]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/expr.c
New POINTER_DIFF_EXPR
[thirdparty/gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-ssa-live.h"
58 #include "tree-outof-ssa.h"
59 #include "tree-ssa-address.h"
60 #include "builtins.h"
61 #include "tree-chkp.h"
62 #include "rtl-chkp.h"
63 #include "ccmp.h"
64
65
66 /* If this is nonzero, we do not bother generating VOLATILE
67 around volatile memory references, and we are willing to
68 output indirect addresses. If cse is to follow, we reject
69 indirect addresses so a useful potential cse is generated;
70 if it is used only once, instruction combination will produce
71 the same indirect address eventually. */
72 int cse_not_expected;
73
74 static bool block_move_libcall_safe_for_call_parm (void);
75 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
76 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT);
78 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
79 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
80 static rtx_insn *compress_float_constant (rtx, rtx);
81 static rtx get_subtarget (rtx);
82 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
83 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
84 unsigned HOST_WIDE_INT, machine_mode,
85 tree, int, alias_set_type, bool);
86 static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
87 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
88 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
89 machine_mode, tree, alias_set_type, bool, bool);
90
91 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
92
93 static int is_aligning_offset (const_tree, const_tree);
94 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
95 static rtx do_store_flag (sepops, rtx, machine_mode);
96 #ifdef PUSH_ROUNDING
97 static void emit_single_push_insn (machine_mode, rtx, tree);
98 #endif
99 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
100 profile_probability);
101 static rtx const_vector_from_tree (tree);
102 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
103 static tree tree_expr_size (const_tree);
104 static HOST_WIDE_INT int_expr_size (tree);
105 static void convert_mode_scalar (rtx, rtx, int);
106
107 \f
108 /* This is run to set up which modes can be used
109 directly in memory and to initialize the block move optab. It is run
110 at the beginning of compilation and when the target is reinitialized. */
111
112 void
113 init_expr_target (void)
114 {
115 rtx pat;
116 int num_clobbers;
117 rtx mem, mem1;
118 rtx reg;
119
120 /* Try indexing by frame ptr and try by stack ptr.
121 It is known that on the Convex the stack ptr isn't a valid index.
122 With luck, one or the other is valid on any machine. */
123 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
124 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
125
126 /* A scratch register we can modify in-place below to avoid
127 useless RTL allocations. */
128 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
129
130 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
131 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
132 PATTERN (insn) = pat;
133
134 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
135 mode = (machine_mode) ((int) mode + 1))
136 {
137 int regno;
138
139 direct_load[(int) mode] = direct_store[(int) mode] = 0;
140 PUT_MODE (mem, mode);
141 PUT_MODE (mem1, mode);
142
143 /* See if there is some register that can be used in this mode and
144 directly loaded or stored from memory. */
145
146 if (mode != VOIDmode && mode != BLKmode)
147 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
148 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
149 regno++)
150 {
151 if (!targetm.hard_regno_mode_ok (regno, mode))
152 continue;
153
154 set_mode_and_regno (reg, mode, regno);
155
156 SET_SRC (pat) = mem;
157 SET_DEST (pat) = reg;
158 if (recog (pat, insn, &num_clobbers) >= 0)
159 direct_load[(int) mode] = 1;
160
161 SET_SRC (pat) = mem1;
162 SET_DEST (pat) = reg;
163 if (recog (pat, insn, &num_clobbers) >= 0)
164 direct_load[(int) mode] = 1;
165
166 SET_SRC (pat) = reg;
167 SET_DEST (pat) = mem;
168 if (recog (pat, insn, &num_clobbers) >= 0)
169 direct_store[(int) mode] = 1;
170
171 SET_SRC (pat) = reg;
172 SET_DEST (pat) = mem1;
173 if (recog (pat, insn, &num_clobbers) >= 0)
174 direct_store[(int) mode] = 1;
175 }
176 }
177
178 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
179
180 opt_scalar_float_mode mode_iter;
181 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
182 {
183 scalar_float_mode mode = mode_iter.require ();
184 scalar_float_mode srcmode;
185 FOR_EACH_MODE_UNTIL (srcmode, mode)
186 {
187 enum insn_code ic;
188
189 ic = can_extend_p (mode, srcmode, 0);
190 if (ic == CODE_FOR_nothing)
191 continue;
192
193 PUT_MODE (mem, srcmode);
194
195 if (insn_operand_matches (ic, 1, mem))
196 float_extend_from_mem[mode][srcmode] = true;
197 }
198 }
199 }
200
201 /* This is run at the start of compiling a function. */
202
203 void
204 init_expr (void)
205 {
206 memset (&crtl->expr, 0, sizeof (crtl->expr));
207 }
208 \f
209 /* Copy data from FROM to TO, where the machine modes are not the same.
210 Both modes may be integer, or both may be floating, or both may be
211 fixed-point.
212 UNSIGNEDP should be nonzero if FROM is an unsigned type.
213 This causes zero-extension instead of sign-extension. */
214
215 void
216 convert_move (rtx to, rtx from, int unsignedp)
217 {
218 machine_mode to_mode = GET_MODE (to);
219 machine_mode from_mode = GET_MODE (from);
220
221 gcc_assert (to_mode != BLKmode);
222 gcc_assert (from_mode != BLKmode);
223
224 /* If the source and destination are already the same, then there's
225 nothing to do. */
226 if (to == from)
227 return;
228
229 /* If FROM is a SUBREG that indicates that we have already done at least
230 the required extension, strip it. We don't handle such SUBREGs as
231 TO here. */
232
233 scalar_int_mode to_int_mode;
234 if (GET_CODE (from) == SUBREG
235 && SUBREG_PROMOTED_VAR_P (from)
236 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
237 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
238 >= GET_MODE_PRECISION (to_int_mode))
239 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
240 from = gen_lowpart (to_int_mode, from), from_mode = to_int_mode;
241
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
243
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
246 {
247 emit_move_insn (to, from);
248 return;
249 }
250
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
252 {
253 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
254
255 if (VECTOR_MODE_P (to_mode))
256 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
257 else
258 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
259
260 emit_move_insn (to, from);
261 return;
262 }
263
264 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
265 {
266 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
267 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
268 return;
269 }
270
271 convert_mode_scalar (to, from, unsignedp);
272 }
273
274 /* Like convert_move, but deals only with scalar modes. */
275
276 static void
277 convert_mode_scalar (rtx to, rtx from, int unsignedp)
278 {
279 /* Both modes should be scalar types. */
280 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
281 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
282 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
283 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
284 enum insn_code code;
285 rtx libcall;
286
287 gcc_assert (to_real == from_real);
288
289 /* rtx code for making an equivalent value. */
290 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
291 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
292
293 if (to_real)
294 {
295 rtx value;
296 rtx_insn *insns;
297 convert_optab tab;
298
299 gcc_assert ((GET_MODE_PRECISION (from_mode)
300 != GET_MODE_PRECISION (to_mode))
301 || (DECIMAL_FLOAT_MODE_P (from_mode)
302 != DECIMAL_FLOAT_MODE_P (to_mode)));
303
304 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
305 /* Conversion between decimal float and binary float, same size. */
306 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
307 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
308 tab = sext_optab;
309 else
310 tab = trunc_optab;
311
312 /* Try converting directly if the insn is supported. */
313
314 code = convert_optab_handler (tab, to_mode, from_mode);
315 if (code != CODE_FOR_nothing)
316 {
317 emit_unop_insn (code, to, from,
318 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
319 return;
320 }
321
322 /* Otherwise use a libcall. */
323 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
324
325 /* Is this conversion implemented yet? */
326 gcc_assert (libcall);
327
328 start_sequence ();
329 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
330 from, from_mode);
331 insns = get_insns ();
332 end_sequence ();
333 emit_libcall_block (insns, to, value,
334 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
335 from)
336 : gen_rtx_FLOAT_EXTEND (to_mode, from));
337 return;
338 }
339
340 /* Handle pointer conversion. */ /* SPEE 900220. */
341 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
342 {
343 convert_optab ctab;
344
345 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
346 ctab = trunc_optab;
347 else if (unsignedp)
348 ctab = zext_optab;
349 else
350 ctab = sext_optab;
351
352 if (convert_optab_handler (ctab, to_mode, from_mode)
353 != CODE_FOR_nothing)
354 {
355 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
356 to, from, UNKNOWN);
357 return;
358 }
359 }
360
361 /* Targets are expected to provide conversion insns between PxImode and
362 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
363 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
364 {
365 scalar_int_mode full_mode
366 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
367
368 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
369 != CODE_FOR_nothing);
370
371 if (full_mode != from_mode)
372 from = convert_to_mode (full_mode, from, unsignedp);
373 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
374 to, from, UNKNOWN);
375 return;
376 }
377 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
378 {
379 rtx new_from;
380 scalar_int_mode full_mode
381 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
382 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
383 enum insn_code icode;
384
385 icode = convert_optab_handler (ctab, full_mode, from_mode);
386 gcc_assert (icode != CODE_FOR_nothing);
387
388 if (to_mode == full_mode)
389 {
390 emit_unop_insn (icode, to, from, UNKNOWN);
391 return;
392 }
393
394 new_from = gen_reg_rtx (full_mode);
395 emit_unop_insn (icode, new_from, from, UNKNOWN);
396
397 /* else proceed to integer conversions below. */
398 from_mode = full_mode;
399 from = new_from;
400 }
401
402 /* Make sure both are fixed-point modes or both are not. */
403 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
404 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
405 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
406 {
407 /* If we widen from_mode to to_mode and they are in the same class,
408 we won't saturate the result.
409 Otherwise, always saturate the result to play safe. */
410 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
411 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
412 expand_fixed_convert (to, from, 0, 0);
413 else
414 expand_fixed_convert (to, from, 0, 1);
415 return;
416 }
417
418 /* Now both modes are integers. */
419
420 /* Handle expanding beyond a word. */
421 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
422 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
423 {
424 rtx_insn *insns;
425 rtx lowpart;
426 rtx fill_value;
427 rtx lowfrom;
428 int i;
429 scalar_mode lowpart_mode;
430 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
431
432 /* Try converting directly if the insn is supported. */
433 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
434 != CODE_FOR_nothing)
435 {
436 /* If FROM is a SUBREG, put it into a register. Do this
437 so that we always generate the same set of insns for
438 better cse'ing; if an intermediate assignment occurred,
439 we won't be doing the operation directly on the SUBREG. */
440 if (optimize > 0 && GET_CODE (from) == SUBREG)
441 from = force_reg (from_mode, from);
442 emit_unop_insn (code, to, from, equiv_code);
443 return;
444 }
445 /* Next, try converting via full word. */
446 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
447 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
448 != CODE_FOR_nothing))
449 {
450 rtx word_to = gen_reg_rtx (word_mode);
451 if (REG_P (to))
452 {
453 if (reg_overlap_mentioned_p (to, from))
454 from = force_reg (from_mode, from);
455 emit_clobber (to);
456 }
457 convert_move (word_to, from, unsignedp);
458 emit_unop_insn (code, to, word_to, equiv_code);
459 return;
460 }
461
462 /* No special multiword conversion insn; do it by hand. */
463 start_sequence ();
464
465 /* Since we will turn this into a no conflict block, we must ensure
466 the source does not overlap the target so force it into an isolated
467 register when maybe so. Likewise for any MEM input, since the
468 conversion sequence might require several references to it and we
469 must ensure we're getting the same value every time. */
470
471 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
472 from = force_reg (from_mode, from);
473
474 /* Get a copy of FROM widened to a word, if necessary. */
475 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
476 lowpart_mode = word_mode;
477 else
478 lowpart_mode = from_mode;
479
480 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
481
482 lowpart = gen_lowpart (lowpart_mode, to);
483 emit_move_insn (lowpart, lowfrom);
484
485 /* Compute the value to put in each remaining word. */
486 if (unsignedp)
487 fill_value = const0_rtx;
488 else
489 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
490 LT, lowfrom, const0_rtx,
491 lowpart_mode, 0, -1);
492
493 /* Fill the remaining words. */
494 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
495 {
496 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
497 rtx subword = operand_subword (to, index, 1, to_mode);
498
499 gcc_assert (subword);
500
501 if (fill_value != subword)
502 emit_move_insn (subword, fill_value);
503 }
504
505 insns = get_insns ();
506 end_sequence ();
507
508 emit_insn (insns);
509 return;
510 }
511
512 /* Truncating multi-word to a word or less. */
513 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
514 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
515 {
516 if (!((MEM_P (from)
517 && ! MEM_VOLATILE_P (from)
518 && direct_load[(int) to_mode]
519 && ! mode_dependent_address_p (XEXP (from, 0),
520 MEM_ADDR_SPACE (from)))
521 || REG_P (from)
522 || GET_CODE (from) == SUBREG))
523 from = force_reg (from_mode, from);
524 convert_move (to, gen_lowpart (word_mode, from), 0);
525 return;
526 }
527
528 /* Now follow all the conversions between integers
529 no more than a word long. */
530
531 /* For truncation, usually we can just refer to FROM in a narrower mode. */
532 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
533 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
534 {
535 if (!((MEM_P (from)
536 && ! MEM_VOLATILE_P (from)
537 && direct_load[(int) to_mode]
538 && ! mode_dependent_address_p (XEXP (from, 0),
539 MEM_ADDR_SPACE (from)))
540 || REG_P (from)
541 || GET_CODE (from) == SUBREG))
542 from = force_reg (from_mode, from);
543 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
544 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
545 from = copy_to_reg (from);
546 emit_move_insn (to, gen_lowpart (to_mode, from));
547 return;
548 }
549
550 /* Handle extension. */
551 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
552 {
553 /* Convert directly if that works. */
554 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
555 != CODE_FOR_nothing)
556 {
557 emit_unop_insn (code, to, from, equiv_code);
558 return;
559 }
560 else
561 {
562 scalar_mode intermediate;
563 rtx tmp;
564 int shift_amount;
565
566 /* Search for a mode to convert via. */
567 opt_scalar_mode intermediate_iter;
568 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
569 {
570 scalar_mode intermediate = intermediate_iter.require ();
571 if (((can_extend_p (to_mode, intermediate, unsignedp)
572 != CODE_FOR_nothing)
573 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
574 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
575 intermediate)))
576 && (can_extend_p (intermediate, from_mode, unsignedp)
577 != CODE_FOR_nothing))
578 {
579 convert_move (to, convert_to_mode (intermediate, from,
580 unsignedp), unsignedp);
581 return;
582 }
583 }
584
585 /* No suitable intermediate mode.
586 Generate what we need with shifts. */
587 shift_amount = (GET_MODE_PRECISION (to_mode)
588 - GET_MODE_PRECISION (from_mode));
589 from = gen_lowpart (to_mode, force_reg (from_mode, from));
590 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
591 to, unsignedp);
592 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
593 to, unsignedp);
594 if (tmp != to)
595 emit_move_insn (to, tmp);
596 return;
597 }
598 }
599
600 /* Support special truncate insns for certain modes. */
601 if (convert_optab_handler (trunc_optab, to_mode,
602 from_mode) != CODE_FOR_nothing)
603 {
604 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
605 to, from, UNKNOWN);
606 return;
607 }
608
609 /* Handle truncation of volatile memrefs, and so on;
610 the things that couldn't be truncated directly,
611 and for which there was no special instruction.
612
613 ??? Code above formerly short-circuited this, for most integer
614 mode pairs, with a force_reg in from_mode followed by a recursive
615 call to this routine. Appears always to have been wrong. */
616 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
617 {
618 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
619 emit_move_insn (to, temp);
620 return;
621 }
622
623 /* Mode combination is not recognized. */
624 gcc_unreachable ();
625 }
626
627 /* Return an rtx for a value that would result
628 from converting X to mode MODE.
629 Both X and MODE may be floating, or both integer.
630 UNSIGNEDP is nonzero if X is an unsigned value.
631 This can be done by referring to a part of X in place
632 or by copying to a new temporary with conversion. */
633
634 rtx
635 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
636 {
637 return convert_modes (mode, VOIDmode, x, unsignedp);
638 }
639
640 /* Return an rtx for a value that would result
641 from converting X from mode OLDMODE to mode MODE.
642 Both modes may be floating, or both integer.
643 UNSIGNEDP is nonzero if X is an unsigned value.
644
645 This can be done by referring to a part of X in place
646 or by copying to a new temporary with conversion.
647
648 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
649
650 rtx
651 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
652 {
653 rtx temp;
654 scalar_int_mode int_mode;
655
656 /* If FROM is a SUBREG that indicates that we have already done at least
657 the required extension, strip it. */
658
659 if (GET_CODE (x) == SUBREG
660 && SUBREG_PROMOTED_VAR_P (x)
661 && is_a <scalar_int_mode> (mode, &int_mode)
662 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
663 >= GET_MODE_PRECISION (int_mode))
664 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
665 x = gen_lowpart (int_mode, SUBREG_REG (x));
666
667 if (GET_MODE (x) != VOIDmode)
668 oldmode = GET_MODE (x);
669
670 if (mode == oldmode)
671 return x;
672
673 if (CONST_SCALAR_INT_P (x)
674 && is_int_mode (mode, &int_mode))
675 {
676 /* If the caller did not tell us the old mode, then there is not
677 much to do with respect to canonicalization. We have to
678 assume that all the bits are significant. */
679 if (GET_MODE_CLASS (oldmode) != MODE_INT)
680 oldmode = MAX_MODE_INT;
681 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
682 GET_MODE_PRECISION (int_mode),
683 unsignedp ? UNSIGNED : SIGNED);
684 return immed_wide_int_const (w, int_mode);
685 }
686
687 /* We can do this with a gen_lowpart if both desired and current modes
688 are integer, and this is either a constant integer, a register, or a
689 non-volatile MEM. */
690 scalar_int_mode int_oldmode;
691 if (is_int_mode (mode, &int_mode)
692 && is_int_mode (oldmode, &int_oldmode)
693 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
694 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
695 || (REG_P (x)
696 && (!HARD_REGISTER_P (x)
697 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
698 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
699 return gen_lowpart (int_mode, x);
700
701 /* Converting from integer constant into mode is always equivalent to an
702 subreg operation. */
703 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
704 {
705 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
706 return simplify_gen_subreg (mode, x, oldmode, 0);
707 }
708
709 temp = gen_reg_rtx (mode);
710 convert_move (temp, x, unsignedp);
711 return temp;
712 }
713 \f
714 /* Return the largest alignment we can use for doing a move (or store)
715 of MAX_PIECES. ALIGN is the largest alignment we could use. */
716
717 static unsigned int
718 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
719 {
720 scalar_int_mode tmode
721 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
722
723 if (align >= GET_MODE_ALIGNMENT (tmode))
724 align = GET_MODE_ALIGNMENT (tmode);
725 else
726 {
727 scalar_int_mode xmode = NARROWEST_INT_MODE;
728 opt_scalar_int_mode mode_iter;
729 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
730 {
731 tmode = mode_iter.require ();
732 if (GET_MODE_SIZE (tmode) > max_pieces
733 || targetm.slow_unaligned_access (tmode, align))
734 break;
735 xmode = tmode;
736 }
737
738 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
739 }
740
741 return align;
742 }
743
744 /* Return the widest integer mode that is narrower than SIZE bytes. */
745
746 static scalar_int_mode
747 widest_int_mode_for_size (unsigned int size)
748 {
749 scalar_int_mode result = NARROWEST_INT_MODE;
750
751 gcc_checking_assert (size > 1);
752
753 opt_scalar_int_mode tmode;
754 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
755 if (GET_MODE_SIZE (tmode.require ()) < size)
756 result = tmode.require ();
757
758 return result;
759 }
760
761 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
762 and should be performed piecewise. */
763
764 static bool
765 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
766 enum by_pieces_operation op)
767 {
768 return targetm.use_by_pieces_infrastructure_p (len, align, op,
769 optimize_insn_for_speed_p ());
770 }
771
772 /* Determine whether the LEN bytes can be moved by using several move
773 instructions. Return nonzero if a call to move_by_pieces should
774 succeed. */
775
776 bool
777 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
778 {
779 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
780 }
781
782 /* Return number of insns required to perform operation OP by pieces
783 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
784
785 unsigned HOST_WIDE_INT
786 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
787 unsigned int max_size, by_pieces_operation op)
788 {
789 unsigned HOST_WIDE_INT n_insns = 0;
790
791 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
792
793 while (max_size > 1 && l > 0)
794 {
795 scalar_int_mode mode = widest_int_mode_for_size (max_size);
796 enum insn_code icode;
797
798 unsigned int modesize = GET_MODE_SIZE (mode);
799
800 icode = optab_handler (mov_optab, mode);
801 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
802 {
803 unsigned HOST_WIDE_INT n_pieces = l / modesize;
804 l %= modesize;
805 switch (op)
806 {
807 default:
808 n_insns += n_pieces;
809 break;
810
811 case COMPARE_BY_PIECES:
812 int batch = targetm.compare_by_pieces_branch_ratio (mode);
813 int batch_ops = 4 * batch - 1;
814 unsigned HOST_WIDE_INT full = n_pieces / batch;
815 n_insns += full * batch_ops;
816 if (n_pieces % batch != 0)
817 n_insns++;
818 break;
819
820 }
821 }
822 max_size = modesize;
823 }
824
825 gcc_assert (!l);
826 return n_insns;
827 }
828
829 /* Used when performing piecewise block operations, holds information
830 about one of the memory objects involved. The member functions
831 can be used to generate code for loading from the object and
832 updating the address when iterating. */
833
834 class pieces_addr
835 {
836 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
837 stack pushes. */
838 rtx m_obj;
839 /* The address of the object. Can differ from that seen in the
840 MEM rtx if we copied the address to a register. */
841 rtx m_addr;
842 /* Nonzero if the address on the object has an autoincrement already,
843 signifies whether that was an increment or decrement. */
844 signed char m_addr_inc;
845 /* Nonzero if we intend to use autoinc without the address already
846 having autoinc form. We will insert add insns around each memory
847 reference, expecting later passes to form autoinc addressing modes.
848 The only supported options are predecrement and postincrement. */
849 signed char m_explicit_inc;
850 /* True if we have either of the two possible cases of using
851 autoincrement. */
852 bool m_auto;
853 /* True if this is an address to be used for load operations rather
854 than stores. */
855 bool m_is_load;
856
857 /* Optionally, a function to obtain constants for any given offset into
858 the objects, and data associated with it. */
859 by_pieces_constfn m_constfn;
860 void *m_cfndata;
861 public:
862 pieces_addr (rtx, bool, by_pieces_constfn, void *);
863 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
864 void increment_address (HOST_WIDE_INT);
865 void maybe_predec (HOST_WIDE_INT);
866 void maybe_postinc (HOST_WIDE_INT);
867 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
868 int get_addr_inc ()
869 {
870 return m_addr_inc;
871 }
872 };
873
874 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
875 true if the operation to be performed on this object is a load
876 rather than a store. For stores, OBJ can be NULL, in which case we
877 assume the operation is a stack push. For loads, the optional
878 CONSTFN and its associated CFNDATA can be used in place of the
879 memory load. */
880
881 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
882 void *cfndata)
883 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
884 {
885 m_addr_inc = 0;
886 m_auto = false;
887 if (obj)
888 {
889 rtx addr = XEXP (obj, 0);
890 rtx_code code = GET_CODE (addr);
891 m_addr = addr;
892 bool dec = code == PRE_DEC || code == POST_DEC;
893 bool inc = code == PRE_INC || code == POST_INC;
894 m_auto = inc || dec;
895 if (m_auto)
896 m_addr_inc = dec ? -1 : 1;
897
898 /* While we have always looked for these codes here, the code
899 implementing the memory operation has never handled them.
900 Support could be added later if necessary or beneficial. */
901 gcc_assert (code != PRE_INC && code != POST_DEC);
902 }
903 else
904 {
905 m_addr = NULL_RTX;
906 if (!is_load)
907 {
908 m_auto = true;
909 if (STACK_GROWS_DOWNWARD)
910 m_addr_inc = -1;
911 else
912 m_addr_inc = 1;
913 }
914 else
915 gcc_assert (constfn != NULL);
916 }
917 m_explicit_inc = 0;
918 if (constfn)
919 gcc_assert (is_load);
920 }
921
922 /* Decide whether to use autoinc for an address involved in a memory op.
923 MODE is the mode of the accesses, REVERSE is true if we've decided to
924 perform the operation starting from the end, and LEN is the length of
925 the operation. Don't override an earlier decision to set m_auto. */
926
927 void
928 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
929 HOST_WIDE_INT len)
930 {
931 if (m_auto || m_obj == NULL_RTX)
932 return;
933
934 bool use_predec = (m_is_load
935 ? USE_LOAD_PRE_DECREMENT (mode)
936 : USE_STORE_PRE_DECREMENT (mode));
937 bool use_postinc = (m_is_load
938 ? USE_LOAD_POST_INCREMENT (mode)
939 : USE_STORE_POST_INCREMENT (mode));
940 machine_mode addr_mode = get_address_mode (m_obj);
941
942 if (use_predec && reverse)
943 {
944 m_addr = copy_to_mode_reg (addr_mode,
945 plus_constant (addr_mode,
946 m_addr, len));
947 m_auto = true;
948 m_explicit_inc = -1;
949 }
950 else if (use_postinc && !reverse)
951 {
952 m_addr = copy_to_mode_reg (addr_mode, m_addr);
953 m_auto = true;
954 m_explicit_inc = 1;
955 }
956 else if (CONSTANT_P (m_addr))
957 m_addr = copy_to_mode_reg (addr_mode, m_addr);
958 }
959
960 /* Adjust the address to refer to the data at OFFSET in MODE. If we
961 are using autoincrement for this address, we don't add the offset,
962 but we still modify the MEM's properties. */
963
964 rtx
965 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
966 {
967 if (m_constfn)
968 return m_constfn (m_cfndata, offset, mode);
969 if (m_obj == NULL_RTX)
970 return NULL_RTX;
971 if (m_auto)
972 return adjust_automodify_address (m_obj, mode, m_addr, offset);
973 else
974 return adjust_address (m_obj, mode, offset);
975 }
976
977 /* Emit an add instruction to increment the address by SIZE. */
978
979 void
980 pieces_addr::increment_address (HOST_WIDE_INT size)
981 {
982 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
983 emit_insn (gen_add2_insn (m_addr, amount));
984 }
985
986 /* If we are supposed to decrement the address after each access, emit code
987 to do so now. Increment by SIZE (which has should have the correct sign
988 already). */
989
990 void
991 pieces_addr::maybe_predec (HOST_WIDE_INT size)
992 {
993 if (m_explicit_inc >= 0)
994 return;
995 gcc_assert (HAVE_PRE_DECREMENT);
996 increment_address (size);
997 }
998
999 /* If we are supposed to decrement the address after each access, emit code
1000 to do so now. Increment by SIZE. */
1001
1002 void
1003 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1004 {
1005 if (m_explicit_inc <= 0)
1006 return;
1007 gcc_assert (HAVE_POST_INCREMENT);
1008 increment_address (size);
1009 }
1010
1011 /* This structure is used by do_op_by_pieces to describe the operation
1012 to be performed. */
1013
1014 class op_by_pieces_d
1015 {
1016 protected:
1017 pieces_addr m_to, m_from;
1018 unsigned HOST_WIDE_INT m_len;
1019 HOST_WIDE_INT m_offset;
1020 unsigned int m_align;
1021 unsigned int m_max_size;
1022 bool m_reverse;
1023
1024 /* Virtual functions, overriden by derived classes for the specific
1025 operation. */
1026 virtual void generate (rtx, rtx, machine_mode) = 0;
1027 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1028 virtual void finish_mode (machine_mode)
1029 {
1030 }
1031
1032 public:
1033 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1034 unsigned HOST_WIDE_INT, unsigned int);
1035 void run ();
1036 };
1037
1038 /* The constructor for an op_by_pieces_d structure. We require two
1039 objects named TO and FROM, which are identified as loads or stores
1040 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1041 and its associated FROM_CFN_DATA can be used to replace loads with
1042 constant values. LEN describes the length of the operation. */
1043
1044 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1045 rtx from, bool from_load,
1046 by_pieces_constfn from_cfn,
1047 void *from_cfn_data,
1048 unsigned HOST_WIDE_INT len,
1049 unsigned int align)
1050 : m_to (to, to_load, NULL, NULL),
1051 m_from (from, from_load, from_cfn, from_cfn_data),
1052 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1053 {
1054 int toi = m_to.get_addr_inc ();
1055 int fromi = m_from.get_addr_inc ();
1056 if (toi >= 0 && fromi >= 0)
1057 m_reverse = false;
1058 else if (toi <= 0 && fromi <= 0)
1059 m_reverse = true;
1060 else
1061 gcc_unreachable ();
1062
1063 m_offset = m_reverse ? len : 0;
1064 align = MIN (to ? MEM_ALIGN (to) : align,
1065 from ? MEM_ALIGN (from) : align);
1066
1067 /* If copying requires more than two move insns,
1068 copy addresses to registers (to make displacements shorter)
1069 and use post-increment if available. */
1070 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1071 {
1072 /* Find the mode of the largest comparison. */
1073 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1074
1075 m_from.decide_autoinc (mode, m_reverse, len);
1076 m_to.decide_autoinc (mode, m_reverse, len);
1077 }
1078
1079 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1080 m_align = align;
1081 }
1082
1083 /* This function contains the main loop used for expanding a block
1084 operation. First move what we can in the largest integer mode,
1085 then go to successively smaller modes. For every access, call
1086 GENFUN with the two operands and the EXTRA_DATA. */
1087
1088 void
1089 op_by_pieces_d::run ()
1090 {
1091 while (m_max_size > 1 && m_len > 0)
1092 {
1093 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1094
1095 if (prepare_mode (mode, m_align))
1096 {
1097 unsigned int size = GET_MODE_SIZE (mode);
1098 rtx to1 = NULL_RTX, from1;
1099
1100 while (m_len >= size)
1101 {
1102 if (m_reverse)
1103 m_offset -= size;
1104
1105 to1 = m_to.adjust (mode, m_offset);
1106 from1 = m_from.adjust (mode, m_offset);
1107
1108 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1109 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1110
1111 generate (to1, from1, mode);
1112
1113 m_to.maybe_postinc (size);
1114 m_from.maybe_postinc (size);
1115
1116 if (!m_reverse)
1117 m_offset += size;
1118
1119 m_len -= size;
1120 }
1121
1122 finish_mode (mode);
1123 }
1124
1125 m_max_size = GET_MODE_SIZE (mode);
1126 }
1127
1128 /* The code above should have handled everything. */
1129 gcc_assert (!m_len);
1130 }
1131
1132 /* Derived class from op_by_pieces_d, providing support for block move
1133 operations. */
1134
1135 class move_by_pieces_d : public op_by_pieces_d
1136 {
1137 insn_gen_fn m_gen_fun;
1138 void generate (rtx, rtx, machine_mode);
1139 bool prepare_mode (machine_mode, unsigned int);
1140
1141 public:
1142 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1143 unsigned int align)
1144 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1145 {
1146 }
1147 rtx finish_endp (int);
1148 };
1149
1150 /* Return true if MODE can be used for a set of copies, given an
1151 alignment ALIGN. Prepare whatever data is necessary for later
1152 calls to generate. */
1153
1154 bool
1155 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1156 {
1157 insn_code icode = optab_handler (mov_optab, mode);
1158 m_gen_fun = GEN_FCN (icode);
1159 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1160 }
1161
1162 /* A callback used when iterating for a compare_by_pieces_operation.
1163 OP0 and OP1 are the values that have been loaded and should be
1164 compared in MODE. If OP0 is NULL, this means we should generate a
1165 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1166 gen function that should be used to generate the mode. */
1167
1168 void
1169 move_by_pieces_d::generate (rtx op0, rtx op1,
1170 machine_mode mode ATTRIBUTE_UNUSED)
1171 {
1172 #ifdef PUSH_ROUNDING
1173 if (op0 == NULL_RTX)
1174 {
1175 emit_single_push_insn (mode, op1, NULL);
1176 return;
1177 }
1178 #endif
1179 emit_insn (m_gen_fun (op0, op1));
1180 }
1181
1182 /* Perform the final adjustment at the end of a string to obtain the
1183 correct return value for the block operation. If ENDP is 1 return
1184 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1185 end minus one byte ala stpcpy. */
1186
1187 rtx
1188 move_by_pieces_d::finish_endp (int endp)
1189 {
1190 gcc_assert (!m_reverse);
1191 if (endp == 2)
1192 {
1193 m_to.maybe_postinc (-1);
1194 --m_offset;
1195 }
1196 return m_to.adjust (QImode, m_offset);
1197 }
1198
1199 /* Generate several move instructions to copy LEN bytes from block FROM to
1200 block TO. (These are MEM rtx's with BLKmode).
1201
1202 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1203 used to push FROM to the stack.
1204
1205 ALIGN is maximum stack alignment we can assume.
1206
1207 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1208 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1209 stpcpy. */
1210
1211 rtx
1212 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1213 unsigned int align, int endp)
1214 {
1215 #ifndef PUSH_ROUNDING
1216 if (to == NULL)
1217 gcc_unreachable ();
1218 #endif
1219
1220 move_by_pieces_d data (to, from, len, align);
1221
1222 data.run ();
1223
1224 if (endp)
1225 return data.finish_endp (endp);
1226 else
1227 return to;
1228 }
1229
1230 /* Derived class from op_by_pieces_d, providing support for block move
1231 operations. */
1232
1233 class store_by_pieces_d : public op_by_pieces_d
1234 {
1235 insn_gen_fn m_gen_fun;
1236 void generate (rtx, rtx, machine_mode);
1237 bool prepare_mode (machine_mode, unsigned int);
1238
1239 public:
1240 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1241 unsigned HOST_WIDE_INT len, unsigned int align)
1242 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1243 {
1244 }
1245 rtx finish_endp (int);
1246 };
1247
1248 /* Return true if MODE can be used for a set of stores, given an
1249 alignment ALIGN. Prepare whatever data is necessary for later
1250 calls to generate. */
1251
1252 bool
1253 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1254 {
1255 insn_code icode = optab_handler (mov_optab, mode);
1256 m_gen_fun = GEN_FCN (icode);
1257 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1258 }
1259
1260 /* A callback used when iterating for a store_by_pieces_operation.
1261 OP0 and OP1 are the values that have been loaded and should be
1262 compared in MODE. If OP0 is NULL, this means we should generate a
1263 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1264 gen function that should be used to generate the mode. */
1265
1266 void
1267 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1268 {
1269 emit_insn (m_gen_fun (op0, op1));
1270 }
1271
1272 /* Perform the final adjustment at the end of a string to obtain the
1273 correct return value for the block operation. If ENDP is 1 return
1274 memory at the end ala mempcpy, and if ENDP is 2 return memory the
1275 end minus one byte ala stpcpy. */
1276
1277 rtx
1278 store_by_pieces_d::finish_endp (int endp)
1279 {
1280 gcc_assert (!m_reverse);
1281 if (endp == 2)
1282 {
1283 m_to.maybe_postinc (-1);
1284 --m_offset;
1285 }
1286 return m_to.adjust (QImode, m_offset);
1287 }
1288
1289 /* Determine whether the LEN bytes generated by CONSTFUN can be
1290 stored to memory using several move instructions. CONSTFUNDATA is
1291 a pointer which will be passed as argument in every CONSTFUN call.
1292 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1293 a memset operation and false if it's a copy of a constant string.
1294 Return nonzero if a call to store_by_pieces should succeed. */
1295
1296 int
1297 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1298 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1299 void *constfundata, unsigned int align, bool memsetp)
1300 {
1301 unsigned HOST_WIDE_INT l;
1302 unsigned int max_size;
1303 HOST_WIDE_INT offset = 0;
1304 enum insn_code icode;
1305 int reverse;
1306 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1307 rtx cst ATTRIBUTE_UNUSED;
1308
1309 if (len == 0)
1310 return 1;
1311
1312 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1313 memsetp
1314 ? SET_BY_PIECES
1315 : STORE_BY_PIECES,
1316 optimize_insn_for_speed_p ()))
1317 return 0;
1318
1319 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1320
1321 /* We would first store what we can in the largest integer mode, then go to
1322 successively smaller modes. */
1323
1324 for (reverse = 0;
1325 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1326 reverse++)
1327 {
1328 l = len;
1329 max_size = STORE_MAX_PIECES + 1;
1330 while (max_size > 1 && l > 0)
1331 {
1332 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1333
1334 icode = optab_handler (mov_optab, mode);
1335 if (icode != CODE_FOR_nothing
1336 && align >= GET_MODE_ALIGNMENT (mode))
1337 {
1338 unsigned int size = GET_MODE_SIZE (mode);
1339
1340 while (l >= size)
1341 {
1342 if (reverse)
1343 offset -= size;
1344
1345 cst = (*constfun) (constfundata, offset, mode);
1346 if (!targetm.legitimate_constant_p (mode, cst))
1347 return 0;
1348
1349 if (!reverse)
1350 offset += size;
1351
1352 l -= size;
1353 }
1354 }
1355
1356 max_size = GET_MODE_SIZE (mode);
1357 }
1358
1359 /* The code above should have handled everything. */
1360 gcc_assert (!l);
1361 }
1362
1363 return 1;
1364 }
1365
1366 /* Generate several move instructions to store LEN bytes generated by
1367 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1368 pointer which will be passed as argument in every CONSTFUN call.
1369 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1370 a memset operation and false if it's a copy of a constant string.
1371 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
1372 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
1373 stpcpy. */
1374
1375 rtx
1376 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1377 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1378 void *constfundata, unsigned int align, bool memsetp, int endp)
1379 {
1380 if (len == 0)
1381 {
1382 gcc_assert (endp != 2);
1383 return to;
1384 }
1385
1386 gcc_assert (targetm.use_by_pieces_infrastructure_p
1387 (len, align,
1388 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1389 optimize_insn_for_speed_p ()));
1390
1391 store_by_pieces_d data (to, constfun, constfundata, len, align);
1392 data.run ();
1393
1394 if (endp)
1395 return data.finish_endp (endp);
1396 else
1397 return to;
1398 }
1399
1400 /* Callback routine for clear_by_pieces.
1401 Return const0_rtx unconditionally. */
1402
1403 static rtx
1404 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1405 {
1406 return const0_rtx;
1407 }
1408
1409 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1410 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1411
1412 static void
1413 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1414 {
1415 if (len == 0)
1416 return;
1417
1418 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1419 data.run ();
1420 }
1421
1422 /* Context used by compare_by_pieces_genfn. It stores the fail label
1423 to jump to in case of miscomparison, and for branch ratios greater than 1,
1424 it stores an accumulator and the current and maximum counts before
1425 emitting another branch. */
1426
1427 class compare_by_pieces_d : public op_by_pieces_d
1428 {
1429 rtx_code_label *m_fail_label;
1430 rtx m_accumulator;
1431 int m_count, m_batch;
1432
1433 void generate (rtx, rtx, machine_mode);
1434 bool prepare_mode (machine_mode, unsigned int);
1435 void finish_mode (machine_mode);
1436 public:
1437 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1438 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1439 rtx_code_label *fail_label)
1440 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1441 {
1442 m_fail_label = fail_label;
1443 }
1444 };
1445
1446 /* A callback used when iterating for a compare_by_pieces_operation.
1447 OP0 and OP1 are the values that have been loaded and should be
1448 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1449 context structure. */
1450
1451 void
1452 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1453 {
1454 if (m_batch > 1)
1455 {
1456 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1457 true, OPTAB_LIB_WIDEN);
1458 if (m_count != 0)
1459 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1460 true, OPTAB_LIB_WIDEN);
1461 m_accumulator = temp;
1462
1463 if (++m_count < m_batch)
1464 return;
1465
1466 m_count = 0;
1467 op0 = m_accumulator;
1468 op1 = const0_rtx;
1469 m_accumulator = NULL_RTX;
1470 }
1471 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1472 m_fail_label, profile_probability::uninitialized ());
1473 }
1474
1475 /* Return true if MODE can be used for a set of moves and comparisons,
1476 given an alignment ALIGN. Prepare whatever data is necessary for
1477 later calls to generate. */
1478
1479 bool
1480 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1481 {
1482 insn_code icode = optab_handler (mov_optab, mode);
1483 if (icode == CODE_FOR_nothing
1484 || align < GET_MODE_ALIGNMENT (mode)
1485 || !can_compare_p (EQ, mode, ccp_jump))
1486 return false;
1487 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1488 if (m_batch < 0)
1489 return false;
1490 m_accumulator = NULL_RTX;
1491 m_count = 0;
1492 return true;
1493 }
1494
1495 /* Called after expanding a series of comparisons in MODE. If we have
1496 accumulated results for which we haven't emitted a branch yet, do
1497 so now. */
1498
1499 void
1500 compare_by_pieces_d::finish_mode (machine_mode mode)
1501 {
1502 if (m_accumulator != NULL_RTX)
1503 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1504 NULL_RTX, NULL, m_fail_label,
1505 profile_probability::uninitialized ());
1506 }
1507
1508 /* Generate several move instructions to compare LEN bytes from blocks
1509 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1510
1511 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1512 used to push FROM to the stack.
1513
1514 ALIGN is maximum stack alignment we can assume.
1515
1516 Optionally, the caller can pass a constfn and associated data in A1_CFN
1517 and A1_CFN_DATA. describing that the second operand being compared is a
1518 known constant and how to obtain its data. */
1519
1520 static rtx
1521 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1522 rtx target, unsigned int align,
1523 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1524 {
1525 rtx_code_label *fail_label = gen_label_rtx ();
1526 rtx_code_label *end_label = gen_label_rtx ();
1527
1528 if (target == NULL_RTX
1529 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1530 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1531
1532 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1533 fail_label);
1534
1535 data.run ();
1536
1537 emit_move_insn (target, const0_rtx);
1538 emit_jump (end_label);
1539 emit_barrier ();
1540 emit_label (fail_label);
1541 emit_move_insn (target, const1_rtx);
1542 emit_label (end_label);
1543
1544 return target;
1545 }
1546 \f
1547 /* Emit code to move a block Y to a block X. This may be done with
1548 string-move instructions, with multiple scalar move instructions,
1549 or with a library call.
1550
1551 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1552 SIZE is an rtx that says how long they are.
