060 else if (toi <= 0 && fromi <= 0)
1061 m_reverse = true;
1062 else
1063 gcc_unreachable ();
1064
1065 m_offset = m_reverse ? len : 0;
1066 align = MIN (to ? MEM_ALIGN (to) : align,
1067 from ? MEM_ALIGN (from) : align);
1068
1069 /* If copying requires more than two move insns,
1070 copy addresses to registers (to make displacements shorter)
1071 and use post-increment if available. */
1072 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1073 {
1074 /* Find the mode of the largest comparison. */
1075 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1076
1077 m_from.decide_autoinc (mode, m_reverse, len);
1078 m_to.decide_autoinc (mode, m_reverse, len);
1079 }
1080
1081 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1082 m_align = align;
1083 }
1084
1085 /* This function contains the main loop used for expanding a block
1086 operation. First move what we can in the largest integer mode,
1087 then go to successively smaller modes. For every access, call
1088 GENFUN with the two operands and the EXTRA_DATA. */
1089
1090 void
1091 op_by_pieces_d::run ()
1092 {
1093 while (m_max_size > 1 && m_len > 0)
1094 {
1095 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1096
1097 if (prepare_mode (mode, m_align))
1098 {
1099 unsigned int size = GET_MODE_SIZE (mode);
1100 rtx to1 = NULL_RTX, from1;
1101
1102 while (m_len >= size)
1103 {
1104 if (m_reverse)
1105 m_offset -= size;
1106
1107 to1 = m_to.adjust (mode, m_offset);
1108 from1 = m_from.adjust (mode, m_offset);
1109
1110 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1111 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1112
1113 generate (to1, from1, mode);
1114
1115 m_to.maybe_postinc (size);
1116 m_from.maybe_postinc (size);
1117
1118 if (!m_reverse)
1119 m_offset += size;
1120
1121 m_len -= size;
1122 }
1123
1124 finish_mode (mode);
1125 }
1126
1127 m_max_size = GET_MODE_SIZE (mode);
1128 }
1129
1130 /* The code above should have handled everything. */
1131 gcc_assert (!m_len);
1132 }
1133
1134 /* Derived class from op_by_pieces_d, providing support for block move
1135 operations. */
1136
1137 class move_by_pieces_d : public op_by_pieces_d
1138 {
1139 insn_gen_fn m_gen_fun;
1140 void generate (rtx, rtx, machine_mode);
1141 bool prepare_mode (machine_mode, unsigned int);
1142
1143 public:
1144 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1145 unsigned int align)
1146 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1147 {
1148 }
1149 rtx finish_retmode (memop_ret);
1150 };
1151
1152 /* Return true if MODE can be used for a set of copies, given an
1153 alignment ALIGN. Prepare whatever data is necessary for later
1154 calls to generate. */
1155
1156 bool
1157 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1158 {
1159 insn_code icode = optab_handler (mov_optab, mode);
1160 m_gen_fun = GEN_FCN (icode);
1161 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1162 }
1163
1164 /* A callback used when iterating for a compare_by_pieces_operation.
1165 OP0 and OP1 are the values that have been loaded and should be
1166 compared in MODE. If OP0 is NULL, this means we should generate a
1167 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1168 gen function that should be used to generate the mode. */
1169
1170 void
1171 move_by_pieces_d::generate (rtx op0, rtx op1,
1172 machine_mode mode ATTRIBUTE_UNUSED)
1173 {
1174 #ifdef PUSH_ROUNDING
1175 if (op0 == NULL_RTX)
1176 {
1177 emit_single_push_insn (mode, op1, NULL);
1178 return;
1179 }
1180 #endif
1181 emit_insn (m_gen_fun (op0, op1));
1182 }
1183
1184 /* Perform the final adjustment at the end of a string to obtain the
1185 correct return value for the block operation.
1186 Return value is based on RETMODE argument. */
1187
1188 rtx
1189 move_by_pieces_d::finish_retmode (memop_ret retmode)
1190 {
1191 gcc_assert (!m_reverse);
1192 if (retmode == RETURN_END_MINUS_ONE)
1193 {
1194 m_to.maybe_postinc (-1);
1195 --m_offset;
1196 }
1197 return m_to.adjust (QImode, m_offset);
1198 }
1199
1200 /* Generate several move instructions to copy LEN bytes from block FROM to
1201 block TO. (These are MEM rtx's with BLKmode).
1202
1203 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1204 used to push FROM to the stack.
1205
1206 ALIGN is maximum stack alignment we can assume.
1207
1208 Return value is based on RETMODE argument. */
1209
1210 rtx
1211 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1212 unsigned int align, memop_ret retmode)
1213 {
1214 #ifndef PUSH_ROUNDING
1215 if (to == NULL)
1216 gcc_unreachable ();
1217 #endif
1218
1219 move_by_pieces_d data (to, from, len, align);
1220
1221 data.run ();
1222
1223 if (retmode != RETURN_BEGIN)
1224 return data.finish_retmode (retmode);
1225 else
1226 return to;
1227 }
1228
1229 /* Derived class from op_by_pieces_d, providing support for block move
1230 operations. */
1231
1232 class store_by_pieces_d : public op_by_pieces_d
1233 {
1234 insn_gen_fn m_gen_fun;
1235 void generate (rtx, rtx, machine_mode);
1236 bool prepare_mode (machine_mode, unsigned int);
1237
1238 public:
1239 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1240 unsigned HOST_WIDE_INT len, unsigned int align)
1241 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1242 {
1243 }
1244 rtx finish_retmode (memop_ret);
1245 };
1246
1247 /* Return true if MODE can be used for a set of stores, given an
1248 alignment ALIGN. Prepare whatever data is necessary for later
1249 calls to generate. */
1250
1251 bool
1252 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1253 {
1254 insn_code icode = optab_handler (mov_optab, mode);
1255 m_gen_fun = GEN_FCN (icode);
1256 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1257 }
1258
1259 /* A callback used when iterating for a store_by_pieces_operation.
1260 OP0 and OP1 are the values that have been loaded and should be
1261 compared in MODE. If OP0 is NULL, this means we should generate a
1262 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1263 gen function that should be used to generate the mode. */
1264
1265 void
1266 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1267 {
1268 emit_insn (m_gen_fun (op0, op1));
1269 }
1270
1271 /* Perform the final adjustment at the end of a string to obtain the
1272 correct return value for the block operation.
1273 Return value is based on RETMODE argument. */
1274
1275 rtx
1276 store_by_pieces_d::finish_retmode (memop_ret retmode)
1277 {
1278 gcc_assert (!m_reverse);
1279 if (retmode == RETURN_END_MINUS_ONE)
1280 {
1281 m_to.maybe_postinc (-1);
1282 --m_offset;
1283 }
1284 return m_to.adjust (QImode, m_offset);
1285 }
1286
1287 /* Determine whether the LEN bytes generated by CONSTFUN can be
1288 stored to memory using several move instructions. CONSTFUNDATA is
1289 a pointer which will be passed as argument in every CONSTFUN call.
1290 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1291 a memset operation and false if it's a copy of a constant string.
1292 Return nonzero if a call to store_by_pieces should succeed. */
1293
1294 int
1295 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1296 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1297 void *constfundata, unsigned int align, bool memsetp)
1298 {
1299 unsigned HOST_WIDE_INT l;
1300 unsigned int max_size;
1301 HOST_WIDE_INT offset = 0;
1302 enum insn_code icode;
1303 int reverse;
1304 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1305 rtx cst ATTRIBUTE_UNUSED;
1306
1307 if (len == 0)
1308 return 1;
1309
1310 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1311 memsetp
1312 ? SET_BY_PIECES
1313 : STORE_BY_PIECES,
1314 optimize_insn_for_speed_p ()))
1315 return 0;
1316
1317 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1318
1319 /* We would first store what we can in the largest integer mode, then go to
1320 successively smaller modes. */
1321
1322 for (reverse = 0;
1323 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1324 reverse++)
1325 {
1326 l = len;
1327 max_size = STORE_MAX_PIECES + 1;
1328 while (max_size > 1 && l > 0)
1329 {
1330 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1331
1332 icode = optab_handler (mov_optab, mode);
1333 if (icode != CODE_FOR_nothing
1334 && align >= GET_MODE_ALIGNMENT (mode))
1335 {
1336 unsigned int size = GET_MODE_SIZE (mode);
1337
1338 while (l >= size)
1339 {
1340 if (reverse)
1341 offset -= size;
1342
1343 cst = (*constfun) (constfundata, offset, mode);
1344 if (!targetm.legitimate_constant_p (mode, cst))
1345 return 0;
1346
1347 if (!reverse)
1348 offset += size;
1349
1350 l -= size;
1351 }
1352 }
1353
1354 max_size = GET_MODE_SIZE (mode);
1355 }
1356
1357 /* The code above should have handled everything. */
1358 gcc_assert (!l);
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* Generate several move instructions to store LEN bytes generated by
1365 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1366 pointer which will be passed as argument in every CONSTFUN call.
1367 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1368 a memset operation and false if it's a copy of a constant string.
1369 Return value is based on RETMODE argument. */
1370
1371 rtx
1372 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1373 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1374 void *constfundata, unsigned int align, bool memsetp,
1375 memop_ret retmode)
1376 {
1377 if (len == 0)
1378 {
1379 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1380 return to;
1381 }
1382
1383 gcc_assert (targetm.use_by_pieces_infrastructure_p
1384 (len, align,
1385 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1386 optimize_insn_for_speed_p ()));
1387
1388 store_by_pieces_d data (to, constfun, constfundata, len, align);
1389 data.run ();
1390
1391 if (retmode != RETURN_BEGIN)
1392 return data.finish_retmode (retmode);
1393 else
1394 return to;
1395 }
1396
1397 /* Callback routine for clear_by_pieces.
1398 Return const0_rtx unconditionally. */
1399
1400 static rtx
1401 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1402 {
1403 return const0_rtx;
1404 }
1405
1406 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1407 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1408
1409 static void
1410 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1411 {
1412 if (len == 0)
1413 return;
1414
1415 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1416 data.run ();
1417 }
1418
1419 /* Context used by compare_by_pieces_genfn. It stores the fail label
1420 to jump to in case of miscomparison, and for branch ratios greater than 1,
1421 it stores an accumulator and the current and maximum counts before
1422 emitting another branch. */
1423
1424 class compare_by_pieces_d : public op_by_pieces_d
1425 {
1426 rtx_code_label *m_fail_label;
1427 rtx m_accumulator;
1428 int m_count, m_batch;
1429
1430 void generate (rtx, rtx, machine_mode);
1431 bool prepare_mode (machine_mode, unsigned int);
1432 void finish_mode (machine_mode);
1433 public:
1434 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1435 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1436 rtx_code_label *fail_label)
1437 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1438 {
1439 m_fail_label = fail_label;
1440 }
1441 };
1442
1443 /* A callback used when iterating for a compare_by_pieces_operation.
1444 OP0 and OP1 are the values that have been loaded and should be
1445 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1446 context structure. */
1447
1448 void
1449 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1450 {
1451 if (m_batch > 1)
1452 {
1453 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1454 true, OPTAB_LIB_WIDEN);
1455 if (m_count != 0)
1456 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1457 true, OPTAB_LIB_WIDEN);
1458 m_accumulator = temp;
1459
1460 if (++m_count < m_batch)
1461 return;
1462
1463 m_count = 0;
1464 op0 = m_accumulator;
1465 op1 = const0_rtx;
1466 m_accumulator = NULL_RTX;
1467 }
1468 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1469 m_fail_label, profile_probability::uninitialized ());
1470 }
1471
1472 /* Return true if MODE can be used for a set of moves and comparisons,
1473 given an alignment ALIGN. Prepare whatever data is necessary for
1474 later calls to generate. */
1475
1476 bool
1477 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1478 {
1479 insn_code icode = optab_handler (mov_optab, mode);
1480 if (icode == CODE_FOR_nothing
1481 || align < GET_MODE_ALIGNMENT (mode)
1482 || !can_compare_p (EQ, mode, ccp_jump))
1483 return false;
1484 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1485 if (m_batch < 0)
1486 return false;
1487 m_accumulator = NULL_RTX;
1488 m_count = 0;
1489 return true;
1490 }
1491
1492 /* Called after expanding a series of comparisons in MODE. If we have
1493 accumulated results for which we haven't emitted a branch yet, do
1494 so now. */
1495
1496 void
1497 compare_by_pieces_d::finish_mode (machine_mode mode)
1498 {
1499 if (m_accumulator != NULL_RTX)
1500 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1501 NULL_RTX, NULL, m_fail_label,
1502 profile_probability::uninitialized ());
1503 }
1504
1505 /* Generate several move instructions to compare LEN bytes from blocks
1506 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1507
1508 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1509 used to push FROM to the stack.
1510
1511 ALIGN is maximum stack alignment we can assume.
1512
1513 Optionally, the caller can pass a constfn and associated data in A1_CFN
1514 and A1_CFN_DATA. describing that the second operand being compared is a
1515 known constant and how to obtain its data. */
1516
1517 static rtx
1518 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1519 rtx target, unsigned int align,
1520 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1521 {
1522 rtx_code_label *fail_label = gen_label_rtx ();
1523 rtx_code_label *end_label = gen_label_rtx ();
1524
1525 if (target == NULL_RTX
1526 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1527 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1528
1529 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1530 fail_label);
1531
1532 data.run ();
1533
1534 emit_move_insn (target, const0_rtx);
1535 emit_jump (end_label);
1536 emit_barrier ();
1537 emit_label (fail_label);
1538 emit_move_insn (target, const1_rtx);
1539 emit_label (end_label);
1540
1541 return target;
1542 }
1543 \f
1544 /* Emit code to move a block Y to a block X. This may be done with
1545 string-move instructions, with multiple scalar move instructions,
1546 or with a library call.
1547
1548 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1549 SIZE is an rtx that says how long they are.
1550 ALIGN is the maximum alignment we can assume they have.
1551 METHOD describes what kind of copy this is, and what mechanisms may be used.
1552 MIN_SIZE is the minimal size of block to move
1553 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1554 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1555
1556 Return the address of the new block, if memcpy is called and returns it,
1557 0 otherwise. */
1558
1559 rtx
1560 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1561 unsigned int expected_align, HOST_WIDE_INT expected_size,
1562 unsigned HOST_WIDE_INT min_size,
1563 unsigned HOST_WIDE_INT max_size,
1564 unsigned HOST_WIDE_INT probable_max_size)
1565 {
1566 int may_use_call;
1567 rtx retval = 0;
1568 unsigned int align;
1569
1570 gcc_assert (size);
1571 if (CONST_INT_P (size) && INTVAL (size) == 0)
1572 return 0;
1573
1574 switch (method)
1575 {
1576 case BLOCK_OP_NORMAL:
1577 case BLOCK_OP_TAILCALL:
1578 may_use_call = 1;
1579 break;
1580
1581 case BLOCK_OP_CALL_PARM:
1582 may_use_call = block_move_libcall_safe_for_call_parm ();
1583
1584 /* Make inhibit_defer_pop nonzero around the library call
1585 to force it to pop the arguments right away. */
1586 NO_DEFER_POP;
1587 break;
1588
1589 case BLOCK_OP_NO_LIBCALL:
1590 may_use_call = 0;
1591 break;
1592
1593 case BLOCK_OP_NO_LIBCALL_RET:
1594 may_use_call = -1;
1595 break;
1596
1597 default:
1598 gcc_unreachable ();
1599 }
1600
1601 gcc_assert (MEM_P (x) && MEM_P (y));
1602 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1603 gcc_assert (align >= BITS_PER_UNIT);
1604
1605 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1606 block copy is more efficient for other large modes, e.g. DCmode. */
1607 x = adjust_address (x, BLKmode, 0);
1608 y = adjust_address (y, BLKmode, 0);
1609
1610 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1611 can be incorrect is coming from __builtin_memcpy. */
1612 poly_int64 const_size;
1613 if (poly_int_rtx_p (size, &const_size))
1614 {
1615 x = shallow_copy_rtx (x);
1616 y = shallow_copy_rtx (y);
1617 set_mem_size (x, const_size);
1618 set_mem_size (y, const_size);
1619 }
1620
1621 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1622 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1623 else if (emit_block_move_via_movmem (x, y, size, align,
1624 expected_align, expected_size,
1625 min_size, max_size, probable_max_size))
1626 ;
1627 else if (may_use_call
1628 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1629 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1630 {
1631 if (may_use_call < 0)
1632 return pc_rtx;
1633
1634 retval = emit_block_copy_via_libcall (x, y, size,
1635 method == BLOCK_OP_TAILCALL);
1636 }
1637
1638 else
1639 emit_block_move_via_loop (x, y, size, align);
1640
1641 if (method == BLOCK_OP_CALL_PARM)
1642 OK_DEFER_POP;
1643
1644 return retval;
1645 }
1646
1647 rtx
1648 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1649 {
1650 unsigned HOST_WIDE_INT max, min = 0;
1651 if (GET_CODE (size) == CONST_INT)
1652 min = max = UINTVAL (size);
1653 else
1654 max = GET_MODE_MASK (GET_MODE (size));
1655 return emit_block_move_hints (x, y, size, method, 0, -1,
1656 min, max, max);
1657 }
1658
1659 /* A subroutine of emit_block_move. Returns true if calling the
1660 block move libcall will not clobber any parameters which may have
1661 already been placed on the stack. */
1662
1663 static bool
1664 block_move_libcall_safe_for_call_parm (void)
1665 {
1666 #if defined (REG_PARM_STACK_SPACE)
1667 tree fn;
1668 #endif
1669
1670 /* If arguments are pushed on the stack, then they're safe. */
1671 if (PUSH_ARGS)
1672 return true;
1673
1674 /* If registers go on the stack anyway, any argument is sure to clobber
1675 an outgoing argument. */
1676 #if defined (REG_PARM_STACK_SPACE)
1677 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1678 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1679 depend on its argument. */
1680 (void) fn;
1681 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1682 && REG_PARM_STACK_SPACE (fn) != 0)
1683 return false;
1684 #endif
1685
1686 /* If any argument goes in memory, then it might clobber an outgoing
1687 argument. */
1688 {
1689 CUMULATIVE_ARGS args_so_far_v;
1690 cumulative_args_t args_so_far;
1691 tree fn, arg;
1692
1693 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1694 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1695 args_so_far = pack_cumulative_args (&args_so_far_v);
1696
1697 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1698 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1699 {
1700 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1701 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1702 NULL_TREE, true);
1703 if (!tmp || !REG_P (tmp))
1704 return false;
1705 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1706 return false;
1707 targetm.calls.function_arg_advance (args_so_far, mode,
1708 NULL_TREE, true);
1709 }
1710 }
1711 return true;
1712 }
1713
1714 /* A subroutine of emit_block_move. Expand a movmem pattern;
1715 return true if successful. */
1716
1717 static bool
1718 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1719 unsigned int expected_align, HOST_WIDE_INT expected_size,
1720 unsigned HOST_WIDE_INT min_size,
1721 unsigned HOST_WIDE_INT max_size,
1722 unsigned HOST_WIDE_INT probable_max_size)
1723 {
1724 int save_volatile_ok = volatile_ok;
1725
1726 if (expected_align < align)
1727 expected_align = align;
1728 if (expected_size != -1)
1729 {
1730 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1731 expected_size = probable_max_size;
1732 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1733 expected_size = min_size;
1734 }
1735
1736 /* Since this is a move insn, we don't care about volatility. */
1737 volatile_ok = 1;
1738
1739 /* Try the most limited insn first, because there's no point
1740 including more than one in the machine description unless
1741 the more limited one has some advantage. */
1742
1743 opt_scalar_int_mode mode_iter;
1744 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1745 {
1746 scalar_int_mode mode = mode_iter.require ();
1747 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1748
1749 if (code != CODE_FOR_nothing
1750 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1751 here because if SIZE is less than the mode mask, as it is
1752 returned by the macro, it will definitely be less than the
1753 actual mode mask. Since SIZE is within the Pmode address
1754 space, we limit MODE to Pmode. */
1755 && ((CONST_INT_P (size)
1756 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1757 <= (GET_MODE_MASK (mode) >> 1)))
1758 || max_size <= (GET_MODE_MASK (mode) >> 1)
1759 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1760 {
1761 struct expand_operand ops[9];
1762 unsigned int nops;
1763
1764 /* ??? When called via emit_block_move_for_call, it'd be
1765 nice if there were some way to inform the backend, so
1766 that it doesn't fail the expansion because it thinks
1767 emitting the libcall would be more efficient. */
1768 nops = insn_data[(int) code].n_generator_args;
1769 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1770
1771 create_fixed_operand (&ops[0], x);
1772 create_fixed_operand (&ops[1], y);
1773 /* The check above guarantees that this size conversion is valid. */
1774 create_convert_operand_to (&ops[2], size, mode, true);
1775 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1776 if (nops >= 6)
1777 {
1778 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1779 create_integer_operand (&ops[5], expected_size);
1780 }
1781 if (nops >= 8)
1782 {
1783 create_integer_operand (&ops[6], min_size);
1784 /* If we cannot represent the maximal size,
1785 make parameter NULL. */
1786 if ((HOST_WIDE_INT) max_size != -1)
1787 create_integer_operand (&ops[7], max_size);
1788 else
1789 create_fixed_operand (&ops[7], NULL);
1790 }
1791 if (nops == 9)
1792 {
1793 /* If we cannot represent the maximal size,
1794 make parameter NULL. */
1795 if ((HOST_WIDE_INT) probable_max_size != -1)
1796 create_integer_operand (&ops[8], probable_max_size);
1797 else
1798 create_fixed_operand (&ops[8], NULL);
1799 }
1800 if (maybe_expand_insn (code, nops, ops))
1801 {
1802 volatile_ok = save_volatile_ok;
1803 return true;
1804 }
1805 }
1806 }
1807
1808 volatile_ok = save_volatile_ok;
1809 return false;
1810 }
1811
1812 /* A subroutine of emit_block_move. Copy the data via an explicit
1813 loop. This is used only when libcalls are forbidden. */
1814 /* ??? It'd be nice to copy in hunks larger than QImode. */
1815
1816 static void
1817 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1818 unsigned int align ATTRIBUTE_UNUSED)
1819 {
1820 rtx_code_label *cmp_label, *top_label;
1821 rtx iter, x_addr, y_addr, tmp;
1822 machine_mode x_addr_mode = get_address_mode (x);
1823 machine_mode y_addr_mode = get_address_mode (y);
1824 machine_mode iter_mode;
1825
1826 iter_mode = GET_MODE (size);
1827 if (iter_mode == VOIDmode)
1828 iter_mode = word_mode;
1829
1830 top_label = gen_label_rtx ();
1831 cmp_label = gen_label_rtx ();
1832 iter = gen_reg_rtx (iter_mode);
1833
1834 emit_move_insn (iter, const0_rtx);
1835
1836 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1837 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1838 do_pending_stack_adjust ();
1839
1840 emit_jump (cmp_label);
1841 emit_label (top_label);
1842
1843 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1844 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1845
1846 if (x_addr_mode != y_addr_mode)
1847 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1848 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1849
1850 x = change_address (x, QImode, x_addr);
1851 y = change_address (y, QImode, y_addr);
1852
1853 emit_move_insn (x, y);
1854
1855 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1856 true, OPTAB_LIB_WIDEN);
1857 if (tmp != iter)
1858 emit_move_insn (iter, tmp);
1859
1860 emit_label (cmp_label);
1861
1862 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1863 true, top_label,
1864 profile_probability::guessed_always ()
1865 .apply_scale (9, 10));
1866 }
1867 \f
1868 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1869 TAILCALL is true if this is a tail call. */
1870
1871 rtx
1872 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1873 rtx size, bool tailcall)
1874 {
1875 rtx dst_addr, src_addr;
1876 tree call_expr, dst_tree, src_tree, size_tree;
1877 machine_mode size_mode;
1878
1879 /* Since dst and src are passed to a libcall, mark the corresponding
1880 tree EXPR as addressable. */
1881 tree dst_expr = MEM_EXPR (dst);
1882 tree src_expr = MEM_EXPR (src);
1883 if (dst_expr)
1884 mark_addressable (dst_expr);
1885 if (src_expr)
1886 mark_addressable (src_expr);
1887
1888 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1889 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1890 dst_tree = make_tree (ptr_type_node, dst_addr);
1891
1892 src_addr = copy_addr_to_reg (XEXP (src, 0));
1893 src_addr = convert_memory_address (ptr_mode, src_addr);
1894 src_tree = make_tree (ptr_type_node, src_addr);
1895
1896 size_mode = TYPE_MODE (sizetype);
1897 size = convert_to_mode (size_mode, size, 1);
1898 size = copy_to_mode_reg (size_mode, size);
1899 size_tree = make_tree (sizetype, size);
1900
1901 /* It is incorrect to use the libcall calling conventions for calls to
1902 memcpy/memmove/memcmp because they can be provided by the user. */
1903 tree fn = builtin_decl_implicit (fncode);
1904 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1905 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1906
1907 return expand_call (call_expr, NULL_RTX, false);
1908 }
1909
1910 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1911 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1912 otherwise return null. */
1913
1914 rtx
1915 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1916 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1917 HOST_WIDE_INT align)
1918 {
1919 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1920
1921 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1922 target = NULL_RTX;
1923
1924 struct expand_operand ops[5];
1925 create_output_operand (&ops[0], target, insn_mode);
1926 create_fixed_operand (&ops[1], arg1_rtx);
1927 create_fixed_operand (&ops[2], arg2_rtx);
1928 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1929 TYPE_UNSIGNED (arg3_type));
1930 create_integer_operand (&ops[4], align);
1931 if (maybe_expand_insn (icode, 5, ops))
1932 return ops[0].value;
1933 return NULL_RTX;
1934 }
1935
1936 /* Expand a block compare between X and Y with length LEN using the
1937 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1938 of the expression that was used to calculate the length. ALIGN
1939 gives the known minimum common alignment. */
1940
1941 static rtx
1942 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1943 unsigned align)
1944 {
1945 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1946 implementing memcmp because it will stop if it encounters two
1947 zero bytes. */
1948 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1949
1950 if (icode == CODE_FOR_nothing)
1951 return NULL_RTX;
1952
1953 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1954 }
1955
1956 /* Emit code to compare a block Y to a block X. This may be done with
1957 string-compare instructions, with multiple scalar instructions,
1958 or with a library call.
1959
1960 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1961 they are. LEN_TYPE is the type of the expression that was used to
1962 calculate it.
1963
1964 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1965 value of a normal memcmp call, instead we can just compare for equality.
1966 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1967 returning NULL_RTX.
1968
1969 Optionally, the caller can pass a constfn and associated data in Y_CFN
1970 and Y_CFN_DATA. describing that the second operand being compared is a
1971 known constant and how to obtain its data.
1972 Return the result of the comparison, or NULL_RTX if we failed to
1973 perform the operation. */
1974
1975 rtx
1976 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1977 bool equality_only, by_pieces_constfn y_cfn,
1978 void *y_cfndata)
1979 {
1980 rtx result = 0;
1981
1982 if (CONST_INT_P (len) && INTVAL (len) == 0)
1983 return const0_rtx;
1984
1985 gcc_assert (MEM_P (x) && MEM_P (y));
1986 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1987 gcc_assert (align >= BITS_PER_UNIT);
1988
1989 x = adjust_address (x, BLKmode, 0);
1990 y = adjust_address (y, BLKmode, 0);
1991
1992 if (equality_only
1993 && CONST_INT_P (len)
1994 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1995 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1996 y_cfn, y_cfndata);
1997 else
1998 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1999
2000 return result;
2001 }
2002 \f
2003 /* Copy all or part of a value X into registers starting at REGNO.
2004 The number of registers to be filled is NREGS. */
2005
2006 void
2007 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2008 {
2009 if (nregs == 0)
2010 return;
2011
2012 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2013 x = validize_mem (force_const_mem (mode, x));
2014
2015 /* See if the machine can do this with a load multiple insn. */
2016 if (targetm.have_load_multiple ())
2017 {
2018 rtx_insn *last = get_last_insn ();
2019 rtx first = gen_rtx_REG (word_mode, regno);
2020 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2021 GEN_INT (nregs)))
2022 {
2023 emit_insn (pat);
2024 return;
2025 }
2026 else
2027 delete_insns_since (last);
2028 }
2029
2030 for (int i = 0; i < nregs; i++)
2031 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2032 operand_subword_force (x, i, mode));
2033 }
2034
2035 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2036 The number of registers to be filled is NREGS. */
2037
2038 void
2039 move_block_from_reg (int regno, rtx x, int nregs)
2040 {
2041 if (nregs == 0)
2042 return;
2043
2044 /* See if the machine can do this with a store multiple insn. */
2045 if (targetm.have_store_multiple ())
2046 {
2047 rtx_insn *last = get_last_insn ();
2048 rtx first = gen_rtx_REG (word_mode, regno);
2049 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2050 GEN_INT (nregs)))
2051 {
2052 emit_insn (pat);
2053 return;
2054 }
2055 else
2056 delete_insns_since (last);
2057 }
2058
2059 for (int i = 0; i < nregs; i++)
2060 {
2061 rtx tem = operand_subword (x, i, 1, BLKmode);
2062
2063 gcc_assert (tem);
2064
2065 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2066 }
2067 }
2068
2069 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2070 ORIG, where ORIG is a non-consecutive group of registers represented by
2071 a PARALLEL. The clone is identical to the original except in that the
2072 original set of registers is replaced by a new set of pseudo registers.
2073 The new set has the same modes as the original set. */
2074
2075 rtx
2076 gen_group_rtx (rtx orig)
2077 {
2078 int i, length;
2079 rtx *tmps;
2080
2081 gcc_assert (GET_CODE (orig) == PARALLEL);
2082
2083 length = XVECLEN (orig, 0);
2084 tmps = XALLOCAVEC (rtx, length);
2085
2086 /* Skip a NULL entry in first slot. */
2087 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2088
2089 if (i)
2090 tmps[0] = 0;
2091
2092 for (; i < length; i++)
2093 {
2094 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2095 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2096
2097 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2098 }
2099
2100 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2101 }
2102
2103 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2104 except that values are placed in TMPS[i], and must later be moved
2105 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2106
2107 static void
2108 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2109 poly_int64 ssize)
2110 {
2111 rtx src;
2112 int start, i;
2113 machine_mode m = GET_MODE (orig_src);
2114
2115 gcc_assert (GET_CODE (dst) == PARALLEL);
2116
2117 if (m != VOIDmode
2118 && !SCALAR_INT_MODE_P (m)
2119 && !MEM_P (orig_src)
2120 && GET_CODE (orig_src) != CONCAT)
2121 {
2122 scalar_int_mode imode;
2123 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2124 {
2125 src = gen_reg_rtx (imode);
2126 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2127 }
2128 else
2129 {
2130 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2131 emit_move_insn (src, orig_src);
2132 }
2133 emit_group_load_1 (tmps, dst, src, type, ssize);
2134 return;
2135 }
2136
2137 /* Check for a NULL entry, used to indicate that the parameter goes
2138 both on the stack and in registers. */
2139 if (XEXP (XVECEXP (dst, 0, 0), 0))
2140 start = 0;
2141 else
2142 start = 1;
2143
2144 /* Process the pieces. */
2145 for (i = start; i < XVECLEN (dst, 0); i++)
2146 {
2147 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2148 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2149 poly_int64 bytelen = GET_MODE_SIZE (mode);
2150 poly_int64 shift = 0;
2151
2152 /* Handle trailing fragments that run over the size of the struct.
2153 It's the target's responsibility to make sure that the fragment
2154 cannot be strictly smaller in some cases and strictly larger
2155 in others. */
2156 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2157 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2158 {
2159 /* Arrange to shift the fragment to where it belongs.
2160 extract_bit_field loads to the lsb of the reg. */
2161 if (
2162 #ifdef BLOCK_REG_PADDING
2163 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2164 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2165 #else
2166 BYTES_BIG_ENDIAN
2167 #endif
2168 )
2169 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2170 bytelen = ssize - bytepos;
2171 gcc_assert (maybe_gt (bytelen, 0));
2172 }
2173
2174 /* If we won't be loading directly from memory, protect the real source
2175 from strange tricks we might play; but make sure that the source can
2176 be loaded directly into the destination. */
2177 src = orig_src;
2178 if (!MEM_P (orig_src)
2179 && (!CONSTANT_P (orig_src)
2180 || (GET_MODE (orig_src) != mode
2181 && GET_MODE (orig_src) != VOIDmode)))
2182 {
2183 if (GET_MODE (orig_src) == VOIDmode)
2184 src = gen_reg_rtx (mode);
2185 else
2186 src = gen_reg_rtx (GET_MODE (orig_src));
2187
2188 emit_move_insn (src, orig_src);
2189 }
2190
2191 /* Optimize the access just a bit. */
2192 if (MEM_P (src)
2193 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2194 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2195 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2196 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2197 {
2198 tmps[i] = gen_reg_rtx (mode);
2199 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2200 }
2201 else if (COMPLEX_MODE_P (mode)
2202 && GET_MODE (src) == mode
2203 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2204 /* Let emit_move_complex do the bulk of the work. */
2205 tmps[i] = src;
2206 else if (GET_CODE (src) == CONCAT)
2207 {
2208 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2209 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2210 unsigned int elt;
2211 poly_int64 subpos;
2212
2213 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2214 && known_le (subpos + bytelen, slen0))
2215 {
2216 /* The following assumes that the concatenated objects all
2217 have the same size. In this case, a simple calculation
2218 can be used to determine the object and the bit field
2219 to be extracted. */
2220 tmps[i] = XEXP (src, elt);
2221 if (maybe_ne (subpos, 0)
2222 || maybe_ne (subpos + bytelen, slen0)
2223 || (!CONSTANT_P (tmps[i])
2224 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2225 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2226 subpos * BITS_PER_UNIT,
2227 1, NULL_RTX, mode, mode, false,
2228 NULL);
2229 }
2230 else
2231 {
2232 rtx mem;
2233
2234 gcc_assert (known_eq (bytepos, 0));
2235 mem = assign_stack_temp (GET_MODE (src), slen);
2236 emit_move_insn (mem, src);
2237 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2238 0, 1, NULL_RTX, mode, mode, false,
2239 NULL);
2240 }
2241 }
2242 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2243 SIMD register, which is currently broken. While we get GCC
2244 to emit proper RTL for these cases, let's dump to memory. */
2245 else if (VECTOR_MODE_P (GET_MODE (dst))
2246 && REG_P (src))
2247 {
2248 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2249 rtx mem;
2250
2251 mem = assign_stack_temp (GET_MODE (src), slen);
2252 emit_move_insn (mem, src);
2253 tmps[i] = adjust_address (mem, mode, bytepos);
2254 }
2255 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2256 && XVECLEN (dst, 0) > 1)
2257 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2258 else if (CONSTANT_P (src))
2259 {
2260 if (known_eq (bytelen, ssize))
2261 tmps[i] = src;
2262 else
2263 {
2264 rtx first, second;
2265
2266 /* TODO: const_wide_int can have sizes other than this... */
2267 gcc_assert (known_eq (2 * bytelen, ssize));
2268 split_double (src, &first, &second);
2269 if (i)
2270 tmps[i] = second;
2271 else
2272 tmps[i] = first;
2273 }
2274 }
2275 else if (REG_P (src) && GET_MODE (src) == mode)
2276 tmps[i] = src;
2277 else
2278 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2279 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2280 mode, mode, false, NULL);
2281
2282 if (maybe_ne (shift, 0))
2283 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2284 shift, tmps[i], 0);
2285 }
2286 }
2287
2288 /* Emit code to move a block SRC of type TYPE to a block DST,
2289 where DST is non-consecutive registers represented by a PARALLEL.
2290 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2291 if not known. */
2292
2293 void
2294 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2295 {
2296 rtx *tmps;
2297 int i;
2298
2299 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2300 emit_group_load_1 (tmps, dst, src, type, ssize);
2301
2302 /* Copy the extracted pieces into the proper (probable) hard regs. */
2303 for (i = 0; i < XVECLEN (dst, 0); i++)
2304 {
2305 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2306 if (d == NULL)
2307 continue;
2308 emit_move_insn (d, tmps[i]);
2309 }
2310 }
2311
2312 /* Similar, but load SRC into new pseudos in a format that looks like
2313 PARALLEL. This can later be fed to emit_group_move to get things
2314 in the right place. */
2315
2316 rtx
2317 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2318 {
2319 rtvec vec;
2320 int i;
2321
2322 vec = rtvec_alloc (XVECLEN (parallel, 0));
2323 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2324
2325 /* Convert the vector to look just like the original PARALLEL, except
2326 with the computed values. */
2327 for (i = 0; i < XVECLEN (parallel, 0); i++)
2328 {
2329 rtx e = XVECEXP (parallel, 0, i);
2330 rtx d = XEXP (e, 0);
2331
2332 if (d)
2333 {
2334 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2335 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2336 }
2337 RTVEC_ELT (vec, i) = e;
2338 }
2339
2340 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2341 }
2342
2343 /* Emit code to move a block SRC to block DST, where SRC and DST are
2344 non-consecutive groups of registers, each represented by a PARALLEL. */
2345
2346 void
2347 emit_group_move (rtx dst, rtx src)
2348 {
2349 int i;
2350
2351 gcc_assert (GET_CODE (src) == PARALLEL
2352 && GET_CODE (dst) == PARALLEL
2353 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2354
2355 /* Skip first entry if NULL. */
2356 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2357 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2358 XEXP (XVECEXP (src, 0, i), 0));
2359 }
2360
2361 /* Move a group of registers represented by a PARALLEL into pseudos. */
2362
2363 rtx
2364 emit_group_move_into_temps (rtx src)
2365 {
2366 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2367 int i;
2368
2369 for (i = 0; i < XVECLEN (src, 0); i++)
2370 {
2371 rtx e = XVECEXP (src, 0, i);
2372 rtx d = XEXP (e, 0);
2373
2374 if (d)
2375 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2376 RTVEC_ELT (vec, i) = e;
2377 }
2378
2379 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2380 }
2381
2382 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2383 where SRC is non-consecutive registers represented by a PARALLEL.
2384 SSIZE represents the total size of block ORIG_DST, or -1 if not
2385 known. */
2386
2387 void
2388 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2389 poly_int64 ssize)
2390 {
2391 rtx *tmps, dst;
2392 int start, finish, i;
2393 machine_mode m = GET_MODE (orig_dst);
2394
2395 gcc_assert (GET_CODE (src) == PARALLEL);
2396
2397 if (!SCALAR_INT_MODE_P (m)
2398 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2399 {
2400 scalar_int_mode imode;
2401 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2402 {
2403 dst = gen_reg_rtx (imode);
2404 emit_group_store (dst, src, type, ssize);
2405 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2406 }
2407 else
2408 {
2409 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2410 emit_group_store (dst, src, type, ssize);
2411 }
2412 emit_move_insn (orig_dst, dst);
2413 return;
2414 }
2415
2416 /* Check for a NULL entry, used to indicate that the parameter goes
2417 both on the stack and in registers. */
2418 if (XEXP (XVECEXP (src, 0, 0), 0))
2419 start = 0;
2420 else
2421 start = 1;
2422 finish = XVECLEN (src, 0);
2423
2424 tmps = XALLOCAVEC (rtx, finish);
2425
2426 /* Copy the (probable) hard regs into pseudos. */
2427 for (i = start; i < finish; i++)
2428 {
2429 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2430 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2431 {
2432 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2433 emit_move_insn (tmps[i], reg);
2434 }
2435 else
2436 tmps[i] = reg;
2437 }
2438
2439 /* If we won't be storing directly into memory, protect the real destination
2440 from strange tricks we might play. */
2441 dst = orig_dst;
2442 if (GET_CODE (dst) == PARALLEL)
2443 {
2444 rtx temp;
2445
2446 /* We can get a PARALLEL dst if there is a conditional expression in
2447 a return statement. In that case, the dst and src are the same,
2448 so no action is necessary. */
2449 if (rtx_equal_p (dst, src))
2450 return;
2451
2452 /* It is unclear if we can ever reach here, but we may as well handle
2453 it. Allocate a temporary, and split this into a store/load to/from
2454 the temporary. */
2455 temp = assign_stack_temp (GET_MODE (dst), ssize);
2456 emit_group_store (temp, src, type, ssize);
2457 emit_group_load (dst, temp, type, ssize);
2458 return;
2459 }
2460 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2461 {
2462 machine_mode outer = GET_MODE (dst);
2463 machine_mode inner;
2464 poly_int64 bytepos;
2465 bool done = false;
2466 rtx temp;
2467
2468 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2469 dst = gen_reg_rtx (outer);
2470
2471 /* Make life a bit easier for combine. */
2472 /* If the first element of the vector is the low part
2473 of the destination mode, use a paradoxical subreg to
2474 initialize the destination. */
2475 if (start < finish)
2476 {
2477 inner = GET_MODE (tmps[start]);
2478 bytepos = subreg_lowpart_offset (inner, outer);
2479 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2480 bytepos))
2481 {
2482 temp = simplify_gen_subreg (outer, tmps[start],
2483 inner, 0);
2484 if (temp)
2485 {
2486 emit_move_insn (dst, temp);
2487 done = true;
2488 start++;
2489 }
2490 }
2491 }
2492
2493 /* If the first element wasn't the low part, try the last. */
2494 if (!done
2495 && start < finish - 1)
2496 {
2497 inner = GET_MODE (tmps[finish - 1]);
2498 bytepos = subreg_lowpart_offset (inner, outer);
2499 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2500 finish - 1), 1)),
2501 bytepos))
2502 {
2503 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2504 inner, 0);
2505 if (temp)
2506 {
2507 emit_move_insn (dst, temp);
2508 done = true;
2509 finish--;
2510 }
2511 }
2512 }
2513
2514 /* Otherwise, simply initialize the result to zero. */
2515 if (!done)
2516 emit_move_insn (dst, CONST0_RTX (outer));
2517 }
2518
2519 /* Process the pieces. */
2520 for (i = start; i < finish; i++)
2521 {
2522 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2523 machine_mode mode = GET_MODE (tmps[i]);
2524 poly_int64 bytelen = GET_MODE_SIZE (mode);
2525 poly_uint64 adj_bytelen;
2526 rtx dest = dst;
2527
2528 /* Handle trailing fragments that run over the size of the struct.
2529 It's the target's responsibility to make sure that the fragment
2530 cannot be strictly smaller in some cases and strictly larger
2531 in others. */
2532 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2533 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2534 adj_bytelen = ssize - bytepos;
2535 else
2536 adj_bytelen = bytelen;
2537
2538 if (GET_CODE (dst) == CONCAT)
2539 {
2540 if (known_le (bytepos + adj_bytelen,
2541 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2542 dest = XEXP (dst, 0);
2543 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2544 {
2545 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2546 dest = XEXP (dst, 1);
2547 }
2548 else
2549 {
2550 machine_mode dest_mode = GET_MODE (dest);
2551 machine_mode tmp_mode = GET_MODE (tmps[i]);
2552
2553 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2554
2555 if (GET_MODE_ALIGNMENT (dest_mode)
2556 >= GET_MODE_ALIGNMENT (tmp_mode))
2557 {
2558 dest = assign_stack_temp (dest_mode,
2559 GET_MODE_SIZE (dest_mode));
2560 emit_move_insn (adjust_address (dest,
2561 tmp_mode,
2562 bytepos),
2563 tmps[i]);
2564 dst = dest;
2565 }
2566 else
2567 {
2568 dest = assign_stack_temp (tmp_mode,
2569 GET_MODE_SIZE (tmp_mode));
2570 emit_move_insn (dest, tmps[i]);
2571 dst = adjust_address (dest, dest_mode, bytepos);
2572 }
2573 break;
2574 }
2575 }
2576
2577 /* Handle trailing fragments that run over the size of the struct. */
2578 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2579 {
2580 /* store_bit_field always takes its value from the lsb.
2581 Move the fragment to the lsb if it's not already there. */
2582 if (
2583 #ifdef BLOCK_REG_PADDING
2584 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2585 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2586 #else
2587 BYTES_BIG_ENDIAN
2588 #endif
2589 )
2590 {
2591 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2592 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2593 shift, tmps[i], 0);
2594 }
2595
2596 /* Make sure not to write past the end of the struct. */
2597 store_bit_field (dest,
2598 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2599 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2600 VOIDmode, tmps[i], false);
2601 }
2602
2603 /* Optimize the access just a bit. */
2604 else if (MEM_P (dest)
2605 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2606 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2607 && multiple_p (bytepos * BITS_PER_UNIT,
2608 GET_MODE_ALIGNMENT (mode))
2609 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2610 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2611
2612 else
2613 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2614 0, 0, mode, tmps[i], false);
2615 }
2616
2617 /* Copy from the pseudo into the (probable) hard reg. */
2618 if (orig_dst != dst)
2619 emit_move_insn (orig_dst, dst);
2620 }
2621
2622 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2623 of the value stored in X. */
2624
2625 rtx
2626 maybe_emit_group_store (rtx x, tree type)
2627 {
2628 machine_mode mode = TYPE_MODE (type);
2629 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2630 if (GET_CODE (x) == PARALLEL)
2631 {
2632 rtx result = gen_reg_rtx (mode);
2633 emit_group_store (result, x, type, int_size_in_bytes (type));
2634 return result;
2635 }
2636 return x;
2637 }
2638
2639 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2640
2641 This is used on targets that return BLKmode values in registers. */
2642
2643 static void
2644 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2645 {
2646 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2647 rtx src = NULL, dst = NULL;
2648 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2649 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2650 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2651 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2652 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2653 fixed_size_mode copy_mode;
2654
2655 /* BLKmode registers created in the back-end shouldn't have survived. */
2656 gcc_assert (mode != BLKmode);
2657
2658 /* If the structure doesn't take up a whole number of words, see whether
2659 SRCREG is padded on the left or on the right. If it's on the left,
2660 set PADDING_CORRECTION to the number of bits to skip.