1553 ALIGN is the maximum alignment we can assume they have.
1554 METHOD describes what kind of copy this is, and what mechanisms may be used.
1555 MIN_SIZE is the minimal size of block to move
1556 MAX_SIZE is the maximal size of block to move, if it can not be represented
1557 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1558
1559 Return the address of the new block, if memcpy is called and returns it,
1560 0 otherwise. */
1561
1562 rtx
1563 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1564 unsigned int expected_align, HOST_WIDE_INT expected_size,
1565 unsigned HOST_WIDE_INT min_size,
1566 unsigned HOST_WIDE_INT max_size,
1567 unsigned HOST_WIDE_INT probable_max_size)
1568 {
1569 bool may_use_call;
1570 rtx retval = 0;
1571 unsigned int align;
1572
1573 gcc_assert (size);
1574 if (CONST_INT_P (size) && INTVAL (size) == 0)
1575 return 0;
1576
1577 switch (method)
1578 {
1579 case BLOCK_OP_NORMAL:
1580 case BLOCK_OP_TAILCALL:
1581 may_use_call = true;
1582 break;
1583
1584 case BLOCK_OP_CALL_PARM:
1585 may_use_call = block_move_libcall_safe_for_call_parm ();
1586
1587 /* Make inhibit_defer_pop nonzero around the library call
1588 to force it to pop the arguments right away. */
1589 NO_DEFER_POP;
1590 break;
1591
1592 case BLOCK_OP_NO_LIBCALL:
1593 may_use_call = false;
1594 break;
1595
1596 default:
1597 gcc_unreachable ();
1598 }
1599
1600 gcc_assert (MEM_P (x) && MEM_P (y));
1601 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1602 gcc_assert (align >= BITS_PER_UNIT);
1603
1604 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1605 block copy is more efficient for other large modes, e.g. DCmode. */
1606 x = adjust_address (x, BLKmode, 0);
1607 y = adjust_address (y, BLKmode, 0);
1608
1609 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1610 can be incorrect is coming from __builtin_memcpy. */
1611 if (CONST_INT_P (size))
1612 {
1613 x = shallow_copy_rtx (x);
1614 y = shallow_copy_rtx (y);
1615 set_mem_size (x, INTVAL (size));
1616 set_mem_size (y, INTVAL (size));
1617 }
1618
1619 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1620 move_by_pieces (x, y, INTVAL (size), align, 0);
1621 else if (emit_block_move_via_movmem (x, y, size, align,
1622 expected_align, expected_size,
1623 min_size, max_size, probable_max_size))
1624 ;
1625 else if (may_use_call
1626 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1627 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1628 {
1629 /* Since x and y are passed to a libcall, mark the corresponding
1630 tree EXPR as addressable. */
1631 tree y_expr = MEM_EXPR (y);
1632 tree x_expr = MEM_EXPR (x);
1633 if (y_expr)
1634 mark_addressable (y_expr);
1635 if (x_expr)
1636 mark_addressable (x_expr);
1637 retval = emit_block_copy_via_libcall (x, y, size,
1638 method == BLOCK_OP_TAILCALL);
1639 }
1640
1641 else
1642 emit_block_move_via_loop (x, y, size, align);
1643
1644 if (method == BLOCK_OP_CALL_PARM)
1645 OK_DEFER_POP;
1646
1647 return retval;
1648 }
1649
1650 rtx
1651 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1652 {
1653 unsigned HOST_WIDE_INT max, min = 0;
1654 if (GET_CODE (size) == CONST_INT)
1655 min = max = UINTVAL (size);
1656 else
1657 max = GET_MODE_MASK (GET_MODE (size));
1658 return emit_block_move_hints (x, y, size, method, 0, -1,
1659 min, max, max);
1660 }
1661
1662 /* A subroutine of emit_block_move. Returns true if calling the
1663 block move libcall will not clobber any parameters which may have
1664 already been placed on the stack. */
1665
1666 static bool
1667 block_move_libcall_safe_for_call_parm (void)
1668 {
1669 #if defined (REG_PARM_STACK_SPACE)
1670 tree fn;
1671 #endif
1672
1673 /* If arguments are pushed on the stack, then they're safe. */
1674 if (PUSH_ARGS)
1675 return true;
1676
1677 /* If registers go on the stack anyway, any argument is sure to clobber
1678 an outgoing argument. */
1679 #if defined (REG_PARM_STACK_SPACE)
1680 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1681 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1682 depend on its argument. */
1683 (void) fn;
1684 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1685 && REG_PARM_STACK_SPACE (fn) != 0)
1686 return false;
1687 #endif
1688
1689 /* If any argument goes in memory, then it might clobber an outgoing
1690 argument. */
1691 {
1692 CUMULATIVE_ARGS args_so_far_v;
1693 cumulative_args_t args_so_far;
1694 tree fn, arg;
1695
1696 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1697 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1698 args_so_far = pack_cumulative_args (&args_so_far_v);
1699
1700 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1701 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1702 {
1703 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1704 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1705 NULL_TREE, true);
1706 if (!tmp || !REG_P (tmp))
1707 return false;
1708 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1709 return false;
1710 targetm.calls.function_arg_advance (args_so_far, mode,
1711 NULL_TREE, true);
1712 }
1713 }
1714 return true;
1715 }
1716
1717 /* A subroutine of emit_block_move. Expand a movmem pattern;
1718 return true if successful. */
1719
1720 static bool
1721 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1722 unsigned int expected_align, HOST_WIDE_INT expected_size,
1723 unsigned HOST_WIDE_INT min_size,
1724 unsigned HOST_WIDE_INT max_size,
1725 unsigned HOST_WIDE_INT probable_max_size)
1726 {
1727 int save_volatile_ok = volatile_ok;
1728
1729 if (expected_align < align)
1730 expected_align = align;
1731 if (expected_size != -1)
1732 {
1733 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1734 expected_size = probable_max_size;
1735 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1736 expected_size = min_size;
1737 }
1738
1739 /* Since this is a move insn, we don't care about volatility. */
1740 volatile_ok = 1;
1741
1742 /* Try the most limited insn first, because there's no point
1743 including more than one in the machine description unless
1744 the more limited one has some advantage. */
1745
1746 opt_scalar_int_mode mode_iter;
1747 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1748 {
1749 scalar_int_mode mode = mode_iter.require ();
1750 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1751
1752 if (code != CODE_FOR_nothing
1753 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1754 here because if SIZE is less than the mode mask, as it is
1755 returned by the macro, it will definitely be less than the
1756 actual mode mask. Since SIZE is within the Pmode address
1757 space, we limit MODE to Pmode. */
1758 && ((CONST_INT_P (size)
1759 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1760 <= (GET_MODE_MASK (mode) >> 1)))
1761 || max_size <= (GET_MODE_MASK (mode) >> 1)
1762 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1763 {
1764 struct expand_operand ops[9];
1765 unsigned int nops;
1766
1767 /* ??? When called via emit_block_move_for_call, it'd be
1768 nice if there were some way to inform the backend, so
1769 that it doesn't fail the expansion because it thinks
1770 emitting the libcall would be more efficient. */
1771 nops = insn_data[(int) code].n_generator_args;
1772 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1773
1774 create_fixed_operand (&ops[0], x);
1775 create_fixed_operand (&ops[1], y);
1776 /* The check above guarantees that this size conversion is valid. */
1777 create_convert_operand_to (&ops[2], size, mode, true);
1778 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1779 if (nops >= 6)
1780 {
1781 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1782 create_integer_operand (&ops[5], expected_size);
1783 }
1784 if (nops >= 8)
1785 {
1786 create_integer_operand (&ops[6], min_size);
1787 /* If we can not represent the maximal size,
1788 make parameter NULL. */
1789 if ((HOST_WIDE_INT) max_size != -1)
1790 create_integer_operand (&ops[7], max_size);
1791 else
1792 create_fixed_operand (&ops[7], NULL);
1793 }
1794 if (nops == 9)
1795 {
1796 /* If we can not represent the maximal size,
1797 make parameter NULL. */
1798 if ((HOST_WIDE_INT) probable_max_size != -1)
1799 create_integer_operand (&ops[8], probable_max_size);
1800 else
1801 create_fixed_operand (&ops[8], NULL);
1802 }
1803 if (maybe_expand_insn (code, nops, ops))
1804 {
1805 volatile_ok = save_volatile_ok;
1806 return true;
1807 }
1808 }
1809 }
1810
1811 volatile_ok = save_volatile_ok;
1812 return false;
1813 }
1814
1815 /* A subroutine of emit_block_move. Copy the data via an explicit
1816 loop. This is used only when libcalls are forbidden. */
1817 /* ??? It'd be nice to copy in hunks larger than QImode. */
1818
1819 static void
1820 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1821 unsigned int align ATTRIBUTE_UNUSED)
1822 {
1823 rtx_code_label *cmp_label, *top_label;
1824 rtx iter, x_addr, y_addr, tmp;
1825 machine_mode x_addr_mode = get_address_mode (x);
1826 machine_mode y_addr_mode = get_address_mode (y);
1827 machine_mode iter_mode;
1828
1829 iter_mode = GET_MODE (size);
1830 if (iter_mode == VOIDmode)
1831 iter_mode = word_mode;
1832
1833 top_label = gen_label_rtx ();
1834 cmp_label = gen_label_rtx ();
1835 iter = gen_reg_rtx (iter_mode);
1836
1837 emit_move_insn (iter, const0_rtx);
1838
1839 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1840 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1841 do_pending_stack_adjust ();
1842
1843 emit_jump (cmp_label);
1844 emit_label (top_label);
1845
1846 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1847 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1848
1849 if (x_addr_mode != y_addr_mode)
1850 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1851 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1852
1853 x = change_address (x, QImode, x_addr);
1854 y = change_address (y, QImode, y_addr);
1855
1856 emit_move_insn (x, y);
1857
1858 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1859 true, OPTAB_LIB_WIDEN);
1860 if (tmp != iter)
1861 emit_move_insn (iter, tmp);
1862
1863 emit_label (cmp_label);
1864
1865 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1866 true, top_label,
1867 profile_probability::guessed_always ()
1868 .apply_scale (9, 10));
1869 }
1870 \f
1871 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1872 TAILCALL is true if this is a tail call. */
1873
1874 rtx
1875 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1876 rtx size, bool tailcall)
1877 {
1878 rtx dst_addr, src_addr;
1879 tree call_expr, dst_tree, src_tree, size_tree;
1880 machine_mode size_mode;
1881
1882 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1883 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1884 dst_tree = make_tree (ptr_type_node, dst_addr);
1885
1886 src_addr = copy_addr_to_reg (XEXP (src, 0));
1887 src_addr = convert_memory_address (ptr_mode, src_addr);
1888 src_tree = make_tree (ptr_type_node, src_addr);
1889
1890 size_mode = TYPE_MODE (sizetype);
1891 size = convert_to_mode (size_mode, size, 1);
1892 size = copy_to_mode_reg (size_mode, size);
1893 size_tree = make_tree (sizetype, size);
1894
1895 /* It is incorrect to use the libcall calling conventions for calls to
1896 memcpy/memmove/memcmp because they can be provided by the user. */
1897 tree fn = builtin_decl_implicit (fncode);
1898 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1899 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1900
1901 return expand_call (call_expr, NULL_RTX, false);
1902 }
1903
1904 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1905 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1906 otherwise return null. */
1907
1908 rtx
1909 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1910 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1911 HOST_WIDE_INT align)
1912 {
1913 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1914
1915 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1916 target = NULL_RTX;
1917
1918 struct expand_operand ops[5];
1919 create_output_operand (&ops[0], target, insn_mode);
1920 create_fixed_operand (&ops[1], arg1_rtx);
1921 create_fixed_operand (&ops[2], arg2_rtx);
1922 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1923 TYPE_UNSIGNED (arg3_type));
1924 create_integer_operand (&ops[4], align);
1925 if (maybe_expand_insn (icode, 5, ops))
1926 return ops[0].value;
1927 return NULL_RTX;
1928 }
1929
1930 /* Expand a block compare between X and Y with length LEN using the
1931 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
1932 of the expression that was used to calculate the length. ALIGN
1933 gives the known minimum common alignment. */
1934
1935 static rtx
1936 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
1937 unsigned align)
1938 {
1939 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
1940 implementing memcmp because it will stop if it encounters two
1941 zero bytes. */
1942 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
1943
1944 if (icode == CODE_FOR_nothing)
1945 return NULL_RTX;
1946
1947 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
1948 }
1949
1950 /* Emit code to compare a block Y to a block X. This may be done with
1951 string-compare instructions, with multiple scalar instructions,
1952 or with a library call.
1953
1954 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
1955 they are. LEN_TYPE is the type of the expression that was used to
1956 calculate it.
1957
1958 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
1959 value of a normal memcmp call, instead we can just compare for equality.
1960 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
1961 returning NULL_RTX.
1962
1963 Optionally, the caller can pass a constfn and associated data in Y_CFN
1964 and Y_CFN_DATA. describing that the second operand being compared is a
1965 known constant and how to obtain its data.
1966 Return the result of the comparison, or NULL_RTX if we failed to
1967 perform the operation. */
1968
1969 rtx
1970 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
1971 bool equality_only, by_pieces_constfn y_cfn,
1972 void *y_cfndata)
1973 {
1974 rtx result = 0;
1975
1976 if (CONST_INT_P (len) && INTVAL (len) == 0)
1977 return const0_rtx;
1978
1979 gcc_assert (MEM_P (x) && MEM_P (y));
1980 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1981 gcc_assert (align >= BITS_PER_UNIT);
1982
1983 x = adjust_address (x, BLKmode, 0);
1984 y = adjust_address (y, BLKmode, 0);
1985
1986 if (equality_only
1987 && CONST_INT_P (len)
1988 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
1989 result = compare_by_pieces (x, y, INTVAL (len), target, align,
1990 y_cfn, y_cfndata);
1991 else
1992 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
1993
1994 return result;
1995 }
1996 \f
1997 /* Copy all or part of a value X into registers starting at REGNO.
1998 The number of registers to be filled is NREGS. */
1999
2000 void
2001 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2002 {
2003 if (nregs == 0)
2004 return;
2005
2006 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2007 x = validize_mem (force_const_mem (mode, x));
2008
2009 /* See if the machine can do this with a load multiple insn. */
2010 if (targetm.have_load_multiple ())
2011 {
2012 rtx_insn *last = get_last_insn ();
2013 rtx first = gen_rtx_REG (word_mode, regno);
2014 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2015 GEN_INT (nregs)))
2016 {
2017 emit_insn (pat);
2018 return;
2019 }
2020 else
2021 delete_insns_since (last);
2022 }
2023
2024 for (int i = 0; i < nregs; i++)
2025 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2026 operand_subword_force (x, i, mode));
2027 }
2028
2029 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2030 The number of registers to be filled is NREGS. */
2031
2032 void
2033 move_block_from_reg (int regno, rtx x, int nregs)
2034 {
2035 if (nregs == 0)
2036 return;
2037
2038 /* See if the machine can do this with a store multiple insn. */
2039 if (targetm.have_store_multiple ())
2040 {
2041 rtx_insn *last = get_last_insn ();
2042 rtx first = gen_rtx_REG (word_mode, regno);
2043 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2044 GEN_INT (nregs)))
2045 {
2046 emit_insn (pat);
2047 return;
2048 }
2049 else
2050 delete_insns_since (last);
2051 }
2052
2053 for (int i = 0; i < nregs; i++)
2054 {
2055 rtx tem = operand_subword (x, i, 1, BLKmode);
2056
2057 gcc_assert (tem);
2058
2059 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2060 }
2061 }
2062
2063 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2064 ORIG, where ORIG is a non-consecutive group of registers represented by
2065 a PARALLEL. The clone is identical to the original except in that the
2066 original set of registers is replaced by a new set of pseudo registers.
2067 The new set has the same modes as the original set. */
2068
2069 rtx
2070 gen_group_rtx (rtx orig)
2071 {
2072 int i, length;
2073 rtx *tmps;
2074
2075 gcc_assert (GET_CODE (orig) == PARALLEL);
2076
2077 length = XVECLEN (orig, 0);
2078 tmps = XALLOCAVEC (rtx, length);
2079
2080 /* Skip a NULL entry in first slot. */
2081 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2082
2083 if (i)
2084 tmps[0] = 0;
2085
2086 for (; i < length; i++)
2087 {
2088 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2089 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2090
2091 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2092 }
2093
2094 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2095 }
2096
2097 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2098 except that values are placed in TMPS[i], and must later be moved
2099 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2100
2101 static void
2102 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
2103 {
2104 rtx src;
2105 int start, i;
2106 machine_mode m = GET_MODE (orig_src);
2107
2108 gcc_assert (GET_CODE (dst) == PARALLEL);
2109
2110 if (m != VOIDmode
2111 && !SCALAR_INT_MODE_P (m)
2112 && !MEM_P (orig_src)
2113 && GET_CODE (orig_src) != CONCAT)
2114 {
2115 scalar_int_mode imode;
2116 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2117 {
2118 src = gen_reg_rtx (imode);
2119 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2120 }
2121 else
2122 {
2123 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2124 emit_move_insn (src, orig_src);
2125 }
2126 emit_group_load_1 (tmps, dst, src, type, ssize);
2127 return;
2128 }
2129
2130 /* Check for a NULL entry, used to indicate that the parameter goes
2131 both on the stack and in registers. */
2132 if (XEXP (XVECEXP (dst, 0, 0), 0))
2133 start = 0;
2134 else
2135 start = 1;
2136
2137 /* Process the pieces. */
2138 for (i = start; i < XVECLEN (dst, 0); i++)
2139 {
2140 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2141 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
2142 unsigned int bytelen = GET_MODE_SIZE (mode);
2143 int shift = 0;
2144
2145 /* Handle trailing fragments that run over the size of the struct. */
2146 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2147 {
2148 /* Arrange to shift the fragment to where it belongs.
2149 extract_bit_field loads to the lsb of the reg. */
2150 if (
2151 #ifdef BLOCK_REG_PADDING
2152 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2153 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2154 #else
2155 BYTES_BIG_ENDIAN
2156 #endif
2157 )
2158 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2159 bytelen = ssize - bytepos;
2160 gcc_assert (bytelen > 0);
2161 }
2162
2163 /* If we won't be loading directly from memory, protect the real source
2164 from strange tricks we might play; but make sure that the source can
2165 be loaded directly into the destination. */
2166 src = orig_src;
2167 if (!MEM_P (orig_src)
2168 && (!CONSTANT_P (orig_src)
2169 || (GET_MODE (orig_src) != mode
2170 && GET_MODE (orig_src) != VOIDmode)))
2171 {
2172 if (GET_MODE (orig_src) == VOIDmode)
2173 src = gen_reg_rtx (mode);
2174 else
2175 src = gen_reg_rtx (GET_MODE (orig_src));
2176
2177 emit_move_insn (src, orig_src);
2178 }
2179
2180 /* Optimize the access just a bit. */
2181 if (MEM_P (src)
2182 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2183 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2184 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2185 && bytelen == GET_MODE_SIZE (mode))
2186 {
2187 tmps[i] = gen_reg_rtx (mode);
2188 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2189 }
2190 else if (COMPLEX_MODE_P (mode)
2191 && GET_MODE (src) == mode
2192 && bytelen == GET_MODE_SIZE (mode))
2193 /* Let emit_move_complex do the bulk of the work. */
2194 tmps[i] = src;
2195 else if (GET_CODE (src) == CONCAT)
2196 {
2197 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
2198 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2199 unsigned int elt = bytepos / slen0;
2200 unsigned int subpos = bytepos % slen0;
2201
2202 if (subpos + bytelen <= slen0)
2203 {
2204 /* The following assumes that the concatenated objects all
2205 have the same size. In this case, a simple calculation
2206 can be used to determine the object and the bit field
2207 to be extracted. */
2208 tmps[i] = XEXP (src, elt);
2209 if (subpos != 0
2210 || subpos + bytelen != slen0
2211 || (!CONSTANT_P (tmps[i])
2212 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2213 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2214 subpos * BITS_PER_UNIT,
2215 1, NULL_RTX, mode, mode, false,
2216 NULL);
2217 }
2218 else
2219 {
2220 rtx mem;
2221
2222 gcc_assert (!bytepos);
2223 mem = assign_stack_temp (GET_MODE (src), slen);
2224 emit_move_insn (mem, src);
2225 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2226 0, 1, NULL_RTX, mode, mode, false,
2227 NULL);
2228 }
2229 }
2230 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2231 SIMD register, which is currently broken. While we get GCC
2232 to emit proper RTL for these cases, let's dump to memory. */
2233 else if (VECTOR_MODE_P (GET_MODE (dst))
2234 && REG_P (src))
2235 {
2236 int slen = GET_MODE_SIZE (GET_MODE (src));
2237 rtx mem;
2238
2239 mem = assign_stack_temp (GET_MODE (src), slen);
2240 emit_move_insn (mem, src);
2241 tmps[i] = adjust_address (mem, mode, (int) bytepos);
2242 }
2243 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2244 && XVECLEN (dst, 0) > 1)
2245 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2246 else if (CONSTANT_P (src))
2247 {
2248 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
2249
2250 if (len == ssize)
2251 tmps[i] = src;
2252 else
2253 {
2254 rtx first, second;
2255
2256 /* TODO: const_wide_int can have sizes other than this... */
2257 gcc_assert (2 * len == ssize);
2258 split_double (src, &first, &second);
2259 if (i)
2260 tmps[i] = second;
2261 else
2262 tmps[i] = first;
2263 }
2264 }
2265 else if (REG_P (src) && GET_MODE (src) == mode)
2266 tmps[i] = src;
2267 else
2268 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2269 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2270 mode, mode, false, NULL);
2271
2272 if (shift)
2273 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2274 shift, tmps[i], 0);
2275 }
2276 }
2277
2278 /* Emit code to move a block SRC of type TYPE to a block DST,
2279 where DST is non-consecutive registers represented by a PARALLEL.
2280 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2281 if not known. */
2282
2283 void
2284 emit_group_load (rtx dst, rtx src, tree type, int ssize)
2285 {
2286 rtx *tmps;
2287 int i;
2288
2289 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2290 emit_group_load_1 (tmps, dst, src, type, ssize);
2291
2292 /* Copy the extracted pieces into the proper (probable) hard regs. */
2293 for (i = 0; i < XVECLEN (dst, 0); i++)
2294 {
2295 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2296 if (d == NULL)
2297 continue;
2298 emit_move_insn (d, tmps[i]);
2299 }
2300 }
2301
2302 /* Similar, but load SRC into new pseudos in a format that looks like
2303 PARALLEL. This can later be fed to emit_group_move to get things
2304 in the right place. */
2305
2306 rtx
2307 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
2308 {
2309 rtvec vec;
2310 int i;
2311
2312 vec = rtvec_alloc (XVECLEN (parallel, 0));
2313 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2314
2315 /* Convert the vector to look just like the original PARALLEL, except
2316 with the computed values. */
2317 for (i = 0; i < XVECLEN (parallel, 0); i++)
2318 {
2319 rtx e = XVECEXP (parallel, 0, i);
2320 rtx d = XEXP (e, 0);
2321
2322 if (d)
2323 {
2324 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2325 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2326 }
2327 RTVEC_ELT (vec, i) = e;
2328 }
2329
2330 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2331 }
2332
2333 /* Emit code to move a block SRC to block DST, where SRC and DST are
2334 non-consecutive groups of registers, each represented by a PARALLEL. */
2335
2336 void
2337 emit_group_move (rtx dst, rtx src)
2338 {
2339 int i;
2340
2341 gcc_assert (GET_CODE (src) == PARALLEL
2342 && GET_CODE (dst) == PARALLEL
2343 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2344
2345 /* Skip first entry if NULL. */
2346 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2347 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2348 XEXP (XVECEXP (src, 0, i), 0));
2349 }
2350
2351 /* Move a group of registers represented by a PARALLEL into pseudos. */
2352
2353 rtx
2354 emit_group_move_into_temps (rtx src)
2355 {
2356 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2357 int i;
2358
2359 for (i = 0; i < XVECLEN (src, 0); i++)
2360 {
2361 rtx e = XVECEXP (src, 0, i);
2362 rtx d = XEXP (e, 0);
2363
2364 if (d)
2365 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2366 RTVEC_ELT (vec, i) = e;
2367 }
2368
2369 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2370 }
2371
2372 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2373 where SRC is non-consecutive registers represented by a PARALLEL.
2374 SSIZE represents the total size of block ORIG_DST, or -1 if not
2375 known. */
2376
2377 void
2378 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
2379 {
2380 rtx *tmps, dst;
2381 int start, finish, i;
2382 machine_mode m = GET_MODE (orig_dst);
2383
2384 gcc_assert (GET_CODE (src) == PARALLEL);
2385
2386 if (!SCALAR_INT_MODE_P (m)
2387 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2388 {
2389 scalar_int_mode imode;
2390 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2391 {
2392 dst = gen_reg_rtx (imode);
2393 emit_group_store (dst, src, type, ssize);
2394 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2395 }
2396 else
2397 {
2398 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2399 emit_group_store (dst, src, type, ssize);
2400 }
2401 emit_move_insn (orig_dst, dst);
2402 return;
2403 }
2404
2405 /* Check for a NULL entry, used to indicate that the parameter goes
2406 both on the stack and in registers. */
2407 if (XEXP (XVECEXP (src, 0, 0), 0))
2408 start = 0;
2409 else
2410 start = 1;
2411 finish = XVECLEN (src, 0);
2412
2413 tmps = XALLOCAVEC (rtx, finish);
2414
2415 /* Copy the (probable) hard regs into pseudos. */
2416 for (i = start; i < finish; i++)
2417 {
2418 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2419 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2420 {
2421 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2422 emit_move_insn (tmps[i], reg);
2423 }
2424 else
2425 tmps[i] = reg;
2426 }
2427
2428 /* If we won't be storing directly into memory, protect the real destination
2429 from strange tricks we might play. */
2430 dst = orig_dst;
2431 if (GET_CODE (dst) == PARALLEL)
2432 {
2433 rtx temp;
2434
2435 /* We can get a PARALLEL dst if there is a conditional expression in
2436 a return statement. In that case, the dst and src are the same,
2437 so no action is necessary. */
2438 if (rtx_equal_p (dst, src))
2439 return;
2440
2441 /* It is unclear if we can ever reach here, but we may as well handle
2442 it. Allocate a temporary, and split this into a store/load to/from
2443 the temporary. */
2444 temp = assign_stack_temp (GET_MODE (dst), ssize);
2445 emit_group_store (temp, src, type, ssize);
2446 emit_group_load (dst, temp, type, ssize);
2447 return;
2448 }
2449 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2450 {
2451 machine_mode outer = GET_MODE (dst);
2452 machine_mode inner;
2453 HOST_WIDE_INT bytepos;
2454 bool done = false;
2455 rtx temp;
2456
2457 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2458 dst = gen_reg_rtx (outer);
2459
2460 /* Make life a bit easier for combine. */
2461 /* If the first element of the vector is the low part
2462 of the destination mode, use a paradoxical subreg to
2463 initialize the destination. */
2464 if (start < finish)
2465 {
2466 inner = GET_MODE (tmps[start]);
2467 bytepos = subreg_lowpart_offset (inner, outer);
2468 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2469 {
2470 temp = simplify_gen_subreg (outer, tmps[start],
2471 inner, 0);
2472 if (temp)
2473 {
2474 emit_move_insn (dst, temp);
2475 done = true;
2476 start++;
2477 }
2478 }
2479 }
2480
2481 /* If the first element wasn't the low part, try the last. */
2482 if (!done
2483 && start < finish - 1)
2484 {
2485 inner = GET_MODE (tmps[finish - 1]);
2486 bytepos = subreg_lowpart_offset (inner, outer);
2487 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2488 {
2489 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2490 inner, 0);
2491 if (temp)
2492 {
2493 emit_move_insn (dst, temp);
2494 done = true;
2495 finish--;
2496 }
2497 }
2498 }
2499
2500 /* Otherwise, simply initialize the result to zero. */
2501 if (!done)
2502 emit_move_insn (dst, CONST0_RTX (outer));
2503 }
2504
2505 /* Process the pieces. */
2506 for (i = start; i < finish; i++)
2507 {
2508 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2509 machine_mode mode = GET_MODE (tmps[i]);
2510 unsigned int bytelen = GET_MODE_SIZE (mode);
2511 unsigned int adj_bytelen;
2512 rtx dest = dst;
2513
2514 /* Handle trailing fragments that run over the size of the struct. */
2515 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2516 adj_bytelen = ssize - bytepos;
2517 else
2518 adj_bytelen = bytelen;
2519
2520 if (GET_CODE (dst) == CONCAT)
2521 {
2522 if (bytepos + adj_bytelen
2523 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2524 dest = XEXP (dst, 0);
2525 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2526 {
2527 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2528 dest = XEXP (dst, 1);
2529 }
2530 else
2531 {
2532 machine_mode dest_mode = GET_MODE (dest);
2533 machine_mode tmp_mode = GET_MODE (tmps[i]);
2534
2535 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2536
2537 if (GET_MODE_ALIGNMENT (dest_mode)
2538 >= GET_MODE_ALIGNMENT (tmp_mode))
2539 {
2540 dest = assign_stack_temp (dest_mode,
2541 GET_MODE_SIZE (dest_mode));
2542 emit_move_insn (adjust_address (dest,
2543 tmp_mode,
2544 bytepos),
2545 tmps[i]);
2546 dst = dest;
2547 }
2548 else
2549 {
2550 dest = assign_stack_temp (tmp_mode,
2551 GET_MODE_SIZE (tmp_mode));
2552 emit_move_insn (dest, tmps[i]);
2553 dst = adjust_address (dest, dest_mode, bytepos);
2554 }
2555 break;
2556 }
2557 }
2558
2559 /* Handle trailing fragments that run over the size of the struct. */
2560 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2561 {
2562 /* store_bit_field always takes its value from the lsb.
2563 Move the fragment to the lsb if it's not already there. */
2564 if (
2565 #ifdef BLOCK_REG_PADDING
2566 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2567 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2568 #else
2569 BYTES_BIG_ENDIAN
2570 #endif
2571 )
2572 {
2573 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2574 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2575 shift, tmps[i], 0);
2576 }
2577
2578 /* Make sure not to write past the end of the struct. */
2579 store_bit_field (dest,
2580 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2581 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2582 VOIDmode, tmps[i], false);
2583 }
2584
2585 /* Optimize the access just a bit. */
2586 else if (MEM_P (dest)
2587 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2588 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2589 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2590 && bytelen == GET_MODE_SIZE (mode))
2591 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2592
2593 else
2594 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2595 0, 0, mode, tmps[i], false);
2596 }
2597
2598 /* Copy from the pseudo into the (probable) hard reg. */
2599 if (orig_dst != dst)
2600 emit_move_insn (orig_dst, dst);
2601 }
2602
2603 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2604 of the value stored in X. */
2605
2606 rtx
2607 maybe_emit_group_store (rtx x, tree type)
2608 {
2609 machine_mode mode = TYPE_MODE (type);
2610 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2611 if (GET_CODE (x) == PARALLEL)
2612 {
2613 rtx result = gen_reg_rtx (mode);
2614 emit_group_store (result, x, type, int_size_in_bytes (type));
2615 return result;
2616 }
2617 return x;
2618 }
2619
2620 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2621
2622 This is used on targets that return BLKmode values in registers. */
2623
2624 static void
2625 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2626 {
2627 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2628 rtx src = NULL, dst = NULL;
2629 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2630 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2631 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2632 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2633 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2634 fixed_size_mode copy_mode;
2635
2636 /* BLKmode registers created in the back-end shouldn't have survived. */
2637 gcc_assert (mode != BLKmode);
2638
2639 /* If the structure doesn't take up a whole number of words, see whether
2640 SRCREG is padded on the left or on the right. If it's on the left,
2641 set PADDING_CORRECTION to the number of bits to skip.
2642
2643 In most ABIs, the structure will be returned at the least end of
2644 the register, which translates to right padding on little-endian
2645 targets and left padding on big-endian targets. The opposite
2646 holds if the structure is returned at the most significant
2647 end of the register. */
2648 if (bytes % UNITS_PER_WORD != 0
2649 && (targetm.calls.return_in_msb (type)
2650 ? !BYTES_BIG_ENDIAN
2651 : BYTES_BIG_ENDIAN))
2652 padding_correction
2653 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2654
2655 /* We can use a single move if we have an exact mode for the size. */
2656 else if (MEM_P (target)
2657 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2658 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2659 && bytes == GET_MODE_SIZE (mode))
2660 {
2661 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2662 return;
2663 }
2664
2665 /* And if we additionally have the same mode for a register. */
2666 else if (REG_P (target)
2667 && GET_MODE (target) == mode
2668 && bytes == GET_MODE_SIZE (mode))
2669 {
2670 emit_move_insn (target, srcreg);
2671 return;
2672 }
2673
2674 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2675 into a new pseudo which is a full word. */
2676 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2677 {
2678 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2679 mode = word_mode;
2680 }
2681
2682 /* Copy the structure BITSIZE bits at a time. If the target lives in
2683 memory, take care of not reading/writing past its end by selecting
2684 a copy mode suited to BITSIZE. This should always be possible given
2685 how it is computed.
2686
2687 If the target lives in register, make sure not to select a copy mode
2688 larger than the mode of the register.
2689
2690 We could probably emit more efficient code for machines which do not use
2691 strict alignment, but it doesn't seem worth the effort at the current
2692 time. */
2693
2694 copy_mode = word_mode;
2695 if (MEM_P (target))
2696 {
2697 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2698 if (mem_mode.exists ())
2699 copy_mode = mem_mode.require ();
2700 }
2701 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2702 copy_mode = tmode;
2703
2704 for (bitpos = 0, xbitpos = padding_correction;
2705 bitpos < bytes * BITS_PER_UNIT;
2706 bitpos += bitsize, xbitpos += bitsize)
2707 {
2708 /* We need a new source operand each time xbitpos is on a
2709 word boundary and when xbitpos == padding_correction
2710 (the first time through). */
2711 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2712 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2713
2714 /* We need a new destination operand each time bitpos is on
2715 a word boundary. */
2716 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2717 dst = target;
2718 else if (bitpos % BITS_PER_WORD == 0)
2719 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2720
2721 /* Use xbitpos for the source extraction (right justified) and
2722 bitpos for the destination store (left justified). */
2723 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2724 extract_bit_field (src, bitsize,
2725 xbitpos % BITS_PER_WORD, 1,
2726 NULL_RTX, copy_mode, copy_mode,
2727 false, NULL),
2728 false);
2729 }
2730 }
2731
2732 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2733 register if it contains any data, otherwise return null.
2734
2735 This is used on targets that return BLKmode values in registers. */
2736
2737 rtx
2738 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2739 {
2740 int i, n_regs;
2741 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2742 unsigned int bitsize;
2743 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2744 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2745 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2746 fixed_size_mode dst_mode;
2747
2748 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2749
2750 x = expand_normal (src);
2751
2752 bytes = int_size_in_bytes (TREE_TYPE (src));
2753 if (bytes == 0)
2754 return NULL_RTX;
2755
2756 /* If the structure doesn't take up a whole number of words, see
2757 whether the register value should be padded on the left or on
2758 the right. Set PADDING_CORRECTION to the number of padding
2759 bits needed on the left side.
2760
2761 In most ABIs, the structure will be returned at the least end of
2762 the register, which translates to right padding on little-endian
2763 targets and left padding on big-endian targets. The opposite
2764 holds if the structure is returned at the most significant
2765 end of the register. */
2766 if (bytes % UNITS_PER_WORD != 0
2767 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2768 ? !BYTES_BIG_ENDIAN
2769 : BYTES_BIG_ENDIAN))
2770 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2771 * BITS_PER_UNIT));
2772
2773 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2774 dst_words = XALLOCAVEC (rtx, n_regs);
2775 bitsize = BITS_PER_WORD;
2776 if (targetm.slow_unaligned_access (word_mode, TYPE_ALIGN (TREE_TYPE (src))))
2777 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2778
2779 /* Copy the structure BITSIZE bits at a time. */
2780 for (bitpos = 0, xbitpos = padding_correction;
2781 bitpos < bytes * BITS_PER_UNIT;
2782 bitpos += bitsize, xbitpos += bitsize)
2783 {
2784 /* We need a new destination pseudo each time xbitpos is
2785 on a word boundary and when xbitpos == padding_correction
2786 (the first time through). */
2787 if (xbitpos % BITS_PER_WORD == 0
2788 || xbitpos == padding_correction)
2789 {
2790 /* Generate an appropriate register. */
2791 dst_word = gen_reg_rtx (word_mode);
2792 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2793
2794 /* Clear the destination before we move anything into it. */
2795 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2796 }
2797
2798 /* We need a new source operand each time bitpos is on a word
2799 boundary. */
2800 if (bitpos % BITS_PER_WORD == 0)
2801 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2802
2803 /* Use bitpos for the source extraction (left justified) and
2804 xbitpos for the destination store (right justified). */
2805 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2806 0, 0, word_mode,
2807 extract_bit_field (src_word, bitsize,
2808 bitpos % BITS_PER_WORD, 1,
2809 NULL_RTX, word_mode, word_mode,
2810 false, NULL),
2811 false);
2812 }
2813
2814 if (mode == BLKmode)
2815 {
2816 /* Find the smallest integer mode large enough to hold the
2817 entire structure. */
2818 opt_scalar_int_mode mode_iter;
2819 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2820 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2821 break;
2822
2823 /* A suitable mode should have been found. */
2824 mode = mode_iter.require ();
2825 }
2826
2827 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2828 dst_mode = word_mode;
2829 else
2830 dst_mode = mode;
2831 dst = gen_reg_rtx (dst_mode);
2832
2833 for (i = 0; i < n_regs; i++)
2834 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2835
2836 if (mode != dst_mode)
2837 dst = gen_lowpart (mode, dst);
2838
2839 return dst;
2840 }
2841
2842 /* Add a USE expression for REG to the (possibly empty) list pointed
2843 to by CALL_FUSAGE. REG must denote a hard register. */
2844
2845 void
2846 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2847 {
2848 gcc_assert (REG_P (reg));
2849
2850 if (!HARD_REGISTER_P (reg))
2851 return;
2852
2853 *call_fusage
2854 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2855 }
2856
2857 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2858 to by CALL_FUSAGE. REG must denote a hard register. */
2859
2860 void
2861 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2862 {
2863 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2864
2865 *call_fusage
2866 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2867 }
2868
2869 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2870 starting at REGNO. All of these registers must be hard registers. */
2871
2872 void
2873 use_regs (rtx *call_fusage, int regno, int nregs)
2874 {
2875 int i;
2876
2877 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2878
2879 for (i = 0; i < nregs; i++)
2880 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2881 }
2882
2883 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2884 PARALLEL REGS. This is for calls that pass values in multiple
2885 non-contiguous locations. The Irix 6 ABI has examples of this. */
2886
2887 void
2888 use_group_regs (rtx *call_fusage, rtx regs)
2889 {
2890 int i;
2891
2892 for (i = 0; i < XVECLEN (regs, 0); i++)
2893 {
2894 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2895
2896 /* A NULL entry means the parameter goes both on the stack and in
2897 registers. This can also be a MEM for targets that pass values
2898 partially on the stack and partially in registers. */
2899 if (reg != 0 && REG_P (reg))
2900 use_reg (call_fusage, reg);
2901 }
2902 }
2903
2904 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2905 assigment and the code of the expresion on the RHS is CODE. Return
2906 NULL otherwise. */
2907
2908 static gimple *
2909 get_def_for_expr (tree name, enum tree_code code)
2910 {
2911 gimple *def_stmt;
2912
2913 if (TREE_CODE (name) != SSA_NAME)
2914 return NULL;
2915
2916 def_stmt = get_gimple_for_ssa_name (name);
2917 if (!def_stmt
2918 || gimple_assign_rhs_code (def_stmt) != code)
2919 return NULL;
2920
2921 return def_stmt;
2922 }
2923
2924 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2925 assigment and the class of the expresion on the RHS is CLASS. Return
2926 NULL otherwise. */
2927
2928 static gimple *
2929 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2930 {
2931 gimple *def_stmt;
2932
2933 if (TREE_CODE (name) != SSA_NAME)
2934 return NULL;
2935
2936 def_stmt = get_gimple_for_ssa_name (name);
2937 if (!def_stmt
2938 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2939 return NULL;
2940
2941 return def_stmt;
2942 }
2943 \f
2944 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2945 its length in bytes. */
2946
2947 rtx
2948 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2949 unsigned int expected_align, HOST_WIDE_INT expected_size,
2950 unsigned HOST_WIDE_INT min_size,
2951 unsigned HOST_WIDE_INT max_size,
2952 unsigned HOST_WIDE_INT probable_max_size)
2953 {
2954 machine_mode mode = GET_MODE (object);
2955 unsigned int align;
2956
2957 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2958
2959 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2960 just move a zero. Otherwise, do this a piece at a time. */
2961 if (mode != BLKmode
2962 && CONST_INT_P (size)
2963 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2964 {
2965 rtx zero = CONST0_RTX (mode);
2966 if (zero != NULL)
2967 {
2968 emit_move_insn (object, zero);
2969 return NULL;
2970 }
2971
2972 if (COMPLEX_MODE_P (mode))
2973 {
2974 zero = CONST0_RTX (GET_MODE_INNER (mode));
2975 if (zero != NULL)
2976 {
2977 write_complex_part (object, zero, 0);
2978 write_complex_part (object, zero, 1);
2979 return NULL;
2980 }
2981 }
2982 }
2983
2984 if (size == const0_rtx)
2985 return NULL;
2986
2987 align = MEM_ALIGN (object);
2988
2989 if (CONST_INT_P (size)
2990 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2991 CLEAR_BY_PIECES,
2992 optimize_insn_for_speed_p ()))
2993 clear_by_pieces (object, INTVAL (size), align);
2994 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2995 expected_align, expected_size,
2996 min_size, max_size, probable_max_size))
2997 ;
2998 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2999 return set_storage_via_libcall (object, size, const0_rtx,
3000 method == BLOCK_OP_TAILCALL);
3001 else
3002 gcc_unreachable ();
3003
3004 return NULL;
3005 }
3006
3007 rtx
3008 clear_storage (rtx object, rtx size, enum block_op_methods method)
3009 {
3010 unsigned HOST_WIDE_INT max, min = 0;
3011 if (GET_CODE (size) == CONST_INT)
3012 min = max = UINTVAL (size);
3013 else
3014 max = GET_MODE_MASK (GET_MODE (size));
3015 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3016 }
3017
3018
3019 /* A subroutine of clear_storage. Expand a call to memset.
3020 Return the return value of memset, 0 otherwise. */
3021
3022 rtx
3023 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3024 {
3025 tree call_expr, fn, object_tree, size_tree, val_tree;
3026 machine_mode size_mode;
3027
3028 object = copy_addr_to_reg (XEXP (object, 0));
3029 object_tree = make_tree (ptr_type_node, object);
3030
3031 if (!CONST_INT_P (val))
3032 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3033 val_tree = make_tree (integer_type_node, val);
3034
3035 size_mode = TYPE_MODE (sizetype);
3036 size = convert_to_mode (size_mode, size, 1);
3037 size = copy_to_mode_reg (size_mode, size);
3038 size_tree = make_tree (sizetype, size);
3039
3040 /* It is incorrect to use the libcall calling conventions for calls to
3041 memset because it can be provided by the user. */
3042 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3043 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3044 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3045
3046 return expand_call (call_expr, NULL_RTX, false);
3047 }
3048 \f
3049 /* Expand a setmem pattern; return true if successful. */
3050
3051 bool
3052 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3053 unsigned int expected_align, HOST_WIDE_INT expected_size,
3054 unsigned HOST_WIDE_INT min_size,
3055 unsigned HOST_WIDE_INT max_size,
3056 unsigned HOST_WIDE_INT probable_max_size)
3057 {
3058 /* Try the most limited insn first, because there's no point
3059 including more than one in the machine description unless
3060 the more limited one has some advantage. */
3061
3062 if (expected_align < align)
3063 expected_align = align;
3064 if (expected_size != -1)
3065 {
3066 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3067 expected_size = max_size;
3068 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3069 expected_size = min_size;
3070 }
3071
3072 opt_scalar_int_mode mode_iter;
3073 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3074 {
3075 scalar_int_mode mode = mode_iter.require ();
3076 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3077
3078 if (code != CODE_FOR_nothing
3079 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3080 here because if SIZE is less than the mode mask, as it is
3081 returned by the macro, it will definitely be less than the
3082 actual mode mask. Since SIZE is within the Pmode address
3083 space, we limit MODE to Pmode. */
3084 && ((CONST_INT_P (size)
3085 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3086 <= (GET_MODE_MASK (mode) >> 1)))
3087 || max_size <= (GET_MODE_MASK (mode) >> 1)
3088 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3089 {
3090 struct expand_operand ops[9];
3091 unsigned int nops;
3092
3093 nops = insn_data[(int) code].n_generator_args;
3094 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3095
3096 create_fixed_operand (&ops[0], object);
3097 /* The check above guarantees that this size conversion is valid. */
3098 create_convert_operand_to (&ops[1], size, mode, true);
3099 create_convert_operand_from (&ops[2], val, byte_mode, true);
3100 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3101 if (nops >= 6)
3102 {
3103 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3104 create_integer_operand (&ops[5], expected_size);
3105 }
3106 if (nops >= 8)
3107 {
3108 create_integer_operand (&ops[6], min_size);
3109 /* If we can not represent the maximal size,
3110 make parameter NULL. */
3111 if ((HOST_WIDE_INT) max_size != -1)
3112 create_integer_operand (&ops[7], max_size);
3113 else
3114 create_fixed_operand (&ops[7], NULL);
3115 }
3116 if (nops == 9)
3117 {
3118 /* If we can not represent the maximal size,
3119 make parameter NULL. */
3120 if ((HOST_WIDE_INT) probable_max_size != -1)
3121 create_integer_operand (&ops[8], probable_max_size);
3122 else
3123 create_fixed_operand (&ops[8], NULL);
3124 }
3125 if (maybe_expand_insn (code, nops, ops))
3126 return true;
3127 }
3128 }
3129
3130 return false;
3131 }
3132
3133 \f
3134 /* Write to one of the components of the complex value CPLX. Write VAL to
3135 the real part if IMAG_P is false, and the imaginary part if its true. */
3136
3137 void
3138 write_complex_part (rtx cplx, rtx val, bool imag_p)
3139 {
3140 machine_mode cmode;
3141 scalar_mode imode;
3142 unsigned ibitsize;
3143
3144 if (GET_CODE (cplx) == CONCAT)
3145 {
3146 emit_move_insn (XEXP (cplx, imag_p), val);
3147 return;
3148 }
3149
3150 cmode = GET_MODE (cplx);
3151 imode = GET_MODE_INNER (cmode);
3152 ibitsize = GET_MODE_BITSIZE (imode);
3153
3154 /* For MEMs simplify_gen_subreg may generate an invalid new address
3155 because, e.g., the original address is considered mode-dependent
3156 by the target, which restricts simplify_subreg from invoking
3157 adjust_address_nv. Instead of preparing fallback support for an
3158 invalid address, we call adjust_address_nv directly. */
3159 if (MEM_P (cplx))
3160 {
3161 emit_move_insn (adjust_address_nv (cplx, imode,
3162 imag_p ? GET_MODE_SIZE (imode) : 0),
3163 val);
3164 return;
3165 }
3166
3167 /* If the sub-object is at least word sized, then we know that subregging
3168 will work. This special case is important, since store_bit_field
3169 wants to operate on integer modes, and there's rarely an OImode to
3170 correspond to TCmode. */
3171 if (ibitsize >= BITS_PER_WORD
3172 /* For hard regs we have exact predicates. Assume we can split
3173 the original object if it spans an even number of hard regs.
3174 This special case is important for SCmode on 64-bit platforms
3175 where the natural size of floating-point regs is 32-bit. */
3176 || (REG_P (cplx)
3177 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3178 && REG_NREGS (cplx) % 2 == 0))
3179 {
3180 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3181 imag_p ? GET_MODE_SIZE (imode) : 0);
3182 if (part)
3183 {
3184 emit_move_insn (part, val);
3185 return;
3186 }
3187 else
3188 /* simplify_gen_subreg may fail for sub-word MEMs. */
3189 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3190 }
3191
3192 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3193 false);
3194 }
3195
3196 /* Extract one of the components of the complex value CPLX. Extract the
3197 real part if IMAG_P is false, and the imaginary part if it's true. */
3198
3199 rtx
3200 read_complex_part (rtx cplx, bool imag_p)
3201 {
3202 machine_mode cmode;
3203 scalar_mode imode;
3204 unsigned ibitsize;
3205
3206 if (GET_CODE (cplx) == CONCAT)
3207 return XEXP (cplx, imag_p);
3208
3209 cmode = GET_MODE (cplx);
3210 imode = GET_MODE_INNER (cmode);
3211 ibitsize = GET_MODE_BITSIZE (imode);
3212
3213 /* Special case reads from complex constants that got spilled to memory. */
3214 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3215 {
3216 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3217 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3218 {
3219 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3220 if (CONSTANT_CLASS_P (part))
3221 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3222 }
3223 }
3224
3225 /* For MEMs simplify_gen_subreg may generate an invalid new address
3226 because, e.g., the original address is considered mode-dependent
3227 by the target, which restricts simplify_subreg from invoking
3228 adjust_address_nv. Instead of preparing fallback support for an
3229 invalid address, we call adjust_address_nv directly. */
3230 if (MEM_P (cplx))
3231 return adjust_address_nv (cplx, imode,
3232 imag_p ? GET_MODE_SIZE (imode) : 0);
3233
3234 /* If the sub-object is at least word sized, then we know that subregging
3235 will work. This special case is important, since extract_bit_field
3236 wants to operate on integer modes, and there's rarely an OImode to
3237 correspond to TCmode. */
3238 if (ibitsize >= BITS_PER_WORD
3239 /* For hard regs we have exact predicates. Assume we can split
3240 the original object if it spans an even number of hard regs.
3241 This special case is important for SCmode on 64-bit platforms
3242 where the natural size of floating-point regs is 32-bit. */
3243 || (REG_P (cplx)
3244 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3245 && REG_NREGS (cplx) % 2 == 0))
3246 {
3247 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3248 imag_p ? GET_MODE_SIZE (imode) : 0);
3249 if (ret)
3250 return ret;
3251 else
3252 /* simplify_gen_subreg may fail for sub-word MEMs. */
3253 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3254 }
3255
3256 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3257 true, NULL_RTX, imode, imode, false, NULL);
3258 }
3259 \f
3260 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3261 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3262 represented in NEW_MODE. If FORCE is true, this will never happen, as
3263 we'll force-create a SUBREG if needed. */
3264
3265 static rtx
3266 emit_move_change_mode (machine_mode new_mode,
3267 machine_mode old_mode, rtx x, bool force)
3268 {
3269 rtx ret;
3270
3271 if (push_operand (x, GET_MODE (x)))
3272 {
3273 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3274 MEM_COPY_ATTRIBUTES (ret, x);
3275 }
3276 else if (MEM_P (x))
3277 {
3278 /* We don't have to worry about changing the address since the
3279 size in bytes is supposed to be the same. */
3280 if (reload_in_progress)
3281 {
3282 /* Copy the MEM to change the mode and move any
3283 substitutions from the old MEM to the new one. */
3284 ret = adjust_address_nv (x, new_mode, 0);
3285 copy_replacements (x, ret);
3286 }
3287 else
3288 ret = adjust_address (x, new_mode, 0);
3289 }
3290 else
3291 {
3292 /* Note that we do want simplify_subreg's behavior of validating
3293 that the new mode is ok for a hard register. If we were to use
3294 simplify_gen_subreg, we would create the subreg, but would
3295 probably run into the target not being able to implement it. */
3296 /* Except, of course, when FORCE is true, when this is exactly what
3297 we want. Which is needed for CCmodes on some targets. */
3298 if (force)
3299 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3300 else
3301 ret = simplify_subreg (new_mode, x, old_mode, 0);
3302 }
3303
3304 return ret;
3305 }
3306
3307 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3308 an integer mode of the same size as MODE. Returns the instruction
3309 emitted, or NULL if such a move could not be generated. */
3310
3311 static rtx_insn *
3312 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3313 {
3314 scalar_int_mode imode;
3315 enum insn_code code;
3316
3317 /* There must exist a mode of the exact size we require. */
3318 if (!int_mode_for_mode (mode).exists (&imode))
3319 return NULL;
3320
3321 /* The target must support moves in this mode. */
3322 code = optab_handler (mov_optab, imode);
3323 if (code == CODE_FOR_nothing)
3324 return NULL;
3325
3326 x = emit_move_change_mode (imode, mode, x, force);
3327 if (x == NULL_RTX)
3328 return NULL;
3329 y = emit_move_change_mode (imode, mode, y, force);
3330 if (y == NULL_RTX)
3331 return NULL;
3332 return emit_insn (GEN_FCN (code) (x, y));
3333 }
3334
3335 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3336 Return an equivalent MEM that does not use an auto-increment. */
3337
3338 rtx
3339 emit_move_resolve_push (machine_mode mode, rtx x)
3340 {
3341 enum rtx_code code = GET_CODE (XEXP (x, 0));
3342 HOST_WIDE_INT adjust;
3343 rtx temp;
3344
3345 adjust = GET_MODE_SIZE (mode);
3346 #ifdef PUSH_ROUNDING
3347 adjust = PUSH_ROUNDING (adjust);
3348 #endif
3349 if (code == PRE_DEC || code == POST_DEC)
3350 adjust = -adjust;
3351 else if (code == PRE_MODIFY || code == POST_MODIFY)
3352 {
3353 rtx expr = XEXP (XEXP (x, 0), 1);
3354 HOST_WIDE_INT val;
3355
3356 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3357 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3358 val = INTVAL (XEXP (expr, 1));
3359 if (GET_CODE (expr) == MINUS)
3360 val = -val;
3361 gcc_assert (adjust == val || adjust == -val);
3362 adjust = val;
3363 }
3364
3365 /* Do not use anti_adjust_stack, since we don't want to update
3366 stack_pointer_delta. */
3367 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3368 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3369 0, OPTAB_LIB_WIDEN);
3370 if (temp != stack_pointer_rtx)
3371 emit_move_insn (stack_pointer_rtx, temp);
3372
3373 switch (code)
3374 {
3375 case PRE_INC:
3376 case PRE_DEC:
3377 case PRE_MODIFY:
3378 temp = stack_pointer_rtx;
3379 break;
3380 case POST_INC:
3381 case POST_DEC:
3382 case POST_MODIFY:
3383 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3384 break;
3385 default:
3386 gcc_unreachable ();
3387 }
3388
3389 return replace_equiv_address (x, temp);
3390 }
3391
3392 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3393 X is known to satisfy push_operand, and MODE is known to be complex.
3394 Returns the last instruction emitted. */
3395
3396 rtx_insn *
3397 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3398 {
3399 scalar_mode submode = GET_MODE_INNER (mode);
3400 bool imag_first;
3401
3402 #ifdef PUSH_ROUNDING
3403 unsigned int submodesize = GET_MODE_SIZE (submode);
3404
3405 /* In case we output to the stack, but the size is smaller than the
3406 machine can push exactly, we need to use move instructions. */
3407 if (PUSH_ROUNDING (submodesize) != submodesize)
3408 {
3409 x = emit_move_resolve_push (mode, x);
3410 return emit_move_insn (x, y);
3411 }
3412 #endif
3413
3414 /* Note that the real part always precedes the imag part in memory
3415 regardless of machine's endianness. */
3416 switch (GET_CODE (XEXP (x, 0)))
3417 {
3418 case PRE_DEC:
3419 case POST_DEC:
3420 imag_first = true;
3421 break;
3422 case PRE_INC:
3423 case POST_INC:
3424 imag_first = false;
3425 break;
3426 default:
3427 gcc_unreachable ();
3428 }
3429
3430 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3431 read_complex_part (y, imag_first));
3432 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3433 read_complex_part (y, !imag_first));
3434 }
3435
3436 /* A subroutine of emit_move_complex. Perform the move from Y to X
3437 via two moves of the parts. Returns the last instruction emitted. */
3438
3439 rtx_insn *
3440 emit_move_complex_parts (rtx x, rtx y)
3441 {
3442 /* Show the output dies here. This is necessary for SUBREGs
3443 of pseudos since we cannot track their lifetimes correctly;
3444 hard regs shouldn't appear here except as return values. */
3445 if (!reload_completed && !reload_in_progress
3446 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3447 emit_clobber (x);
3448
3449 write_complex_part (x, read_complex_part (y, false), false);
3450 write_complex_part (x, read_complex_part (y, true), true);
3451
3452 return get_last_insn ();
3453 }
3454
3455 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3456 MODE is known to be complex. Returns the last instruction emitted. */
3457
3458 static rtx_insn *
3459 emit_move_complex (machine_mode mode, rtx x, rtx y)
3460 {
3461 bool try_int;
3462
3463 /* Need to take special care for pushes, to maintain proper ordering
3464 of the data, and possibly extra padding. */
3465 if (push_operand (x, mode))
3466 return emit_move_complex_push (mode, x, y);
3467
3468 /* See if we can coerce the target into moving both values at once, except
3469 for floating point where we favor moving as parts if this is easy. */
3470 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3471 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3472 && !(REG_P (x)
3473 && HARD_REGISTER_P (x)
3474 && REG_NREGS (x) == 1)
3475 && !(REG_P (y)
3476 && HARD_REGISTER_P (y)
3477 && REG_NREGS (y) == 1))
3478 try_int = false;
3479 /* Not possible if the values are inherently not adjacent. */
3480 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3481 try_int = false;
3482 /* Is possible if both are registers (or subregs of registers). */
3483 else if (register_operand (x, mode) && register_operand (y, mode))
3484 try_int = true;
3485 /* If one of the operands is a memory, and alignment constraints
3486 are friendly enough, we may be able to do combined memory operations.
3487 We do not attempt this if Y is a constant because that combination is
3488 usually better with the by-parts thing below. */
3489 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3490 && (!STRICT_ALIGNMENT
3491 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3492 try_int = true;
3493 else
3494 try_int = false;
3495
3496 if (try_int)
3497 {
3498 rtx_insn *ret;
3499
3500 /* For memory to memory moves, optimal behavior can be had with the
3501 existing block move logic. */
3502 if (MEM_P (x) && MEM_P (y))
3503 {
3504 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3505 BLOCK_OP_NO_LIBCALL);
3506 return get_last_insn ();
3507 }
3508
3509 ret = emit_move_via_integer (mode, x, y, true);
3510 if (ret)
3511 return ret;
3512 }
3513
3514 return emit_move_complex_parts (x, y);
3515 }
3516
3517 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3518 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3519
3520 static rtx_insn *
3521 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3522 {
3523 rtx_insn *ret;
3524
3525 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3526 if (mode != CCmode)
3527 {
3528 enum insn_code code = optab_handler (mov_optab, CCmode);
3529 if (code != CODE_FOR_nothing)
3530 {
3531 x = emit_move_change_mode (CCmode, mode, x, true);
3532 y = emit_move_change_mode (CCmode, mode, y, true);
3533 return emit_insn (GEN_FCN (code) (x, y));
3534 }
3535 }
3536
3537 /* Otherwise, find the MODE_INT mode of the same width. */
3538 ret = emit_move_via_integer (mode, x, y, false);
3539 gcc_assert (ret != NULL);
3540 return ret;
3541 }
3542
3543 /* Return true if word I of OP lies entirely in the
3544 undefined bits of a paradoxical subreg. */
3545
3546 static bool
3547 undefined_operand_subword_p (const_rtx op, int i)
3548 {
3549 if (GET_CODE (op) != SUBREG)
3550 return false;
3551 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3552 HOST_WIDE_INT offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3553 return (offset >= GET_MODE_SIZE (innermostmode)
3554 || offset <= -UNITS_PER_WORD);
3555 }
3556
3557 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3558 MODE is any multi-word or full-word mode that lacks a move_insn
3559 pattern. Note that you will get better code if you define such
3560 patterns, even if they must turn into multiple assembler instructions. */
3561
3562 static rtx_insn *
3563 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3564 {
3565 rtx_insn *last_insn = 0;
3566 rtx_insn *seq;
3567 rtx inner;
3568 bool need_clobber;
3569 int i;
3570
3571 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3572
3573 /* If X is a push on the stack, do the push now and replace
3574 X with a reference to the stack pointer. */
3575 if (push_operand (x, mode))
3576 x = emit_move_resolve_push (mode, x);
3577
3578 /* If we are in reload, see if either operand is a MEM whose address
3579 is scheduled for replacement. */
3580 if (reload_in_progress && MEM_P (x)
3581 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3582 x = replace_equiv_address_nv (x, inner);
3583 if (reload_in_progress && MEM_P (y)
3584 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3585 y = replace_equiv_address_nv (y, inner);
3586
3587 start_sequence ();
3588
3589 need_clobber = false;
3590 for (i = 0;
3591 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3592 i++)
3593 {
3594 rtx xpart = operand_subword (x, i, 1, mode);
3595 rtx ypart;
3596
3597 /* Do not generate code for a move if it would come entirely
3598 from the undefined bits of a paradoxical subreg. */
3599 if (undefined_operand_subword_p (y, i))
3600 continue;
3601
3602 ypart = operand_subword (y, i, 1, mode);
3603
3604 /* If we can't get a part of Y, put Y into memory if it is a
3605 constant. Otherwise, force it into a register. Then we must
3606 be able to get a part of Y. */
3607 if (ypart == 0 && CONSTANT_P (y))
3608 {
3609 y = use_anchored_address (force_const_mem (mode, y));
3610 ypart = operand_subword (y, i, 1, mode);
3611 }
3612 else if (ypart == 0)
3613 ypart = operand_subword_force (y, i, mode);
3614
3615 gcc_assert (xpart && ypart);
3616
3617 need_clobber |= (GET_CODE (xpart) == SUBREG);
3618
3619 last_insn = emit_move_insn (xpart, ypart);
3620 }
3621
3622 seq = get_insns ();
3623 end_sequence ();
3624
3625 /* Show the output dies here. This is necessary for SUBREGs
3626 of pseudos since we cannot track their lifetimes correctly;
3627 hard regs shouldn't appear here except as return values.
3628 We never want to emit such a clobber after reload. */
3629 if (x != y
3630 && ! (reload_in_progress || reload_completed)
3631 && need_clobber != 0)
3632 emit_clobber (x);
3633
3634 emit_insn (seq);
3635
3636 return last_insn;
3637 }
3638
3639 /* Low level part of emit_move_insn.
3640 Called just like emit_move_insn, but assumes X and Y
3641 are basically valid. */
3642
3643 rtx_insn *
3644 emit_move_insn_1 (rtx x, rtx y)
3645 {
3646 machine_mode mode = GET_MODE (x);
3647 enum insn_code code;
3648
3649 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3650
3651 code = optab_handler (mov_optab, mode);
3652 if (code != CODE_FOR_nothing)
3653 return emit_insn (GEN_FCN (code) (x, y));
3654
3655 /* Expand complex moves by moving real part and imag part. */
3656 if (COMPLEX_MODE_P (mode))
3657 return emit_move_complex (mode, x, y);
3658
3659 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3660 || ALL_FIXED_POINT_MODE_P (mode))
3661 {
3662 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3663
3664 /* If we can't find an integer mode, use multi words. */
3665 if (result)
3666 return result;
3667 else
3668 return emit_move_multi_word (mode, x, y);
3669 }
3670
3671 if (GET_MODE_CLASS (mode) == MODE_CC)
3672 return emit_move_ccmode (mode, x, y);
3673
3674 /* Try using a move pattern for the corresponding integer mode. This is
3675 only safe when simplify_subreg can convert MODE constants into integer
3676 constants. At present, it can only do this reliably if the value
3677 fits within a HOST_WIDE_INT. */
3678 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3679 {
3680 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3681
3682 if (ret)
3683 {
3684 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3685 return ret;
3686 }
3687 }
3688
3689 return emit_move_multi_word (mode, x, y);
3690 }
3691
3692 /* Generate code to copy Y into X.
3693 Both Y and X must have the same mode, except that
3694 Y can be a constant with VOIDmode.
3695 This mode cannot be BLKmode; use emit_block_move for that.
3696
3697 Return the last instruction emitted. */
3698
3699 rtx_insn *
3700 emit_move_insn (rtx x, rtx y)
3701 {
3702 machine_mode mode = GET_MODE (x);
3703 rtx y_cst = NULL_RTX;
3704 rtx_insn *last_insn;
3705 rtx set;
3706
3707 gcc_assert (mode != BLKmode
3708 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3709
3710 if (CONSTANT_P (y))
3711 {
3712 if (optimize
3713 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3714 && (last_insn = compress_float_constant (x, y)))
3715 return last_insn;
3716
3717 y_cst = y;
3718
3719 if (!targetm.legitimate_constant_p (mode, y))
3720 {
3721 y = force_const_mem (mode, y);
3722
3723 /* If the target's cannot_force_const_mem prevented the spill,
3724 assume that the target's move expanders will also take care
3725 of the non-legitimate constant. */
3726 if (!y)
3727 y = y_cst;
3728 else
3729 y = use_anchored_address (y);
3730 }
3731 }
3732
3733 /* If X or Y are memory references, verify that their addresses are valid
3734 for the machine. */
3735 if (MEM_P (x)
3736 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3737 MEM_ADDR_SPACE (x))
3738 && ! push_operand (x, GET_MODE (x))))
3739 x = validize_mem (x);
3740
3741 if (MEM_P (y)
3742 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3743 MEM_ADDR_SPACE (y)))
3744 y = validize_mem (y);
3745
3746 gcc_assert (mode != BLKmode);
3747
3748 last_insn = emit_move_insn_1 (x, y);
3749
3750 if (y_cst && REG_P (x)
3751 && (set = single_set (last_insn)) != NULL_RTX
3752 && SET_DEST (set) == x
3753 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3754 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3755
3756 return last_insn;
3757 }
3758
3759 /* Generate the body of an instruction to copy Y into X.
3760 It may be a list of insns, if one insn isn't enough. */
3761
3762 rtx_insn *
3763 gen_move_insn (rtx x, rtx y)
3764 {
3765 rtx_insn *seq;
3766
3767 start_sequence ();
3768 emit_move_insn_1 (x, y);
3769 seq = get_insns ();
3770 end_sequence ();
3771 return seq;
3772 }
3773
3774 /* If Y is representable exactly in a narrower mode, and the target can
3775 perform the extension directly from constant or memory, then emit the
3776 move as an extension. */
3777
3778 static rtx_insn *
3779 compress_float_constant (rtx x, rtx y)
3780 {
3781 machine_mode dstmode = GET_MODE (x);
3782 machine_mode orig_srcmode = GET_MODE (y);
3783 machine_mode srcmode;
3784 const REAL_VALUE_TYPE *r;
3785 int oldcost, newcost;
3786 bool speed = optimize_insn_for_speed_p ();
3787
3788 r = CONST_DOUBLE_REAL_VALUE (y);
3789
3790 if (targetm.legitimate_constant_p (dstmode, y))
3791 oldcost = set_src_cost (y, orig_srcmode, speed);
3792 else
3793 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3794
3795 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3796 {
3797 enum insn_code ic;
3798 rtx trunc_y;
3799 rtx_insn *last_insn;
3800
3801 /* Skip if the target can't extend this way. */
3802 ic = can_extend_p (dstmode, srcmode, 0);
3803 if (ic == CODE_FOR_nothing)
3804 continue;
3805
3806 /* Skip if the narrowed value isn't exact. */
3807 if (! exact_real_truncate (srcmode, r))
3808 continue;
3809
3810 trunc_y = const_double_from_real_value (*r, srcmode);
3811
3812 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3813 {
3814 /* Skip if the target needs extra instructions to perform
3815 the extension. */
3816 if (!insn_operand_matches (ic, 1, trunc_y))
3817 continue;
3818 /* This is valid, but may not be cheaper than the original. */
3819 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3820 dstmode, speed);
3821 if (oldcost < newcost)
3822 continue;
3823 }
3824 else if (float_extend_from_mem[dstmode][srcmode])
3825 {
3826 trunc_y = force_const_mem (srcmode, trunc_y);
3827 /* This is valid, but may not be cheaper than the original. */
3828 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3829 dstmode, speed);
3830 if (oldcost < newcost)
3831 continue;
3832 trunc_y = validize_mem (trunc_y);
3833 }
3834 else
3835 continue;
3836
3837 /* For CSE's benefit, force the compressed constant pool entry
3838 into a new pseudo. This constant may be used in different modes,
3839 and if not, combine will put things back together for us. */
3840 trunc_y = force_reg (srcmode, trunc_y);
3841
3842 /* If x is a hard register, perform the extension into a pseudo,
3843 so that e.g. stack realignment code is aware of it. */
3844 rtx target = x;
3845 if (REG_P (x) && HARD_REGISTER_P (x))
3846 target = gen_reg_rtx (dstmode);
3847
3848 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3849 last_insn = get_last_insn ();
3850
3851 if (REG_P (target))
3852 set_unique_reg_note (last_insn, REG_EQUAL, y);
3853
3854 if (target != x)
3855 return emit_move_insn (x, target);
3856 return last_insn;
3857 }
3858
3859 return NULL;
3860 }
3861 \f
3862 /* Pushing data onto the stack. */
3863
3864 /* Push a block of length SIZE (perhaps variable)
3865 and return an rtx to address the beginning of the block.
3866 The value may be virtual_outgoing_args_rtx.
3867
3868 EXTRA is the number of bytes of padding to push in addition to SIZE.
3869 BELOW nonzero means this padding comes at low addresses;
3870 otherwise, the padding comes at high addresses. */
3871
3872 rtx
3873 push_block (rtx size, int extra, int below)
3874 {
3875 rtx temp;
3876
3877 size = convert_modes (Pmode, ptr_mode, size, 1);
3878 if (CONSTANT_P (size))
3879 anti_adjust_stack (plus_constant (Pmode, size, extra));
3880 else if (REG_P (size) && extra == 0)
3881 anti_adjust_stack (size);
3882 else
3883 {
3884 temp = copy_to_mode_reg (Pmode, size);
3885 if (extra != 0)
3886 temp = expand_binop (Pmode, add_optab, temp,
3887 gen_int_mode (extra, Pmode),
3888 temp, 0, OPTAB_LIB_WIDEN);
3889 anti_adjust_stack (temp);
3890 }
3891
3892 if (STACK_GROWS_DOWNWARD)
3893 {
3894 temp = virtual_outgoing_args_rtx;
3895 if (extra != 0 && below)
3896 temp = plus_constant (Pmode, temp, extra);
3897 }
3898 else
3899 {
3900 if (CONST_INT_P (size))
3901 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3902 -INTVAL (size) - (below ? 0 : extra));
3903 else if (extra != 0 && !below)
3904 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3905 negate_rtx (Pmode, plus_constant (Pmode, size,
3906 extra)));
3907 else
3908 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3909 negate_rtx (Pmode, size));
3910 }
3911
3912 return memory_address (NARROWEST_INT_MODE, temp);
3913 }
3914
3915 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3916
3917 static rtx
3918 mem_autoinc_base (rtx mem)
3919 {
3920 if (MEM_P (mem))
3921 {
3922 rtx addr = XEXP (mem, 0);
3923 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3924 return XEXP (addr, 0);
3925 }
3926 return NULL;
3927 }
3928
3929 /* A utility routine used here, in reload, and in try_split. The insns
3930 after PREV up to and including LAST are known to adjust the stack,
3931 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3932 placing notes as appropriate. PREV may be NULL, indicating the
3933 entire insn sequence prior to LAST should be scanned.
3934
3935 The set of allowed stack pointer modifications is small:
3936 (1) One or more auto-inc style memory references (aka pushes),
3937 (2) One or more addition/subtraction with the SP as destination,
3938 (3) A single move insn with the SP as destination,
3939 (4) A call_pop insn,
3940 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3941
3942 Insns in the sequence that do not modify the SP are ignored,
3943 except for noreturn calls.
3944
3945 The return value is the amount of adjustment that can be trivially
3946 verified, via immediate operand or auto-inc. If the adjustment
3947 cannot be trivially extracted, the return value is INT_MIN. */
3948
3949 HOST_WIDE_INT
3950 find_args_size_adjust (rtx_insn *insn)
3951 {
3952 rtx dest, set, pat;
3953 int i;
3954
3955 pat = PATTERN (insn);
3956 set = NULL;
3957
3958 /* Look for a call_pop pattern. */
3959 if (CALL_P (insn))
3960 {
3961 /* We have to allow non-call_pop patterns for the case
3962 of emit_single_push_insn of a TLS address. */
3963 if (GET_CODE (pat) != PARALLEL)
3964 return 0;
3965
3966 /* All call_pop have a stack pointer adjust in the parallel.
3967 The call itself is always first, and the stack adjust is
3968 usually last, so search from the end. */
3969 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3970 {
3971 set = XVECEXP (pat, 0, i);
3972 if (GET_CODE (set) != SET)
3973 continue;
3974 dest = SET_DEST (set);
3975 if (dest == stack_pointer_rtx)
3976 break;
3977 }
3978 /* We'd better have found the stack pointer adjust. */
3979 if (i == 0)
3980 return 0;
3981 /* Fall through to process the extracted SET and DEST
3982 as if it was a standalone insn. */
3983 }
3984 else if (GET_CODE (pat) == SET)
3985 set = pat;
3986 else if ((set = single_set (insn)) != NULL)
3987 ;
3988 else if (GET_CODE (pat) == PARALLEL)
3989 {
3990 /* ??? Some older ports use a parallel with a stack adjust
3991 and a store for a PUSH_ROUNDING pattern, rather than a
3992 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3993 /* ??? See h8300 and m68k, pushqi1. */
3994 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3995 {
3996 set = XVECEXP (pat, 0, i);
3997 if (GET_CODE (set) != SET)
3998 continue;
3999 dest = SET_DEST (set);
4000 if (dest == stack_pointer_rtx)
4001 break;
4002
4003 /* We do not expect an auto-inc of the sp in the parallel. */
4004 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4005 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4006 != stack_pointer_rtx);
4007 }
4008 if (i < 0)
4009 return 0;
4010 }
4011 else
4012 return 0;
4013
4014 dest = SET_DEST (set);
4015
4016 /* Look for direct modifications of the stack pointer. */
4017 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4018 {
4019 /* Look for a trivial adjustment, otherwise assume nothing. */
4020 /* Note that the SPU restore_stack_block pattern refers to
4021 the stack pointer in V4SImode. Consider that non-trivial. */
4022 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4023 && GET_CODE (SET_SRC (set)) == PLUS
4024 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
4025 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
4026 return INTVAL (XEXP (SET_SRC (set), 1));
4027 /* ??? Reload can generate no-op moves, which will be cleaned
4028 up later. Recognize it and continue searching. */
4029 else if (rtx_equal_p (dest, SET_SRC (set)))
4030 return 0;
4031 else
4032 return HOST_WIDE_INT_MIN;
4033 }
4034 else
4035 {
4036 rtx mem, addr;
4037
4038 /* Otherwise only think about autoinc patterns. */
4039 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4040 {
4041 mem = dest;
4042 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4043 != stack_pointer_rtx);
4044 }
4045 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4046 mem = SET_SRC (set);
4047 else
4048 return 0;
4049
4050 addr = XEXP (mem, 0);
4051 switch (GET_CODE (addr))
4052 {
4053 case PRE_INC:
4054 case POST_INC:
4055 return GET_MODE_SIZE (GET_MODE (mem));
4056 case PRE_DEC:
4057 case POST_DEC:
4058 return -GET_MODE_SIZE (GET_MODE (mem));
4059 case PRE_MODIFY:
4060 case POST_MODIFY:
4061 addr = XEXP (addr, 1);
4062 gcc_assert (GET_CODE (addr) == PLUS);
4063 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4064 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
4065 return INTVAL (XEXP (addr, 1));
4066 default:
4067 gcc_unreachable ();
4068 }
4069 }
4070 }
4071
4072 int
4073 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
4074 {
4075 int args_size = end_args_size;
4076 bool saw_unknown = false;
4077 rtx_insn *insn;
4078
4079 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4080 {
4081 HOST_WIDE_INT this_delta;
4082
4083 if (!NONDEBUG_INSN_P (insn))
4084 continue;
4085
4086 this_delta = find_args_size_adjust (insn);
4087 if (this_delta == 0)
4088 {
4089 if (!CALL_P (insn)
4090 || ACCUMULATE_OUTGOING_ARGS
4091 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4092 continue;
4093 }
4094
4095 gcc_assert (!saw_unknown);
4096 if (this_delta == HOST_WIDE_INT_MIN)
4097 saw_unknown = true;
4098
4099 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
4100 if (STACK_GROWS_DOWNWARD)
4101 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4102
4103 args_size -= this_delta;
4104 }
4105
4106 return saw_unknown ? INT_MIN : args_size;
4107 }
4108
4109 #ifdef PUSH_ROUNDING
4110 /* Emit single push insn. */
4111
4112 static void
4113 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4114 {
4115 rtx dest_addr;
4116 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4117 rtx dest;
4118 enum insn_code icode;
4119
4120 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4121 /* If there is push pattern, use it. Otherwise try old way of throwing
4122 MEM representing push operation to move expander. */
4123 icode = optab_handler (push_optab, mode);
4124 if (icode != CODE_FOR_nothing)
4125 {
4126 struct expand_operand ops[1];
4127
4128 create_input_operand (&ops[0], x, mode);
4129 if (maybe_expand_insn (icode, 1, ops))
4130 return;
4131 }
4132 if (GET_MODE_SIZE (mode) == rounded_size)
4133 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4134 /* If we are to pad downward, adjust the stack pointer first and
4135 then store X into the stack location using an offset. This is
4136 because emit_move_insn does not know how to pad; it does not have
4137 access to type. */
4138 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4139 {
4140 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4141 HOST_WIDE_INT offset;
4142
4143 emit_move_insn (stack_pointer_rtx,
4144 expand_binop (Pmode,
4145 STACK_GROWS_DOWNWARD ? sub_optab
4146 : add_optab,
4147 stack_pointer_rtx,
4148 gen_int_mode (rounded_size, Pmode),
4149 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4150
4151 offset = (HOST_WIDE_INT) padding_size;
4152 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4153 /* We have already decremented the stack pointer, so get the
4154 previous value. */
4155 offset += (HOST_WIDE_INT) rounded_size;
4156
4157 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4158 /* We have already incremented the stack pointer, so get the
4159 previous value. */
4160 offset -= (HOST_WIDE_INT) rounded_size;
4161
4162 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4163 gen_int_mode (offset, Pmode));
4164 }
4165 else
4166 {
4167 if (STACK_GROWS_DOWNWARD)
4168 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4169 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4170 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4171 Pmode));
4172 else
4173 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4174 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4175 gen_int_mode (rounded_size, Pmode));
4176
4177 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4178 }
4179
4180 dest = gen_rtx_MEM (mode, dest_addr);
4181
4182 if (type != 0)
4183 {
4184 set_mem_attributes (dest, type, 1);
4185
4186 if (cfun->tail_call_marked)
4187 /* Function incoming arguments may overlap with sibling call
4188 outgoing arguments and we cannot allow reordering of reads
4189 from function arguments with stores to outgoing arguments
4190 of sibling calls. */
4191 set_mem_alias_set (dest, 0);
4192 }
4193 emit_move_insn (dest, x);
4194 }
4195
4196 /* Emit and annotate a single push insn. */
4197
4198 static void
4199 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4200 {
4201 int delta, old_delta = stack_pointer_delta;
4202 rtx_insn *prev = get_last_insn ();
4203 rtx_insn *last;
4204
4205 emit_single_push_insn_1 (mode, x, type);
4206
4207 last = get_last_insn ();
4208
4209 /* Notice the common case where we emitted exactly one insn. */
4210 if (PREV_INSN (last) == prev)
4211 {
4212 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4213 return;
4214 }
4215
4216 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4217 gcc_assert (delta == INT_MIN || delta == old_delta);
4218 }
4219 #endif
4220
4221 /* If reading SIZE bytes from X will end up reading from
4222 Y return the number of bytes that overlap. Return -1
4223 if there is no overlap or -2 if we can't determine
4224 (for example when X and Y have different base registers). */
4225
4226 static int
4227 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4228 {
4229 rtx tmp = plus_constant (Pmode, x, size);
4230 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4231
4232 if (!CONST_INT_P (sub))
4233 return -2;
4234
4235 HOST_WIDE_INT val = INTVAL (sub);
4236
4237 return IN_RANGE (val, 1, size) ? val : -1;
4238 }
4239
4240 /* Generate code to push X onto the stack, assuming it has mode MODE and
4241 type TYPE.
4242 MODE is redundant except when X is a CONST_INT (since they don't
4243 carry mode info).
4244 SIZE is an rtx for the size of data to be copied (in bytes),
4245 needed only if X is BLKmode.
4246 Return true if successful. May return false if asked to push a
4247 partial argument during a sibcall optimization (as specified by
4248 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4249 to not overlap.
4250
4251 ALIGN (in bits) is maximum alignment we can assume.
4252
4253 If PARTIAL and REG are both nonzero, then copy that many of the first
4254 bytes of X into registers starting with REG, and push the rest of X.
4255 The amount of space pushed is decreased by PARTIAL bytes.
4256 REG must be a hard register in this case.
4257 If REG is zero but PARTIAL is not, take any all others actions for an
4258 argument partially in registers, but do not actually load any
4259 registers.
4260
4261 EXTRA is the amount in bytes of extra space to leave next to this arg.
4262 This is ignored if an argument block has already been allocated.
4263
4264 On a machine that lacks real push insns, ARGS_ADDR is the address of
4265 the bottom of the argument block for this call. We use indexing off there
4266 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4267 argument block has not been preallocated.
4268
4269 ARGS_SO_FAR is the size of args previously pushed for this call.
4270
4271 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4272 for arguments passed in registers. If nonzero, it will be the number
4273 of bytes required. */
4274
4275 bool
4276 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4277 unsigned int align, int partial, rtx reg, int extra,
4278 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4279 rtx alignment_pad, bool sibcall_p)
4280 {
4281 rtx xinner;
4282 pad_direction stack_direction
4283 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4284
4285 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4286 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4287 Default is below for small data on big-endian machines; else above. */
4288 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4289
4290 /* Invert direction if stack is post-decrement.
4291 FIXME: why? */
4292 if (STACK_PUSH_CODE == POST_DEC)
4293 if (where_pad != PAD_NONE)
4294 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4295
4296 xinner = x;
4297
4298 int nregs = partial / UNITS_PER_WORD;
4299 rtx *tmp_regs = NULL;
4300 int overlapping = 0;
4301
4302 if (mode == BLKmode
4303 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4304 {
4305 /* Copy a block into the stack, entirely or partially. */
4306
4307 rtx temp;
4308 int used;
4309 int offset;
4310 int skip;
4311
4312 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4313 used = partial - offset;
4314
4315 if (mode != BLKmode)
4316 {
4317 /* A value is to be stored in an insufficiently aligned
4318 stack slot; copy via a suitably aligned slot if
4319 necessary. */
4320 size = GEN_INT (GET_MODE_SIZE (mode));
4321 if (!MEM_P (xinner))
4322 {
4323 temp = assign_temp (type, 1, 1);
4324 emit_move_insn (temp, xinner);
4325 xinner = temp;
4326 }
4327 }
4328
4329 gcc_assert (size);
4330
4331 /* USED is now the # of bytes we need not copy to the stack
4332 because registers will take care of them. */
4333
4334 if (partial != 0)
4335 xinner = adjust_address (xinner, BLKmode, used);
4336
4337 /* If the partial register-part of the arg counts in its stack size,
4338 skip the part of stack space corresponding to the registers.
4339 Otherwise, start copying to the beginning of the stack space,
4340 by setting SKIP to 0. */
4341 skip = (reg_parm_stack_space == 0) ? 0 : used;
4342
4343 #ifdef PUSH_ROUNDING
4344 /* Do it with several push insns if that doesn't take lots of insns
4345 and if there is no difficulty with push insns that skip bytes
4346 on the stack for alignment purposes. */
4347 if (args_addr == 0
4348 && PUSH_ARGS
4349 && CONST_INT_P (size)
4350 && skip == 0
4351 && MEM_ALIGN (xinner) >= align
4352 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4353 /* Here we avoid the case of a structure whose weak alignment
4354 forces many pushes of a small amount of data,
4355 and such small pushes do rounding that causes trouble. */
4356 && ((!targetm.slow_unaligned_access (word_mode, align))
4357 || align >= BIGGEST_ALIGNMENT
4358 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4359 == (align / BITS_PER_UNIT)))
4360 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4361 {
4362 /* Push padding now if padding above and stack grows down,
4363 or if padding below and stack grows up.
4364 But if space already allocated, this has already been done. */
4365 if (extra && args_addr == 0
4366 && where_pad != PAD_NONE && where_pad != stack_direction)
4367 anti_adjust_stack (GEN_INT (extra));
4368
4369 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4370 }
4371 else
4372 #endif /* PUSH_ROUNDING */
4373 {
4374 rtx target;
4375
4376 /* Otherwise make space on the stack and copy the data
4377 to the address of that space. */
4378
4379 /* Deduct words put into registers from the size we must copy. */
4380 if (partial != 0)
4381 {
4382 if (CONST_INT_P (size))
4383 size = GEN_INT (INTVAL (size) - used);
4384 else
4385 size = expand_binop (GET_MODE (size), sub_optab, size,
4386 gen_int_mode (used, GET_MODE (size)),
4387 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4388 }
4389
4390 /* Get the address of the stack space.
4391 In this case, we do not deal with EXTRA separately.
4392 A single stack adjust will do. */
4393 if (! args_addr)
4394 {
4395 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4396 extra = 0;
4397 }
4398 else if (CONST_INT_P (args_so_far))
4399 temp = memory_address (BLKmode,
4400 plus_constant (Pmode, args_addr,
4401 skip + INTVAL (args_so_far)));
4402 else
4403 temp = memory_address (BLKmode,
4404 plus_constant (Pmode,
4405 gen_rtx_PLUS (Pmode,
4406 args_addr,
4407 args_so_far),
4408 skip));
4409
4410 if (!ACCUMULATE_OUTGOING_ARGS)
4411 {
4412 /* If the source is referenced relative to the stack pointer,
4413 copy it to another register to stabilize it. We do not need
4414 to do this if we know that we won't be changing sp. */
4415
4416 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4417 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4418 temp = copy_to_reg (temp);
4419 }
4420
4421 target = gen_rtx_MEM (BLKmode, temp);
4422
4423 /* We do *not* set_mem_attributes here, because incoming arguments
4424 may overlap with sibling call outgoing arguments and we cannot
4425 allow reordering of reads from function arguments with stores
4426 to outgoing arguments of sibling calls. We do, however, want
4427 to record the alignment of the stack slot. */
4428 /* ALIGN may well be better aligned than TYPE, e.g. due to
4429 PARM_BOUNDARY. Assume the caller isn't lying. */
4430 set_mem_align (target, align);
4431
4432 /* If part should go in registers and pushing to that part would
4433 overwrite some of the values that need to go into regs, load the
4434 overlapping values into temporary pseudos to be moved into the hard
4435 regs at the end after the stack pushing has completed.
4436 We cannot load them directly into the hard regs here because
4437 they can be clobbered by the block move expansions.
4438 See PR 65358. */
4439
4440 if (partial > 0 && reg != 0 && mode == BLKmode
4441 && GET_CODE (reg) != PARALLEL)
4442 {
4443 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4444 if (overlapping > 0)
4445 {
4446 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4447 overlapping /= UNITS_PER_WORD;
4448
4449 tmp_regs = XALLOCAVEC (rtx, overlapping);
4450
4451 for (int i = 0; i < overlapping; i++)
4452 tmp_regs[i] = gen_reg_rtx (word_mode);
4453
4454 for (int i = 0; i < overlapping; i++)
4455 emit_move_insn (tmp_regs[i],
4456 operand_subword_force (target, i, mode));
4457 }
4458 else if (overlapping == -1)
4459 overlapping = 0;
4460 /* Could not determine whether there is overlap.
4461 Fail the sibcall. */
4462 else
4463 {
4464 overlapping = 0;
4465 if (sibcall_p)
4466 return false;
4467 }
4468 }
4469 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4470 }
4471 }
4472 else if (partial > 0)
4473 {
4474 /* Scalar partly in registers. */
4475
4476 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4477 int i;
4478 int not_stack;
4479 /* # bytes of start of argument
4480 that we must make space for but need not store. */
4481 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4482 int args_offset = INTVAL (args_so_far);
4483 int skip;
4484
4485 /* Push padding now if padding above and stack grows down,
4486 or if padding below and stack grows up.
4487 But if space already allocated, this has already been done. */
4488 if (extra && args_addr == 0
4489 && where_pad != PAD_NONE && where_pad != stack_direction)
4490 anti_adjust_stack (GEN_INT (extra));
4491
4492 /* If we make space by pushing it, we might as well push
4493 the real data. Otherwise, we can leave OFFSET nonzero
4494 and leave the space uninitialized. */
4495 if (args_addr == 0)
4496 offset = 0;
4497
4498 /* Now NOT_STACK gets the number of words that we don't need to
4499 allocate on the stack. Convert OFFSET to words too. */
4500 not_stack = (partial - offset) / UNITS_PER_WORD;
4501 offset /= UNITS_PER_WORD;
4502
4503 /* If the partial register-part of the arg counts in its stack size,
4504 skip the part of stack space corresponding to the registers.
4505 Otherwise, start copying to the beginning of the stack space,
4506 by setting SKIP to 0. */
4507 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4508
4509 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4510 x = validize_mem (force_const_mem (mode, x));
4511
4512 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4513 SUBREGs of such registers are not allowed. */
4514 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4515 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4516 x = copy_to_reg (x);
4517
4518 /* Loop over all the words allocated on the stack for this arg. */
4519 /* We can do it by words, because any scalar bigger than a word
4520 has a size a multiple of a word. */
4521 for (i = size - 1; i >= not_stack; i--)
4522 if (i >= not_stack + offset)
4523 if (!emit_push_insn (operand_subword_force (x, i, mode),
4524 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4525 0, args_addr,
4526 GEN_INT (args_offset + ((i - not_stack + skip)
4527 * UNITS_PER_WORD)),
4528 reg_parm_stack_space, alignment_pad, sibcall_p))
4529 return false;
4530 }
4531 else
4532 {
4533 rtx addr;
4534 rtx dest;
4535
4536 /* Push padding now if padding above and stack grows down,
4537 or if padding below and stack grows up.
4538 But if space already allocated, this has already been done. */
4539 if (extra && args_addr == 0
4540 && where_pad != PAD_NONE && where_pad != stack_direction)
4541 anti_adjust_stack (GEN_INT (extra));
4542
4543 #ifdef PUSH_ROUNDING
4544 if (args_addr == 0 && PUSH_ARGS)
4545 emit_single_push_insn (mode, x, type);
4546 else
4547 #endif
4548 {
4549 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4550 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4551
4552 /* We do *not* set_mem_attributes here, because incoming arguments
4553 may overlap with sibling call outgoing arguments and we cannot
4554 allow reordering of reads from function arguments with stores
4555 to outgoing arguments of sibling calls. We do, however, want
4556 to record the alignment of the stack slot. */
4557 /* ALIGN may well be better aligned than TYPE, e.g. due to
4558 PARM_BOUNDARY. Assume the caller isn't lying. */
4559 set_mem_align (dest, align);
4560
4561 emit_move_insn (dest, x);
4562 }
4563 }
4564
4565 /* Move the partial arguments into the registers and any overlapping
4566 values that we moved into the pseudos in tmp_regs. */
4567 if (partial > 0 && reg != 0)
4568 {
4569 /* Handle calls that pass values in multiple non-contiguous locations.
4570 The Irix 6 ABI has examples of this. */
4571 if (GET_CODE (reg) == PARALLEL)
4572 emit_group_load (reg, x, type, -1);
4573 else
4574 {
4575 gcc_assert (partial % UNITS_PER_WORD == 0);
4576 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4577
4578 for (int i = 0; i < overlapping; i++)
4579 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4580 + nregs - overlapping + i),
4581 tmp_regs[i]);
4582
4583 }
4584 }
4585
4586 if (extra && args_addr == 0 && where_pad == stack_direction)
4587 anti_adjust_stack (GEN_INT (extra));
4588
4589 if (alignment_pad && args_addr == 0)
4590 anti_adjust_stack (alignment_pad);
4591
4592 return true;
4593 }
4594 \f
4595 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4596 operations. */
4597
4598 static rtx
4599 get_subtarget (rtx x)
4600 {
4601 return (optimize
4602 || x == 0
4603 /* Only registers can be subtargets. */
4604 || !REG_P (x)
4605 /* Don't use hard regs to avoid extending their life. */
4606 || REGNO (x) < FIRST_PSEUDO_REGISTER
4607 ? 0 : x);
4608 }
4609
4610 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4611 FIELD is a bitfield. Returns true if the optimization was successful,
4612 and there's nothing else to do. */
4613
4614 static bool
4615 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4616 unsigned HOST_WIDE_INT bitpos,
4617 unsigned HOST_WIDE_INT bitregion_start,
4618 unsigned HOST_WIDE_INT bitregion_end,
4619 machine_mode mode1, rtx str_rtx,
4620 tree to, tree src, bool reverse)
4621 {
4622 machine_mode str_mode = GET_MODE (str_rtx);
4623 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4624 tree op0, op1;
4625 rtx value, result;
4626 optab binop;
4627 gimple *srcstmt;
4628 enum tree_code code;
4629
4630 if (mode1 != VOIDmode
4631 || bitsize >= BITS_PER_WORD
4632 || str_bitsize > BITS_PER_WORD
4633 || TREE_SIDE_EFFECTS (to)
4634 || TREE_THIS_VOLATILE (to))
4635 return false;
4636
4637 STRIP_NOPS (src);
4638 if (TREE_CODE (src) != SSA_NAME)
4639 return false;
4640 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4641 return false;
4642
4643 srcstmt = get_gimple_for_ssa_name (src);
4644 if (!srcstmt
4645 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4646 return false;
4647
4648 code = gimple_assign_rhs_code (srcstmt);
4649
4650 op0 = gimple_assign_rhs1 (srcstmt);
4651
4652 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4653 to find its initialization. Hopefully the initialization will
4654 be from a bitfield load. */
4655 if (TREE_CODE (op0) == SSA_NAME)
4656 {
4657 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4658
4659 /* We want to eventually have OP0 be the same as TO, which
4660 should be a bitfield. */
4661 if (!op0stmt
4662 || !is_gimple_assign (op0stmt)
4663 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4664 return false;
4665 op0 = gimple_assign_rhs1 (op0stmt);
4666 }
4667
4668 op1 = gimple_assign_rhs2 (srcstmt);
4669
4670 if (!operand_equal_p (to, op0, 0))
4671 return false;
4672
4673 if (MEM_P (str_rtx))
4674 {
4675 unsigned HOST_WIDE_INT offset1;
4676
4677 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4678 str_bitsize = BITS_PER_WORD;
4679
4680 scalar_int_mode best_mode;
4681 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4682 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4683 return false;
4684 str_mode = best_mode;
4685 str_bitsize = GET_MODE_BITSIZE (best_mode);
4686
4687 offset1 = bitpos;
4688 bitpos %= str_bitsize;
4689 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4690 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4691 }
4692 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4693 return false;
4694 else
4695 gcc_assert (!reverse);
4696
4697 /* If the bit field covers the whole REG/MEM, store_field
4698 will likely generate better code. */
4699 if (bitsize >= str_bitsize)
4700 return false;
4701
4702 /* We can't handle fields split across multiple entities. */
4703 if (bitpos + bitsize > str_bitsize)
4704 return false;
4705
4706 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4707 bitpos = str_bitsize - bitpos - bitsize;
4708
4709 switch (code)
4710 {
4711 case PLUS_EXPR:
4712 case MINUS_EXPR:
4713 /* For now, just optimize the case of the topmost bitfield
4714 where we don't need to do any masking and also
4715 1 bit bitfields where xor can be used.