2661
2662 In most ABIs, the structure will be returned at the least end of
2663 the register, which translates to right padding on little-endian
2664 targets and left padding on big-endian targets. The opposite
2665 holds if the structure is returned at the most significant
2666 end of the register. */
2667 if (bytes % UNITS_PER_WORD != 0
2668 && (targetm.calls.return_in_msb (type)
2669 ? !BYTES_BIG_ENDIAN
2670 : BYTES_BIG_ENDIAN))
2671 padding_correction
2672 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2673
2674 /* We can use a single move if we have an exact mode for the size. */
2675 else if (MEM_P (target)
2676 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2677 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2678 && bytes == GET_MODE_SIZE (mode))
2679 {
2680 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2681 return;
2682 }
2683
2684 /* And if we additionally have the same mode for a register. */
2685 else if (REG_P (target)
2686 && GET_MODE (target) == mode
2687 && bytes == GET_MODE_SIZE (mode))
2688 {
2689 emit_move_insn (target, srcreg);
2690 return;
2691 }
2692
2693 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2694 into a new pseudo which is a full word. */
2695 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2696 {
2697 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2698 mode = word_mode;
2699 }
2700
2701 /* Copy the structure BITSIZE bits at a time. If the target lives in
2702 memory, take care of not reading/writing past its end by selecting
2703 a copy mode suited to BITSIZE. This should always be possible given
2704 how it is computed.
2705
2706 If the target lives in register, make sure not to select a copy mode
2707 larger than the mode of the register.
2708
2709 We could probably emit more efficient code for machines which do not use
2710 strict alignment, but it doesn't seem worth the effort at the current
2711 time. */
2712
2713 copy_mode = word_mode;
2714 if (MEM_P (target))
2715 {
2716 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2717 if (mem_mode.exists ())
2718 copy_mode = mem_mode.require ();
2719 }
2720 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2721 copy_mode = tmode;
2722
2723 for (bitpos = 0, xbitpos = padding_correction;
2724 bitpos < bytes * BITS_PER_UNIT;
2725 bitpos += bitsize, xbitpos += bitsize)
2726 {
2727 /* We need a new source operand each time xbitpos is on a
2728 word boundary and when xbitpos == padding_correction
2729 (the first time through). */
2730 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2731 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2732
2733 /* We need a new destination operand each time bitpos is on
2734 a word boundary. */
2735 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2736 dst = target;
2737 else if (bitpos % BITS_PER_WORD == 0)
2738 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2739
2740 /* Use xbitpos for the source extraction (right justified) and
2741 bitpos for the destination store (left justified). */
2742 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2743 extract_bit_field (src, bitsize,
2744 xbitpos % BITS_PER_WORD, 1,
2745 NULL_RTX, copy_mode, copy_mode,
2746 false, NULL),
2747 false);
2748 }
2749 }
2750
2751 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2752 register if it contains any data, otherwise return null.
2753
2754 This is used on targets that return BLKmode values in registers. */
2755
2756 rtx
2757 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2758 {
2759 int i, n_regs;
2760 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2761 unsigned int bitsize;
2762 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2763 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2764 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2765 fixed_size_mode dst_mode;
2766 scalar_int_mode min_mode;
2767
2768 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2769
2770 x = expand_normal (src);
2771
2772 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2773 if (bytes == 0)
2774 return NULL_RTX;
2775
2776 /* If the structure doesn't take up a whole number of words, see
2777 whether the register value should be padded on the left or on
2778 the right. Set PADDING_CORRECTION to the number of padding
2779 bits needed on the left side.
2780
2781 In most ABIs, the structure will be returned at the least end of
2782 the register, which translates to right padding on little-endian
2783 targets and left padding on big-endian targets. The opposite
2784 holds if the structure is returned at the most significant
2785 end of the register. */
2786 if (bytes % UNITS_PER_WORD != 0
2787 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2788 ? !BYTES_BIG_ENDIAN
2789 : BYTES_BIG_ENDIAN))
2790 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2791 * BITS_PER_UNIT));
2792
2793 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2794 dst_words = XALLOCAVEC (rtx, n_regs);
2795 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2796 min_mode = smallest_int_mode_for_size (bitsize);
2797
2798 /* Copy the structure BITSIZE bits at a time. */
2799 for (bitpos = 0, xbitpos = padding_correction;
2800 bitpos < bytes * BITS_PER_UNIT;
2801 bitpos += bitsize, xbitpos += bitsize)
2802 {
2803 /* We need a new destination pseudo each time xbitpos is
2804 on a word boundary and when xbitpos == padding_correction
2805 (the first time through). */
2806 if (xbitpos % BITS_PER_WORD == 0
2807 || xbitpos == padding_correction)
2808 {
2809 /* Generate an appropriate register. */
2810 dst_word = gen_reg_rtx (word_mode);
2811 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2812
2813 /* Clear the destination before we move anything into it. */
2814 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2815 }
2816
2817 /* Find the largest integer mode that can be used to copy all or as
2818 many bits as possible of the structure if the target supports larger
2819 copies. There are too many corner cases here w.r.t to alignments on
2820 the read/writes. So if there is any padding just use single byte
2821 operations. */
2822 opt_scalar_int_mode mode_iter;
2823 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2824 {
2825 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2826 {
2827 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2828 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2829 && msize <= BITS_PER_WORD)
2830 bitsize = msize;
2831 else
2832 break;
2833 }
2834 }
2835
2836 /* We need a new source operand each time bitpos is on a word
2837 boundary. */
2838 if (bitpos % BITS_PER_WORD == 0)
2839 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2840
2841 /* Use bitpos for the source extraction (left justified) and
2842 xbitpos for the destination store (right justified). */
2843 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2844 0, 0, word_mode,
2845 extract_bit_field (src_word, bitsize,
2846 bitpos % BITS_PER_WORD, 1,
2847 NULL_RTX, word_mode, word_mode,
2848 false, NULL),
2849 false);
2850 }
2851
2852 if (mode == BLKmode)
2853 {
2854 /* Find the smallest integer mode large enough to hold the
2855 entire structure. */
2856 opt_scalar_int_mode mode_iter;
2857 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2858 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2859 break;
2860
2861 /* A suitable mode should have been found. */
2862 mode = mode_iter.require ();
2863 }
2864
2865 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2866 dst_mode = word_mode;
2867 else
2868 dst_mode = mode;
2869 dst = gen_reg_rtx (dst_mode);
2870
2871 for (i = 0; i < n_regs; i++)
2872 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2873
2874 if (mode != dst_mode)
2875 dst = gen_lowpart (mode, dst);
2876
2877 return dst;
2878 }
2879
2880 /* Add a USE expression for REG to the (possibly empty) list pointed
2881 to by CALL_FUSAGE. REG must denote a hard register. */
2882
2883 void
2884 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2885 {
2886 gcc_assert (REG_P (reg));
2887
2888 if (!HARD_REGISTER_P (reg))
2889 return;
2890
2891 *call_fusage
2892 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2893 }
2894
2895 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2896 to by CALL_FUSAGE. REG must denote a hard register. */
2897
2898 void
2899 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2900 {
2901 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2902
2903 *call_fusage
2904 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2905 }
2906
2907 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2908 starting at REGNO. All of these registers must be hard registers. */
2909
2910 void
2911 use_regs (rtx *call_fusage, int regno, int nregs)
2912 {
2913 int i;
2914
2915 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2916
2917 for (i = 0; i < nregs; i++)
2918 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2919 }
2920
2921 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2922 PARALLEL REGS. This is for calls that pass values in multiple
2923 non-contiguous locations. The Irix 6 ABI has examples of this. */
2924
2925 void
2926 use_group_regs (rtx *call_fusage, rtx regs)
2927 {
2928 int i;
2929
2930 for (i = 0; i < XVECLEN (regs, 0); i++)
2931 {
2932 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2933
2934 /* A NULL entry means the parameter goes both on the stack and in
2935 registers. This can also be a MEM for targets that pass values
2936 partially on the stack and partially in registers. */
2937 if (reg != 0 && REG_P (reg))
2938 use_reg (call_fusage, reg);
2939 }
2940 }
2941
2942 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2943 assigment and the code of the expresion on the RHS is CODE. Return
2944 NULL otherwise. */
2945
2946 static gimple *
2947 get_def_for_expr (tree name, enum tree_code code)
2948 {
2949 gimple *def_stmt;
2950
2951 if (TREE_CODE (name) != SSA_NAME)
2952 return NULL;
2953
2954 def_stmt = get_gimple_for_ssa_name (name);
2955 if (!def_stmt
2956 || gimple_assign_rhs_code (def_stmt) != code)
2957 return NULL;
2958
2959 return def_stmt;
2960 }
2961
2962 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2963 assigment and the class of the expresion on the RHS is CLASS. Return
2964 NULL otherwise. */
2965
2966 static gimple *
2967 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2968 {
2969 gimple *def_stmt;
2970
2971 if (TREE_CODE (name) != SSA_NAME)
2972 return NULL;
2973
2974 def_stmt = get_gimple_for_ssa_name (name);
2975 if (!def_stmt
2976 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2977 return NULL;
2978
2979 return def_stmt;
2980 }
2981 \f
2982 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2983 its length in bytes. */
2984
2985 rtx
2986 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2987 unsigned int expected_align, HOST_WIDE_INT expected_size,
2988 unsigned HOST_WIDE_INT min_size,
2989 unsigned HOST_WIDE_INT max_size,
2990 unsigned HOST_WIDE_INT probable_max_size)
2991 {
2992 machine_mode mode = GET_MODE (object);
2993 unsigned int align;
2994
2995 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2996
2997 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2998 just move a zero. Otherwise, do this a piece at a time. */
2999 poly_int64 size_val;
3000 if (mode != BLKmode
3001 && poly_int_rtx_p (size, &size_val)
3002 && known_eq (size_val, GET_MODE_SIZE (mode)))
3003 {
3004 rtx zero = CONST0_RTX (mode);
3005 if (zero != NULL)
3006 {
3007 emit_move_insn (object, zero);
3008 return NULL;
3009 }
3010
3011 if (COMPLEX_MODE_P (mode))
3012 {
3013 zero = CONST0_RTX (GET_MODE_INNER (mode));
3014 if (zero != NULL)
3015 {
3016 write_complex_part (object, zero, 0);
3017 write_complex_part (object, zero, 1);
3018 return NULL;
3019 }
3020 }
3021 }
3022
3023 if (size == const0_rtx)
3024 return NULL;
3025
3026 align = MEM_ALIGN (object);
3027
3028 if (CONST_INT_P (size)
3029 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3030 CLEAR_BY_PIECES,
3031 optimize_insn_for_speed_p ()))
3032 clear_by_pieces (object, INTVAL (size), align);
3033 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3034 expected_align, expected_size,
3035 min_size, max_size, probable_max_size))
3036 ;
3037 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3038 return set_storage_via_libcall (object, size, const0_rtx,
3039 method == BLOCK_OP_TAILCALL);
3040 else
3041 gcc_unreachable ();
3042
3043 return NULL;
3044 }
3045
3046 rtx
3047 clear_storage (rtx object, rtx size, enum block_op_methods method)
3048 {
3049 unsigned HOST_WIDE_INT max, min = 0;
3050 if (GET_CODE (size) == CONST_INT)
3051 min = max = UINTVAL (size);
3052 else
3053 max = GET_MODE_MASK (GET_MODE (size));
3054 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3055 }
3056
3057
3058 /* A subroutine of clear_storage. Expand a call to memset.
3059 Return the return value of memset, 0 otherwise. */
3060
3061 rtx
3062 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3063 {
3064 tree call_expr, fn, object_tree, size_tree, val_tree;
3065 machine_mode size_mode;
3066
3067 object = copy_addr_to_reg (XEXP (object, 0));
3068 object_tree = make_tree (ptr_type_node, object);
3069
3070 if (!CONST_INT_P (val))
3071 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3072 val_tree = make_tree (integer_type_node, val);
3073
3074 size_mode = TYPE_MODE (sizetype);
3075 size = convert_to_mode (size_mode, size, 1);
3076 size = copy_to_mode_reg (size_mode, size);
3077 size_tree = make_tree (sizetype, size);
3078
3079 /* It is incorrect to use the libcall calling conventions for calls to
3080 memset because it can be provided by the user. */
3081 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3082 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3083 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3084
3085 return expand_call (call_expr, NULL_RTX, false);
3086 }
3087 \f
3088 /* Expand a setmem pattern; return true if successful. */
3089
3090 bool
3091 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3092 unsigned int expected_align, HOST_WIDE_INT expected_size,
3093 unsigned HOST_WIDE_INT min_size,
3094 unsigned HOST_WIDE_INT max_size,
3095 unsigned HOST_WIDE_INT probable_max_size)
3096 {
3097 /* Try the most limited insn first, because there's no point
3098 including more than one in the machine description unless
3099 the more limited one has some advantage. */
3100
3101 if (expected_align < align)
3102 expected_align = align;
3103 if (expected_size != -1)
3104 {
3105 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3106 expected_size = max_size;
3107 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3108 expected_size = min_size;
3109 }
3110
3111 opt_scalar_int_mode mode_iter;
3112 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3113 {
3114 scalar_int_mode mode = mode_iter.require ();
3115 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3116
3117 if (code != CODE_FOR_nothing
3118 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3119 here because if SIZE is less than the mode mask, as it is
3120 returned by the macro, it will definitely be less than the
3121 actual mode mask. Since SIZE is within the Pmode address
3122 space, we limit MODE to Pmode. */
3123 && ((CONST_INT_P (size)
3124 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3125 <= (GET_MODE_MASK (mode) >> 1)))
3126 || max_size <= (GET_MODE_MASK (mode) >> 1)
3127 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3128 {
3129 struct expand_operand ops[9];
3130 unsigned int nops;
3131
3132 nops = insn_data[(int) code].n_generator_args;
3133 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3134
3135 create_fixed_operand (&ops[0], object);
3136 /* The check above guarantees that this size conversion is valid. */
3137 create_convert_operand_to (&ops[1], size, mode, true);
3138 create_convert_operand_from (&ops[2], val, byte_mode, true);
3139 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3140 if (nops >= 6)
3141 {
3142 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3143 create_integer_operand (&ops[5], expected_size);
3144 }
3145 if (nops >= 8)
3146 {
3147 create_integer_operand (&ops[6], min_size);
3148 /* If we cannot represent the maximal size,
3149 make parameter NULL. */
3150 if ((HOST_WIDE_INT) max_size != -1)
3151 create_integer_operand (&ops[7], max_size);
3152 else
3153 create_fixed_operand (&ops[7], NULL);
3154 }
3155 if (nops == 9)
3156 {
3157 /* If we cannot represent the maximal size,
3158 make parameter NULL. */
3159 if ((HOST_WIDE_INT) probable_max_size != -1)
3160 create_integer_operand (&ops[8], probable_max_size);
3161 else
3162 create_fixed_operand (&ops[8], NULL);
3163 }
3164 if (maybe_expand_insn (code, nops, ops))
3165 return true;
3166 }
3167 }
3168
3169 return false;
3170 }
3171
3172 \f
3173 /* Write to one of the components of the complex value CPLX. Write VAL to
3174 the real part if IMAG_P is false, and the imaginary part if its true. */
3175
3176 void
3177 write_complex_part (rtx cplx, rtx val, bool imag_p)
3178 {
3179 machine_mode cmode;
3180 scalar_mode imode;
3181 unsigned ibitsize;
3182
3183 if (GET_CODE (cplx) == CONCAT)
3184 {
3185 emit_move_insn (XEXP (cplx, imag_p), val);
3186 return;
3187 }
3188
3189 cmode = GET_MODE (cplx);
3190 imode = GET_MODE_INNER (cmode);
3191 ibitsize = GET_MODE_BITSIZE (imode);
3192
3193 /* For MEMs simplify_gen_subreg may generate an invalid new address
3194 because, e.g., the original address is considered mode-dependent
3195 by the target, which restricts simplify_subreg from invoking
3196 adjust_address_nv. Instead of preparing fallback support for an
3197 invalid address, we call adjust_address_nv directly. */
3198 if (MEM_P (cplx))
3199 {
3200 emit_move_insn (adjust_address_nv (cplx, imode,
3201 imag_p ? GET_MODE_SIZE (imode) : 0),
3202 val);
3203 return;
3204 }
3205
3206 /* If the sub-object is at least word sized, then we know that subregging
3207 will work. This special case is important, since store_bit_field
3208 wants to operate on integer modes, and there's rarely an OImode to
3209 correspond to TCmode. */
3210 if (ibitsize >= BITS_PER_WORD
3211 /* For hard regs we have exact predicates. Assume we can split
3212 the original object if it spans an even number of hard regs.
3213 This special case is important for SCmode on 64-bit platforms
3214 where the natural size of floating-point regs is 32-bit. */
3215 || (REG_P (cplx)
3216 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3217 && REG_NREGS (cplx) % 2 == 0))
3218 {
3219 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3220 imag_p ? GET_MODE_SIZE (imode) : 0);
3221 if (part)
3222 {
3223 emit_move_insn (part, val);
3224 return;
3225 }
3226 else
3227 /* simplify_gen_subreg may fail for sub-word MEMs. */
3228 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3229 }
3230
3231 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3232 false);
3233 }
3234
3235 /* Extract one of the components of the complex value CPLX. Extract the
3236 real part if IMAG_P is false, and the imaginary part if it's true. */
3237
3238 rtx
3239 read_complex_part (rtx cplx, bool imag_p)
3240 {
3241 machine_mode cmode;
3242 scalar_mode imode;
3243 unsigned ibitsize;
3244
3245 if (GET_CODE (cplx) == CONCAT)
3246 return XEXP (cplx, imag_p);
3247
3248 cmode = GET_MODE (cplx);
3249 imode = GET_MODE_INNER (cmode);
3250 ibitsize = GET_MODE_BITSIZE (imode);
3251
3252 /* Special case reads from complex constants that got spilled to memory. */
3253 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3254 {
3255 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3256 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3257 {
3258 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3259 if (CONSTANT_CLASS_P (part))
3260 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3261 }
3262 }
3263
3264 /* For MEMs simplify_gen_subreg may generate an invalid new address
3265 because, e.g., the original address is considered mode-dependent
3266 by the target, which restricts simplify_subreg from invoking
3267 adjust_address_nv. Instead of preparing fallback support for an
3268 invalid address, we call adjust_address_nv directly. */
3269 if (MEM_P (cplx))
3270 return adjust_address_nv (cplx, imode,
3271 imag_p ? GET_MODE_SIZE (imode) : 0);
3272
3273 /* If the sub-object is at least word sized, then we know that subregging
3274 will work. This special case is important, since extract_bit_field
3275 wants to operate on integer modes, and there's rarely an OImode to
3276 correspond to TCmode. */
3277 if (ibitsize >= BITS_PER_WORD
3278 /* For hard regs we have exact predicates. Assume we can split
3279 the original object if it spans an even number of hard regs.
3280 This special case is important for SCmode on 64-bit platforms
3281 where the natural size of floating-point regs is 32-bit. */
3282 || (REG_P (cplx)
3283 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3284 && REG_NREGS (cplx) % 2 == 0))
3285 {
3286 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3287 imag_p ? GET_MODE_SIZE (imode) : 0);
3288 if (ret)
3289 return ret;
3290 else
3291 /* simplify_gen_subreg may fail for sub-word MEMs. */
3292 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3293 }
3294
3295 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3296 true, NULL_RTX, imode, imode, false, NULL);
3297 }
3298 \f
3299 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3300 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3301 represented in NEW_MODE. If FORCE is true, this will never happen, as
3302 we'll force-create a SUBREG if needed. */
3303
3304 static rtx
3305 emit_move_change_mode (machine_mode new_mode,
3306 machine_mode old_mode, rtx x, bool force)
3307 {
3308 rtx ret;
3309
3310 if (push_operand (x, GET_MODE (x)))
3311 {
3312 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3313 MEM_COPY_ATTRIBUTES (ret, x);
3314 }
3315 else if (MEM_P (x))
3316 {
3317 /* We don't have to worry about changing the address since the
3318 size in bytes is supposed to be the same. */
3319 if (reload_in_progress)
3320 {
3321 /* Copy the MEM to change the mode and move any
3322 substitutions from the old MEM to the new one. */
3323 ret = adjust_address_nv (x, new_mode, 0);
3324 copy_replacements (x, ret);
3325 }
3326 else
3327 ret = adjust_address (x, new_mode, 0);
3328 }
3329 else
3330 {
3331 /* Note that we do want simplify_subreg's behavior of validating
3332 that the new mode is ok for a hard register. If we were to use
3333 simplify_gen_subreg, we would create the subreg, but would
3334 probably run into the target not being able to implement it. */
3335 /* Except, of course, when FORCE is true, when this is exactly what
3336 we want. Which is needed for CCmodes on some targets. */
3337 if (force)
3338 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3339 else
3340 ret = simplify_subreg (new_mode, x, old_mode, 0);
3341 }
3342
3343 return ret;
3344 }
3345
3346 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3347 an integer mode of the same size as MODE. Returns the instruction
3348 emitted, or NULL if such a move could not be generated. */
3349
3350 static rtx_insn *
3351 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3352 {
3353 scalar_int_mode imode;
3354 enum insn_code code;
3355
3356 /* There must exist a mode of the exact size we require. */
3357 if (!int_mode_for_mode (mode).exists (&imode))
3358 return NULL;
3359
3360 /* The target must support moves in this mode. */
3361 code = optab_handler (mov_optab, imode);
3362 if (code == CODE_FOR_nothing)
3363 return NULL;
3364
3365 x = emit_move_change_mode (imode, mode, x, force);
3366 if (x == NULL_RTX)
3367 return NULL;
3368 y = emit_move_change_mode (imode, mode, y, force);
3369 if (y == NULL_RTX)
3370 return NULL;
3371 return emit_insn (GEN_FCN (code) (x, y));
3372 }
3373
3374 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3375 Return an equivalent MEM that does not use an auto-increment. */
3376
3377 rtx
3378 emit_move_resolve_push (machine_mode mode, rtx x)
3379 {
3380 enum rtx_code code = GET_CODE (XEXP (x, 0));
3381 rtx temp;
3382
3383 poly_int64 adjust = GET_MODE_SIZE (mode);
3384 #ifdef PUSH_ROUNDING
3385 adjust = PUSH_ROUNDING (adjust);
3386 #endif
3387 if (code == PRE_DEC || code == POST_DEC)
3388 adjust = -adjust;
3389 else if (code == PRE_MODIFY || code == POST_MODIFY)
3390 {
3391 rtx expr = XEXP (XEXP (x, 0), 1);
3392
3393 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3394 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3395 if (GET_CODE (expr) == MINUS)
3396 val = -val;
3397 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3398 adjust = val;
3399 }
3400
3401 /* Do not use anti_adjust_stack, since we don't want to update
3402 stack_pointer_delta. */
3403 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3404 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3405 0, OPTAB_LIB_WIDEN);
3406 if (temp != stack_pointer_rtx)
3407 emit_move_insn (stack_pointer_rtx, temp);
3408
3409 switch (code)
3410 {
3411 case PRE_INC:
3412 case PRE_DEC:
3413 case PRE_MODIFY:
3414 temp = stack_pointer_rtx;
3415 break;
3416 case POST_INC:
3417 case POST_DEC:
3418 case POST_MODIFY:
3419 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3420 break;
3421 default:
3422 gcc_unreachable ();
3423 }
3424
3425 return replace_equiv_address (x, temp);
3426 }
3427
3428 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3429 X is known to satisfy push_operand, and MODE is known to be complex.
3430 Returns the last instruction emitted. */
3431
3432 rtx_insn *
3433 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3434 {
3435 scalar_mode submode = GET_MODE_INNER (mode);
3436 bool imag_first;
3437
3438 #ifdef PUSH_ROUNDING
3439 poly_int64 submodesize = GET_MODE_SIZE (submode);
3440
3441 /* In case we output to the stack, but the size is smaller than the
3442 machine can push exactly, we need to use move instructions. */
3443 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3444 {
3445 x = emit_move_resolve_push (mode, x);
3446 return emit_move_insn (x, y);
3447 }
3448 #endif
3449
3450 /* Note that the real part always precedes the imag part in memory
3451 regardless of machine's endianness. */
3452 switch (GET_CODE (XEXP (x, 0)))
3453 {
3454 case PRE_DEC:
3455 case POST_DEC:
3456 imag_first = true;
3457 break;
3458 case PRE_INC:
3459 case POST_INC:
3460 imag_first = false;
3461 break;
3462 default:
3463 gcc_unreachable ();
3464 }
3465
3466 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3467 read_complex_part (y, imag_first));
3468 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3469 read_complex_part (y, !imag_first));
3470 }
3471
3472 /* A subroutine of emit_move_complex. Perform the move from Y to X
3473 via two moves of the parts. Returns the last instruction emitted. */
3474
3475 rtx_insn *
3476 emit_move_complex_parts (rtx x, rtx y)
3477 {
3478 /* Show the output dies here. This is necessary for SUBREGs
3479 of pseudos since we cannot track their lifetimes correctly;
3480 hard regs shouldn't appear here except as return values. */
3481 if (!reload_completed && !reload_in_progress
3482 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3483 emit_clobber (x);
3484
3485 write_complex_part (x, read_complex_part (y, false), false);
3486 write_complex_part (x, read_complex_part (y, true), true);
3487
3488 return get_last_insn ();
3489 }
3490
3491 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3492 MODE is known to be complex. Returns the last instruction emitted. */
3493
3494 static rtx_insn *
3495 emit_move_complex (machine_mode mode, rtx x, rtx y)
3496 {
3497 bool try_int;
3498
3499 /* Need to take special care for pushes, to maintain proper ordering
3500 of the data, and possibly extra padding. */
3501 if (push_operand (x, mode))
3502 return emit_move_complex_push (mode, x, y);
3503
3504 /* See if we can coerce the target into moving both values at once, except
3505 for floating point where we favor moving as parts if this is easy. */
3506 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3507 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3508 && !(REG_P (x)
3509 && HARD_REGISTER_P (x)
3510 && REG_NREGS (x) == 1)
3511 && !(REG_P (y)
3512 && HARD_REGISTER_P (y)
3513 && REG_NREGS (y) == 1))
3514 try_int = false;
3515 /* Not possible if the values are inherently not adjacent. */
3516 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3517 try_int = false;
3518 /* Is possible if both are registers (or subregs of registers). */
3519 else if (register_operand (x, mode) && register_operand (y, mode))
3520 try_int = true;
3521 /* If one of the operands is a memory, and alignment constraints
3522 are friendly enough, we may be able to do combined memory operations.
3523 We do not attempt this if Y is a constant because that combination is
3524 usually better with the by-parts thing below. */
3525 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3526 && (!STRICT_ALIGNMENT
3527 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3528 try_int = true;
3529 else
3530 try_int = false;
3531
3532 if (try_int)
3533 {
3534 rtx_insn *ret;
3535
3536 /* For memory to memory moves, optimal behavior can be had with the
3537 existing block move logic. */
3538 if (MEM_P (x) && MEM_P (y))
3539 {
3540 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3541 BLOCK_OP_NO_LIBCALL);
3542 return get_last_insn ();
3543 }
3544
3545 ret = emit_move_via_integer (mode, x, y, true);
3546 if (ret)
3547 return ret;
3548 }
3549
3550 return emit_move_complex_parts (x, y);
3551 }
3552
3553 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3554 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3555
3556 static rtx_insn *
3557 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3558 {
3559 rtx_insn *ret;
3560
3561 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3562 if (mode != CCmode)
3563 {
3564 enum insn_code code = optab_handler (mov_optab, CCmode);
3565 if (code != CODE_FOR_nothing)
3566 {
3567 x = emit_move_change_mode (CCmode, mode, x, true);
3568 y = emit_move_change_mode (CCmode, mode, y, true);
3569 return emit_insn (GEN_FCN (code) (x, y));
3570 }
3571 }
3572
3573 /* Otherwise, find the MODE_INT mode of the same width. */
3574 ret = emit_move_via_integer (mode, x, y, false);
3575 gcc_assert (ret != NULL);
3576 return ret;
3577 }
3578
3579 /* Return true if word I of OP lies entirely in the
3580 undefined bits of a paradoxical subreg. */
3581
3582 static bool
3583 undefined_operand_subword_p (const_rtx op, int i)
3584 {
3585 if (GET_CODE (op) != SUBREG)
3586 return false;
3587 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3588 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3589 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3590 || known_le (offset, -UNITS_PER_WORD));
3591 }
3592
3593 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3594 MODE is any multi-word or full-word mode that lacks a move_insn
3595 pattern. Note that you will get better code if you define such
3596 patterns, even if they must turn into multiple assembler instructions. */
3597
3598 static rtx_insn *
3599 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3600 {
3601 rtx_insn *last_insn = 0;
3602 rtx_insn *seq;
3603 rtx inner;
3604 bool need_clobber;
3605 int i, mode_size;
3606
3607 /* This function can only handle cases where the number of words is
3608 known at compile time. */
3609 mode_size = GET_MODE_SIZE (mode).to_constant ();
3610 gcc_assert (mode_size >= UNITS_PER_WORD);
3611
3612 /* If X is a push on the stack, do the push now and replace
3613 X with a reference to the stack pointer. */
3614 if (push_operand (x, mode))
3615 x = emit_move_resolve_push (mode, x);
3616
3617 /* If we are in reload, see if either operand is a MEM whose address
3618 is scheduled for replacement. */
3619 if (reload_in_progress && MEM_P (x)
3620 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3621 x = replace_equiv_address_nv (x, inner);
3622 if (reload_in_progress && MEM_P (y)
3623 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3624 y = replace_equiv_address_nv (y, inner);
3625
3626 start_sequence ();
3627
3628 need_clobber = false;
3629 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3630 {
3631 rtx xpart = operand_subword (x, i, 1, mode);
3632 rtx ypart;
3633
3634 /* Do not generate code for a move if it would come entirely
3635 from the undefined bits of a paradoxical subreg. */
3636 if (undefined_operand_subword_p (y, i))
3637 continue;
3638
3639 ypart = operand_subword (y, i, 1, mode);
3640
3641 /* If we can't get a part of Y, put Y into memory if it is a
3642 constant. Otherwise, force it into a register. Then we must
3643 be able to get a part of Y. */
3644 if (ypart == 0 && CONSTANT_P (y))
3645 {
3646 y = use_anchored_address (force_const_mem (mode, y));
3647 ypart = operand_subword (y, i, 1, mode);
3648 }
3649 else if (ypart == 0)
3650 ypart = operand_subword_force (y, i, mode);
3651
3652 gcc_assert (xpart && ypart);
3653
3654 need_clobber |= (GET_CODE (xpart) == SUBREG);
3655
3656 last_insn = emit_move_insn (xpart, ypart);
3657 }
3658
3659 seq = get_insns ();
3660 end_sequence ();
3661
3662 /* Show the output dies here. This is necessary for SUBREGs
3663 of pseudos since we cannot track their lifetimes correctly;
3664 hard regs shouldn't appear here except as return values.
3665 We never want to emit such a clobber after reload. */
3666 if (x != y
3667 && ! (reload_in_progress || reload_completed)
3668 && need_clobber != 0)
3669 emit_clobber (x);
3670
3671 emit_insn (seq);
3672
3673 return last_insn;
3674 }
3675
3676 /* Low level part of emit_move_insn.
3677 Called just like emit_move_insn, but assumes X and Y
3678 are basically valid. */
3679
3680 rtx_insn *
3681 emit_move_insn_1 (rtx x, rtx y)
3682 {
3683 machine_mode mode = GET_MODE (x);
3684 enum insn_code code;
3685
3686 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3687
3688 code = optab_handler (mov_optab, mode);
3689 if (code != CODE_FOR_nothing)
3690 return emit_insn (GEN_FCN (code) (x, y));
3691
3692 /* Expand complex moves by moving real part and imag part. */
3693 if (COMPLEX_MODE_P (mode))
3694 return emit_move_complex (mode, x, y);
3695
3696 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3697 || ALL_FIXED_POINT_MODE_P (mode))
3698 {
3699 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3700
3701 /* If we can't find an integer mode, use multi words. */
3702 if (result)
3703 return result;
3704 else
3705 return emit_move_multi_word (mode, x, y);
3706 }
3707
3708 if (GET_MODE_CLASS (mode) == MODE_CC)
3709 return emit_move_ccmode (mode, x, y);
3710
3711 /* Try using a move pattern for the corresponding integer mode. This is
3712 only safe when simplify_subreg can convert MODE constants into integer
3713 constants. At present, it can only do this reliably if the value
3714 fits within a HOST_WIDE_INT. */
3715 if (!CONSTANT_P (y)
3716 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3717 {
3718 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3719
3720 if (ret)
3721 {
3722 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3723 return ret;
3724 }
3725 }
3726
3727 return emit_move_multi_word (mode, x, y);
3728 }
3729
3730 /* Generate code to copy Y into X.
3731 Both Y and X must have the same mode, except that
3732 Y can be a constant with VOIDmode.
3733 This mode cannot be BLKmode; use emit_block_move for that.
3734
3735 Return the last instruction emitted. */
3736
3737 rtx_insn *
3738 emit_move_insn (rtx x, rtx y)
3739 {
3740 machine_mode mode = GET_MODE (x);
3741 rtx y_cst = NULL_RTX;
3742 rtx_insn *last_insn;
3743 rtx set;
3744
3745 gcc_assert (mode != BLKmode
3746 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3747
3748 if (CONSTANT_P (y))
3749 {
3750 if (optimize
3751 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3752 && (last_insn = compress_float_constant (x, y)))
3753 return last_insn;
3754
3755 y_cst = y;
3756
3757 if (!targetm.legitimate_constant_p (mode, y))
3758 {
3759 y = force_const_mem (mode, y);
3760
3761 /* If the target's cannot_force_const_mem prevented the spill,
3762 assume that the target's move expanders will also take care
3763 of the non-legitimate constant. */
3764 if (!y)
3765 y = y_cst;
3766 else
3767 y = use_anchored_address (y);
3768 }
3769 }
3770
3771 /* If X or Y are memory references, verify that their addresses are valid
3772 for the machine. */
3773 if (MEM_P (x)
3774 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3775 MEM_ADDR_SPACE (x))
3776 && ! push_operand (x, GET_MODE (x))))
3777 x = validize_mem (x);
3778
3779 if (MEM_P (y)
3780 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3781 MEM_ADDR_SPACE (y)))
3782 y = validize_mem (y);
3783
3784 gcc_assert (mode != BLKmode);
3785
3786 last_insn = emit_move_insn_1 (x, y);
3787
3788 if (y_cst && REG_P (x)
3789 && (set = single_set (last_insn)) != NULL_RTX
3790 && SET_DEST (set) == x
3791 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3792 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3793
3794 return last_insn;
3795 }
3796
3797 /* Generate the body of an instruction to copy Y into X.
3798 It may be a list of insns, if one insn isn't enough. */
3799
3800 rtx_insn *
3801 gen_move_insn (rtx x, rtx y)
3802 {
3803 rtx_insn *seq;
3804
3805 start_sequence ();
3806 emit_move_insn_1 (x, y);
3807 seq = get_insns ();
3808 end_sequence ();
3809 return seq;
3810 }
3811
3812 /* If Y is representable exactly in a narrower mode, and the target can
3813 perform the extension directly from constant or memory, then emit the
3814 move as an extension. */
3815
3816 static rtx_insn *
3817 compress_float_constant (rtx x, rtx y)
3818 {
3819 machine_mode dstmode = GET_MODE (x);
3820 machine_mode orig_srcmode = GET_MODE (y);
3821 machine_mode srcmode;
3822 const REAL_VALUE_TYPE *r;
3823 int oldcost, newcost;
3824 bool speed = optimize_insn_for_speed_p ();
3825
3826 r = CONST_DOUBLE_REAL_VALUE (y);
3827
3828 if (targetm.legitimate_constant_p (dstmode, y))
3829 oldcost = set_src_cost (y, orig_srcmode, speed);
3830 else
3831 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3832
3833 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3834 {
3835 enum insn_code ic;
3836 rtx trunc_y;
3837 rtx_insn *last_insn;
3838
3839 /* Skip if the target can't extend this way. */
3840 ic = can_extend_p (dstmode, srcmode, 0);
3841 if (ic == CODE_FOR_nothing)
3842 continue;
3843
3844 /* Skip if the narrowed value isn't exact. */
3845 if (! exact_real_truncate (srcmode, r))
3846 continue;
3847
3848 trunc_y = const_double_from_real_value (*r, srcmode);
3849
3850 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3851 {
3852 /* Skip if the target needs extra instructions to perform
3853 the extension. */
3854 if (!insn_operand_matches (ic, 1, trunc_y))
3855 continue;
3856 /* This is valid, but may not be cheaper than the original. */
3857 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3858 dstmode, speed);
3859 if (oldcost < newcost)
3860 continue;
3861 }
3862 else if (float_extend_from_mem[dstmode][srcmode])
3863 {
3864 trunc_y = force_const_mem (srcmode, trunc_y);
3865 /* This is valid, but may not be cheaper than the original. */
3866 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3867 dstmode, speed);
3868 if (oldcost < newcost)
3869 continue;
3870 trunc_y = validize_mem (trunc_y);
3871 }
3872 else
3873 continue;
3874
3875 /* For CSE's benefit, force the compressed constant pool entry
3876 into a new pseudo. This constant may be used in different modes,
3877 and if not, combine will put things back together for us. */
3878 trunc_y = force_reg (srcmode, trunc_y);
3879
3880 /* If x is a hard register, perform the extension into a pseudo,
3881 so that e.g. stack realignment code is aware of it. */
3882 rtx target = x;
3883 if (REG_P (x) && HARD_REGISTER_P (x))
3884 target = gen_reg_rtx (dstmode);
3885
3886 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3887 last_insn = get_last_insn ();
3888
3889 if (REG_P (target))
3890 set_unique_reg_note (last_insn, REG_EQUAL, y);
3891
3892 if (target != x)
3893 return emit_move_insn (x, target);
3894 return last_insn;
3895 }
3896
3897 return NULL;
3898 }
3899 \f
3900 /* Pushing data onto the stack. */
3901
3902 /* Push a block of length SIZE (perhaps variable)
3903 and return an rtx to address the beginning of the block.
3904 The value may be virtual_outgoing_args_rtx.
3905
3906 EXTRA is the number of bytes of padding to push in addition to SIZE.
3907 BELOW nonzero means this padding comes at low addresses;
3908 otherwise, the padding comes at high addresses. */
3909
3910 rtx
3911 push_block (rtx size, poly_int64 extra, int below)
3912 {
3913 rtx temp;
3914
3915 size = convert_modes (Pmode, ptr_mode, size, 1);
3916 if (CONSTANT_P (size))
3917 anti_adjust_stack (plus_constant (Pmode, size, extra));
3918 else if (REG_P (size) && known_eq (extra, 0))
3919 anti_adjust_stack (size);
3920 else
3921 {
3922 temp = copy_to_mode_reg (Pmode, size);
3923 if (maybe_ne (extra, 0))
3924 temp = expand_binop (Pmode, add_optab, temp,
3925 gen_int_mode (extra, Pmode),
3926 temp, 0, OPTAB_LIB_WIDEN);
3927 anti_adjust_stack (temp);
3928 }
3929
3930 if (STACK_GROWS_DOWNWARD)
3931 {
3932 temp = virtual_outgoing_args_rtx;
3933 if (maybe_ne (extra, 0) && below)
3934 temp = plus_constant (Pmode, temp, extra);
3935 }
3936 else
3937 {
3938 poly_int64 csize;
3939 if (poly_int_rtx_p (size, &csize))
3940 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3941 -csize - (below ? 0 : extra));
3942 else if (maybe_ne (extra, 0) && !below)
3943 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3944 negate_rtx (Pmode, plus_constant (Pmode, size,
3945 extra)));
3946 else
3947 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3948 negate_rtx (Pmode, size));
3949 }
3950
3951 return memory_address (NARROWEST_INT_MODE, temp);
3952 }
3953
3954 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3955
3956 static rtx
3957 mem_autoinc_base (rtx mem)
3958 {
3959 if (MEM_P (mem))
3960 {
3961 rtx addr = XEXP (mem, 0);
3962 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3963 return XEXP (addr, 0);
3964 }
3965 return NULL;
3966 }
3967
3968 /* A utility routine used here, in reload, and in try_split. The insns
3969 after PREV up to and including LAST are known to adjust the stack,
3970 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3971 placing notes as appropriate. PREV may be NULL, indicating the
3972 entire insn sequence prior to LAST should be scanned.
3973
3974 The set of allowed stack pointer modifications is small:
3975 (1) One or more auto-inc style memory references (aka pushes),
3976 (2) One or more addition/subtraction with the SP as destination,
3977 (3) A single move insn with the SP as destination,
3978 (4) A call_pop insn,
3979 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3980
3981 Insns in the sequence that do not modify the SP are ignored,
3982 except for noreturn calls.
3983
3984 The return value is the amount of adjustment that can be trivially
3985 verified, via immediate operand or auto-inc. If the adjustment
3986 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
3987
3988 poly_int64
3989 find_args_size_adjust (rtx_insn *insn)
3990 {
3991 rtx dest, set, pat;
3992 int i;
3993
3994 pat = PATTERN (insn);
3995 set = NULL;
3996
3997 /* Look for a call_pop pattern. */
3998 if (CALL_P (insn))
3999 {
4000 /* We have to allow non-call_pop patterns for the case
4001 of emit_single_push_insn of a TLS address. */
4002 if (GET_CODE (pat) != PARALLEL)
4003 return 0;
4004
4005 /* All call_pop have a stack pointer adjust in the parallel.
4006 The call itself is always first, and the stack adjust is
4007 usually last, so search from the end. */
4008 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4009 {
4010 set = XVECEXP (pat, 0, i);
4011 if (GET_CODE (set) != SET)
4012 continue;
4013 dest = SET_DEST (set);
4014 if (dest == stack_pointer_rtx)
4015 break;
4016 }
4017 /* We'd better have found the stack pointer adjust. */
4018 if (i == 0)
4019 return 0;
4020 /* Fall through to process the extracted SET and DEST
4021 as if it was a standalone insn. */
4022 }
4023 else if (GET_CODE (pat) == SET)
4024 set = pat;
4025 else if ((set = single_set (insn)) != NULL)
4026 ;
4027 else if (GET_CODE (pat) == PARALLEL)
4028 {
4029 /* ??? Some older ports use a parallel with a stack adjust
4030 and a store for a PUSH_ROUNDING pattern, rather than a
4031 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4032 /* ??? See h8300 and m68k, pushqi1. */
4033 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4034 {
4035 set = XVECEXP (pat, 0, i);
4036 if (GET_CODE (set) != SET)
4037 continue;
4038 dest = SET_DEST (set);
4039 if (dest == stack_pointer_rtx)
4040 break;
4041
4042 /* We do not expect an auto-inc of the sp in the parallel. */
4043 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4044 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4045 != stack_pointer_rtx);
4046 }
4047 if (i < 0)
4048 return 0;
4049 }
4050 else
4051 return 0;
4052
4053 dest = SET_DEST (set);
4054
4055 /* Look for direct modifications of the stack pointer. */
4056 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4057 {
4058 /* Look for a trivial adjustment, otherwise assume nothing. */
4059 /* Note that the SPU restore_stack_block pattern refers to
4060 the stack pointer in V4SImode. Consider that non-trivial. */
4061 poly_int64 offset;
4062 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4063 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4064 return offset;
4065 /* ??? Reload can generate no-op moves, which will be cleaned
4066 up later. Recognize it and continue searching. */
4067 else if (rtx_equal_p (dest, SET_SRC (set)))
4068 return 0;
4069 else
4070 return HOST_WIDE_INT_MIN;
4071 }
4072 else
4073 {
4074 rtx mem, addr;
4075
4076 /* Otherwise only think about autoinc patterns. */
4077 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4078 {
4079 mem = dest;
4080 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4081 != stack_pointer_rtx);
4082 }
4083 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4084 mem = SET_SRC (set);
4085 else
4086 return 0;
4087
4088 addr = XEXP (mem, 0);
4089 switch (GET_CODE (addr))
4090 {
4091 case PRE_INC:
4092 case POST_INC:
4093 return GET_MODE_SIZE (GET_MODE (mem));
4094 case PRE_DEC:
4095 case POST_DEC:
4096 return -GET_MODE_SIZE (GET_MODE (mem));
4097 case PRE_MODIFY:
4098 case POST_MODIFY:
4099 addr = XEXP (addr, 1);
4100 gcc_assert (GET_CODE (addr) == PLUS);
4101 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4102 return rtx_to_poly_int64 (XEXP (addr, 1));
4103 default:
4104 gcc_unreachable ();
4105 }
4106 }
4107 }
4108
4109 poly_int64
4110 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4111 poly_int64 end_args_size)
4112 {
4113 poly_int64 args_size = end_args_size;
4114 bool saw_unknown = false;
4115 rtx_insn *insn;
4116
4117 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4118 {
4119 if (!NONDEBUG_INSN_P (insn))
4120 continue;
4121
4122 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4123 a call argument containing a TLS address that itself requires
4124 a call to __tls_get_addr. The handling of stack_pointer_delta
4125 in emit_single_push_insn is supposed to ensure that any such
4126 notes are already correct. */
4127 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4128 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4129
4130 poly_int64 this_delta = find_args_size_adjust (insn);
4131 if (known_eq (this_delta, 0))
4132 {
4133 if (!CALL_P (insn)
4134 || ACCUMULATE_OUTGOING_ARGS
4135 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4136 continue;
4137 }
4138
4139 gcc_assert (!saw_unknown);
4140 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4141 saw_unknown = true;
4142
4143 if (!note)
4144 add_args_size_note (insn, args_size);
4145 if (STACK_GROWS_DOWNWARD)
4146 this_delta = -poly_uint64 (this_delta);
4147
4148 if (saw_unknown)
4149 args_size = HOST_WIDE_INT_MIN;
4150 else
4151 args_size -= this_delta;
4152 }
4153
4154 return args_size;
4155 }
4156
4157 #ifdef PUSH_ROUNDING
4158 /* Emit single push insn. */
4159
4160 static void
4161 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4162 {
4163 rtx dest_addr;
4164 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4165 rtx dest;
4166 enum insn_code icode;
4167
4168 /* If there is push pattern, use it. Otherwise try old way of throwing
4169 MEM representing push operation to move expander. */
4170 icode = optab_handler (push_optab, mode);
4171 if (icode != CODE_FOR_nothing)
4172 {
4173 struct expand_operand ops[1];
4174
4175 create_input_operand (&ops[0], x, mode);
4176 if (maybe_expand_insn (icode, 1, ops))
4177 return;
4178 }
4179 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4180 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4181 /* If we are to pad downward, adjust the stack pointer first and
4182 then store X into the stack location using an offset. This is
4183 because emit_move_insn does not know how to pad; it does not have
4184 access to type. */
4185 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4186 {
4187 emit_move_insn (stack_pointer_rtx,
4188 expand_binop (Pmode,
4189 STACK_GROWS_DOWNWARD ? sub_optab
4190 : add_optab,
4191 stack_pointer_rtx,
4192 gen_int_mode (rounded_size, Pmode),
4193 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4194
4195 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4196 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4197 /* We have already decremented the stack pointer, so get the
4198 previous value. */
4199 offset += rounded_size;
4200
4201 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4202 /* We have already incremented the stack pointer, so get the
4203 previous value. */
4204 offset -= rounded_size;
4205
4206 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4207 }
4208 else
4209 {
4210 if (STACK_GROWS_DOWNWARD)
4211 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4212 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4213 else
4214 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4215 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4216
4217 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4218 }
4219
4220 dest = gen_rtx_MEM (mode, dest_addr);
4221
4222 if (type != 0)
4223 {
4224 set_mem_attributes (dest, type, 1);
4225
4226 if (cfun->tail_call_marked)
4227 /* Function incoming arguments may overlap with sibling call
4228 outgoing arguments and we cannot allow reordering of reads
4229 from function arguments with stores to outgoing arguments
4230 of sibling calls. */
4231 set_mem_alias_set (dest, 0);
4232 }
4233 emit_move_insn (dest, x);
4234 }
4235
4236 /* Emit and annotate a single push insn. */
4237
4238 static void
4239 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4240 {
4241 poly_int64 delta, old_delta = stack_pointer_delta;
4242 rtx_insn *prev = get_last_insn ();
4243 rtx_insn *last;
4244
4245 emit_single_push_insn_1 (mode, x, type);
4246
4247 /* Adjust stack_pointer_delta to describe the situation after the push
4248 we just performed. Note that we must do this after the push rather
4249 than before the push in case calculating X needs pushes and pops of
4250 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4251 for such pushes and pops must not include the effect of the future
4252 push of X. */
4253 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4254
4255 last = get_last_insn ();
4256
4257 /* Notice the common case where we emitted exactly one insn. */
4258 if (PREV_INSN (last) == prev)
4259 {
4260 add_args_size_note (last, stack_pointer_delta);
4261 return;
4262 }
4263
4264 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4265 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4266 || known_eq (delta, old_delta));
4267 }
4268 #endif
4269
4270 /* If reading SIZE bytes from X will end up reading from
4271 Y return the number of bytes that overlap. Return -1
4272 if there is no overlap or -2 if we can't determine
4273 (for example when X and Y have different base registers). */
4274
4275 static int
4276 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4277 {
4278 rtx tmp = plus_constant (Pmode, x, size);
4279 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4280
4281 if (!CONST_INT_P (sub))
4282 return -2;
4283
4284 HOST_WIDE_INT val = INTVAL (sub);
4285
4286 return IN_RANGE (val, 1, size) ? val : -1;
4287 }
4288
4289 /* Generate code to push X onto the stack, assuming it has mode MODE and
4290 type TYPE.
4291 MODE is redundant except when X is a CONST_INT (since they don't
4292 carry mode info).
4293 SIZE is an rtx for the size of data to be copied (in bytes),
4294 needed only if X is BLKmode.
4295 Return true if successful. May return false if asked to push a
4296 partial argument during a sibcall optimization (as specified by
4297 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4298 to not overlap.
4299
4300 ALIGN (in bits) is maximum alignment we can assume.
4301
4302 If PARTIAL and REG are both nonzero, then copy that many of the first
4303 bytes of X into registers starting with REG, and push the rest of X.
4304 The amount of space pushed is decreased by PARTIAL bytes.
4305 REG must be a hard register in this case.
4306 If REG is zero but PARTIAL is not, take any all others actions for an
4307 argument partially in registers, but do not actually load any
4308 registers.
4309
4310 EXTRA is the amount in bytes of extra space to leave next to this arg.
4311 This is ignored if an argument block has already been allocated.
4312
4313 On a machine that lacks real push insns, ARGS_ADDR is the address of
4314 the bottom of the argument block for this call. We use indexing off there
4315 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4316 argument block has not been preallocated.
4317
4318 ARGS_SO_FAR is the size of args previously pushed for this call.
4319
4320 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4321 for arguments passed in registers. If nonzero, it will be the number
4322 of bytes required. */
4323
4324 bool
4325 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4326 unsigned int align, int partial, rtx reg, poly_int64 extra,
4327 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4328 rtx alignment_pad, bool sibcall_p)
4329 {
4330 rtx xinner;
4331 pad_direction stack_direction
4332 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4333
4334 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4335 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4336 Default is below for small data on big-endian machines; else above. */
4337 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4338
4339 /* Invert direction if stack is post-decrement.
4340 FIXME: why? */
4341 if (STACK_PUSH_CODE == POST_DEC)
4342 if (where_pad != PAD_NONE)
4343 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4344
4345 xinner = x;
4346
4347 int nregs = partial / UNITS_PER_WORD;
4348 rtx *tmp_regs = NULL;
4349 int overlapping = 0;
4350
4351 if (mode == BLKmode
4352 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4353 {
4354 /* Copy a block into the stack, entirely or partially. */
4355
4356 rtx temp;
4357 int used;
4358 int offset;
4359 int skip;
4360
4361 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4362 used = partial - offset;
4363
4364 if (mode != BLKmode)
4365 {
4366 /* A value is to be stored in an insufficiently aligned
4367 stack slot; copy via a suitably aligned slot if
4368 necessary. */
4369 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4370 if (!MEM_P (xinner))
4371 {
4372 temp = assign_temp (type, 1, 1);
4373 emit_move_insn (temp, xinner);
4374 xinner = temp;
4375 }
4376 }
4377
4378 gcc_assert (size);
4379
4380 /* USED is now the # of bytes we need not copy to the stack
4381 because registers will take care of them. */
4382
4383 if (partial != 0)
4384 xinner = adjust_address (xinner, BLKmode, used);
4385
4386 /* If the partial register-part of the arg counts in its stack size,
4387 skip the part of stack space corresponding to the registers.
4388 Otherwise, start copying to the beginning of the stack space,
4389 by setting SKIP to 0. */
4390 skip = (reg_parm_stack_space == 0) ? 0 : used;
4391
4392 #ifdef PUSH_ROUNDING
4393 /* Do it with several push insns if that doesn't take lots of insns
4394 and if there is no difficulty with push insns that skip bytes
4395 on the stack for alignment purposes. */
4396 if (args_addr == 0
4397 && PUSH_ARGS
4398 && CONST_INT_P (size)
4399 && skip == 0
4400 && MEM_ALIGN (xinner) >= align
4401 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4402 /* Here we avoid the case of a structure whose weak alignment
4403 forces many pushes of a small amount of data,
4404 and such small pushes do rounding that causes trouble. */
4405 && ((!targetm.slow_unaligned_access (word_mode, align))
4406 || align >= BIGGEST_ALIGNMENT
4407 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4408 align / BITS_PER_UNIT))
4409 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4410 {
4411 /* Push padding now if padding above and stack grows down,
4412 or if padding below and stack grows up.
4413 But if space already allocated, this has already been done. */
4414 if (maybe_ne (extra, 0)
4415 && args_addr == 0
4416 && where_pad != PAD_NONE
4417 && where_pad != stack_direction)
4418 anti_adjust_stack (gen_int_mode (extra, Pmode));
4419
4420 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4421 RETURN_BEGIN);
4422 }
4423 else
4424 #endif /* PUSH_ROUNDING */
4425 {
4426 rtx target;
4427
4428 /* Otherwise make space on the stack and copy the data
4429 to the address of that space. */
4430
4431 /* Deduct words put into registers from the size we must copy. */
4432 if (partial != 0)
4433 {
4434 if (CONST_INT_P (size))
4435 size = GEN_INT (INTVAL (size) - used);
4436 else
4437 size = expand_binop (GET_MODE (size), sub_optab, size,
4438 gen_int_mode (used, GET_MODE (size)),
4439 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4440 }
4441
4442 /* Get the address of the stack space.
4443 In this case, we do not deal with EXTRA separately.
4444 A single stack adjust will do. */
4445 poly_int64 offset;
4446 if (! args_addr)
4447 {
4448 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4449 extra = 0;
4450 }
4451 else if (poly_int_rtx_p (args_so_far, &offset))
4452 temp = memory_address (BLKmode,
4453 plus_constant (Pmode, args_addr,
4454 skip + offset));
4455 else
4456 temp = memory_address (BLKmode,
4457 plus_constant (Pmode,
4458 gen_rtx_PLUS (Pmode,
4459 args_addr,
4460 args_so_far),
4461 skip));
4462
4463 if (!ACCUMULATE_OUTGOING_ARGS)
4464 {
4465 /* If the source is referenced relative to the stack pointer,
4466 copy it to another register to stabilize it. We do not need
4467 to do this if we know that we won't be changing sp. */
4468
4469 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4470 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4471 temp = copy_to_reg (temp);
4472 }
4473
4474 target = gen_rtx_MEM (BLKmode, temp);
4475
4476 /* We do *not* set_mem_attributes here, because incoming arguments
4477 may overlap with sibling call outgoing arguments and we cannot
4478 allow reordering of reads from function arguments with stores
4479 to outgoing arguments of sibling calls. We do, however, want
4480 to record the alignment of the stack slot. */
4481 /* ALIGN may well be better aligned than TYPE, e.g. due to
4482 PARM_BOUNDARY. Assume the caller isn't lying. */
4483 set_mem_align (target, align);
4484
4485 /* If part should go in registers and pushing to that part would
4486 overwrite some of the values that need to go into regs, load the
4487 overlapping values into temporary pseudos to be moved into the hard
4488 regs at the end after the stack pushing has completed.
4489 We cannot load them directly into the hard regs here because
4490 they can be clobbered by the block move expansions.
4491 See PR 65358. */
4492
4493 if (partial > 0 && reg != 0 && mode == BLKmode
4494 && GET_CODE (reg) != PARALLEL)
4495 {
4496 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4497 if (overlapping > 0)
4498 {
4499 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4500 overlapping /= UNITS_PER_WORD;
4501
4502 tmp_regs = XALLOCAVEC (rtx, overlapping);
4503
4504 for (int i = 0; i < overlapping; i++)
4505 tmp_regs[i] = gen_reg_rtx (word_mode);
4506
4507 for (int i = 0; i < overlapping; i++)
4508 emit_move_insn (tmp_regs[i],
4509 operand_subword_force (target, i, mode));
4510 }
4511 else if (overlapping == -1)
4512 overlapping = 0;
4513 /* Could not determine whether there is overlap.
4514 Fail the sibcall. */
4515 else
4516 {
4517 overlapping = 0;
4518 if (sibcall_p)
4519 return false;
4520 }
4521 }
4522 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4523 }
4524 }
4525 else if (partial > 0)
4526 {
4527 /* Scalar partly in registers. This case is only supported
4528 for fixed-wdth modes. */
4529 int size = GET_MODE_SIZE (mode).to_constant ();
4530 size /= UNITS_PER_WORD;
4531 int i;
4532 int not_stack;
4533 /* # bytes of start of argument
4534 that we must make space for but need not store. */
4535 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4536 int args_offset = INTVAL (args_so_far);
4537 int skip;
4538
4539 /* Push padding now if padding above and stack grows down,
4540 or if padding below and stack grows up.
4541 But if space already allocated, this has already been done. */
4542 if (maybe_ne (extra, 0)
4543 && args_addr == 0
4544 && where_pad != PAD_NONE
4545 && where_pad != stack_direction)
4546 anti_adjust_stack (gen_int_mode (extra, Pmode));
4547
4548 /* If we make space by pushing it, we might as well push
4549 the real data. Otherwise, we can leave OFFSET nonzero
4550 and leave the space uninitialized. */
4551 if (args_addr == 0)
4552 offset = 0;
4553
4554 /* Now NOT_STACK gets the number of words that we don't need to
4555 allocate on the stack. Convert OFFSET to words too. */
4556 not_stack = (partial - offset) / UNITS_PER_WORD;
4557 offset /= UNITS_PER_WORD;
4558
4559 /* If the partial register-part of the arg counts in its stack size,
4560 skip the part of stack space corresponding to the registers.
4561 Otherwise, start copying to the beginning of the stack space,
4562 by setting SKIP to 0. */
4563 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4564
4565 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4566 x = validize_mem (force_const_mem (mode, x));
4567
4568 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4569 SUBREGs of such registers are not allowed. */
4570 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4571 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4572 x = copy_to_reg (x);
4573
4574 /* Loop over all the words allocated on the stack for this arg. */
4575 /* We can do it by words, because any scalar bigger than a word
4576 has a size a multiple of a word. */
4577 for (i = size - 1; i >= not_stack; i--)
4578 if (i >= not_stack + offset)
4579 if (!emit_push_insn (operand_subword_force (x, i, mode),
4580 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4581 0, args_addr,
4582 GEN_INT (args_offset + ((i - not_stack + skip)
4583 * UNITS_PER_WORD)),
4584 reg_parm_stack_space, alignment_pad, sibcall_p))
4585 return false;
4586 }
4587 else
4588 {
4589 rtx addr;
4590 rtx dest;
4591
4592 /* Push padding now if padding above and stack grows down,
4593 or if padding below and stack grows up.
4594 But if space already allocated, this has already been done. */
4595 if (maybe_ne (extra, 0)
4596 && args_addr == 0
4597 && where_pad != PAD_NONE
4598 && where_pad != stack_direction)
4599 anti_adjust_stack (gen_int_mode (extra, Pmode));
4600
4601 #ifdef PUSH_ROUNDING
4602 if (args_addr == 0 && PUSH_ARGS)
4603 emit_single_push_insn (mode, x, type);
4604 else
4605 #endif
4606 {
4607 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4608 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4609
4610 /* We do *not* set_mem_attributes here, because incoming arguments
4611 may overlap with sibling call outgoing arguments and we cannot
4612 allow reordering of reads from function arguments with stores
4613 to outgoing arguments of sibling calls. We do, however, want
4614 to record the alignment of the stack slot. */
4615 /* ALIGN may well be better aligned than TYPE, e.g. due to
4616 PARM_BOUNDARY. Assume the caller isn't lying. */
4617 set_mem_align (dest, align);
4618
4619 emit_move_insn (dest, x);
4620 }
4621 }
4622
4623 /* Move the partial arguments into the registers and any overlapping
4624 values that we moved into the pseudos in tmp_regs. */
4625 if (partial > 0 && reg != 0)
4626 {
4627 /* Handle calls that pass values in multiple non-contiguous locations.
4628 The Irix 6 ABI has examples of this. */
4629 if (GET_CODE (reg) == PARALLEL)
4630 emit_group_load (reg, x, type, -1);
4631 else
4632 {
4633 gcc_assert (partial % UNITS_PER_WORD == 0);
4634 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4635
4636 for (int i = 0; i < overlapping; i++)
4637 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4638 + nregs - overlapping + i),
4639 tmp_regs[i]);
4640
4641 }
4642 }
4643
4644 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4645 anti_adjust_stack (gen_int_mode (extra, Pmode));
4646
4647 if (alignment_pad && args_addr == 0)
4648 anti_adjust_stack (alignment_pad);
4649
4650 return true;
4651 }
4652 \f
4653 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4654 operations. */
4655
4656 static rtx
4657 get_subtarget (rtx x)
4658 {
4659 return (optimize
4660 || x == 0
4661 /* Only registers can be subtargets. */
4662 || !REG_P (x)
4663 /* Don't use hard regs to avoid extending their life. */
4664 || REGNO (x) < FIRST_PSEUDO_REGISTER
4665 ? 0 : x);
4666 }
4667
4668 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4669 FIELD is a bitfield. Returns true if the optimization was successful,
4670 and there's nothing else to do. */
4671
4672 static bool
4673 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4674 poly_uint64 pbitpos,
4675 poly_uint64 pbitregion_start,
4676 poly_uint64 pbitregion_end,
4677 machine_mode mode1, rtx str_rtx,
4678 tree to, tree src, bool reverse)
4679 {
4680 /* str_mode is not guaranteed to be a scalar type. */
4681 machine_mode str_mode = GET_MODE (str_rtx);
4682 unsigned int str_bitsize;
4683 tree op0, op1;
4684 rtx value, result;
4685 optab binop;
4686 gimple *srcstmt;
4687 enum tree_code code;
4688
4689 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4690 if (mode1 != VOIDmode
4691 || !pbitsize.is_constant (&bitsize)
4692 || !pbitpos.is_constant (&bitpos)
4693 || !pbitregion_start.is_constant (&bitregion_start)
4694 || !pbitregion_end.is_constant (&bitregion_end)
4695 || bitsize >= BITS_PER_WORD
4696 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4697 || str_bitsize > BITS_PER_WORD
4698 || TREE_SIDE_EFFECTS (to)
4699 || TREE_THIS_VOLATILE (to))
4700 return false;
4701
4702 STRIP_NOPS (src);
4703 if (TREE_CODE (src) != SSA_NAME)
4704 return false;
4705 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4706 return false;
4707
4708 srcstmt = get_gimple_for_ssa_name (src);
4709 if (!srcstmt
4710 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4711 return false;
4712
4713 code = gimple_assign_rhs_code (srcstmt);
4714
4715 op0 = gimple_assign_rhs1 (srcstmt);
4716
4717 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4718 to find its initialization. Hopefully the initialization will
4719 be from a bitfield load. */
4720 if (TREE_CODE (op0) == SSA_NAME)
4721 {
4722 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4723
4724 /* We want to eventually have OP0 be the same as TO, which
4725 should be a bitfield. */
4726 if (!op0stmt
4727 || !is_gimple_assign (op0stmt)
4728 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4729 return false;
4730 op0 = gimple_assign_rhs1 (op0stmt);
4731 }
4732
4733 op1 = gimple_assign_rhs2 (srcstmt);
4734
4735 if (!operand_equal_p (to, op0, 0))
4736 return false;
4737
4738 if (MEM_P (str_rtx))
4739 {
4740 unsigned HOST_WIDE_INT offset1;
4741
4742 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4743 str_bitsize = BITS_PER_WORD;
4744
4745 scalar_int_mode best_mode;
4746 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4747 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4748 return false;
4749 str_mode = best_mode;
4750 str_bitsize = GET_MODE_BITSIZE (best_mode);
4751
4752 offset1 = bitpos;
4753 bitpos %= str_bitsize;
4754 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4755 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4756 }
4757 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4758 return false;
4759
4760 /* If the bit field covers the whole REG/MEM, store_field
4761 will likely generate better code. */
4762 if (bitsize >= str_bitsize)
4763 return false;
4764
4765 /* We can't handle fields split across multiple entities. */
4766 if (bitpos + bitsize > str_bitsize)
4767 return false;
4768
4769 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4770 bitpos = str_bitsize - bitpos - bitsize;
4771
4772 switch (code)
4773 {
4774 case PLUS_EXPR:
4775 case MINUS_EXPR:
4776 /* For now, just optimize the case of the topmost bitfield
4777 where we don't need to do any masking and also
4778 1 bit bitfields where xor can be used.
4779 We might win by one instruction for the other bitfields
4780 too if insv/extv instructions aren't used, so that
4781 can be added later. */
4782 if ((reverse || bitpos + bitsize != str_bitsize)
4783 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4784 break;
4785
4786 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4787 value = convert_modes (str_mode,
4788 TYPE_MODE (TREE_TYPE (op1)), value,
4789 TYPE_UNSIGNED (TREE_TYPE (op1)));
4790
4791 /* We may be accessing data outside the field, which means
4792 we can alias adjacent data. */
4793 if (MEM_P (str_rtx))
4794 {
4795 str_rtx = shallow_copy_rtx (str_rtx);
4796 set_mem_alias_set (str_rtx, 0);
4797 set_mem_expr (str_rtx, 0);
4798 }
4799
4800 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4801 {
4802 value = expand_and (str_mode, value, const1_rtx, NULL);
4803 binop = xor_optab;
4804 }
4805 else
4806 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4807
4808 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4809 if (reverse)
4810 value = flip_storage_order (str_mode, value);
4811 result = expand_binop (str_mode, binop, str_rtx,
4812 value, str_rtx, 1, OPTAB_WIDEN);
4813 if (result != str_rtx)
4814 emit_move_insn (str_rtx, result);
4815 return true;
4816
4817 case BIT_IOR_EXPR:
4818 case BIT_XOR_EXPR:
4819 if (TREE_CODE (op1) != INTEGER_CST)
4820 break;
4821 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4822 value = convert_modes (str_mode,
4823 TYPE_MODE (TREE_TYPE (op1)), value,
4824 TYPE_UNSIGNED (TREE_TYPE (op1)));
4825
4826 /* We may be accessing data outside the field, which means
4827 we can alias adjacent data. */
4828 if (MEM_P (str_rtx))
4829 {
4830 str_rtx = shallow_copy_rtx (str_rtx);
4831 set_mem_alias_set (str_rtx, 0);
4832 set_mem_expr (str_rtx, 0);
4833 }
4834
4835 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4836 if (bitpos + bitsize != str_bitsize)
4837 {
4838 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4839 str_mode);
4840 value = expand_and (str_mode, value, mask, NULL_RTX);
4841 }
4842 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4843 if (reverse)
4844 value = flip_storage_order (str_mode, value);
4845 result = expand_binop (str_mode, binop, str_rtx,
4846 value, str_rtx, 1, OPTAB_WIDEN);
4847 if (result != str_rtx)
4848 emit_move_insn (str_rtx, result);
4849 return true;
4850
4851 default:
4852 break;
4853 }
4854
4855 return false;
4856 }
4857
4858 /* In the C++ memory model, consecutive bit fields in a structure are
4859 considered one memory location.
4860
4861 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4862 returns the bit range of consecutive bits in which this COMPONENT_REF
4863 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4864 and *OFFSET may be adjusted in the process.
4865
4866 If the access does not need to be restricted, 0 is returned in both
4867 *BITSTART and *BITEND. */
4868
4869 void
4870 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
4871 poly_int64_pod *bitpos, tree *offset)
4872 {
4873 poly_int64 bitoffset;
4874 tree field, repr;
4875
4876 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4877
4878 field = TREE_OPERAND (exp, 1);
4879 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4880 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4881 need to limit the range we can access. */
4882 if (!repr)
4883 {
4884 *bitstart = *bitend = 0;
4885 return;
4886 }
4887
4888 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4889 part of a larger bit field, then the representative does not serve any
4890 useful purpose. This can occur in Ada. */
4891 if (handled_component_p (TREE_OPERAND (exp, 0)))
4892 {
4893 machine_mode rmode;
4894 poly_int64 rbitsize, rbitpos;
4895 tree roffset;
4896 int unsignedp, reversep, volatilep = 0;
4897 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4898 &roffset, &rmode, &unsignedp, &reversep,
4899 &volatilep);
4900 if (!multiple_p (rbitpos, BITS_PER_UNIT))
4901 {
4902 *bitstart = *bitend = 0;
4903 return;
4904 }
4905 }
4906
4907 /* Compute the adjustment to bitpos from the offset of the field
4908 relative to the representative. DECL_FIELD_OFFSET of field and
4909 repr are the same by construction if they are not constants,
4910 see finish_bitfield_layout. */
4911 poly_uint64 field_offset, repr_offset;
4912 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
4913 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
4914 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
4915 else
4916 bitoffset = 0;
4917 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4918 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4919
4920 /* If the adjustment is larger than bitpos, we would have a negative bit
4921 position for the lower bound and this may wreak havoc later. Adjust
4922 offset and bitpos to make the lower bound non-negative in that case. */
4923 if (maybe_gt (bitoffset, *bitpos))
4924 {
4925 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
4926 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
4927
4928 *bitpos += adjust_bits;
4929 if (*offset == NULL_TREE)
4930 *offset = size_int (-adjust_bytes);
4931 else
4932 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
4933 *bitstart = 0;
4934 }
4935 else
4936 *bitstart = *bitpos - bitoffset;
4937
4938 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
4939 }
4940
4941 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4942 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4943 DECL_RTL was not set yet, return NORTL. */
4944
4945 static inline bool
4946 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4947 {
4948 if (TREE_CODE (addr) != ADDR_EXPR)
4949 return false;
4950
4951 tree base = TREE_OPERAND (addr, 0);
4952
4953 if (!DECL_P (base)
4954 || TREE_ADDRESSABLE (base)
4955 || DECL_MODE (base) == BLKmode)
4956 return false;
4957
4958 if (!DECL_RTL_SET_P (base))
4959 return nortl;
4960
4961 return (!MEM_P (DECL_RTL (base)));
4962 }
4963
4964 /* Returns true if the MEM_REF REF refers to an object that does not
4965 reside in memory and has non-BLKmode. */
4966
4967 static inline bool
4968 mem_ref_refers_to_non_mem_p (tree ref)
4969 {
4970 tree base = TREE_OPERAND (ref, 0);
4971 return addr_expr_of_non_mem_decl_p_1 (base, false);
4972 }
4973
4974 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4975 is true, try generating a nontemporal store. */
4976
4977 void
4978 expand_assignment (tree to, tree from, bool nontemporal)
4979 {
4980 rtx to_rtx = 0;
4981 rtx result;
4982 machine_mode mode;
4983 unsigned int align;
4984 enum insn_code icode;
4985
4986 /* Don't crash if the lhs of the assignment was erroneous. */
4987 if (TREE_CODE (to) == ERROR_MARK)
4988 {
4989 expand_normal (from);
4990 return;
4991 }
4992
4993 /* Optimize away no-op moves without side-effects. */
4994 if (operand_equal_p (to, from, 0))
4995 return;
4996
4997 /* Handle misaligned stores. */
4998 mode = TYPE_MODE (TREE_TYPE (to));
4999 if ((TREE_CODE (to) == MEM_REF
5000 || TREE_CODE (to) == TARGET_MEM_REF)
5001 && mode != BLKmode
5002 && !mem_ref_refers_to_non_mem_p (to)
5003 && ((align = get_object_alignment (to))
5004 < GET_MODE_ALIGNMENT (mode))
5005 && (((icode = optab_handler (movmisalign_optab, mode))
5006 != CODE_FOR_nothing)
5007 || targetm.slow_unaligned_access (mode, align)))
5008 {
5009 rtx reg, mem;
5010
5011 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5012 reg = force_not_mem (reg);
5013 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5014 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5015 reg = flip_storage_order (mode, reg);
5016
5017 if (icode != CODE_FOR_nothing)
5018 {
5019 struct expand_operand ops[2];
5020
5021 create_fixed_operand (&ops[0], mem);
5022 create_input_operand (&ops[1], reg, mode);
5023 /* The movmisalign<mode> pattern cannot fail, else the assignment
5024 would silently be omitted. */
5025 expand_insn (icode, 2, ops);
5026 }
5027 else
5028 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5029 false);
5030 return;
5031 }
5032
5033 /* Assignment of a structure component needs special treatment
5034 if the structure component's rtx is not simply a MEM.
5035 Assignment of an array element at a constant index, and assignment of
5036 an array element in an unaligned packed structure field, has the same
5037 problem. Same for (partially) storing into a non-memory object. */
5038 if (handled_component_p (to)
5039 || (TREE_CODE (to) == MEM_REF
5040 && (REF_REVERSE_STORAGE_ORDER (to)
5041 || mem_ref_refers_to_non_mem_p (to)))
5042 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5043 {
5044 machine_mode mode1;
5045 poly_int64 bitsize, bitpos;
5046 poly_uint64 bitregion_start = 0;
5047 poly_uint64 bitregion_end = 0;
5048 tree offset;
5049 int unsignedp, reversep, volatilep = 0;
5050 tree tem;
5051
5052 push_temp_slots ();
5053 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5054 &unsignedp, &reversep, &volatilep);
5055
5056 /* Make sure bitpos is not negative, it can wreak havoc later. */
5057 if (maybe_lt (bitpos, 0))
5058 {
5059 gcc_assert (offset == NULL_TREE);
5060 offset = size_int (bits_to_bytes_round_down (bitpos));
5061 bitpos = num_trailing_bits (bitpos);
5062 }
5063
5064 if (TREE_CODE (to) == COMPONENT_REF
5065 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5066 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5067 /* The C++ memory model naturally applies to byte-aligned fields.
5068 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5069 BITSIZE are not byte-aligned, there is no need to limit the range
5070 we can access. This can occur with packed structures in Ada. */
5071 else if (maybe_gt (bitsize, 0)
5072 && multiple_p (bitsize, BITS_PER_UNIT)
5073 && multiple_p (bitpos, BITS_PER_UNIT))
5074 {
5075 bitregion_start = bitpos;
5076 bitregion_end = bitpos + bitsize - 1;
5077 }
5078
5079 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5080
5081 /* If the field has a mode, we want to access it in the
5082 field's mode, not the computed mode.
5083 If a MEM has VOIDmode (external with incomplete type),
5084 use BLKmode for it instead. */
5085 if (MEM_P (to_rtx))
5086 {
5087 if (mode1 != VOIDmode)
5088 to_rtx = adjust_address (to_rtx, mode1, 0);
5089 else if (GET_MODE (to_rtx) == VOIDmode)
5090 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5091 }
5092
5093 if (offset != 0)
5094 {
5095 machine_mode address_mode;
5096 rtx offset_rtx;
5097
5098 if (!MEM_P (to_rtx))
5099 {
5100 /* We can get constant negative offsets into arrays with broken
5101 user code. Translate this to a trap instead of ICEing. */
5102 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5103 expand_builtin_trap ();
5104 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5105 }
5106
5107 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5108 address_mode = get_address_mode (to_rtx);
5109 if (GET_MODE (offset_rtx) != address_mode)
5110 {
5111 /* We cannot be sure that the RTL in offset_rtx is valid outside
5112 of a memory address context, so force it into a register
5113 before attempting to convert it to the desired mode. */
5114 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5115 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5116 }
5117
5118 /* If we have an expression in OFFSET_RTX and a non-zero
5119 byte offset in BITPOS, adding the byte offset before the
5120 OFFSET_RTX results in better intermediate code, which makes
5121 later rtl optimization passes perform better.
5122
5123 We prefer intermediate code like this:
5124
5125 r124:DI=r123:DI+0x18
5126 [r124:DI]=r121:DI
5127
5128 ... instead of ...
5129
5130 r124:DI=r123:DI+0x10
5131 [r124:DI+0x8]=r121:DI
5132
5133 This is only done for aligned data values, as these can
5134 be expected to result in single move instructions. */
5135 poly_int64 bytepos;
5136 if (mode1 != VOIDmode
5137 && maybe_ne (bitpos, 0)
5138 && maybe_gt (bitsize, 0)
5139 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5140 && multiple_p (bitpos, bitsize)
5141 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5142 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5143 {
5144 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5145 bitregion_start = 0;
5146 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5147 bitregion_end -= bitpos;
5148 bitpos = 0;
5149 }
5150
5151 to_rtx = offset_address (to_rtx, offset_rtx,
5152 highest_pow2_factor_for_target (to,
5153 offset));
5154 }
5155
5156 /* No action is needed if the target is not a memory and the field
5157 lies completely outside that target. This can occur if the source
5158 code contains an out-of-bounds access to a small array. */
5159 if (!MEM_P (to_rtx)
5160 && GET_MODE (to_rtx) != BLKmode
5161 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5162 {
5163 expand_normal (from);
5164 result = NULL;
5165 }
5166 /* Handle expand_expr of a complex value returning a CONCAT. */
5167 else if (GET_CODE (to_rtx) == CONCAT)
5168 {
5169 machine_mode to_mode = GET_MODE (to_rtx);
5170 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5171 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5172 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5173 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5174 && known_eq (bitpos, 0)
5175 && known_eq (bitsize, mode_bitsize))
5176 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5177 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5178 && known_eq (bitsize, inner_bitsize)
5179 && (known_eq (bitpos, 0)
5180 || known_eq (bitpos, inner_bitsize)))
5181 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5182 false, nontemporal, reversep);
5183 else if (known_le (bitpos + bitsize, inner_bitsize))
5184 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5185 bitregion_start, bitregion_end,
5186 mode1, from, get_alias_set (to),
5187 nontemporal, reversep);
5188 else if (known_ge (bitpos, inner_bitsize))
5189 result = store_field (XEXP (to_rtx, 1), bitsize,
5190 bitpos - inner_bitsize,
5191 bitregion_start, bitregion_end,
5192 mode1, from, get_alias_set (to),
5193 nontemporal, reversep);
5194 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5195 {
5196 result = expand_normal (from);
5197 if (GET_CODE (result) == CONCAT)
5198 {
5199 to_mode = GET_MODE_INNER (to_mode);
5200 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5201 rtx from_real
5202 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5203 from_mode, 0);
5204 rtx from_imag
5205 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5206 from_mode, 0);
5207 if (!from_real || !from_imag)
5208 goto concat_store_slow;
5209 emit_move_insn (XEXP (to_rtx, 0), from_real);
5210 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5211 }
5212 else
5213 {
5214 rtx from_rtx;
5215 if (MEM_P (result))
5216 from_rtx = change_address (result, to_mode, NULL_RTX);
5217 else
5218 from_rtx
5219 = simplify_gen_subreg (to_mode, result,
5220 TYPE_MODE (TREE_TYPE (from)), 0);
5221 if (from_rtx)
5222 {
5223 emit_move_insn (XEXP (to_rtx, 0),
5224 read_complex_part (from_rtx, false));
5225 emit_move_insn (XEXP (to_rtx, 1),
5226 read_complex_part (from_rtx, true));
5227 }
5228 else
5229 {
5230 machine_mode to_mode
5231 = GET_MODE_INNER (GET_MODE (to_rtx));
5232 rtx from_real
5233 = simplify_gen_subreg (to_mode, result,
5234 TYPE_MODE (TREE_TYPE (from)),
5235 0);
5236 rtx from_imag
5237 = simplify_gen_subreg (to_mode, result,
5238 TYPE_MODE (TREE_TYPE (from)),
5239 GET_MODE_SIZE (to_mode));
5240 if (!from_real || !from_imag)
5241 goto concat_store_slow;
5242 emit_move_insn (XEXP (to_rtx, 0), from_real);
5243 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5244 }
5245 }
5246 }
5247 else
5248 {
5249 concat_store_slow:;
5250 rtx temp = assign_stack_temp (to_mode,
5251 GET_MODE_SIZE (GET_MODE (to_rtx)));
5252 write_complex_part (temp, XEXP (to_rtx, 0), false);
5253 write_complex_part (temp, XEXP (to_rtx, 1), true);
5254 result = store_field (temp, bitsize, bitpos,
5255 bitregion_start, bitregion_end,
5256 mode1, from, get_alias_set (to),
5257 nontemporal, reversep);
5258 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5259 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5260 }
5261 }
5262 /* For calls to functions returning variable length structures, if TO_RTX
5263 is not a MEM, go through a MEM because we must not create temporaries
5264 of the VLA type. */
5265 else if (!MEM_P (to_rtx)
5266 && TREE_CODE (from) == CALL_EXPR
5267 && COMPLETE_TYPE_P (TREE_TYPE (from))
5268 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5269 {
5270 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5271 GET_MODE_SIZE (GET_MODE (to_rtx)));
5272 result = store_field (temp, bitsize, bitpos, bitregion_start,
5273 bitregion_end, mode1, from, get_alias_set (to),
5274 nontemporal, reversep);
5275 emit_move_insn (to_rtx, temp);
5276 }
5277 else
5278 {
5279 if (MEM_P (to_rtx))
5280 {
5281 /* If the field is at offset zero, we could have been given the
5282 DECL_RTX of the parent struct. Don't munge it. */
5283 to_rtx = shallow_copy_rtx (to_rtx);
5284 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5285 if (volatilep)
5286 MEM_VOLATILE_P (to_rtx) = 1;
5287 }
5288
5289 gcc_checking_assert (known_ge (bitpos, 0));
5290 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5291 bitregion_start, bitregion_end,
5292 mode1, to_rtx, to, from,
5293 reversep))
5294 result = NULL;
5295 else
5296 result = store_field (to_rtx, bitsize, bitpos,
5297 bitregion_start, bitregion_end,
5298 mode1, from, get_alias_set (to),
5299 nontemporal, reversep);
5300 }
5301
5302 if (result)
5303 preserve_temp_slots (result);
5304 pop_temp_slots ();
5305 return;
5306 }
5307
5308 /* If the rhs is a function call and its value is not an aggregate,
5309 call the function before we start to compute the lhs.
5310 This is needed for correct code for cases such as
5311 val = setjmp (buf) on machines where reference to val
5312 requires loading up part of an address in a separate insn.
5313
5314 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5315 since it might be a promoted variable where the zero- or sign- extension
5316 needs to be done. Handling this in the normal way is safe because no
5317 computation is done before the call. The same is true for SSA names. */
5318 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5319 && COMPLETE_TYPE_P (TREE_TYPE (from))
5320 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5321 && ! (((VAR_P (to)
5322 || TREE_CODE (to) == PARM_DECL
5323 || TREE_CODE (to) == RESULT_DECL)
5324 && REG_P (DECL_RTL (to)))
5325 || TREE_CODE (to) == SSA_NAME))
5326 {
5327 rtx value;
5328
5329 push_temp_slots ();
5330 value = expand_normal (from);
5331
5332 if (to_rtx == 0)
5333 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5334
5335 /* Handle calls that return values in multiple non-contiguous locations.
5336 The Irix 6 ABI has examples of this. */
5337 if (GET_CODE (to_rtx) == PARALLEL)
5338 {
5339 if (GET_CODE (value) == PARALLEL)
5340 emit_group_move (to_rtx, value);
5341 else
5342 emit_group_load (to_rtx, value, TREE_TYPE (from),
5343 int_size_in_bytes (TREE_TYPE (from)));
5344 }
5345 else if (GET_CODE (value) == PARALLEL)
5346 emit_group_store (to_rtx, value, TREE_TYPE (from),
5347 int_size_in_bytes (TREE_TYPE (from)));
5348 else if (GET_MODE (to_rtx) == BLKmode)
5349 {
5350 /* Handle calls that return BLKmode values in registers. */
5351 if (REG_P (value))
5352 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5353 else
5354 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5355 }
5356 else
5357 {
5358 if (POINTER_TYPE_P (TREE_TYPE (to)))
5359 value = convert_memory_address_addr_space
5360 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5361 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5362
5363 emit_move_insn (to_rtx, value);
5364 }
5365
5366 preserve_temp_slots (to_rtx);
5367 pop_temp_slots ();
5368 return;
5369 }
5370
5371 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5372 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5373
5374 /* Don't move directly into a return register. */
5375 if (TREE_CODE (to) == RESULT_DECL
5376 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5377 {
5378 rtx temp;
5379
5380 push_temp_slots ();
5381
5382 /* If the source is itself a return value, it still is in a pseudo at
5383 this point so we can move it back to the return register directly. */
5384 if (REG_P (to_rtx)
5385 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5386 && TREE_CODE (from) != CALL_EXPR)
5387 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5388 else
5389 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5390
5391 /* Handle calls that return values in multiple non-contiguous locations.
5392 The Irix 6 ABI has examples of this. */
5393 if (GET_CODE (to_rtx) == PARALLEL)
5394 {
5395 if (GET_CODE (temp) == PARALLEL)
5396 emit_group_move (to_rtx, temp);
5397 else
5398 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5399 int_size_in_bytes (TREE_TYPE (from)));
5400 }
5401 else if (temp)
5402 emit_move_insn (to_rtx, temp);
5403
5404 preserve_temp_slots (to_rtx);
5405 pop_temp_slots ();
5406 return;
5407 }
5408
5409 /* In case we are returning the contents of an object which overlaps
5410 the place the value is being stored, use a safe function when copying
5411 a value through a pointer into a structure value return block. */
5412 if (TREE_CODE (to) == RESULT_DECL
5413 && TREE_CODE (from) == INDIRECT_REF
5414 && ADDR_SPACE_GENERIC_P
5415 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5416 && refs_may_alias_p (to, from)
5417 && cfun->returns_struct
5418 && !cfun->returns_pcc_struct)
5419 {
5420 rtx from_rtx, size;
5421
5422 push_temp_slots ();
5423 size = expr_size (from);
5424 from_rtx = expand_normal (from);
5425
5426 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5427
5428 preserve_temp_slots (to_rtx);
5429 pop_temp_slots ();
5430 return;
5431 }
5432
5433 /* Compute FROM and store the value in the rtx we got. */
5434
5435 push_temp_slots ();
5436 result = store_expr (from, to_rtx, 0, nontemporal, false);
5437 preserve_temp_slots (result);
5438 pop_temp_slots ();
5439 return;
5440 }
5441
5442 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5443 succeeded, false otherwise. */
5444
5445 bool
5446 emit_storent_insn (rtx to, rtx from)
5447 {
5448 struct expand_operand ops[2];
5449 machine_mode mode = GET_MODE (to);
5450 enum insn_code code = optab_handler (storent_optab, mode);
5451
5452 if (code == CODE_FOR_nothing)
5453 return false;
5454
5455 create_fixed_operand (&ops[0], to);
5456 create_input_operand (&ops[1], from, mode);
5457 return maybe_expand_insn (code, 2, ops);
5458 }
5459
5460 /* Helper function for store_expr storing of STRING_CST. */
5461
5462 static rtx
5463 string_cst_read_str (void *data, HOST_WIDE_INT offset, scalar_int_mode mode)
5464 {
5465 tree str = (tree) data;
5466
5467 gcc_assert (offset >= 0);
5468 if (offset >= TREE_STRING_LENGTH (str))
5469 return const0_rtx;
5470
5471 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
5472 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
5473 {
5474 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
5475 size_t l = TREE_STRING_LENGTH (str) - offset;
5476 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
5477 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
5478 return c_readstr (p, mode, false);
5479 }
5480
5481 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
5482 }
5483
5484 /* Generate code for computing expression EXP,
5485 and storing the value into TARGET.
5486
5487 If the mode is BLKmode then we may return TARGET itself.
5488 It turns out that in BLKmode it doesn't cause a problem.
5489 because C has no operators that could combine two different
5490 assignments into the same BLKmode object with different values
5491 with no sequence point. Will other languages need this to
5492 be more thorough?
5493
5494 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5495 stack, and block moves may need to be treated specially.