4716 We might win by one instruction for the other bitfields
4717 too if insv/extv instructions aren't used, so that
4718 can be added later. */
4719 if ((reverse || bitpos + bitsize != str_bitsize)
4720 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4721 break;
4722
4723 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4724 value = convert_modes (str_mode,
4725 TYPE_MODE (TREE_TYPE (op1)), value,
4726 TYPE_UNSIGNED (TREE_TYPE (op1)));
4727
4728 /* We may be accessing data outside the field, which means
4729 we can alias adjacent data. */
4730 if (MEM_P (str_rtx))
4731 {
4732 str_rtx = shallow_copy_rtx (str_rtx);
4733 set_mem_alias_set (str_rtx, 0);
4734 set_mem_expr (str_rtx, 0);
4735 }
4736
4737 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4738 {
4739 value = expand_and (str_mode, value, const1_rtx, NULL);
4740 binop = xor_optab;
4741 }
4742 else
4743 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4744
4745 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4746 if (reverse)
4747 value = flip_storage_order (str_mode, value);
4748 result = expand_binop (str_mode, binop, str_rtx,
4749 value, str_rtx, 1, OPTAB_WIDEN);
4750 if (result != str_rtx)
4751 emit_move_insn (str_rtx, result);
4752 return true;
4753
4754 case BIT_IOR_EXPR:
4755 case BIT_XOR_EXPR:
4756 if (TREE_CODE (op1) != INTEGER_CST)
4757 break;
4758 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4759 value = convert_modes (str_mode,
4760 TYPE_MODE (TREE_TYPE (op1)), value,
4761 TYPE_UNSIGNED (TREE_TYPE (op1)));
4762
4763 /* We may be accessing data outside the field, which means
4764 we can alias adjacent data. */
4765 if (MEM_P (str_rtx))
4766 {
4767 str_rtx = shallow_copy_rtx (str_rtx);
4768 set_mem_alias_set (str_rtx, 0);
4769 set_mem_expr (str_rtx, 0);
4770 }
4771
4772 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4773 if (bitpos + bitsize != str_bitsize)
4774 {
4775 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4776 str_mode);
4777 value = expand_and (str_mode, value, mask, NULL_RTX);
4778 }
4779 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4780 if (reverse)
4781 value = flip_storage_order (str_mode, value);
4782 result = expand_binop (str_mode, binop, str_rtx,
4783 value, str_rtx, 1, OPTAB_WIDEN);
4784 if (result != str_rtx)
4785 emit_move_insn (str_rtx, result);
4786 return true;
4787
4788 default:
4789 break;
4790 }
4791
4792 return false;
4793 }
4794
4795 /* In the C++ memory model, consecutive bit fields in a structure are
4796 considered one memory location.
4797
4798 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4799 returns the bit range of consecutive bits in which this COMPONENT_REF
4800 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4801 and *OFFSET may be adjusted in the process.
4802
4803 If the access does not need to be restricted, 0 is returned in both
4804 *BITSTART and *BITEND. */
4805
4806 void
4807 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4808 unsigned HOST_WIDE_INT *bitend,
4809 tree exp,
4810 HOST_WIDE_INT *bitpos,
4811 tree *offset)
4812 {
4813 HOST_WIDE_INT bitoffset;
4814 tree field, repr;
4815
4816 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4817
4818 field = TREE_OPERAND (exp, 1);
4819 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4820 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4821 need to limit the range we can access. */
4822 if (!repr)
4823 {
4824 *bitstart = *bitend = 0;
4825 return;
4826 }
4827
4828 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4829 part of a larger bit field, then the representative does not serve any
4830 useful purpose. This can occur in Ada. */
4831 if (handled_component_p (TREE_OPERAND (exp, 0)))
4832 {
4833 machine_mode rmode;
4834 HOST_WIDE_INT rbitsize, rbitpos;
4835 tree roffset;
4836 int unsignedp, reversep, volatilep = 0;
4837 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4838 &roffset, &rmode, &unsignedp, &reversep,
4839 &volatilep);
4840 if ((rbitpos % BITS_PER_UNIT) != 0)
4841 {
4842 *bitstart = *bitend = 0;
4843 return;
4844 }
4845 }
4846
4847 /* Compute the adjustment to bitpos from the offset of the field
4848 relative to the representative. DECL_FIELD_OFFSET of field and
4849 repr are the same by construction if they are not constants,
4850 see finish_bitfield_layout. */
4851 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4852 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4853 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4854 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4855 else
4856 bitoffset = 0;
4857 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4858 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4859
4860 /* If the adjustment is larger than bitpos, we would have a negative bit
4861 position for the lower bound and this may wreak havoc later. Adjust
4862 offset and bitpos to make the lower bound non-negative in that case. */
4863 if (bitoffset > *bitpos)
4864 {
4865 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4866 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4867
4868 *bitpos += adjust;
4869 if (*offset == NULL_TREE)
4870 *offset = size_int (-adjust / BITS_PER_UNIT);
4871 else
4872 *offset
4873 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4874 *bitstart = 0;
4875 }
4876 else
4877 *bitstart = *bitpos - bitoffset;
4878
4879 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4880 }
4881
4882 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4883 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4884 DECL_RTL was not set yet, return NORTL. */
4885
4886 static inline bool
4887 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4888 {
4889 if (TREE_CODE (addr) != ADDR_EXPR)
4890 return false;
4891
4892 tree base = TREE_OPERAND (addr, 0);
4893
4894 if (!DECL_P (base)
4895 || TREE_ADDRESSABLE (base)
4896 || DECL_MODE (base) == BLKmode)
4897 return false;
4898
4899 if (!DECL_RTL_SET_P (base))
4900 return nortl;
4901
4902 return (!MEM_P (DECL_RTL (base)));
4903 }
4904
4905 /* Returns true if the MEM_REF REF refers to an object that does not
4906 reside in memory and has non-BLKmode. */
4907
4908 static inline bool
4909 mem_ref_refers_to_non_mem_p (tree ref)
4910 {
4911 tree base = TREE_OPERAND (ref, 0);
4912 return addr_expr_of_non_mem_decl_p_1 (base, false);
4913 }
4914
4915 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4916 is true, try generating a nontemporal store. */
4917
4918 void
4919 expand_assignment (tree to, tree from, bool nontemporal)
4920 {
4921 rtx to_rtx = 0;
4922 rtx result;
4923 machine_mode mode;
4924 unsigned int align;
4925 enum insn_code icode;
4926
4927 /* Don't crash if the lhs of the assignment was erroneous. */
4928 if (TREE_CODE (to) == ERROR_MARK)
4929 {
4930 expand_normal (from);
4931 return;
4932 }
4933
4934 /* Optimize away no-op moves without side-effects. */
4935 if (operand_equal_p (to, from, 0))
4936 return;
4937
4938 /* Handle misaligned stores. */
4939 mode = TYPE_MODE (TREE_TYPE (to));
4940 if ((TREE_CODE (to) == MEM_REF
4941 || TREE_CODE (to) == TARGET_MEM_REF)
4942 && mode != BLKmode
4943 && !mem_ref_refers_to_non_mem_p (to)
4944 && ((align = get_object_alignment (to))
4945 < GET_MODE_ALIGNMENT (mode))
4946 && (((icode = optab_handler (movmisalign_optab, mode))
4947 != CODE_FOR_nothing)
4948 || targetm.slow_unaligned_access (mode, align)))
4949 {
4950 rtx reg, mem;
4951
4952 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4953 reg = force_not_mem (reg);
4954 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4955 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
4956 reg = flip_storage_order (mode, reg);
4957
4958 if (icode != CODE_FOR_nothing)
4959 {
4960 struct expand_operand ops[2];
4961
4962 create_fixed_operand (&ops[0], mem);
4963 create_input_operand (&ops[1], reg, mode);
4964 /* The movmisalign<mode> pattern cannot fail, else the assignment
4965 would silently be omitted. */
4966 expand_insn (icode, 2, ops);
4967 }
4968 else
4969 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
4970 false);
4971 return;
4972 }
4973
4974 /* Assignment of a structure component needs special treatment
4975 if the structure component's rtx is not simply a MEM.
4976 Assignment of an array element at a constant index, and assignment of
4977 an array element in an unaligned packed structure field, has the same
4978 problem. Same for (partially) storing into a non-memory object. */
4979 if (handled_component_p (to)
4980 || (TREE_CODE (to) == MEM_REF
4981 && (REF_REVERSE_STORAGE_ORDER (to)
4982 || mem_ref_refers_to_non_mem_p (to)))
4983 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4984 {
4985 machine_mode mode1;
4986 HOST_WIDE_INT bitsize, bitpos;
4987 unsigned HOST_WIDE_INT bitregion_start = 0;
4988 unsigned HOST_WIDE_INT bitregion_end = 0;
4989 tree offset;
4990 int unsignedp, reversep, volatilep = 0;
4991 tree tem;
4992
4993 push_temp_slots ();
4994 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4995 &unsignedp, &reversep, &volatilep);
4996
4997 /* Make sure bitpos is not negative, it can wreak havoc later. */
4998 if (bitpos < 0)
4999 {
5000 gcc_assert (offset == NULL_TREE);
5001 offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
5002 bitpos &= BITS_PER_UNIT - 1;
5003 }
5004
5005 if (TREE_CODE (to) == COMPONENT_REF
5006 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5007 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5008 /* The C++ memory model naturally applies to byte-aligned fields.
5009 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5010 BITSIZE are not byte-aligned, there is no need to limit the range
5011 we can access. This can occur with packed structures in Ada. */
5012 else if (bitsize > 0
5013 && bitsize % BITS_PER_UNIT == 0
5014 && bitpos % BITS_PER_UNIT == 0)
5015 {
5016 bitregion_start = bitpos;
5017 bitregion_end = bitpos + bitsize - 1;
5018 }
5019
5020 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5021
5022 /* If the field has a mode, we want to access it in the
5023 field's mode, not the computed mode.
5024 If a MEM has VOIDmode (external with incomplete type),
5025 use BLKmode for it instead. */
5026 if (MEM_P (to_rtx))
5027 {
5028 if (mode1 != VOIDmode)
5029 to_rtx = adjust_address (to_rtx, mode1, 0);
5030 else if (GET_MODE (to_rtx) == VOIDmode)
5031 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5032 }
5033
5034 if (offset != 0)
5035 {
5036 machine_mode address_mode;
5037 rtx offset_rtx;
5038
5039 if (!MEM_P (to_rtx))
5040 {
5041 /* We can get constant negative offsets into arrays with broken
5042 user code. Translate this to a trap instead of ICEing. */
5043 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5044 expand_builtin_trap ();
5045 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5046 }
5047
5048 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5049 address_mode = get_address_mode (to_rtx);
5050 if (GET_MODE (offset_rtx) != address_mode)
5051 {
5052 /* We cannot be sure that the RTL in offset_rtx is valid outside
5053 of a memory address context, so force it into a register
5054 before attempting to convert it to the desired mode. */
5055 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5056 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5057 }
5058
5059 /* If we have an expression in OFFSET_RTX and a non-zero
5060 byte offset in BITPOS, adding the byte offset before the
5061 OFFSET_RTX results in better intermediate code, which makes
5062 later rtl optimization passes perform better.
5063
5064 We prefer intermediate code like this:
5065
5066 r124:DI=r123:DI+0x18
5067 [r124:DI]=r121:DI
5068
5069 ... instead of ...
5070
5071 r124:DI=r123:DI+0x10
5072 [r124:DI+0x8]=r121:DI
5073
5074 This is only done for aligned data values, as these can
5075 be expected to result in single move instructions. */
5076 if (mode1 != VOIDmode
5077 && bitpos != 0
5078 && bitsize > 0
5079 && (bitpos % bitsize) == 0
5080 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
5081 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5082 {
5083 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
5084 bitregion_start = 0;
5085 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
5086 bitregion_end -= bitpos;
5087 bitpos = 0;
5088 }
5089
5090 to_rtx = offset_address (to_rtx, offset_rtx,
5091 highest_pow2_factor_for_target (to,
5092 offset));
5093 }
5094
5095 /* No action is needed if the target is not a memory and the field
5096 lies completely outside that target. This can occur if the source
5097 code contains an out-of-bounds access to a small array. */
5098 if (!MEM_P (to_rtx)
5099 && GET_MODE (to_rtx) != BLKmode
5100 && (unsigned HOST_WIDE_INT) bitpos
5101 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
5102 {
5103 expand_normal (from);
5104 result = NULL;
5105 }
5106 /* Handle expand_expr of a complex value returning a CONCAT. */
5107 else if (GET_CODE (to_rtx) == CONCAT)
5108 {
5109 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
5110 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
5111 && bitpos == 0
5112 && bitsize == mode_bitsize)
5113 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5114 else if (bitsize == mode_bitsize / 2
5115 && (bitpos == 0 || bitpos == mode_bitsize / 2))
5116 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
5117 nontemporal, reversep);
5118 else if (bitpos + bitsize <= mode_bitsize / 2)
5119 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5120 bitregion_start, bitregion_end,
5121 mode1, from, get_alias_set (to),
5122 nontemporal, reversep);
5123 else if (bitpos >= mode_bitsize / 2)
5124 result = store_field (XEXP (to_rtx, 1), bitsize,
5125 bitpos - mode_bitsize / 2,
5126 bitregion_start, bitregion_end,
5127 mode1, from, get_alias_set (to),
5128 nontemporal, reversep);
5129 else if (bitpos == 0 && bitsize == mode_bitsize)
5130 {
5131 rtx from_rtx;
5132 result = expand_normal (from);
5133 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
5134 TYPE_MODE (TREE_TYPE (from)), 0);
5135 emit_move_insn (XEXP (to_rtx, 0),
5136 read_complex_part (from_rtx, false));
5137 emit_move_insn (XEXP (to_rtx, 1),
5138 read_complex_part (from_rtx, true));
5139 }
5140 else
5141 {
5142 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5143 GET_MODE_SIZE (GET_MODE (to_rtx)));
5144 write_complex_part (temp, XEXP (to_rtx, 0), false);
5145 write_complex_part (temp, XEXP (to_rtx, 1), true);
5146 result = store_field (temp, bitsize, bitpos,
5147 bitregion_start, bitregion_end,
5148 mode1, from, get_alias_set (to),
5149 nontemporal, reversep);
5150 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5151 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5152 }
5153 }
5154 else
5155 {
5156 if (MEM_P (to_rtx))
5157 {
5158 /* If the field is at offset zero, we could have been given the
5159 DECL_RTX of the parent struct. Don't munge it. */
5160 to_rtx = shallow_copy_rtx (to_rtx);
5161 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5162 if (volatilep)
5163 MEM_VOLATILE_P (to_rtx) = 1;
5164 }
5165
5166 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5167 bitregion_start, bitregion_end,
5168 mode1, to_rtx, to, from,
5169 reversep))
5170 result = NULL;
5171 else
5172 result = store_field (to_rtx, bitsize, bitpos,
5173 bitregion_start, bitregion_end,
5174 mode1, from, get_alias_set (to),
5175 nontemporal, reversep);
5176 }
5177
5178 if (result)
5179 preserve_temp_slots (result);
5180 pop_temp_slots ();
5181 return;
5182 }
5183
5184 /* If the rhs is a function call and its value is not an aggregate,
5185 call the function before we start to compute the lhs.
5186 This is needed for correct code for cases such as
5187 val = setjmp (buf) on machines where reference to val
5188 requires loading up part of an address in a separate insn.
5189
5190 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5191 since it might be a promoted variable where the zero- or sign- extension
5192 needs to be done. Handling this in the normal way is safe because no
5193 computation is done before the call. The same is true for SSA names. */
5194 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5195 && COMPLETE_TYPE_P (TREE_TYPE (from))
5196 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5197 && ! (((VAR_P (to)
5198 || TREE_CODE (to) == PARM_DECL
5199 || TREE_CODE (to) == RESULT_DECL)
5200 && REG_P (DECL_RTL (to)))
5201 || TREE_CODE (to) == SSA_NAME))
5202 {
5203 rtx value;
5204 rtx bounds;
5205
5206 push_temp_slots ();
5207 value = expand_normal (from);
5208
5209 /* Split value and bounds to store them separately. */
5210 chkp_split_slot (value, &value, &bounds);
5211
5212 if (to_rtx == 0)
5213 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5214
5215 /* Handle calls that return values in multiple non-contiguous locations.
5216 The Irix 6 ABI has examples of this. */
5217 if (GET_CODE (to_rtx) == PARALLEL)
5218 {
5219 if (GET_CODE (value) == PARALLEL)
5220 emit_group_move (to_rtx, value);
5221 else
5222 emit_group_load (to_rtx, value, TREE_TYPE (from),
5223 int_size_in_bytes (TREE_TYPE (from)));
5224 }
5225 else if (GET_CODE (value) == PARALLEL)
5226 emit_group_store (to_rtx, value, TREE_TYPE (from),
5227 int_size_in_bytes (TREE_TYPE (from)));
5228 else if (GET_MODE (to_rtx) == BLKmode)
5229 {
5230 /* Handle calls that return BLKmode values in registers. */
5231 if (REG_P (value))
5232 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5233 else
5234 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5235 }
5236 else
5237 {
5238 if (POINTER_TYPE_P (TREE_TYPE (to)))
5239 value = convert_memory_address_addr_space
5240 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5241 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5242
5243 emit_move_insn (to_rtx, value);
5244 }
5245
5246 /* Store bounds if required. */
5247 if (bounds
5248 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5249 {
5250 gcc_assert (MEM_P (to_rtx));
5251 chkp_emit_bounds_store (bounds, value, to_rtx);
5252 }
5253
5254 preserve_temp_slots (to_rtx);
5255 pop_temp_slots ();
5256 return;
5257 }
5258
5259 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5260 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5261
5262 /* Don't move directly into a return register. */
5263 if (TREE_CODE (to) == RESULT_DECL
5264 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5265 {
5266 rtx temp;
5267
5268 push_temp_slots ();
5269
5270 /* If the source is itself a return value, it still is in a pseudo at
5271 this point so we can move it back to the return register directly. */
5272 if (REG_P (to_rtx)
5273 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5274 && TREE_CODE (from) != CALL_EXPR)
5275 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5276 else
5277 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5278
5279 /* Handle calls that return values in multiple non-contiguous locations.
5280 The Irix 6 ABI has examples of this. */
5281 if (GET_CODE (to_rtx) == PARALLEL)
5282 {
5283 if (GET_CODE (temp) == PARALLEL)
5284 emit_group_move (to_rtx, temp);
5285 else
5286 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5287 int_size_in_bytes (TREE_TYPE (from)));
5288 }
5289 else if (temp)
5290 emit_move_insn (to_rtx, temp);
5291
5292 preserve_temp_slots (to_rtx);
5293 pop_temp_slots ();
5294 return;
5295 }
5296
5297 /* In case we are returning the contents of an object which overlaps
5298 the place the value is being stored, use a safe function when copying
5299 a value through a pointer into a structure value return block. */
5300 if (TREE_CODE (to) == RESULT_DECL
5301 && TREE_CODE (from) == INDIRECT_REF
5302 && ADDR_SPACE_GENERIC_P
5303 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5304 && refs_may_alias_p (to, from)
5305 && cfun->returns_struct
5306 && !cfun->returns_pcc_struct)
5307 {
5308 rtx from_rtx, size;
5309
5310 push_temp_slots ();
5311 size = expr_size (from);
5312 from_rtx = expand_normal (from);
5313
5314 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5315
5316 preserve_temp_slots (to_rtx);
5317 pop_temp_slots ();
5318 return;
5319 }
5320
5321 /* Compute FROM and store the value in the rtx we got. */
5322
5323 push_temp_slots ();
5324 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
5325 preserve_temp_slots (result);
5326 pop_temp_slots ();
5327 return;
5328 }
5329
5330 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5331 succeeded, false otherwise. */
5332
5333 bool
5334 emit_storent_insn (rtx to, rtx from)
5335 {
5336 struct expand_operand ops[2];
5337 machine_mode mode = GET_MODE (to);
5338 enum insn_code code = optab_handler (storent_optab, mode);
5339
5340 if (code == CODE_FOR_nothing)
5341 return false;
5342
5343 create_fixed_operand (&ops[0], to);
5344 create_input_operand (&ops[1], from, mode);
5345 return maybe_expand_insn (code, 2, ops);
5346 }
5347
5348 /* Generate code for computing expression EXP,
5349 and storing the value into TARGET.
5350
5351 If the mode is BLKmode then we may return TARGET itself.
5352 It turns out that in BLKmode it doesn't cause a problem.
5353 because C has no operators that could combine two different
5354 assignments into the same BLKmode object with different values
5355 with no sequence point. Will other languages need this to
5356 be more thorough?
5357
5358 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5359 stack, and block moves may need to be treated specially.
5360
5361 If NONTEMPORAL is true, try using a nontemporal store instruction.
5362
5363 If REVERSE is true, the store is to be done in reverse order.
5364
5365 If BTARGET is not NULL then computed bounds of EXP are
5366 associated with BTARGET. */
5367
5368 rtx
5369 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5370 bool nontemporal, bool reverse, tree btarget)
5371 {
5372 rtx temp;
5373 rtx alt_rtl = NULL_RTX;
5374 location_t loc = curr_insn_location ();
5375
5376 if (VOID_TYPE_P (TREE_TYPE (exp)))
5377 {
5378 /* C++ can generate ?: expressions with a throw expression in one
5379 branch and an rvalue in the other. Here, we resolve attempts to
5380 store the throw expression's nonexistent result. */
5381 gcc_assert (!call_param_p);
5382 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5383 return NULL_RTX;
5384 }
5385 if (TREE_CODE (exp) == COMPOUND_EXPR)
5386 {
5387 /* Perform first part of compound expression, then assign from second
5388 part. */
5389 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5390 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5391 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5392 call_param_p, nontemporal, reverse,
5393 btarget);
5394 }
5395 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5396 {
5397 /* For conditional expression, get safe form of the target. Then
5398 test the condition, doing the appropriate assignment on either
5399 side. This avoids the creation of unnecessary temporaries.
5400 For non-BLKmode, it is more efficient not to do this. */
5401
5402 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5403
5404 do_pending_stack_adjust ();
5405 NO_DEFER_POP;
5406 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5407 profile_probability::uninitialized ());
5408 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5409 nontemporal, reverse, btarget);
5410 emit_jump_insn (targetm.gen_jump (lab2));
5411 emit_barrier ();
5412 emit_label (lab1);
5413 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5414 nontemporal, reverse, btarget);
5415 emit_label (lab2);
5416 OK_DEFER_POP;
5417
5418 return NULL_RTX;
5419 }
5420 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5421 /* If this is a scalar in a register that is stored in a wider mode
5422 than the declared mode, compute the result into its declared mode
5423 and then convert to the wider mode. Our value is the computed
5424 expression. */
5425 {
5426 rtx inner_target = 0;
5427 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5428 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5429
5430 /* We can do the conversion inside EXP, which will often result
5431 in some optimizations. Do the conversion in two steps: first
5432 change the signedness, if needed, then the extend. But don't
5433 do this if the type of EXP is a subtype of something else
5434 since then the conversion might involve more than just
5435 converting modes. */
5436 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5437 && TREE_TYPE (TREE_TYPE (exp)) == 0
5438 && GET_MODE_PRECISION (outer_mode)
5439 == TYPE_PRECISION (TREE_TYPE (exp)))
5440 {
5441 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5442 TYPE_UNSIGNED (TREE_TYPE (exp))))
5443 {
5444 /* Some types, e.g. Fortran's logical*4, won't have a signed
5445 version, so use the mode instead. */
5446 tree ntype
5447 = (signed_or_unsigned_type_for
5448 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5449 if (ntype == NULL)
5450 ntype = lang_hooks.types.type_for_mode
5451 (TYPE_MODE (TREE_TYPE (exp)),
5452 SUBREG_PROMOTED_SIGN (target));
5453
5454 exp = fold_convert_loc (loc, ntype, exp);
5455 }
5456
5457 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5458 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5459 exp);
5460
5461 inner_target = SUBREG_REG (target);
5462 }
5463
5464 temp = expand_expr (exp, inner_target, VOIDmode,
5465 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5466
5467 /* Handle bounds returned by call. */
5468 if (TREE_CODE (exp) == CALL_EXPR)
5469 {
5470 rtx bounds;
5471 chkp_split_slot (temp, &temp, &bounds);
5472 if (bounds && btarget)
5473 {
5474 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5475 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5476 chkp_set_rtl_bounds (btarget, tmp);
5477 }
5478 }
5479
5480 /* If TEMP is a VOIDmode constant, use convert_modes to make
5481 sure that we properly convert it. */
5482 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5483 {
5484 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5485 temp, SUBREG_PROMOTED_SIGN (target));
5486 temp = convert_modes (inner_mode, outer_mode, temp,
5487 SUBREG_PROMOTED_SIGN (target));
5488 }
5489
5490 convert_move (SUBREG_REG (target), temp,
5491 SUBREG_PROMOTED_SIGN (target));
5492
5493 return NULL_RTX;
5494 }
5495 else if ((TREE_CODE (exp) == STRING_CST
5496 || (TREE_CODE (exp) == MEM_REF
5497 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5498 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5499 == STRING_CST
5500 && integer_zerop (TREE_OPERAND (exp, 1))))
5501 && !nontemporal && !call_param_p
5502 && MEM_P (target))
5503 {
5504 /* Optimize initialization of an array with a STRING_CST. */
5505 HOST_WIDE_INT exp_len, str_copy_len;
5506 rtx dest_mem;
5507 tree str = TREE_CODE (exp) == STRING_CST
5508 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5509
5510 exp_len = int_expr_size (exp);
5511 if (exp_len <= 0)
5512 goto normal_expr;
5513
5514 if (TREE_STRING_LENGTH (str) <= 0)
5515 goto normal_expr;
5516
5517 str_copy_len = strlen (TREE_STRING_POINTER (str));
5518 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5519 goto normal_expr;
5520
5521 str_copy_len = TREE_STRING_LENGTH (str);
5522 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5523 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5524 {
5525 str_copy_len += STORE_MAX_PIECES - 1;
5526 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5527 }
5528 str_copy_len = MIN (str_copy_len, exp_len);
5529 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5530 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5531 MEM_ALIGN (target), false))
5532 goto normal_expr;
5533
5534 dest_mem = target;
5535
5536 dest_mem = store_by_pieces (dest_mem,
5537 str_copy_len, builtin_strncpy_read_str,
5538 CONST_CAST (char *,
5539 TREE_STRING_POINTER (str)),
5540 MEM_ALIGN (target), false,
5541 exp_len > str_copy_len ? 1 : 0);
5542 if (exp_len > str_copy_len)
5543 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5544 GEN_INT (exp_len - str_copy_len),
5545 BLOCK_OP_NORMAL);
5546 return NULL_RTX;
5547 }
5548 else
5549 {
5550 rtx tmp_target;
5551
5552 normal_expr:
5553 /* If we want to use a nontemporal or a reverse order store, force the
5554 value into a register first. */
5555 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5556 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5557 (call_param_p
5558 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5559 &alt_rtl, false);
5560
5561 /* Handle bounds returned by call. */
5562 if (TREE_CODE (exp) == CALL_EXPR)
5563 {
5564 rtx bounds;
5565 chkp_split_slot (temp, &temp, &bounds);
5566 if (bounds && btarget)
5567 {
5568 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5569 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5570 chkp_set_rtl_bounds (btarget, tmp);
5571 }
5572 }
5573 }
5574
5575 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5576 the same as that of TARGET, adjust the constant. This is needed, for
5577 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5578 only a word-sized value. */
5579 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5580 && TREE_CODE (exp) != ERROR_MARK
5581 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5582 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5583 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5584
5585 /* If value was not generated in the target, store it there.
5586 Convert the value to TARGET's type first if necessary and emit the
5587 pending incrementations that have been queued when expanding EXP.
5588 Note that we cannot emit the whole queue blindly because this will
5589 effectively disable the POST_INC optimization later.
5590
5591 If TEMP and TARGET compare equal according to rtx_equal_p, but
5592 one or both of them are volatile memory refs, we have to distinguish
5593 two cases:
5594 - expand_expr has used TARGET. In this case, we must not generate
5595 another copy. This can be detected by TARGET being equal according
5596 to == .
5597 - expand_expr has not used TARGET - that means that the source just
5598 happens to have the same RTX form. Since temp will have been created
5599 by expand_expr, it will compare unequal according to == .
5600 We must generate a copy in this case, to reach the correct number
5601 of volatile memory references. */
5602
5603 if ((! rtx_equal_p (temp, target)
5604 || (temp != target && (side_effects_p (temp)
5605 || side_effects_p (target))))
5606 && TREE_CODE (exp) != ERROR_MARK
5607 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5608 but TARGET is not valid memory reference, TEMP will differ
5609 from TARGET although it is really the same location. */
5610 && !(alt_rtl
5611 && rtx_equal_p (alt_rtl, target)
5612 && !side_effects_p (alt_rtl)
5613 && !side_effects_p (target))
5614 /* If there's nothing to copy, don't bother. Don't call
5615 expr_size unless necessary, because some front-ends (C++)
5616 expr_size-hook must not be given objects that are not
5617 supposed to be bit-copied or bit-initialized. */
5618 && expr_size (exp) != const0_rtx)
5619 {
5620 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5621 {
5622 if (GET_MODE (target) == BLKmode)
5623 {
5624 /* Handle calls that return BLKmode values in registers. */
5625 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5626 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5627 else
5628 store_bit_field (target,
5629 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5630 0, 0, 0, GET_MODE (temp), temp, reverse);
5631 }
5632 else
5633 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5634 }
5635
5636 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5637 {
5638 /* Handle copying a string constant into an array. The string
5639 constant may be shorter than the array. So copy just the string's
5640 actual length, and clear the rest. First get the size of the data
5641 type of the string, which is actually the size of the target. */
5642 rtx size = expr_size (exp);
5643
5644 if (CONST_INT_P (size)
5645 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5646 emit_block_move (target, temp, size,
5647 (call_param_p
5648 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5649 else
5650 {
5651 machine_mode pointer_mode
5652 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5653 machine_mode address_mode = get_address_mode (target);
5654
5655 /* Compute the size of the data to copy from the string. */
5656 tree copy_size
5657 = size_binop_loc (loc, MIN_EXPR,
5658 make_tree (sizetype, size),
5659 size_int (TREE_STRING_LENGTH (exp)));
5660 rtx copy_size_rtx
5661 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5662 (call_param_p
5663 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5664 rtx_code_label *label = 0;
5665
5666 /* Copy that much. */
5667 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5668 TYPE_UNSIGNED (sizetype));
5669 emit_block_move (target, temp, copy_size_rtx,
5670 (call_param_p
5671 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5672
5673 /* Figure out how much is left in TARGET that we have to clear.
5674 Do all calculations in pointer_mode. */
5675 if (CONST_INT_P (copy_size_rtx))
5676 {
5677 size = plus_constant (address_mode, size,
5678 -INTVAL (copy_size_rtx));
5679 target = adjust_address (target, BLKmode,
5680 INTVAL (copy_size_rtx));
5681 }
5682 else
5683 {
5684 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5685 copy_size_rtx, NULL_RTX, 0,
5686 OPTAB_LIB_WIDEN);
5687
5688 if (GET_MODE (copy_size_rtx) != address_mode)
5689 copy_size_rtx = convert_to_mode (address_mode,
5690 copy_size_rtx,
5691 TYPE_UNSIGNED (sizetype));
5692
5693 target = offset_address (target, copy_size_rtx,
5694 highest_pow2_factor (copy_size));
5695 label = gen_label_rtx ();
5696 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5697 GET_MODE (size), 0, label);
5698 }
5699
5700 if (size != const0_rtx)
5701 clear_storage (target, size, BLOCK_OP_NORMAL);
5702
5703 if (label)
5704 emit_label (label);
5705 }
5706 }
5707 /* Handle calls that return values in multiple non-contiguous locations.
5708 The Irix 6 ABI has examples of this. */
5709 else if (GET_CODE (target) == PARALLEL)
5710 {
5711 if (GET_CODE (temp) == PARALLEL)
5712 emit_group_move (target, temp);
5713 else
5714 emit_group_load (target, temp, TREE_TYPE (exp),
5715 int_size_in_bytes (TREE_TYPE (exp)));
5716 }
5717 else if (GET_CODE (temp) == PARALLEL)
5718 emit_group_store (target, temp, TREE_TYPE (exp),
5719 int_size_in_bytes (TREE_TYPE (exp)));
5720 else if (GET_MODE (temp) == BLKmode)
5721 emit_block_move (target, temp, expr_size (exp),
5722 (call_param_p
5723 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5724 /* If we emit a nontemporal store, there is nothing else to do. */
5725 else if (nontemporal && emit_storent_insn (target, temp))
5726 ;
5727 else
5728 {
5729 if (reverse)
5730 temp = flip_storage_order (GET_MODE (target), temp);
5731 temp = force_operand (temp, target);
5732 if (temp != target)
5733 emit_move_insn (target, temp);
5734 }
5735 }
5736
5737 return NULL_RTX;
5738 }
5739
5740 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5741 rtx
5742 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
5743 bool reverse)
5744 {
5745 return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
5746 reverse, NULL);
5747 }
5748 \f
5749 /* Return true if field F of structure TYPE is a flexible array. */
5750
5751 static bool
5752 flexible_array_member_p (const_tree f, const_tree type)
5753 {
5754 const_tree tf;
5755
5756 tf = TREE_TYPE (f);
5757 return (DECL_CHAIN (f) == NULL
5758 && TREE_CODE (tf) == ARRAY_TYPE
5759 && TYPE_DOMAIN (tf)
5760 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5761 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5762 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5763 && int_size_in_bytes (type) >= 0);
5764 }
5765
5766 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5767 must have in order for it to completely initialize a value of type TYPE.
5768 Return -1 if the number isn't known.
5769
5770 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5771
5772 static HOST_WIDE_INT
5773 count_type_elements (const_tree type, bool for_ctor_p)
5774 {
5775 switch (TREE_CODE (type))
5776 {
5777 case ARRAY_TYPE:
5778 {
5779 tree nelts;
5780
5781 nelts = array_type_nelts (type);
5782 if (nelts && tree_fits_uhwi_p (nelts))
5783 {
5784 unsigned HOST_WIDE_INT n;
5785
5786 n = tree_to_uhwi (nelts) + 1;
5787 if (n == 0 || for_ctor_p)
5788 return n;
5789 else
5790 return n * count_type_elements (TREE_TYPE (type), false);
5791 }
5792 return for_ctor_p ? -1 : 1;
5793 }
5794
5795 case RECORD_TYPE:
5796 {
5797 unsigned HOST_WIDE_INT n;
5798 tree f;
5799
5800 n = 0;
5801 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5802 if (TREE_CODE (f) == FIELD_DECL)
5803 {
5804 if (!for_ctor_p)
5805 n += count_type_elements (TREE_TYPE (f), false);
5806 else if (!flexible_array_member_p (f, type))
5807 /* Don't count flexible arrays, which are not supposed
5808 to be initialized. */
5809 n += 1;
5810 }
5811
5812 return n;
5813 }
5814
5815 case UNION_TYPE:
5816 case QUAL_UNION_TYPE:
5817 {
5818 tree f;
5819 HOST_WIDE_INT n, m;
5820
5821 gcc_assert (!for_ctor_p);
5822 /* Estimate the number of scalars in each field and pick the
5823 maximum. Other estimates would do instead; the idea is simply
5824 to make sure that the estimate is not sensitive to the ordering
5825 of the fields. */
5826 n = 1;
5827 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5828 if (TREE_CODE (f) == FIELD_DECL)
5829 {
5830 m = count_type_elements (TREE_TYPE (f), false);
5831 /* If the field doesn't span the whole union, add an extra
5832 scalar for the rest. */
5833 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5834 TYPE_SIZE (type)) != 1)
5835 m++;
5836 if (n < m)
5837 n = m;
5838 }
5839 return n;
5840 }
5841
5842 case COMPLEX_TYPE:
5843 return 2;
5844
5845 case VECTOR_TYPE:
5846 return TYPE_VECTOR_SUBPARTS (type);
5847
5848 case INTEGER_TYPE:
5849 case REAL_TYPE:
5850 case FIXED_POINT_TYPE:
5851 case ENUMERAL_TYPE:
5852 case BOOLEAN_TYPE:
5853 case POINTER_TYPE:
5854 case OFFSET_TYPE:
5855 case REFERENCE_TYPE:
5856 case NULLPTR_TYPE:
5857 return 1;
5858
5859 case ERROR_MARK:
5860 return 0;
5861
5862 case VOID_TYPE:
5863 case METHOD_TYPE:
5864 case FUNCTION_TYPE:
5865 case LANG_TYPE:
5866 default:
5867 gcc_unreachable ();
5868 }
5869 }
5870
5871 /* Helper for categorize_ctor_elements. Identical interface. */
5872
5873 static bool
5874 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5875 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5876 {
5877 unsigned HOST_WIDE_INT idx;
5878 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5879 tree value, purpose, elt_type;
5880
5881 /* Whether CTOR is a valid constant initializer, in accordance with what
5882 initializer_constant_valid_p does. If inferred from the constructor
5883 elements, true until proven otherwise. */
5884 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5885 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5886
5887 nz_elts = 0;
5888 init_elts = 0;
5889 num_fields = 0;
5890 elt_type = NULL_TREE;
5891
5892 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5893 {
5894 HOST_WIDE_INT mult = 1;
5895
5896 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5897 {
5898 tree lo_index = TREE_OPERAND (purpose, 0);
5899 tree hi_index = TREE_OPERAND (purpose, 1);
5900
5901 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5902 mult = (tree_to_uhwi (hi_index)
5903 - tree_to_uhwi (lo_index) + 1);
5904 }
5905 num_fields += mult;
5906 elt_type = TREE_TYPE (value);
5907
5908 switch (TREE_CODE (value))
5909 {
5910 case CONSTRUCTOR:
5911 {
5912 HOST_WIDE_INT nz = 0, ic = 0;
5913
5914 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5915 p_complete);
5916
5917 nz_elts += mult * nz;
5918 init_elts += mult * ic;
5919
5920 if (const_from_elts_p && const_p)
5921 const_p = const_elt_p;
5922 }
5923 break;
5924
5925 case INTEGER_CST:
5926 case REAL_CST:
5927 case FIXED_CST:
5928 if (!initializer_zerop (value))
5929 nz_elts += mult;
5930 init_elts += mult;
5931 break;
5932
5933 case STRING_CST:
5934 nz_elts += mult * TREE_STRING_LENGTH (value);
5935 init_elts += mult * TREE_STRING_LENGTH (value);
5936 break;
5937
5938 case COMPLEX_CST:
5939 if (!initializer_zerop (TREE_REALPART (value)))
5940 nz_elts += mult;
5941 if (!initializer_zerop (TREE_IMAGPART (value)))
5942 nz_elts += mult;
5943 init_elts += mult;
5944 break;
5945
5946 case VECTOR_CST:
5947 {
5948 unsigned i;
5949 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5950 {
5951 tree v = VECTOR_CST_ELT (value, i);
5952 if (!initializer_zerop (v))
5953 nz_elts += mult;
5954 init_elts += mult;
5955 }
5956 }
5957 break;
5958
5959 default:
5960 {
5961 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5962 nz_elts += mult * tc;
5963 init_elts += mult * tc;
5964
5965 if (const_from_elts_p && const_p)
5966 const_p
5967 = initializer_constant_valid_p (value,
5968 elt_type,
5969 TYPE_REVERSE_STORAGE_ORDER
5970 (TREE_TYPE (ctor)))
5971 != NULL_TREE;
5972 }
5973 break;
5974 }
5975 }
5976
5977 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5978 num_fields, elt_type))
5979 *p_complete = false;
5980
5981 *p_nz_elts += nz_elts;
5982 *p_init_elts += init_elts;
5983
5984 return const_p;
5985 }
5986
5987 /* Examine CTOR to discover:
5988 * how many scalar fields are set to nonzero values,
5989 and place it in *P_NZ_ELTS;
5990 * how many scalar fields in total are in CTOR,
5991 and place it in *P_ELT_COUNT.
5992 * whether the constructor is complete -- in the sense that every
5993 meaningful byte is explicitly given a value --
5994 and place it in *P_COMPLETE.
5995
5996 Return whether or not CTOR is a valid static constant initializer, the same
5997 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5998
5999 bool
6000 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6001 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6002 {
6003 *p_nz_elts = 0;
6004 *p_init_elts = 0;
6005 *p_complete = true;
6006
6007 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
6008 }
6009
6010 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6011 of which had type LAST_TYPE. Each element was itself a complete
6012 initializer, in the sense that every meaningful byte was explicitly
6013 given a value. Return true if the same is true for the constructor
6014 as a whole. */
6015
6016 bool
6017 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6018 const_tree last_type)
6019 {
6020 if (TREE_CODE (type) == UNION_TYPE
6021 || TREE_CODE (type) == QUAL_UNION_TYPE)
6022 {
6023 if (num_elts == 0)
6024 return false;
6025
6026 gcc_assert (num_elts == 1 && last_type);
6027
6028 /* ??? We could look at each element of the union, and find the
6029 largest element. Which would avoid comparing the size of the
6030 initialized element against any tail padding in the union.
6031 Doesn't seem worth the effort... */
6032 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6033 }
6034
6035 return count_type_elements (type, true) == num_elts;
6036 }
6037
6038 /* Return 1 if EXP contains mostly (3/4) zeros. */
6039
6040 static int
6041 mostly_zeros_p (const_tree exp)
6042 {
6043 if (TREE_CODE (exp) == CONSTRUCTOR)
6044 {
6045 HOST_WIDE_INT nz_elts, init_elts;
6046 bool complete_p;
6047
6048 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6049 return !complete_p || nz_elts < init_elts / 4;
6050 }
6051
6052 return initializer_zerop (exp);
6053 }
6054
6055 /* Return 1 if EXP contains all zeros. */
6056
6057 static int
6058 all_zeros_p (const_tree exp)
6059 {
6060 if (TREE_CODE (exp) == CONSTRUCTOR)
6061 {
6062 HOST_WIDE_INT nz_elts, init_elts;
6063 bool complete_p;
6064
6065 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
6066 return nz_elts == 0;
6067 }
6068
6069 return initializer_zerop (exp);
6070 }
6071 \f
6072 /* Helper function for store_constructor.
6073 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6074 CLEARED is as for store_constructor.
6075 ALIAS_SET is the alias set to use for any stores.
6076 If REVERSE is true, the store is to be done in reverse order.
6077
6078 This provides a recursive shortcut back to store_constructor when it isn't
6079 necessary to go through store_field. This is so that we can pass through
6080 the cleared field to let store_constructor know that we may not have to
6081 clear a substructure if the outer structure has already been cleared. */
6082
6083 static void
6084 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
6085 HOST_WIDE_INT bitpos,
6086 unsigned HOST_WIDE_INT bitregion_start,
6087 unsigned HOST_WIDE_INT bitregion_end,
6088 machine_mode mode,
6089 tree exp, int cleared,
6090 alias_set_type alias_set, bool reverse)
6091 {
6092 if (TREE_CODE (exp) == CONSTRUCTOR
6093 /* We can only call store_constructor recursively if the size and
6094 bit position are on a byte boundary. */
6095 && bitpos % BITS_PER_UNIT == 0
6096 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
6097 /* If we have a nonzero bitpos for a register target, then we just
6098 let store_field do the bitfield handling. This is unlikely to
6099 generate unnecessary clear instructions anyways. */
6100 && (bitpos == 0 || MEM_P (target)))
6101 {
6102 if (MEM_P (target))
6103 target
6104 = adjust_address (target,
6105 GET_MODE (target) == BLKmode
6106 || 0 != (bitpos
6107 % GET_MODE_ALIGNMENT (GET_MODE (target)))
6108 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
6109
6110
6111 /* Update the alias set, if required. */
6112 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6113 && MEM_ALIAS_SET (target) != 0)
6114 {
6115 target = copy_rtx (target);
6116 set_mem_alias_set (target, alias_set);
6117 }
6118
6119 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
6120 reverse);
6121 }
6122 else
6123 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6124 exp, alias_set, false, reverse);
6125 }
6126
6127
6128 /* Returns the number of FIELD_DECLs in TYPE. */
6129
6130 static int
6131 fields_length (const_tree type)
6132 {
6133 tree t = TYPE_FIELDS (type);
6134 int count = 0;
6135
6136 for (; t; t = DECL_CHAIN (t))
6137 if (TREE_CODE (t) == FIELD_DECL)
6138 ++count;
6139
6140 return count;
6141 }
6142
6143
6144 /* Store the value of constructor EXP into the rtx TARGET.
6145 TARGET is either a REG or a MEM; we know it cannot conflict, since
6146 safe_from_p has been called.
6147 CLEARED is true if TARGET is known to have been zero'd.
6148 SIZE is the number of bytes of TARGET we are allowed to modify: this
6149 may not be the same as the size of EXP if we are assigning to a field
6150 which has been packed to exclude padding bits.