5496
5497 If NONTEMPORAL is true, try using a nontemporal store instruction.
5498
5499 If REVERSE is true, the store is to be done in reverse order. */
5500
5501 rtx
5502 store_expr (tree exp, rtx target, int call_param_p,
5503 bool nontemporal, bool reverse)
5504 {
5505 rtx temp;
5506 rtx alt_rtl = NULL_RTX;
5507 location_t loc = curr_insn_location ();
5508
5509 if (VOID_TYPE_P (TREE_TYPE (exp)))
5510 {
5511 /* C++ can generate ?: expressions with a throw expression in one
5512 branch and an rvalue in the other. Here, we resolve attempts to
5513 store the throw expression's nonexistent result. */
5514 gcc_assert (!call_param_p);
5515 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5516 return NULL_RTX;
5517 }
5518 if (TREE_CODE (exp) == COMPOUND_EXPR)
5519 {
5520 /* Perform first part of compound expression, then assign from second
5521 part. */
5522 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5523 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5524 return store_expr (TREE_OPERAND (exp, 1), target,
5525 call_param_p, nontemporal, reverse);
5526 }
5527 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5528 {
5529 /* For conditional expression, get safe form of the target. Then
5530 test the condition, doing the appropriate assignment on either
5531 side. This avoids the creation of unnecessary temporaries.
5532 For non-BLKmode, it is more efficient not to do this. */
5533
5534 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5535
5536 do_pending_stack_adjust ();
5537 NO_DEFER_POP;
5538 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5539 profile_probability::uninitialized ());
5540 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5541 nontemporal, reverse);
5542 emit_jump_insn (targetm.gen_jump (lab2));
5543 emit_barrier ();
5544 emit_label (lab1);
5545 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5546 nontemporal, reverse);
5547 emit_label (lab2);
5548 OK_DEFER_POP;
5549
5550 return NULL_RTX;
5551 }
5552 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5553 /* If this is a scalar in a register that is stored in a wider mode
5554 than the declared mode, compute the result into its declared mode
5555 and then convert to the wider mode. Our value is the computed
5556 expression. */
5557 {
5558 rtx inner_target = 0;
5559 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5560 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5561
5562 /* We can do the conversion inside EXP, which will often result
5563 in some optimizations. Do the conversion in two steps: first
5564 change the signedness, if needed, then the extend. But don't
5565 do this if the type of EXP is a subtype of something else
5566 since then the conversion might involve more than just
5567 converting modes. */
5568 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5569 && TREE_TYPE (TREE_TYPE (exp)) == 0
5570 && GET_MODE_PRECISION (outer_mode)
5571 == TYPE_PRECISION (TREE_TYPE (exp)))
5572 {
5573 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5574 TYPE_UNSIGNED (TREE_TYPE (exp))))
5575 {
5576 /* Some types, e.g. Fortran's logical*4, won't have a signed
5577 version, so use the mode instead. */
5578 tree ntype
5579 = (signed_or_unsigned_type_for
5580 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5581 if (ntype == NULL)
5582 ntype = lang_hooks.types.type_for_mode
5583 (TYPE_MODE (TREE_TYPE (exp)),
5584 SUBREG_PROMOTED_SIGN (target));
5585
5586 exp = fold_convert_loc (loc, ntype, exp);
5587 }
5588
5589 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5590 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5591 exp);
5592
5593 inner_target = SUBREG_REG (target);
5594 }
5595
5596 temp = expand_expr (exp, inner_target, VOIDmode,
5597 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5598
5599
5600 /* If TEMP is a VOIDmode constant, use convert_modes to make
5601 sure that we properly convert it. */
5602 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5603 {
5604 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5605 temp, SUBREG_PROMOTED_SIGN (target));
5606 temp = convert_modes (inner_mode, outer_mode, temp,
5607 SUBREG_PROMOTED_SIGN (target));
5608 }
5609
5610 convert_move (SUBREG_REG (target), temp,
5611 SUBREG_PROMOTED_SIGN (target));
5612
5613 return NULL_RTX;
5614 }
5615 else if ((TREE_CODE (exp) == STRING_CST
5616 || (TREE_CODE (exp) == MEM_REF
5617 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5618 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5619 == STRING_CST
5620 && integer_zerop (TREE_OPERAND (exp, 1))))
5621 && !nontemporal && !call_param_p
5622 && MEM_P (target))
5623 {
5624 /* Optimize initialization of an array with a STRING_CST. */
5625 HOST_WIDE_INT exp_len, str_copy_len;
5626 rtx dest_mem;
5627 tree str = TREE_CODE (exp) == STRING_CST
5628 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5629
5630 exp_len = int_expr_size (exp);
5631 if (exp_len <= 0)
5632 goto normal_expr;
5633
5634 if (TREE_STRING_LENGTH (str) <= 0)
5635 goto normal_expr;
5636
5637 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
5638 MEM_ALIGN (target), false))
5639 {
5640 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
5641 MEM_ALIGN (target), false, RETURN_BEGIN);
5642 return NULL_RTX;
5643 }
5644
5645 str_copy_len = TREE_STRING_LENGTH (str);
5646 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
5647 {
5648 str_copy_len += STORE_MAX_PIECES - 1;
5649 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5650 }
5651 if (str_copy_len >= exp_len)
5652 goto normal_expr;
5653
5654 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
5655 (void *) str, MEM_ALIGN (target), false))
5656 goto normal_expr;
5657
5658 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
5659 (void *) str, MEM_ALIGN (target), false,
5660 RETURN_END);
5661 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
5662 exp_len - str_copy_len),
5663 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
5664 return NULL_RTX;
5665 }
5666 else
5667 {
5668 rtx tmp_target;
5669
5670 normal_expr:
5671 /* If we want to use a nontemporal or a reverse order store, force the
5672 value into a register first. */
5673 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5674 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5675 (call_param_p
5676 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5677 &alt_rtl, false);
5678 }
5679
5680 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5681 the same as that of TARGET, adjust the constant. This is needed, for
5682 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5683 only a word-sized value. */
5684 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5685 && TREE_CODE (exp) != ERROR_MARK
5686 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5687 {
5688 if (GET_MODE_CLASS (GET_MODE (target))
5689 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5690 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5691 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5692 {
5693 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5694 TYPE_MODE (TREE_TYPE (exp)), 0);
5695 if (t)
5696 temp = t;
5697 }
5698 if (GET_MODE (temp) == VOIDmode)
5699 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5700 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5701 }
5702
5703 /* If value was not generated in the target, store it there.
5704 Convert the value to TARGET's type first if necessary and emit the
5705 pending incrementations that have been queued when expanding EXP.
5706 Note that we cannot emit the whole queue blindly because this will
5707 effectively disable the POST_INC optimization later.
5708
5709 If TEMP and TARGET compare equal according to rtx_equal_p, but
5710 one or both of them are volatile memory refs, we have to distinguish
5711 two cases:
5712 - expand_expr has used TARGET. In this case, we must not generate
5713 another copy. This can be detected by TARGET being equal according
5714 to == .
5715 - expand_expr has not used TARGET - that means that the source just
5716 happens to have the same RTX form. Since temp will have been created
5717 by expand_expr, it will compare unequal according to == .
5718 We must generate a copy in this case, to reach the correct number
5719 of volatile memory references. */
5720
5721 if ((! rtx_equal_p (temp, target)
5722 || (temp != target && (side_effects_p (temp)
5723 || side_effects_p (target))))
5724 && TREE_CODE (exp) != ERROR_MARK
5725 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5726 but TARGET is not valid memory reference, TEMP will differ
5727 from TARGET although it is really the same location. */
5728 && !(alt_rtl
5729 && rtx_equal_p (alt_rtl, target)
5730 && !side_effects_p (alt_rtl)
5731 && !side_effects_p (target))
5732 /* If there's nothing to copy, don't bother. Don't call
5733 expr_size unless necessary, because some front-ends (C++)
5734 expr_size-hook must not be given objects that are not
5735 supposed to be bit-copied or bit-initialized. */
5736 && expr_size (exp) != const0_rtx)
5737 {
5738 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5739 {
5740 if (GET_MODE (target) == BLKmode)
5741 {
5742 /* Handle calls that return BLKmode values in registers. */
5743 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5744 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5745 else
5746 store_bit_field (target,
5747 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5748 0, 0, 0, GET_MODE (temp), temp, reverse);
5749 }
5750 else
5751 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5752 }
5753
5754 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5755 {
5756 /* Handle copying a string constant into an array. The string
5757 constant may be shorter than the array. So copy just the string's
5758 actual length, and clear the rest. First get the size of the data
5759 type of the string, which is actually the size of the target. */
5760 rtx size = expr_size (exp);
5761
5762 if (CONST_INT_P (size)
5763 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5764 emit_block_move (target, temp, size,
5765 (call_param_p
5766 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5767 else
5768 {
5769 machine_mode pointer_mode
5770 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5771 machine_mode address_mode = get_address_mode (target);
5772
5773 /* Compute the size of the data to copy from the string. */
5774 tree copy_size
5775 = size_binop_loc (loc, MIN_EXPR,
5776 make_tree (sizetype, size),
5777 size_int (TREE_STRING_LENGTH (exp)));
5778 rtx copy_size_rtx
5779 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5780 (call_param_p
5781 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5782 rtx_code_label *label = 0;
5783
5784 /* Copy that much. */
5785 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5786 TYPE_UNSIGNED (sizetype));
5787 emit_block_move (target, temp, copy_size_rtx,
5788 (call_param_p
5789 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5790
5791 /* Figure out how much is left in TARGET that we have to clear.
5792 Do all calculations in pointer_mode. */
5793 poly_int64 const_copy_size;
5794 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5795 {
5796 size = plus_constant (address_mode, size, -const_copy_size);
5797 target = adjust_address (target, BLKmode, const_copy_size);
5798 }
5799 else
5800 {
5801 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5802 copy_size_rtx, NULL_RTX, 0,
5803 OPTAB_LIB_WIDEN);
5804
5805 if (GET_MODE (copy_size_rtx) != address_mode)
5806 copy_size_rtx = convert_to_mode (address_mode,
5807 copy_size_rtx,
5808 TYPE_UNSIGNED (sizetype));
5809
5810 target = offset_address (target, copy_size_rtx,
5811 highest_pow2_factor (copy_size));
5812 label = gen_label_rtx ();
5813 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5814 GET_MODE (size), 0, label);
5815 }
5816
5817 if (size != const0_rtx)
5818 clear_storage (target, size, BLOCK_OP_NORMAL);
5819
5820 if (label)
5821 emit_label (label);
5822 }
5823 }
5824 /* Handle calls that return values in multiple non-contiguous locations.
5825 The Irix 6 ABI has examples of this. */
5826 else if (GET_CODE (target) == PARALLEL)
5827 {
5828 if (GET_CODE (temp) == PARALLEL)
5829 emit_group_move (target, temp);
5830 else
5831 emit_group_load (target, temp, TREE_TYPE (exp),
5832 int_size_in_bytes (TREE_TYPE (exp)));
5833 }
5834 else if (GET_CODE (temp) == PARALLEL)
5835 emit_group_store (target, temp, TREE_TYPE (exp),
5836 int_size_in_bytes (TREE_TYPE (exp)));
5837 else if (GET_MODE (temp) == BLKmode)
5838 emit_block_move (target, temp, expr_size (exp),
5839 (call_param_p
5840 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5841 /* If we emit a nontemporal store, there is nothing else to do. */
5842 else if (nontemporal && emit_storent_insn (target, temp))
5843 ;
5844 else
5845 {
5846 if (reverse)
5847 temp = flip_storage_order (GET_MODE (target), temp);
5848 temp = force_operand (temp, target);
5849 if (temp != target)
5850 emit_move_insn (target, temp);
5851 }
5852 }
5853
5854 return NULL_RTX;
5855 }
5856 \f
5857 /* Return true if field F of structure TYPE is a flexible array. */
5858
5859 static bool
5860 flexible_array_member_p (const_tree f, const_tree type)
5861 {
5862 const_tree tf;
5863
5864 tf = TREE_TYPE (f);
5865 return (DECL_CHAIN (f) == NULL
5866 && TREE_CODE (tf) == ARRAY_TYPE
5867 && TYPE_DOMAIN (tf)
5868 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5869 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5870 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5871 && int_size_in_bytes (type) >= 0);
5872 }
5873
5874 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5875 must have in order for it to completely initialize a value of type TYPE.
5876 Return -1 if the number isn't known.
5877
5878 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5879
5880 static HOST_WIDE_INT
5881 count_type_elements (const_tree type, bool for_ctor_p)
5882 {
5883 switch (TREE_CODE (type))
5884 {
5885 case ARRAY_TYPE:
5886 {
5887 tree nelts;
5888
5889 nelts = array_type_nelts (type);
5890 if (nelts && tree_fits_uhwi_p (nelts))
5891 {
5892 unsigned HOST_WIDE_INT n;
5893
5894 n = tree_to_uhwi (nelts) + 1;
5895 if (n == 0 || for_ctor_p)
5896 return n;
5897 else
5898 return n * count_type_elements (TREE_TYPE (type), false);
5899 }
5900 return for_ctor_p ? -1 : 1;
5901 }
5902
5903 case RECORD_TYPE:
5904 {
5905 unsigned HOST_WIDE_INT n;
5906 tree f;
5907
5908 n = 0;
5909 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5910 if (TREE_CODE (f) == FIELD_DECL)
5911 {
5912 if (!for_ctor_p)
5913 n += count_type_elements (TREE_TYPE (f), false);
5914 else if (!flexible_array_member_p (f, type))
5915 /* Don't count flexible arrays, which are not supposed
5916 to be initialized. */
5917 n += 1;
5918 }
5919
5920 return n;
5921 }
5922
5923 case UNION_TYPE:
5924 case QUAL_UNION_TYPE:
5925 {
5926 tree f;
5927 HOST_WIDE_INT n, m;
5928
5929 gcc_assert (!for_ctor_p);
5930 /* Estimate the number of scalars in each field and pick the
5931 maximum. Other estimates would do instead; the idea is simply
5932 to make sure that the estimate is not sensitive to the ordering
5933 of the fields. */
5934 n = 1;
5935 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5936 if (TREE_CODE (f) == FIELD_DECL)
5937 {
5938 m = count_type_elements (TREE_TYPE (f), false);
5939 /* If the field doesn't span the whole union, add an extra
5940 scalar for the rest. */
5941 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5942 TYPE_SIZE (type)) != 1)
5943 m++;
5944 if (n < m)
5945 n = m;
5946 }
5947 return n;
5948 }
5949
5950 case COMPLEX_TYPE:
5951 return 2;
5952
5953 case VECTOR_TYPE:
5954 {
5955 unsigned HOST_WIDE_INT nelts;
5956 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
5957 return nelts;
5958 else
5959 return -1;
5960 }
5961
5962 case INTEGER_TYPE:
5963 case REAL_TYPE:
5964 case FIXED_POINT_TYPE:
5965 case ENUMERAL_TYPE:
5966 case BOOLEAN_TYPE:
5967 case POINTER_TYPE:
5968 case OFFSET_TYPE:
5969 case REFERENCE_TYPE:
5970 case NULLPTR_TYPE:
5971 return 1;
5972
5973 case ERROR_MARK:
5974 return 0;
5975
5976 case VOID_TYPE:
5977 case METHOD_TYPE:
5978 case FUNCTION_TYPE:
5979 case LANG_TYPE:
5980 default:
5981 gcc_unreachable ();
5982 }
5983 }
5984
5985 /* Helper for categorize_ctor_elements. Identical interface. */
5986
5987 static bool
5988 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5989 HOST_WIDE_INT *p_unique_nz_elts,
5990 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5991 {
5992 unsigned HOST_WIDE_INT idx;
5993 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
5994 tree value, purpose, elt_type;
5995
5996 /* Whether CTOR is a valid constant initializer, in accordance with what
5997 initializer_constant_valid_p does. If inferred from the constructor
5998 elements, true until proven otherwise. */
5999 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6000 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6001
6002 nz_elts = 0;
6003 unique_nz_elts = 0;
6004 init_elts = 0;
6005 num_fields = 0;
6006 elt_type = NULL_TREE;
6007
6008 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6009 {
6010 HOST_WIDE_INT mult = 1;
6011
6012 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6013 {
6014 tree lo_index = TREE_OPERAND (purpose, 0);
6015 tree hi_index = TREE_OPERAND (purpose, 1);
6016
6017 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6018 mult = (tree_to_uhwi (hi_index)
6019 - tree_to_uhwi (lo_index) + 1);
6020 }
6021 num_fields += mult;
6022 elt_type = TREE_TYPE (value);
6023
6024 switch (TREE_CODE (value))
6025 {
6026 case CONSTRUCTOR:
6027 {
6028 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6029
6030 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6031 &ic, p_complete);
6032
6033 nz_elts += mult * nz;
6034 unique_nz_elts += unz;
6035 init_elts += mult * ic;
6036
6037 if (const_from_elts_p && const_p)
6038 const_p = const_elt_p;
6039 }
6040 break;
6041
6042 case INTEGER_CST:
6043 case REAL_CST:
6044 case FIXED_CST:
6045 if (!initializer_zerop (value))
6046 {
6047 nz_elts += mult;
6048 unique_nz_elts++;
6049 }
6050 init_elts += mult;
6051 break;
6052
6053 case STRING_CST:
6054 nz_elts += mult * TREE_STRING_LENGTH (value);
6055 unique_nz_elts += TREE_STRING_LENGTH (value);
6056 init_elts += mult * TREE_STRING_LENGTH (value);
6057 break;
6058
6059 case COMPLEX_CST:
6060 if (!initializer_zerop (TREE_REALPART (value)))
6061 {
6062 nz_elts += mult;
6063 unique_nz_elts++;
6064 }
6065 if (!initializer_zerop (TREE_IMAGPART (value)))
6066 {
6067 nz_elts += mult;
6068 unique_nz_elts++;
6069 }
6070 init_elts += 2 * mult;
6071 break;
6072
6073 case VECTOR_CST:
6074 {
6075 /* We can only construct constant-length vectors using
6076 CONSTRUCTOR. */
6077 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6078 for (unsigned int i = 0; i < nunits; ++i)
6079 {
6080 tree v = VECTOR_CST_ELT (value, i);
6081 if (!initializer_zerop (v))
6082 {
6083 nz_elts += mult;
6084 unique_nz_elts++;
6085 }
6086 init_elts += mult;
6087 }
6088 }
6089 break;
6090
6091 default:
6092 {
6093 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6094 nz_elts += mult * tc;
6095 unique_nz_elts += tc;
6096 init_elts += mult * tc;
6097
6098 if (const_from_elts_p && const_p)
6099 const_p
6100 = initializer_constant_valid_p (value,
6101 elt_type,
6102 TYPE_REVERSE_STORAGE_ORDER
6103 (TREE_TYPE (ctor)))
6104 != NULL_TREE;
6105 }
6106 break;
6107 }
6108 }
6109
6110 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6111 num_fields, elt_type))
6112 *p_complete = false;
6113
6114 *p_nz_elts += nz_elts;
6115 *p_unique_nz_elts += unique_nz_elts;
6116 *p_init_elts += init_elts;
6117
6118 return const_p;
6119 }
6120
6121 /* Examine CTOR to discover:
6122 * how many scalar fields are set to nonzero values,
6123 and place it in *P_NZ_ELTS;
6124 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6125 high - low + 1 (this can be useful for callers to determine ctors
6126 that could be cheaply initialized with - perhaps nested - loops
6127 compared to copied from huge read-only data),
6128 and place it in *P_UNIQUE_NZ_ELTS;
6129 * how many scalar fields in total are in CTOR,
6130 and place it in *P_ELT_COUNT.
6131 * whether the constructor is complete -- in the sense that every
6132 meaningful byte is explicitly given a value --
6133 and place it in *P_COMPLETE.
6134
6135 Return whether or not CTOR is a valid static constant initializer, the same
6136 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6137
6138 bool
6139 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6140 HOST_WIDE_INT *p_unique_nz_elts,
6141 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6142 {
6143 *p_nz_elts = 0;
6144 *p_unique_nz_elts = 0;
6145 *p_init_elts = 0;
6146 *p_complete = true;
6147
6148 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6149 p_init_elts, p_complete);
6150 }
6151
6152 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6153 of which had type LAST_TYPE. Each element was itself a complete
6154 initializer, in the sense that every meaningful byte was explicitly
6155 given a value. Return true if the same is true for the constructor
6156 as a whole. */
6157
6158 bool
6159 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6160 const_tree last_type)
6161 {
6162 if (TREE_CODE (type) == UNION_TYPE
6163 || TREE_CODE (type) == QUAL_UNION_TYPE)
6164 {
6165 if (num_elts == 0)
6166 return false;
6167
6168 gcc_assert (num_elts == 1 && last_type);
6169
6170 /* ??? We could look at each element of the union, and find the
6171 largest element. Which would avoid comparing the size of the
6172 initialized element against any tail padding in the union.
6173 Doesn't seem worth the effort... */
6174 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6175 }
6176
6177 return count_type_elements (type, true) == num_elts;
6178 }
6179
6180 /* Return 1 if EXP contains mostly (3/4) zeros. */
6181
6182 static int
6183 mostly_zeros_p (const_tree exp)
6184 {
6185 if (TREE_CODE (exp) == CONSTRUCTOR)
6186 {
6187 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6188 bool complete_p;
6189
6190 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6191 &complete_p);
6192 return !complete_p || nz_elts < init_elts / 4;
6193 }
6194
6195 return initializer_zerop (exp);
6196 }
6197
6198 /* Return 1 if EXP contains all zeros. */
6199
6200 static int
6201 all_zeros_p (const_tree exp)
6202 {
6203 if (TREE_CODE (exp) == CONSTRUCTOR)
6204 {
6205 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6206 bool complete_p;
6207
6208 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6209 &complete_p);
6210 return nz_elts == 0;
6211 }
6212
6213 return initializer_zerop (exp);
6214 }
6215 \f
6216 /* Helper function for store_constructor.
6217 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6218 CLEARED is as for store_constructor.
6219 ALIAS_SET is the alias set to use for any stores.
6220 If REVERSE is true, the store is to be done in reverse order.
6221
6222 This provides a recursive shortcut back to store_constructor when it isn't
6223 necessary to go through store_field. This is so that we can pass through
6224 the cleared field to let store_constructor know that we may not have to
6225 clear a substructure if the outer structure has already been cleared. */
6226
6227 static void
6228 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6229 poly_uint64 bitregion_start,
6230 poly_uint64 bitregion_end,
6231 machine_mode mode,
6232 tree exp, int cleared,
6233 alias_set_type alias_set, bool reverse)
6234 {
6235 poly_int64 bytepos;
6236 poly_uint64 bytesize;
6237 if (TREE_CODE (exp) == CONSTRUCTOR
6238 /* We can only call store_constructor recursively if the size and
6239 bit position are on a byte boundary. */
6240 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6241 && maybe_ne (bitsize, 0U)
6242 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6243 /* If we have a nonzero bitpos for a register target, then we just
6244 let store_field do the bitfield handling. This is unlikely to
6245 generate unnecessary clear instructions anyways. */
6246 && (known_eq (bitpos, 0) || MEM_P (target)))
6247 {
6248 if (MEM_P (target))
6249 {
6250 machine_mode target_mode = GET_MODE (target);
6251 if (target_mode != BLKmode
6252 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6253 target_mode = BLKmode;
6254 target = adjust_address (target, target_mode, bytepos);
6255 }
6256
6257
6258 /* Update the alias set, if required. */
6259 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6260 && MEM_ALIAS_SET (target) != 0)
6261 {
6262 target = copy_rtx (target);
6263 set_mem_alias_set (target, alias_set);
6264 }
6265
6266 store_constructor (exp, target, cleared, bytesize, reverse);
6267 }
6268 else
6269 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6270 exp, alias_set, false, reverse);
6271 }
6272
6273
6274 /* Returns the number of FIELD_DECLs in TYPE. */
6275
6276 static int
6277 fields_length (const_tree type)
6278 {
6279 tree t = TYPE_FIELDS (type);
6280 int count = 0;
6281
6282 for (; t; t = DECL_CHAIN (t))
6283 if (TREE_CODE (t) == FIELD_DECL)
6284 ++count;
6285
6286 return count;
6287 }
6288
6289
6290 /* Store the value of constructor EXP into the rtx TARGET.
6291 TARGET is either a REG or a MEM; we know it cannot conflict, since
6292 safe_from_p has been called.
6293 CLEARED is true if TARGET is known to have been zero'd.
6294 SIZE is the number of bytes of TARGET we are allowed to modify: this
6295 may not be the same as the size of EXP if we are assigning to a field
6296 which has been packed to exclude padding bits.
6297 If REVERSE is true, the store is to be done in reverse order. */
6298
6299 static void
6300 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6301 bool reverse)
6302 {
6303 tree type = TREE_TYPE (exp);
6304 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6305 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6306
6307 switch (TREE_CODE (type))
6308 {
6309 case RECORD_TYPE:
6310 case UNION_TYPE:
6311 case QUAL_UNION_TYPE:
6312 {
6313 unsigned HOST_WIDE_INT idx;
6314 tree field, value;
6315
6316 /* The storage order is specified for every aggregate type. */
6317 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6318
6319 /* If size is zero or the target is already cleared, do nothing. */
6320 if (known_eq (size, 0) || cleared)
6321 cleared = 1;
6322 /* We either clear the aggregate or indicate the value is dead. */
6323 else if ((TREE_CODE (type) == UNION_TYPE
6324 || TREE_CODE (type) == QUAL_UNION_TYPE)
6325 && ! CONSTRUCTOR_ELTS (exp))
6326 /* If the constructor is empty, clear the union. */
6327 {
6328 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6329 cleared = 1;
6330 }
6331
6332 /* If we are building a static constructor into a register,
6333 set the initial value as zero so we can fold the value into
6334 a constant. But if more than one register is involved,
6335 this probably loses. */
6336 else if (REG_P (target) && TREE_STATIC (exp)
6337 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6338 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6339 {
6340 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6341 cleared = 1;
6342 }
6343
6344 /* If the constructor has fewer fields than the structure or
6345 if we are initializing the structure to mostly zeros, clear
6346 the whole structure first. Don't do this if TARGET is a
6347 register whose mode size isn't equal to SIZE since
6348 clear_storage can't handle this case. */
6349 else if (known_size_p (size)
6350 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6351 || mostly_zeros_p (exp))
6352 && (!REG_P (target)
6353 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6354 {
6355 clear_storage (target, gen_int_mode (size, Pmode),
6356 BLOCK_OP_NORMAL);
6357 cleared = 1;
6358 }
6359
6360 if (REG_P (target) && !cleared)
6361 emit_clobber (target);
6362
6363 /* Store each element of the constructor into the
6364 corresponding field of TARGET. */
6365 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6366 {
6367 machine_mode mode;
6368 HOST_WIDE_INT bitsize;
6369 HOST_WIDE_INT bitpos = 0;
6370 tree offset;
6371 rtx to_rtx = target;
6372
6373 /* Just ignore missing fields. We cleared the whole
6374 structure, above, if any fields are missing. */
6375 if (field == 0)
6376 continue;
6377
6378 if (cleared && initializer_zerop (value))
6379 continue;
6380
6381 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6382 bitsize = tree_to_uhwi (DECL_SIZE (field));
6383 else
6384 gcc_unreachable ();
6385
6386 mode = DECL_MODE (field);
6387 if (DECL_BIT_FIELD (field))
6388 mode = VOIDmode;
6389
6390 offset = DECL_FIELD_OFFSET (field);
6391 if (tree_fits_shwi_p (offset)
6392 && tree_fits_shwi_p (bit_position (field)))
6393 {
6394 bitpos = int_bit_position (field);
6395 offset = NULL_TREE;
6396 }
6397 else
6398 gcc_unreachable ();
6399
6400 /* If this initializes a field that is smaller than a
6401 word, at the start of a word, try to widen it to a full
6402 word. This special case allows us to output C++ member
6403 function initializations in a form that the optimizers
6404 can understand. */
6405 if (WORD_REGISTER_OPERATIONS
6406 && REG_P (target)
6407 && bitsize < BITS_PER_WORD
6408 && bitpos % BITS_PER_WORD == 0
6409 && GET_MODE_CLASS (mode) == MODE_INT
6410 && TREE_CODE (value) == INTEGER_CST
6411 && exp_size >= 0
6412 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6413 {
6414 tree type = TREE_TYPE (value);
6415
6416 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6417 {
6418 type = lang_hooks.types.type_for_mode
6419 (word_mode, TYPE_UNSIGNED (type));
6420 value = fold_convert (type, value);
6421 /* Make sure the bits beyond the original bitsize are zero
6422 so that we can correctly avoid extra zeroing stores in
6423 later constructor elements. */
6424 tree bitsize_mask
6425 = wide_int_to_tree (type, wi::mask (bitsize, false,
6426 BITS_PER_WORD));
6427 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6428 }
6429
6430 if (BYTES_BIG_ENDIAN)
6431 value
6432 = fold_build2 (LSHIFT_EXPR, type, value,
6433 build_int_cst (type,
6434 BITS_PER_WORD - bitsize));
6435 bitsize = BITS_PER_WORD;
6436 mode = word_mode;
6437 }
6438
6439 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6440 && DECL_NONADDRESSABLE_P (field))
6441 {
6442 to_rtx = copy_rtx (to_rtx);
6443 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6444 }
6445
6446 store_constructor_field (to_rtx, bitsize, bitpos,
6447 0, bitregion_end, mode,
6448 value, cleared,
6449 get_alias_set (TREE_TYPE (field)),
6450 reverse);
6451 }
6452 break;
6453 }
6454 case ARRAY_TYPE:
6455 {
6456 tree value, index;
6457 unsigned HOST_WIDE_INT i;
6458 int need_to_clear;
6459 tree domain;
6460 tree elttype = TREE_TYPE (type);
6461 int const_bounds_p;
6462 HOST_WIDE_INT minelt = 0;
6463 HOST_WIDE_INT maxelt = 0;
6464
6465 /* The storage order is specified for every aggregate type. */
6466 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6467
6468 domain = TYPE_DOMAIN (type);
6469 const_bounds_p = (TYPE_MIN_VALUE (domain)
6470 && TYPE_MAX_VALUE (domain)
6471 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6472 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6473
6474 /* If we have constant bounds for the range of the type, get them. */
6475 if (const_bounds_p)
6476 {
6477 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6478 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6479 }
6480
6481 /* If the constructor has fewer elements than the array, clear
6482 the whole array first. Similarly if this is static
6483 constructor of a non-BLKmode object. */
6484 if (cleared)
6485 need_to_clear = 0;
6486 else if (REG_P (target) && TREE_STATIC (exp))
6487 need_to_clear = 1;
6488 else
6489 {
6490 unsigned HOST_WIDE_INT idx;
6491 tree index, value;
6492 HOST_WIDE_INT count = 0, zero_count = 0;
6493 need_to_clear = ! const_bounds_p;
6494
6495 /* This loop is a more accurate version of the loop in
6496 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6497 is also needed to check for missing elements. */
6498 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6499 {
6500 HOST_WIDE_INT this_node_count;
6501
6502 if (need_to_clear)
6503 break;
6504
6505 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6506 {
6507 tree lo_index = TREE_OPERAND (index, 0);
6508 tree hi_index = TREE_OPERAND (index, 1);
6509
6510 if (! tree_fits_uhwi_p (lo_index)
6511 || ! tree_fits_uhwi_p (hi_index))
6512 {
6513 need_to_clear = 1;
6514 break;
6515 }
6516
6517 this_node_count = (tree_to_uhwi (hi_index)
6518 - tree_to_uhwi (lo_index) + 1);
6519 }
6520 else
6521 this_node_count = 1;
6522
6523 count += this_node_count;
6524 if (mostly_zeros_p (value))
6525 zero_count += this_node_count;
6526 }
6527
6528 /* Clear the entire array first if there are any missing
6529 elements, or if the incidence of zero elements is >=
6530 75%. */
6531 if (! need_to_clear
6532 && (count < maxelt - minelt + 1
6533 || 4 * zero_count >= 3 * count))
6534 need_to_clear = 1;
6535 }
6536
6537 if (need_to_clear && maybe_gt (size, 0))
6538 {
6539 if (REG_P (target))
6540 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6541 else
6542 clear_storage (target, gen_int_mode (size, Pmode),
6543 BLOCK_OP_NORMAL);
6544 cleared = 1;
6545 }
6546
6547 if (!cleared && REG_P (target))
6548 /* Inform later passes that the old value is dead. */
6549 emit_clobber (target);
6550
6551 /* Store each element of the constructor into the
6552 corresponding element of TARGET, determined by counting the
6553 elements. */
6554 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6555 {
6556 machine_mode mode;
6557 poly_int64 bitsize;
6558 HOST_WIDE_INT bitpos;
6559 rtx xtarget = target;
6560
6561 if (cleared && initializer_zerop (value))
6562 continue;
6563
6564 mode = TYPE_MODE (elttype);
6565 if (mode != BLKmode)
6566 bitsize = GET_MODE_BITSIZE (mode);
6567 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6568 bitsize = -1;
6569
6570 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6571 {
6572 tree lo_index = TREE_OPERAND (index, 0);
6573 tree hi_index = TREE_OPERAND (index, 1);
6574 rtx index_r, pos_rtx;
6575 HOST_WIDE_INT lo, hi, count;
6576 tree position;
6577
6578 /* If the range is constant and "small", unroll the loop. */
6579 if (const_bounds_p
6580 && tree_fits_shwi_p (lo_index)
6581 && tree_fits_shwi_p (hi_index)
6582 && (lo = tree_to_shwi (lo_index),
6583 hi = tree_to_shwi (hi_index),
6584 count = hi - lo + 1,
6585 (!MEM_P (target)
6586 || count <= 2
6587 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6588 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6589 <= 40 * 8)))))
6590 {
6591 lo -= minelt; hi -= minelt;
6592 for (; lo <= hi; lo++)
6593 {
6594 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6595
6596 if (MEM_P (target)
6597 && !MEM_KEEP_ALIAS_SET_P (target)
6598 && TREE_CODE (type) == ARRAY_TYPE
6599 && TYPE_NONALIASED_COMPONENT (type))
6600 {
6601 target = copy_rtx (target);
6602 MEM_KEEP_ALIAS_SET_P (target) = 1;
6603 }
6604
6605 store_constructor_field
6606 (target, bitsize, bitpos, 0, bitregion_end,
6607 mode, value, cleared,
6608 get_alias_set (elttype), reverse);
6609 }
6610 }
6611 else
6612 {
6613 rtx_code_label *loop_start = gen_label_rtx ();
6614 rtx_code_label *loop_end = gen_label_rtx ();
6615 tree exit_cond;
6616
6617 expand_normal (hi_index);
6618
6619 index = build_decl (EXPR_LOCATION (exp),
6620 VAR_DECL, NULL_TREE, domain);
6621 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6622 SET_DECL_RTL (index, index_r);
6623 store_expr (lo_index, index_r, 0, false, reverse);
6624
6625 /* Build the head of the loop. */
6626 do_pending_stack_adjust ();
6627 emit_label (loop_start);
6628
6629 /* Assign value to element index. */
6630 position =
6631 fold_convert (ssizetype,
6632 fold_build2 (MINUS_EXPR,
6633 TREE_TYPE (index),
6634 index,
6635 TYPE_MIN_VALUE (domain)));
6636
6637 position =
6638 size_binop (MULT_EXPR, position,
6639 fold_convert (ssizetype,
6640 TYPE_SIZE_UNIT (elttype)));
6641
6642 pos_rtx = expand_normal (position);
6643 xtarget = offset_address (target, pos_rtx,
6644 highest_pow2_factor (position));
6645 xtarget = adjust_address (xtarget, mode, 0);
6646 if (TREE_CODE (value) == CONSTRUCTOR)
6647 store_constructor (value, xtarget, cleared,
6648 exact_div (bitsize, BITS_PER_UNIT),
6649 reverse);
6650 else
6651 store_expr (value, xtarget, 0, false, reverse);
6652
6653 /* Generate a conditional jump to exit the loop. */
6654 exit_cond = build2 (LT_EXPR, integer_type_node,
6655 index, hi_index);
6656 jumpif (exit_cond, loop_end,
6657 profile_probability::uninitialized ());
6658
6659 /* Update the loop counter, and jump to the head of
6660 the loop. */
6661 expand_assignment (index,
6662 build2 (PLUS_EXPR, TREE_TYPE (index),
6663 index, integer_one_node),
6664 false);
6665
6666 emit_jump (loop_start);
6667
6668 /* Build the end of the loop. */
6669 emit_label (loop_end);
6670 }
6671 }
6672 else if ((index != 0 && ! tree_fits_shwi_p (index))
6673 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6674 {
6675 tree position;
6676
6677 if (index == 0)
6678 index = ssize_int (1);
6679
6680 if (minelt)
6681 index = fold_convert (ssizetype,
6682 fold_build2 (MINUS_EXPR,
6683 TREE_TYPE (index),
6684 index,
6685 TYPE_MIN_VALUE (domain)));
6686
6687 position =
6688 size_binop (MULT_EXPR, index,
6689 fold_convert (ssizetype,
6690 TYPE_SIZE_UNIT (elttype)));
6691 xtarget = offset_address (target,
6692 expand_normal (position),
6693 highest_pow2_factor (position));
6694 xtarget = adjust_address (xtarget, mode, 0);
6695 store_expr (value, xtarget, 0, false, reverse);
6696 }
6697 else
6698 {
6699 if (index != 0)
6700 bitpos = ((tree_to_shwi (index) - minelt)
6701 * tree_to_uhwi (TYPE_SIZE (elttype)));
6702 else
6703 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6704
6705 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6706 && TREE_CODE (type) == ARRAY_TYPE
6707 && TYPE_NONALIASED_COMPONENT (type))
6708 {
6709 target = copy_rtx (target);
6710 MEM_KEEP_ALIAS_SET_P (target) = 1;
6711 }
6712 store_constructor_field (target, bitsize, bitpos, 0,
6713 bitregion_end, mode, value,
6714 cleared, get_alias_set (elttype),
6715 reverse);
6716 }
6717 }
6718 break;
6719 }
6720
6721 case VECTOR_TYPE:
6722 {
6723 unsigned HOST_WIDE_INT idx;
6724 constructor_elt *ce;
6725 int i;
6726 int need_to_clear;
6727 insn_code icode = CODE_FOR_nothing;
6728 tree elt;
6729 tree elttype = TREE_TYPE (type);
6730 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6731 machine_mode eltmode = TYPE_MODE (elttype);
6732 HOST_WIDE_INT bitsize;
6733 HOST_WIDE_INT bitpos;
6734 rtvec vector = NULL;
6735 poly_uint64 n_elts;
6736 unsigned HOST_WIDE_INT const_n_elts;
6737 alias_set_type alias;
6738 bool vec_vec_init_p = false;
6739 machine_mode mode = GET_MODE (target);
6740
6741 gcc_assert (eltmode != BLKmode);
6742
6743 /* Try using vec_duplicate_optab for uniform vectors. */
6744 if (!TREE_SIDE_EFFECTS (exp)
6745 && VECTOR_MODE_P (mode)
6746 && eltmode == GET_MODE_INNER (mode)
6747 && ((icode = optab_handler (vec_duplicate_optab, mode))
6748 != CODE_FOR_nothing)
6749 && (elt = uniform_vector_p (exp)))
6750 {
6751 struct expand_operand ops[2];
6752 create_output_operand (&ops[0], target, mode);
6753 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6754 expand_insn (icode, 2, ops);
6755 if (!rtx_equal_p (target, ops[0].value))
6756 emit_move_insn (target, ops[0].value);
6757 break;
6758 }
6759
6760 n_elts = TYPE_VECTOR_SUBPARTS (type);
6761 if (REG_P (target)
6762 && VECTOR_MODE_P (mode)
6763 && n_elts.is_constant (&const_n_elts))
6764 {
6765 machine_mode emode = eltmode;
6766
6767 if (CONSTRUCTOR_NELTS (exp)
6768 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6769 == VECTOR_TYPE))
6770 {
6771 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6772 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6773 * TYPE_VECTOR_SUBPARTS (etype),
6774 n_elts));
6775 emode = TYPE_MODE (etype);
6776 }
6777 icode = convert_optab_handler (vec_init_optab, mode, emode);
6778 if (icode != CODE_FOR_nothing)
6779 {
6780 unsigned int i, n = const_n_elts;
6781
6782 if (emode != eltmode)
6783 {
6784 n = CONSTRUCTOR_NELTS (exp);
6785 vec_vec_init_p = true;
6786 }
6787 vector = rtvec_alloc (n);
6788 for (i = 0; i < n; i++)
6789 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6790 }
6791 }
6792
6793 /* If the constructor has fewer elements than the vector,
6794 clear the whole array first. Similarly if this is static
6795 constructor of a non-BLKmode object. */
6796 if (cleared)
6797 need_to_clear = 0;
6798 else if (REG_P (target) && TREE_STATIC (exp))
6799 need_to_clear = 1;
6800 else
6801 {
6802 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6803 tree value;
6804
6805 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6806 {
6807 tree sz = TYPE_SIZE (TREE_TYPE (value));
6808 int n_elts_here
6809 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6810 TYPE_SIZE (elttype)));
6811
6812 count += n_elts_here;
6813 if (mostly_zeros_p (value))
6814 zero_count += n_elts_here;
6815 }
6816
6817 /* Clear the entire vector first if there are any missing elements,
6818 or if the incidence of zero elements is >= 75%. */
6819 need_to_clear = (maybe_lt (count, n_elts)
6820 || 4 * zero_count >= 3 * count);
6821 }
6822
6823 if (need_to_clear && maybe_gt (size, 0) && !vector)
6824 {
6825 if (REG_P (target))
6826 emit_move_insn (target, CONST0_RTX (mode));
6827 else
6828 clear_storage (target, gen_int_mode (size, Pmode),
6829 BLOCK_OP_NORMAL);
6830 cleared = 1;
6831 }
6832
6833 /* Inform later passes that the old value is dead. */
6834 if (!cleared && !vector && REG_P (target))
6835 emit_move_insn (target, CONST0_RTX (mode));
6836
6837 if (MEM_P (target))
6838 alias = MEM_ALIAS_SET (target);
6839 else
6840 alias = get_alias_set (elttype);
6841
6842 /* Store each element of the constructor into the corresponding
6843 element of TARGET, determined by counting the elements. */
6844 for (idx = 0, i = 0;
6845 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6846 idx++, i += bitsize / elt_size)
6847 {
6848 HOST_WIDE_INT eltpos;
6849 tree value = ce->value;
6850
6851 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6852 if (cleared && initializer_zerop (value))
6853 continue;
6854
6855 if (ce->index)
6856 eltpos = tree_to_uhwi (ce->index);
6857 else
6858 eltpos = i;
6859
6860 if (vector)
6861 {
6862 if (vec_vec_init_p)
6863 {
6864 gcc_assert (ce->index == NULL_TREE);
6865 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6866 eltpos = idx;
6867 }
6868 else
6869 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6870 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6871 }
6872 else
6873 {
6874 machine_mode value_mode
6875 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6876 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6877 bitpos = eltpos * elt_size;
6878 store_constructor_field (target, bitsize, bitpos, 0,
6879 bitregion_end, value_mode,
6880 value, cleared, alias, reverse);
6881 }
6882 }
6883
6884 if (vector)
6885 emit_insn (GEN_FCN (icode) (target,
6886 gen_rtx_PARALLEL (mode, vector)));
6887 break;
6888 }
6889
6890 default:
6891 gcc_unreachable ();
6892 }
6893 }
6894
6895 /* Store the value of EXP (an expression tree)
6896 into a subfield of TARGET which has mode MODE and occupies
6897 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6898 If MODE is VOIDmode, it means that we are storing into a bit-field.
6899
6900 BITREGION_START is bitpos of the first bitfield in this region.
6901 BITREGION_END is the bitpos of the ending bitfield in this region.
6902 These two fields are 0, if the C++ memory model does not apply,
6903 or we are not interested in keeping track of bitfield regions.
6904
6905 Always return const0_rtx unless we have something particular to
6906 return.
6907
6908 ALIAS_SET is the alias set for the destination. This value will
6909 (in general) be different from that for TARGET, since TARGET is a
6910 reference to the containing structure.
6911
6912 If NONTEMPORAL is true, try generating a nontemporal store.
6913
6914 If REVERSE is true, the store is to be done in reverse order. */
6915
6916 static rtx
6917 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
6918 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
6919 machine_mode mode, tree exp,
6920 alias_set_type alias_set, bool nontemporal, bool reverse)
6921 {
6922 if (TREE_CODE (exp) == ERROR_MARK)
6923 return const0_rtx;
6924
6925 /* If we have nothing to store, do nothing unless the expression has
6926 side-effects. Don't do that for zero sized addressable lhs of
6927 calls. */
6928 if (known_eq (bitsize, 0)
6929 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6930 || TREE_CODE (exp) != CALL_EXPR))
6931 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6932
6933 if (GET_CODE (target) == CONCAT)
6934 {
6935 /* We're storing into a struct containing a single __complex. */
6936
6937 gcc_assert (known_eq (bitpos, 0));
6938 return store_expr (exp, target, 0, nontemporal, reverse);
6939 }
6940
6941 /* If the structure is in a register or if the component
6942 is a bit field, we cannot use addressing to access it.
6943 Use bit-field techniques or SUBREG to store in it. */
6944
6945 poly_int64 decl_bitsize;
6946 if (mode == VOIDmode
6947 || (mode != BLKmode && ! direct_store[(int) mode]
6948 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6949 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6950 || REG_P (target)
6951 || GET_CODE (target) == SUBREG
6952 /* If the field isn't aligned enough to store as an ordinary memref,
6953 store it as a bit field. */
6954 || (mode != BLKmode
6955 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6956 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
6957 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6958 || !multiple_p (bitpos, BITS_PER_UNIT)))
6959 || (known_size_p (bitsize)
6960 && mode != BLKmode
6961 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
6962 /* If the RHS and field are a constant size and the size of the
6963 RHS isn't the same size as the bitfield, we must use bitfield
6964 operations. */
6965 || (known_size_p (bitsize)
6966 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
6967 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
6968 bitsize)
6969 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6970 we will handle specially below. */
6971 && !(TREE_CODE (exp) == CONSTRUCTOR
6972 && multiple_p (bitsize, BITS_PER_UNIT))
6973 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6974 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6975 includes some extra padding. store_expr / expand_expr will in
6976 that case call get_inner_reference that will have the bitsize
6977 we check here and thus the block move will not clobber the
6978 padding that shouldn't be clobbered. In the future we could
6979 replace the TREE_ADDRESSABLE check with a check that
6980 get_base_address needs to live in memory. */
6981 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6982 || TREE_CODE (exp) != COMPONENT_REF
6983 || !multiple_p (bitsize, BITS_PER_UNIT)
6984 || !multiple_p (bitpos, BITS_PER_UNIT)
6985 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
6986 &decl_bitsize)
6987 || maybe_ne (decl_bitsize, bitsize)))
6988 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6989 decl we must use bitfield operations. */
6990 || (known_size_p (bitsize)
6991 && TREE_CODE (exp) == MEM_REF
6992 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6993 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6994 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6995 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6996 {
6997 rtx temp;
6998 gimple *nop_def;
6999
7000 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7001 implies a mask operation. If the precision is the same size as
7002 the field we're storing into, that mask is redundant. This is
7003 particularly common with bit field assignments generated by the
7004 C front end. */
7005 nop_def = get_def_for_expr (exp, NOP_EXPR);
7006 if (nop_def)
7007 {
7008 tree type = TREE_TYPE (exp);
7009 if (INTEGRAL_TYPE_P (type)
7010 && maybe_ne (TYPE_PRECISION (type),
7011 GET_MODE_BITSIZE (TYPE_MODE (type)))
7012 && known_eq (bitsize, TYPE_PRECISION (type)))
7013 {
7014 tree op = gimple_assign_rhs1 (nop_def);
7015 type = TREE_TYPE (op);
7016 if (INTEGRAL_TYPE_P (type)
7017 && known_ge (TYPE_PRECISION (type), bitsize))
7018 exp = op;
7019 }
7020 }
7021
7022 temp = expand_normal (exp);
7023
7024 /* We don't support variable-sized BLKmode bitfields, since our
7025 handling of BLKmode is bound up with the ability to break
7026 things into words. */
7027 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7028
7029 /* Handle calls that return values in multiple non-contiguous locations.
7030 The Irix 6 ABI has examples of this. */
7031 if (GET_CODE (temp) == PARALLEL)
7032 {
7033 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7034 machine_mode temp_mode = GET_MODE (temp);
7035 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7036 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7037 rtx temp_target = gen_reg_rtx (temp_mode);
7038 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7039 temp = temp_target;
7040 }
7041
7042 /* Handle calls that return BLKmode values in registers. */
7043 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7044 {
7045 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7046 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7047 temp = temp_target;
7048 }
7049
7050 /* If the value has aggregate type and an integral mode then, if BITSIZE
7051 is narrower than this mode and this is for big-endian data, we first
7052 need to put the value into the low-order bits for store_bit_field,
7053 except when MODE is BLKmode and BITSIZE larger than the word size
7054 (see the handling of fields larger than a word in store_bit_field).
7055 Moreover, the field may be not aligned on a byte boundary; in this
7056 case, if it has reverse storage order, it needs to be accessed as a
7057 scalar field with reverse storage order and we must first put the
7058 value into target order. */
7059 scalar_int_mode temp_mode;
7060 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7061 && is_int_mode (GET_MODE (temp), &temp_mode))
7062 {
7063 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7064
7065 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7066
7067 if (reverse)
7068 temp = flip_storage_order (temp_mode, temp);
7069
7070 gcc_checking_assert (known_le (bitsize, size));
7071 if (maybe_lt (bitsize, size)
7072 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7073 /* Use of to_constant for BLKmode was checked above. */
7074 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7075 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7076 size - bitsize, NULL_RTX, 1);
7077 }
7078
7079 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7080 if (mode != VOIDmode && mode != BLKmode
7081 && mode != TYPE_MODE (TREE_TYPE (exp)))
7082 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7083
7084 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7085 and BITPOS must be aligned on a byte boundary. If so, we simply do
7086 a block copy. Likewise for a BLKmode-like TARGET. */
7087 if (GET_MODE (temp) == BLKmode
7088 && (GET_MODE (target) == BLKmode
7089 || (MEM_P (target)
7090 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7091 && multiple_p (bitpos, BITS_PER_UNIT)
7092 && multiple_p (bitsize, BITS_PER_UNIT))))
7093 {
7094 gcc_assert (MEM_P (target) && MEM_P (temp));
7095 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7096 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7097
7098 target = adjust_address (target, VOIDmode, bytepos);
7099 emit_block_move (target, temp,
7100 gen_int_mode (bytesize, Pmode),
7101 BLOCK_OP_NORMAL);
7102
7103 return const0_rtx;
7104 }
7105
7106 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7107 word size, we need to load the value (see again store_bit_field). */
7108 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7109 {
7110 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
7111 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7112 temp_mode, false, NULL);
7113 }
7114
7115 /* Store the value in the bitfield. */
7116 gcc_checking_assert (known_ge (bitpos, 0));
7117 store_bit_field (target, bitsize, bitpos,
7118 bitregion_start, bitregion_end,
7119 mode, temp, reverse);
7120
7121 return const0_rtx;
7122 }
7123 else
7124 {
7125 /* Now build a reference to just the desired component. */
7126 rtx to_rtx = adjust_address (target, mode,
7127 exact_div (bitpos, BITS_PER_UNIT));
7128
7129 if (to_rtx == target)
7130 to_rtx = copy_rtx (to_rtx);
7131
7132 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7133 set_mem_alias_set (to_rtx, alias_set);
7134
7135 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7136 into a target smaller than its type; handle that case now. */
7137 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7138 {
7139 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7140 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7141 return to_rtx;
7142 }
7143
7144 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7145 }
7146 }
7147 \f
7148 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7149 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7150 codes and find the ultimate containing object, which we return.
7151
7152 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7153 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7154 storage order of the field.
7155 If the position of the field is variable, we store a tree
7156 giving the variable offset (in units) in *POFFSET.
7157 This offset is in addition to the bit position.
7158 If the position is not variable, we store 0 in *POFFSET.
7159
7160 If any of the extraction expressions is volatile,
7161 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7162
7163 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7164 Otherwise, it is a mode that can be used to access the field.
7165
7166 If the field describes a variable-sized object, *PMODE is set to
7167 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7168 this case, but the address of the object can be found. */
7169
7170 tree
7171 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7172 poly_int64_pod *pbitpos, tree *poffset,
7173 machine_mode *pmode, int *punsignedp,
7174 int *preversep, int *pvolatilep)
7175 {
7176 tree size_tree = 0;
7177 machine_mode mode = VOIDmode;
7178 bool blkmode_bitfield = false;
7179 tree offset = size_zero_node;
7180 poly_offset_int bit_offset = 0;
7181
7182 /* First get the mode, signedness, storage order and size. We do this from
7183 just the outermost expression. */
7184 *pbitsize = -1;
7185 if (TREE_CODE (exp) == COMPONENT_REF)
7186 {
7187 tree field = TREE_OPERAND (exp, 1);
7188 size_tree = DECL_SIZE (field);
7189 if (flag_strict_volatile_bitfields > 0
7190 && TREE_THIS_VOLATILE (exp)
7191 && DECL_BIT_FIELD_TYPE (field)
7192 && DECL_MODE (field) != BLKmode)
7193 /* Volatile bitfields should be accessed in the mode of the
7194 field's type, not the mode computed based on the bit
7195 size. */
7196 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7197 else if (!DECL_BIT_FIELD (field))
7198 {
7199 mode = DECL_MODE (field);
7200 /* For vector fields re-check the target flags, as DECL_MODE
7201 could have been set with different target flags than
7202 the current function has. */
7203 if (mode == BLKmode
7204 && VECTOR_TYPE_P (TREE_TYPE (field))
7205 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7206 mode = TYPE_MODE (TREE_TYPE (field));
7207 }
7208 else if (DECL_MODE (field) == BLKmode)
7209 blkmode_bitfield = true;
7210
7211 *punsignedp = DECL_UNSIGNED (field);
7212 }
7213 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7214 {
7215 size_tree = TREE_OPERAND (exp, 1);
7216 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7217 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7218
7219 /* For vector types, with the correct size of access, use the mode of
7220 inner type. */
7221 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7222 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7223 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7224 mode = TYPE_MODE (TREE_TYPE (exp));
7225 }
7226 else
7227 {
7228 mode = TYPE_MODE (TREE_TYPE (exp));
7229 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7230
7231 if (mode == BLKmode)
7232 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7233 else
7234 *pbitsize = GET_MODE_BITSIZE (mode);
7235 }
7236
7237 if (size_tree != 0)
7238 {
7239 if (! tree_fits_uhwi_p (size_tree))
7240 mode = BLKmode, *pbitsize = -1;
7241 else
7242 *pbitsize = tree_to_uhwi (size_tree);
7243 }
7244
7245 *preversep = reverse_storage_order_for_component_p (exp);
7246
7247 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7248 and find the ultimate containing object. */
7249 while (1)
7250 {
7251 switch (TREE_CODE (exp))
7252 {
7253 case BIT_FIELD_REF:
7254 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7255 break;
7256
7257 case COMPONENT_REF:
7258 {
7259 tree field = TREE_OPERAND (exp, 1);
7260 tree this_offset = component_ref_field_offset (exp);
7261
7262 /* If this field hasn't been filled in yet, don't go past it.
7263 This should only happen when folding expressions made during
7264 type construction. */
7265 if (this_offset == 0)
7266 break;
7267
7268 offset = size_binop (PLUS_EXPR, offset, this_offset);
7269 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7270
7271 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7272 }
7273 break;
7274
7275 case ARRAY_REF:
7276 case ARRAY_RANGE_REF:
7277 {
7278 tree index = TREE_OPERAND (exp, 1);
7279 tree low_bound = array_ref_low_bound (exp);
7280 tree unit_size = array_ref_element_size (exp);
7281
7282 /* We assume all arrays have sizes that are a multiple of a byte.
7283 First subtract the lower bound, if any, in the type of the
7284 index, then convert to sizetype and multiply by the size of
7285 the array element. */
7286 if (! integer_zerop (low_bound))
7287 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7288 index, low_bound);
7289
7290 offset = size_binop (PLUS_EXPR, offset,
7291 size_binop (MULT_EXPR,
7292 fold_convert (sizetype, index),
7293 unit_size));
7294 }
7295 break;
7296
7297 case REALPART_EXPR:
7298 break;
7299
7300 case IMAGPART_EXPR:
7301 bit_offset += *pbitsize;
7302 break;
7303
7304 case VIEW_CONVERT_EXPR:
7305 break;
7306
7307 case MEM_REF:
7308 /* Hand back the decl for MEM[&decl, off]. */
7309 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7310 {
7311 tree off = TREE_OPERAND (exp, 1);
7312 if (!integer_zerop (off))
7313 {
7314 poly_offset_int boff = mem_ref_offset (exp);
7315 boff <<= LOG2_BITS_PER_UNIT;
7316 bit_offset += boff;
7317 }
7318 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7319 }
7320 goto done;
7321
7322 default:
7323 goto done;
7324 }
7325
7326 /* If any reference in the chain is volatile, the effect is volatile. */
7327 if (TREE_THIS_VOLATILE (exp))
7328 *pvolatilep = 1;
7329
7330 exp = TREE_OPERAND (exp, 0);
7331 }
7332 done:
7333
7334 /* If OFFSET is constant, see if we can return the whole thing as a
7335 constant bit position. Make sure to handle overflow during
7336 this conversion. */
7337 if (poly_int_tree_p (offset))
7338 {
7339 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7340 TYPE_PRECISION (sizetype));
7341 tem <<= LOG2_BITS_PER_UNIT;
7342 tem += bit_offset;
7343 if (tem.to_shwi (pbitpos))
7344 *poffset = offset = NULL_TREE;
7345 }
7346
7347 /* Otherwise, split it up. */
7348 if (offset)
7349 {
7350 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7351 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7352 {
7353 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7354 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7355 offset = size_binop (PLUS_EXPR, offset,
7356 build_int_cst (sizetype, bytes.force_shwi ()));
7357 }
7358
7359 *poffset = offset;
7360 }
7361
7362 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7363 if (mode == VOIDmode
7364 && blkmode_bitfield
7365 && multiple_p (*pbitpos, BITS_PER_UNIT)
7366 && multiple_p (*pbitsize, BITS_PER_UNIT))
7367 *pmode = BLKmode;
7368 else
7369 *pmode = mode;
7370
7371 return exp;
7372 }
7373
7374 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7375
7376 static unsigned HOST_WIDE_INT
7377 target_align (const_tree target)
7378 {
7379 /* We might have a chain of nested references with intermediate misaligning
7380 bitfields components, so need to recurse to find out. */
7381
7382 unsigned HOST_WIDE_INT this_align, outer_align;
7383
7384 switch (TREE_CODE (target))
7385 {
7386 case BIT_FIELD_REF:
7387 return 1;
7388
7389 case COMPONENT_REF:
7390 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7391 outer_align = target_align (TREE_OPERAND (target, 0));
7392 return MIN (this_align, outer_align);
7393
7394 case ARRAY_REF:
7395 case ARRAY_RANGE_REF:
7396 this_align = TYPE_ALIGN (TREE_TYPE (target));
7397 outer_align = target_align (TREE_OPERAND (target, 0));
7398 return MIN (this_align, outer_align);
7399
7400 CASE_CONVERT:
7401 case NON_LVALUE_EXPR:
7402 case VIEW_CONVERT_EXPR:
7403 this_align = TYPE_ALIGN (TREE_TYPE (target));
7404 outer_align = target_align (TREE_OPERAND (target, 0));
7405 return MAX (this_align, outer_align);
7406
7407 default:
7408 return TYPE_ALIGN (TREE_TYPE (target));
7409 }
7410 }
7411
7412 \f
7413 /* Given an rtx VALUE that may contain additions and multiplications, return
7414 an equivalent value that just refers to a register, memory, or constant.
7415 This is done by generating instructions to perform the arithmetic and
7416 returning a pseudo-register containing the value.
7417
7418 The returned value may be a REG, SUBREG, MEM or constant. */
7419
7420 rtx
7421 force_operand (rtx value, rtx target)
7422 {
7423 rtx op1, op2;
7424 /* Use subtarget as the target for operand 0 of a binary operation. */
7425 rtx subtarget = get_subtarget (target);
7426 enum rtx_code code = GET_CODE (value);
7427
7428 /* Check for subreg applied to an expression produced by loop optimizer. */
7429 if (code == SUBREG
7430 && !REG_P (SUBREG_REG (value))
7431 && !MEM_P (SUBREG_REG (value)))
7432 {
7433 value
7434 = simplify_gen_subreg (GET_MODE (value),
7435 force_reg (GET_MODE (SUBREG_REG (value)),
7436 force_operand (SUBREG_REG (value),
7437 NULL_RTX)),
7438 GET_MODE (SUBREG_REG (value)),
7439 SUBREG_BYTE (value));
7440 code = GET_CODE (value);
7441 }
7442
7443 /* Check for a PIC address load. */
7444 if ((code == PLUS || code == MINUS)
7445 && XEXP (value, 0) == pic_offset_table_rtx
7446 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7447 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7448 || GET_CODE (XEXP (value, 1)) == CONST))
7449 {
7450 if (!subtarget)
7451 subtarget = gen_reg_rtx (GET_MODE (value));
7452 emit_move_insn (subtarget, value);
7453 return subtarget;
7454 }
7455
7456 if (ARITHMETIC_P (value))
7457 {
7458 op2 = XEXP (value, 1);
7459 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7460 subtarget = 0;
7461 if (code == MINUS && CONST_INT_P (op2))
7462 {
7463 code = PLUS;
7464 op2 = negate_rtx (GET_MODE (value), op2);
7465 }
7466
7467 /* Check for an addition with OP2 a constant integer and our first
7468 operand a PLUS of a virtual register and something else. In that
7469 case, we want to emit the sum of the virtual register and the
7470 constant first and then add the other value. This allows virtual
7471 register instantiation to simply modify the constant rather than
7472 creating another one around this addition. */
7473 if (code == PLUS && CONST_INT_P (op2)
7474 && GET_CODE (XEXP (value, 0)) == PLUS
7475 && REG_P (XEXP (XEXP (value, 0), 0))
7476 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7477 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7478 {
7479 rtx temp = expand_simple_binop (GET_MODE (value), code,
7480 XEXP (XEXP (value, 0), 0), op2,
7481 subtarget, 0, OPTAB_LIB_WIDEN);
7482 return expand_simple_binop (GET_MODE (value), code, temp,
7483 force_operand (XEXP (XEXP (value,
7484 0), 1), 0),
7485 target, 0, OPTAB_LIB_WIDEN);
7486 }
7487
7488 op1 = force_operand (XEXP (value, 0), subtarget);
7489 op2 = force_operand (op2, NULL_RTX);
7490 switch (code)
7491 {
7492 case MULT:
7493 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7494 case DIV:
7495 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7496 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7497 target, 1, OPTAB_LIB_WIDEN);
7498 else
7499 return expand_divmod (0,
7500 FLOAT_MODE_P (GET_MODE (value))
7501 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7502 GET_MODE (value), op1, op2, target, 0);
7503 case MOD:
7504 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7505 target, 0);
7506 case UDIV:
7507 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7508 target, 1);
7509 case UMOD:
7510 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7511 target, 1);
7512 case ASHIFTRT:
7513 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7514 target, 0, OPTAB_LIB_WIDEN);
7515 default:
7516 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7517 target, 1, OPTAB_LIB_WIDEN);
7518 }
7519 }
7520 if (UNARY_P (value))
7521 {
7522 if (!target)
7523 target = gen_reg_rtx (GET_MODE (value));
7524 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7525 switch (code)
7526 {
7527 case ZERO_EXTEND:
7528 case SIGN_EXTEND:
7529 case TRUNCATE:
7530 case FLOAT_EXTEND:
7531 case FLOAT_TRUNCATE:
7532 convert_move (target, op1, code == ZERO_EXTEND);
7533 return target;
7534
7535 case FIX:
7536 case UNSIGNED_FIX:
7537 expand_fix (target, op1, code == UNSIGNED_FIX);
7538 return target;
7539
7540 case FLOAT:
7541 case UNSIGNED_FLOAT:
7542 expand_float (target, op1, code == UNSIGNED_FLOAT);
7543 return target;
7544
7545 default:
7546 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7547 }
7548 }
7549
7550 #ifdef INSN_SCHEDULING
7551 /* On machines that have insn scheduling, we want all memory reference to be
7552 explicit, so we need to deal with such paradoxical SUBREGs. */
7553 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7554 value
7555 = simplify_gen_subreg (GET_MODE (value),
7556 force_reg (GET_MODE (SUBREG_REG (value)),
7557 force_operand (SUBREG_REG (value),
7558 NULL_RTX)),
7559 GET_MODE (SUBREG_REG (value)),
7560 SUBREG_BYTE (value));
7561 #endif
7562
7563 return value;
7564 }
7565 \f
7566 /* Subroutine of expand_expr: return nonzero iff there is no way that
7567 EXP can reference X, which is being modified. TOP_P is nonzero if this
7568 call is going to be used to determine whether we need a temporary
7569 for EXP, as opposed to a recursive call to this function.
7570
7571 It is always safe for this routine to return zero since it merely
7572 searches for optimization opportunities. */
7573
7574 int
7575 safe_from_p (const_rtx x, tree exp, int top_p)
7576 {
7577 rtx exp_rtl = 0;
7578 int i, nops;
7579
7580 if (x == 0
7581 /* If EXP has varying size, we MUST use a target since we currently
7582 have no way of allocating temporaries of variable size
7583 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7584 So we assume here that something at a higher level has prevented a
7585 clash. This is somewhat bogus, but the best we can do. Only
7586 do this when X is BLKmode and when we are at the top level. */
7587 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7588 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7589 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7590 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7591 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7592 != INTEGER_CST)
7593 && GET_MODE (x) == BLKmode)
7594 /* If X is in the outgoing argument area, it is always safe. */
7595 || (MEM_P (x)
7596 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7597 || (GET_CODE (XEXP (x, 0)) == PLUS
7598 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7599 return 1;
7600
7601 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7602 find the underlying pseudo. */
7603 if (GET_CODE (x) == SUBREG)
7604 {
7605 x = SUBREG_REG (x);
7606 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7607 return 0;
7608 }
7609
7610 /* Now look at our tree code and possibly recurse. */
7611 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7612 {
7613 case tcc_declaration:
7614 exp_rtl = DECL_RTL_IF_SET (exp);
7615 break;
7616
7617 case tcc_constant:
7618 return 1;
7619
7620 case tcc_exceptional:
7621 if (TREE_CODE (exp) == TREE_LIST)
7622 {
7623 while (1)
7624 {
7625 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7626 return 0;
7627 exp = TREE_CHAIN (exp);
7628 if (!exp)
7629 return 1;
7630 if (TREE_CODE (exp) != TREE_LIST)
7631 return safe_from_p (x, exp, 0);
7632 }
7633 }
7634 else if (TREE_CODE (exp) == CONSTRUCTOR)
7635 {
7636 constructor_elt *ce;
7637 unsigned HOST_WIDE_INT idx;
7638
7639 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7640 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7641 || !safe_from_p (x, ce->value, 0))
7642 return 0;
7643 return 1;
7644 }
7645 else if (TREE_CODE (exp) == ERROR_MARK)
7646 return 1; /* An already-visited SAVE_EXPR? */
7647 else
7648 return 0;
7649
7650 case tcc_statement:
7651 /* The only case we look at here is the DECL_INITIAL inside a
7652 DECL_EXPR. */
7653 return (TREE_CODE (exp) != DECL_EXPR
7654 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7655 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7656 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7657
7658 case tcc_binary:
7659 case tcc_comparison:
7660 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7661 return 0;
7662 /* Fall through. */
7663
7664 case tcc_unary:
7665 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7666
7667 case tcc_expression:
7668 case tcc_reference:
7669 case tcc_vl_exp:
7670 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7671 the expression. If it is set, we conflict iff we are that rtx or
7672 both are in memory. Otherwise, we check all operands of the
7673 expression recursively. */
7674
7675 switch (TREE_CODE (exp))
7676 {
7677 case ADDR_EXPR:
7678 /* If the operand is static or we are static, we can't conflict.
7679 Likewise if we don't conflict with the operand at all. */
7680 if (staticp (TREE_OPERAND (exp, 0))
7681 || TREE_STATIC (exp)
7682 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7683 return 1;
7684
7685 /* Otherwise, the only way this can conflict is if we are taking
7686 the address of a DECL a that address if part of X, which is
7687 very rare. */
7688 exp = TREE_OPERAND (exp, 0);
7689 if (DECL_P (exp))
7690 {
7691 if (!DECL_RTL_SET_P (exp)
7692 || !MEM_P (DECL_RTL (exp)))
7693 return 0;
7694 else
7695 exp_rtl = XEXP (DECL_RTL (exp), 0);
7696 }
7697 break;
7698
7699 case MEM_REF:
7700 if (MEM_P (x)
7701 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7702 get_alias_set (exp)))
7703 return 0;
7704 break;
7705
7706 case CALL_EXPR:
7707 /* Assume that the call will clobber all hard registers and
7708 all of memory. */
7709 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7710 || MEM_P (x))
7711 return 0;
7712 break;
7713
7714 case WITH_CLEANUP_EXPR:
7715 case CLEANUP_POINT_EXPR:
7716 /* Lowered by gimplify.c. */
7717 gcc_unreachable ();
7718
7719 case SAVE_EXPR:
7720 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7721
7722 default:
7723 break;
7724 }
7725
7726 /* If we have an rtx, we do not need to scan our operands. */
7727 if (exp_rtl)
7728 break;
7729
7730 nops = TREE_OPERAND_LENGTH (exp);
7731 for (i = 0; i < nops; i++)
7732 if (TREE_OPERAND (exp, i) != 0
7733 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7734 return 0;
7735
7736 break;
7737
7738 case tcc_type:
7739 /* Should never get a type here. */
7740 gcc_unreachable ();
7741 }
7742
7743 /* If we have an rtl, find any enclosed object. Then see if we conflict
7744 with it. */
7745 if (exp_rtl)
7746 {
7747 if (GET_CODE (exp_rtl) == SUBREG)
7748 {
7749 exp_rtl = SUBREG_REG (exp_rtl);
7750 if (REG_P (exp_rtl)
7751 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7752 return 0;
7753 }
7754
7755 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7756 are memory and they conflict. */
7757 return ! (rtx_equal_p (x, exp_rtl)
7758 || (MEM_P (x) && MEM_P (exp_rtl)
7759 && true_dependence (exp_rtl, VOIDmode, x)));
7760 }
7761
7762 /* If we reach here, it is safe. */
7763 return 1;
7764 }
7765
7766 \f
7767 /* Return the highest power of two that EXP is known to be a multiple of.
7768 This is used in updating alignment of MEMs in array references. */
7769
7770 unsigned HOST_WIDE_INT
7771 highest_pow2_factor (const_tree exp)
7772 {
7773 unsigned HOST_WIDE_INT ret;
7774 int trailing_zeros = tree_ctz (exp);
7775 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7776 return BIGGEST_ALIGNMENT;
7777 ret = HOST_WIDE_INT_1U << trailing_zeros;
7778 if (ret > BIGGEST_ALIGNMENT)
7779 return BIGGEST_ALIGNMENT;
7780 return ret;
7781 }
7782
7783 /* Similar, except that the alignment requirements of TARGET are
7784 taken into account. Assume it is at least as aligned as its
7785 type, unless it is a COMPONENT_REF in which case the layout of
7786 the structure gives the alignment. */
7787
7788 static unsigned HOST_WIDE_INT
7789 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7790 {
7791 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7792 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7793
7794 return MAX (factor, talign);
7795 }
7796 \f
7797 /* Convert the tree comparison code TCODE to the rtl one where the
7798 signedness is UNSIGNEDP. */
7799
7800 static enum rtx_code
7801 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7802 {
7803 enum rtx_code code;
7804 switch (tcode)
7805 {
7806 case EQ_EXPR:
7807 code = EQ;
7808 break;
7809 case NE_EXPR:
7810 code = NE;
7811 break;
7812 case LT_EXPR:
7813 code = unsignedp ? LTU : LT;
7814 break;
7815 case LE_EXPR:
7816 code = unsignedp ? LEU : LE;
7817 break;
7818 case GT_EXPR:
7819 code = unsignedp ? GTU : GT;
7820 break;
7821 case GE_EXPR:
7822 code = unsignedp ? GEU : GE;
7823 break;
7824 case UNORDERED_EXPR:
7825 code = UNORDERED;
7826 break;
7827 case ORDERED_EXPR:
7828 code = ORDERED;
7829 break;
7830 case UNLT_EXPR:
7831 code = UNLT;
7832 break;
7833 case UNLE_EXPR:
7834 code = UNLE;
7835 break;
7836 case UNGT_EXPR:
7837 code = UNGT;
7838 break;
7839 case UNGE_EXPR:
7840 code = UNGE;
7841 break;
7842 case UNEQ_EXPR:
7843 code = UNEQ;
7844 break;
7845 case LTGT_EXPR:
7846 code = LTGT;
7847 break;
7848
7849 default:
7850 gcc_unreachable ();
7851 }
7852 return code;
7853 }
7854
7855 /* Subroutine of expand_expr. Expand the two operands of a binary
7856 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7857 The value may be stored in TARGET if TARGET is nonzero. The
7858 MODIFIER argument is as documented by expand_expr. */
7859
7860 void
7861 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7862 enum expand_modifier modifier)
7863 {
7864 if (! safe_from_p (target, exp1, 1))
7865 target = 0;
7866 if (operand_equal_p (exp0, exp1, 0))
7867 {
7868 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7869 *op1 = copy_rtx (*op0);
7870 }
7871 else
7872 {
7873 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7874 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7875 }
7876 }
7877
7878 \f
7879 /* Return a MEM that contains constant EXP. DEFER is as for
7880 output_constant_def and MODIFIER is as for expand_expr. */
7881
7882 static rtx
7883 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7884 {
7885 rtx mem;
7886
7887 mem = output_constant_def (exp, defer);
7888 if (modifier != EXPAND_INITIALIZER)
7889 mem = use_anchored_address (mem);
7890 return mem;
7891 }
7892
7893 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7894 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7895
7896 static rtx
7897 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7898 enum expand_modifier modifier, addr_space_t as)
7899 {
7900 rtx result, subtarget;
7901 tree inner, offset;
7902 poly_int64 bitsize, bitpos;
7903 int unsignedp, reversep, volatilep = 0;
7904 machine_mode mode1;
7905
7906 /* If we are taking the address of a constant and are at the top level,
7907 we have to use output_constant_def since we can't call force_const_mem
7908 at top level. */
7909 /* ??? This should be considered a front-end bug. We should not be
7910 generating ADDR_EXPR of something that isn't an LVALUE. The only
7911 exception here is STRING_CST. */
7912 if (CONSTANT_CLASS_P (exp))
7913 {
7914 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7915 if (modifier < EXPAND_SUM)
7916 result = force_operand (result, target);
7917 return result;
7918 }
7919
7920 /* Everything must be something allowed by is_gimple_addressable. */
7921 switch (TREE_CODE (exp))
7922 {
7923 case INDIRECT_REF:
7924 /* This case will happen via recursion for &a->b. */
7925 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7926
7927 case MEM_REF:
7928 {
7929 tree tem = TREE_OPERAND (exp, 0);
7930 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7931 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7932 return expand_expr (tem, target, tmode, modifier);
7933 }
7934
7935 case TARGET_MEM_REF:
7936 return addr_for_mem_ref (exp, as, true);
7937
7938 case CONST_DECL:
7939 /* Expand the initializer like constants above. */
7940 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7941 0, modifier), 0);
7942 if (modifier < EXPAND_SUM)
7943 result = force_operand (result, target);
7944 return result;
7945
7946 case REALPART_EXPR:
7947 /* The real part of the complex number is always first, therefore
7948 the address is the same as the address of the parent object. */
7949 offset = 0;
7950 bitpos = 0;
7951 inner = TREE_OPERAND (exp, 0);
7952 break;
7953
7954 case IMAGPART_EXPR:
7955 /* The imaginary part of the complex number is always second.
7956 The expression is therefore always offset by the size of the
7957 scalar type. */
7958 offset = 0;
7959 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7960 inner = TREE_OPERAND (exp, 0);
7961 break;
7962
7963 case COMPOUND_LITERAL_EXPR:
7964 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7965 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7966 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7967 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7968 the initializers aren't gimplified. */
7969 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7970 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7971 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7972 target, tmode, modifier, as);
7973 /* FALLTHRU */
7974 default:
7975 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7976 expand_expr, as that can have various side effects; LABEL_DECLs for
7977 example, may not have their DECL_RTL set yet. Expand the rtl of
7978 CONSTRUCTORs too, which should yield a memory reference for the
7979 constructor's contents. Assume language specific tree nodes can
7980 be expanded in some interesting way. */
7981 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7982 if (DECL_P (exp)
7983 || TREE_CODE (exp) == CONSTRUCTOR
7984 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7985 {
7986 result = expand_expr (exp, target, tmode,
7987 modifier == EXPAND_INITIALIZER
7988 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7989
7990 /* If the DECL isn't in memory, then the DECL wasn't properly
7991 marked TREE_ADDRESSABLE, which will be either a front-end
7992 or a tree optimizer bug. */
7993
7994 gcc_assert (MEM_P (result));
7995 result = XEXP (result, 0);
7996
7997 /* ??? Is this needed anymore? */
7998 if (DECL_P (exp))
7999 TREE_USED (exp) = 1;
8000
8001 if (modifier != EXPAND_INITIALIZER
8002 && modifier != EXPAND_CONST_ADDRESS
8003 && modifier != EXPAND_SUM)
8004 result = force_operand (result, target);
8005 return result;
8006 }
8007
8008 /* Pass FALSE as the last argument to get_inner_reference although
8009 we are expanding to RTL. The rationale is that we know how to
8010 handle "aligning nodes" here: we can just bypass them because
8011 they won't change the final object whose address will be returned
8012 (they actually exist only for that purpose). */
8013 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8014 &unsignedp, &reversep, &volatilep);
8015 break;
8016 }
8017
8018 /* We must have made progress. */
8019 gcc_assert (inner != exp);
8020
8021 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8022 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8023 inner alignment, force the inner to be sufficiently aligned. */
8024 if (CONSTANT_CLASS_P (inner)
8025 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8026 {
8027 inner = copy_node (inner);
8028 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8029 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8030 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8031 }
8032 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8033
8034 if (offset)
8035 {
8036 rtx tmp;
8037
8038 if (modifier != EXPAND_NORMAL)
8039 result = force_operand (result, NULL);
8040 tmp = expand_expr (offset, NULL_RTX, tmode,
8041 modifier == EXPAND_INITIALIZER
8042 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8043
8044 /* expand_expr is allowed to return an object in a mode other
8045 than TMODE. If it did, we need to convert. */
8046 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8047 tmp = convert_modes (tmode, GET_MODE (tmp),
8048 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8049 result = convert_memory_address_addr_space (tmode, result, as);
8050 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8051
8052 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8053 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8054 else
8055 {
8056 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8057 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8058 1, OPTAB_LIB_WIDEN);
8059 }
8060 }
8061
8062 if (maybe_ne (bitpos, 0))
8063 {
8064 /* Someone beforehand should have rejected taking the address
8065 of an object that isn't byte-aligned. */
8066 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8067 result = convert_memory_address_addr_space (tmode, result, as);
8068 result = plus_constant (tmode, result, bytepos);
8069 if (modifier < EXPAND_SUM)
8070 result = force_operand (result, target);
8071 }
8072
8073 return result;
8074 }
8075
8076 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8077 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8078
8079 static rtx
8080 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8081 enum expand_modifier modifier)
8082 {
8083 addr_space_t as = ADDR_SPACE_GENERIC;
8084 scalar_int_mode address_mode = Pmode;
8085 scalar_int_mode pointer_mode = ptr_mode;
8086 machine_mode rmode;
8087 rtx result;
8088
8089 /* Target mode of VOIDmode says "whatever's natural". */
8090 if (tmode == VOIDmode)
8091 tmode = TYPE_MODE (TREE_TYPE (exp));
8092
8093 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8094 {
8095 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8096 address_mode = targetm.addr_space.address_mode (as);
8097 pointer_mode = targetm.addr_space.pointer_mode (as);
8098 }
8099
8100 /* We can get called with some Weird Things if the user does silliness
8101 like "(short) &a". In that case, convert_memory_address won't do
8102 the right thing, so ignore the given target mode. */
8103 scalar_int_mode new_tmode = (tmode == pointer_mode
8104 ? pointer_mode
8105 : address_mode);
8106
8107 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8108 new_tmode, modifier, as);
8109
8110 /* Despite expand_expr claims concerning ignoring TMODE when not
8111 strictly convenient, stuff breaks if we don't honor it. Note
8112 that combined with the above, we only do this for pointer modes. */
8113 rmode = GET_MODE (result);
8114 if (rmode == VOIDmode)
8115 rmode = new_tmode;
8116 if (rmode != new_tmode)
8117 result = convert_memory_address_addr_space (new_tmode, result, as);
8118
8119 return result;
8120 }
8121
8122 /* Generate code for computing CONSTRUCTOR EXP.
8123 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8124 is TRUE, instead of creating a temporary variable in memory
8125 NULL is returned and the caller needs to handle it differently. */
8126
8127 static rtx
8128 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8129 bool avoid_temp_mem)
8130 {
8131 tree type = TREE_TYPE (exp);
8132 machine_mode mode = TYPE_MODE (type);
8133
8134 /* Try to avoid creating a temporary at all. This is possible
8135 if all of the initializer is zero.
8136 FIXME: try to handle all [0..255] initializers we can handle
8137 with memset. */
8138 if (TREE_STATIC (exp)
8139 && !TREE_ADDRESSABLE (exp)
8140 && target != 0 && mode == BLKmode
8141 && all_zeros_p (exp))
8142 {
8143 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8144 return target;
8145 }
8146
8147 /* All elts simple constants => refer to a constant in memory. But
8148 if this is a non-BLKmode mode, let it store a field at a time
8149 since that should make a CONST_INT, CONST_WIDE_INT or
8150 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8151 use, it is best to store directly into the target unless the type
8152 is large enough that memcpy will be used. If we are making an
8153 initializer and all operands are constant, put it in memory as
8154 well.
8155
8156 FIXME: Avoid trying to fill vector constructors piece-meal.
8157 Output them with output_constant_def below unless we're sure
8158 they're zeros. This should go away when vector initializers
8159 are treated like VECTOR_CST instead of arrays. */
8160 if ((TREE_STATIC (exp)
8161 && ((mode == BLKmode
8162 && ! (target != 0 && safe_from_p (target, exp, 1)))
8163 || TREE_ADDRESSABLE (exp)
8164 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8165 && (! can_move_by_pieces
8166 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8167 TYPE_ALIGN (type)))
8168 && ! mostly_zeros_p (exp))))
8169 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8170 && TREE_CONSTANT (exp)))
8171 {
8172 rtx constructor;
8173
8174 if (avoid_temp_mem)
8175 return NULL_RTX;
8176
8177 constructor = expand_expr_constant (exp, 1, modifier);
8178
8179 if (modifier != EXPAND_CONST_ADDRESS
8180 && modifier != EXPAND_INITIALIZER
8181 && modifier != EXPAND_SUM)
8182 constructor = validize_mem (constructor);
8183
8184 return constructor;
8185 }
8186
8187 /* Handle calls that pass values in multiple non-contiguous
8188 locations. The Irix 6 ABI has examples of this. */
8189 if (target == 0 || ! safe_from_p (target, exp, 1)
8190 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8191 {
8192 if (avoid_temp_mem)
8193 return NULL_RTX;
8194
8195 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8196 }
8197
8198 store_constructor (exp, target, 0, int_expr_size (exp), false);
8199 return target;
8200 }
8201
8202
8203 /* expand_expr: generate code for computing expression EXP.
8204 An rtx for the computed value is returned. The value is never null.
8205 In the case of a void EXP, const0_rtx is returned.
8206
8207 The value may be stored in TARGET if TARGET is nonzero.
8208 TARGET is just a suggestion; callers must assume that
8209 the rtx returned may not be the same as TARGET.
8210
8211 If TARGET is CONST0_RTX, it means that the value will be ignored.
8212
8213 If TMODE is not VOIDmode, it suggests generating the
8214 result in mode TMODE. But this is done only when convenient.
8215 Otherwise, TMODE is ignored and the value generated in its natural mode.
8216 TMODE is just a suggestion; callers must assume that
8217 the rtx returned may not have mode TMODE.
8218
8219 Note that TARGET may have neither TMODE nor MODE. In that case, it
8220 probably will not be used.
8221
8222 If MODIFIER is EXPAND_SUM then when EXP is an addition
8223 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8224 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8225 products as above, or REG or MEM, or constant.
8226 Ordinarily in such cases we would output mul or add instructions
8227 and then return a pseudo reg containing the sum.
8228
8229 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8230 it also marks a label as absolutely required (it can't be dead).
8231 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8232 This is used for outputting expressions used in initializers.
8233
8234 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8235 with a constant address even if that address is not normally legitimate.
8236 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8237
8238 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8239 a call parameter. Such targets require special care as we haven't yet
8240 marked TARGET so that it's safe from being trashed by libcalls. We
8241 don't want to use TARGET for anything but the final result;
8242 Intermediate values must go elsewhere. Additionally, calls to
8243 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8244
8245 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8246 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8247 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8248 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8249 recursively.
8250
8251 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8252 In this case, we don't adjust a returned MEM rtx that wouldn't be
8253 sufficiently aligned for its mode; instead, it's up to the caller
8254 to deal with it afterwards. This is used to make sure that unaligned
8255 base objects for which out-of-bounds accesses are supported, for
8256 example record types with trailing arrays, aren't realigned behind
8257 the back of the caller.
8258 The normal operating mode is to pass FALSE for this parameter. */
8259
8260 rtx
8261 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8262 enum expand_modifier modifier, rtx *alt_rtl,
8263 bool inner_reference_p)
8264 {
8265 rtx ret;
8266
8267 /* Handle ERROR_MARK before anybody tries to access its type. */
8268 if (TREE_CODE (exp) == ERROR_MARK
8269 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8270 {
8271 ret = CONST0_RTX (tmode);
8272 return ret ? ret : const0_rtx;
8273 }
8274
8275 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8276 inner_reference_p);
8277 return ret;
8278 }
8279
8280 /* Try to expand the conditional expression which is represented by
8281 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8282 return the rtl reg which represents the result. Otherwise return
8283 NULL_RTX. */
8284
8285 static rtx
8286 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8287 tree treeop1 ATTRIBUTE_UNUSED,
8288 tree treeop2 ATTRIBUTE_UNUSED)
8289 {
8290 rtx insn;
8291 rtx op00, op01, op1, op2;
8292 enum rtx_code comparison_code;
8293 machine_mode comparison_mode;
8294 gimple *srcstmt;
8295 rtx temp;
8296 tree type = TREE_TYPE (treeop1);
8297 int unsignedp = TYPE_UNSIGNED (type);
8298 machine_mode mode = TYPE_MODE (type);
8299 machine_mode orig_mode = mode;
8300 static bool expanding_cond_expr_using_cmove = false;
8301
8302 /* Conditional move expansion can end up TERing two operands which,
8303 when recursively hitting conditional expressions can result in
8304 exponential behavior if the cmove expansion ultimatively fails.