6151 If REVERSE is true, the store is to be done in reverse order. */
6152
6153 static void
6154 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
6155 bool reverse)
6156 {
6157 tree type = TREE_TYPE (exp);
6158 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6159 HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0;
6160
6161 switch (TREE_CODE (type))
6162 {
6163 case RECORD_TYPE:
6164 case UNION_TYPE:
6165 case QUAL_UNION_TYPE:
6166 {
6167 unsigned HOST_WIDE_INT idx;
6168 tree field, value;
6169
6170 /* The storage order is specified for every aggregate type. */
6171 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6172
6173 /* If size is zero or the target is already cleared, do nothing. */
6174 if (size == 0 || cleared)
6175 cleared = 1;
6176 /* We either clear the aggregate or indicate the value is dead. */
6177 else if ((TREE_CODE (type) == UNION_TYPE
6178 || TREE_CODE (type) == QUAL_UNION_TYPE)
6179 && ! CONSTRUCTOR_ELTS (exp))
6180 /* If the constructor is empty, clear the union. */
6181 {
6182 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6183 cleared = 1;
6184 }
6185
6186 /* If we are building a static constructor into a register,
6187 set the initial value as zero so we can fold the value into
6188 a constant. But if more than one register is involved,
6189 this probably loses. */
6190 else if (REG_P (target) && TREE_STATIC (exp)
6191 && (GET_MODE_SIZE (GET_MODE (target))
6192 <= REGMODE_NATURAL_SIZE (GET_MODE (target))))
6193 {
6194 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6195 cleared = 1;
6196 }
6197
6198 /* If the constructor has fewer fields than the structure or
6199 if we are initializing the structure to mostly zeros, clear
6200 the whole structure first. Don't do this if TARGET is a
6201 register whose mode size isn't equal to SIZE since
6202 clear_storage can't handle this case. */
6203 else if (size > 0
6204 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6205 || mostly_zeros_p (exp))
6206 && (!REG_P (target)
6207 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6208 == size)))
6209 {
6210 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6211 cleared = 1;
6212 }
6213
6214 if (REG_P (target) && !cleared)
6215 emit_clobber (target);
6216
6217 /* Store each element of the constructor into the
6218 corresponding field of TARGET. */
6219 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6220 {
6221 machine_mode mode;
6222 HOST_WIDE_INT bitsize;
6223 HOST_WIDE_INT bitpos = 0;
6224 tree offset;
6225 rtx to_rtx = target;
6226
6227 /* Just ignore missing fields. We cleared the whole
6228 structure, above, if any fields are missing. */
6229 if (field == 0)
6230 continue;
6231
6232 if (cleared && initializer_zerop (value))
6233 continue;
6234
6235 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6236 bitsize = tree_to_uhwi (DECL_SIZE (field));
6237 else
6238 gcc_unreachable ();
6239
6240 mode = DECL_MODE (field);
6241 if (DECL_BIT_FIELD (field))
6242 mode = VOIDmode;
6243
6244 offset = DECL_FIELD_OFFSET (field);
6245 if (tree_fits_shwi_p (offset)
6246 && tree_fits_shwi_p (bit_position (field)))
6247 {
6248 bitpos = int_bit_position (field);
6249 offset = NULL_TREE;
6250 }
6251 else
6252 gcc_unreachable ();
6253
6254 /* If this initializes a field that is smaller than a
6255 word, at the start of a word, try to widen it to a full
6256 word. This special case allows us to output C++ member
6257 function initializations in a form that the optimizers
6258 can understand. */
6259 if (WORD_REGISTER_OPERATIONS
6260 && REG_P (target)
6261 && bitsize < BITS_PER_WORD
6262 && bitpos % BITS_PER_WORD == 0
6263 && GET_MODE_CLASS (mode) == MODE_INT
6264 && TREE_CODE (value) == INTEGER_CST
6265 && exp_size >= 0
6266 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6267 {
6268 tree type = TREE_TYPE (value);
6269
6270 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6271 {
6272 type = lang_hooks.types.type_for_mode
6273 (word_mode, TYPE_UNSIGNED (type));
6274 value = fold_convert (type, value);
6275 /* Make sure the bits beyond the original bitsize are zero
6276 so that we can correctly avoid extra zeroing stores in
6277 later constructor elements. */
6278 tree bitsize_mask
6279 = wide_int_to_tree (type, wi::mask (bitsize, false,
6280 BITS_PER_WORD));
6281 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6282 }
6283
6284 if (BYTES_BIG_ENDIAN)
6285 value
6286 = fold_build2 (LSHIFT_EXPR, type, value,
6287 build_int_cst (type,
6288 BITS_PER_WORD - bitsize));
6289 bitsize = BITS_PER_WORD;
6290 mode = word_mode;
6291 }
6292
6293 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6294 && DECL_NONADDRESSABLE_P (field))
6295 {
6296 to_rtx = copy_rtx (to_rtx);
6297 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6298 }
6299
6300 store_constructor_field (to_rtx, bitsize, bitpos,
6301 0, bitregion_end, mode,
6302 value, cleared,
6303 get_alias_set (TREE_TYPE (field)),
6304 reverse);
6305 }
6306 break;
6307 }
6308 case ARRAY_TYPE:
6309 {
6310 tree value, index;
6311 unsigned HOST_WIDE_INT i;
6312 int need_to_clear;
6313 tree domain;
6314 tree elttype = TREE_TYPE (type);
6315 int const_bounds_p;
6316 HOST_WIDE_INT minelt = 0;
6317 HOST_WIDE_INT maxelt = 0;
6318
6319 /* The storage order is specified for every aggregate type. */
6320 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6321
6322 domain = TYPE_DOMAIN (type);
6323 const_bounds_p = (TYPE_MIN_VALUE (domain)
6324 && TYPE_MAX_VALUE (domain)
6325 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6326 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6327
6328 /* If we have constant bounds for the range of the type, get them. */
6329 if (const_bounds_p)
6330 {
6331 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6332 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6333 }
6334
6335 /* If the constructor has fewer elements than the array, clear
6336 the whole array first. Similarly if this is static
6337 constructor of a non-BLKmode object. */
6338 if (cleared)
6339 need_to_clear = 0;
6340 else if (REG_P (target) && TREE_STATIC (exp))
6341 need_to_clear = 1;
6342 else
6343 {
6344 unsigned HOST_WIDE_INT idx;
6345 tree index, value;
6346 HOST_WIDE_INT count = 0, zero_count = 0;
6347 need_to_clear = ! const_bounds_p;
6348
6349 /* This loop is a more accurate version of the loop in
6350 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6351 is also needed to check for missing elements. */
6352 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6353 {
6354 HOST_WIDE_INT this_node_count;
6355
6356 if (need_to_clear)
6357 break;
6358
6359 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6360 {
6361 tree lo_index = TREE_OPERAND (index, 0);
6362 tree hi_index = TREE_OPERAND (index, 1);
6363
6364 if (! tree_fits_uhwi_p (lo_index)
6365 || ! tree_fits_uhwi_p (hi_index))
6366 {
6367 need_to_clear = 1;
6368 break;
6369 }
6370
6371 this_node_count = (tree_to_uhwi (hi_index)
6372 - tree_to_uhwi (lo_index) + 1);
6373 }
6374 else
6375 this_node_count = 1;
6376
6377 count += this_node_count;
6378 if (mostly_zeros_p (value))
6379 zero_count += this_node_count;
6380 }
6381
6382 /* Clear the entire array first if there are any missing
6383 elements, or if the incidence of zero elements is >=
6384 75%. */
6385 if (! need_to_clear
6386 && (count < maxelt - minelt + 1
6387 || 4 * zero_count >= 3 * count))
6388 need_to_clear = 1;
6389 }
6390
6391 if (need_to_clear && size > 0)
6392 {
6393 if (REG_P (target))
6394 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6395 else
6396 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6397 cleared = 1;
6398 }
6399
6400 if (!cleared && REG_P (target))
6401 /* Inform later passes that the old value is dead. */
6402 emit_clobber (target);
6403
6404 /* Store each element of the constructor into the
6405 corresponding element of TARGET, determined by counting the
6406 elements. */
6407 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6408 {
6409 machine_mode mode;
6410 HOST_WIDE_INT bitsize;
6411 HOST_WIDE_INT bitpos;
6412 rtx xtarget = target;
6413
6414 if (cleared && initializer_zerop (value))
6415 continue;
6416
6417 mode = TYPE_MODE (elttype);
6418 if (mode == BLKmode)
6419 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6420 ? tree_to_uhwi (TYPE_SIZE (elttype))
6421 : -1);
6422 else
6423 bitsize = GET_MODE_BITSIZE (mode);
6424
6425 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6426 {
6427 tree lo_index = TREE_OPERAND (index, 0);
6428 tree hi_index = TREE_OPERAND (index, 1);
6429 rtx index_r, pos_rtx;
6430 HOST_WIDE_INT lo, hi, count;
6431 tree position;
6432
6433 /* If the range is constant and "small", unroll the loop. */
6434 if (const_bounds_p
6435 && tree_fits_shwi_p (lo_index)
6436 && tree_fits_shwi_p (hi_index)
6437 && (lo = tree_to_shwi (lo_index),
6438 hi = tree_to_shwi (hi_index),
6439 count = hi - lo + 1,
6440 (!MEM_P (target)
6441 || count <= 2
6442 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6443 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6444 <= 40 * 8)))))
6445 {
6446 lo -= minelt; hi -= minelt;
6447 for (; lo <= hi; lo++)
6448 {
6449 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6450
6451 if (MEM_P (target)
6452 && !MEM_KEEP_ALIAS_SET_P (target)
6453 && TREE_CODE (type) == ARRAY_TYPE
6454 && TYPE_NONALIASED_COMPONENT (type))
6455 {
6456 target = copy_rtx (target);
6457 MEM_KEEP_ALIAS_SET_P (target) = 1;
6458 }
6459
6460 store_constructor_field
6461 (target, bitsize, bitpos, 0, bitregion_end,
6462 mode, value, cleared,
6463 get_alias_set (elttype), reverse);
6464 }
6465 }
6466 else
6467 {
6468 rtx_code_label *loop_start = gen_label_rtx ();
6469 rtx_code_label *loop_end = gen_label_rtx ();
6470 tree exit_cond;
6471
6472 expand_normal (hi_index);
6473
6474 index = build_decl (EXPR_LOCATION (exp),
6475 VAR_DECL, NULL_TREE, domain);
6476 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6477 SET_DECL_RTL (index, index_r);
6478 store_expr (lo_index, index_r, 0, false, reverse);
6479
6480 /* Build the head of the loop. */
6481 do_pending_stack_adjust ();
6482 emit_label (loop_start);
6483
6484 /* Assign value to element index. */
6485 position =
6486 fold_convert (ssizetype,
6487 fold_build2 (MINUS_EXPR,
6488 TREE_TYPE (index),
6489 index,
6490 TYPE_MIN_VALUE (domain)));
6491
6492 position =
6493 size_binop (MULT_EXPR, position,
6494 fold_convert (ssizetype,
6495 TYPE_SIZE_UNIT (elttype)));
6496
6497 pos_rtx = expand_normal (position);
6498 xtarget = offset_address (target, pos_rtx,
6499 highest_pow2_factor (position));
6500 xtarget = adjust_address (xtarget, mode, 0);
6501 if (TREE_CODE (value) == CONSTRUCTOR)
6502 store_constructor (value, xtarget, cleared,
6503 bitsize / BITS_PER_UNIT, reverse);
6504 else
6505 store_expr (value, xtarget, 0, false, reverse);
6506
6507 /* Generate a conditional jump to exit the loop. */
6508 exit_cond = build2 (LT_EXPR, integer_type_node,
6509 index, hi_index);
6510 jumpif (exit_cond, loop_end,
6511 profile_probability::uninitialized ());
6512
6513 /* Update the loop counter, and jump to the head of
6514 the loop. */
6515 expand_assignment (index,
6516 build2 (PLUS_EXPR, TREE_TYPE (index),
6517 index, integer_one_node),
6518 false);
6519
6520 emit_jump (loop_start);
6521
6522 /* Build the end of the loop. */
6523 emit_label (loop_end);
6524 }
6525 }
6526 else if ((index != 0 && ! tree_fits_shwi_p (index))
6527 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6528 {
6529 tree position;
6530
6531 if (index == 0)
6532 index = ssize_int (1);
6533
6534 if (minelt)
6535 index = fold_convert (ssizetype,
6536 fold_build2 (MINUS_EXPR,
6537 TREE_TYPE (index),
6538 index,
6539 TYPE_MIN_VALUE (domain)));
6540
6541 position =
6542 size_binop (MULT_EXPR, index,
6543 fold_convert (ssizetype,
6544 TYPE_SIZE_UNIT (elttype)));
6545 xtarget = offset_address (target,
6546 expand_normal (position),
6547 highest_pow2_factor (position));
6548 xtarget = adjust_address (xtarget, mode, 0);
6549 store_expr (value, xtarget, 0, false, reverse);
6550 }
6551 else
6552 {
6553 if (index != 0)
6554 bitpos = ((tree_to_shwi (index) - minelt)
6555 * tree_to_uhwi (TYPE_SIZE (elttype)));
6556 else
6557 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6558
6559 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6560 && TREE_CODE (type) == ARRAY_TYPE
6561 && TYPE_NONALIASED_COMPONENT (type))
6562 {
6563 target = copy_rtx (target);
6564 MEM_KEEP_ALIAS_SET_P (target) = 1;
6565 }
6566 store_constructor_field (target, bitsize, bitpos, 0,
6567 bitregion_end, mode, value,
6568 cleared, get_alias_set (elttype),
6569 reverse);
6570 }
6571 }
6572 break;
6573 }
6574
6575 case VECTOR_TYPE:
6576 {
6577 unsigned HOST_WIDE_INT idx;
6578 constructor_elt *ce;
6579 int i;
6580 int need_to_clear;
6581 int icode = CODE_FOR_nothing;
6582 tree elttype = TREE_TYPE (type);
6583 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6584 machine_mode eltmode = TYPE_MODE (elttype);
6585 HOST_WIDE_INT bitsize;
6586 HOST_WIDE_INT bitpos;
6587 rtvec vector = NULL;
6588 unsigned n_elts;
6589 alias_set_type alias;
6590 bool vec_vec_init_p = false;
6591
6592 gcc_assert (eltmode != BLKmode);
6593
6594 n_elts = TYPE_VECTOR_SUBPARTS (type);
6595 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6596 {
6597 machine_mode mode = GET_MODE (target);
6598 machine_mode emode = eltmode;
6599
6600 if (CONSTRUCTOR_NELTS (exp)
6601 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6602 == VECTOR_TYPE))
6603 {
6604 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6605 gcc_assert (CONSTRUCTOR_NELTS (exp) * TYPE_VECTOR_SUBPARTS (etype)
6606 == n_elts);
6607 emode = TYPE_MODE (etype);
6608 }
6609 icode = (int) convert_optab_handler (vec_init_optab, mode, emode);
6610 if (icode != CODE_FOR_nothing)
6611 {
6612 unsigned int i, n = n_elts;
6613
6614 if (emode != eltmode)
6615 {
6616 n = CONSTRUCTOR_NELTS (exp);
6617 vec_vec_init_p = true;
6618 }
6619 vector = rtvec_alloc (n);
6620 for (i = 0; i < n; i++)
6621 RTVEC_ELT (vector, i) = CONST0_RTX (emode);
6622 }
6623 }
6624
6625 /* If the constructor has fewer elements than the vector,
6626 clear the whole array first. Similarly if this is static
6627 constructor of a non-BLKmode object. */
6628 if (cleared)
6629 need_to_clear = 0;
6630 else if (REG_P (target) && TREE_STATIC (exp))
6631 need_to_clear = 1;
6632 else
6633 {
6634 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6635 tree value;
6636
6637 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6638 {
6639 tree sz = TYPE_SIZE (TREE_TYPE (value));
6640 int n_elts_here
6641 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6642 TYPE_SIZE (elttype)));
6643
6644 count += n_elts_here;
6645 if (mostly_zeros_p (value))
6646 zero_count += n_elts_here;
6647 }
6648
6649 /* Clear the entire vector first if there are any missing elements,
6650 or if the incidence of zero elements is >= 75%. */
6651 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6652 }
6653
6654 if (need_to_clear && size > 0 && !vector)
6655 {
6656 if (REG_P (target))
6657 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6658 else
6659 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6660 cleared = 1;
6661 }
6662
6663 /* Inform later passes that the old value is dead. */
6664 if (!cleared && !vector && REG_P (target))
6665 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6666
6667 if (MEM_P (target))
6668 alias = MEM_ALIAS_SET (target);
6669 else
6670 alias = get_alias_set (elttype);
6671
6672 /* Store each element of the constructor into the corresponding
6673 element of TARGET, determined by counting the elements. */
6674 for (idx = 0, i = 0;
6675 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6676 idx++, i += bitsize / elt_size)
6677 {
6678 HOST_WIDE_INT eltpos;
6679 tree value = ce->value;
6680
6681 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6682 if (cleared && initializer_zerop (value))
6683 continue;
6684
6685 if (ce->index)
6686 eltpos = tree_to_uhwi (ce->index);
6687 else
6688 eltpos = i;
6689
6690 if (vector)
6691 {
6692 if (vec_vec_init_p)
6693 {
6694 gcc_assert (ce->index == NULL_TREE);
6695 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6696 eltpos = idx;
6697 }
6698 else
6699 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6700 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6701 }
6702 else
6703 {
6704 machine_mode value_mode
6705 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6706 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6707 bitpos = eltpos * elt_size;
6708 store_constructor_field (target, bitsize, bitpos, 0,
6709 bitregion_end, value_mode,
6710 value, cleared, alias, reverse);
6711 }
6712 }
6713
6714 if (vector)
6715 emit_insn (GEN_FCN (icode) (target,
6716 gen_rtx_PARALLEL (GET_MODE (target),
6717 vector)));
6718 break;
6719 }
6720
6721 default:
6722 gcc_unreachable ();
6723 }
6724 }
6725
6726 /* Store the value of EXP (an expression tree)
6727 into a subfield of TARGET which has mode MODE and occupies
6728 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6729 If MODE is VOIDmode, it means that we are storing into a bit-field.
6730
6731 BITREGION_START is bitpos of the first bitfield in this region.
6732 BITREGION_END is the bitpos of the ending bitfield in this region.
6733 These two fields are 0, if the C++ memory model does not apply,
6734 or we are not interested in keeping track of bitfield regions.
6735
6736 Always return const0_rtx unless we have something particular to
6737 return.
6738
6739 ALIAS_SET is the alias set for the destination. This value will
6740 (in general) be different from that for TARGET, since TARGET is a
6741 reference to the containing structure.
6742
6743 If NONTEMPORAL is true, try generating a nontemporal store.
6744
6745 If REVERSE is true, the store is to be done in reverse order. */
6746
6747 static rtx
6748 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6749 unsigned HOST_WIDE_INT bitregion_start,
6750 unsigned HOST_WIDE_INT bitregion_end,
6751 machine_mode mode, tree exp,
6752 alias_set_type alias_set, bool nontemporal, bool reverse)
6753 {
6754 if (TREE_CODE (exp) == ERROR_MARK)
6755 return const0_rtx;
6756
6757 /* If we have nothing to store, do nothing unless the expression has
6758 side-effects. Don't do that for zero sized addressable lhs of
6759 calls. */
6760 if (bitsize == 0
6761 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6762 || TREE_CODE (exp) != CALL_EXPR))
6763 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6764
6765 if (GET_CODE (target) == CONCAT)
6766 {
6767 /* We're storing into a struct containing a single __complex. */
6768
6769 gcc_assert (!bitpos);
6770 return store_expr (exp, target, 0, nontemporal, reverse);
6771 }
6772
6773 /* If the structure is in a register or if the component
6774 is a bit field, we cannot use addressing to access it.
6775 Use bit-field techniques or SUBREG to store in it. */
6776
6777 if (mode == VOIDmode
6778 || (mode != BLKmode && ! direct_store[(int) mode]
6779 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6780 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6781 || REG_P (target)
6782 || GET_CODE (target) == SUBREG
6783 /* If the field isn't aligned enough to store as an ordinary memref,
6784 store it as a bit field. */
6785 || (mode != BLKmode
6786 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6787 || bitpos % GET_MODE_ALIGNMENT (mode))
6788 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
6789 || (bitpos % BITS_PER_UNIT != 0)))
6790 || (bitsize >= 0 && mode != BLKmode
6791 && GET_MODE_BITSIZE (mode) > bitsize)
6792 /* If the RHS and field are a constant size and the size of the
6793 RHS isn't the same size as the bitfield, we must use bitfield
6794 operations. */
6795 || (bitsize >= 0
6796 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6797 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
6798 /* Except for initialization of full bytes from a CONSTRUCTOR, which
6799 we will handle specially below. */
6800 && !(TREE_CODE (exp) == CONSTRUCTOR
6801 && bitsize % BITS_PER_UNIT == 0)
6802 /* And except for bitwise copying of TREE_ADDRESSABLE types,
6803 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
6804 includes some extra padding. store_expr / expand_expr will in
6805 that case call get_inner_reference that will have the bitsize
6806 we check here and thus the block move will not clobber the
6807 padding that shouldn't be clobbered. In the future we could
6808 replace the TREE_ADDRESSABLE check with a check that
6809 get_base_address needs to live in memory. */
6810 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
6811 || TREE_CODE (exp) != COMPONENT_REF
6812 || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
6813 || (bitsize % BITS_PER_UNIT != 0)
6814 || (bitpos % BITS_PER_UNIT != 0)
6815 || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
6816 != 0)))
6817 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6818 decl we must use bitfield operations. */
6819 || (bitsize >= 0
6820 && TREE_CODE (exp) == MEM_REF
6821 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6822 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6823 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6824 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6825 {
6826 rtx temp;
6827 gimple *nop_def;
6828
6829 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6830 implies a mask operation. If the precision is the same size as
6831 the field we're storing into, that mask is redundant. This is
6832 particularly common with bit field assignments generated by the
6833 C front end. */
6834 nop_def = get_def_for_expr (exp, NOP_EXPR);
6835 if (nop_def)
6836 {
6837 tree type = TREE_TYPE (exp);
6838 if (INTEGRAL_TYPE_P (type)
6839 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6840 && bitsize == TYPE_PRECISION (type))
6841 {
6842 tree op = gimple_assign_rhs1 (nop_def);
6843 type = TREE_TYPE (op);
6844 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6845 exp = op;
6846 }
6847 }
6848
6849 temp = expand_normal (exp);
6850
6851 /* Handle calls that return values in multiple non-contiguous locations.
6852 The Irix 6 ABI has examples of this. */
6853 if (GET_CODE (temp) == PARALLEL)
6854 {
6855 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6856 scalar_int_mode temp_mode
6857 = smallest_int_mode_for_size (size * BITS_PER_UNIT);
6858 rtx temp_target = gen_reg_rtx (temp_mode);
6859 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6860 temp = temp_target;
6861 }
6862
6863 /* Handle calls that return BLKmode values in registers. */
6864 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6865 {
6866 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6867 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6868 temp = temp_target;
6869 }
6870
6871 /* If the value has aggregate type and an integral mode then, if BITSIZE
6872 is narrower than this mode and this is for big-endian data, we first
6873 need to put the value into the low-order bits for store_bit_field,
6874 except when MODE is BLKmode and BITSIZE larger than the word size
6875 (see the handling of fields larger than a word in store_bit_field).
6876 Moreover, the field may be not aligned on a byte boundary; in this
6877 case, if it has reverse storage order, it needs to be accessed as a
6878 scalar field with reverse storage order and we must first put the
6879 value into target order. */
6880 scalar_int_mode temp_mode;
6881 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
6882 && is_int_mode (GET_MODE (temp), &temp_mode))
6883 {
6884 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
6885
6886 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
6887
6888 if (reverse)
6889 temp = flip_storage_order (temp_mode, temp);
6890
6891 if (bitsize < size
6892 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
6893 && !(mode == BLKmode && bitsize > BITS_PER_WORD))
6894 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
6895 size - bitsize, NULL_RTX, 1);
6896 }
6897
6898 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6899 if (mode != VOIDmode && mode != BLKmode
6900 && mode != TYPE_MODE (TREE_TYPE (exp)))
6901 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6902
6903 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
6904 and BITPOS must be aligned on a byte boundary. If so, we simply do
6905 a block copy. Likewise for a BLKmode-like TARGET. */
6906 if (GET_MODE (temp) == BLKmode
6907 && (GET_MODE (target) == BLKmode
6908 || (MEM_P (target)
6909 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6910 && (bitpos % BITS_PER_UNIT) == 0
6911 && (bitsize % BITS_PER_UNIT) == 0)))
6912 {
6913 gcc_assert (MEM_P (target) && MEM_P (temp)
6914 && (bitpos % BITS_PER_UNIT) == 0);
6915
6916 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6917 emit_block_move (target, temp,
6918 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6919 / BITS_PER_UNIT),
6920 BLOCK_OP_NORMAL);
6921
6922 return const0_rtx;
6923 }
6924
6925 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
6926 word size, we need to load the value (see again store_bit_field). */
6927 if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD)
6928 {
6929 scalar_int_mode temp_mode = smallest_int_mode_for_size (bitsize);
6930 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
6931 temp_mode, false, NULL);
6932 }
6933
6934 /* Store the value in the bitfield. */
6935 store_bit_field (target, bitsize, bitpos,
6936 bitregion_start, bitregion_end,
6937 mode, temp, reverse);
6938
6939 return const0_rtx;
6940 }
6941 else
6942 {
6943 /* Now build a reference to just the desired component. */
6944 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6945
6946 if (to_rtx == target)
6947 to_rtx = copy_rtx (to_rtx);
6948
6949 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6950 set_mem_alias_set (to_rtx, alias_set);
6951
6952 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
6953 into a target smaller than its type; handle that case now. */
6954 if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
6955 {
6956 gcc_assert (bitsize % BITS_PER_UNIT == 0);
6957 store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
6958 return to_rtx;
6959 }
6960
6961 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
6962 }
6963 }
6964 \f
6965 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6966 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6967 codes and find the ultimate containing object, which we return.
6968
6969 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6970 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
6971 storage order of the field.
6972 If the position of the field is variable, we store a tree
6973 giving the variable offset (in units) in *POFFSET.
6974 This offset is in addition to the bit position.
6975 If the position is not variable, we store 0 in *POFFSET.
6976
6977 If any of the extraction expressions is volatile,
6978 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6979
6980 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6981 Otherwise, it is a mode that can be used to access the field.
6982
6983 If the field describes a variable-sized object, *PMODE is set to
6984 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6985 this case, but the address of the object can be found. */
6986
6987 tree
6988 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6989 HOST_WIDE_INT *pbitpos, tree *poffset,
6990 machine_mode *pmode, int *punsignedp,
6991 int *preversep, int *pvolatilep)
6992 {
6993 tree size_tree = 0;
6994 machine_mode mode = VOIDmode;
6995 bool blkmode_bitfield = false;
6996 tree offset = size_zero_node;
6997 offset_int bit_offset = 0;
6998
6999 /* First get the mode, signedness, storage order and size. We do this from
7000 just the outermost expression. */
7001 *pbitsize = -1;
7002 if (TREE_CODE (exp) == COMPONENT_REF)
7003 {
7004 tree field = TREE_OPERAND (exp, 1);
7005 size_tree = DECL_SIZE (field);
7006 if (flag_strict_volatile_bitfields > 0
7007 && TREE_THIS_VOLATILE (exp)
7008 && DECL_BIT_FIELD_TYPE (field)
7009 && DECL_MODE (field) != BLKmode)
7010 /* Volatile bitfields should be accessed in the mode of the
7011 field's type, not the mode computed based on the bit
7012 size. */
7013 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7014 else if (!DECL_BIT_FIELD (field))
7015 mode = DECL_MODE (field);
7016 else if (DECL_MODE (field) == BLKmode)
7017 blkmode_bitfield = true;
7018
7019 *punsignedp = DECL_UNSIGNED (field);
7020 }
7021 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7022 {
7023 size_tree = TREE_OPERAND (exp, 1);
7024 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7025 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7026
7027 /* For vector types, with the correct size of access, use the mode of
7028 inner type. */
7029 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7030 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7031 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7032 mode = TYPE_MODE (TREE_TYPE (exp));
7033 }
7034 else
7035 {
7036 mode = TYPE_MODE (TREE_TYPE (exp));
7037 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7038
7039 if (mode == BLKmode)
7040 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7041 else
7042 *pbitsize = GET_MODE_BITSIZE (mode);
7043 }
7044
7045 if (size_tree != 0)
7046 {
7047 if (! tree_fits_uhwi_p (size_tree))
7048 mode = BLKmode, *pbitsize = -1;
7049 else
7050 *pbitsize = tree_to_uhwi (size_tree);
7051 }
7052
7053 *preversep = reverse_storage_order_for_component_p (exp);
7054
7055 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7056 and find the ultimate containing object. */
7057 while (1)
7058 {
7059 switch (TREE_CODE (exp))
7060 {
7061 case BIT_FIELD_REF:
7062 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
7063 break;
7064
7065 case COMPONENT_REF:
7066 {
7067 tree field = TREE_OPERAND (exp, 1);
7068 tree this_offset = component_ref_field_offset (exp);
7069
7070 /* If this field hasn't been filled in yet, don't go past it.
7071 This should only happen when folding expressions made during
7072 type construction. */
7073 if (this_offset == 0)
7074 break;
7075
7076 offset = size_binop (PLUS_EXPR, offset, this_offset);
7077 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
7078
7079 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7080 }
7081 break;
7082
7083 case ARRAY_REF:
7084 case ARRAY_RANGE_REF:
7085 {
7086 tree index = TREE_OPERAND (exp, 1);
7087 tree low_bound = array_ref_low_bound (exp);
7088 tree unit_size = array_ref_element_size (exp);
7089
7090 /* We assume all arrays have sizes that are a multiple of a byte.
7091 First subtract the lower bound, if any, in the type of the
7092 index, then convert to sizetype and multiply by the size of
7093 the array element. */
7094 if (! integer_zerop (low_bound))
7095 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7096 index, low_bound);
7097
7098 offset = size_binop (PLUS_EXPR, offset,
7099 size_binop (MULT_EXPR,
7100 fold_convert (sizetype, index),
7101 unit_size));
7102 }
7103 break;
7104
7105 case REALPART_EXPR:
7106 break;
7107
7108 case IMAGPART_EXPR:
7109 bit_offset += *pbitsize;
7110 break;
7111
7112 case VIEW_CONVERT_EXPR:
7113 break;
7114
7115 case MEM_REF:
7116 /* Hand back the decl for MEM[&decl, off]. */
7117 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7118 {
7119 tree off = TREE_OPERAND (exp, 1);
7120 if (!integer_zerop (off))
7121 {
7122 offset_int boff, coff = mem_ref_offset (exp);
7123 boff = coff << LOG2_BITS_PER_UNIT;
7124 bit_offset += boff;
7125 }
7126 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7127 }
7128 goto done;
7129
7130 default:
7131 goto done;
7132 }
7133
7134 /* If any reference in the chain is volatile, the effect is volatile. */
7135 if (TREE_THIS_VOLATILE (exp))
7136 *pvolatilep = 1;
7137
7138 exp = TREE_OPERAND (exp, 0);
7139 }
7140 done:
7141
7142 /* If OFFSET is constant, see if we can return the whole thing as a
7143 constant bit position. Make sure to handle overflow during
7144 this conversion. */
7145 if (TREE_CODE (offset) == INTEGER_CST)
7146 {
7147 offset_int tem = wi::sext (wi::to_offset (offset),
7148 TYPE_PRECISION (sizetype));
7149 tem <<= LOG2_BITS_PER_UNIT;
7150 tem += bit_offset;
7151 if (wi::fits_shwi_p (tem))
7152 {
7153 *pbitpos = tem.to_shwi ();
7154 *poffset = offset = NULL_TREE;
7155 }
7156 }
7157
7158 /* Otherwise, split it up. */
7159 if (offset)
7160 {
7161 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7162 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
7163 {
7164 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
7165 offset_int tem = wi::bit_and_not (bit_offset, mask);
7166 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
7167 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
7168 bit_offset -= tem;
7169 tem >>= LOG2_BITS_PER_UNIT;
7170 offset = size_binop (PLUS_EXPR, offset,
7171 wide_int_to_tree (sizetype, tem));
7172 }
7173
7174 *pbitpos = bit_offset.to_shwi ();
7175 *poffset = offset;
7176 }
7177
7178 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7179 if (mode == VOIDmode
7180 && blkmode_bitfield
7181 && (*pbitpos % BITS_PER_UNIT) == 0
7182 && (*pbitsize % BITS_PER_UNIT) == 0)
7183 *pmode = BLKmode;
7184 else
7185 *pmode = mode;
7186
7187 return exp;
7188 }
7189
7190 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7191
7192 static unsigned HOST_WIDE_INT
7193 target_align (const_tree target)
7194 {
7195 /* We might have a chain of nested references with intermediate misaligning
7196 bitfields components, so need to recurse to find out. */
7197
7198 unsigned HOST_WIDE_INT this_align, outer_align;
7199
7200 switch (TREE_CODE (target))
7201 {
7202 case BIT_FIELD_REF:
7203 return 1;
7204
7205 case COMPONENT_REF:
7206 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7207 outer_align = target_align (TREE_OPERAND (target, 0));
7208 return MIN (this_align, outer_align);
7209
7210 case ARRAY_REF:
7211 case ARRAY_RANGE_REF:
7212 this_align = TYPE_ALIGN (TREE_TYPE (target));
7213 outer_align = target_align (TREE_OPERAND (target, 0));
7214 return MIN (this_align, outer_align);
7215
7216 CASE_CONVERT:
7217 case NON_LVALUE_EXPR:
7218 case VIEW_CONVERT_EXPR:
7219 this_align = TYPE_ALIGN (TREE_TYPE (target));
7220 outer_align = target_align (TREE_OPERAND (target, 0));
7221 return MAX (this_align, outer_align);
7222
7223 default:
7224 return TYPE_ALIGN (TREE_TYPE (target));
7225 }
7226 }
7227
7228 \f
7229 /* Given an rtx VALUE that may contain additions and multiplications, return
7230 an equivalent value that just refers to a register, memory, or constant.
7231 This is done by generating instructions to perform the arithmetic and
7232 returning a pseudo-register containing the value.
7233
7234 The returned value may be a REG, SUBREG, MEM or constant. */
7235
7236 rtx
7237 force_operand (rtx value, rtx target)
7238 {
7239 rtx op1, op2;
7240 /* Use subtarget as the target for operand 0 of a binary operation. */
7241 rtx subtarget = get_subtarget (target);
7242 enum rtx_code code = GET_CODE (value);
7243
7244 /* Check for subreg applied to an expression produced by loop optimizer. */
7245 if (code == SUBREG
7246 && !REG_P (SUBREG_REG (value))
7247 && !MEM_P (SUBREG_REG (value)))
7248 {
7249 value
7250 = simplify_gen_subreg (GET_MODE (value),
7251 force_reg (GET_MODE (SUBREG_REG (value)),
7252 force_operand (SUBREG_REG (value),
7253 NULL_RTX)),
7254 GET_MODE (SUBREG_REG (value)),
7255 SUBREG_BYTE (value));
7256 code = GET_CODE (value);
7257 }
7258
7259 /* Check for a PIC address load. */
7260 if ((code == PLUS || code == MINUS)
7261 && XEXP (value, 0) == pic_offset_table_rtx
7262 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7263 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7264 || GET_CODE (XEXP (value, 1)) == CONST))
7265 {
7266 if (!subtarget)
7267 subtarget = gen_reg_rtx (GET_MODE (value));
7268 emit_move_insn (subtarget, value);
7269 return subtarget;
7270 }
7271
7272 if (ARITHMETIC_P (value))
7273 {
7274 op2 = XEXP (value, 1);
7275 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7276 subtarget = 0;
7277 if (code == MINUS && CONST_INT_P (op2))
7278 {
7279 code = PLUS;
7280 op2 = negate_rtx (GET_MODE (value), op2);
7281 }
7282
7283 /* Check for an addition with OP2 a constant integer and our first
7284 operand a PLUS of a virtual register and something else. In that
7285 case, we want to emit the sum of the virtual register and the
7286 constant first and then add the other value. This allows virtual
7287 register instantiation to simply modify the constant rather than
7288 creating another one around this addition. */
7289 if (code == PLUS && CONST_INT_P (op2)
7290 && GET_CODE (XEXP (value, 0)) == PLUS
7291 && REG_P (XEXP (XEXP (value, 0), 0))
7292 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7293 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7294 {
7295 rtx temp = expand_simple_binop (GET_MODE (value), code,
7296 XEXP (XEXP (value, 0), 0), op2,
7297 subtarget, 0, OPTAB_LIB_WIDEN);
7298 return expand_simple_binop (GET_MODE (value), code, temp,
7299 force_operand (XEXP (XEXP (value,
7300 0), 1), 0),
7301 target, 0, OPTAB_LIB_WIDEN);
7302 }
7303
7304 op1 = force_operand (XEXP (value, 0), subtarget);
7305 op2 = force_operand (op2, NULL_RTX);
7306 switch (code)
7307 {
7308 case MULT:
7309 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7310 case DIV:
7311 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7312 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7313 target, 1, OPTAB_LIB_WIDEN);
7314 else
7315 return expand_divmod (0,
7316 FLOAT_MODE_P (GET_MODE (value))
7317 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7318 GET_MODE (value), op1, op2, target, 0);
7319 case MOD:
7320 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7321 target, 0);
7322 case UDIV:
7323 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7324 target, 1);
7325 case UMOD:
7326 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7327 target, 1);
7328 case ASHIFTRT:
7329 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7330 target, 0, OPTAB_LIB_WIDEN);
7331 default:
7332 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7333 target, 1, OPTAB_LIB_WIDEN);
7334 }
7335 }
7336 if (UNARY_P (value))
7337 {
7338 if (!target)
7339 target = gen_reg_rtx (GET_MODE (value));
7340 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7341 switch (code)
7342 {
7343 case ZERO_EXTEND:
7344 case SIGN_EXTEND:
7345 case TRUNCATE:
7346 case FLOAT_EXTEND:
7347 case FLOAT_TRUNCATE:
7348 convert_move (target, op1, code == ZERO_EXTEND);
7349 return target;
7350
7351 case FIX:
7352 case UNSIGNED_FIX:
7353 expand_fix (target, op1, code == UNSIGNED_FIX);
7354 return target;
7355
7356 case FLOAT:
7357 case UNSIGNED_FLOAT:
7358 expand_float (target, op1, code == UNSIGNED_FLOAT);
7359 return target;
7360
7361 default:
7362 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7363 }
7364 }
7365
7366 #ifdef INSN_SCHEDULING
7367 /* On machines that have insn scheduling, we want all memory reference to be
7368 explicit, so we need to deal with such paradoxical SUBREGs. */
7369 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7370 value
7371 = simplify_gen_subreg (GET_MODE (value),
7372 force_reg (GET_MODE (SUBREG_REG (value)),
7373 force_operand (SUBREG_REG (value),
7374 NULL_RTX)),
7375 GET_MODE (SUBREG_REG (value)),
7376 SUBREG_BYTE (value));
7377 #endif
7378
7379 return value;
7380 }
7381 \f
7382 /* Subroutine of expand_expr: return nonzero iff there is no way that
7383 EXP can reference X, which is being modified. TOP_P is nonzero if this
7384 call is going to be used to determine whether we need a temporary
7385 for EXP, as opposed to a recursive call to this function.
7386
7387 It is always safe for this routine to return zero since it merely
7388 searches for optimization opportunities. */
7389
7390 int
7391 safe_from_p (const_rtx x, tree exp, int top_p)
7392 {
7393 rtx exp_rtl = 0;
7394 int i, nops;
7395
7396 if (x == 0
7397 /* If EXP has varying size, we MUST use a target since we currently
7398 have no way of allocating temporaries of variable size
7399 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7400 So we assume here that something at a higher level has prevented a
7401 clash. This is somewhat bogus, but the best we can do. Only
7402 do this when X is BLKmode and when we are at the top level. */
7403 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7404 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7405 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7406 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7407 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7408 != INTEGER_CST)
7409 && GET_MODE (x) == BLKmode)
7410 /* If X is in the outgoing argument area, it is always safe. */
7411 || (MEM_P (x)
7412 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7413 || (GET_CODE (XEXP (x, 0)) == PLUS
7414 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7415 return 1;
7416
7417 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7418 find the underlying pseudo. */
7419 if (GET_CODE (x) == SUBREG)
7420 {
7421 x = SUBREG_REG (x);
7422 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7423 return 0;
7424 }
7425
7426 /* Now look at our tree code and possibly recurse. */
7427 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7428 {
7429 case tcc_declaration:
7430 exp_rtl = DECL_RTL_IF_SET (exp);
7431 break;
7432
7433 case tcc_constant:
7434 return 1;
7435
7436 case tcc_exceptional:
7437 if (TREE_CODE (exp) == TREE_LIST)
7438 {
7439 while (1)
7440 {
7441 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7442 return 0;
7443 exp = TREE_CHAIN (exp);
7444 if (!exp)
7445 return 1;
7446 if (TREE_CODE (exp) != TREE_LIST)
7447 return safe_from_p (x, exp, 0);
7448 }
7449 }
7450 else if (TREE_CODE (exp) == CONSTRUCTOR)
7451 {
7452 constructor_elt *ce;
7453 unsigned HOST_WIDE_INT idx;
7454
7455 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7456 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7457 || !safe_from_p (x, ce->value, 0))
7458 return 0;
7459 return 1;
7460 }
7461 else if (TREE_CODE (exp) == ERROR_MARK)
7462 return 1; /* An already-visited SAVE_EXPR? */
7463 else
7464 return 0;
7465
7466 case tcc_statement:
7467 /* The only case we look at here is the DECL_INITIAL inside a
7468 DECL_EXPR. */
7469 return (TREE_CODE (exp) != DECL_EXPR
7470 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7471 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7472 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7473
7474 case tcc_binary:
7475 case tcc_comparison:
7476 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7477 return 0;
7478 /* Fall through. */
7479
7480 case tcc_unary:
7481 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7482
7483 case tcc_expression:
7484 case tcc_reference:
7485 case tcc_vl_exp:
7486 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7487 the expression. If it is set, we conflict iff we are that rtx or
7488 both are in memory. Otherwise, we check all operands of the
7489 expression recursively. */
7490
7491 switch (TREE_CODE (exp))
7492 {
7493 case ADDR_EXPR:
7494 /* If the operand is static or we are static, we can't conflict.
7495 Likewise if we don't conflict with the operand at all. */
7496 if (staticp (TREE_OPERAND (exp, 0))
7497 || TREE_STATIC (exp)
7498 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7499 return 1;
7500
7501 /* Otherwise, the only way this can conflict is if we are taking
7502 the address of a DECL a that address if part of X, which is
7503 very rare. */
7504 exp = TREE_OPERAND (exp, 0);
7505 if (DECL_P (exp))
7506 {
7507 if (!DECL_RTL_SET_P (exp)
7508 || !MEM_P (DECL_RTL (exp)))
7509 return 0;
7510 else
7511 exp_rtl = XEXP (DECL_RTL (exp), 0);
7512 }
7513 break;
7514
7515 case MEM_REF:
7516 if (MEM_P (x)
7517 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7518 get_alias_set (exp)))
7519 return 0;
7520 break;
7521
7522 case CALL_EXPR:
7523 /* Assume that the call will clobber all hard registers and
7524 all of memory. */
7525 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7526 || MEM_P (x))
7527 return 0;
7528 break;
7529
7530 case WITH_CLEANUP_EXPR:
7531 case CLEANUP_POINT_EXPR:
7532 /* Lowered by gimplify.c. */
7533 gcc_unreachable ();
7534
7535 case SAVE_EXPR:
7536 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7537
7538 default:
7539 break;
7540 }
7541
7542 /* If we have an rtx, we do not need to scan our operands. */
7543 if (exp_rtl)
7544 break;
7545
7546 nops = TREE_OPERAND_LENGTH (exp);
7547 for (i = 0; i < nops; i++)
7548 if (TREE_OPERAND (exp, i) != 0
7549 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7550 return 0;
7551
7552 break;
7553
7554 case tcc_type:
7555 /* Should never get a type here. */
7556 gcc_unreachable ();
7557 }
7558
7559 /* If we have an rtl, find any enclosed object. Then see if we conflict
7560 with it. */
7561 if (exp_rtl)
7562 {
7563 if (GET_CODE (exp_rtl) == SUBREG)
7564 {
7565 exp_rtl = SUBREG_REG (exp_rtl);
7566 if (REG_P (exp_rtl)
7567 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7568 return 0;
7569 }
7570
7571 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7572 are memory and they conflict. */
7573 return ! (rtx_equal_p (x, exp_rtl)
7574 || (MEM_P (x) && MEM_P (exp_rtl)
7575 && true_dependence (exp_rtl, VOIDmode, x)));
7576 }
7577
7578 /* If we reach here, it is safe. */
7579 return 1;
7580 }
7581
7582 \f
7583 /* Return the highest power of two that EXP is known to be a multiple of.