8305 It's hardly profitable to TER a cmove into a cmove so avoid doing
8306 that by failing early if we end up recursing. */
8307 if (expanding_cond_expr_using_cmove)
8308 return NULL_RTX;
8309
8310 /* If we cannot do a conditional move on the mode, try doing it
8311 with the promoted mode. */
8312 if (!can_conditionally_move_p (mode))
8313 {
8314 mode = promote_mode (type, mode, &unsignedp);
8315 if (!can_conditionally_move_p (mode))
8316 return NULL_RTX;
8317 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8318 }
8319 else
8320 temp = assign_temp (type, 0, 1);
8321
8322 expanding_cond_expr_using_cmove = true;
8323 start_sequence ();
8324 expand_operands (treeop1, treeop2,
8325 temp, &op1, &op2, EXPAND_NORMAL);
8326
8327 if (TREE_CODE (treeop0) == SSA_NAME
8328 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8329 {
8330 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8331 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8332 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8333 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8334 comparison_mode = TYPE_MODE (type);
8335 unsignedp = TYPE_UNSIGNED (type);
8336 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8337 }
8338 else if (COMPARISON_CLASS_P (treeop0))
8339 {
8340 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8341 enum tree_code cmpcode = TREE_CODE (treeop0);
8342 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8343 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8344 unsignedp = TYPE_UNSIGNED (type);
8345 comparison_mode = TYPE_MODE (type);
8346 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8347 }
8348 else
8349 {
8350 op00 = expand_normal (treeop0);
8351 op01 = const0_rtx;
8352 comparison_code = NE;
8353 comparison_mode = GET_MODE (op00);
8354 if (comparison_mode == VOIDmode)
8355 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8356 }
8357 expanding_cond_expr_using_cmove = false;
8358
8359 if (GET_MODE (op1) != mode)
8360 op1 = gen_lowpart (mode, op1);
8361
8362 if (GET_MODE (op2) != mode)
8363 op2 = gen_lowpart (mode, op2);
8364
8365 /* Try to emit the conditional move. */
8366 insn = emit_conditional_move (temp, comparison_code,
8367 op00, op01, comparison_mode,
8368 op1, op2, mode,
8369 unsignedp);
8370
8371 /* If we could do the conditional move, emit the sequence,
8372 and return. */
8373 if (insn)
8374 {
8375 rtx_insn *seq = get_insns ();
8376 end_sequence ();
8377 emit_insn (seq);
8378 return convert_modes (orig_mode, mode, temp, 0);
8379 }
8380
8381 /* Otherwise discard the sequence and fall back to code with
8382 branches. */
8383 end_sequence ();
8384 return NULL_RTX;
8385 }
8386
8387 rtx
8388 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8389 enum expand_modifier modifier)
8390 {
8391 rtx op0, op1, op2, temp;
8392 rtx_code_label *lab;
8393 tree type;
8394 int unsignedp;
8395 machine_mode mode;
8396 scalar_int_mode int_mode;
8397 enum tree_code code = ops->code;
8398 optab this_optab;
8399 rtx subtarget, original_target;
8400 int ignore;
8401 bool reduce_bit_field;
8402 location_t loc = ops->location;
8403 tree treeop0, treeop1, treeop2;
8404 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8405 ? reduce_to_bit_field_precision ((expr), \
8406 target, \
8407 type) \
8408 : (expr))
8409
8410 type = ops->type;
8411 mode = TYPE_MODE (type);
8412 unsignedp = TYPE_UNSIGNED (type);
8413
8414 treeop0 = ops->op0;
8415 treeop1 = ops->op1;
8416 treeop2 = ops->op2;
8417
8418 /* We should be called only on simple (binary or unary) expressions,
8419 exactly those that are valid in gimple expressions that aren't
8420 GIMPLE_SINGLE_RHS (or invalid). */
8421 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8422 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8423 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8424
8425 ignore = (target == const0_rtx
8426 || ((CONVERT_EXPR_CODE_P (code)
8427 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8428 && TREE_CODE (type) == VOID_TYPE));
8429
8430 /* We should be called only if we need the result. */
8431 gcc_assert (!ignore);
8432
8433 /* An operation in what may be a bit-field type needs the
8434 result to be reduced to the precision of the bit-field type,
8435 which is narrower than that of the type's mode. */
8436 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8437 && !type_has_mode_precision_p (type));
8438
8439 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8440 target = 0;
8441
8442 /* Use subtarget as the target for operand 0 of a binary operation. */
8443 subtarget = get_subtarget (target);
8444 original_target = target;
8445
8446 switch (code)
8447 {
8448 case NON_LVALUE_EXPR:
8449 case PAREN_EXPR:
8450 CASE_CONVERT:
8451 if (treeop0 == error_mark_node)
8452 return const0_rtx;
8453
8454 if (TREE_CODE (type) == UNION_TYPE)
8455 {
8456 tree valtype = TREE_TYPE (treeop0);
8457
8458 /* If both input and output are BLKmode, this conversion isn't doing
8459 anything except possibly changing memory attribute. */
8460 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8461 {
8462 rtx result = expand_expr (treeop0, target, tmode,
8463 modifier);
8464
8465 result = copy_rtx (result);
8466 set_mem_attributes (result, type, 0);
8467 return result;
8468 }
8469
8470 if (target == 0)
8471 {
8472 if (TYPE_MODE (type) != BLKmode)
8473 target = gen_reg_rtx (TYPE_MODE (type));
8474 else
8475 target = assign_temp (type, 1, 1);
8476 }
8477
8478 if (MEM_P (target))
8479 /* Store data into beginning of memory target. */
8480 store_expr (treeop0,
8481 adjust_address (target, TYPE_MODE (valtype), 0),
8482 modifier == EXPAND_STACK_PARM,
8483 false, TYPE_REVERSE_STORAGE_ORDER (type));
8484
8485 else
8486 {
8487 gcc_assert (REG_P (target)
8488 && !TYPE_REVERSE_STORAGE_ORDER (type));
8489
8490 /* Store this field into a union of the proper type. */
8491 poly_uint64 op0_size
8492 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8493 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8494 store_field (target,
8495 /* The conversion must be constructed so that
8496 we know at compile time how many bits
8497 to preserve. */
8498 ordered_min (op0_size, union_size),
8499 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8500 false, false);
8501 }
8502
8503 /* Return the entire union. */
8504 return target;
8505 }
8506
8507 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8508 {
8509 op0 = expand_expr (treeop0, target, VOIDmode,
8510 modifier);
8511
8512 /* If the signedness of the conversion differs and OP0 is
8513 a promoted SUBREG, clear that indication since we now
8514 have to do the proper extension. */
8515 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8516 && GET_CODE (op0) == SUBREG)
8517 SUBREG_PROMOTED_VAR_P (op0) = 0;
8518
8519 return REDUCE_BIT_FIELD (op0);
8520 }
8521
8522 op0 = expand_expr (treeop0, NULL_RTX, mode,
8523 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8524 if (GET_MODE (op0) == mode)
8525 ;
8526
8527 /* If OP0 is a constant, just convert it into the proper mode. */
8528 else if (CONSTANT_P (op0))
8529 {
8530 tree inner_type = TREE_TYPE (treeop0);
8531 machine_mode inner_mode = GET_MODE (op0);
8532
8533 if (inner_mode == VOIDmode)
8534 inner_mode = TYPE_MODE (inner_type);
8535
8536 if (modifier == EXPAND_INITIALIZER)
8537 op0 = lowpart_subreg (mode, op0, inner_mode);
8538 else
8539 op0= convert_modes (mode, inner_mode, op0,
8540 TYPE_UNSIGNED (inner_type));
8541 }
8542
8543 else if (modifier == EXPAND_INITIALIZER)
8544 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8545 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8546
8547 else if (target == 0)
8548 op0 = convert_to_mode (mode, op0,
8549 TYPE_UNSIGNED (TREE_TYPE
8550 (treeop0)));
8551 else
8552 {
8553 convert_move (target, op0,
8554 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8555 op0 = target;
8556 }
8557
8558 return REDUCE_BIT_FIELD (op0);
8559
8560 case ADDR_SPACE_CONVERT_EXPR:
8561 {
8562 tree treeop0_type = TREE_TYPE (treeop0);
8563
8564 gcc_assert (POINTER_TYPE_P (type));
8565 gcc_assert (POINTER_TYPE_P (treeop0_type));
8566
8567 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8568 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8569
8570 /* Conversions between pointers to the same address space should
8571 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8572 gcc_assert (as_to != as_from);
8573
8574 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8575
8576 /* Ask target code to handle conversion between pointers
8577 to overlapping address spaces. */
8578 if (targetm.addr_space.subset_p (as_to, as_from)
8579 || targetm.addr_space.subset_p (as_from, as_to))
8580 {
8581 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8582 }
8583 else
8584 {
8585 /* For disjoint address spaces, converting anything but a null
8586 pointer invokes undefined behavior. We truncate or extend the
8587 value as if we'd converted via integers, which handles 0 as
8588 required, and all others as the programmer likely expects. */
8589 #ifndef POINTERS_EXTEND_UNSIGNED
8590 const int POINTERS_EXTEND_UNSIGNED = 1;
8591 #endif
8592 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8593 op0, POINTERS_EXTEND_UNSIGNED);
8594 }
8595 gcc_assert (op0);
8596 return op0;
8597 }
8598
8599 case POINTER_PLUS_EXPR:
8600 /* Even though the sizetype mode and the pointer's mode can be different
8601 expand is able to handle this correctly and get the correct result out
8602 of the PLUS_EXPR code. */
8603 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8604 if sizetype precision is smaller than pointer precision. */
8605 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8606 treeop1 = fold_convert_loc (loc, type,
8607 fold_convert_loc (loc, ssizetype,
8608 treeop1));
8609 /* If sizetype precision is larger than pointer precision, truncate the
8610 offset to have matching modes. */
8611 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8612 treeop1 = fold_convert_loc (loc, type, treeop1);
8613 /* FALLTHRU */
8614
8615 case PLUS_EXPR:
8616 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8617 something else, make sure we add the register to the constant and
8618 then to the other thing. This case can occur during strength
8619 reduction and doing it this way will produce better code if the
8620 frame pointer or argument pointer is eliminated.
8621
8622 fold-const.c will ensure that the constant is always in the inner
8623 PLUS_EXPR, so the only case we need to do anything about is if
8624 sp, ap, or fp is our second argument, in which case we must swap
8625 the innermost first argument and our second argument. */
8626
8627 if (TREE_CODE (treeop0) == PLUS_EXPR
8628 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8629 && VAR_P (treeop1)
8630 && (DECL_RTL (treeop1) == frame_pointer_rtx
8631 || DECL_RTL (treeop1) == stack_pointer_rtx
8632 || DECL_RTL (treeop1) == arg_pointer_rtx))
8633 {
8634 gcc_unreachable ();
8635 }
8636
8637 /* If the result is to be ptr_mode and we are adding an integer to
8638 something, we might be forming a constant. So try to use
8639 plus_constant. If it produces a sum and we can't accept it,
8640 use force_operand. This allows P = &ARR[const] to generate
8641 efficient code on machines where a SYMBOL_REF is not a valid
8642 address.
8643
8644 If this is an EXPAND_SUM call, always return the sum. */
8645 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8646 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8647 {
8648 if (modifier == EXPAND_STACK_PARM)
8649 target = 0;
8650 if (TREE_CODE (treeop0) == INTEGER_CST
8651 && HWI_COMPUTABLE_MODE_P (mode)
8652 && TREE_CONSTANT (treeop1))
8653 {
8654 rtx constant_part;
8655 HOST_WIDE_INT wc;
8656 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8657
8658 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8659 EXPAND_SUM);
8660 /* Use wi::shwi to ensure that the constant is
8661 truncated according to the mode of OP1, then sign extended
8662 to a HOST_WIDE_INT. Using the constant directly can result
8663 in non-canonical RTL in a 64x32 cross compile. */
8664 wc = TREE_INT_CST_LOW (treeop0);
8665 constant_part =
8666 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8667 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8668 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8669 op1 = force_operand (op1, target);
8670 return REDUCE_BIT_FIELD (op1);
8671 }
8672
8673 else if (TREE_CODE (treeop1) == INTEGER_CST
8674 && HWI_COMPUTABLE_MODE_P (mode)
8675 && TREE_CONSTANT (treeop0))
8676 {
8677 rtx constant_part;
8678 HOST_WIDE_INT wc;
8679 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8680
8681 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8682 (modifier == EXPAND_INITIALIZER
8683 ? EXPAND_INITIALIZER : EXPAND_SUM));
8684 if (! CONSTANT_P (op0))
8685 {
8686 op1 = expand_expr (treeop1, NULL_RTX,
8687 VOIDmode, modifier);
8688 /* Return a PLUS if modifier says it's OK. */
8689 if (modifier == EXPAND_SUM
8690 || modifier == EXPAND_INITIALIZER)
8691 return simplify_gen_binary (PLUS, mode, op0, op1);
8692 goto binop2;
8693 }
8694 /* Use wi::shwi to ensure that the constant is
8695 truncated according to the mode of OP1, then sign extended
8696 to a HOST_WIDE_INT. Using the constant directly can result
8697 in non-canonical RTL in a 64x32 cross compile. */
8698 wc = TREE_INT_CST_LOW (treeop1);
8699 constant_part
8700 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8701 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8702 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8703 op0 = force_operand (op0, target);
8704 return REDUCE_BIT_FIELD (op0);
8705 }
8706 }
8707
8708 /* Use TER to expand pointer addition of a negated value
8709 as pointer subtraction. */
8710 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8711 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8712 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8713 && TREE_CODE (treeop1) == SSA_NAME
8714 && TYPE_MODE (TREE_TYPE (treeop0))
8715 == TYPE_MODE (TREE_TYPE (treeop1)))
8716 {
8717 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8718 if (def)
8719 {
8720 treeop1 = gimple_assign_rhs1 (def);
8721 code = MINUS_EXPR;
8722 goto do_minus;
8723 }
8724 }
8725
8726 /* No sense saving up arithmetic to be done
8727 if it's all in the wrong mode to form part of an address.
8728 And force_operand won't know whether to sign-extend or
8729 zero-extend. */
8730 if (modifier != EXPAND_INITIALIZER
8731 && (modifier != EXPAND_SUM || mode != ptr_mode))
8732 {
8733 expand_operands (treeop0, treeop1,
8734 subtarget, &op0, &op1, modifier);
8735 if (op0 == const0_rtx)
8736 return op1;
8737 if (op1 == const0_rtx)
8738 return op0;
8739 goto binop2;
8740 }
8741
8742 expand_operands (treeop0, treeop1,
8743 subtarget, &op0, &op1, modifier);
8744 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8745
8746 case MINUS_EXPR:
8747 case POINTER_DIFF_EXPR:
8748 do_minus:
8749 /* For initializers, we are allowed to return a MINUS of two
8750 symbolic constants. Here we handle all cases when both operands
8751 are constant. */
8752 /* Handle difference of two symbolic constants,
8753 for the sake of an initializer. */
8754 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8755 && really_constant_p (treeop0)
8756 && really_constant_p (treeop1))
8757 {
8758 expand_operands (treeop0, treeop1,
8759 NULL_RTX, &op0, &op1, modifier);
8760 return simplify_gen_binary (MINUS, mode, op0, op1);
8761 }
8762
8763 /* No sense saving up arithmetic to be done
8764 if it's all in the wrong mode to form part of an address.
8765 And force_operand won't know whether to sign-extend or
8766 zero-extend. */
8767 if (modifier != EXPAND_INITIALIZER
8768 && (modifier != EXPAND_SUM || mode != ptr_mode))
8769 goto binop;
8770
8771 expand_operands (treeop0, treeop1,
8772 subtarget, &op0, &op1, modifier);
8773
8774 /* Convert A - const to A + (-const). */
8775 if (CONST_INT_P (op1))
8776 {
8777 op1 = negate_rtx (mode, op1);
8778 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8779 }
8780
8781 goto binop2;
8782
8783 case WIDEN_MULT_PLUS_EXPR:
8784 case WIDEN_MULT_MINUS_EXPR:
8785 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8786 op2 = expand_normal (treeop2);
8787 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8788 target, unsignedp);
8789 return target;
8790
8791 case WIDEN_MULT_EXPR:
8792 /* If first operand is constant, swap them.
8793 Thus the following special case checks need only
8794 check the second operand. */
8795 if (TREE_CODE (treeop0) == INTEGER_CST)
8796 std::swap (treeop0, treeop1);
8797
8798 /* First, check if we have a multiplication of one signed and one
8799 unsigned operand. */
8800 if (TREE_CODE (treeop1) != INTEGER_CST
8801 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8802 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8803 {
8804 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8805 this_optab = usmul_widen_optab;
8806 if (find_widening_optab_handler (this_optab, mode, innermode)
8807 != CODE_FOR_nothing)
8808 {
8809 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8810 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8811 EXPAND_NORMAL);
8812 else
8813 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8814 EXPAND_NORMAL);
8815 /* op0 and op1 might still be constant, despite the above
8816 != INTEGER_CST check. Handle it. */
8817 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8818 {
8819 op0 = convert_modes (mode, innermode, op0, true);
8820 op1 = convert_modes (mode, innermode, op1, false);
8821 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8822 target, unsignedp));
8823 }
8824 goto binop3;
8825 }
8826 }
8827 /* Check for a multiplication with matching signedness. */
8828 else if ((TREE_CODE (treeop1) == INTEGER_CST
8829 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8830 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8831 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8832 {
8833 tree op0type = TREE_TYPE (treeop0);
8834 machine_mode innermode = TYPE_MODE (op0type);
8835 bool zextend_p = TYPE_UNSIGNED (op0type);
8836 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8837 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8838
8839 if (TREE_CODE (treeop0) != INTEGER_CST)
8840 {
8841 if (find_widening_optab_handler (this_optab, mode, innermode)
8842 != CODE_FOR_nothing)
8843 {
8844 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8845 EXPAND_NORMAL);
8846 /* op0 and op1 might still be constant, despite the above
8847 != INTEGER_CST check. Handle it. */
8848 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8849 {
8850 widen_mult_const:
8851 op0 = convert_modes (mode, innermode, op0, zextend_p);
8852 op1
8853 = convert_modes (mode, innermode, op1,
8854 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8855 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8856 target,
8857 unsignedp));
8858 }
8859 temp = expand_widening_mult (mode, op0, op1, target,
8860 unsignedp, this_optab);
8861 return REDUCE_BIT_FIELD (temp);
8862 }
8863 if (find_widening_optab_handler (other_optab, mode, innermode)
8864 != CODE_FOR_nothing
8865 && innermode == word_mode)
8866 {
8867 rtx htem, hipart;
8868 op0 = expand_normal (treeop0);
8869 op1 = expand_normal (treeop1);
8870 /* op0 and op1 might be constants, despite the above
8871 != INTEGER_CST check. Handle it. */
8872 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8873 goto widen_mult_const;
8874 if (TREE_CODE (treeop1) == INTEGER_CST)
8875 op1 = convert_modes (mode, word_mode, op1,
8876 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8877 temp = expand_binop (mode, other_optab, op0, op1, target,
8878 unsignedp, OPTAB_LIB_WIDEN);
8879 hipart = gen_highpart (word_mode, temp);
8880 htem = expand_mult_highpart_adjust (word_mode, hipart,
8881 op0, op1, hipart,
8882 zextend_p);
8883 if (htem != hipart)
8884 emit_move_insn (hipart, htem);
8885 return REDUCE_BIT_FIELD (temp);
8886 }
8887 }
8888 }
8889 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8890 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8891 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8892 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8893
8894 case MULT_EXPR:
8895 /* If this is a fixed-point operation, then we cannot use the code
8896 below because "expand_mult" doesn't support sat/no-sat fixed-point
8897 multiplications. */
8898 if (ALL_FIXED_POINT_MODE_P (mode))
8899 goto binop;
8900
8901 /* If first operand is constant, swap them.
8902 Thus the following special case checks need only
8903 check the second operand. */
8904 if (TREE_CODE (treeop0) == INTEGER_CST)
8905 std::swap (treeop0, treeop1);
8906
8907 /* Attempt to return something suitable for generating an
8908 indexed address, for machines that support that. */
8909
8910 if (modifier == EXPAND_SUM && mode == ptr_mode
8911 && tree_fits_shwi_p (treeop1))
8912 {
8913 tree exp1 = treeop1;
8914
8915 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8916 EXPAND_SUM);
8917
8918 if (!REG_P (op0))
8919 op0 = force_operand (op0, NULL_RTX);
8920 if (!REG_P (op0))
8921 op0 = copy_to_mode_reg (mode, op0);
8922
8923 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8924 gen_int_mode (tree_to_shwi (exp1),
8925 TYPE_MODE (TREE_TYPE (exp1)))));
8926 }
8927
8928 if (modifier == EXPAND_STACK_PARM)
8929 target = 0;
8930
8931 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8932 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8933
8934 case TRUNC_MOD_EXPR:
8935 case FLOOR_MOD_EXPR:
8936 case CEIL_MOD_EXPR:
8937 case ROUND_MOD_EXPR:
8938
8939 case TRUNC_DIV_EXPR:
8940 case FLOOR_DIV_EXPR:
8941 case CEIL_DIV_EXPR:
8942 case ROUND_DIV_EXPR:
8943 case EXACT_DIV_EXPR:
8944 {
8945 /* If this is a fixed-point operation, then we cannot use the code
8946 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8947 divisions. */
8948 if (ALL_FIXED_POINT_MODE_P (mode))
8949 goto binop;
8950
8951 if (modifier == EXPAND_STACK_PARM)
8952 target = 0;
8953 /* Possible optimization: compute the dividend with EXPAND_SUM
8954 then if the divisor is constant can optimize the case
8955 where some terms of the dividend have coeffs divisible by it. */
8956 expand_operands (treeop0, treeop1,
8957 subtarget, &op0, &op1, EXPAND_NORMAL);
8958 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8959 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8960 if (SCALAR_INT_MODE_P (mode)
8961 && optimize >= 2
8962 && get_range_pos_neg (treeop0) == 1
8963 && get_range_pos_neg (treeop1) == 1)
8964 {
8965 /* If both arguments are known to be positive when interpreted
8966 as signed, we can expand it as both signed and unsigned
8967 division or modulo. Choose the cheaper sequence in that case. */
8968 bool speed_p = optimize_insn_for_speed_p ();
8969 do_pending_stack_adjust ();
8970 start_sequence ();
8971 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8972 rtx_insn *uns_insns = get_insns ();
8973 end_sequence ();
8974 start_sequence ();
8975 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8976 rtx_insn *sgn_insns = get_insns ();
8977 end_sequence ();
8978 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8979 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8980
8981 /* If costs are the same then use as tie breaker the other
8982 other factor. */
8983 if (uns_cost == sgn_cost)
8984 {
8985 uns_cost = seq_cost (uns_insns, !speed_p);
8986 sgn_cost = seq_cost (sgn_insns, !speed_p);
8987 }
8988
8989 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8990 {
8991 emit_insn (uns_insns);
8992 return uns_ret;
8993 }
8994 emit_insn (sgn_insns);
8995 return sgn_ret;
8996 }
8997 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8998 }
8999 case RDIV_EXPR:
9000 goto binop;
9001
9002 case MULT_HIGHPART_EXPR:
9003 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9004 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9005 gcc_assert (temp);
9006 return temp;
9007
9008 case FIXED_CONVERT_EXPR:
9009 op0 = expand_normal (treeop0);
9010 if (target == 0 || modifier == EXPAND_STACK_PARM)
9011 target = gen_reg_rtx (mode);
9012
9013 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9014 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9015 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9016 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9017 else
9018 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9019 return target;
9020
9021 case FIX_TRUNC_EXPR:
9022 op0 = expand_normal (treeop0);
9023 if (target == 0 || modifier == EXPAND_STACK_PARM)
9024 target = gen_reg_rtx (mode);
9025 expand_fix (target, op0, unsignedp);
9026 return target;
9027
9028 case FLOAT_EXPR:
9029 op0 = expand_normal (treeop0);
9030 if (target == 0 || modifier == EXPAND_STACK_PARM)
9031 target = gen_reg_rtx (mode);
9032 /* expand_float can't figure out what to do if FROM has VOIDmode.
9033 So give it the correct mode. With -O, cse will optimize this. */
9034 if (GET_MODE (op0) == VOIDmode)
9035 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9036 op0);
9037 expand_float (target, op0,
9038 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9039 return target;
9040
9041 case NEGATE_EXPR:
9042 op0 = expand_expr (treeop0, subtarget,
9043 VOIDmode, EXPAND_NORMAL);
9044 if (modifier == EXPAND_STACK_PARM)
9045 target = 0;
9046 temp = expand_unop (mode,
9047 optab_for_tree_code (NEGATE_EXPR, type,
9048 optab_default),
9049 op0, target, 0);
9050 gcc_assert (temp);
9051 return REDUCE_BIT_FIELD (temp);
9052
9053 case ABS_EXPR:
9054 case ABSU_EXPR:
9055 op0 = expand_expr (treeop0, subtarget,
9056 VOIDmode, EXPAND_NORMAL);
9057 if (modifier == EXPAND_STACK_PARM)
9058 target = 0;
9059
9060 /* ABS_EXPR is not valid for complex arguments. */
9061 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9062 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9063
9064 /* Unsigned abs is simply the operand. Testing here means we don't
9065 risk generating incorrect code below. */
9066 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9067 return op0;
9068
9069 return expand_abs (mode, op0, target, unsignedp,
9070 safe_from_p (target, treeop0, 1));
9071
9072 case MAX_EXPR:
9073 case MIN_EXPR:
9074 target = original_target;
9075 if (target == 0
9076 || modifier == EXPAND_STACK_PARM
9077 || (MEM_P (target) && MEM_VOLATILE_P (target))
9078 || GET_MODE (target) != mode
9079 || (REG_P (target)
9080 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9081 target = gen_reg_rtx (mode);
9082 expand_operands (treeop0, treeop1,
9083 target, &op0, &op1, EXPAND_NORMAL);
9084
9085 /* First try to do it with a special MIN or MAX instruction.
9086 If that does not win, use a conditional jump to select the proper
9087 value. */
9088 this_optab = optab_for_tree_code (code, type, optab_default);
9089 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9090 OPTAB_WIDEN);
9091 if (temp != 0)
9092 return temp;
9093
9094 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9095 and similarly for MAX <x, y>. */
9096 if (VECTOR_TYPE_P (type))
9097 {
9098 tree t0 = make_tree (type, op0);
9099 tree t1 = make_tree (type, op1);
9100 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
9101 type, t0, t1);
9102 return expand_vec_cond_expr (type, comparison, t0, t1,
9103 original_target);
9104 }
9105
9106 /* At this point, a MEM target is no longer useful; we will get better
9107 code without it. */
9108
9109 if (! REG_P (target))
9110 target = gen_reg_rtx (mode);
9111
9112 /* If op1 was placed in target, swap op0 and op1. */
9113 if (target != op0 && target == op1)
9114 std::swap (op0, op1);
9115
9116 /* We generate better code and avoid problems with op1 mentioning
9117 target by forcing op1 into a pseudo if it isn't a constant. */
9118 if (! CONSTANT_P (op1))
9119 op1 = force_reg (mode, op1);
9120
9121 {
9122 enum rtx_code comparison_code;
9123 rtx cmpop1 = op1;
9124
9125 if (code == MAX_EXPR)
9126 comparison_code = unsignedp ? GEU : GE;
9127 else
9128 comparison_code = unsignedp ? LEU : LE;
9129
9130 /* Canonicalize to comparisons against 0. */
9131 if (op1 == const1_rtx)
9132 {
9133 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9134 or (a != 0 ? a : 1) for unsigned.
9135 For MIN we are safe converting (a <= 1 ? a : 1)
9136 into (a <= 0 ? a : 1) */
9137 cmpop1 = const0_rtx;
9138 if (code == MAX_EXPR)
9139 comparison_code = unsignedp ? NE : GT;
9140 }
9141 if (op1 == constm1_rtx && !unsignedp)
9142 {
9143 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9144 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9145 cmpop1 = const0_rtx;
9146 if (code == MIN_EXPR)
9147 comparison_code = LT;
9148 }
9149
9150 /* Use a conditional move if possible. */
9151 if (can_conditionally_move_p (mode))
9152 {
9153 rtx insn;
9154
9155 start_sequence ();
9156
9157 /* Try to emit the conditional move. */
9158 insn = emit_conditional_move (target, comparison_code,
9159 op0, cmpop1, mode,
9160 op0, op1, mode,
9161 unsignedp);
9162
9163 /* If we could do the conditional move, emit the sequence,
9164 and return. */
9165 if (insn)
9166 {
9167 rtx_insn *seq = get_insns ();
9168 end_sequence ();
9169 emit_insn (seq);
9170 return target;
9171 }
9172
9173 /* Otherwise discard the sequence and fall back to code with
9174 branches. */
9175 end_sequence ();
9176 }
9177
9178 if (target != op0)
9179 emit_move_insn (target, op0);
9180
9181 lab = gen_label_rtx ();
9182 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9183 unsignedp, mode, NULL_RTX, NULL, lab,
9184 profile_probability::uninitialized ());
9185 }
9186 emit_move_insn (target, op1);
9187 emit_label (lab);
9188 return target;
9189
9190 case BIT_NOT_EXPR:
9191 op0 = expand_expr (treeop0, subtarget,
9192 VOIDmode, EXPAND_NORMAL);
9193 if (modifier == EXPAND_STACK_PARM)
9194 target = 0;
9195 /* In case we have to reduce the result to bitfield precision
9196 for unsigned bitfield expand this as XOR with a proper constant
9197 instead. */
9198 if (reduce_bit_field && TYPE_UNSIGNED (type))
9199 {
9200 int_mode = SCALAR_INT_TYPE_MODE (type);
9201 wide_int mask = wi::mask (TYPE_PRECISION (type),
9202 false, GET_MODE_PRECISION (int_mode));
9203
9204 temp = expand_binop (int_mode, xor_optab, op0,
9205 immed_wide_int_const (mask, int_mode),
9206 target, 1, OPTAB_LIB_WIDEN);
9207 }
9208 else
9209 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9210 gcc_assert (temp);
9211 return temp;
9212
9213 /* ??? Can optimize bitwise operations with one arg constant.
9214 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9215 and (a bitwise1 b) bitwise2 b (etc)
9216 but that is probably not worth while. */
9217
9218 case BIT_AND_EXPR:
9219 case BIT_IOR_EXPR:
9220 case BIT_XOR_EXPR:
9221 goto binop;
9222
9223 case LROTATE_EXPR:
9224 case RROTATE_EXPR:
9225 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9226 || type_has_mode_precision_p (type));
9227 /* fall through */
9228
9229 case LSHIFT_EXPR:
9230 case RSHIFT_EXPR:
9231 {
9232 /* If this is a fixed-point operation, then we cannot use the code
9233 below because "expand_shift" doesn't support sat/no-sat fixed-point
9234 shifts. */
9235 if (ALL_FIXED_POINT_MODE_P (mode))
9236 goto binop;
9237
9238 if (! safe_from_p (subtarget, treeop1, 1))
9239 subtarget = 0;
9240 if (modifier == EXPAND_STACK_PARM)
9241 target = 0;
9242 op0 = expand_expr (treeop0, subtarget,
9243 VOIDmode, EXPAND_NORMAL);
9244
9245 /* Left shift optimization when shifting across word_size boundary.
9246
9247 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9248 there isn't native instruction to support this wide mode
9249 left shift. Given below scenario:
9250
9251 Type A = (Type) B << C
9252
9253 |< T >|
9254 | dest_high | dest_low |
9255
9256 | word_size |
9257
9258 If the shift amount C caused we shift B to across the word
9259 size boundary, i.e part of B shifted into high half of
9260 destination register, and part of B remains in the low
9261 half, then GCC will use the following left shift expand
9262 logic:
9263
9264 1. Initialize dest_low to B.
9265 2. Initialize every bit of dest_high to the sign bit of B.
9266 3. Logic left shift dest_low by C bit to finalize dest_low.
9267 The value of dest_low before this shift is kept in a temp D.
9268 4. Logic left shift dest_high by C.
9269 5. Logic right shift D by (word_size - C).
9270 6. Or the result of 4 and 5 to finalize dest_high.
9271
9272 While, by checking gimple statements, if operand B is
9273 coming from signed extension, then we can simplify above
9274 expand logic into:
9275
9276 1. dest_high = src_low >> (word_size - C).
9277 2. dest_low = src_low << C.
9278
9279 We can use one arithmetic right shift to finish all the
9280 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9281 needed from 6 into 2.
9282
9283 The case is similar for zero extension, except that we
9284 initialize dest_high to zero rather than copies of the sign
9285 bit from B. Furthermore, we need to use a logical right shift
9286 in this case.
9287
9288 The choice of sign-extension versus zero-extension is
9289 determined entirely by whether or not B is signed and is
9290 independent of the current setting of unsignedp. */
9291
9292 temp = NULL_RTX;
9293 if (code == LSHIFT_EXPR
9294 && target
9295 && REG_P (target)
9296 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9297 && mode == int_mode
9298 && TREE_CONSTANT (treeop1)
9299 && TREE_CODE (treeop0) == SSA_NAME)
9300 {
9301 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9302 if (is_gimple_assign (def)
9303 && gimple_assign_rhs_code (def) == NOP_EXPR)
9304 {
9305 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9306 (TREE_TYPE (gimple_assign_rhs1 (def)));
9307
9308 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9309 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9310 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9311 >= GET_MODE_BITSIZE (word_mode)))
9312 {
9313 rtx_insn *seq, *seq_old;
9314 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9315 int_mode);
9316 bool extend_unsigned
9317 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9318 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9319 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9320 rtx dest_high = simplify_gen_subreg (word_mode, target,
9321 int_mode, high_off);
9322 HOST_WIDE_INT ramount = (BITS_PER_WORD
9323 - TREE_INT_CST_LOW (treeop1));
9324 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9325
9326 start_sequence ();
9327 /* dest_high = src_low >> (word_size - C). */
9328 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9329 rshift, dest_high,
9330 extend_unsigned);
9331 if (temp != dest_high)
9332 emit_move_insn (dest_high, temp);
9333
9334 /* dest_low = src_low << C. */
9335 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9336 treeop1, dest_low, unsignedp);
9337 if (temp != dest_low)
9338 emit_move_insn (dest_low, temp);
9339
9340 seq = get_insns ();
9341 end_sequence ();
9342 temp = target ;
9343
9344 if (have_insn_for (ASHIFT, int_mode))
9345 {
9346 bool speed_p = optimize_insn_for_speed_p ();
9347 start_sequence ();
9348 rtx ret_old = expand_variable_shift (code, int_mode,
9349 op0, treeop1,
9350 target,
9351 unsignedp);
9352
9353 seq_old = get_insns ();
9354 end_sequence ();
9355 if (seq_cost (seq, speed_p)
9356 >= seq_cost (seq_old, speed_p))
9357 {
9358 seq = seq_old;
9359 temp = ret_old;
9360 }
9361 }
9362 emit_insn (seq);
9363 }
9364 }
9365 }
9366
9367 if (temp == NULL_RTX)
9368 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9369 unsignedp);
9370 if (code == LSHIFT_EXPR)
9371 temp = REDUCE_BIT_FIELD (temp);
9372 return temp;
9373 }
9374
9375 /* Could determine the answer when only additive constants differ. Also,
9376 the addition of one can be handled by changing the condition. */
9377 case LT_EXPR:
9378 case LE_EXPR:
9379 case GT_EXPR:
9380 case GE_EXPR:
9381 case EQ_EXPR:
9382 case NE_EXPR:
9383 case UNORDERED_EXPR:
9384 case ORDERED_EXPR:
9385 case UNLT_EXPR:
9386 case UNLE_EXPR:
9387 case UNGT_EXPR:
9388 case UNGE_EXPR:
9389 case UNEQ_EXPR:
9390 case LTGT_EXPR:
9391 {
9392 temp = do_store_flag (ops,
9393 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9394 tmode != VOIDmode ? tmode : mode);
9395 if (temp)
9396 return temp;
9397
9398 /* Use a compare and a jump for BLKmode comparisons, or for function
9399 type comparisons is have_canonicalize_funcptr_for_compare. */
9400
9401 if ((target == 0
9402 || modifier == EXPAND_STACK_PARM
9403 || ! safe_from_p (target, treeop0, 1)
9404 || ! safe_from_p (target, treeop1, 1)
9405 /* Make sure we don't have a hard reg (such as function's return
9406 value) live across basic blocks, if not optimizing. */
9407 || (!optimize && REG_P (target)
9408 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9409 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9410
9411 emit_move_insn (target, const0_rtx);
9412
9413 rtx_code_label *lab1 = gen_label_rtx ();
9414 jumpifnot_1 (code, treeop0, treeop1, lab1,
9415 profile_probability::uninitialized ());
9416
9417 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9418 emit_move_insn (target, constm1_rtx);
9419 else
9420 emit_move_insn (target, const1_rtx);
9421
9422 emit_label (lab1);
9423 return target;
9424 }
9425 case COMPLEX_EXPR:
9426 /* Get the rtx code of the operands. */
9427 op0 = expand_normal (treeop0);
9428 op1 = expand_normal (treeop1);
9429
9430 if (!target)
9431 target = gen_reg_rtx (TYPE_MODE (type));
9432 else
9433 /* If target overlaps with op1, then either we need to force
9434 op1 into a pseudo (if target also overlaps with op0),
9435 or write the complex parts in reverse order. */
9436 switch (GET_CODE (target))
9437 {
9438 case CONCAT:
9439 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9440 {
9441 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9442 {
9443 complex_expr_force_op1:
9444 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9445 emit_move_insn (temp, op1);
9446 op1 = temp;
9447 break;
9448 }
9449 complex_expr_swap_order:
9450 /* Move the imaginary (op1) and real (op0) parts to their
9451 location. */
9452 write_complex_part (target, op1, true);
9453 write_complex_part (target, op0, false);
9454
9455 return target;
9456 }
9457 break;
9458 case MEM:
9459 temp = adjust_address_nv (target,
9460 GET_MODE_INNER (GET_MODE (target)), 0);
9461 if (reg_overlap_mentioned_p (temp, op1))
9462 {
9463 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9464 temp = adjust_address_nv (target, imode,
9465 GET_MODE_SIZE (imode));
9466 if (reg_overlap_mentioned_p (temp, op0))
9467 goto complex_expr_force_op1;
9468 goto complex_expr_swap_order;
9469 }
9470 break;
9471 default:
9472 if (reg_overlap_mentioned_p (target, op1))
9473 {
9474 if (reg_overlap_mentioned_p (target, op0))
9475 goto complex_expr_force_op1;
9476 goto complex_expr_swap_order;
9477 }
9478 break;
9479 }
9480
9481 /* Move the real (op0) and imaginary (op1) parts to their location. */
9482 write_complex_part (target, op0, false);
9483 write_complex_part (target, op1, true);
9484
9485 return target;
9486
9487 case WIDEN_SUM_EXPR:
9488 {
9489 tree oprnd0 = treeop0;
9490 tree oprnd1 = treeop1;
9491
9492 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9493 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9494 target, unsignedp);
9495 return target;
9496 }
9497
9498 case VEC_UNPACK_HI_EXPR:
9499 case VEC_UNPACK_LO_EXPR:
9500 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9501 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9502 {
9503 op0 = expand_normal (treeop0);
9504 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9505 target, unsignedp);
9506 gcc_assert (temp);
9507 return temp;
9508 }
9509
9510 case VEC_UNPACK_FLOAT_HI_EXPR:
9511 case VEC_UNPACK_FLOAT_LO_EXPR:
9512 {
9513 op0 = expand_normal (treeop0);
9514 /* The signedness is determined from input operand. */
9515 temp = expand_widen_pattern_expr
9516 (ops, op0, NULL_RTX, NULL_RTX,
9517 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9518
9519 gcc_assert (temp);
9520 return temp;
9521 }
9522
9523 case VEC_WIDEN_MULT_HI_EXPR:
9524 case VEC_WIDEN_MULT_LO_EXPR:
9525 case VEC_WIDEN_MULT_EVEN_EXPR:
9526 case VEC_WIDEN_MULT_ODD_EXPR:
9527 case VEC_WIDEN_LSHIFT_HI_EXPR:
9528 case VEC_WIDEN_LSHIFT_LO_EXPR:
9529 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9530 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9531 target, unsignedp);
9532 gcc_assert (target);
9533 return target;
9534
9535 case VEC_PACK_SAT_EXPR:
9536 case VEC_PACK_FIX_TRUNC_EXPR:
9537 mode = TYPE_MODE (TREE_TYPE (treeop0));
9538 goto binop;
9539
9540 case VEC_PACK_TRUNC_EXPR:
9541 if (VECTOR_BOOLEAN_TYPE_P (type)
9542 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
9543 && mode == TYPE_MODE (TREE_TYPE (treeop0))
9544 && SCALAR_INT_MODE_P (mode))
9545 {
9546 struct expand_operand eops[4];
9547 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
9548 expand_operands (treeop0, treeop1,
9549 subtarget, &op0, &op1, EXPAND_NORMAL);
9550 this_optab = vec_pack_sbool_trunc_optab;
9551 enum insn_code icode = optab_handler (this_optab, imode);
9552 create_output_operand (&eops[0], target, mode);
9553 create_convert_operand_from (&eops[1], op0, imode, false);
9554 create_convert_operand_from (&eops[2], op1, imode, false);
9555 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
9556 create_input_operand (&eops[3], temp, imode);
9557 expand_insn (icode, 4, eops);
9558 return eops[0].value;
9559 }
9560 mode = TYPE_MODE (TREE_TYPE (treeop0));
9561 goto binop;
9562
9563 case VEC_PACK_FLOAT_EXPR:
9564 mode = TYPE_MODE (TREE_TYPE (treeop0));
9565 expand_operands (treeop0, treeop1,
9566 subtarget, &op0, &op1, EXPAND_NORMAL);
9567 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9568 optab_default);
9569 target = expand_binop (mode, this_optab, op0, op1, target,
9570 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9571 OPTAB_LIB_WIDEN);
9572 gcc_assert (target);
9573 return target;
9574
9575 case VEC_PERM_EXPR:
9576 {
9577 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9578 vec_perm_builder sel;
9579 if (TREE_CODE (treeop2) == VECTOR_CST
9580 && tree_to_vec_perm_builder (&sel, treeop2))
9581 {
9582 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9583 temp = expand_vec_perm_const (mode, op0, op1, sel,
9584 sel_mode, target);
9585 }
9586 else
9587 {
9588 op2 = expand_normal (treeop2);
9589 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9590 }
9591 gcc_assert (temp);
9592 return temp;
9593 }
9594
9595 case DOT_PROD_EXPR:
9596 {
9597 tree oprnd0 = treeop0;
9598 tree oprnd1 = treeop1;
9599 tree oprnd2 = treeop2;
9600 rtx op2;
9601
9602 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9603 op2 = expand_normal (oprnd2);
9604 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9605 target, unsignedp);
9606 return target;
9607 }
9608
9609 case SAD_EXPR:
9610 {
9611 tree oprnd0 = treeop0;
9612 tree oprnd1 = treeop1;
9613 tree oprnd2 = treeop2;
9614 rtx op2;
9615
9616 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9617 op2 = expand_normal (oprnd2);
9618 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9619 target, unsignedp);
9620 return target;
9621 }
9622
9623 case REALIGN_LOAD_EXPR:
9624 {
9625 tree oprnd0 = treeop0;
9626 tree oprnd1 = treeop1;
9627 tree oprnd2 = treeop2;
9628 rtx op2;
9629
9630 this_optab = optab_for_tree_code (code, type, optab_default);
9631 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9632 op2 = expand_normal (oprnd2);
9633 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9634 target, unsignedp);
9635 gcc_assert (temp);
9636 return temp;
9637 }
9638
9639 case COND_EXPR:
9640 {
9641 /* A COND_EXPR with its type being VOID_TYPE represents a
9642 conditional jump and is handled in
9643 expand_gimple_cond_expr. */
9644 gcc_assert (!VOID_TYPE_P (type));
9645
9646 /* Note that COND_EXPRs whose type is a structure or union
9647 are required to be constructed to contain assignments of
9648 a temporary variable, so that we can evaluate them here
9649 for side effect only. If type is void, we must do likewise. */
9650
9651 gcc_assert (!TREE_ADDRESSABLE (type)
9652 && !ignore
9653 && TREE_TYPE (treeop1) != void_type_node
9654 && TREE_TYPE (treeop2) != void_type_node);
9655
9656 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9657 if (temp)
9658 return temp;
9659
9660 /* If we are not to produce a result, we have no target. Otherwise,
9661 if a target was specified use it; it will not be used as an
9662 intermediate target unless it is safe. If no target, use a
9663 temporary. */
9664
9665 if (modifier != EXPAND_STACK_PARM
9666 && original_target
9667 && safe_from_p (original_target, treeop0, 1)
9668 && GET_MODE (original_target) == mode
9669 && !MEM_P (original_target))
9670 temp = original_target;
9671 else
9672 temp = assign_temp (type, 0, 1);
9673
9674 do_pending_stack_adjust ();
9675 NO_DEFER_POP;
9676 rtx_code_label *lab0 = gen_label_rtx ();
9677 rtx_code_label *lab1 = gen_label_rtx ();
9678 jumpifnot (treeop0, lab0,
9679 profile_probability::uninitialized ());
9680 store_expr (treeop1, temp,
9681 modifier == EXPAND_STACK_PARM,
9682 false, false);
9683
9684 emit_jump_insn (targetm.gen_jump (lab1));
9685 emit_barrier ();
9686 emit_label (lab0);
9687 store_expr (treeop2, temp,
9688 modifier == EXPAND_STACK_PARM,
9689 false, false);
9690
9691 emit_label (lab1);
9692 OK_DEFER_POP;
9693 return temp;
9694 }
9695
9696 case VEC_COND_EXPR:
9697 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9698 return target;
9699
9700 case VEC_DUPLICATE_EXPR:
9701 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9702 target = expand_vector_broadcast (mode, op0);
9703 gcc_assert (target);
9704 return target;
9705
9706 case VEC_SERIES_EXPR:
9707 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9708 return expand_vec_series_expr (mode, op0, op1, target);
9709
9710 case BIT_INSERT_EXPR:
9711 {
9712 unsigned bitpos = tree_to_uhwi (treeop2);
9713 unsigned bitsize;
9714 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9715 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9716 else
9717 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9718 rtx op0 = expand_normal (treeop0);
9719 rtx op1 = expand_normal (treeop1);
9720 rtx dst = gen_reg_rtx (mode);
9721 emit_move_insn (dst, op0);
9722 store_bit_field (dst, bitsize, bitpos, 0, 0,
9723 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9724 return dst;
9725 }
9726
9727 default:
9728 gcc_unreachable ();
9729 }
9730
9731 /* Here to do an ordinary binary operator. */
9732 binop:
9733 expand_operands (treeop0, treeop1,
9734 subtarget, &op0, &op1, EXPAND_NORMAL);
9735 binop2:
9736 this_optab = optab_for_tree_code (code, type, optab_default);
9737 binop3:
9738 if (modifier == EXPAND_STACK_PARM)
9739 target = 0;
9740 temp = expand_binop (mode, this_optab, op0, op1, target,
9741 unsignedp, OPTAB_LIB_WIDEN);
9742 gcc_assert (temp);
9743 /* Bitwise operations do not need bitfield reduction as we expect their
9744 operands being properly truncated. */
9745 if (code == BIT_XOR_EXPR
9746 || code == BIT_AND_EXPR
9747 || code == BIT_IOR_EXPR)
9748 return temp;
9749 return REDUCE_BIT_FIELD (temp);
9750 }
9751 #undef REDUCE_BIT_FIELD
9752
9753
9754 /* Return TRUE if expression STMT is suitable for replacement.
9755 Never consider memory loads as replaceable, because those don't ever lead
9756 into constant expressions. */
9757
9758 static bool
9759 stmt_is_replaceable_p (gimple *stmt)
9760 {
9761 if (ssa_is_replaceable_p (stmt))
9762 {
9763 /* Don't move around loads. */
9764 if (!gimple_assign_single_p (stmt)
9765 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9766 return true;
9767 }
9768 return false;
9769 }
9770
9771 rtx
9772 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9773 enum expand_modifier modifier, rtx *alt_rtl,
9774 bool inner_reference_p)
9775 {
9776 rtx op0, op1, temp, decl_rtl;
9777 tree type;
9778 int unsignedp;
9779 machine_mode mode, dmode;
9780 enum tree_code code = TREE_CODE (exp);
9781 rtx subtarget, original_target;
9782 int ignore;
9783 tree context;
9784 bool reduce_bit_field;
9785 location_t loc = EXPR_LOCATION (exp);
9786 struct separate_ops ops;
9787 tree treeop0, treeop1, treeop2;
9788 tree ssa_name = NULL_TREE;
9789 gimple *g;
9790
9791 type = TREE_TYPE (exp);
9792 mode = TYPE_MODE (type);
9793 unsignedp = TYPE_UNSIGNED (type);
9794
9795 treeop0 = treeop1 = treeop2 = NULL_TREE;
9796 if (!VL_EXP_CLASS_P (exp))
9797 switch (TREE_CODE_LENGTH (code))
9798 {
9799 default:
9800 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9801 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9802 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9803 case 0: break;
9804 }
9805 ops.code = code;
9806 ops.type = type;
9807 ops.op0 = treeop0;
9808 ops.op1 = treeop1;
9809 ops.op2 = treeop2;
9810 ops.location = loc;
9811
9812 ignore = (target == const0_rtx
9813 || ((CONVERT_EXPR_CODE_P (code)
9814 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9815 && TREE_CODE (type) == VOID_TYPE));
9816
9817 /* An operation in what may be a bit-field type needs the
9818 result to be reduced to the precision of the bit-field type,
9819 which is narrower than that of the type's mode. */
9820 reduce_bit_field = (!ignore
9821 && INTEGRAL_TYPE_P (type)
9822 && !type_has_mode_precision_p (type));
9823
9824 /* If we are going to ignore this result, we need only do something
9825 if there is a side-effect somewhere in the expression. If there
9826 is, short-circuit the most common cases here. Note that we must
9827 not call expand_expr with anything but const0_rtx in case this
9828 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9829
9830 if (ignore)
9831 {
9832 if (! TREE_SIDE_EFFECTS (exp))
9833 return const0_rtx;
9834
9835 /* Ensure we reference a volatile object even if value is ignored, but
9836 don't do this if all we are doing is taking its address. */
9837 if (TREE_THIS_VOLATILE (exp)
9838 && TREE_CODE (exp) != FUNCTION_DECL
9839 && mode != VOIDmode && mode != BLKmode
9840 && modifier != EXPAND_CONST_ADDRESS)
9841 {
9842 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9843 if (MEM_P (temp))
9844 copy_to_reg (temp);
9845 return const0_rtx;
9846 }
9847
9848 if (TREE_CODE_CLASS (code) == tcc_unary
9849 || code == BIT_FIELD_REF
9850 || code == COMPONENT_REF
9851 || code == INDIRECT_REF)
9852 return expand_expr (treeop0, const0_rtx, VOIDmode,
9853 modifier);
9854
9855 else if (TREE_CODE_CLASS (code) == tcc_binary
9856 || TREE_CODE_CLASS (code) == tcc_comparison
9857 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9858 {
9859 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9860 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9861 return const0_rtx;
9862 }
9863
9864 target = 0;
9865 }
9866
9867 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9868 target = 0;
9869
9870 /* Use subtarget as the target for operand 0 of a binary operation. */
9871 subtarget = get_subtarget (target);
9872 original_target = target;
9873
9874 switch (code)
9875 {
9876 case LABEL_DECL:
9877 {
9878 tree function = decl_function_context (exp);
9879
9880 temp = label_rtx (exp);
9881 temp = gen_rtx_LABEL_REF (Pmode, temp);
9882
9883 if (function != current_function_decl
9884 && function != 0)
9885 LABEL_REF_NONLOCAL_P (temp) = 1;
9886
9887 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9888 return temp;
9889 }
9890
9891 case SSA_NAME:
9892 /* ??? ivopts calls expander, without any preparation from
9893 out-of-ssa. So fake instructions as if this was an access to the
9894 base variable. This unnecessarily allocates a pseudo, see how we can
9895 reuse it, if partition base vars have it set already. */
9896 if (!currently_expanding_to_rtl)
9897 {
9898 tree var = SSA_NAME_VAR (exp);
9899 if (var && DECL_RTL_SET_P (var))
9900 return DECL_RTL (var);
9901 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9902 LAST_VIRTUAL_REGISTER + 1);
9903 }
9904
9905 g = get_gimple_for_ssa_name (exp);
9906 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9907 if (g == NULL
9908 && modifier == EXPAND_INITIALIZER
9909 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9910 && (optimize || !SSA_NAME_VAR (exp)
9911 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9912 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9913 g = SSA_NAME_DEF_STMT (exp);
9914 if (g)
9915 {
9916 rtx r;
9917 location_t saved_loc = curr_insn_location ();
9918 location_t loc = gimple_location (g);
9919 if (loc != UNKNOWN_LOCATION)
9920 set_curr_insn_location (loc);
9921 ops.code = gimple_assign_rhs_code (g);
9922 switch (get_gimple_rhs_class (ops.code))
9923 {
9924 case GIMPLE_TERNARY_RHS:
9925 ops.op2 = gimple_assign_rhs3 (g);
9926 /* Fallthru */
9927 case GIMPLE_BINARY_RHS:
9928 ops.op1 = gimple_assign_rhs2 (g);
9929
9930 /* Try to expand conditonal compare. */
9931 if (targetm.gen_ccmp_first)
9932 {
9933 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9934 r = expand_ccmp_expr (g, mode);
9935 if (r)
9936 break;
9937 }
9938 /* Fallthru */
9939 case GIMPLE_UNARY_RHS:
9940 ops.op0 = gimple_assign_rhs1 (g);
9941 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9942 ops.location = loc;
9943 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9944 break;
9945 case GIMPLE_SINGLE_RHS:
9946 {
9947 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9948 tmode, modifier, alt_rtl,
9949 inner_reference_p);
9950 break;
9951 }
9952 default:
9953 gcc_unreachable ();
9954 }
9955 set_curr_insn_location (saved_loc);
9956 if (REG_P (r) && !REG_EXPR (r))
9957 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9958 return r;
9959 }
9960
9961 ssa_name = exp;
9962 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9963 exp = SSA_NAME_VAR (ssa_name);
9964 goto expand_decl_rtl;
9965
9966 case PARM_DECL:
9967 case VAR_DECL:
9968 /* If a static var's type was incomplete when the decl was written,
9969 but the type is complete now, lay out the decl now. */
9970 if (DECL_SIZE (exp) == 0
9971 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9972 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9973 layout_decl (exp, 0);
9974
9975 /* fall through */
9976
9977 case FUNCTION_DECL:
9978 case RESULT_DECL:
9979 decl_rtl = DECL_RTL (exp);
9980 expand_decl_rtl:
9981 gcc_assert (decl_rtl);
9982
9983 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9984 settings for VECTOR_TYPE_P that might switch for the function. */
9985 if (currently_expanding_to_rtl
9986 && code == VAR_DECL && MEM_P (decl_rtl)
9987 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9988 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9989 else
9990 decl_rtl = copy_rtx (decl_rtl);
9991
9992 /* Record writes to register variables. */
9993 if (modifier == EXPAND_WRITE
9994 && REG_P (decl_rtl)
9995 && HARD_REGISTER_P (decl_rtl))
9996 add_to_hard_reg_set (&crtl->asm_clobbers,
9997 GET_MODE (decl_rtl), REGNO (decl_rtl));
9998
9999 /* Ensure variable marked as used even if it doesn't go through
10000 a parser. If it hasn't be used yet, write out an external
10001 definition. */
10002 if (exp)
10003 TREE_USED (exp) = 1;
10004
10005 /* Show we haven't gotten RTL for this yet. */
10006 temp = 0;
10007
10008 /* Variables inherited from containing functions should have
10009 been lowered by this point. */
10010 if (exp)
10011 context = decl_function_context (exp);
10012 gcc_assert (!exp
10013 || SCOPE_FILE_SCOPE_P (context)
10014 || context == current_function_decl
10015 || TREE_STATIC (exp)
10016 || DECL_EXTERNAL (exp)
10017 /* ??? C++ creates functions that are not TREE_STATIC. */
10018 || TREE_CODE (exp) == FUNCTION_DECL);
10019
10020 /* This is the case of an array whose size is to be determined
10021 from its initializer, while the initializer is still being parsed.
10022 ??? We aren't parsing while expanding anymore. */
10023
10024 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10025 temp = validize_mem (decl_rtl);
10026
10027 /* If DECL_RTL is memory, we are in the normal case and the
10028 address is not valid, get the address into a register. */
10029
10030 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10031 {
10032 if (alt_rtl)
10033 *alt_rtl = decl_rtl;
10034 decl_rtl = use_anchored_address (decl_rtl);
10035 if (modifier != EXPAND_CONST_ADDRESS
10036 && modifier != EXPAND_SUM
10037 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10038 : GET_MODE (decl_rtl),
10039 XEXP (decl_rtl, 0),
10040 MEM_ADDR_SPACE (decl_rtl)))
10041 temp = replace_equiv_address (decl_rtl,
10042 copy_rtx (XEXP (decl_rtl, 0)));
10043 }
10044
10045 /* If we got something, return it. But first, set the alignment
10046 if the address is a register. */
10047 if (temp != 0)
10048 {
10049 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10050 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10051
10052 return temp;
10053 }
10054
10055 if (exp)
10056 dmode = DECL_MODE (exp);
10057 else
10058 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10059
10060 /* If the mode of DECL_RTL does not match that of the decl,
10061 there are two cases: we are dealing with a BLKmode value
10062 that is returned in a register, or we are dealing with
10063 a promoted value. In the latter case, return a SUBREG
10064 of the wanted mode, but mark it so that we know that it
10065 was already extended. */
10066 if (REG_P (decl_rtl)
10067 && dmode != BLKmode
10068 && GET_MODE (decl_rtl) != dmode)
10069 {
10070 machine_mode pmode;
10071
10072 /* Get the signedness to be used for this variable. Ensure we get
10073 the same mode we got when the variable was declared. */
10074 if (code != SSA_NAME)
10075 pmode = promote_decl_mode (exp, &unsignedp);
10076 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10077 && gimple_code (g) == GIMPLE_CALL
10078 && !gimple_call_internal_p (g))
10079 pmode = promote_function_mode (type, mode, &unsignedp,
10080 gimple_call_fntype (g),
10081 2);
10082 else
10083 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10084 gcc_assert (GET_MODE (decl_rtl) == pmode);
10085
10086 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10087 SUBREG_PROMOTED_VAR_P (temp) = 1;
10088 SUBREG_PROMOTED_SET (temp, unsignedp);
10089 return temp;
10090 }
10091
10092 return decl_rtl;
10093
10094 case INTEGER_CST:
10095 {
10096 /* Given that TYPE_PRECISION (type) is not always equal to
10097 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10098 the former to the latter according to the signedness of the
10099 type. */
10100 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
10101 temp = immed_wide_int_const
10102 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
10103 return temp;
10104 }
10105
10106 case VECTOR_CST:
10107 {
10108 tree tmp = NULL_TREE;
10109 if (VECTOR_MODE_P (mode))
10110 return const_vector_from_tree (exp);
10111 scalar_int_mode int_mode;
10112 if (is_int_mode (mode, &int_mode))
10113 {
10114 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10115 return const_scalar_mask_from_tree (int_mode, exp);
10116 else
10117 {
10118 tree type_for_mode
10119 = lang_hooks.types.type_for_mode (int_mode, 1);
10120 if (type_for_mode)
10121 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10122 type_for_mode, exp);
10123 }
10124 }
10125 if (!tmp)
10126 {
10127 vec<constructor_elt, va_gc> *v;
10128 /* Constructors need to be fixed-length. FIXME. */
10129 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10130 vec_alloc (v, nunits);
10131 for (unsigned int i = 0; i < nunits; ++i)
10132 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10133 tmp = build_constructor (type, v);
10134 }
10135 return expand_expr (tmp, ignore ? const0_rtx : target,
10136 tmode, modifier);
10137 }
10138
10139 case CONST_DECL:
10140 if (modifier == EXPAND_WRITE)
10141 {
10142 /* Writing into CONST_DECL is always invalid, but handle it
10143 gracefully. */
10144 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10145 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10146 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10147 EXPAND_NORMAL, as);
10148 op0 = memory_address_addr_space (mode, op0, as);
10149 temp = gen_rtx_MEM (mode, op0);
10150 set_mem_addr_space (temp, as);
10151 return temp;
10152 }
10153 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10154
10155 case REAL_CST:
10156 /* If optimized, generate immediate CONST_DOUBLE
10157 which will be turned into memory by reload if necessary.
10158
10159 We used to force a register so that loop.c could see it. But
10160 this does not allow gen_* patterns to perform optimizations with
10161 the constants. It also produces two insns in cases like "x = 1.0;".
10162 On most machines, floating-point constants are not permitted in
10163 many insns, so we'd end up copying it to a register in any case.
10164
10165 Now, we do the copying in expand_binop, if appropriate. */
10166 return const_double_from_real_value (TREE_REAL_CST (exp),
10167 TYPE_MODE (TREE_TYPE (exp)));
10168
10169 case FIXED_CST:
10170 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10171 TYPE_MODE (TREE_TYPE (exp)));
10172
10173 case COMPLEX_CST:
10174 /* Handle evaluating a complex constant in a CONCAT target. */
10175 if (original_target && GET_CODE (original_target) == CONCAT)
10176 {
10177 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10178 rtx rtarg, itarg;
10179
10180 rtarg = XEXP (original_target, 0);
10181 itarg = XEXP (original_target, 1);
10182
10183 /* Move the real and imaginary parts separately. */
10184 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10185 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10186
10187 if (op0 != rtarg)
10188 emit_move_insn (rtarg, op0);
10189 if (op1 != itarg)
10190 emit_move_insn (itarg, op1);
10191
10192 return original_target;
10193 }
10194
10195 /* fall through */
10196
10197 case STRING_CST:
10198 temp = expand_expr_constant (exp, 1, modifier);
10199
10200 /* temp contains a constant address.
10201 On RISC machines where a constant address isn't valid,
10202 make some insns to get that address into a register. */
10203 if (modifier != EXPAND_CONST_ADDRESS
10204 && modifier != EXPAND_INITIALIZER
10205 && modifier != EXPAND_SUM
10206 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10207 MEM_ADDR_SPACE (temp)))
10208 return replace_equiv_address (temp,
10209 copy_rtx (XEXP (temp, 0)));
10210 return temp;
10211
10212 case POLY_INT_CST:
10213 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10214
10215 case SAVE_EXPR:
10216 {
10217 tree val = treeop0;
10218 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10219 inner_reference_p);
10220
10221 if (!SAVE_EXPR_RESOLVED_P (exp))
10222 {
10223 /* We can indeed still hit this case, typically via builtin
10224 expanders calling save_expr immediately before expanding
10225 something. Assume this means that we only have to deal
10226 with non-BLKmode values. */
10227 gcc_assert (GET_MODE (ret) != BLKmode);
10228
10229 val = build_decl (curr_insn_location (),
10230 VAR_DECL, NULL, TREE_TYPE (exp));
10231 DECL_ARTIFICIAL (val) = 1;
10232 DECL_IGNORED_P (val) = 1;
10233 treeop0 = val;
10234 TREE_OPERAND (exp, 0) = treeop0;
10235 SAVE_EXPR_RESOLVED_P (exp) = 1;
10236
10237 if (!CONSTANT_P (ret))
10238 ret = copy_to_reg (ret);
10239 SET_DECL_RTL (val, ret);
10240 }
10241
10242 return ret;
10243 }
10244
10245
10246 case CONSTRUCTOR:
10247 /* If we don't need the result, just ensure we evaluate any
10248 subexpressions. */
10249 if (ignore)
10250 {
10251 unsigned HOST_WIDE_INT idx;
10252 tree value;
10253
10254 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10255 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10256
10257 return const0_rtx;
10258 }
10259
10260 return expand_constructor (exp, target, modifier, false);
10261
10262 case TARGET_MEM_REF:
10263 {
10264 addr_space_t as
10265 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10266 enum insn_code icode;
10267 unsigned int align;
10268
10269 op0 = addr_for_mem_ref (exp, as, true);
10270 op0 = memory_address_addr_space (mode, op0, as);
10271 temp = gen_rtx_MEM (mode, op0);
10272 set_mem_attributes (temp, exp, 0);
10273 set_mem_addr_space (temp, as);
10274 align = get_object_alignment (exp);
10275 if (modifier != EXPAND_WRITE
10276 && modifier != EXPAND_MEMORY
10277 && mode != BLKmode
10278 && align < GET_MODE_ALIGNMENT (mode)
10279 /* If the target does not have special handling for unaligned
10280 loads of mode then it can use regular moves for them. */
10281 && ((icode = optab_handler (movmisalign_optab, mode))
10282 != CODE_FOR_nothing))
10283 {
10284 struct expand_operand ops[2];
10285
10286 /* We've already validated the memory, and we're creating a
10287 new pseudo destination. The predicates really can't fail,
10288 nor can the generator. */
10289 create_output_operand (&ops[0], NULL_RTX, mode);
10290 create_fixed_operand (&ops[1], temp);
10291 expand_insn (icode, 2, ops);
10292 temp = ops[0].value;
10293 }
10294 return temp;
10295 }
10296
10297 case MEM_REF:
10298 {
10299 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10300 addr_space_t as
10301 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10302 machine_mode address_mode;
10303 tree base = TREE_OPERAND (exp, 0);
10304 gimple *def_stmt;
10305 enum insn_code icode;
10306 unsigned align;
10307 /* Handle expansion of non-aliased memory with non-BLKmode. That
10308 might end up in a register. */
10309 if (mem_ref_refers_to_non_mem_p (exp))
10310 {
10311 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10312 base = TREE_OPERAND (base, 0);
10313 poly_uint64 type_size;
10314 if (known_eq (offset, 0)
10315 && !reverse
10316 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10317 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10318 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10319 target, tmode, modifier);
10320 if (TYPE_MODE (type) == BLKmode)
10321 {
10322 temp = assign_stack_temp (DECL_MODE (base),
10323 GET_MODE_SIZE (DECL_MODE (base)));
10324 store_expr (base, temp, 0, false, false);
10325 temp = adjust_address (temp, BLKmode, offset);
10326 set_mem_size (temp, int_size_in_bytes (type));
10327 return temp;
10328 }
10329 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10330 bitsize_int (offset * BITS_PER_UNIT));
10331 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10332 return expand_expr (exp, target, tmode, modifier);
10333 }
10334 address_mode = targetm.addr_space.address_mode (as);
10335 base = TREE_OPERAND (exp, 0);
10336 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10337 {
10338 tree mask = gimple_assign_rhs2 (def_stmt);
10339 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10340 gimple_assign_rhs1 (def_stmt), mask);
10341 TREE_OPERAND (exp, 0) = base;
10342 }
10343 align = get_object_alignment (exp);
10344 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10345 op0 = memory_address_addr_space (mode, op0, as);
10346 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10347 {
10348 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10349 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10350 op0 = memory_address_addr_space (mode, op0, as);
10351 }
10352 temp = gen_rtx_MEM (mode, op0);
10353 set_mem_attributes (temp, exp, 0);
10354 set_mem_addr_space (temp, as);
10355 if (TREE_THIS_VOLATILE (exp))
10356 MEM_VOLATILE_P (temp) = 1;
10357 if (modifier != EXPAND_WRITE
10358 && modifier != EXPAND_MEMORY
10359 && !inner_reference_p
10360 && mode != BLKmode
10361 && align < GET_MODE_ALIGNMENT (mode))
10362 {
10363 if ((icode = optab_handler (movmisalign_optab, mode))
10364 != CODE_FOR_nothing)
10365 {
10366 struct expand_operand ops[2];
10367
10368 /* We've already validated the memory, and we're creating a
10369 new pseudo destination. The predicates really can't fail,
10370 nor can the generator. */
10371 create_output_operand (&ops[0], NULL_RTX, mode);
10372 create_fixed_operand (&ops[1], temp);
10373 expand_insn (icode, 2, ops);
10374 temp = ops[0].value;
10375 }
10376 else if (targetm.slow_unaligned_access (mode, align))
10377 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10378 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10379 (modifier == EXPAND_STACK_PARM
10380 ? NULL_RTX : target),
10381 mode, mode, false, alt_rtl);
10382 }
10383 if (reverse
10384 && modifier != EXPAND_MEMORY
10385 && modifier != EXPAND_WRITE)
10386 temp = flip_storage_order (mode, temp);
10387 return temp;
10388 }
10389
10390 case ARRAY_REF:
10391
10392 {
10393 tree array = treeop0;
10394 tree index = treeop1;
10395 tree init;
10396
10397 /* Fold an expression like: "foo"[2].
10398 This is not done in fold so it won't happen inside &.
10399 Don't fold if this is for wide characters since it's too
10400 difficult to do correctly and this is a very rare case. */
10401
10402 if (modifier != EXPAND_CONST_ADDRESS
10403 && modifier != EXPAND_INITIALIZER
10404 && modifier != EXPAND_MEMORY)
10405 {
10406 tree t = fold_read_from_constant_string (exp);
10407
10408 if (t)
10409 return expand_expr (t, target, tmode, modifier);
10410 }
10411
10412 /* If this is a constant index into a constant array,
10413 just get the value from the array. Handle both the cases when
10414 we have an explicit constructor and when our operand is a variable
10415 that was declared const. */
10416
10417 if (modifier != EXPAND_CONST_ADDRESS
10418 && modifier != EXPAND_INITIALIZER
10419 && modifier != EXPAND_MEMORY
10420 && TREE_CODE (array) == CONSTRUCTOR
10421 && ! TREE_SIDE_EFFECTS (array)
10422 && TREE_CODE (index) == INTEGER_CST)
10423 {
10424 unsigned HOST_WIDE_INT ix;
10425 tree field, value;
10426
10427 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10428 field, value)
10429 if (tree_int_cst_equal (field, index))
10430 {
10431 if (!TREE_SIDE_EFFECTS (value))
10432 return expand_expr (fold (value), target, tmode, modifier);
10433 break;
10434 }
10435 }
10436
10437 else if (optimize >= 1
10438 && modifier != EXPAND_CONST_ADDRESS
10439 && modifier != EXPAND_INITIALIZER
10440 && modifier != EXPAND_MEMORY
10441 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10442 && TREE_CODE (index) == INTEGER_CST
10443 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10444 && (init = ctor_for_folding (array)) != error_mark_node)
10445 {
10446 if (init == NULL_TREE)
10447 {
10448 tree value = build_zero_cst (type);
10449 if (TREE_CODE (value) == CONSTRUCTOR)
10450 {
10451 /* If VALUE is a CONSTRUCTOR, this optimization is only
10452 useful if this doesn't store the CONSTRUCTOR into
10453 memory. If it does, it is more efficient to just
10454 load the data from the array directly. */
10455 rtx ret = expand_constructor (value, target,
10456 modifier, true);
10457 if (ret == NULL_RTX)
10458 value = NULL_TREE;
10459 }
10460
10461 if (value)
10462 return expand_expr (value, target, tmode, modifier);
10463 }
10464 else if (TREE_CODE (init) == CONSTRUCTOR)
10465 {
10466 unsigned HOST_WIDE_INT ix;
10467 tree field, value;
10468
10469 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10470 field, value)
10471 if (tree_int_cst_equal (field, index))
10472 {
10473 if (TREE_SIDE_EFFECTS (value))
10474 break;
10475
10476 if (TREE_CODE (value) == CONSTRUCTOR)
10477 {
10478 /* If VALUE is a CONSTRUCTOR, this
10479 optimization is only useful if
10480 this doesn't store the CONSTRUCTOR
10481 into memory. If it does, it is more
10482 efficient to just load the data from
10483 the array directly. */
10484 rtx ret = expand_constructor (value, target,
10485 modifier, true);
10486 if (ret == NULL_RTX)
10487 break;
10488 }
10489
10490 return
10491 expand_expr (fold (value), target, tmode, modifier);
10492 }
10493 }
10494 else if (TREE_CODE (init) == STRING_CST)
10495 {
10496 tree low_bound = array_ref_low_bound (exp);
10497 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10498
10499 /* Optimize the special case of a zero lower bound.
10500
10501 We convert the lower bound to sizetype to avoid problems
10502 with constant folding. E.g. suppose the lower bound is
10503 1 and its mode is QI. Without the conversion
10504 (ARRAY + (INDEX - (unsigned char)1))
10505 becomes
10506 (ARRAY + (-(unsigned char)1) + INDEX)
10507 which becomes
10508 (ARRAY + 255 + INDEX). Oops! */
10509 if (!integer_zerop (low_bound))
10510 index1 = size_diffop_loc (loc, index1,
10511 fold_convert_loc (loc, sizetype,
10512 low_bound));
10513
10514 if (tree_fits_uhwi_p (index1)
10515 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10516 {
10517 tree type = TREE_TYPE (TREE_TYPE (init));
10518 scalar_int_mode mode;
10519
10520 if (is_int_mode (TYPE_MODE (type), &mode)
10521 && GET_MODE_SIZE (mode) == 1)
10522 return gen_int_mode (TREE_STRING_POINTER (init)
10523 [TREE_INT_CST_LOW (index1)],
10524 mode);
10525 }
10526 }
10527 }
10528 }
10529 goto normal_inner_ref;
10530
10531 case COMPONENT_REF:
10532 /* If the operand is a CONSTRUCTOR, we can just extract the
10533 appropriate field if it is present. */
10534 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10535 {
10536 unsigned HOST_WIDE_INT idx;
10537 tree field, value;
10538 scalar_int_mode field_mode;
10539
10540 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10541 idx, field, value)
10542 if (field == treeop1
10543 /* We can normally use the value of the field in the
10544 CONSTRUCTOR. However, if this is a bitfield in
10545 an integral mode that we can fit in a HOST_WIDE_INT,
10546 we must mask only the number of bits in the bitfield,
10547 since this is done implicitly by the constructor. If
10548 the bitfield does not meet either of those conditions,
10549 we can't do this optimization. */
10550 && (! DECL_BIT_FIELD (field)
10551 || (is_int_mode (DECL_MODE (field), &field_mode)
10552 && (GET_MODE_PRECISION (field_mode)
10553 <= HOST_BITS_PER_WIDE_INT))))
10554 {
10555 if (DECL_BIT_FIELD (field)
10556 && modifier == EXPAND_STACK_PARM)
10557 target = 0;
10558 op0 = expand_expr (value, target, tmode, modifier);
10559 if (DECL_BIT_FIELD (field))
10560 {
10561 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10562 scalar_int_mode imode
10563 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10564
10565 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10566 {
10567 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10568 imode);
10569 op0 = expand_and (imode, op0, op1, target);
10570 }
10571 else
10572 {
10573 int count = GET_MODE_PRECISION (imode) - bitsize;
10574
10575 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10576 target, 0);
10577 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10578 target, 0);
10579 }
10580 }
10581
10582 return op0;
10583 }
10584 }
10585 goto normal_inner_ref;
10586
10587 case BIT_FIELD_REF:
10588 case ARRAY_RANGE_REF:
10589 normal_inner_ref:
10590 {
10591 machine_mode mode1, mode2;
10592 poly_int64 bitsize, bitpos, bytepos;
10593 tree offset;
10594 int reversep, volatilep = 0, must_force_mem;
10595 tree tem
10596 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10597 &unsignedp, &reversep, &volatilep);
10598 rtx orig_op0, memloc;
10599 bool clear_mem_expr = false;
10600
10601 /* If we got back the original object, something is wrong. Perhaps
10602 we are evaluating an expression too early. In any event, don't
10603 infinitely recurse. */
10604 gcc_assert (tem != exp);
10605
10606 /* If TEM's type is a union of variable size, pass TARGET to the inner
10607 computation, since it will need a temporary and TARGET is known
10608 to have to do. This occurs in unchecked conversion in Ada. */
10609 orig_op0 = op0
10610 = expand_expr_real (tem,
10611 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10612 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10613 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10614 != INTEGER_CST)
10615 && modifier != EXPAND_STACK_PARM
10616 ? target : NULL_RTX),
10617 VOIDmode,
10618 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10619 NULL, true);
10620
10621 /* If the field has a mode, we want to access it in the
10622 field's mode, not the computed mode.
10623 If a MEM has VOIDmode (external with incomplete type),
10624 use BLKmode for it instead. */
10625 if (MEM_P (op0))
10626 {
10627 if (mode1 != VOIDmode)
10628 op0 = adjust_address (op0, mode1, 0);
10629 else if (GET_MODE (op0) == VOIDmode)
10630 op0 = adjust_address (op0, BLKmode, 0);
10631 }
10632
10633 mode2
10634 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10635
10636 /* Make sure bitpos is not negative, it can wreak havoc later. */
10637 if (maybe_lt (bitpos, 0))
10638 {
10639 gcc_checking_assert (offset == NULL_TREE);
10640 offset = size_int (bits_to_bytes_round_down (bitpos));
10641 bitpos = num_trailing_bits (bitpos);
10642 }
10643
10644 /* If we have either an offset, a BLKmode result, or a reference
10645 outside the underlying object, we must force it to memory.
10646 Such a case can occur in Ada if we have unchecked conversion
10647 of an expression from a scalar type to an aggregate type or
10648 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10649 passed a partially uninitialized object or a view-conversion
10650 to a larger size. */
10651 must_force_mem = (offset
10652 || mode1 == BLKmode
10653 || (mode == BLKmode
10654 && !int_mode_for_size (bitsize, 1).exists ())
10655 || maybe_gt (bitpos + bitsize,
10656 GET_MODE_BITSIZE (mode2)));
10657
10658 /* Handle CONCAT first. */
10659 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10660 {
10661 if (known_eq (bitpos, 0)
10662 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10663 && COMPLEX_MODE_P (mode1)
10664 && COMPLEX_MODE_P (GET_MODE (op0))
10665 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10666 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10667 {
10668 if (reversep)
10669 op0 = flip_storage_order (GET_MODE (op0), op0);
10670 if (mode1 != GET_MODE (op0))
10671 {
10672 rtx parts[2];
10673 for (int i = 0; i < 2; i++)
10674 {
10675 rtx op = read_complex_part (op0, i != 0);
10676 if (GET_CODE (op) == SUBREG)
10677 op = force_reg (GET_MODE (op), op);
10678 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10679 op);
10680 if (temp)
10681 op = temp;
10682 else
10683 {
10684 if (!REG_P (op) && !MEM_P (op))
10685 op = force_reg (GET_MODE (op), op);
10686 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10687 }
10688 parts[i] = op;
10689 }
10690 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10691 }
10692 return op0;
10693 }
10694 if (known_eq (bitpos, 0)
10695 && known_eq (bitsize,
10696 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10697 && maybe_ne (bitsize, 0))
10698 {
10699 op0 = XEXP (op0, 0);
10700 mode2 = GET_MODE (op0);
10701 }
10702 else if (known_eq (bitpos,
10703 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10704 && known_eq (bitsize,
10705 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10706 && maybe_ne (bitpos, 0)
10707 && maybe_ne (bitsize, 0))
10708 {
10709 op0 = XEXP (op0, 1);
10710 bitpos = 0;
10711 mode2 = GET_MODE (op0);
10712 }
10713 else
10714 /* Otherwise force into memory. */
10715 must_force_mem = 1;
10716 }
10717
10718 /* If this is a constant, put it in a register if it is a legitimate
10719 constant and we don't need a memory reference. */
10720 if (CONSTANT_P (op0)
10721 && mode2 != BLKmode
10722 && targetm.legitimate_constant_p (mode2, op0)
10723 && !must_force_mem)
10724 op0 = force_reg (mode2, op0);
10725
10726 /* Otherwise, if this is a constant, try to force it to the constant
10727 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10728 is a legitimate constant. */
10729 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10730 op0 = validize_mem (memloc);
10731
10732 /* Otherwise, if this is a constant or the object is not in memory
10733 and need be, put it there. */
10734 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10735 {
10736 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10737 emit_move_insn (memloc, op0);
10738 op0 = memloc;
10739 clear_mem_expr = true;
10740 }
10741
10742 if (offset)
10743 {
10744 machine_mode address_mode;
10745 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10746 EXPAND_SUM);
10747
10748 gcc_assert (MEM_P (op0));
10749
10750 address_mode = get_address_mode (op0);
10751 if (GET_MODE (offset_rtx) != address_mode)
10752 {
10753 /* We cannot be sure that the RTL in offset_rtx is valid outside
10754 of a memory address context, so force it into a register
10755 before attempting to convert it to the desired mode. */
10756 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10757 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10758 }
10759
10760 /* See the comment in expand_assignment for the rationale. */
10761 if (mode1 != VOIDmode
10762 && maybe_ne (bitpos, 0)
10763 && maybe_gt (bitsize, 0)
10764 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10765 && multiple_p (bitpos, bitsize)
10766 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10767 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10768 {
10769 op0 = adjust_address (op0, mode1, bytepos);
10770 bitpos = 0;
10771 }
10772
10773 op0 = offset_address (op0, offset_rtx,
10774 highest_pow2_factor (offset));
10775 }
10776
10777 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10778 record its alignment as BIGGEST_ALIGNMENT. */
10779 if (MEM_P (op0)
10780 && known_eq (bitpos, 0)
10781 && offset != 0
10782 && is_aligning_offset (offset, tem))
10783 set_mem_align (op0, BIGGEST_ALIGNMENT);
10784
10785 /* Don't forget about volatility even if this is a bitfield. */
10786 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10787 {
10788 if (op0 == orig_op0)
10789 op0 = copy_rtx (op0);
10790
10791 MEM_VOLATILE_P (op0) = 1;
10792 }
10793
10794 /* In cases where an aligned union has an unaligned object
10795 as a field, we might be extracting a BLKmode value from
10796 an integer-mode (e.g., SImode) object. Handle this case
10797 by doing the extract into an object as wide as the field
10798 (which we know to be the width of a basic mode), then
10799 storing into memory, and changing the mode to BLKmode. */
10800 if (mode1 == VOIDmode
10801 || REG_P (op0) || GET_CODE (op0) == SUBREG
10802 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10803 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10804 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10805 && modifier != EXPAND_CONST_ADDRESS
10806 && modifier != EXPAND_INITIALIZER
10807 && modifier != EXPAND_MEMORY)
10808 /* If the bitfield is volatile and the bitsize
10809 is narrower than the access size of the bitfield,
10810 we need to extract bitfields from the access. */
10811 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10812 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10813 && mode1 != BLKmode
10814 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
10815 /* If the field isn't aligned enough to fetch as a memref,
10816 fetch it as a bit field. */
10817 || (mode1 != BLKmode
10818 && (((MEM_P (op0)
10819 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10820 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
10821 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10822 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
10823 && modifier != EXPAND_MEMORY
10824 && ((modifier == EXPAND_CONST_ADDRESS
10825 || modifier == EXPAND_INITIALIZER)
10826 ? STRICT_ALIGNMENT
10827 : targetm.slow_unaligned_access (mode1,
10828 MEM_ALIGN (op0))))
10829 || !multiple_p (bitpos, BITS_PER_UNIT)))
10830 /* If the type and the field are a constant size and the
10831 size of the type isn't the same size as the bitfield,
10832 we must use bitfield operations. */
10833 || (known_size_p (bitsize)
10834 && TYPE_SIZE (TREE_TYPE (exp))
10835 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
10836 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
10837 bitsize)))
10838 {
10839 machine_mode ext_mode = mode;
10840
10841 if (ext_mode == BLKmode
10842 && ! (target != 0 && MEM_P (op0)
10843 && MEM_P (target)
10844 && multiple_p (bitpos, BITS_PER_UNIT)))
10845 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10846
10847 if (ext_mode == BLKmode)
10848 {
10849 if (target == 0)
10850 target = assign_temp (type, 1, 1);
10851
10852 /* ??? Unlike the similar test a few lines below, this one is
10853 very likely obsolete. */
10854 if (known_eq (bitsize, 0))
10855 return target;
10856
10857 /* In this case, BITPOS must start at a byte boundary and
10858 TARGET, if specified, must be a MEM. */
10859 gcc_assert (MEM_P (op0)
10860 && (!target || MEM_P (target)));
10861
10862 bytepos = exact_div (bitpos, BITS_PER_UNIT);
10863 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
10864 emit_block_move (target,
10865 adjust_address (op0, VOIDmode, bytepos),
10866 gen_int_mode (bytesize, Pmode),
10867 (modifier == EXPAND_STACK_PARM
10868 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10869
10870 return target;
10871 }
10872
10873 /* If we have nothing to extract, the result will be 0 for targets
10874 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10875 return 0 for the sake of consistency, as reading a zero-sized
10876 bitfield is valid in Ada and the value is fully specified. */
10877 if (known_eq (bitsize, 0))
10878 return const0_rtx;
10879
10880 op0 = validize_mem (op0);
10881
10882 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10883 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10884
10885 /* If the result has a record type and the extraction is done in
10886 an integral mode, then the field may be not aligned on a byte
10887 boundary; in this case, if it has reverse storage order, it
10888 needs to be extracted as a scalar field with reverse storage
10889 order and put back into memory order afterwards. */
10890 if (TREE_CODE (type) == RECORD_TYPE
10891 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10892 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10893
10894 gcc_checking_assert (known_ge (bitpos, 0));
10895 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10896 (modifier == EXPAND_STACK_PARM
10897 ? NULL_RTX : target),
10898 ext_mode, ext_mode, reversep, alt_rtl);
10899
10900 /* If the result has a record type and the mode of OP0 is an
10901 integral mode then, if BITSIZE is narrower than this mode
10902 and this is for big-endian data, we must put the field
10903 into the high-order bits. And we must also put it back
10904 into memory order if it has been previously reversed. */
10905 scalar_int_mode op0_mode;
10906 if (TREE_CODE (type) == RECORD_TYPE
10907 && is_int_mode (GET_MODE (op0), &op0_mode))
10908 {
10909 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10910
10911 gcc_checking_assert (known_le (bitsize, size));
10912 if (maybe_lt (bitsize, size)
10913 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10914 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10915 size - bitsize, op0, 1);
10916
10917 if (reversep)
10918 op0 = flip_storage_order (op0_mode, op0);
10919 }
10920
10921 /* If the result type is BLKmode, store the data into a temporary
10922 of the appropriate type, but with the mode corresponding to the
10923 mode for the data we have (op0's mode). */
10924 if (mode == BLKmode)
10925 {
10926 rtx new_rtx
10927 = assign_stack_temp_for_type (ext_mode,
10928 GET_MODE_BITSIZE (ext_mode),
10929 type);
10930 emit_move_insn (new_rtx, op0);
10931 op0 = copy_rtx (new_rtx);
10932 PUT_MODE (op0, BLKmode);
10933 }
10934
10935 return op0;
10936 }
10937
10938 /* If the result is BLKmode, use that to access the object
10939 now as well. */
10940 if (mode == BLKmode)
10941 mode1 = BLKmode;
10942
10943 /* Get a reference to just this component. */
10944 bytepos = bits_to_bytes_round_down (bitpos);
10945 if (modifier == EXPAND_CONST_ADDRESS
10946 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10947 op0 = adjust_address_nv (op0, mode1, bytepos);
10948 else
10949 op0 = adjust_address (op0, mode1, bytepos);
10950
10951 if (op0 == orig_op0)
10952 op0 = copy_rtx (op0);
10953
10954 /* Don't set memory attributes if the base expression is
10955 SSA_NAME that got expanded as a MEM. In that case, we should
10956 just honor its original memory attributes. */
10957 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10958 set_mem_attributes (op0, exp, 0);
10959
10960 if (REG_P (XEXP (op0, 0)))
10961 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10962
10963 /* If op0 is a temporary because the original expressions was forced
10964 to memory, clear MEM_EXPR so that the original expression cannot
10965 be marked as addressable through MEM_EXPR of the temporary. */
10966 if (clear_mem_expr)
10967 set_mem_expr (op0, NULL_TREE);
10968
10969 MEM_VOLATILE_P (op0) |= volatilep;
10970
10971 if (reversep
10972 && modifier != EXPAND_MEMORY
10973 && modifier != EXPAND_WRITE)
10974 op0 = flip_storage_order (mode1, op0);
10975
10976 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10977 || modifier == EXPAND_CONST_ADDRESS
10978 || modifier == EXPAND_INITIALIZER)
10979 return op0;
10980
10981 if (target == 0)
10982 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10983
10984 convert_move (target, op0, unsignedp);
10985 return target;
10986 }
10987
10988 case OBJ_TYPE_REF:
10989 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10990
10991 case CALL_EXPR:
10992 /* All valid uses of __builtin_va_arg_pack () are removed during
10993 inlining. */
10994 if (CALL_EXPR_VA_ARG_PACK (exp))
10995 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10996 {
10997 tree fndecl = get_callee_fndecl (exp), attr;
10998
10999 if (fndecl
11000 /* Don't diagnose the error attribute in thunks, those are
11001 artificially created. */
11002 && !CALL_FROM_THUNK_P (exp)
11003 && (attr = lookup_attribute ("error",
11004 DECL_ATTRIBUTES (fndecl))) != NULL)
11005 {
11006 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11007 error ("%Kcall to %qs declared with attribute error: %s", exp,
11008 identifier_to_locale (ident),
11009 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11010 }
11011 if (fndecl
11012 /* Don't diagnose the warning attribute in thunks, those are
11013 artificially created. */
11014 && !CALL_FROM_THUNK_P (exp)
11015 && (attr = lookup_attribute ("warning",
11016 DECL_ATTRIBUTES (fndecl))) != NULL)
11017 {
11018 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11019 warning_at (tree_nonartificial_location (exp),
11020 OPT_Wattribute_warning,
11021 "%Kcall to %qs declared with attribute warning: %s",
11022 exp, identifier_to_locale (ident),
11023 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11024 }
11025
11026 /* Check for a built-in function. */
11027 if (fndecl && fndecl_built_in_p (fndecl))
11028 {
11029 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11030 return expand_builtin (exp, target, subtarget, tmode, ignore);
11031 }
11032 }
11033 return expand_call (exp, target, ignore);
11034
11035 case VIEW_CONVERT_EXPR:
11036 op0 = NULL_RTX;
11037
11038 /* If we are converting to BLKmode, try to avoid an intermediate
11039 temporary by fetching an inner memory reference. */
11040 if (mode == BLKmode
11041 && poly_int_tree_p (TYPE_SIZE (type))
11042 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11043 && handled_component_p (treeop0))
11044 {
11045 machine_mode mode1;
11046 poly_int64 bitsize, bitpos, bytepos;
11047 tree offset;
11048 int unsignedp, reversep, volatilep = 0;
11049 tree tem
11050 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11051 &unsignedp, &reversep, &volatilep);
11052 rtx orig_op0;
11053
11054 /* ??? We should work harder and deal with non-zero offsets. */
11055 if (!offset
11056 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11057 && !reversep
11058 && known_size_p (bitsize)
11059 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11060 {
11061 /* See the normal_inner_ref case for the rationale. */
11062 orig_op0
11063 = expand_expr_real (tem,
11064 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11065 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11066 != INTEGER_CST)
11067 && modifier != EXPAND_STACK_PARM
11068 ? target : NULL_RTX),
11069 VOIDmode,
11070 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11071 NULL, true);
11072
11073 if (MEM_P (orig_op0))
11074 {
11075 op0 = orig_op0;
11076
11077 /* Get a reference to just this component. */
11078 if (modifier == EXPAND_CONST_ADDRESS
11079 || modifier == EXPAND_SUM
11080 || modifier == EXPAND_INITIALIZER)
11081 op0 = adjust_address_nv (op0, mode, bytepos);
11082 else
11083 op0 = adjust_address (op0, mode, bytepos);
11084
11085 if (op0 == orig_op0)
11086 op0 = copy_rtx (op0);
11087
11088 set_mem_attributes (op0, treeop0, 0);
11089 if (REG_P (XEXP (op0, 0)))
11090 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11091
11092 MEM_VOLATILE_P (op0) |= volatilep;
11093 }
11094 }
11095 }
11096
11097 if (!op0)
11098 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11099 NULL, inner_reference_p);
11100
11101 /* If the input and output modes are both the same, we are done. */
11102 if (mode == GET_MODE (op0))
11103 ;
11104 /* If neither mode is BLKmode, and both modes are the same size
11105 then we can use gen_lowpart. */
11106 else if (mode != BLKmode
11107 && GET_MODE (op0) != BLKmode
11108 && known_eq (GET_MODE_PRECISION (mode),
11109 GET_MODE_PRECISION (GET_MODE (op0)))
11110 && !COMPLEX_MODE_P (GET_MODE (op0)))
11111 {
11112 if (GET_CODE (op0) == SUBREG)
11113 op0 = force_reg (GET_MODE (op0), op0);
11114 temp = gen_lowpart_common (mode, op0);
11115 if (temp)
11116 op0 = temp;
11117 else
11118 {
11119 if (!REG_P (op0) && !MEM_P (op0))
11120 op0 = force_reg (GET_MODE (op0), op0);
11121 op0 = gen_lowpart (mode, op0);
11122 }
11123 }
11124 /* If both types are integral, convert from one mode to the other. */
11125 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11126 op0 = convert_modes (mode, GET_MODE (op0), op0,
11127 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11128 /* If the output type is a bit-field type, do an extraction. */
11129 else if (reduce_bit_field)
11130 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11131 TYPE_UNSIGNED (type), NULL_RTX,
11132 mode, mode, false, NULL);
11133 /* As a last resort, spill op0 to memory, and reload it in a
11134 different mode. */
11135 else if (!MEM_P (op0))
11136 {
11137 /* If the operand is not a MEM, force it into memory. Since we
11138 are going to be changing the mode of the MEM, don't call
11139 force_const_mem for constants because we don't allow pool
11140 constants to change mode. */
11141 tree inner_type = TREE_TYPE (treeop0);
11142
11143 gcc_assert (!TREE_ADDRESSABLE (exp));
11144
11145 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11146 target
11147 = assign_stack_temp_for_type
11148 (TYPE_MODE (inner_type),
11149 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11150
11151 emit_move_insn (target, op0);
11152 op0 = target;
11153 }
11154
11155 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11156 output type is such that the operand is known to be aligned, indicate
11157 that it is. Otherwise, we need only be concerned about alignment for
11158 non-BLKmode results. */
11159 if (MEM_P (op0))
11160 {
11161 enum insn_code icode;
11162
11163 if (modifier != EXPAND_WRITE
11164 && modifier != EXPAND_MEMORY
11165 && !inner_reference_p
11166 && mode != BLKmode
11167 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11168 {
11169 /* If the target does have special handling for unaligned
11170 loads of mode then use them. */
11171 if ((icode = optab_handler (movmisalign_optab, mode))
11172 != CODE_FOR_nothing)
11173 {
11174 rtx reg;
11175
11176 op0 = adjust_address (op0, mode, 0);
11177 /* We've already validated the memory, and we're creating a
11178 new pseudo destination. The predicates really can't
11179 fail. */
11180 reg = gen_reg_rtx (mode);
11181
11182 /* Nor can the insn generator. */
11183 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11184 emit_insn (insn);
11185 return reg;
11186 }
11187 else if (STRICT_ALIGNMENT)
11188 {
11189 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11190 poly_uint64 temp_size = mode_size;
11191 if (GET_MODE (op0) != BLKmode)
11192 temp_size = upper_bound (temp_size,
11193 GET_MODE_SIZE (GET_MODE (op0)));
11194 rtx new_rtx
11195 = assign_stack_temp_for_type (mode, temp_size, type);
11196 rtx new_with_op0_mode
11197 = adjust_address (new_rtx, GET_MODE (op0), 0);
11198
11199 gcc_assert (!TREE_ADDRESSABLE (exp));
11200
11201 if (GET_MODE (op0) == BLKmode)
11202 {
11203 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11204 emit_block_move (new_with_op0_mode, op0, size_rtx,
11205 (modifier == EXPAND_STACK_PARM
11206 ? BLOCK_OP_CALL_PARM
11207 : BLOCK_OP_NORMAL));
11208 }
11209 else
11210 emit_move_insn (new_with_op0_mode, op0);
11211
11212 op0 = new_rtx;
11213 }
11214 }
11215
11216 op0 = adjust_address (op0, mode, 0);
11217 }
11218
11219 return op0;
11220
11221 case MODIFY_EXPR:
11222 {
11223 tree lhs = treeop0;
11224 tree rhs = treeop1;
11225 gcc_assert (ignore);
11226
11227 /* Check for |= or &= of a bitfield of size one into another bitfield
11228 of size 1. In this case, (unless we need the result of the
11229 assignment) we can do this more efficiently with a
11230 test followed by an assignment, if necessary.