7584 This is used in updating alignment of MEMs in array references. */
7585
7586 unsigned HOST_WIDE_INT
7587 highest_pow2_factor (const_tree exp)
7588 {
7589 unsigned HOST_WIDE_INT ret;
7590 int trailing_zeros = tree_ctz (exp);
7591 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7592 return BIGGEST_ALIGNMENT;
7593 ret = HOST_WIDE_INT_1U << trailing_zeros;
7594 if (ret > BIGGEST_ALIGNMENT)
7595 return BIGGEST_ALIGNMENT;
7596 return ret;
7597 }
7598
7599 /* Similar, except that the alignment requirements of TARGET are
7600 taken into account. Assume it is at least as aligned as its
7601 type, unless it is a COMPONENT_REF in which case the layout of
7602 the structure gives the alignment. */
7603
7604 static unsigned HOST_WIDE_INT
7605 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7606 {
7607 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7608 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7609
7610 return MAX (factor, talign);
7611 }
7612 \f
7613 /* Convert the tree comparison code TCODE to the rtl one where the
7614 signedness is UNSIGNEDP. */
7615
7616 static enum rtx_code
7617 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7618 {
7619 enum rtx_code code;
7620 switch (tcode)
7621 {
7622 case EQ_EXPR:
7623 code = EQ;
7624 break;
7625 case NE_EXPR:
7626 code = NE;
7627 break;
7628 case LT_EXPR:
7629 code = unsignedp ? LTU : LT;
7630 break;
7631 case LE_EXPR:
7632 code = unsignedp ? LEU : LE;
7633 break;
7634 case GT_EXPR:
7635 code = unsignedp ? GTU : GT;
7636 break;
7637 case GE_EXPR:
7638 code = unsignedp ? GEU : GE;
7639 break;
7640 case UNORDERED_EXPR:
7641 code = UNORDERED;
7642 break;
7643 case ORDERED_EXPR:
7644 code = ORDERED;
7645 break;
7646 case UNLT_EXPR:
7647 code = UNLT;
7648 break;
7649 case UNLE_EXPR:
7650 code = UNLE;
7651 break;
7652 case UNGT_EXPR:
7653 code = UNGT;
7654 break;
7655 case UNGE_EXPR:
7656 code = UNGE;
7657 break;
7658 case UNEQ_EXPR:
7659 code = UNEQ;
7660 break;
7661 case LTGT_EXPR:
7662 code = LTGT;
7663 break;
7664
7665 default:
7666 gcc_unreachable ();
7667 }
7668 return code;
7669 }
7670
7671 /* Subroutine of expand_expr. Expand the two operands of a binary
7672 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7673 The value may be stored in TARGET if TARGET is nonzero. The
7674 MODIFIER argument is as documented by expand_expr. */
7675
7676 void
7677 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7678 enum expand_modifier modifier)
7679 {
7680 if (! safe_from_p (target, exp1, 1))
7681 target = 0;
7682 if (operand_equal_p (exp0, exp1, 0))
7683 {
7684 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7685 *op1 = copy_rtx (*op0);
7686 }
7687 else
7688 {
7689 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7690 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7691 }
7692 }
7693
7694 \f
7695 /* Return a MEM that contains constant EXP. DEFER is as for
7696 output_constant_def and MODIFIER is as for expand_expr. */
7697
7698 static rtx
7699 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7700 {
7701 rtx mem;
7702
7703 mem = output_constant_def (exp, defer);
7704 if (modifier != EXPAND_INITIALIZER)
7705 mem = use_anchored_address (mem);
7706 return mem;
7707 }
7708
7709 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7710 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7711
7712 static rtx
7713 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7714 enum expand_modifier modifier, addr_space_t as)
7715 {
7716 rtx result, subtarget;
7717 tree inner, offset;
7718 HOST_WIDE_INT bitsize, bitpos;
7719 int unsignedp, reversep, volatilep = 0;
7720 machine_mode mode1;
7721
7722 /* If we are taking the address of a constant and are at the top level,
7723 we have to use output_constant_def since we can't call force_const_mem
7724 at top level. */
7725 /* ??? This should be considered a front-end bug. We should not be
7726 generating ADDR_EXPR of something that isn't an LVALUE. The only
7727 exception here is STRING_CST. */
7728 if (CONSTANT_CLASS_P (exp))
7729 {
7730 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7731 if (modifier < EXPAND_SUM)
7732 result = force_operand (result, target);
7733 return result;
7734 }
7735
7736 /* Everything must be something allowed by is_gimple_addressable. */
7737 switch (TREE_CODE (exp))
7738 {
7739 case INDIRECT_REF:
7740 /* This case will happen via recursion for &a->b. */
7741 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7742
7743 case MEM_REF:
7744 {
7745 tree tem = TREE_OPERAND (exp, 0);
7746 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7747 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7748 return expand_expr (tem, target, tmode, modifier);
7749 }
7750
7751 case CONST_DECL:
7752 /* Expand the initializer like constants above. */
7753 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7754 0, modifier), 0);
7755 if (modifier < EXPAND_SUM)
7756 result = force_operand (result, target);
7757 return result;
7758
7759 case REALPART_EXPR:
7760 /* The real part of the complex number is always first, therefore
7761 the address is the same as the address of the parent object. */
7762 offset = 0;
7763 bitpos = 0;
7764 inner = TREE_OPERAND (exp, 0);
7765 break;
7766
7767 case IMAGPART_EXPR:
7768 /* The imaginary part of the complex number is always second.
7769 The expression is therefore always offset by the size of the
7770 scalar type. */
7771 offset = 0;
7772 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
7773 inner = TREE_OPERAND (exp, 0);
7774 break;
7775
7776 case COMPOUND_LITERAL_EXPR:
7777 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7778 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7779 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7780 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7781 the initializers aren't gimplified. */
7782 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7783 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7784 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7785 target, tmode, modifier, as);
7786 /* FALLTHRU */
7787 default:
7788 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7789 expand_expr, as that can have various side effects; LABEL_DECLs for
7790 example, may not have their DECL_RTL set yet. Expand the rtl of
7791 CONSTRUCTORs too, which should yield a memory reference for the
7792 constructor's contents. Assume language specific tree nodes can
7793 be expanded in some interesting way. */
7794 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7795 if (DECL_P (exp)
7796 || TREE_CODE (exp) == CONSTRUCTOR
7797 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7798 {
7799 result = expand_expr (exp, target, tmode,
7800 modifier == EXPAND_INITIALIZER
7801 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7802
7803 /* If the DECL isn't in memory, then the DECL wasn't properly
7804 marked TREE_ADDRESSABLE, which will be either a front-end
7805 or a tree optimizer bug. */
7806
7807 gcc_assert (MEM_P (result));
7808 result = XEXP (result, 0);
7809
7810 /* ??? Is this needed anymore? */
7811 if (DECL_P (exp))
7812 TREE_USED (exp) = 1;
7813
7814 if (modifier != EXPAND_INITIALIZER
7815 && modifier != EXPAND_CONST_ADDRESS
7816 && modifier != EXPAND_SUM)
7817 result = force_operand (result, target);
7818 return result;
7819 }
7820
7821 /* Pass FALSE as the last argument to get_inner_reference although
7822 we are expanding to RTL. The rationale is that we know how to
7823 handle "aligning nodes" here: we can just bypass them because
7824 they won't change the final object whose address will be returned
7825 (they actually exist only for that purpose). */
7826 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
7827 &unsignedp, &reversep, &volatilep);
7828 break;
7829 }
7830
7831 /* We must have made progress. */
7832 gcc_assert (inner != exp);
7833
7834 subtarget = offset || bitpos ? NULL_RTX : target;
7835 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7836 inner alignment, force the inner to be sufficiently aligned. */
7837 if (CONSTANT_CLASS_P (inner)
7838 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7839 {
7840 inner = copy_node (inner);
7841 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7842 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
7843 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7844 }
7845 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7846
7847 if (offset)
7848 {
7849 rtx tmp;
7850
7851 if (modifier != EXPAND_NORMAL)
7852 result = force_operand (result, NULL);
7853 tmp = expand_expr (offset, NULL_RTX, tmode,
7854 modifier == EXPAND_INITIALIZER
7855 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7856
7857 /* expand_expr is allowed to return an object in a mode other
7858 than TMODE. If it did, we need to convert. */
7859 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7860 tmp = convert_modes (tmode, GET_MODE (tmp),
7861 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7862 result = convert_memory_address_addr_space (tmode, result, as);
7863 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7864
7865 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7866 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7867 else
7868 {
7869 subtarget = bitpos ? NULL_RTX : target;
7870 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7871 1, OPTAB_LIB_WIDEN);
7872 }
7873 }
7874
7875 if (bitpos)
7876 {
7877 /* Someone beforehand should have rejected taking the address
7878 of such an object. */
7879 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7880
7881 result = convert_memory_address_addr_space (tmode, result, as);
7882 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7883 if (modifier < EXPAND_SUM)
7884 result = force_operand (result, target);
7885 }
7886
7887 return result;
7888 }
7889
7890 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7891 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7892
7893 static rtx
7894 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7895 enum expand_modifier modifier)
7896 {
7897 addr_space_t as = ADDR_SPACE_GENERIC;
7898 scalar_int_mode address_mode = Pmode;
7899 scalar_int_mode pointer_mode = ptr_mode;
7900 machine_mode rmode;
7901 rtx result;
7902
7903 /* Target mode of VOIDmode says "whatever's natural". */
7904 if (tmode == VOIDmode)
7905 tmode = TYPE_MODE (TREE_TYPE (exp));
7906
7907 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7908 {
7909 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7910 address_mode = targetm.addr_space.address_mode (as);
7911 pointer_mode = targetm.addr_space.pointer_mode (as);
7912 }
7913
7914 /* We can get called with some Weird Things if the user does silliness
7915 like "(short) &a". In that case, convert_memory_address won't do
7916 the right thing, so ignore the given target mode. */
7917 scalar_int_mode new_tmode = (tmode == pointer_mode
7918 ? pointer_mode
7919 : address_mode);
7920
7921 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7922 new_tmode, modifier, as);
7923
7924 /* Despite expand_expr claims concerning ignoring TMODE when not
7925 strictly convenient, stuff breaks if we don't honor it. Note
7926 that combined with the above, we only do this for pointer modes. */
7927 rmode = GET_MODE (result);
7928 if (rmode == VOIDmode)
7929 rmode = new_tmode;
7930 if (rmode != new_tmode)
7931 result = convert_memory_address_addr_space (new_tmode, result, as);
7932
7933 return result;
7934 }
7935
7936 /* Generate code for computing CONSTRUCTOR EXP.
7937 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7938 is TRUE, instead of creating a temporary variable in memory
7939 NULL is returned and the caller needs to handle it differently. */
7940
7941 static rtx
7942 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7943 bool avoid_temp_mem)
7944 {
7945 tree type = TREE_TYPE (exp);
7946 machine_mode mode = TYPE_MODE (type);
7947
7948 /* Try to avoid creating a temporary at all. This is possible
7949 if all of the initializer is zero.
7950 FIXME: try to handle all [0..255] initializers we can handle
7951 with memset. */
7952 if (TREE_STATIC (exp)
7953 && !TREE_ADDRESSABLE (exp)
7954 && target != 0 && mode == BLKmode
7955 && all_zeros_p (exp))
7956 {
7957 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7958 return target;
7959 }
7960
7961 /* All elts simple constants => refer to a constant in memory. But
7962 if this is a non-BLKmode mode, let it store a field at a time
7963 since that should make a CONST_INT, CONST_WIDE_INT or
7964 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7965 use, it is best to store directly into the target unless the type
7966 is large enough that memcpy will be used. If we are making an
7967 initializer and all operands are constant, put it in memory as
7968 well.
7969
7970 FIXME: Avoid trying to fill vector constructors piece-meal.
7971 Output them with output_constant_def below unless we're sure
7972 they're zeros. This should go away when vector initializers
7973 are treated like VECTOR_CST instead of arrays. */
7974 if ((TREE_STATIC (exp)
7975 && ((mode == BLKmode
7976 && ! (target != 0 && safe_from_p (target, exp, 1)))
7977 || TREE_ADDRESSABLE (exp)
7978 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7979 && (! can_move_by_pieces
7980 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7981 TYPE_ALIGN (type)))
7982 && ! mostly_zeros_p (exp))))
7983 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7984 && TREE_CONSTANT (exp)))
7985 {
7986 rtx constructor;
7987
7988 if (avoid_temp_mem)
7989 return NULL_RTX;
7990
7991 constructor = expand_expr_constant (exp, 1, modifier);
7992
7993 if (modifier != EXPAND_CONST_ADDRESS
7994 && modifier != EXPAND_INITIALIZER
7995 && modifier != EXPAND_SUM)
7996 constructor = validize_mem (constructor);
7997
7998 return constructor;
7999 }
8000
8001 /* Handle calls that pass values in multiple non-contiguous
8002 locations. The Irix 6 ABI has examples of this. */
8003 if (target == 0 || ! safe_from_p (target, exp, 1)
8004 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
8005 {
8006 if (avoid_temp_mem)
8007 return NULL_RTX;
8008
8009 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8010 }
8011
8012 store_constructor (exp, target, 0, int_expr_size (exp), false);
8013 return target;
8014 }
8015
8016
8017 /* expand_expr: generate code for computing expression EXP.
8018 An rtx for the computed value is returned. The value is never null.
8019 In the case of a void EXP, const0_rtx is returned.
8020
8021 The value may be stored in TARGET if TARGET is nonzero.
8022 TARGET is just a suggestion; callers must assume that
8023 the rtx returned may not be the same as TARGET.
8024
8025 If TARGET is CONST0_RTX, it means that the value will be ignored.
8026
8027 If TMODE is not VOIDmode, it suggests generating the
8028 result in mode TMODE. But this is done only when convenient.
8029 Otherwise, TMODE is ignored and the value generated in its natural mode.
8030 TMODE is just a suggestion; callers must assume that
8031 the rtx returned may not have mode TMODE.
8032
8033 Note that TARGET may have neither TMODE nor MODE. In that case, it
8034 probably will not be used.
8035
8036 If MODIFIER is EXPAND_SUM then when EXP is an addition
8037 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8038 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8039 products as above, or REG or MEM, or constant.
8040 Ordinarily in such cases we would output mul or add instructions
8041 and then return a pseudo reg containing the sum.
8042
8043 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8044 it also marks a label as absolutely required (it can't be dead).
8045 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8046 This is used for outputting expressions used in initializers.
8047
8048 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8049 with a constant address even if that address is not normally legitimate.
8050 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8051
8052 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8053 a call parameter. Such targets require special care as we haven't yet
8054 marked TARGET so that it's safe from being trashed by libcalls. We
8055 don't want to use TARGET for anything but the final result;
8056 Intermediate values must go elsewhere. Additionally, calls to
8057 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8058
8059 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8060 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8061 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8062 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8063 recursively.
8064
8065 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8066 In this case, we don't adjust a returned MEM rtx that wouldn't be
8067 sufficiently aligned for its mode; instead, it's up to the caller
8068 to deal with it afterwards. This is used to make sure that unaligned
8069 base objects for which out-of-bounds accesses are supported, for
8070 example record types with trailing arrays, aren't realigned behind
8071 the back of the caller.
8072 The normal operating mode is to pass FALSE for this parameter. */
8073
8074 rtx
8075 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8076 enum expand_modifier modifier, rtx *alt_rtl,
8077 bool inner_reference_p)
8078 {
8079 rtx ret;
8080
8081 /* Handle ERROR_MARK before anybody tries to access its type. */
8082 if (TREE_CODE (exp) == ERROR_MARK
8083 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8084 {
8085 ret = CONST0_RTX (tmode);
8086 return ret ? ret : const0_rtx;
8087 }
8088
8089 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8090 inner_reference_p);
8091 return ret;
8092 }
8093
8094 /* Try to expand the conditional expression which is represented by
8095 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8096 return the rtl reg which represents the result. Otherwise return
8097 NULL_RTX. */
8098
8099 static rtx
8100 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8101 tree treeop1 ATTRIBUTE_UNUSED,
8102 tree treeop2 ATTRIBUTE_UNUSED)
8103 {
8104 rtx insn;
8105 rtx op00, op01, op1, op2;
8106 enum rtx_code comparison_code;
8107 machine_mode comparison_mode;
8108 gimple *srcstmt;
8109 rtx temp;
8110 tree type = TREE_TYPE (treeop1);
8111 int unsignedp = TYPE_UNSIGNED (type);
8112 machine_mode mode = TYPE_MODE (type);
8113 machine_mode orig_mode = mode;
8114 static bool expanding_cond_expr_using_cmove = false;
8115
8116 /* Conditional move expansion can end up TERing two operands which,
8117 when recursively hitting conditional expressions can result in
8118 exponential behavior if the cmove expansion ultimatively fails.
8119 It's hardly profitable to TER a cmove into a cmove so avoid doing
8120 that by failing early if we end up recursing. */
8121 if (expanding_cond_expr_using_cmove)
8122 return NULL_RTX;
8123
8124 /* If we cannot do a conditional move on the mode, try doing it
8125 with the promoted mode. */
8126 if (!can_conditionally_move_p (mode))
8127 {
8128 mode = promote_mode (type, mode, &unsignedp);
8129 if (!can_conditionally_move_p (mode))
8130 return NULL_RTX;
8131 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8132 }
8133 else
8134 temp = assign_temp (type, 0, 1);
8135
8136 expanding_cond_expr_using_cmove = true;
8137 start_sequence ();
8138 expand_operands (treeop1, treeop2,
8139 temp, &op1, &op2, EXPAND_NORMAL);
8140
8141 if (TREE_CODE (treeop0) == SSA_NAME
8142 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8143 {
8144 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8145 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8146 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8147 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8148 comparison_mode = TYPE_MODE (type);
8149 unsignedp = TYPE_UNSIGNED (type);
8150 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8151 }
8152 else if (COMPARISON_CLASS_P (treeop0))
8153 {
8154 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8155 enum tree_code cmpcode = TREE_CODE (treeop0);
8156 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8157 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8158 unsignedp = TYPE_UNSIGNED (type);
8159 comparison_mode = TYPE_MODE (type);
8160 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8161 }
8162 else
8163 {
8164 op00 = expand_normal (treeop0);
8165 op01 = const0_rtx;
8166 comparison_code = NE;
8167 comparison_mode = GET_MODE (op00);
8168 if (comparison_mode == VOIDmode)
8169 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8170 }
8171 expanding_cond_expr_using_cmove = false;
8172
8173 if (GET_MODE (op1) != mode)
8174 op1 = gen_lowpart (mode, op1);
8175
8176 if (GET_MODE (op2) != mode)
8177 op2 = gen_lowpart (mode, op2);
8178
8179 /* Try to emit the conditional move. */
8180 insn = emit_conditional_move (temp, comparison_code,
8181 op00, op01, comparison_mode,
8182 op1, op2, mode,
8183 unsignedp);
8184
8185 /* If we could do the conditional move, emit the sequence,
8186 and return. */
8187 if (insn)
8188 {
8189 rtx_insn *seq = get_insns ();
8190 end_sequence ();
8191 emit_insn (seq);
8192 return convert_modes (orig_mode, mode, temp, 0);
8193 }
8194
8195 /* Otherwise discard the sequence and fall back to code with
8196 branches. */
8197 end_sequence ();
8198 return NULL_RTX;
8199 }
8200
8201 rtx
8202 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8203 enum expand_modifier modifier)
8204 {
8205 rtx op0, op1, op2, temp;
8206 rtx_code_label *lab;
8207 tree type;
8208 int unsignedp;
8209 machine_mode mode;
8210 scalar_int_mode int_mode;
8211 enum tree_code code = ops->code;
8212 optab this_optab;
8213 rtx subtarget, original_target;
8214 int ignore;
8215 bool reduce_bit_field;
8216 location_t loc = ops->location;
8217 tree treeop0, treeop1, treeop2;
8218 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8219 ? reduce_to_bit_field_precision ((expr), \
8220 target, \
8221 type) \
8222 : (expr))
8223
8224 type = ops->type;
8225 mode = TYPE_MODE (type);
8226 unsignedp = TYPE_UNSIGNED (type);
8227
8228 treeop0 = ops->op0;
8229 treeop1 = ops->op1;
8230 treeop2 = ops->op2;
8231
8232 /* We should be called only on simple (binary or unary) expressions,
8233 exactly those that are valid in gimple expressions that aren't
8234 GIMPLE_SINGLE_RHS (or invalid). */
8235 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8236 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8237 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8238
8239 ignore = (target == const0_rtx
8240 || ((CONVERT_EXPR_CODE_P (code)
8241 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8242 && TREE_CODE (type) == VOID_TYPE));
8243
8244 /* We should be called only if we need the result. */
8245 gcc_assert (!ignore);
8246
8247 /* An operation in what may be a bit-field type needs the
8248 result to be reduced to the precision of the bit-field type,
8249 which is narrower than that of the type's mode. */
8250 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8251 && !type_has_mode_precision_p (type));
8252
8253 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8254 target = 0;
8255
8256 /* Use subtarget as the target for operand 0 of a binary operation. */
8257 subtarget = get_subtarget (target);
8258 original_target = target;
8259
8260 switch (code)
8261 {
8262 case NON_LVALUE_EXPR:
8263 case PAREN_EXPR:
8264 CASE_CONVERT:
8265 if (treeop0 == error_mark_node)
8266 return const0_rtx;
8267
8268 if (TREE_CODE (type) == UNION_TYPE)
8269 {
8270 tree valtype = TREE_TYPE (treeop0);
8271
8272 /* If both input and output are BLKmode, this conversion isn't doing
8273 anything except possibly changing memory attribute. */
8274 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8275 {
8276 rtx result = expand_expr (treeop0, target, tmode,
8277 modifier);
8278
8279 result = copy_rtx (result);
8280 set_mem_attributes (result, type, 0);
8281 return result;
8282 }
8283
8284 if (target == 0)
8285 {
8286 if (TYPE_MODE (type) != BLKmode)
8287 target = gen_reg_rtx (TYPE_MODE (type));
8288 else
8289 target = assign_temp (type, 1, 1);
8290 }
8291
8292 if (MEM_P (target))
8293 /* Store data into beginning of memory target. */
8294 store_expr (treeop0,
8295 adjust_address (target, TYPE_MODE (valtype), 0),
8296 modifier == EXPAND_STACK_PARM,
8297 false, TYPE_REVERSE_STORAGE_ORDER (type));
8298
8299 else
8300 {
8301 gcc_assert (REG_P (target)
8302 && !TYPE_REVERSE_STORAGE_ORDER (type));
8303
8304 /* Store this field into a union of the proper type. */
8305 store_field (target,
8306 MIN ((int_size_in_bytes (TREE_TYPE
8307 (treeop0))
8308 * BITS_PER_UNIT),
8309 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8310 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8311 false, false);
8312 }
8313
8314 /* Return the entire union. */
8315 return target;
8316 }
8317
8318 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8319 {
8320 op0 = expand_expr (treeop0, target, VOIDmode,
8321 modifier);
8322
8323 /* If the signedness of the conversion differs and OP0 is
8324 a promoted SUBREG, clear that indication since we now
8325 have to do the proper extension. */
8326 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8327 && GET_CODE (op0) == SUBREG)
8328 SUBREG_PROMOTED_VAR_P (op0) = 0;
8329
8330 return REDUCE_BIT_FIELD (op0);
8331 }
8332
8333 op0 = expand_expr (treeop0, NULL_RTX, mode,
8334 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8335 if (GET_MODE (op0) == mode)
8336 ;
8337
8338 /* If OP0 is a constant, just convert it into the proper mode. */
8339 else if (CONSTANT_P (op0))
8340 {
8341 tree inner_type = TREE_TYPE (treeop0);
8342 machine_mode inner_mode = GET_MODE (op0);
8343
8344 if (inner_mode == VOIDmode)
8345 inner_mode = TYPE_MODE (inner_type);
8346
8347 if (modifier == EXPAND_INITIALIZER)
8348 op0 = lowpart_subreg (mode, op0, inner_mode);
8349 else
8350 op0= convert_modes (mode, inner_mode, op0,
8351 TYPE_UNSIGNED (inner_type));
8352 }
8353
8354 else if (modifier == EXPAND_INITIALIZER)
8355 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8356 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8357
8358 else if (target == 0)
8359 op0 = convert_to_mode (mode, op0,
8360 TYPE_UNSIGNED (TREE_TYPE
8361 (treeop0)));
8362 else
8363 {
8364 convert_move (target, op0,
8365 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8366 op0 = target;
8367 }
8368
8369 return REDUCE_BIT_FIELD (op0);
8370
8371 case ADDR_SPACE_CONVERT_EXPR:
8372 {
8373 tree treeop0_type = TREE_TYPE (treeop0);
8374
8375 gcc_assert (POINTER_TYPE_P (type));
8376 gcc_assert (POINTER_TYPE_P (treeop0_type));
8377
8378 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8379 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8380
8381 /* Conversions between pointers to the same address space should
8382 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8383 gcc_assert (as_to != as_from);
8384
8385 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8386
8387 /* Ask target code to handle conversion between pointers
8388 to overlapping address spaces. */
8389 if (targetm.addr_space.subset_p (as_to, as_from)
8390 || targetm.addr_space.subset_p (as_from, as_to))
8391 {
8392 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8393 }
8394 else
8395 {
8396 /* For disjoint address spaces, converting anything but a null
8397 pointer invokes undefined behavior. We truncate or extend the
8398 value as if we'd converted via integers, which handles 0 as
8399 required, and all others as the programmer likely expects. */
8400 #ifndef POINTERS_EXTEND_UNSIGNED
8401 const int POINTERS_EXTEND_UNSIGNED = 1;
8402 #endif
8403 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8404 op0, POINTERS_EXTEND_UNSIGNED);
8405 }
8406 gcc_assert (op0);
8407 return op0;
8408 }
8409
8410 case POINTER_PLUS_EXPR:
8411 /* Even though the sizetype mode and the pointer's mode can be different
8412 expand is able to handle this correctly and get the correct result out
8413 of the PLUS_EXPR code. */
8414 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8415 if sizetype precision is smaller than pointer precision. */
8416 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8417 treeop1 = fold_convert_loc (loc, type,
8418 fold_convert_loc (loc, ssizetype,
8419 treeop1));
8420 /* If sizetype precision is larger than pointer precision, truncate the
8421 offset to have matching modes. */
8422 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8423 treeop1 = fold_convert_loc (loc, type, treeop1);
8424 /* FALLTHRU */
8425
8426 case PLUS_EXPR:
8427 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8428 something else, make sure we add the register to the constant and
8429 then to the other thing. This case can occur during strength
8430 reduction and doing it this way will produce better code if the
8431 frame pointer or argument pointer is eliminated.
8432
8433 fold-const.c will ensure that the constant is always in the inner
8434 PLUS_EXPR, so the only case we need to do anything about is if
8435 sp, ap, or fp is our second argument, in which case we must swap
8436 the innermost first argument and our second argument. */
8437
8438 if (TREE_CODE (treeop0) == PLUS_EXPR
8439 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8440 && VAR_P (treeop1)
8441 && (DECL_RTL (treeop1) == frame_pointer_rtx
8442 || DECL_RTL (treeop1) == stack_pointer_rtx
8443 || DECL_RTL (treeop1) == arg_pointer_rtx))
8444 {
8445 gcc_unreachable ();
8446 }
8447
8448 /* If the result is to be ptr_mode and we are adding an integer to
8449 something, we might be forming a constant. So try to use
8450 plus_constant. If it produces a sum and we can't accept it,
8451 use force_operand. This allows P = &ARR[const] to generate
8452 efficient code on machines where a SYMBOL_REF is not a valid
8453 address.
8454
8455 If this is an EXPAND_SUM call, always return the sum. */
8456 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8457 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8458 {
8459 if (modifier == EXPAND_STACK_PARM)
8460 target = 0;
8461 if (TREE_CODE (treeop0) == INTEGER_CST
8462 && HWI_COMPUTABLE_MODE_P (mode)
8463 && TREE_CONSTANT (treeop1))
8464 {
8465 rtx constant_part;
8466 HOST_WIDE_INT wc;
8467 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8468
8469 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8470 EXPAND_SUM);
8471 /* Use wi::shwi to ensure that the constant is
8472 truncated according to the mode of OP1, then sign extended
8473 to a HOST_WIDE_INT. Using the constant directly can result
8474 in non-canonical RTL in a 64x32 cross compile. */
8475 wc = TREE_INT_CST_LOW (treeop0);
8476 constant_part =
8477 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8478 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8479 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8480 op1 = force_operand (op1, target);
8481 return REDUCE_BIT_FIELD (op1);
8482 }
8483
8484 else if (TREE_CODE (treeop1) == INTEGER_CST
8485 && HWI_COMPUTABLE_MODE_P (mode)
8486 && TREE_CONSTANT (treeop0))
8487 {
8488 rtx constant_part;
8489 HOST_WIDE_INT wc;
8490 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8491
8492 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8493 (modifier == EXPAND_INITIALIZER
8494 ? EXPAND_INITIALIZER : EXPAND_SUM));
8495 if (! CONSTANT_P (op0))
8496 {
8497 op1 = expand_expr (treeop1, NULL_RTX,
8498 VOIDmode, modifier);
8499 /* Return a PLUS if modifier says it's OK. */
8500 if (modifier == EXPAND_SUM
8501 || modifier == EXPAND_INITIALIZER)
8502 return simplify_gen_binary (PLUS, mode, op0, op1);
8503 goto binop2;
8504 }
8505 /* Use wi::shwi to ensure that the constant is
8506 truncated according to the mode of OP1, then sign extended
8507 to a HOST_WIDE_INT. Using the constant directly can result
8508 in non-canonical RTL in a 64x32 cross compile. */
8509 wc = TREE_INT_CST_LOW (treeop1);
8510 constant_part
8511 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8512 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8513 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8514 op0 = force_operand (op0, target);
8515 return REDUCE_BIT_FIELD (op0);
8516 }
8517 }
8518
8519 /* Use TER to expand pointer addition of a negated value
8520 as pointer subtraction. */
8521 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8522 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8523 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8524 && TREE_CODE (treeop1) == SSA_NAME
8525 && TYPE_MODE (TREE_TYPE (treeop0))
8526 == TYPE_MODE (TREE_TYPE (treeop1)))
8527 {
8528 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8529 if (def)
8530 {
8531 treeop1 = gimple_assign_rhs1 (def);
8532 code = MINUS_EXPR;
8533 goto do_minus;
8534 }
8535 }
8536
8537 /* No sense saving up arithmetic to be done
8538 if it's all in the wrong mode to form part of an address.
8539 And force_operand won't know whether to sign-extend or
8540 zero-extend. */
8541 if (modifier != EXPAND_INITIALIZER
8542 && (modifier != EXPAND_SUM || mode != ptr_mode))
8543 {
8544 expand_operands (treeop0, treeop1,
8545 subtarget, &op0, &op1, modifier);
8546 if (op0 == const0_rtx)
8547 return op1;
8548 if (op1 == const0_rtx)
8549 return op0;
8550 goto binop2;
8551 }
8552
8553 expand_operands (treeop0, treeop1,
8554 subtarget, &op0, &op1, modifier);
8555 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8556
8557 case MINUS_EXPR:
8558 case POINTER_DIFF_EXPR:
8559 do_minus:
8560 /* For initializers, we are allowed to return a MINUS of two
8561 symbolic constants. Here we handle all cases when both operands
8562 are constant. */
8563 /* Handle difference of two symbolic constants,
8564 for the sake of an initializer. */
8565 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8566 && really_constant_p (treeop0)
8567 && really_constant_p (treeop1))
8568 {
8569 expand_operands (treeop0, treeop1,
8570 NULL_RTX, &op0, &op1, modifier);
8571 return simplify_gen_binary (MINUS, mode, op0, op1);
8572 }
8573
8574 /* No sense saving up arithmetic to be done
8575 if it's all in the wrong mode to form part of an address.
8576 And force_operand won't know whether to sign-extend or
8577 zero-extend. */
8578 if (modifier != EXPAND_INITIALIZER
8579 && (modifier != EXPAND_SUM || mode != ptr_mode))
8580 goto binop;
8581
8582 expand_operands (treeop0, treeop1,
8583 subtarget, &op0, &op1, modifier);
8584
8585 /* Convert A - const to A + (-const). */
8586 if (CONST_INT_P (op1))
8587 {
8588 op1 = negate_rtx (mode, op1);
8589 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8590 }
8591
8592 goto binop2;
8593
8594 case WIDEN_MULT_PLUS_EXPR:
8595 case WIDEN_MULT_MINUS_EXPR:
8596 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8597 op2 = expand_normal (treeop2);
8598 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8599 target, unsignedp);
8600 return target;
8601
8602 case WIDEN_MULT_EXPR:
8603 /* If first operand is constant, swap them.
8604 Thus the following special case checks need only
8605 check the second operand. */
8606 if (TREE_CODE (treeop0) == INTEGER_CST)
8607 std::swap (treeop0, treeop1);
8608
8609 /* First, check if we have a multiplication of one signed and one
8610 unsigned operand. */
8611 if (TREE_CODE (treeop1) != INTEGER_CST
8612 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8613 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8614 {
8615 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8616 this_optab = usmul_widen_optab;
8617 if (find_widening_optab_handler (this_optab, mode, innermode)
8618 != CODE_FOR_nothing)
8619 {
8620 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8621 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8622 EXPAND_NORMAL);
8623 else
8624 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8625 EXPAND_NORMAL);
8626 /* op0 and op1 might still be constant, despite the above
8627 != INTEGER_CST check. Handle it. */
8628 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8629 {
8630 op0 = convert_modes (innermode, mode, op0, true);
8631 op1 = convert_modes (innermode, mode, op1, false);
8632 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8633 target, unsignedp));
8634 }
8635 goto binop3;
8636 }
8637 }
8638 /* Check for a multiplication with matching signedness. */
8639 else if ((TREE_CODE (treeop1) == INTEGER_CST
8640 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8641 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8642 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8643 {
8644 tree op0type = TREE_TYPE (treeop0);
8645 machine_mode innermode = TYPE_MODE (op0type);
8646 bool zextend_p = TYPE_UNSIGNED (op0type);
8647 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8648 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8649
8650 if (TREE_CODE (treeop0) != INTEGER_CST)
8651 {
8652 if (find_widening_optab_handler (this_optab, mode, innermode)
8653 != CODE_FOR_nothing)
8654 {
8655 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8656 EXPAND_NORMAL);
8657 /* op0 and op1 might still be constant, despite the above
8658 != INTEGER_CST check. Handle it. */
8659 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8660 {
8661 widen_mult_const:
8662 op0 = convert_modes (innermode, mode, op0, zextend_p);
8663 op1
8664 = convert_modes (innermode, mode, op1,
8665 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8666 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8667 target,
8668 unsignedp));
8669 }
8670 temp = expand_widening_mult (mode, op0, op1, target,
8671 unsignedp, this_optab);
8672 return REDUCE_BIT_FIELD (temp);
8673 }
8674 if (find_widening_optab_handler (other_optab, mode, innermode)
8675 != CODE_FOR_nothing
8676 && innermode == word_mode)
8677 {
8678 rtx htem, hipart;
8679 op0 = expand_normal (treeop0);
8680 if (TREE_CODE (treeop1) == INTEGER_CST)
8681 op1 = convert_modes (word_mode, mode,
8682 expand_normal (treeop1),
8683 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8684 else
8685 op1 = expand_normal (treeop1);
8686 /* op0 and op1 might still be constant, despite the above
8687 != INTEGER_CST check. Handle it. */
8688 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8689 goto widen_mult_const;
8690 temp = expand_binop (mode, other_optab, op0, op1, target,
8691 unsignedp, OPTAB_LIB_WIDEN);
8692 hipart = gen_highpart (word_mode, temp);
8693 htem = expand_mult_highpart_adjust (word_mode, hipart,
8694 op0, op1, hipart,
8695 zextend_p);
8696 if (htem != hipart)
8697 emit_move_insn (hipart, htem);
8698 return REDUCE_BIT_FIELD (temp);
8699 }
8700 }
8701 }
8702 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8703 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8704 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8705 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8706
8707 case FMA_EXPR:
8708 {
8709 optab opt = fma_optab;
8710 gimple *def0, *def2;
8711
8712 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8713 call. */
8714 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8715 {
8716 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8717 tree call_expr;
8718
8719 gcc_assert (fn != NULL_TREE);
8720 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8721 return expand_builtin (call_expr, target, subtarget, mode, false);
8722 }
8723
8724 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8725 /* The multiplication is commutative - look at its 2nd operand
8726 if the first isn't fed by a negate. */
8727 if (!def0)
8728 {
8729 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8730 /* Swap operands if the 2nd operand is fed by a negate. */
8731 if (def0)
8732 std::swap (treeop0, treeop1);
8733 }
8734 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8735
8736 op0 = op2 = NULL;
8737
8738 if (def0 && def2
8739 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8740 {
8741 opt = fnms_optab;
8742 op0 = expand_normal (gimple_assign_rhs1 (def0));
8743 op2 = expand_normal (gimple_assign_rhs1 (def2));
8744 }
8745 else if (def0
8746 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8747 {
8748 opt = fnma_optab;
8749 op0 = expand_normal (gimple_assign_rhs1 (def0));
8750 }
8751 else if (def2
8752 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8753 {
8754 opt = fms_optab;
8755 op2 = expand_normal (gimple_assign_rhs1 (def2));
8756 }
8757
8758 if (op0 == NULL)
8759 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8760 if (op2 == NULL)
8761 op2 = expand_normal (treeop2);
8762 op1 = expand_normal (treeop1);
8763
8764 return expand_ternary_op (TYPE_MODE (type), opt,
8765 op0, op1, op2, target, 0);
8766 }
8767
8768 case MULT_EXPR:
8769 /* If this is a fixed-point operation, then we cannot use the code
8770 below because "expand_mult" doesn't support sat/no-sat fixed-point
8771 multiplications. */
8772 if (ALL_FIXED_POINT_MODE_P (mode))
8773 goto binop;
8774
8775 /* If first operand is constant, swap them.
8776 Thus the following special case checks need only
8777 check the second operand. */
8778 if (TREE_CODE (treeop0) == INTEGER_CST)
8779 std::swap (treeop0, treeop1);
8780
8781 /* Attempt to return something suitable for generating an
8782 indexed address, for machines that support that. */
8783
8784 if (modifier == EXPAND_SUM && mode == ptr_mode
8785 && tree_fits_shwi_p (treeop1))
8786 {
8787 tree exp1 = treeop1;
8788
8789 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8790 EXPAND_SUM);
8791
8792 if (!REG_P (op0))
8793 op0 = force_operand (op0, NULL_RTX);
8794 if (!REG_P (op0))
8795 op0 = copy_to_mode_reg (mode, op0);
8796
8797 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8798 gen_int_mode (tree_to_shwi (exp1),
8799 TYPE_MODE (TREE_TYPE (exp1)))));
8800 }
8801
8802 if (modifier == EXPAND_STACK_PARM)
8803 target = 0;
8804
8805 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8806 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8807
8808 case TRUNC_MOD_EXPR:
8809 case FLOOR_MOD_EXPR:
8810 case CEIL_MOD_EXPR:
8811 case ROUND_MOD_EXPR:
8812
8813 case TRUNC_DIV_EXPR:
8814 case FLOOR_DIV_EXPR:
8815 case CEIL_DIV_EXPR:
8816 case ROUND_DIV_EXPR:
8817 case EXACT_DIV_EXPR:
8818 {
8819 /* If this is a fixed-point operation, then we cannot use the code
8820 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8821 divisions. */
8822 if (ALL_FIXED_POINT_MODE_P (mode))
8823 goto binop;
8824
8825 if (modifier == EXPAND_STACK_PARM)
8826 target = 0;
8827 /* Possible optimization: compute the dividend with EXPAND_SUM
8828 then if the divisor is constant can optimize the case
8829 where some terms of the dividend have coeffs divisible by it. */
8830 expand_operands (treeop0, treeop1,
8831 subtarget, &op0, &op1, EXPAND_NORMAL);
8832 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
8833 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
8834 if (SCALAR_INT_MODE_P (mode)
8835 && optimize >= 2
8836 && get_range_pos_neg (treeop0) == 1
8837 && get_range_pos_neg (treeop1) == 1)
8838 {
8839 /* If both arguments are known to be positive when interpreted
8840 as signed, we can expand it as both signed and unsigned
8841 division or modulo. Choose the cheaper sequence in that case. */
8842 bool speed_p = optimize_insn_for_speed_p ();
8843 do_pending_stack_adjust ();
8844 start_sequence ();
8845 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
8846 rtx_insn *uns_insns = get_insns ();
8847 end_sequence ();
8848 start_sequence ();
8849 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
8850 rtx_insn *sgn_insns = get_insns ();
8851 end_sequence ();
8852 unsigned uns_cost = seq_cost (uns_insns, speed_p);
8853 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
8854
8855 /* If costs are the same then use as tie breaker the other
8856 other factor. */
8857 if (uns_cost == sgn_cost)
8858 {
8859 uns_cost = seq_cost (uns_insns, !speed_p);
8860 sgn_cost = seq_cost (sgn_insns, !speed_p);
8861 }
8862
8863 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
8864 {
8865 emit_insn (uns_insns);
8866 return uns_ret;
8867 }
8868 emit_insn (sgn_insns);
8869 return sgn_ret;
8870 }
8871 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
8872 }
8873 case RDIV_EXPR:
8874 goto binop;
8875
8876 case MULT_HIGHPART_EXPR:
8877 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8878 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8879 gcc_assert (temp);
8880 return temp;
8881
8882 case FIXED_CONVERT_EXPR:
8883 op0 = expand_normal (treeop0);
8884 if (target == 0 || modifier == EXPAND_STACK_PARM)
8885 target = gen_reg_rtx (mode);
8886
8887 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8888 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8889 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8890 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8891 else
8892 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8893 return target;
8894
8895 case FIX_TRUNC_EXPR:
8896 op0 = expand_normal (treeop0);
8897 if (target == 0 || modifier == EXPAND_STACK_PARM)
8898 target = gen_reg_rtx (mode);
8899 expand_fix (target, op0, unsignedp);
8900 return target;
8901
8902 case FLOAT_EXPR:
8903 op0 = expand_normal (treeop0);
8904 if (target == 0 || modifier == EXPAND_STACK_PARM)
8905 target = gen_reg_rtx (mode);
8906 /* expand_float can't figure out what to do if FROM has VOIDmode.
8907 So give it the correct mode. With -O, cse will optimize this. */
8908 if (GET_MODE (op0) == VOIDmode)
8909 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8910 op0);
8911 expand_float (target, op0,
8912 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8913 return target;
8914
8915 case NEGATE_EXPR:
8916 op0 = expand_expr (treeop0, subtarget,
8917 VOIDmode, EXPAND_NORMAL);
8918 if (modifier == EXPAND_STACK_PARM)
8919 target = 0;
8920 temp = expand_unop (mode,
8921 optab_for_tree_code (NEGATE_EXPR, type,
8922 optab_default),
8923 op0, target, 0);
8924 gcc_assert (temp);
8925 return REDUCE_BIT_FIELD (temp);
8926
8927 case ABS_EXPR:
8928 op0 = expand_expr (treeop0, subtarget,
8929 VOIDmode, EXPAND_NORMAL);
8930 if (modifier == EXPAND_STACK_PARM)
8931 target = 0;
8932
8933 /* ABS_EXPR is not valid for complex arguments. */
8934 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8935 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8936
8937 /* Unsigned abs is simply the operand. Testing here means we don't
8938 risk generating incorrect code below. */
8939 if (TYPE_UNSIGNED (type))
8940 return op0;
8941
8942 return expand_abs (mode, op0, target, unsignedp,
8943 safe_from_p (target, treeop0, 1));
8944
8945 case MAX_EXPR:
8946 case MIN_EXPR:
8947 target = original_target;
8948 if (target == 0
8949 || modifier == EXPAND_STACK_PARM
8950 || (MEM_P (target) && MEM_VOLATILE_P (target))
8951 || GET_MODE (target) != mode
8952 || (REG_P (target)
8953 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8954 target = gen_reg_rtx (mode);
8955 expand_operands (treeop0, treeop1,
8956 target, &op0, &op1, EXPAND_NORMAL);
8957
8958 /* First try to do it with a special MIN or MAX instruction.
8959 If that does not win, use a conditional jump to select the proper
8960 value. */
8961 this_optab = optab_for_tree_code (code, type, optab_default);
8962 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8963 OPTAB_WIDEN);
8964 if (temp != 0)
8965 return temp;
8966
8967 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
8968 and similarly for MAX <x, y>. */
8969 if (VECTOR_TYPE_P (type))
8970 {
8971 tree t0 = make_tree (type, op0);
8972 tree t1 = make_tree (type, op1);
8973 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
8974 type, t0, t1);
8975 return expand_vec_cond_expr (type, comparison, t0, t1,
8976 original_target);
8977 }
8978
8979 /* At this point, a MEM target is no longer useful; we will get better
8980 code without it. */
8981
8982 if (! REG_P (target))
8983 target = gen_reg_rtx (mode);
8984
8985 /* If op1 was placed in target, swap op0 and op1. */
8986 if (target != op0 && target == op1)
8987 std::swap (op0, op1);
8988
8989 /* We generate better code and avoid problems with op1 mentioning
8990 target by forcing op1 into a pseudo if it isn't a constant. */
8991 if (! CONSTANT_P (op1))
8992 op1 = force_reg (mode, op1);
8993
8994 {
8995 enum rtx_code comparison_code;
8996 rtx cmpop1 = op1;
8997
8998 if (code == MAX_EXPR)
8999 comparison_code = unsignedp ? GEU : GE;
9000 else
9001 comparison_code = unsignedp ? LEU : LE;
9002
9003 /* Canonicalize to comparisons against 0. */
9004 if (op1 == const1_rtx)
9005 {
9006 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9007 or (a != 0 ? a : 1) for unsigned.