11231
11232 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11233 things change so we do, this code should be enhanced to
11234 support it. */
11235 if (TREE_CODE (lhs) == COMPONENT_REF
11236 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11237 || TREE_CODE (rhs) == BIT_AND_EXPR)
11238 && TREE_OPERAND (rhs, 0) == lhs
11239 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11240 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11241 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11242 {
11243 rtx_code_label *label = gen_label_rtx ();
11244 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11245 profile_probability prob = profile_probability::uninitialized ();
11246 if (value)
11247 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11248 else
11249 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11250 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11251 false);
11252 do_pending_stack_adjust ();
11253 emit_label (label);
11254 return const0_rtx;
11255 }
11256
11257 expand_assignment (lhs, rhs, false);
11258 return const0_rtx;
11259 }
11260
11261 case ADDR_EXPR:
11262 return expand_expr_addr_expr (exp, target, tmode, modifier);
11263
11264 case REALPART_EXPR:
11265 op0 = expand_normal (treeop0);
11266 return read_complex_part (op0, false);
11267
11268 case IMAGPART_EXPR:
11269 op0 = expand_normal (treeop0);
11270 return read_complex_part (op0, true);
11271
11272 case RETURN_EXPR:
11273 case LABEL_EXPR:
11274 case GOTO_EXPR:
11275 case SWITCH_EXPR:
11276 case ASM_EXPR:
11277 /* Expanded in cfgexpand.c. */
11278 gcc_unreachable ();
11279
11280 case TRY_CATCH_EXPR:
11281 case CATCH_EXPR:
11282 case EH_FILTER_EXPR:
11283 case TRY_FINALLY_EXPR:
11284 /* Lowered by tree-eh.c. */
11285 gcc_unreachable ();
11286
11287 case WITH_CLEANUP_EXPR:
11288 case CLEANUP_POINT_EXPR:
11289 case TARGET_EXPR:
11290 case CASE_LABEL_EXPR:
11291 case VA_ARG_EXPR:
11292 case BIND_EXPR:
11293 case INIT_EXPR:
11294 case CONJ_EXPR:
11295 case COMPOUND_EXPR:
11296 case PREINCREMENT_EXPR:
11297 case PREDECREMENT_EXPR:
11298 case POSTINCREMENT_EXPR:
11299 case POSTDECREMENT_EXPR:
11300 case LOOP_EXPR:
11301 case EXIT_EXPR:
11302 case COMPOUND_LITERAL_EXPR:
11303 /* Lowered by gimplify.c. */
11304 gcc_unreachable ();
11305
11306 case FDESC_EXPR:
11307 /* Function descriptors are not valid except for as
11308 initialization constants, and should not be expanded. */
11309 gcc_unreachable ();
11310
11311 case WITH_SIZE_EXPR:
11312 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11313 have pulled out the size to use in whatever context it needed. */
11314 return expand_expr_real (treeop0, original_target, tmode,
11315 modifier, alt_rtl, inner_reference_p);
11316
11317 default:
11318 return expand_expr_real_2 (&ops, target, tmode, modifier);
11319 }
11320 }
11321 \f
11322 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11323 signedness of TYPE), possibly returning the result in TARGET.
11324 TYPE is known to be a partial integer type. */
11325 static rtx
11326 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11327 {
11328 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11329 if (target && GET_MODE (target) != GET_MODE (exp))
11330 target = 0;
11331 /* For constant values, reduce using build_int_cst_type. */
11332 poly_int64 const_exp;
11333 if (poly_int_rtx_p (exp, &const_exp))
11334 {
11335 tree t = build_int_cst_type (type, const_exp);
11336 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11337 }
11338 else if (TYPE_UNSIGNED (type))
11339 {
11340 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11341 rtx mask = immed_wide_int_const
11342 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11343 return expand_and (mode, exp, mask, target);
11344 }
11345 else
11346 {
11347 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11348 int count = GET_MODE_PRECISION (mode) - prec;
11349 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11350 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11351 }
11352 }
11353 \f
11354 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11355 when applied to the address of EXP produces an address known to be
11356 aligned more than BIGGEST_ALIGNMENT. */
11357
11358 static int
11359 is_aligning_offset (const_tree offset, const_tree exp)
11360 {
11361 /* Strip off any conversions. */
11362 while (CONVERT_EXPR_P (offset))
11363 offset = TREE_OPERAND (offset, 0);
11364
11365 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11366 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11367 if (TREE_CODE (offset) != BIT_AND_EXPR
11368 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11369 || compare_tree_int (TREE_OPERAND (offset, 1),
11370 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11371 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11372 return 0;
11373
11374 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11375 It must be NEGATE_EXPR. Then strip any more conversions. */
11376 offset = TREE_OPERAND (offset, 0);
11377 while (CONVERT_EXPR_P (offset))
11378 offset = TREE_OPERAND (offset, 0);
11379
11380 if (TREE_CODE (offset) != NEGATE_EXPR)
11381 return 0;
11382
11383 offset = TREE_OPERAND (offset, 0);
11384 while (CONVERT_EXPR_P (offset))
11385 offset = TREE_OPERAND (offset, 0);
11386
11387 /* This must now be the address of EXP. */
11388 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11389 }
11390 \f
11391 /* Return the tree node if an ARG corresponds to a string constant or zero
11392 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11393 non-constant) offset in bytes within the string that ARG is accessing.
11394 If MEM_SIZE is non-zero the storage size of the memory is returned.
11395 If DECL is non-zero the constant declaration is returned if available. */
11396
11397 tree
11398 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
11399 {
11400 tree array;
11401 STRIP_NOPS (arg);
11402
11403 /* Non-constant index into the character array in an ARRAY_REF
11404 expression or null. */
11405 tree varidx = NULL_TREE;
11406
11407 poly_int64 base_off = 0;
11408
11409 if (TREE_CODE (arg) == ADDR_EXPR)
11410 {
11411 arg = TREE_OPERAND (arg, 0);
11412 tree ref = arg;
11413 if (TREE_CODE (arg) == ARRAY_REF)
11414 {
11415 tree idx = TREE_OPERAND (arg, 1);
11416 if (TREE_CODE (idx) != INTEGER_CST)
11417 {
11418 /* From a pointer (but not array) argument extract the variable
11419 index to prevent get_addr_base_and_unit_offset() from failing
11420 due to it. Use it later to compute the non-constant offset
11421 into the string and return it to the caller. */
11422 varidx = idx;
11423 ref = TREE_OPERAND (arg, 0);
11424
11425 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11426 return NULL_TREE;
11427
11428 if (!integer_zerop (array_ref_low_bound (arg)))
11429 return NULL_TREE;
11430
11431 if (!integer_onep (array_ref_element_size (arg)))
11432 return NULL_TREE;
11433 }
11434 }
11435 array = get_addr_base_and_unit_offset (ref, &base_off);
11436 if (!array
11437 || (TREE_CODE (array) != VAR_DECL
11438 && TREE_CODE (array) != CONST_DECL
11439 && TREE_CODE (array) != STRING_CST))
11440 return NULL_TREE;
11441 }
11442 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11443 {
11444 tree arg0 = TREE_OPERAND (arg, 0);
11445 tree arg1 = TREE_OPERAND (arg, 1);
11446
11447 tree offset;
11448 tree str = string_constant (arg0, &offset, mem_size, decl);
11449 if (!str)
11450 {
11451 str = string_constant (arg1, &offset, mem_size, decl);
11452 arg1 = arg0;
11453 }
11454
11455 if (str)
11456 {
11457 /* Avoid pointers to arrays (see bug 86622). */
11458 if (POINTER_TYPE_P (TREE_TYPE (arg))
11459 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11460 && !(decl && !*decl)
11461 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11462 && mem_size && tree_fits_uhwi_p (*mem_size)
11463 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11464 return NULL_TREE;
11465
11466 tree type = TREE_TYPE (offset);
11467 arg1 = fold_convert (type, arg1);
11468 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11469 return str;
11470 }
11471 return NULL_TREE;
11472 }
11473 else if (TREE_CODE (arg) == SSA_NAME)
11474 {
11475 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11476 if (!is_gimple_assign (stmt))
11477 return NULL_TREE;
11478
11479 tree rhs1 = gimple_assign_rhs1 (stmt);
11480 tree_code code = gimple_assign_rhs_code (stmt);
11481 if (code == ADDR_EXPR)
11482 return string_constant (rhs1, ptr_offset, mem_size, decl);
11483 else if (code != POINTER_PLUS_EXPR)
11484 return NULL_TREE;
11485
11486 tree offset;
11487 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11488 {
11489 /* Avoid pointers to arrays (see bug 86622). */
11490 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11491 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11492 && !(decl && !*decl)
11493 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11494 && mem_size && tree_fits_uhwi_p (*mem_size)
11495 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11496 return NULL_TREE;
11497
11498 tree rhs2 = gimple_assign_rhs2 (stmt);
11499 tree type = TREE_TYPE (offset);
11500 rhs2 = fold_convert (type, rhs2);
11501 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11502 return str;
11503 }
11504 return NULL_TREE;
11505 }
11506 else if (DECL_P (arg))
11507 array = arg;
11508 else
11509 return NULL_TREE;
11510
11511 tree offset = wide_int_to_tree (sizetype, base_off);
11512 if (varidx)
11513 {
11514 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11515 return NULL_TREE;
11516
11517 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11518 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11519 if (TREE_CODE (chartype) != INTEGER_TYPE)
11520 return NULL;
11521
11522 offset = fold_convert (sizetype, varidx);
11523 }
11524
11525 if (TREE_CODE (array) == STRING_CST)
11526 {
11527 *ptr_offset = fold_convert (sizetype, offset);
11528 if (mem_size)
11529 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11530 if (decl)
11531 *decl = NULL_TREE;
11532 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11533 >= TREE_STRING_LENGTH (array));
11534 return array;
11535 }
11536
11537 if (!VAR_P (array) && TREE_CODE (array) != CONST_DECL)
11538 return NULL_TREE;
11539
11540 tree init = ctor_for_folding (array);
11541
11542 /* Handle variables initialized with string literals. */
11543 if (!init || init == error_mark_node)
11544 return NULL_TREE;
11545 if (TREE_CODE (init) == CONSTRUCTOR)
11546 {
11547 /* Convert the 64-bit constant offset to a wider type to avoid
11548 overflow. */
11549 offset_int wioff;
11550 if (!base_off.is_constant (&wioff))
11551 return NULL_TREE;
11552
11553 wioff *= BITS_PER_UNIT;
11554 if (!wi::fits_uhwi_p (wioff))
11555 return NULL_TREE;
11556
11557 base_off = wioff.to_uhwi ();
11558 unsigned HOST_WIDE_INT fieldoff = 0;
11559 init = fold_ctor_reference (NULL_TREE, init, base_off, 0, array,
11560 &fieldoff);
11561 HOST_WIDE_INT cstoff;
11562 if (!base_off.is_constant (&cstoff))
11563 return NULL_TREE;
11564
11565 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11566 tree off = build_int_cst (sizetype, cstoff);
11567 if (varidx)
11568 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11569 else
11570 offset = off;
11571 }
11572
11573 if (!init)
11574 return NULL_TREE;
11575
11576 *ptr_offset = offset;
11577
11578 tree eltype = TREE_TYPE (init);
11579 tree initsize = TYPE_SIZE_UNIT (eltype);
11580 if (mem_size)
11581 *mem_size = initsize;
11582
11583 if (decl)
11584 *decl = array;
11585
11586 if (TREE_CODE (init) == INTEGER_CST
11587 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11588 || TYPE_MAIN_VARIANT (eltype) == char_type_node))
11589 {
11590 /* For a reference to (address of) a single constant character,
11591 store the native representation of the character in CHARBUF.
11592 If the reference is to an element of an array or a member
11593 of a struct, only consider narrow characters until ctors
11594 for wide character arrays are transformed to STRING_CSTs
11595 like those for narrow arrays. */
11596 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11597 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11598 if (len > 0)
11599 {
11600 /* Construct a string literal with elements of ELTYPE and
11601 the representation above. Then strip
11602 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11603 init = build_string_literal (len, (char *)charbuf, eltype);
11604 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11605 }
11606 }
11607
11608 if (TREE_CODE (init) != STRING_CST)
11609 return NULL_TREE;
11610
11611 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
11612
11613 return init;
11614 }
11615 \f
11616 /* Compute the modular multiplicative inverse of A modulo M
11617 using extended Euclid's algorithm. Assumes A and M are coprime. */
11618 static wide_int
11619 mod_inv (const wide_int &a, const wide_int &b)
11620 {
11621 /* Verify the assumption. */
11622 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
11623
11624 unsigned int p = a.get_precision () + 1;
11625 gcc_checking_assert (b.get_precision () + 1 == p);
11626 wide_int c = wide_int::from (a, p, UNSIGNED);
11627 wide_int d = wide_int::from (b, p, UNSIGNED);
11628 wide_int x0 = wide_int::from (0, p, UNSIGNED);
11629 wide_int x1 = wide_int::from (1, p, UNSIGNED);
11630
11631 if (wi::eq_p (b, 1))
11632 return wide_int::from (1, p, UNSIGNED);
11633
11634 while (wi::gt_p (c, 1, UNSIGNED))
11635 {
11636 wide_int t = d;
11637 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
11638 c = t;
11639 wide_int s = x0;
11640 x0 = wi::sub (x1, wi::mul (q, x0));
11641 x1 = s;
11642 }
11643 if (wi::lt_p (x1, 0, SIGNED))
11644 x1 += d;
11645 return x1;
11646 }
11647
11648 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11649 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11650 for C2 > 0 to x & C3 == C2
11651 for C2 < 0 to x & C3 == (C2 & C3). */
11652 enum tree_code
11653 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11654 {
11655 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11656 tree treeop0 = gimple_assign_rhs1 (stmt);
11657 tree treeop1 = gimple_assign_rhs2 (stmt);
11658 tree type = TREE_TYPE (*arg0);
11659 scalar_int_mode mode;
11660 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11661 return code;
11662 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11663 || TYPE_PRECISION (type) <= 1
11664 || TYPE_UNSIGNED (type)
11665 /* Signed x % c == 0 should have been optimized into unsigned modulo
11666 earlier. */
11667 || integer_zerop (*arg1)
11668 /* If c is known to be non-negative, modulo will be expanded as unsigned
11669 modulo. */
11670 || get_range_pos_neg (treeop0) == 1)
11671 return code;
11672
11673 /* x % c == d where d < 0 && d <= -c should be always false. */
11674 if (tree_int_cst_sgn (*arg1) == -1
11675 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
11676 return code;
11677
11678 int prec = TYPE_PRECISION (type);
11679 wide_int w = wi::to_wide (treeop1) - 1;
11680 w |= wi::shifted_mask (0, prec - 1, true, prec);
11681 tree c3 = wide_int_to_tree (type, w);
11682 tree c4 = *arg1;
11683 if (tree_int_cst_sgn (*arg1) == -1)
11684 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
11685
11686 rtx op0 = expand_normal (treeop0);
11687 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11688
11689 bool speed_p = optimize_insn_for_speed_p ();
11690
11691 do_pending_stack_adjust ();
11692
11693 location_t loc = gimple_location (stmt);
11694 struct separate_ops ops;
11695 ops.code = TRUNC_MOD_EXPR;
11696 ops.location = loc;
11697 ops.type = TREE_TYPE (treeop0);
11698 ops.op0 = treeop0;
11699 ops.op1 = treeop1;
11700 ops.op2 = NULL_TREE;
11701 start_sequence ();
11702 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11703 EXPAND_NORMAL);
11704 rtx_insn *moinsns = get_insns ();
11705 end_sequence ();
11706
11707 unsigned mocost = seq_cost (moinsns, speed_p);
11708 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11709 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11710
11711 ops.code = BIT_AND_EXPR;
11712 ops.location = loc;
11713 ops.type = TREE_TYPE (treeop0);
11714 ops.op0 = treeop0;
11715 ops.op1 = c3;
11716 ops.op2 = NULL_TREE;
11717 start_sequence ();
11718 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11719 EXPAND_NORMAL);
11720 rtx_insn *muinsns = get_insns ();
11721 end_sequence ();
11722
11723 unsigned mucost = seq_cost (muinsns, speed_p);
11724 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
11725 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
11726
11727 if (mocost <= mucost)
11728 {
11729 emit_insn (moinsns);
11730 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11731 return code;
11732 }
11733
11734 emit_insn (muinsns);
11735 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
11736 *arg1 = c4;
11737 return code;
11738 }
11739
11740 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11741 If C1 is odd to:
11742 (X - C2) * C3 <= C4 (or >), where
11743 C3 is modular multiplicative inverse of C1 and 1<<prec and
11744 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11745 if C2 > ((1<<prec) - 1) % C1).
11746 If C1 is even, S = ctz (C1) and C2 is 0, use
11747 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11748 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11749
11750 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11751 unsigned):
11752 (X * C3) + C4 <= 2 * C4, where
11753 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
11754 C4 is ((1<<(prec - 1) - 1) / C1).
11755 If C1 is even, S = ctz(C1), use
11756 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
11757 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
11758 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
11759
11760 See the Hacker's Delight book, section 10-17. */
11761 enum tree_code
11762 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11763 {
11764 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
11765 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
11766
11767 if (optimize < 2)
11768 return code;
11769
11770 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11771 if (stmt == NULL)
11772 return code;
11773
11774 tree treeop0 = gimple_assign_rhs1 (stmt);
11775 tree treeop1 = gimple_assign_rhs2 (stmt);
11776 if (TREE_CODE (treeop0) != SSA_NAME
11777 || TREE_CODE (treeop1) != INTEGER_CST
11778 /* Don't optimize the undefined behavior case x % 0;
11779 x % 1 should have been optimized into zero, punt if
11780 it makes it here for whatever reason;
11781 x % -c should have been optimized into x % c. */
11782 || compare_tree_int (treeop1, 2) <= 0
11783 /* Likewise x % c == d where d >= c should be always false. */
11784 || tree_int_cst_le (treeop1, *arg1))
11785 return code;
11786
11787 /* Unsigned x % pow2 is handled right already, for signed
11788 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
11789 if (integer_pow2p (treeop1))
11790 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
11791
11792 tree type = TREE_TYPE (*arg0);
11793 scalar_int_mode mode;
11794 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11795 return code;
11796 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11797 || TYPE_PRECISION (type) <= 1)
11798 return code;
11799
11800 signop sgn = UNSIGNED;
11801 /* If both operands are known to have the sign bit clear, handle
11802 even the signed modulo case as unsigned. treeop1 is always
11803 positive >= 2, checked above. */
11804 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
11805 sgn = SIGNED;
11806
11807 if (!TYPE_UNSIGNED (type))
11808 {
11809 if (tree_int_cst_sgn (*arg1) == -1)
11810 return code;
11811 type = unsigned_type_for (type);
11812 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
11813 return code;
11814 }
11815
11816 int prec = TYPE_PRECISION (type);
11817 wide_int w = wi::to_wide (treeop1);
11818 int shift = wi::ctz (w);
11819 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
11820 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
11821 If C1 is odd, we can handle all cases by subtracting
11822 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
11823 e.g. by testing for overflow on the subtraction, punt on that for now
11824 though. */
11825 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
11826 {
11827 if (sgn == SIGNED)
11828 return code;
11829 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
11830 if (wi::gtu_p (wi::to_wide (*arg1), x))
11831 return code;
11832 }
11833
11834 imm_use_iterator imm_iter;
11835 use_operand_p use_p;
11836 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
11837 {
11838 gimple *use_stmt = USE_STMT (use_p);
11839 /* Punt if treeop0 is used in the same bb in a division
11840 or another modulo with the same divisor. We should expect
11841 the division and modulo combined together. */
11842 if (use_stmt == stmt
11843 || gimple_bb (use_stmt) != gimple_bb (stmt))
11844 continue;
11845 if (!is_gimple_assign (use_stmt)
11846 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
11847 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
11848 continue;
11849 if (gimple_assign_rhs1 (use_stmt) != treeop0
11850 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
11851 continue;
11852 return code;
11853 }
11854
11855 w = wi::lrshift (w, shift);
11856 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
11857 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
11858 wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED);
11859 tree c3 = wide_int_to_tree (type, m);
11860 tree c5 = NULL_TREE;
11861 wide_int d, e;
11862 if (sgn == UNSIGNED)
11863 {
11864 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
11865 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
11866 otherwise use < or subtract one from C4. E.g. for
11867 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
11868 x % 3U == 1 already needs to be
11869 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
11870 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
11871 d -= 1;
11872 if (shift)
11873 d = wi::lrshift (d, shift);
11874 }
11875 else
11876 {
11877 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
11878 if (!shift)
11879 d = wi::lshift (e, 1);
11880 else
11881 {
11882 e = wi::bit_and (e, wi::mask (shift, true, prec));
11883 d = wi::lrshift (e, shift - 1);
11884 }
11885 c5 = wide_int_to_tree (type, e);
11886 }
11887 tree c4 = wide_int_to_tree (type, d);
11888
11889 rtx op0 = expand_normal (treeop0);
11890 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11891
11892 bool speed_p = optimize_insn_for_speed_p ();
11893
11894 do_pending_stack_adjust ();
11895
11896 location_t loc = gimple_location (stmt);
11897 struct separate_ops ops;
11898 ops.code = TRUNC_MOD_EXPR;
11899 ops.location = loc;
11900 ops.type = TREE_TYPE (treeop0);
11901 ops.op0 = treeop0;
11902 ops.op1 = treeop1;
11903 ops.op2 = NULL_TREE;
11904 start_sequence ();
11905 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11906 EXPAND_NORMAL);
11907 rtx_insn *moinsns = get_insns ();
11908 end_sequence ();
11909
11910 unsigned mocost = seq_cost (moinsns, speed_p);
11911 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11912 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11913
11914 tree t = fold_convert_loc (loc, type, treeop0);
11915 if (!integer_zerop (*arg1))
11916 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
11917 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
11918 if (sgn == SIGNED)
11919 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
11920 if (shift)
11921 {
11922 tree s = build_int_cst (NULL_TREE, shift);
11923 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
11924 }
11925
11926 start_sequence ();
11927 rtx mur = expand_normal (t);
11928 rtx_insn *muinsns = get_insns ();
11929 end_sequence ();
11930
11931 unsigned mucost = seq_cost (muinsns, speed_p);
11932 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
11933 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
11934
11935 if (mocost <= mucost)
11936 {
11937 emit_insn (moinsns);
11938 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11939 return code;
11940 }
11941
11942 emit_insn (muinsns);
11943 *arg0 = make_tree (type, mur);
11944 *arg1 = c4;
11945 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
11946 }
11947 \f
11948 /* Generate code to calculate OPS, and exploded expression
11949 using a store-flag instruction and return an rtx for the result.
11950 OPS reflects a comparison.
11951
11952 If TARGET is nonzero, store the result there if convenient.
11953
11954 Return zero if there is no suitable set-flag instruction
11955 available on this machine.
11956
11957 Once expand_expr has been called on the arguments of the comparison,
11958 we are committed to doing the store flag, since it is not safe to
11959 re-evaluate the expression. We emit the store-flag insn by calling
11960 emit_store_flag, but only expand the arguments if we have a reason
11961 to believe that emit_store_flag will be successful. If we think that
11962 it will, but it isn't, we have to simulate the store-flag with a
11963 set/jump/set sequence. */
11964
11965 static rtx
11966 do_store_flag (sepops ops, rtx target, machine_mode mode)
11967 {
11968 enum rtx_code code;
11969 tree arg0, arg1, type;
11970 machine_mode operand_mode;
11971 int unsignedp;
11972 rtx op0, op1;
11973 rtx subtarget = target;
11974 location_t loc = ops->location;
11975
11976 arg0 = ops->op0;
11977 arg1 = ops->op1;
11978
11979 /* Don't crash if the comparison was erroneous. */
11980 if (arg0 == error_mark_node || arg1 == error_mark_node)
11981 return const0_rtx;
11982
11983 type = TREE_TYPE (arg0);
11984 operand_mode = TYPE_MODE (type);
11985 unsignedp = TYPE_UNSIGNED (type);
11986
11987 /* We won't bother with BLKmode store-flag operations because it would mean
11988 passing a lot of information to emit_store_flag. */
11989 if (operand_mode == BLKmode)
11990 return 0;
11991
11992 /* We won't bother with store-flag operations involving function pointers
11993 when function pointers must be canonicalized before comparisons. */
11994 if (targetm.have_canonicalize_funcptr_for_compare ()
11995 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
11996 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
11997 || (POINTER_TYPE_P (TREE_TYPE (arg1))
11998 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
11999 return 0;
12000
12001 STRIP_NOPS (arg0);
12002 STRIP_NOPS (arg1);
12003
12004 /* For vector typed comparisons emit code to generate the desired
12005 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
12006 expander for this. */
12007 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12008 {
12009 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12010 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12011 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12012 return expand_vec_cmp_expr (ops->type, ifexp, target);
12013 else
12014 {
12015 tree if_true = constant_boolean_node (true, ops->type);
12016 tree if_false = constant_boolean_node (false, ops->type);
12017 return expand_vec_cond_expr (ops->type, ifexp, if_true,
12018 if_false, target);
12019 }
12020 }
12021
12022 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12023 into (x - C2) * C3 < C4. */
12024 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12025 && TREE_CODE (arg0) == SSA_NAME
12026 && TREE_CODE (arg1) == INTEGER_CST)
12027 {
12028 enum tree_code code = maybe_optimize_mod_cmp (ops->code, &arg0, &arg1);
12029 if (code != ops->code)
12030 {
12031 struct separate_ops nops = *ops;
12032 nops.code = ops->code = code;
12033 nops.op0 = arg0;
12034 nops.op1 = arg1;
12035 nops.type = TREE_TYPE (arg0);
12036 return do_store_flag (&nops, target, mode);
12037 }
12038 }
12039
12040 /* Get the rtx comparison code to use. We know that EXP is a comparison
12041 operation of some type. Some comparisons against 1 and -1 can be
12042 converted to comparisons with zero. Do so here so that the tests
12043 below will be aware that we have a comparison with zero. These
12044 tests will not catch constants in the first operand, but constants
12045 are rarely passed as the first operand. */
12046
12047 switch (ops->code)
12048 {
12049 case EQ_EXPR:
12050 code = EQ;
12051 break;
12052 case NE_EXPR:
12053 code = NE;
12054 break;
12055 case LT_EXPR:
12056 if (integer_onep (arg1))
12057 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
12058 else
12059 code = unsignedp ? LTU : LT;
12060 break;
12061 case LE_EXPR:
12062 if (! unsignedp && integer_all_onesp (arg1))
12063 arg1 = integer_zero_node, code = LT;
12064 else
12065 code = unsignedp ? LEU : LE;
12066 break;
12067 case GT_EXPR:
12068 if (! unsignedp && integer_all_onesp (arg1))
12069 arg1 = integer_zero_node, code = GE;
12070 else
12071 code = unsignedp ? GTU : GT;
12072 break;
12073 case GE_EXPR:
12074 if (integer_onep (arg1))
12075 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
12076 else
12077 code = unsignedp ? GEU : GE;
12078 break;
12079
12080 case UNORDERED_EXPR:
12081 code = UNORDERED;
12082 break;
12083 case ORDERED_EXPR:
12084 code = ORDERED;
12085 break;
12086 case UNLT_EXPR:
12087 code = UNLT;
12088 break;
12089 case UNLE_EXPR:
12090 code = UNLE;
12091 break;
12092 case UNGT_EXPR:
12093 code = UNGT;
12094 break;
12095 case UNGE_EXPR:
12096 code = UNGE;
12097 break;
12098 case UNEQ_EXPR:
12099 code = UNEQ;
12100 break;
12101 case LTGT_EXPR:
12102 code = LTGT;
12103 break;
12104
12105 default:
12106 gcc_unreachable ();
12107 }
12108
12109 /* Put a constant second. */
12110 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12111 || TREE_CODE (arg0) == FIXED_CST)
12112 {
12113 std::swap (arg0, arg1);
12114 code = swap_condition (code);
12115 }
12116
12117 /* If this is an equality or inequality test of a single bit, we can
12118 do this by shifting the bit being tested to the low-order bit and
12119 masking the result with the constant 1. If the condition was EQ,
12120 we xor it with 1. This does not require an scc insn and is faster
12121 than an scc insn even if we have it.
12122
12123 The code to make this transformation was moved into fold_single_bit_test,
12124 so we just call into the folder and expand its result. */
12125
12126 if ((code == NE || code == EQ)
12127 && integer_zerop (arg1)
12128 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12129 {
12130 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12131 if (srcstmt
12132 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12133 {
12134 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12135 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
12136 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12137 gimple_assign_rhs1 (srcstmt),
12138 gimple_assign_rhs2 (srcstmt));
12139 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12140 if (temp)
12141 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12142 }
12143 }
12144
12145 if (! get_subtarget (target)
12146 || GET_MODE (subtarget) != operand_mode)
12147 subtarget = 0;
12148
12149 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12150
12151 if (target == 0)
12152 target = gen_reg_rtx (mode);
12153
12154 /* Try a cstore if possible. */
12155 return emit_store_flag_force (target, code, op0, op1,
12156 operand_mode, unsignedp,
12157 (TYPE_PRECISION (ops->type) == 1
12158 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12159 }
12160 \f
12161 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12162 0 otherwise (i.e. if there is no casesi instruction).
12163
12164 DEFAULT_PROBABILITY is the probability of jumping to the default
12165 label. */
12166 int
12167 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12168 rtx table_label, rtx default_label, rtx fallback_label,
12169 profile_probability default_probability)
12170 {
12171 struct expand_operand ops[5];
12172 scalar_int_mode index_mode = SImode;
12173 rtx op1, op2, index;
12174
12175 if (! targetm.have_casesi ())
12176 return 0;
12177
12178 /* The index must be some form of integer. Convert it to SImode. */
12179 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12180 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12181 {
12182 rtx rangertx = expand_normal (range);
12183
12184 /* We must handle the endpoints in the original mode. */
12185 index_expr = build2 (MINUS_EXPR, index_type,
12186 index_expr, minval);
12187 minval = integer_zero_node;
12188 index = expand_normal (index_expr);
12189 if (default_label)
12190 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12191 omode, 1, default_label,
12192 default_probability);
12193 /* Now we can safely truncate. */
12194 index = convert_to_mode (index_mode, index, 0);
12195 }
12196 else
12197 {
12198 if (omode != index_mode)
12199 {
12200 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12201 index_expr = fold_convert (index_type, index_expr);
12202 }
12203
12204 index = expand_normal (index_expr);
12205 }
12206
12207 do_pending_stack_adjust ();
12208
12209 op1 = expand_normal (minval);
12210 op2 = expand_normal (range);
12211
12212 create_input_operand (&ops[0], index, index_mode);
12213 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12214 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12215 create_fixed_operand (&ops[3], table_label);
12216 create_fixed_operand (&ops[4], (default_label
12217 ? default_label
12218 : fallback_label));
12219 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12220 return 1;
12221 }
12222
12223 /* Attempt to generate a tablejump instruction; same concept. */
12224 /* Subroutine of the next function.
12225
12226 INDEX is the value being switched on, with the lowest value
12227 in the table already subtracted.
12228 MODE is its expected mode (needed if INDEX is constant).
12229 RANGE is the length of the jump table.
12230 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12231
12232 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12233 index value is out of range.
12234 DEFAULT_PROBABILITY is the probability of jumping to
12235 the default label. */
12236
12237 static void
12238 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12239 rtx default_label, profile_probability default_probability)
12240 {
12241 rtx temp, vector;
12242
12243 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12244 cfun->cfg->max_jumptable_ents = INTVAL (range);
12245
12246 /* Do an unsigned comparison (in the proper mode) between the index
12247 expression and the value which represents the length of the range.
12248 Since we just finished subtracting the lower bound of the range
12249 from the index expression, this comparison allows us to simultaneously
12250 check that the original index expression value is both greater than
12251 or equal to the minimum value of the range and less than or equal to
12252 the maximum value of the range. */
12253
12254 if (default_label)
12255 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12256 default_label, default_probability);
12257
12258 /* If index is in range, it must fit in Pmode.
12259 Convert to Pmode so we can index with it. */
12260 if (mode != Pmode)
12261 {
12262 unsigned int width;
12263
12264 /* We know the value of INDEX is between 0 and RANGE. If we have a
12265 sign-extended subreg, and RANGE does not have the sign bit set, then
12266 we have a value that is valid for both sign and zero extension. In
12267 this case, we get better code if we sign extend. */
12268 if (GET_CODE (index) == SUBREG
12269 && SUBREG_PROMOTED_VAR_P (index)
12270 && SUBREG_PROMOTED_SIGNED_P (index)
12271 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12272 <= HOST_BITS_PER_WIDE_INT)
12273 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12274 index = convert_to_mode (Pmode, index, 0);
12275 else
12276 index = convert_to_mode (Pmode, index, 1);
12277 }
12278
12279 /* Don't let a MEM slip through, because then INDEX that comes
12280 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12281 and break_out_memory_refs will go to work on it and mess it up. */
12282 #ifdef PIC_CASE_VECTOR_ADDRESS
12283 if (flag_pic && !REG_P (index))
12284 index = copy_to_mode_reg (Pmode, index);
12285 #endif
12286
12287 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12288 GET_MODE_SIZE, because this indicates how large insns are. The other
12289 uses should all be Pmode, because they are addresses. This code
12290 could fail if addresses and insns are not the same size. */
12291 index = simplify_gen_binary (MULT, Pmode, index,
12292 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12293 Pmode));
12294 index = simplify_gen_binary (PLUS, Pmode, index,
12295 gen_rtx_LABEL_REF (Pmode, table_label));
12296
12297 #ifdef PIC_CASE_VECTOR_ADDRESS
12298 if (flag_pic)
12299 index = PIC_CASE_VECTOR_ADDRESS (index);
12300 else
12301 #endif
12302 index = memory_address (CASE_VECTOR_MODE, index);
12303 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12304 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12305 convert_move (temp, vector, 0);
12306
12307 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12308
12309 /* If we are generating PIC code or if the table is PC-relative, the
12310 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12311 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12312 emit_barrier ();
12313 }
12314
12315 int
12316 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12317 rtx table_label, rtx default_label,
12318 profile_probability default_probability)
12319 {
12320 rtx index;
12321
12322 if (! targetm.have_tablejump ())
12323 return 0;
12324
12325 index_expr = fold_build2 (MINUS_EXPR, index_type,
12326 fold_convert (index_type, index_expr),
12327 fold_convert (index_type, minval));
12328 index = expand_normal (index_expr);
12329 do_pending_stack_adjust ();
12330
12331 do_tablejump (index, TYPE_MODE (index_type),
12332 convert_modes (TYPE_MODE (index_type),
12333 TYPE_MODE (TREE_TYPE (range)),
12334 expand_normal (range),
12335 TYPE_UNSIGNED (TREE_TYPE (range))),
12336 table_label, default_label, default_probability);
12337 return 1;
12338 }
12339
12340 /* Return a CONST_VECTOR rtx representing vector mask for
12341 a VECTOR_CST of booleans. */
12342 static rtx
12343 const_vector_mask_from_tree (tree exp)
12344 {
12345 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12346 machine_mode inner = GET_MODE_INNER (mode);
12347
12348 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12349 VECTOR_CST_NELTS_PER_PATTERN (exp));
12350 unsigned int count = builder.encoded_nelts ();
12351 for (unsigned int i = 0; i < count; ++i)
12352 {
12353 tree elt = VECTOR_CST_ELT (exp, i);
12354 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12355 if (integer_zerop (elt))
12356 builder.quick_push (CONST0_RTX (inner));
12357 else if (integer_onep (elt)
12358 || integer_minus_onep (elt))
12359 builder.quick_push (CONSTM1_RTX (inner));
12360 else
12361 gcc_unreachable ();
12362 }
12363 return builder.build ();
12364 }
12365
12366 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12367 Return a constant scalar rtx of mode MODE in which bit X is set if element
12368 X of EXP is nonzero. */
12369 static rtx
12370 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12371 {
12372 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12373 tree elt;
12374
12375 /* The result has a fixed number of bits so the input must too. */
12376 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12377 for (unsigned int i = 0; i < nunits; ++i)
12378 {
12379 elt = VECTOR_CST_ELT (exp, i);
12380 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12381 if (integer_all_onesp (elt))
12382 res = wi::set_bit (res, i);
12383 else
12384 gcc_assert (integer_zerop (elt));
12385 }
12386
12387 return immed_wide_int_const (res, mode);
12388 }
12389
12390 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12391 static rtx
12392 const_vector_from_tree (tree exp)
12393 {
12394 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12395
12396 if (initializer_zerop (exp))
12397 return CONST0_RTX (mode);
12398
12399 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12400 return const_vector_mask_from_tree (exp);
12401
12402 machine_mode inner = GET_MODE_INNER (mode);
12403
12404 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12405 VECTOR_CST_NELTS_PER_PATTERN (exp));
12406 unsigned int count = builder.encoded_nelts ();
12407 for (unsigned int i = 0; i < count; ++i)
12408 {
12409 tree elt = VECTOR_CST_ELT (exp, i);
12410 if (TREE_CODE (elt) == REAL_CST)
12411 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12412 inner));
12413 else if (TREE_CODE (elt) == FIXED_CST)
12414 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12415 inner));
12416 else
12417 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12418 inner));
12419 }
12420 return builder.build ();
12421 }
12422
12423 /* Build a decl for a personality function given a language prefix. */
12424
12425 tree
12426 build_personality_function (const char *lang)
12427 {
12428 const char *unwind_and_version;
12429 tree decl, type;
12430 char *name;
12431
12432 switch (targetm_common.except_unwind_info (&global_options))
12433 {
12434 case UI_NONE:
12435 return NULL;
12436 case UI_SJLJ:
12437 unwind_and_version = "_sj0";
12438 break;
12439 case UI_DWARF2:
12440 case UI_TARGET:
12441 unwind_and_version = "_v0";
12442 break;
12443 case UI_SEH:
12444 unwind_and_version = "_seh0";
12445 break;
12446 default:
12447 gcc_unreachable ();
12448 }
12449
12450 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12451
12452 type = build_function_type_list (integer_type_node, integer_type_node,
12453 long_long_unsigned_type_node,
12454 ptr_type_node, ptr_type_node, NULL_TREE);
12455 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12456 get_identifier (name), type);
12457 DECL_ARTIFICIAL (decl) = 1;
12458 DECL_EXTERNAL (decl) = 1;
12459 TREE_PUBLIC (decl) = 1;
12460
12461 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12462 are the flags assigned by targetm.encode_section_info. */
12463 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12464
12465 return decl;
12466 }
12467
12468 /* Extracts the personality function of DECL and returns the corresponding
12469 libfunc. */
12470
12471 rtx
12472 get_personality_function (tree decl)
12473 {
12474 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12475 enum eh_personality_kind pk;
12476
12477 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12478 if (pk == eh_personality_none)
12479 return NULL;
12480
12481 if (!personality
12482 && pk == eh_personality_any)
12483 personality = lang_hooks.eh_personality ();
12484
12485 if (pk == eh_personality_lang)
12486 gcc_assert (personality != NULL_TREE);
12487
12488 return XEXP (DECL_RTL (personality), 0);
12489 }
12490
12491 /* Returns a tree for the size of EXP in bytes. */
12492
12493 static tree
12494 tree_expr_size (const_tree exp)
12495 {
12496 if (DECL_P (exp)
12497 && DECL_SIZE_UNIT (exp) != 0)
12498 return DECL_SIZE_UNIT (exp);
12499 else
12500 return size_in_bytes (TREE_TYPE (exp));
12501 }
12502
12503 /* Return an rtx for the size in bytes of the value of EXP. */
12504
12505 rtx
12506 expr_size (tree exp)
12507 {
12508 tree size;
12509
12510 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12511 size = TREE_OPERAND (exp, 1);
12512 else
12513 {
12514 size = tree_expr_size (exp);
12515 gcc_assert (size);
12516 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12517 }
12518
12519 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12520 }
12521
12522 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12523 if the size can vary or is larger than an integer. */
12524
12525 static HOST_WIDE_INT
12526 int_expr_size (tree exp)
12527 {
12528 tree size;
12529
12530 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12531 size = TREE_OPERAND (exp, 1);
12532 else
12533 {
12534 size = tree_expr_size (exp);
12535 gcc_assert (size);
12536 }
12537
12538 if (size == 0 || !tree_fits_shwi_p (size))
12539 return -1;
12540
12541 return tree_to_shwi (size);
12542 }