9008 For MIN we are safe converting (a <= 1 ? a : 1)
9009 into (a <= 0 ? a : 1) */
9010 cmpop1 = const0_rtx;
9011 if (code == MAX_EXPR)
9012 comparison_code = unsignedp ? NE : GT;
9013 }
9014 if (op1 == constm1_rtx && !unsignedp)
9015 {
9016 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9017 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9018 cmpop1 = const0_rtx;
9019 if (code == MIN_EXPR)
9020 comparison_code = LT;
9021 }
9022
9023 /* Use a conditional move if possible. */
9024 if (can_conditionally_move_p (mode))
9025 {
9026 rtx insn;
9027
9028 start_sequence ();
9029
9030 /* Try to emit the conditional move. */
9031 insn = emit_conditional_move (target, comparison_code,
9032 op0, cmpop1, mode,
9033 op0, op1, mode,
9034 unsignedp);
9035
9036 /* If we could do the conditional move, emit the sequence,
9037 and return. */
9038 if (insn)
9039 {
9040 rtx_insn *seq = get_insns ();
9041 end_sequence ();
9042 emit_insn (seq);
9043 return target;
9044 }
9045
9046 /* Otherwise discard the sequence and fall back to code with
9047 branches. */
9048 end_sequence ();
9049 }
9050
9051 if (target != op0)
9052 emit_move_insn (target, op0);
9053
9054 lab = gen_label_rtx ();
9055 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9056 unsignedp, mode, NULL_RTX, NULL, lab,
9057 profile_probability::uninitialized ());
9058 }
9059 emit_move_insn (target, op1);
9060 emit_label (lab);
9061 return target;
9062
9063 case BIT_NOT_EXPR:
9064 op0 = expand_expr (treeop0, subtarget,
9065 VOIDmode, EXPAND_NORMAL);
9066 if (modifier == EXPAND_STACK_PARM)
9067 target = 0;
9068 /* In case we have to reduce the result to bitfield precision
9069 for unsigned bitfield expand this as XOR with a proper constant
9070 instead. */
9071 if (reduce_bit_field && TYPE_UNSIGNED (type))
9072 {
9073 int_mode = SCALAR_INT_TYPE_MODE (type);
9074 wide_int mask = wi::mask (TYPE_PRECISION (type),
9075 false, GET_MODE_PRECISION (int_mode));
9076
9077 temp = expand_binop (int_mode, xor_optab, op0,
9078 immed_wide_int_const (mask, int_mode),
9079 target, 1, OPTAB_LIB_WIDEN);
9080 }
9081 else
9082 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9083 gcc_assert (temp);
9084 return temp;
9085
9086 /* ??? Can optimize bitwise operations with one arg constant.
9087 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9088 and (a bitwise1 b) bitwise2 b (etc)
9089 but that is probably not worth while. */
9090
9091 case BIT_AND_EXPR:
9092 case BIT_IOR_EXPR:
9093 case BIT_XOR_EXPR:
9094 goto binop;
9095
9096 case LROTATE_EXPR:
9097 case RROTATE_EXPR:
9098 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9099 || type_has_mode_precision_p (type));
9100 /* fall through */
9101
9102 case LSHIFT_EXPR:
9103 case RSHIFT_EXPR:
9104 {
9105 /* If this is a fixed-point operation, then we cannot use the code
9106 below because "expand_shift" doesn't support sat/no-sat fixed-point
9107 shifts. */
9108 if (ALL_FIXED_POINT_MODE_P (mode))
9109 goto binop;
9110
9111 if (! safe_from_p (subtarget, treeop1, 1))
9112 subtarget = 0;
9113 if (modifier == EXPAND_STACK_PARM)
9114 target = 0;
9115 op0 = expand_expr (treeop0, subtarget,
9116 VOIDmode, EXPAND_NORMAL);
9117
9118 /* Left shift optimization when shifting across word_size boundary.
9119
9120 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9121 there isn't native instruction to support this wide mode
9122 left shift. Given below scenario:
9123
9124 Type A = (Type) B << C
9125
9126 |< T >|
9127 | dest_high | dest_low |
9128
9129 | word_size |
9130
9131 If the shift amount C caused we shift B to across the word
9132 size boundary, i.e part of B shifted into high half of
9133 destination register, and part of B remains in the low
9134 half, then GCC will use the following left shift expand
9135 logic:
9136
9137 1. Initialize dest_low to B.
9138 2. Initialize every bit of dest_high to the sign bit of B.
9139 3. Logic left shift dest_low by C bit to finalize dest_low.
9140 The value of dest_low before this shift is kept in a temp D.
9141 4. Logic left shift dest_high by C.
9142 5. Logic right shift D by (word_size - C).
9143 6. Or the result of 4 and 5 to finalize dest_high.
9144
9145 While, by checking gimple statements, if operand B is
9146 coming from signed extension, then we can simplify above
9147 expand logic into:
9148
9149 1. dest_high = src_low >> (word_size - C).
9150 2. dest_low = src_low << C.
9151
9152 We can use one arithmetic right shift to finish all the
9153 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9154 needed from 6 into 2.
9155
9156 The case is similar for zero extension, except that we
9157 initialize dest_high to zero rather than copies of the sign
9158 bit from B. Furthermore, we need to use a logical right shift
9159 in this case.
9160
9161 The choice of sign-extension versus zero-extension is
9162 determined entirely by whether or not B is signed and is
9163 independent of the current setting of unsignedp. */
9164
9165 temp = NULL_RTX;
9166 if (code == LSHIFT_EXPR
9167 && target
9168 && REG_P (target)
9169 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9170 && mode == int_mode
9171 && TREE_CONSTANT (treeop1)
9172 && TREE_CODE (treeop0) == SSA_NAME)
9173 {
9174 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9175 if (is_gimple_assign (def)
9176 && gimple_assign_rhs_code (def) == NOP_EXPR)
9177 {
9178 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9179 (TREE_TYPE (gimple_assign_rhs1 (def)));
9180
9181 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9182 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9183 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9184 >= GET_MODE_BITSIZE (word_mode)))
9185 {
9186 rtx_insn *seq, *seq_old;
9187 unsigned int high_off = subreg_highpart_offset (word_mode,
9188 int_mode);
9189 bool extend_unsigned
9190 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9191 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9192 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9193 rtx dest_high = simplify_gen_subreg (word_mode, target,
9194 int_mode, high_off);
9195 HOST_WIDE_INT ramount = (BITS_PER_WORD
9196 - TREE_INT_CST_LOW (treeop1));
9197 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9198
9199 start_sequence ();
9200 /* dest_high = src_low >> (word_size - C). */
9201 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9202 rshift, dest_high,
9203 extend_unsigned);
9204 if (temp != dest_high)
9205 emit_move_insn (dest_high, temp);
9206
9207 /* dest_low = src_low << C. */
9208 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9209 treeop1, dest_low, unsignedp);
9210 if (temp != dest_low)
9211 emit_move_insn (dest_low, temp);
9212
9213 seq = get_insns ();
9214 end_sequence ();
9215 temp = target ;
9216
9217 if (have_insn_for (ASHIFT, int_mode))
9218 {
9219 bool speed_p = optimize_insn_for_speed_p ();
9220 start_sequence ();
9221 rtx ret_old = expand_variable_shift (code, int_mode,
9222 op0, treeop1,
9223 target,
9224 unsignedp);
9225
9226 seq_old = get_insns ();
9227 end_sequence ();
9228 if (seq_cost (seq, speed_p)
9229 >= seq_cost (seq_old, speed_p))
9230 {
9231 seq = seq_old;
9232 temp = ret_old;
9233 }
9234 }
9235 emit_insn (seq);
9236 }
9237 }
9238 }
9239
9240 if (temp == NULL_RTX)
9241 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9242 unsignedp);
9243 if (code == LSHIFT_EXPR)
9244 temp = REDUCE_BIT_FIELD (temp);
9245 return temp;
9246 }
9247
9248 /* Could determine the answer when only additive constants differ. Also,
9249 the addition of one can be handled by changing the condition. */
9250 case LT_EXPR:
9251 case LE_EXPR:
9252 case GT_EXPR:
9253 case GE_EXPR:
9254 case EQ_EXPR:
9255 case NE_EXPR:
9256 case UNORDERED_EXPR:
9257 case ORDERED_EXPR:
9258 case UNLT_EXPR:
9259 case UNLE_EXPR:
9260 case UNGT_EXPR:
9261 case UNGE_EXPR:
9262 case UNEQ_EXPR:
9263 case LTGT_EXPR:
9264 {
9265 temp = do_store_flag (ops,
9266 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9267 tmode != VOIDmode ? tmode : mode);
9268 if (temp)
9269 return temp;
9270
9271 /* Use a compare and a jump for BLKmode comparisons, or for function
9272 type comparisons is have_canonicalize_funcptr_for_compare. */
9273
9274 if ((target == 0
9275 || modifier == EXPAND_STACK_PARM
9276 || ! safe_from_p (target, treeop0, 1)
9277 || ! safe_from_p (target, treeop1, 1)
9278 /* Make sure we don't have a hard reg (such as function's return
9279 value) live across basic blocks, if not optimizing. */
9280 || (!optimize && REG_P (target)
9281 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9282 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9283
9284 emit_move_insn (target, const0_rtx);
9285
9286 rtx_code_label *lab1 = gen_label_rtx ();
9287 jumpifnot_1 (code, treeop0, treeop1, lab1,
9288 profile_probability::uninitialized ());
9289
9290 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9291 emit_move_insn (target, constm1_rtx);
9292 else
9293 emit_move_insn (target, const1_rtx);
9294
9295 emit_label (lab1);
9296 return target;
9297 }
9298 case COMPLEX_EXPR:
9299 /* Get the rtx code of the operands. */
9300 op0 = expand_normal (treeop0);
9301 op1 = expand_normal (treeop1);
9302
9303 if (!target)
9304 target = gen_reg_rtx (TYPE_MODE (type));
9305 else
9306 /* If target overlaps with op1, then either we need to force
9307 op1 into a pseudo (if target also overlaps with op0),
9308 or write the complex parts in reverse order. */
9309 switch (GET_CODE (target))
9310 {
9311 case CONCAT:
9312 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9313 {
9314 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9315 {
9316 complex_expr_force_op1:
9317 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9318 emit_move_insn (temp, op1);
9319 op1 = temp;
9320 break;
9321 }
9322 complex_expr_swap_order:
9323 /* Move the imaginary (op1) and real (op0) parts to their
9324 location. */
9325 write_complex_part (target, op1, true);
9326 write_complex_part (target, op0, false);
9327
9328 return target;
9329 }
9330 break;
9331 case MEM:
9332 temp = adjust_address_nv (target,
9333 GET_MODE_INNER (GET_MODE (target)), 0);
9334 if (reg_overlap_mentioned_p (temp, op1))
9335 {
9336 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9337 temp = adjust_address_nv (target, imode,
9338 GET_MODE_SIZE (imode));
9339 if (reg_overlap_mentioned_p (temp, op0))
9340 goto complex_expr_force_op1;
9341 goto complex_expr_swap_order;
9342 }
9343 break;
9344 default:
9345 if (reg_overlap_mentioned_p (target, op1))
9346 {
9347 if (reg_overlap_mentioned_p (target, op0))
9348 goto complex_expr_force_op1;
9349 goto complex_expr_swap_order;
9350 }
9351 break;
9352 }
9353
9354 /* Move the real (op0) and imaginary (op1) parts to their location. */
9355 write_complex_part (target, op0, false);
9356 write_complex_part (target, op1, true);
9357
9358 return target;
9359
9360 case WIDEN_SUM_EXPR:
9361 {
9362 tree oprnd0 = treeop0;
9363 tree oprnd1 = treeop1;
9364
9365 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9366 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9367 target, unsignedp);
9368 return target;
9369 }
9370
9371 case REDUC_MAX_EXPR:
9372 case REDUC_MIN_EXPR:
9373 case REDUC_PLUS_EXPR:
9374 {
9375 op0 = expand_normal (treeop0);
9376 this_optab = optab_for_tree_code (code, type, optab_default);
9377 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9378
9379 struct expand_operand ops[2];
9380 enum insn_code icode = optab_handler (this_optab, vec_mode);
9381
9382 create_output_operand (&ops[0], target, mode);
9383 create_input_operand (&ops[1], op0, vec_mode);
9384 expand_insn (icode, 2, ops);
9385 target = ops[0].value;
9386 if (GET_MODE (target) != mode)
9387 return gen_lowpart (tmode, target);
9388 return target;
9389 }
9390
9391 case VEC_UNPACK_HI_EXPR:
9392 case VEC_UNPACK_LO_EXPR:
9393 {
9394 op0 = expand_normal (treeop0);
9395 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9396 target, unsignedp);
9397 gcc_assert (temp);
9398 return temp;
9399 }
9400
9401 case VEC_UNPACK_FLOAT_HI_EXPR:
9402 case VEC_UNPACK_FLOAT_LO_EXPR:
9403 {
9404 op0 = expand_normal (treeop0);
9405 /* The signedness is determined from input operand. */
9406 temp = expand_widen_pattern_expr
9407 (ops, op0, NULL_RTX, NULL_RTX,
9408 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9409
9410 gcc_assert (temp);
9411 return temp;
9412 }
9413
9414 case VEC_WIDEN_MULT_HI_EXPR:
9415 case VEC_WIDEN_MULT_LO_EXPR:
9416 case VEC_WIDEN_MULT_EVEN_EXPR:
9417 case VEC_WIDEN_MULT_ODD_EXPR:
9418 case VEC_WIDEN_LSHIFT_HI_EXPR:
9419 case VEC_WIDEN_LSHIFT_LO_EXPR:
9420 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9421 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9422 target, unsignedp);
9423 gcc_assert (target);
9424 return target;
9425
9426 case VEC_PACK_TRUNC_EXPR:
9427 case VEC_PACK_SAT_EXPR:
9428 case VEC_PACK_FIX_TRUNC_EXPR:
9429 mode = TYPE_MODE (TREE_TYPE (treeop0));
9430 goto binop;
9431
9432 case VEC_PERM_EXPR:
9433 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9434 op2 = expand_normal (treeop2);
9435
9436 /* Careful here: if the target doesn't support integral vector modes,
9437 a constant selection vector could wind up smooshed into a normal
9438 integral constant. */
9439 if (CONSTANT_P (op2) && !VECTOR_MODE_P (GET_MODE (op2)))
9440 {
9441 tree sel_type = TREE_TYPE (treeop2);
9442 machine_mode vmode
9443 = mode_for_vector (SCALAR_TYPE_MODE (TREE_TYPE (sel_type)),
9444 TYPE_VECTOR_SUBPARTS (sel_type)).require ();
9445 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9446 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9447 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9448 }
9449 else
9450 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9451
9452 temp = expand_vec_perm (mode, op0, op1, op2, target);
9453 gcc_assert (temp);
9454 return temp;
9455
9456 case DOT_PROD_EXPR:
9457 {
9458 tree oprnd0 = treeop0;
9459 tree oprnd1 = treeop1;
9460 tree oprnd2 = treeop2;
9461 rtx op2;
9462
9463 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9464 op2 = expand_normal (oprnd2);
9465 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9466 target, unsignedp);
9467 return target;
9468 }
9469
9470 case SAD_EXPR:
9471 {
9472 tree oprnd0 = treeop0;
9473 tree oprnd1 = treeop1;
9474 tree oprnd2 = treeop2;
9475 rtx op2;
9476
9477 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9478 op2 = expand_normal (oprnd2);
9479 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9480 target, unsignedp);
9481 return target;
9482 }
9483
9484 case REALIGN_LOAD_EXPR:
9485 {
9486 tree oprnd0 = treeop0;
9487 tree oprnd1 = treeop1;
9488 tree oprnd2 = treeop2;
9489 rtx op2;
9490
9491 this_optab = optab_for_tree_code (code, type, optab_default);
9492 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9493 op2 = expand_normal (oprnd2);
9494 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9495 target, unsignedp);
9496 gcc_assert (temp);
9497 return temp;
9498 }
9499
9500 case COND_EXPR:
9501 {
9502 /* A COND_EXPR with its type being VOID_TYPE represents a
9503 conditional jump and is handled in
9504 expand_gimple_cond_expr. */
9505 gcc_assert (!VOID_TYPE_P (type));
9506
9507 /* Note that COND_EXPRs whose type is a structure or union
9508 are required to be constructed to contain assignments of
9509 a temporary variable, so that we can evaluate them here
9510 for side effect only. If type is void, we must do likewise. */
9511
9512 gcc_assert (!TREE_ADDRESSABLE (type)
9513 && !ignore
9514 && TREE_TYPE (treeop1) != void_type_node
9515 && TREE_TYPE (treeop2) != void_type_node);
9516
9517 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9518 if (temp)
9519 return temp;
9520
9521 /* If we are not to produce a result, we have no target. Otherwise,
9522 if a target was specified use it; it will not be used as an
9523 intermediate target unless it is safe. If no target, use a
9524 temporary. */
9525
9526 if (modifier != EXPAND_STACK_PARM
9527 && original_target
9528 && safe_from_p (original_target, treeop0, 1)
9529 && GET_MODE (original_target) == mode
9530 && !MEM_P (original_target))
9531 temp = original_target;
9532 else
9533 temp = assign_temp (type, 0, 1);
9534
9535 do_pending_stack_adjust ();
9536 NO_DEFER_POP;
9537 rtx_code_label *lab0 = gen_label_rtx ();
9538 rtx_code_label *lab1 = gen_label_rtx ();
9539 jumpifnot (treeop0, lab0,
9540 profile_probability::uninitialized ());
9541 store_expr (treeop1, temp,
9542 modifier == EXPAND_STACK_PARM,
9543 false, false);
9544
9545 emit_jump_insn (targetm.gen_jump (lab1));
9546 emit_barrier ();
9547 emit_label (lab0);
9548 store_expr (treeop2, temp,
9549 modifier == EXPAND_STACK_PARM,
9550 false, false);
9551
9552 emit_label (lab1);
9553 OK_DEFER_POP;
9554 return temp;
9555 }
9556
9557 case VEC_COND_EXPR:
9558 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9559 return target;
9560
9561 case BIT_INSERT_EXPR:
9562 {
9563 unsigned bitpos = tree_to_uhwi (treeop2);
9564 unsigned bitsize;
9565 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9566 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9567 else
9568 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9569 rtx op0 = expand_normal (treeop0);
9570 rtx op1 = expand_normal (treeop1);
9571 rtx dst = gen_reg_rtx (mode);
9572 emit_move_insn (dst, op0);
9573 store_bit_field (dst, bitsize, bitpos, 0, 0,
9574 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9575 return dst;
9576 }
9577
9578 default:
9579 gcc_unreachable ();
9580 }
9581
9582 /* Here to do an ordinary binary operator. */
9583 binop:
9584 expand_operands (treeop0, treeop1,
9585 subtarget, &op0, &op1, EXPAND_NORMAL);
9586 binop2:
9587 this_optab = optab_for_tree_code (code, type, optab_default);
9588 binop3:
9589 if (modifier == EXPAND_STACK_PARM)
9590 target = 0;
9591 temp = expand_binop (mode, this_optab, op0, op1, target,
9592 unsignedp, OPTAB_LIB_WIDEN);
9593 gcc_assert (temp);
9594 /* Bitwise operations do not need bitfield reduction as we expect their
9595 operands being properly truncated. */
9596 if (code == BIT_XOR_EXPR
9597 || code == BIT_AND_EXPR
9598 || code == BIT_IOR_EXPR)
9599 return temp;
9600 return REDUCE_BIT_FIELD (temp);
9601 }
9602 #undef REDUCE_BIT_FIELD
9603
9604
9605 /* Return TRUE if expression STMT is suitable for replacement.
9606 Never consider memory loads as replaceable, because those don't ever lead
9607 into constant expressions. */
9608
9609 static bool
9610 stmt_is_replaceable_p (gimple *stmt)
9611 {
9612 if (ssa_is_replaceable_p (stmt))
9613 {
9614 /* Don't move around loads. */
9615 if (!gimple_assign_single_p (stmt)
9616 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9617 return true;
9618 }
9619 return false;
9620 }
9621
9622 rtx
9623 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9624 enum expand_modifier modifier, rtx *alt_rtl,
9625 bool inner_reference_p)
9626 {
9627 rtx op0, op1, temp, decl_rtl;
9628 tree type;
9629 int unsignedp;
9630 machine_mode mode, dmode;
9631 enum tree_code code = TREE_CODE (exp);
9632 rtx subtarget, original_target;
9633 int ignore;
9634 tree context;
9635 bool reduce_bit_field;
9636 location_t loc = EXPR_LOCATION (exp);
9637 struct separate_ops ops;
9638 tree treeop0, treeop1, treeop2;
9639 tree ssa_name = NULL_TREE;
9640 gimple *g;
9641
9642 type = TREE_TYPE (exp);
9643 mode = TYPE_MODE (type);
9644 unsignedp = TYPE_UNSIGNED (type);
9645
9646 treeop0 = treeop1 = treeop2 = NULL_TREE;
9647 if (!VL_EXP_CLASS_P (exp))
9648 switch (TREE_CODE_LENGTH (code))
9649 {
9650 default:
9651 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9652 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9653 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9654 case 0: break;
9655 }
9656 ops.code = code;
9657 ops.type = type;
9658 ops.op0 = treeop0;
9659 ops.op1 = treeop1;
9660 ops.op2 = treeop2;
9661 ops.location = loc;
9662
9663 ignore = (target == const0_rtx
9664 || ((CONVERT_EXPR_CODE_P (code)
9665 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9666 && TREE_CODE (type) == VOID_TYPE));
9667
9668 /* An operation in what may be a bit-field type needs the
9669 result to be reduced to the precision of the bit-field type,
9670 which is narrower than that of the type's mode. */
9671 reduce_bit_field = (!ignore
9672 && INTEGRAL_TYPE_P (type)
9673 && !type_has_mode_precision_p (type));
9674
9675 /* If we are going to ignore this result, we need only do something
9676 if there is a side-effect somewhere in the expression. If there
9677 is, short-circuit the most common cases here. Note that we must
9678 not call expand_expr with anything but const0_rtx in case this
9679 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9680
9681 if (ignore)
9682 {
9683 if (! TREE_SIDE_EFFECTS (exp))
9684 return const0_rtx;
9685
9686 /* Ensure we reference a volatile object even if value is ignored, but
9687 don't do this if all we are doing is taking its address. */
9688 if (TREE_THIS_VOLATILE (exp)
9689 && TREE_CODE (exp) != FUNCTION_DECL
9690 && mode != VOIDmode && mode != BLKmode
9691 && modifier != EXPAND_CONST_ADDRESS)
9692 {
9693 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9694 if (MEM_P (temp))
9695 copy_to_reg (temp);
9696 return const0_rtx;
9697 }
9698
9699 if (TREE_CODE_CLASS (code) == tcc_unary
9700 || code == BIT_FIELD_REF
9701 || code == COMPONENT_REF
9702 || code == INDIRECT_REF)
9703 return expand_expr (treeop0, const0_rtx, VOIDmode,
9704 modifier);
9705
9706 else if (TREE_CODE_CLASS (code) == tcc_binary
9707 || TREE_CODE_CLASS (code) == tcc_comparison
9708 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9709 {
9710 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9711 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9712 return const0_rtx;
9713 }
9714
9715 target = 0;
9716 }
9717
9718 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9719 target = 0;
9720
9721 /* Use subtarget as the target for operand 0 of a binary operation. */
9722 subtarget = get_subtarget (target);
9723 original_target = target;
9724
9725 switch (code)
9726 {
9727 case LABEL_DECL:
9728 {
9729 tree function = decl_function_context (exp);
9730
9731 temp = label_rtx (exp);
9732 temp = gen_rtx_LABEL_REF (Pmode, temp);
9733
9734 if (function != current_function_decl
9735 && function != 0)
9736 LABEL_REF_NONLOCAL_P (temp) = 1;
9737
9738 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9739 return temp;
9740 }
9741
9742 case SSA_NAME:
9743 /* ??? ivopts calls expander, without any preparation from
9744 out-of-ssa. So fake instructions as if this was an access to the
9745 base variable. This unnecessarily allocates a pseudo, see how we can
9746 reuse it, if partition base vars have it set already. */
9747 if (!currently_expanding_to_rtl)
9748 {
9749 tree var = SSA_NAME_VAR (exp);
9750 if (var && DECL_RTL_SET_P (var))
9751 return DECL_RTL (var);
9752 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9753 LAST_VIRTUAL_REGISTER + 1);
9754 }
9755
9756 g = get_gimple_for_ssa_name (exp);
9757 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9758 if (g == NULL
9759 && modifier == EXPAND_INITIALIZER
9760 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9761 && (optimize || !SSA_NAME_VAR (exp)
9762 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9763 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9764 g = SSA_NAME_DEF_STMT (exp);
9765 if (g)
9766 {
9767 rtx r;
9768 location_t saved_loc = curr_insn_location ();
9769 location_t loc = gimple_location (g);
9770 if (loc != UNKNOWN_LOCATION)
9771 set_curr_insn_location (loc);
9772 ops.code = gimple_assign_rhs_code (g);
9773 switch (get_gimple_rhs_class (ops.code))
9774 {
9775 case GIMPLE_TERNARY_RHS:
9776 ops.op2 = gimple_assign_rhs3 (g);
9777 /* Fallthru */
9778 case GIMPLE_BINARY_RHS:
9779 ops.op1 = gimple_assign_rhs2 (g);
9780
9781 /* Try to expand conditonal compare. */
9782 if (targetm.gen_ccmp_first)
9783 {
9784 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9785 r = expand_ccmp_expr (g, mode);
9786 if (r)
9787 break;
9788 }
9789 /* Fallthru */
9790 case GIMPLE_UNARY_RHS:
9791 ops.op0 = gimple_assign_rhs1 (g);
9792 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9793 ops.location = loc;
9794 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9795 break;
9796 case GIMPLE_SINGLE_RHS:
9797 {
9798 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9799 tmode, modifier, alt_rtl,
9800 inner_reference_p);
9801 break;
9802 }
9803 default:
9804 gcc_unreachable ();
9805 }
9806 set_curr_insn_location (saved_loc);
9807 if (REG_P (r) && !REG_EXPR (r))
9808 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9809 return r;
9810 }
9811
9812 ssa_name = exp;
9813 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9814 exp = SSA_NAME_VAR (ssa_name);
9815 goto expand_decl_rtl;
9816
9817 case PARM_DECL:
9818 case VAR_DECL:
9819 /* If a static var's type was incomplete when the decl was written,
9820 but the type is complete now, lay out the decl now. */
9821 if (DECL_SIZE (exp) == 0
9822 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9823 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9824 layout_decl (exp, 0);
9825
9826 /* fall through */
9827
9828 case FUNCTION_DECL:
9829 case RESULT_DECL:
9830 decl_rtl = DECL_RTL (exp);
9831 expand_decl_rtl:
9832 gcc_assert (decl_rtl);
9833
9834 /* DECL_MODE might change when TYPE_MODE depends on attribute target
9835 settings for VECTOR_TYPE_P that might switch for the function. */
9836 if (currently_expanding_to_rtl
9837 && code == VAR_DECL && MEM_P (decl_rtl)
9838 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
9839 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
9840 else
9841 decl_rtl = copy_rtx (decl_rtl);
9842
9843 /* Record writes to register variables. */
9844 if (modifier == EXPAND_WRITE
9845 && REG_P (decl_rtl)
9846 && HARD_REGISTER_P (decl_rtl))
9847 add_to_hard_reg_set (&crtl->asm_clobbers,
9848 GET_MODE (decl_rtl), REGNO (decl_rtl));
9849
9850 /* Ensure variable marked as used even if it doesn't go through
9851 a parser. If it hasn't be used yet, write out an external
9852 definition. */
9853 if (exp)
9854 TREE_USED (exp) = 1;
9855
9856 /* Show we haven't gotten RTL for this yet. */
9857 temp = 0;
9858
9859 /* Variables inherited from containing functions should have
9860 been lowered by this point. */
9861 if (exp)
9862 context = decl_function_context (exp);
9863 gcc_assert (!exp
9864 || SCOPE_FILE_SCOPE_P (context)
9865 || context == current_function_decl
9866 || TREE_STATIC (exp)
9867 || DECL_EXTERNAL (exp)
9868 /* ??? C++ creates functions that are not TREE_STATIC. */
9869 || TREE_CODE (exp) == FUNCTION_DECL);
9870
9871 /* This is the case of an array whose size is to be determined
9872 from its initializer, while the initializer is still being parsed.
9873 ??? We aren't parsing while expanding anymore. */
9874
9875 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9876 temp = validize_mem (decl_rtl);
9877
9878 /* If DECL_RTL is memory, we are in the normal case and the
9879 address is not valid, get the address into a register. */
9880
9881 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9882 {
9883 if (alt_rtl)
9884 *alt_rtl = decl_rtl;
9885 decl_rtl = use_anchored_address (decl_rtl);
9886 if (modifier != EXPAND_CONST_ADDRESS
9887 && modifier != EXPAND_SUM
9888 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
9889 : GET_MODE (decl_rtl),
9890 XEXP (decl_rtl, 0),
9891 MEM_ADDR_SPACE (decl_rtl)))
9892 temp = replace_equiv_address (decl_rtl,
9893 copy_rtx (XEXP (decl_rtl, 0)));
9894 }
9895
9896 /* If we got something, return it. But first, set the alignment
9897 if the address is a register. */
9898 if (temp != 0)
9899 {
9900 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
9901 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9902
9903 return temp;
9904 }
9905
9906 if (exp)
9907 dmode = DECL_MODE (exp);
9908 else
9909 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
9910
9911 /* If the mode of DECL_RTL does not match that of the decl,
9912 there are two cases: we are dealing with a BLKmode value
9913 that is returned in a register, or we are dealing with
9914 a promoted value. In the latter case, return a SUBREG
9915 of the wanted mode, but mark it so that we know that it
9916 was already extended. */
9917 if (REG_P (decl_rtl)
9918 && dmode != BLKmode
9919 && GET_MODE (decl_rtl) != dmode)
9920 {
9921 machine_mode pmode;
9922
9923 /* Get the signedness to be used for this variable. Ensure we get
9924 the same mode we got when the variable was declared. */
9925 if (code != SSA_NAME)
9926 pmode = promote_decl_mode (exp, &unsignedp);
9927 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
9928 && gimple_code (g) == GIMPLE_CALL
9929 && !gimple_call_internal_p (g))
9930 pmode = promote_function_mode (type, mode, &unsignedp,
9931 gimple_call_fntype (g),
9932 2);
9933 else
9934 pmode = promote_ssa_mode (ssa_name, &unsignedp);
9935 gcc_assert (GET_MODE (decl_rtl) == pmode);
9936
9937 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9938 SUBREG_PROMOTED_VAR_P (temp) = 1;
9939 SUBREG_PROMOTED_SET (temp, unsignedp);
9940 return temp;
9941 }
9942
9943 return decl_rtl;
9944
9945 case INTEGER_CST:
9946 {
9947 /* Given that TYPE_PRECISION (type) is not always equal to
9948 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9949 the former to the latter according to the signedness of the
9950 type. */
9951 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
9952 temp = immed_wide_int_const
9953 (wi::to_wide (exp, GET_MODE_PRECISION (mode)), mode);
9954 return temp;
9955 }
9956
9957 case VECTOR_CST:
9958 {
9959 tree tmp = NULL_TREE;
9960 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9961 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9962 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9963 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9964 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9965 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9966 return const_vector_from_tree (exp);
9967 scalar_int_mode int_mode;
9968 if (is_int_mode (mode, &int_mode))
9969 {
9970 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
9971 return const_scalar_mask_from_tree (int_mode, exp);
9972 else
9973 {
9974 tree type_for_mode
9975 = lang_hooks.types.type_for_mode (int_mode, 1);
9976 if (type_for_mode)
9977 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
9978 type_for_mode, exp);
9979 }
9980 }
9981 if (!tmp)
9982 {
9983 vec<constructor_elt, va_gc> *v;
9984 unsigned i;
9985 vec_alloc (v, VECTOR_CST_NELTS (exp));
9986 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9987 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9988 tmp = build_constructor (type, v);
9989 }
9990 return expand_expr (tmp, ignore ? const0_rtx : target,
9991 tmode, modifier);
9992 }
9993
9994 case CONST_DECL:
9995 if (modifier == EXPAND_WRITE)
9996 {
9997 /* Writing into CONST_DECL is always invalid, but handle it
9998 gracefully. */
9999 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10000 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10001 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10002 EXPAND_NORMAL, as);
10003 op0 = memory_address_addr_space (mode, op0, as);
10004 temp = gen_rtx_MEM (mode, op0);
10005 set_mem_addr_space (temp, as);
10006 return temp;
10007 }
10008 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10009
10010 case REAL_CST:
10011 /* If optimized, generate immediate CONST_DOUBLE
10012 which will be turned into memory by reload if necessary.
10013
10014 We used to force a register so that loop.c could see it. But
10015 this does not allow gen_* patterns to perform optimizations with
10016 the constants. It also produces two insns in cases like "x = 1.0;".
10017 On most machines, floating-point constants are not permitted in
10018 many insns, so we'd end up copying it to a register in any case.
10019
10020 Now, we do the copying in expand_binop, if appropriate. */
10021 return const_double_from_real_value (TREE_REAL_CST (exp),
10022 TYPE_MODE (TREE_TYPE (exp)));
10023
10024 case FIXED_CST:
10025 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10026 TYPE_MODE (TREE_TYPE (exp)));
10027
10028 case COMPLEX_CST:
10029 /* Handle evaluating a complex constant in a CONCAT target. */
10030 if (original_target && GET_CODE (original_target) == CONCAT)
10031 {
10032 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10033 rtx rtarg, itarg;
10034
10035 rtarg = XEXP (original_target, 0);
10036 itarg = XEXP (original_target, 1);
10037
10038 /* Move the real and imaginary parts separately. */
10039 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10040 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10041
10042 if (op0 != rtarg)
10043 emit_move_insn (rtarg, op0);
10044 if (op1 != itarg)
10045 emit_move_insn (itarg, op1);
10046
10047 return original_target;
10048 }
10049
10050 /* fall through */
10051
10052 case STRING_CST:
10053 temp = expand_expr_constant (exp, 1, modifier);
10054
10055 /* temp contains a constant address.
10056 On RISC machines where a constant address isn't valid,
10057 make some insns to get that address into a register. */
10058 if (modifier != EXPAND_CONST_ADDRESS
10059 && modifier != EXPAND_INITIALIZER
10060 && modifier != EXPAND_SUM
10061 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10062 MEM_ADDR_SPACE (temp)))
10063 return replace_equiv_address (temp,
10064 copy_rtx (XEXP (temp, 0)));
10065 return temp;
10066
10067 case SAVE_EXPR:
10068 {
10069 tree val = treeop0;
10070 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10071 inner_reference_p);
10072
10073 if (!SAVE_EXPR_RESOLVED_P (exp))
10074 {
10075 /* We can indeed still hit this case, typically via builtin
10076 expanders calling save_expr immediately before expanding
10077 something. Assume this means that we only have to deal
10078 with non-BLKmode values. */
10079 gcc_assert (GET_MODE (ret) != BLKmode);
10080
10081 val = build_decl (curr_insn_location (),
10082 VAR_DECL, NULL, TREE_TYPE (exp));
10083 DECL_ARTIFICIAL (val) = 1;
10084 DECL_IGNORED_P (val) = 1;
10085 treeop0 = val;
10086 TREE_OPERAND (exp, 0) = treeop0;
10087 SAVE_EXPR_RESOLVED_P (exp) = 1;
10088
10089 if (!CONSTANT_P (ret))
10090 ret = copy_to_reg (ret);
10091 SET_DECL_RTL (val, ret);
10092 }
10093
10094 return ret;
10095 }
10096
10097
10098 case CONSTRUCTOR:
10099 /* If we don't need the result, just ensure we evaluate any
10100 subexpressions. */
10101 if (ignore)
10102 {
10103 unsigned HOST_WIDE_INT idx;
10104 tree value;
10105
10106 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10107 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10108
10109 return const0_rtx;
10110 }
10111
10112 return expand_constructor (exp, target, modifier, false);
10113
10114 case TARGET_MEM_REF:
10115 {
10116 addr_space_t as
10117 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10118 enum insn_code icode;
10119 unsigned int align;
10120
10121 op0 = addr_for_mem_ref (exp, as, true);
10122 op0 = memory_address_addr_space (mode, op0, as);
10123 temp = gen_rtx_MEM (mode, op0);
10124 set_mem_attributes (temp, exp, 0);
10125 set_mem_addr_space (temp, as);
10126 align = get_object_alignment (exp);
10127 if (modifier != EXPAND_WRITE
10128 && modifier != EXPAND_MEMORY
10129 && mode != BLKmode
10130 && align < GET_MODE_ALIGNMENT (mode)
10131 /* If the target does not have special handling for unaligned
10132 loads of mode then it can use regular moves for them. */
10133 && ((icode = optab_handler (movmisalign_optab, mode))
10134 != CODE_FOR_nothing))
10135 {
10136 struct expand_operand ops[2];
10137
10138 /* We've already validated the memory, and we're creating a
10139 new pseudo destination. The predicates really can't fail,
10140 nor can the generator. */
10141 create_output_operand (&ops[0], NULL_RTX, mode);
10142 create_fixed_operand (&ops[1], temp);
10143 expand_insn (icode, 2, ops);
10144 temp = ops[0].value;
10145 }
10146 return temp;
10147 }
10148
10149 case MEM_REF:
10150 {
10151 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10152 addr_space_t as
10153 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10154 machine_mode address_mode;
10155 tree base = TREE_OPERAND (exp, 0);
10156 gimple *def_stmt;
10157 enum insn_code icode;
10158 unsigned align;
10159 /* Handle expansion of non-aliased memory with non-BLKmode. That
10160 might end up in a register. */
10161 if (mem_ref_refers_to_non_mem_p (exp))
10162 {
10163 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
10164 base = TREE_OPERAND (base, 0);
10165 if (offset == 0
10166 && !reverse
10167 && tree_fits_uhwi_p (TYPE_SIZE (type))
10168 && (GET_MODE_BITSIZE (DECL_MODE (base))
10169 == tree_to_uhwi (TYPE_SIZE (type))))
10170 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10171 target, tmode, modifier);
10172 if (TYPE_MODE (type) == BLKmode)
10173 {
10174 temp = assign_stack_temp (DECL_MODE (base),
10175 GET_MODE_SIZE (DECL_MODE (base)));
10176 store_expr (base, temp, 0, false, false);
10177 temp = adjust_address (temp, BLKmode, offset);
10178 set_mem_size (temp, int_size_in_bytes (type));
10179 return temp;
10180 }
10181 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10182 bitsize_int (offset * BITS_PER_UNIT));
10183 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10184 return expand_expr (exp, target, tmode, modifier);
10185 }
10186 address_mode = targetm.addr_space.address_mode (as);
10187 base = TREE_OPERAND (exp, 0);
10188 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10189 {
10190 tree mask = gimple_assign_rhs2 (def_stmt);
10191 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10192 gimple_assign_rhs1 (def_stmt), mask);
10193 TREE_OPERAND (exp, 0) = base;
10194 }
10195 align = get_object_alignment (exp);
10196 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10197 op0 = memory_address_addr_space (mode, op0, as);
10198 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10199 {
10200 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10201 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10202 op0 = memory_address_addr_space (mode, op0, as);
10203 }
10204 temp = gen_rtx_MEM (mode, op0);
10205 set_mem_attributes (temp, exp, 0);
10206 set_mem_addr_space (temp, as);
10207 if (TREE_THIS_VOLATILE (exp))
10208 MEM_VOLATILE_P (temp) = 1;
10209 if (modifier != EXPAND_WRITE
10210 && modifier != EXPAND_MEMORY
10211 && !inner_reference_p
10212 && mode != BLKmode
10213 && align < GET_MODE_ALIGNMENT (mode))
10214 {
10215 if ((icode = optab_handler (movmisalign_optab, mode))
10216 != CODE_FOR_nothing)
10217 {
10218 struct expand_operand ops[2];
10219
10220 /* We've already validated the memory, and we're creating a
10221 new pseudo destination. The predicates really can't fail,
10222 nor can the generator. */
10223 create_output_operand (&ops[0], NULL_RTX, mode);
10224 create_fixed_operand (&ops[1], temp);
10225 expand_insn (icode, 2, ops);
10226 temp = ops[0].value;
10227 }
10228 else if (targetm.slow_unaligned_access (mode, align))
10229 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
10230 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
10231 (modifier == EXPAND_STACK_PARM
10232 ? NULL_RTX : target),
10233 mode, mode, false, alt_rtl);
10234 }
10235 if (reverse
10236 && modifier != EXPAND_MEMORY
10237 && modifier != EXPAND_WRITE)
10238 temp = flip_storage_order (mode, temp);
10239 return temp;
10240 }
10241
10242 case ARRAY_REF:
10243
10244 {
10245 tree array = treeop0;
10246 tree index = treeop1;
10247 tree init;
10248
10249 /* Fold an expression like: "foo"[2].
10250 This is not done in fold so it won't happen inside &.
10251 Don't fold if this is for wide characters since it's too
10252 difficult to do correctly and this is a very rare case. */
10253
10254 if (modifier != EXPAND_CONST_ADDRESS
10255 && modifier != EXPAND_INITIALIZER
10256 && modifier != EXPAND_MEMORY)
10257 {
10258 tree t = fold_read_from_constant_string (exp);
10259
10260 if (t)
10261 return expand_expr (t, target, tmode, modifier);
10262 }
10263
10264 /* If this is a constant index into a constant array,
10265 just get the value from the array. Handle both the cases when
10266 we have an explicit constructor and when our operand is a variable
10267 that was declared const. */
10268
10269 if (modifier != EXPAND_CONST_ADDRESS
10270 && modifier != EXPAND_INITIALIZER
10271 && modifier != EXPAND_MEMORY
10272 && TREE_CODE (array) == CONSTRUCTOR
10273 && ! TREE_SIDE_EFFECTS (array)
10274 && TREE_CODE (index) == INTEGER_CST)
10275 {
10276 unsigned HOST_WIDE_INT ix;
10277 tree field, value;
10278
10279 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10280 field, value)
10281 if (tree_int_cst_equal (field, index))
10282 {
10283 if (!TREE_SIDE_EFFECTS (value))
10284 return expand_expr (fold (value), target, tmode, modifier);
10285 break;
10286 }
10287 }
10288
10289 else if (optimize >= 1
10290 && modifier != EXPAND_CONST_ADDRESS
10291 && modifier != EXPAND_INITIALIZER
10292 && modifier != EXPAND_MEMORY
10293 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10294 && TREE_CODE (index) == INTEGER_CST
10295 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10296 && (init = ctor_for_folding (array)) != error_mark_node)
10297 {
10298 if (init == NULL_TREE)
10299 {
10300 tree value = build_zero_cst (type);
10301 if (TREE_CODE (value) == CONSTRUCTOR)
10302 {
10303 /* If VALUE is a CONSTRUCTOR, this optimization is only
10304 useful if this doesn't store the CONSTRUCTOR into
10305 memory. If it does, it is more efficient to just
10306 load the data from the array directly. */
10307 rtx ret = expand_constructor (value, target,
10308 modifier, true);
10309 if (ret == NULL_RTX)
10310 value = NULL_TREE;
10311 }
10312
10313 if (value)
10314 return expand_expr (value, target, tmode, modifier);
10315 }
10316 else if (TREE_CODE (init) == CONSTRUCTOR)
10317 {
10318 unsigned HOST_WIDE_INT ix;
10319 tree field, value;
10320
10321 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10322 field, value)
10323 if (tree_int_cst_equal (field, index))
10324 {
10325 if (TREE_SIDE_EFFECTS (value))
10326 break;
10327
10328 if (TREE_CODE (value) == CONSTRUCTOR)
10329 {
10330 /* If VALUE is a CONSTRUCTOR, this
10331 optimization is only useful if
10332 this doesn't store the CONSTRUCTOR
10333 into memory. If it does, it is more
10334 efficient to just load the data from
10335 the array directly. */
10336 rtx ret = expand_constructor (value, target,
10337 modifier, true);
10338 if (ret == NULL_RTX)
10339 break;
10340 }
10341
10342 return
10343 expand_expr (fold (value), target, tmode, modifier);
10344 }
10345 }
10346 else if (TREE_CODE (init) == STRING_CST)
10347 {
10348 tree low_bound = array_ref_low_bound (exp);
10349 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10350
10351 /* Optimize the special case of a zero lower bound.
10352
10353 We convert the lower bound to sizetype to avoid problems
10354 with constant folding. E.g. suppose the lower bound is
10355 1 and its mode is QI. Without the conversion
10356 (ARRAY + (INDEX - (unsigned char)1))
10357 becomes
10358 (ARRAY + (-(unsigned char)1) + INDEX)
10359 which becomes
10360 (ARRAY + 255 + INDEX). Oops! */
10361 if (!integer_zerop (low_bound))
10362 index1 = size_diffop_loc (loc, index1,
10363 fold_convert_loc (loc, sizetype,
10364 low_bound));
10365
10366 if (tree_fits_uhwi_p (index1)
10367 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10368 {
10369 tree type = TREE_TYPE (TREE_TYPE (init));
10370 scalar_int_mode mode;
10371
10372 if (is_int_mode (TYPE_MODE (type), &mode)
10373 && GET_MODE_SIZE (mode) == 1)
10374 return gen_int_mode (TREE_STRING_POINTER (init)
10375 [TREE_INT_CST_LOW (index1)],
10376 mode);
10377 }
10378 }
10379 }
10380 }
10381 goto normal_inner_ref;
10382
10383 case COMPONENT_REF:
10384 /* If the operand is a CONSTRUCTOR, we can just extract the
10385 appropriate field if it is present. */
10386 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10387 {
10388 unsigned HOST_WIDE_INT idx;
10389 tree field, value;
10390 scalar_int_mode field_mode;
10391
10392 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10393 idx, field, value)
10394 if (field == treeop1
10395 /* We can normally use the value of the field in the
10396 CONSTRUCTOR. However, if this is a bitfield in
10397 an integral mode that we can fit in a HOST_WIDE_INT,
10398 we must mask only the number of bits in the bitfield,
10399 since this is done implicitly by the constructor. If
10400 the bitfield does not meet either of those conditions,
10401 we can't do this optimization. */
10402 && (! DECL_BIT_FIELD (field)
10403 || (is_int_mode (DECL_MODE (field), &field_mode)
10404 && (GET_MODE_PRECISION (field_mode)
10405 <= HOST_BITS_PER_WIDE_INT))))
10406 {
10407 if (DECL_BIT_FIELD (field)
10408 && modifier == EXPAND_STACK_PARM)
10409 target = 0;
10410 op0 = expand_expr (value, target, tmode, modifier);
10411 if (DECL_BIT_FIELD (field))
10412 {
10413 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10414 scalar_int_mode imode
10415 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10416
10417 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10418 {
10419 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10420 imode);
10421 op0 = expand_and (imode, op0, op1, target);
10422 }
10423 else
10424 {
10425 int count = GET_MODE_PRECISION (imode) - bitsize;
10426
10427 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10428 target, 0);
10429 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10430 target, 0);
10431 }
10432 }
10433
10434 return op0;
10435 }
10436 }
10437 goto normal_inner_ref;
10438
10439 case BIT_FIELD_REF:
10440 case ARRAY_RANGE_REF:
10441 normal_inner_ref:
10442 {
10443 machine_mode mode1, mode2;
10444 HOST_WIDE_INT bitsize, bitpos;
10445 tree offset;
10446 int reversep, volatilep = 0, must_force_mem;
10447 tree tem
10448 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10449 &unsignedp, &reversep, &volatilep);
10450 rtx orig_op0, memloc;
10451 bool clear_mem_expr = false;
10452
10453 /* If we got back the original object, something is wrong. Perhaps
10454 we are evaluating an expression too early. In any event, don't
10455 infinitely recurse. */
10456 gcc_assert (tem != exp);
10457
10458 /* If TEM's type is a union of variable size, pass TARGET to the inner
10459 computation, since it will need a temporary and TARGET is known
10460 to have to do. This occurs in unchecked conversion in Ada. */
10461 orig_op0 = op0
10462 = expand_expr_real (tem,
10463 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10464 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10465 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10466 != INTEGER_CST)
10467 && modifier != EXPAND_STACK_PARM
10468 ? target : NULL_RTX),
10469 VOIDmode,
10470 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10471 NULL, true);
10472
10473 /* If the field has a mode, we want to access it in the
10474 field's mode, not the computed mode.
10475 If a MEM has VOIDmode (external with incomplete type),
10476 use BLKmode for it instead. */
10477 if (MEM_P (op0))
10478 {
10479 if (mode1 != VOIDmode)
10480 op0 = adjust_address (op0, mode1, 0);
10481 else if (GET_MODE (op0) == VOIDmode)
10482 op0 = adjust_address (op0, BLKmode, 0);
10483 }
10484
10485 mode2
10486 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10487
10488 /* If we have either an offset, a BLKmode result, or a reference
10489 outside the underlying object, we must force it to memory.
10490 Such a case can occur in Ada if we have unchecked conversion
10491 of an expression from a scalar type to an aggregate type or
10492 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10493 passed a partially uninitialized object or a view-conversion
10494 to a larger size. */
10495 must_force_mem = (offset
10496 || mode1 == BLKmode
10497 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10498
10499 /* Handle CONCAT first. */
10500 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10501 {
10502 if (bitpos == 0
10503 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0))
10504 && COMPLEX_MODE_P (mode1)
10505 && COMPLEX_MODE_P (GET_MODE (op0))
10506 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10507 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10508 {
10509 if (reversep)
10510 op0 = flip_storage_order (GET_MODE (op0), op0);
10511 if (mode1 != GET_MODE (op0))
10512 {
10513 rtx parts[2];
10514 for (int i = 0; i < 2; i++)
10515 {
10516 rtx op = read_complex_part (op0, i != 0);
10517 if (GET_CODE (op) == SUBREG)
10518 op = force_reg (GET_MODE (op), op);
10519 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
10520 op);
10521 if (temp)
10522 op = temp;
10523 else
10524 {
10525 if (!REG_P (op) && !MEM_P (op))
10526 op = force_reg (GET_MODE (op), op);
10527 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10528 }
10529 parts[i] = op;
10530 }
10531 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10532 }
10533 return op0;
10534 }
10535 if (bitpos == 0
10536 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10537 && bitsize)
10538 {
10539 op0 = XEXP (op0, 0);
10540 mode2 = GET_MODE (op0);
10541 }
10542 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10543 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10544 && bitpos
10545 && bitsize)
10546 {
10547 op0 = XEXP (op0, 1);
10548 bitpos = 0;
10549 mode2 = GET_MODE (op0);
10550 }
10551 else
10552 /* Otherwise force into memory. */
10553 must_force_mem = 1;
10554 }
10555
10556 /* If this is a constant, put it in a register if it is a legitimate
10557 constant and we don't need a memory reference. */
10558 if (CONSTANT_P (op0)
10559 && mode2 != BLKmode
10560 && targetm.legitimate_constant_p (mode2, op0)
10561 && !must_force_mem)
10562 op0 = force_reg (mode2, op0);
10563
10564 /* Otherwise, if this is a constant, try to force it to the constant
10565 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10566 is a legitimate constant. */
10567 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10568 op0 = validize_mem (memloc);
10569
10570 /* Otherwise, if this is a constant or the object is not in memory
10571 and need be, put it there. */
10572 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10573 {
10574 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10575 emit_move_insn (memloc, op0);
10576 op0 = memloc;
10577 clear_mem_expr = true;
10578 }
10579
10580 if (offset)
10581 {
10582 machine_mode address_mode;
10583 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10584 EXPAND_SUM);
10585
10586 gcc_assert (MEM_P (op0));
10587
10588 address_mode = get_address_mode (op0);
10589 if (GET_MODE (offset_rtx) != address_mode)
10590 {
10591 /* We cannot be sure that the RTL in offset_rtx is valid outside
10592 of a memory address context, so force it into a register
10593 before attempting to convert it to the desired mode. */
10594 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10595 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10596 }
10597
10598 /* See the comment in expand_assignment for the rationale. */
10599 if (mode1 != VOIDmode
10600 && bitpos != 0
10601 && bitsize > 0
10602 && (bitpos % bitsize) == 0
10603 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10604 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10605 {
10606 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10607 bitpos = 0;
10608 }
10609
10610 op0 = offset_address (op0, offset_rtx,
10611 highest_pow2_factor (offset));
10612 }
10613
10614 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10615 record its alignment as BIGGEST_ALIGNMENT. */
10616 if (MEM_P (op0) && bitpos == 0 && offset != 0
10617 && is_aligning_offset (offset, tem))
10618 set_mem_align (op0, BIGGEST_ALIGNMENT);
10619
10620 /* Don't forget about volatility even if this is a bitfield. */
10621 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10622 {
10623 if (op0 == orig_op0)
10624 op0 = copy_rtx (op0);
10625
10626 MEM_VOLATILE_P (op0) = 1;
10627 }
10628
10629 /* In cases where an aligned union has an unaligned object
10630 as a field, we might be extracting a BLKmode value from
10631 an integer-mode (e.g., SImode) object. Handle this case
10632 by doing the extract into an object as wide as the field
10633 (which we know to be the width of a basic mode), then
10634 storing into memory, and changing the mode to BLKmode. */
10635 if (mode1 == VOIDmode
10636 || REG_P (op0) || GET_CODE (op0) == SUBREG
10637 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10638 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10639 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10640 && modifier != EXPAND_CONST_ADDRESS
10641 && modifier != EXPAND_INITIALIZER
10642 && modifier != EXPAND_MEMORY)
10643 /* If the bitfield is volatile and the bitsize
10644 is narrower than the access size of the bitfield,
10645 we need to extract bitfields from the access. */
10646 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10647 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10648 && mode1 != BLKmode
10649 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10650 /* If the field isn't aligned enough to fetch as a memref,
10651 fetch it as a bit field. */
10652 || (mode1 != BLKmode
10653 && (((MEM_P (op0)
10654 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10655 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0)
10656 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10657 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
10658 && modifier != EXPAND_MEMORY
10659 && ((modifier == EXPAND_CONST_ADDRESS
10660 || modifier == EXPAND_INITIALIZER)
10661 ? STRICT_ALIGNMENT
10662 : targetm.slow_unaligned_access (mode1,
10663 MEM_ALIGN (op0))))
10664 || (bitpos % BITS_PER_UNIT != 0)))
10665 /* If the type and the field are a constant size and the
10666 size of the type isn't the same size as the bitfield,
10667 we must use bitfield operations. */
10668 || (bitsize >= 0
10669 && TYPE_SIZE (TREE_TYPE (exp))
10670 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10671 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10672 bitsize)))
10673 {
10674 machine_mode ext_mode = mode;
10675
10676 if (ext_mode == BLKmode
10677 && ! (target != 0 && MEM_P (op0)
10678 && MEM_P (target)
10679 && bitpos % BITS_PER_UNIT == 0))
10680 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10681
10682 if (ext_mode == BLKmode)
10683 {
10684 if (target == 0)
10685 target = assign_temp (type, 1, 1);
10686
10687 /* ??? Unlike the similar test a few lines below, this one is
10688 very likely obsolete. */
10689 if (bitsize == 0)
10690 return target;
10691
10692 /* In this case, BITPOS must start at a byte boundary and
10693 TARGET, if specified, must be a MEM. */
10694 gcc_assert (MEM_P (op0)
10695 && (!target || MEM_P (target))
10696 && !(bitpos % BITS_PER_UNIT));
10697
10698 emit_block_move (target,
10699 adjust_address (op0, VOIDmode,
10700 bitpos / BITS_PER_UNIT),
10701 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10702 / BITS_PER_UNIT),
10703 (modifier == EXPAND_STACK_PARM
10704 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10705
10706 return target;
10707 }
10708
10709 /* If we have nothing to extract, the result will be 0 for targets
10710 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10711 return 0 for the sake of consistency, as reading a zero-sized
10712 bitfield is valid in Ada and the value is fully specified. */
10713 if (bitsize == 0)
10714 return const0_rtx;
10715
10716 op0 = validize_mem (op0);
10717
10718 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10719 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10720
10721 /* If the result has a record type and the extraction is done in
10722 an integral mode, then the field may be not aligned on a byte
10723 boundary; in this case, if it has reverse storage order, it
10724 needs to be extracted as a scalar field with reverse storage
10725 order and put back into memory order afterwards. */
10726 if (TREE_CODE (type) == RECORD_TYPE
10727 && GET_MODE_CLASS (ext_mode) == MODE_INT)
10728 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
10729
10730 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10731 (modifier == EXPAND_STACK_PARM
10732 ? NULL_RTX : target),
10733 ext_mode, ext_mode, reversep, alt_rtl);
10734
10735 /* If the result has a record type and the mode of OP0 is an
10736 integral mode then, if BITSIZE is narrower than this mode
10737 and this is for big-endian data, we must put the field
10738 into the high-order bits. And we must also put it back
10739 into memory order if it has been previously reversed. */
10740 scalar_int_mode op0_mode;
10741 if (TREE_CODE (type) == RECORD_TYPE
10742 && is_int_mode (GET_MODE (op0), &op0_mode))
10743 {
10744 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
10745
10746 if (bitsize < size
10747 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
10748 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
10749 size - bitsize, op0, 1);
10750
10751 if (reversep)
10752 op0 = flip_storage_order (op0_mode, op0);
10753 }
10754
10755 /* If the result type is BLKmode, store the data into a temporary
10756 of the appropriate type, but with the mode corresponding to the
10757 mode for the data we have (op0's mode). */
10758 if (mode == BLKmode)
10759 {
10760 rtx new_rtx
10761 = assign_stack_temp_for_type (ext_mode,
10762 GET_MODE_BITSIZE (ext_mode),
10763 type);
10764 emit_move_insn (new_rtx, op0);
10765 op0 = copy_rtx (new_rtx);
10766 PUT_MODE (op0, BLKmode);
10767 }
10768
10769 return op0;
10770 }
10771
10772 /* If the result is BLKmode, use that to access the object
10773 now as well. */
10774 if (mode == BLKmode)
10775 mode1 = BLKmode;
10776
10777 /* Get a reference to just this component. */
10778 if (modifier == EXPAND_CONST_ADDRESS
10779 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10780 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10781 else
10782 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10783
10784 if (op0 == orig_op0)
10785 op0 = copy_rtx (op0);
10786
10787 /* Don't set memory attributes if the base expression is
10788 SSA_NAME that got expanded as a MEM. In that case, we should
10789 just honor its original memory attributes. */
10790 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
10791 set_mem_attributes (op0, exp, 0);
10792
10793 if (REG_P (XEXP (op0, 0)))
10794 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10795
10796 /* If op0 is a temporary because the original expressions was forced
10797 to memory, clear MEM_EXPR so that the original expression cannot
10798 be marked as addressable through MEM_EXPR of the temporary. */
10799 if (clear_mem_expr)
10800 set_mem_expr (op0, NULL_TREE);
10801
10802 MEM_VOLATILE_P (op0) |= volatilep;
10803
10804 if (reversep
10805 && modifier != EXPAND_MEMORY
10806 && modifier != EXPAND_WRITE)
10807 op0 = flip_storage_order (mode1, op0);
10808
10809 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10810 || modifier == EXPAND_CONST_ADDRESS
10811 || modifier == EXPAND_INITIALIZER)
10812 return op0;
10813
10814 if (target == 0)
10815 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10816
10817 convert_move (target, op0, unsignedp);
10818 return target;
10819 }
10820
10821 case OBJ_TYPE_REF:
10822 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10823
10824 case CALL_EXPR:
10825 /* All valid uses of __builtin_va_arg_pack () are removed during
10826 inlining. */
10827 if (CALL_EXPR_VA_ARG_PACK (exp))
10828 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10829 {
10830 tree fndecl = get_callee_fndecl (exp), attr;
10831
10832 if (fndecl
10833 && (attr = lookup_attribute ("error",
10834 DECL_ATTRIBUTES (fndecl))) != NULL)
10835 error ("%Kcall to %qs declared with attribute error: %s",
10836 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10837 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10838 if (fndecl
10839 && (attr = lookup_attribute ("warning",
10840 DECL_ATTRIBUTES (fndecl))) != NULL)
10841 warning_at (tree_nonartificial_location (exp),
10842 0, "%Kcall to %qs declared with attribute warning: %s",
10843 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10844 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10845
10846 /* Check for a built-in function. */
10847 if (fndecl && DECL_BUILT_IN (fndecl))
10848 {
10849 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10850 if (CALL_WITH_BOUNDS_P (exp))
10851 return expand_builtin_with_bounds (exp, target, subtarget,
10852 tmode, ignore);
10853 else
10854 return expand_builtin (exp, target, subtarget, tmode, ignore);
10855 }
10856 }
10857 return expand_call (exp, target, ignore);
10858
10859 case VIEW_CONVERT_EXPR:
10860 op0 = NULL_RTX;
10861
10862 /* If we are converting to BLKmode, try to avoid an intermediate
10863 temporary by fetching an inner memory reference. */
10864 if (mode == BLKmode
10865 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10866 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10867 && handled_component_p (treeop0))
10868 {
10869 machine_mode mode1;
10870 HOST_WIDE_INT bitsize, bitpos;
10871 tree offset;
10872 int unsignedp, reversep, volatilep = 0;
10873 tree tem
10874 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
10875 &unsignedp, &reversep, &volatilep);
10876 rtx orig_op0;
10877
10878 /* ??? We should work harder and deal with non-zero offsets. */
10879 if (!offset
10880 && (bitpos % BITS_PER_UNIT) == 0
10881 && !reversep
10882 && bitsize >= 0
10883 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10884 {
10885 /* See the normal_inner_ref case for the rationale. */
10886 orig_op0
10887 = expand_expr_real (tem,
10888 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10889 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10890 != INTEGER_CST)
10891 && modifier != EXPAND_STACK_PARM
10892 ? target : NULL_RTX),
10893 VOIDmode,
10894 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10895 NULL, true);
10896
10897 if (MEM_P (orig_op0))
10898 {
10899 op0 = orig_op0;
10900
10901 /* Get a reference to just this component. */
10902 if (modifier == EXPAND_CONST_ADDRESS
10903 || modifier == EXPAND_SUM
10904 || modifier == EXPAND_INITIALIZER)
10905 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10906 else
10907 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10908
10909 if (op0 == orig_op0)
10910 op0 = copy_rtx (op0);
10911
10912 set_mem_attributes (op0, treeop0, 0);
10913 if (REG_P (XEXP (op0, 0)))
10914 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10915
10916 MEM_VOLATILE_P (op0) |= volatilep;
10917 }
10918 }
10919 }
10920
10921 if (!op0)
10922 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10923 NULL, inner_reference_p);
10924
10925 /* If the input and output modes are both the same, we are done. */
10926 if (mode == GET_MODE (op0))
10927 ;
10928 /* If neither mode is BLKmode, and both modes are the same size
10929 then we can use gen_lowpart. */
10930 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10931 && (GET_MODE_PRECISION (mode)
10932 == GET_MODE_PRECISION (GET_MODE (op0)))
10933 && !COMPLEX_MODE_P (GET_MODE (op0)))
10934 {
10935 if (GET_CODE (op0) == SUBREG)
10936 op0 = force_reg (GET_MODE (op0), op0);
10937 temp = gen_lowpart_common (mode, op0);
10938 if (temp)
10939 op0 = temp;
10940 else
10941 {
10942 if (!REG_P (op0) && !MEM_P (op0))
10943 op0 = force_reg (GET_MODE (op0), op0);
10944 op0 = gen_lowpart (mode, op0);
10945 }
10946 }
10947 /* If both types are integral, convert from one mode to the other. */
10948 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10949 op0 = convert_modes (mode, GET_MODE (op0), op0,
10950 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10951 /* If the output type is a bit-field type, do an extraction. */
10952 else if (reduce_bit_field)
10953 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10954 TYPE_UNSIGNED (type), NULL_RTX,
10955 mode, mode, false, NULL);
10956 /* As a last resort, spill op0 to memory, and reload it in a
10957 different mode. */
10958 else if (!MEM_P (op0))
10959 {
10960 /* If the operand is not a MEM, force it into memory. Since we
10961 are going to be changing the mode of the MEM, don't call
10962 force_const_mem for constants because we don't allow pool
10963 constants to change mode. */
10964 tree inner_type = TREE_TYPE (treeop0);
10965
10966 gcc_assert (!TREE_ADDRESSABLE (exp));
10967
10968 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10969 target
10970 = assign_stack_temp_for_type
10971 (TYPE_MODE (inner_type),
10972 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10973
10974 emit_move_insn (target, op0);
10975 op0 = target;
10976 }
10977
10978 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10979 output type is such that the operand is known to be aligned, indicate
10980 that it is. Otherwise, we need only be concerned about alignment for
10981 non-BLKmode results. */
10982 if (MEM_P (op0))
10983 {
10984 enum insn_code icode;
10985
10986 if (modifier != EXPAND_WRITE
10987 && modifier != EXPAND_MEMORY
10988 && !inner_reference_p
10989 && mode != BLKmode
10990 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10991 {
10992 /* If the target does have special handling for unaligned
10993 loads of mode then use them. */
10994 if ((icode = optab_handler (movmisalign_optab, mode))
10995 != CODE_FOR_nothing)
10996 {
10997 rtx reg;
10998
10999 op0 = adjust_address (op0, mode, 0);
11000 /* We've already validated the memory, and we're creating a
11001 new pseudo destination. The predicates really can't
11002 fail. */
11003 reg = gen_reg_rtx (mode);
11004
11005 /* Nor can the insn generator. */
11006 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11007 emit_insn (insn);
11008 return reg;
11009 }
11010 else if (STRICT_ALIGNMENT)
11011 {
11012 tree inner_type = TREE_TYPE (treeop0);
11013 HOST_WIDE_INT temp_size
11014 = MAX (int_size_in_bytes (inner_type),
11015 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
11016 rtx new_rtx
11017 = assign_stack_temp_for_type (mode, temp_size, type);
11018 rtx new_with_op0_mode
11019 = adjust_address (new_rtx, GET_MODE (op0), 0);
11020
11021 gcc_assert (!TREE_ADDRESSABLE (exp));
11022
11023 if (GET_MODE (op0) == BLKmode)
11024 emit_block_move (new_with_op0_mode, op0,
11025 GEN_INT (GET_MODE_SIZE (mode)),
11026 (modifier == EXPAND_STACK_PARM
11027 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11028 else
11029 emit_move_insn (new_with_op0_mode, op0);
11030
11031 op0 = new_rtx;
11032 }
11033 }
11034
11035 op0 = adjust_address (op0, mode, 0);
11036 }
11037
11038 return op0;
11039
11040 case MODIFY_EXPR:
11041 {
11042 tree lhs = treeop0;
11043 tree rhs = treeop1;
11044 gcc_assert (ignore);
11045
11046 /* Check for |= or &= of a bitfield of size one into another bitfield
11047 of size 1. In this case, (unless we need the result of the
11048 assignment) we can do this more efficiently with a
11049 test followed by an assignment, if necessary.
11050
11051 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11052 things change so we do, this code should be enhanced to
11053 support it. */
11054 if (TREE_CODE (lhs) == COMPONENT_REF
11055 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11056 || TREE_CODE (rhs) == BIT_AND_EXPR)
11057 && TREE_OPERAND (rhs, 0) == lhs
11058 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11059 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11060 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11061 {
11062 rtx_code_label *label = gen_label_rtx ();
11063 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11064 do_jump (TREE_OPERAND (rhs, 1),
11065 value ? label : 0,
11066 value ? 0 : label,
11067 profile_probability::uninitialized ());
11068 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11069 false);
11070 do_pending_stack_adjust ();
11071 emit_label (label);
11072 return const0_rtx;
11073 }
11074
11075 expand_assignment (lhs, rhs, false);
11076 return const0_rtx;
11077 }
11078
11079 case ADDR_EXPR:
11080 return expand_expr_addr_expr (exp, target, tmode, modifier);
11081
11082 case REALPART_EXPR:
11083 op0 = expand_normal (treeop0);
11084 return read_complex_part (op0, false);
11085
11086 case IMAGPART_EXPR:
11087 op0 = expand_normal (treeop0);
11088 return read_complex_part (op0, true);
11089
11090 case RETURN_EXPR:
11091 case LABEL_EXPR:
11092 case GOTO_EXPR:
11093 case SWITCH_EXPR:
11094 case ASM_EXPR:
11095 /* Expanded in cfgexpand.c. */
11096 gcc_unreachable ();
11097
11098 case TRY_CATCH_EXPR:
11099 case CATCH_EXPR:
11100 case EH_FILTER_EXPR:
11101 case TRY_FINALLY_EXPR:
11102 /* Lowered by tree-eh.c. */
11103 gcc_unreachable ();
11104
11105 case WITH_CLEANUP_EXPR:
11106 case CLEANUP_POINT_EXPR:
11107 case TARGET_EXPR:
11108 case CASE_LABEL_EXPR:
11109 case VA_ARG_EXPR:
11110 case BIND_EXPR:
11111 case INIT_EXPR:
11112 case CONJ_EXPR:
11113 case COMPOUND_EXPR:
11114 case PREINCREMENT_EXPR:
11115 case PREDECREMENT_EXPR:
11116 case POSTINCREMENT_EXPR:
11117 case POSTDECREMENT_EXPR:
11118 case LOOP_EXPR:
11119 case EXIT_EXPR:
11120 case COMPOUND_LITERAL_EXPR:
11121 /* Lowered by gimplify.c. */
11122 gcc_unreachable ();
11123
11124 case FDESC_EXPR:
11125 /* Function descriptors are not valid except for as
11126 initialization constants, and should not be expanded. */
11127 gcc_unreachable ();
11128
11129 case WITH_SIZE_EXPR:
11130 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11131 have pulled out the size to use in whatever context it needed. */
11132 return expand_expr_real (treeop0, original_target, tmode,
11133 modifier, alt_rtl, inner_reference_p);
11134
11135 default:
11136 return expand_expr_real_2 (&ops, target, tmode, modifier);
11137 }
11138 }
11139 \f
11140 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11141 signedness of TYPE), possibly returning the result in TARGET.
11142 TYPE is known to be a partial integer type. */
11143 static rtx
11144 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11145 {
11146 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11147 if (target && GET_MODE (target) != GET_MODE (exp))
11148 target = 0;
11149 /* For constant values, reduce using build_int_cst_type. */
11150 if (CONST_INT_P (exp))
11151 {
11152 HOST_WIDE_INT value = INTVAL (exp);
11153 tree t = build_int_cst_type (type, value);
11154 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11155 }
11156 else if (TYPE_UNSIGNED (type))
11157 {
11158 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11159 rtx mask = immed_wide_int_const
11160 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11161 return expand_and (mode, exp, mask, target);
11162 }
11163 else
11164 {
11165 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (exp));
11166 int count = GET_MODE_PRECISION (mode) - prec;
11167 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11168 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11169 }
11170 }
11171 \f
11172 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11173 when applied to the address of EXP produces an address known to be
11174 aligned more than BIGGEST_ALIGNMENT. */
11175
11176 static int
11177 is_aligning_offset (const_tree offset, const_tree exp)
11178 {
11179 /* Strip off any conversions. */
11180 while (CONVERT_EXPR_P (offset))
11181 offset = TREE_OPERAND (offset, 0);
11182
11183 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11184 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11185 if (TREE_CODE (offset) != BIT_AND_EXPR
11186 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11187 || compare_tree_int (TREE_OPERAND (offset, 1),
11188 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11189 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11190 return 0;
11191
11192 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11193 It must be NEGATE_EXPR. Then strip any more conversions. */
11194 offset = TREE_OPERAND (offset, 0);
11195 while (CONVERT_EXPR_P (offset))
11196 offset = TREE_OPERAND (offset, 0);
11197
11198 if (TREE_CODE (offset) != NEGATE_EXPR)
11199 return 0;
11200
11201 offset = TREE_OPERAND (offset, 0);
11202 while (CONVERT_EXPR_P (offset))
11203 offset = TREE_OPERAND (offset, 0);
11204
11205 /* This must now be the address of EXP. */
11206 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11207 }
11208 \f
11209 /* Return the tree node if an ARG corresponds to a string constant or zero
11210 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
11211 in bytes within the string that ARG is accessing. The type of the
11212 offset will be `sizetype'. */
11213
11214 tree
11215 string_constant (tree arg, tree *ptr_offset)
11216 {
11217 tree array, offset, lower_bound;
11218 STRIP_NOPS (arg);
11219
11220 if (TREE_CODE (arg) == ADDR_EXPR)
11221 {
11222 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
11223 {
11224 *ptr_offset = size_zero_node;
11225 return TREE_OPERAND (arg, 0);
11226 }
11227 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
11228 {
11229 array = TREE_OPERAND (arg, 0);
11230 offset = size_zero_node;
11231 }
11232 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
11233 {
11234 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11235 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11236 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11237 return 0;
11238
11239 /* Check if the array has a nonzero lower bound. */
11240 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
11241 if (!integer_zerop (lower_bound))
11242 {
11243 /* If the offset and base aren't both constants, return 0. */
11244 if (TREE_CODE (lower_bound) != INTEGER_CST)
11245 return 0;
11246 if (TREE_CODE (offset) != INTEGER_CST)
11247 return 0;
11248 /* Adjust offset by the lower bound. */
11249 offset = size_diffop (fold_convert (sizetype, offset),
11250 fold_convert (sizetype, lower_bound));
11251 }
11252 }
11253 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
11254 {
11255 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
11256 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
11257 if (TREE_CODE (array) != ADDR_EXPR)
11258 return 0;
11259 array = TREE_OPERAND (array, 0);
11260 if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
11261 return 0;
11262 }
11263 else
11264 return 0;
11265 }
11266 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11267 {
11268 tree arg0 = TREE_OPERAND (arg, 0);
11269 tree arg1 = TREE_OPERAND (arg, 1);
11270
11271 STRIP_NOPS (arg0);
11272 STRIP_NOPS (arg1);
11273
11274 if (TREE_CODE (arg0) == ADDR_EXPR
11275 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
11276 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
11277 {
11278 array = TREE_OPERAND (arg0, 0);
11279 offset = arg1;
11280 }
11281 else if (TREE_CODE (arg1) == ADDR_EXPR
11282 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
11283 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
11284 {
11285 array = TREE_OPERAND (arg1, 0);
11286 offset = arg0;
11287 }
11288 else
11289 return 0;
11290 }
11291 else
11292 return 0;
11293
11294 if (TREE_CODE (array) == STRING_CST)
11295 {
11296 *ptr_offset = fold_convert (sizetype, offset);
11297 return array;
11298 }
11299 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11300 {
11301 int length;
11302 tree init = ctor_for_folding (array);
11303
11304 /* Variables initialized to string literals can be handled too. */
11305 if (init == error_mark_node
11306 || !init
11307 || TREE_CODE (init) != STRING_CST)
11308 return 0;
11309
11310 /* Avoid const char foo[4] = "abcde"; */
11311 if (DECL_SIZE_UNIT (array) == NULL_TREE
11312 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
11313 || (length = TREE_STRING_LENGTH (init)) <= 0
11314 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
11315 return 0;
11316
11317 /* If variable is bigger than the string literal, OFFSET must be constant
11318 and inside of the bounds of the string literal. */
11319 offset = fold_convert (sizetype, offset);
11320 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
11321 && (! tree_fits_uhwi_p (offset)
11322 || compare_tree_int (offset, length) >= 0))
11323 return 0;
11324
11325 *ptr_offset = offset;
11326 return init;
11327 }
11328
11329 return 0;
11330 }
11331 \f
11332 /* Generate code to calculate OPS, and exploded expression
11333 using a store-flag instruction and return an rtx for the result.
11334 OPS reflects a comparison.
11335
11336 If TARGET is nonzero, store the result there if convenient.
11337
11338 Return zero if there is no suitable set-flag instruction
11339 available on this machine.
11340
11341 Once expand_expr has been called on the arguments of the comparison,
11342 we are committed to doing the store flag, since it is not safe to
11343 re-evaluate the expression. We emit the store-flag insn by calling
11344 emit_store_flag, but only expand the arguments if we have a reason
11345 to believe that emit_store_flag will be successful. If we think that
11346 it will, but it isn't, we have to simulate the store-flag with a
11347 set/jump/set sequence. */
11348
11349 static rtx
11350 do_store_flag (sepops ops, rtx target, machine_mode mode)
11351 {
11352 enum rtx_code code;
11353 tree arg0, arg1, type;
11354 machine_mode operand_mode;
11355 int unsignedp;
11356 rtx op0, op1;
11357 rtx subtarget = target;
11358 location_t loc = ops->location;
11359
11360 arg0 = ops->op0;
11361 arg1 = ops->op1;
11362
11363 /* Don't crash if the comparison was erroneous. */
11364 if (arg0 == error_mark_node || arg1 == error_mark_node)
11365 return const0_rtx;
11366
11367 type = TREE_TYPE (arg0);
11368 operand_mode = TYPE_MODE (type);
11369 unsignedp = TYPE_UNSIGNED (type);
11370
11371 /* We won't bother with BLKmode store-flag operations because it would mean
11372 passing a lot of information to emit_store_flag. */
11373 if (operand_mode == BLKmode)
11374 return 0;
11375
11376 /* We won't bother with store-flag operations involving function pointers
11377 when function pointers must be canonicalized before comparisons. */
11378 if (targetm.have_canonicalize_funcptr_for_compare ()
11379 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11380 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11381 == FUNCTION_TYPE))
11382 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11383 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11384 == FUNCTION_TYPE))))
11385 return 0;
11386
11387 STRIP_NOPS (arg0);
11388 STRIP_NOPS (arg1);
11389
11390 /* For vector typed comparisons emit code to generate the desired
11391 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11392 expander for this. */
11393 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11394 {
11395 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11396 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
11397 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
11398 return expand_vec_cmp_expr (ops->type, ifexp, target);
11399 else
11400 {
11401 tree if_true = constant_boolean_node (true, ops->type);
11402 tree if_false = constant_boolean_node (false, ops->type);
11403 return expand_vec_cond_expr (ops->type, ifexp, if_true,
11404 if_false, target);
11405 }
11406 }
11407
11408 /* Get the rtx comparison code to use. We know that EXP is a comparison
11409 operation of some type. Some comparisons against 1 and -1 can be
11410 converted to comparisons with zero. Do so here so that the tests
11411 below will be aware that we have a comparison with zero. These
11412 tests will not catch constants in the first operand, but constants
11413 are rarely passed as the first operand. */
11414
11415 switch (ops->code)
11416 {
11417 case EQ_EXPR:
11418 code = EQ;
11419 break;
11420 case NE_EXPR:
11421 code = NE;
11422 break;
11423 case LT_EXPR:
11424 if (integer_onep (arg1))
11425 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11426 else
11427 code = unsignedp ? LTU : LT;
11428 break;
11429 case LE_EXPR:
11430 if (! unsignedp && integer_all_onesp (arg1))
11431 arg1 = integer_zero_node, code = LT;
11432 else
11433 code = unsignedp ? LEU : LE;
11434 break;
11435 case GT_EXPR:
11436 if (! unsignedp && integer_all_onesp (arg1))
11437 arg1 = integer_zero_node, code = GE;
11438 else
11439 code = unsignedp ? GTU : GT;
11440 break;
11441 case GE_EXPR:
11442 if (integer_onep (arg1))
11443 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11444 else
11445 code = unsignedp ? GEU : GE;
11446 break;
11447
11448 case UNORDERED_EXPR:
11449 code = UNORDERED;
11450 break;
11451 case ORDERED_EXPR:
11452 code = ORDERED;
11453 break;
11454 case UNLT_EXPR:
11455 code = UNLT;
11456 break;
11457 case UNLE_EXPR:
11458 code = UNLE;
11459 break;
11460 case UNGT_EXPR:
11461 code = UNGT;
11462 break;
11463 case UNGE_EXPR:
11464 code = UNGE;
11465 break;
11466 case UNEQ_EXPR:
11467 code = UNEQ;
11468 break;
11469 case LTGT_EXPR:
11470 code = LTGT;
11471 break;
11472
11473 default:
11474 gcc_unreachable ();
11475 }
11476
11477 /* Put a constant second. */
11478 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11479 || TREE_CODE (arg0) == FIXED_CST)
11480 {
11481 std::swap (arg0, arg1);
11482 code = swap_condition (code);
11483 }
11484
11485 /* If this is an equality or inequality test of a single bit, we can
11486 do this by shifting the bit being tested to the low-order bit and
11487 masking the result with the constant 1. If the condition was EQ,
11488 we xor it with 1. This does not require an scc insn and is faster
11489 than an scc insn even if we have it.
11490
11491 The code to make this transformation was moved into fold_single_bit_test,
11492 so we just call into the folder and expand its result. */
11493
11494 if ((code == NE || code == EQ)
11495 && integer_zerop (arg1)
11496 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11497 {
11498 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11499 if (srcstmt
11500 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11501 {
11502 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11503 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11504 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11505 gimple_assign_rhs1 (srcstmt),
11506 gimple_assign_rhs2 (srcstmt));
11507 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11508 if (temp)
11509 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11510 }
11511 }
11512
11513 if (! get_subtarget (target)
11514 || GET_MODE (subtarget) != operand_mode)
11515 subtarget = 0;
11516
11517 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11518
11519 if (target == 0)
11520 target = gen_reg_rtx (mode);
11521
11522 /* Try a cstore if possible. */
11523 return emit_store_flag_force (target, code, op0, op1,
11524 operand_mode, unsignedp,
11525 (TYPE_PRECISION (ops->type) == 1
11526 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11527 }
11528 \f
11529 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11530 0 otherwise (i.e. if there is no casesi instruction).
11531
11532 DEFAULT_PROBABILITY is the probability of jumping to the default
11533 label. */
11534 int
11535 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11536 rtx table_label, rtx default_label, rtx fallback_label,
11537 profile_probability default_probability)
11538 {
11539 struct expand_operand ops[5];
11540 scalar_int_mode index_mode = SImode;
11541 rtx op1, op2, index;
11542
11543 if (! targetm.have_casesi ())
11544 return 0;
11545
11546 /* The index must be some form of integer. Convert it to SImode. */
11547 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
11548 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
11549 {
11550 rtx rangertx = expand_normal (range);
11551
11552 /* We must handle the endpoints in the original mode. */
11553 index_expr = build2 (MINUS_EXPR, index_type,
11554 index_expr, minval);
11555 minval = integer_zero_node;
11556 index = expand_normal (index_expr);
11557 if (default_label)
11558 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11559 omode, 1, default_label,
11560 default_probability);
11561 /* Now we can safely truncate. */
11562 index = convert_to_mode (index_mode, index, 0);
11563 }
11564 else
11565 {
11566 if (omode != index_mode)
11567 {
11568 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11569 index_expr = fold_convert (index_type, index_expr);
11570 }
11571
11572 index = expand_normal (index_expr);
11573 }
11574
11575 do_pending_stack_adjust ();
11576
11577 op1 = expand_normal (minval);
11578 op2 = expand_normal (range);
11579
11580 create_input_operand (&ops[0], index, index_mode);
11581 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11582 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11583 create_fixed_operand (&ops[3], table_label);
11584 create_fixed_operand (&ops[4], (default_label
11585 ? default_label
11586 : fallback_label));
11587 expand_jump_insn (targetm.code_for_casesi, 5, ops);
11588 return 1;
11589 }
11590
11591 /* Attempt to generate a tablejump instruction; same concept. */
11592 /* Subroutine of the next function.
11593
11594 INDEX is the value being switched on, with the lowest value
11595 in the table already subtracted.
11596 MODE is its expected mode (needed if INDEX is constant).
11597 RANGE is the length of the jump table.
11598 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11599
11600 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11601 index value is out of range.
11602 DEFAULT_PROBABILITY is the probability of jumping to
11603 the default label. */
11604
11605 static void
11606 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11607 rtx default_label, profile_probability default_probability)
11608 {
11609 rtx temp, vector;
11610
11611 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11612 cfun->cfg->max_jumptable_ents = INTVAL (range);
11613
11614 /* Do an unsigned comparison (in the proper mode) between the index
11615 expression and the value which represents the length of the range.
11616 Since we just finished subtracting the lower bound of the range
11617 from the index expression, this comparison allows us to simultaneously
11618 check that the original index expression value is both greater than
11619 or equal to the minimum value of the range and less than or equal to
11620 the maximum value of the range. */
11621
11622 if (default_label)
11623 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11624 default_label, default_probability);
11625
11626
11627 /* If index is in range, it must fit in Pmode.
11628 Convert to Pmode so we can index with it. */
11629 if (mode != Pmode)
11630 index = convert_to_mode (Pmode, index, 1);
11631
11632 /* Don't let a MEM slip through, because then INDEX that comes
11633 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11634 and break_out_memory_refs will go to work on it and mess it up. */
11635 #ifdef PIC_CASE_VECTOR_ADDRESS
11636 if (flag_pic && !REG_P (index))
11637 index = copy_to_mode_reg (Pmode, index);
11638 #endif
11639
11640 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11641 GET_MODE_SIZE, because this indicates how large insns are. The other
11642 uses should all be Pmode, because they are addresses. This code
11643 could fail if addresses and insns are not the same size. */
11644 index = simplify_gen_binary (MULT, Pmode, index,
11645 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11646 Pmode));
11647 index = simplify_gen_binary (PLUS, Pmode, index,
11648 gen_rtx_LABEL_REF (Pmode, table_label));
11649
11650 #ifdef PIC_CASE_VECTOR_ADDRESS
11651 if (flag_pic)
11652 index = PIC_CASE_VECTOR_ADDRESS (index);
11653 else
11654 #endif
11655 index = memory_address (CASE_VECTOR_MODE, index);
11656 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11657 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11658 convert_move (temp, vector, 0);
11659
11660 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
11661
11662 /* If we are generating PIC code or if the table is PC-relative, the
11663 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11664 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11665 emit_barrier ();
11666 }
11667
11668 int
11669 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11670 rtx table_label, rtx default_label,
11671 profile_probability default_probability)
11672 {
11673 rtx index;
11674
11675 if (! targetm.have_tablejump ())
11676 return 0;
11677
11678 index_expr = fold_build2 (MINUS_EXPR, index_type,
11679 fold_convert (index_type, index_expr),
11680 fold_convert (index_type, minval));
11681 index = expand_normal (index_expr);
11682 do_pending_stack_adjust ();
11683
11684 do_tablejump (index, TYPE_MODE (index_type),
11685 convert_modes (TYPE_MODE (index_type),
11686 TYPE_MODE (TREE_TYPE (range)),
11687 expand_normal (range),
11688 TYPE_UNSIGNED (TREE_TYPE (range))),
11689 table_label, default_label, default_probability);
11690 return 1;
11691 }
11692
11693 /* Return a CONST_VECTOR rtx representing vector mask for
11694 a VECTOR_CST of booleans. */
11695 static rtx
11696 const_vector_mask_from_tree (tree exp)
11697 {
11698 rtvec v;
11699 unsigned i, units;
11700 tree elt;
11701 machine_mode inner, mode;
11702
11703 mode = TYPE_MODE (TREE_TYPE (exp));
11704 units = VECTOR_CST_NELTS (exp);
11705 inner = GET_MODE_INNER (mode);
11706
11707 v = rtvec_alloc (units);
11708
11709 for (i = 0; i < units; ++i)
11710 {
11711 elt = VECTOR_CST_ELT (exp, i);
11712
11713 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11714 if (integer_zerop (elt))
11715 RTVEC_ELT (v, i) = CONST0_RTX (inner);
11716 else if (integer_onep (elt)
11717 || integer_minus_onep (elt))
11718 RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
11719 else
11720 gcc_unreachable ();
11721 }
11722
11723 return gen_rtx_CONST_VECTOR (mode, v);
11724 }
11725
11726 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
11727 Return a constant scalar rtx of mode MODE in which bit X is set if element
11728 X of EXP is nonzero. */
11729 static rtx
11730 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
11731 {
11732 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
11733 tree elt;
11734 unsigned i;
11735
11736 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11737 {
11738 elt = VECTOR_CST_ELT (exp, i);
11739 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
11740 if (integer_all_onesp (elt))
11741 res = wi::set_bit (res, i);
11742 else
11743 gcc_assert (integer_zerop (elt));
11744 }
11745
11746 return immed_wide_int_const (res, mode);
11747 }
11748
11749 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11750 static rtx
11751 const_vector_from_tree (tree exp)
11752 {
11753 rtvec v;
11754 unsigned i, units;
11755 tree elt;
11756 machine_mode inner, mode;
11757
11758 mode = TYPE_MODE (TREE_TYPE (exp));
11759
11760 if (initializer_zerop (exp))
11761 return CONST0_RTX (mode);
11762
11763 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
11764 return const_vector_mask_from_tree (exp);
11765
11766 units = VECTOR_CST_NELTS (exp);
11767 inner = GET_MODE_INNER (mode);
11768
11769 v = rtvec_alloc (units);
11770
11771 for (i = 0; i < units; ++i)
11772 {
11773 elt = VECTOR_CST_ELT (exp, i);
11774
11775 if (TREE_CODE (elt) == REAL_CST)
11776 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
11777 inner);
11778 else if (TREE_CODE (elt) == FIXED_CST)
11779 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11780 inner);
11781 else
11782 RTVEC_ELT (v, i) = immed_wide_int_const (wi::to_wide (elt), inner);
11783 }
11784
11785 return gen_rtx_CONST_VECTOR (mode, v);
11786 }
11787
11788 /* Build a decl for a personality function given a language prefix. */
11789
11790 tree
11791 build_personality_function (const char *lang)
11792 {
11793 const char *unwind_and_version;
11794 tree decl, type;
11795 char *name;
11796
11797 switch (targetm_common.except_unwind_info (&global_options))
11798 {
11799 case UI_NONE:
11800 return NULL;
11801 case UI_SJLJ:
11802 unwind_and_version = "_sj0";
11803 break;
11804 case UI_DWARF2:
11805 case UI_TARGET:
11806 unwind_and_version = "_v0";
11807 break;
11808 case UI_SEH:
11809 unwind_and_version = "_seh0";
11810 break;
11811 default:
11812 gcc_unreachable ();
11813 }
11814
11815 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11816
11817 type = build_function_type_list (integer_type_node, integer_type_node,
11818 long_long_unsigned_type_node,
11819 ptr_type_node, ptr_type_node, NULL_TREE);
11820 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11821 get_identifier (name), type);
11822 DECL_ARTIFICIAL (decl) = 1;
11823 DECL_EXTERNAL (decl) = 1;
11824 TREE_PUBLIC (decl) = 1;
11825
11826 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11827 are the flags assigned by targetm.encode_section_info. */
11828 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11829
11830 return decl;
11831 }
11832
11833 /* Extracts the personality function of DECL and returns the corresponding
11834 libfunc. */
11835
11836 rtx
11837 get_personality_function (tree decl)
11838 {
11839 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11840 enum eh_personality_kind pk;
11841
11842 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11843 if (pk == eh_personality_none)
11844 return NULL;
11845
11846 if (!personality
11847 && pk == eh_personality_any)
11848 personality = lang_hooks.eh_personality ();
11849
11850 if (pk == eh_personality_lang)
11851 gcc_assert (personality != NULL_TREE);
11852
11853 return XEXP (DECL_RTL (personality), 0);
11854 }
11855
11856 /* Returns a tree for the size of EXP in bytes. */
11857
11858 static tree
11859 tree_expr_size (const_tree exp)
11860 {
11861 if (DECL_P (exp)
11862 && DECL_SIZE_UNIT (exp) != 0)
11863 return DECL_SIZE_UNIT (exp);
11864 else
11865 return size_in_bytes (TREE_TYPE (exp));
11866 }
11867
11868 /* Return an rtx for the size in bytes of the value of EXP. */
11869
11870 rtx
11871 expr_size (tree exp)
11872 {
11873 tree size;
11874
11875 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11876 size = TREE_OPERAND (exp, 1);
11877 else
11878 {
11879 size = tree_expr_size (exp);
11880 gcc_assert (size);
11881 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11882 }
11883
11884 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11885 }
11886
11887 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11888 if the size can vary or is larger than an integer. */
11889
11890 static HOST_WIDE_INT
11891 int_expr_size (tree exp)
11892 {
11893 tree size;
11894
11895 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11896 size = TREE_OPERAND (exp, 1);
11897 else
11898 {
11899 size = tree_expr_size (exp);
11900 gcc_assert (size);
11901 }
11902
11903 if (size == 0 || !tree_fits_shwi_p (size))
11904 return -1;
11905
11906 return tree_to_shwi (size);
11907 }