]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
asan.c (create_cond_insert_point): Maintain profile.
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
84
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
88
89 #include "dwarf2out.h"
90
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113
114 /* Last insn processed by final_scan_insn. */
115 static rtx_insn *debug_insn;
116 rtx_insn *current_output_insn;
117
118 /* Line number of last NOTE. */
119 static int last_linenum;
120
121 /* Column number of last NOTE. */
122 static int last_columnnum;
123
124 /* Last discriminator written to assembly. */
125 static int last_discriminator;
126
127 /* Discriminator of current block. */
128 static int discriminator;
129
130 /* Highest line number in current block. */
131 static int high_block_linenum;
132
133 /* Likewise for function. */
134 static int high_function_linenum;
135
136 /* Filename of last NOTE. */
137 static const char *last_filename;
138
139 /* Override filename, line and column number. */
140 static const char *override_filename;
141 static int override_linenum;
142 static int override_columnnum;
143
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line = false;
146
147 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
148
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 const rtx_insn *this_is_asm_operands;
153
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands;
156
157 /* Compare optimization flag. */
158
159 static rtx last_ignored_compare = 0;
160
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
163
164 static int insn_counter = 0;
165
166 /* This variable contains machine-dependent flags (defined in tm.h)
167 set and examined by output routines
168 that describe how to interpret the condition codes properly. */
169
170 CC_STATUS cc_status;
171
172 /* During output of an insn, this contains a copy of cc_status
173 from before the insn. */
174
175 CC_STATUS cc_prev_status;
176
177 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
178
179 static int block_depth;
180
181 /* Nonzero if have enabled APP processing of our assembler output. */
182
183 static int app_on;
184
185 /* If we are outputting an insn sequence, this contains the sequence rtx.
186 Zero otherwise. */
187
188 rtx_sequence *final_sequence;
189
190 #ifdef ASSEMBLER_DIALECT
191
192 /* Number of the assembler dialect to use, starting at 0. */
193 static int dialect_number;
194 #endif
195
196 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
197 rtx current_insn_predicate;
198
199 /* True if printing into -fdump-final-insns= dump. */
200 bool final_insns_dump_p;
201
202 /* True if profile_function should be called, but hasn't been called yet. */
203 static bool need_profile_function;
204
205 static int asm_insn_count (rtx);
206 static void profile_function (FILE *);
207 static void profile_after_prologue (FILE *);
208 static bool notice_source_line (rtx_insn *, bool *);
209 static rtx walk_alter_subreg (rtx *, bool *);
210 static void output_asm_name (void);
211 static void output_alternate_entry_point (FILE *, rtx_insn *);
212 static tree get_mem_expr_from_op (rtx, int *);
213 static void output_asm_operand_names (rtx *, int *, int);
214 #ifdef LEAF_REGISTERS
215 static void leaf_renumber_regs (rtx_insn *);
216 #endif
217 #if HAVE_cc0
218 static int alter_cond (rtx);
219 #endif
220 static int align_fuzz (rtx, rtx, int, unsigned);
221 static void collect_fn_hard_reg_usage (void);
222 static tree get_call_fndecl (rtx_insn *);
223 \f
224 /* Initialize data in final at the beginning of a compilation. */
225
226 void
227 init_final (const char *filename ATTRIBUTE_UNUSED)
228 {
229 app_on = 0;
230 final_sequence = 0;
231
232 #ifdef ASSEMBLER_DIALECT
233 dialect_number = ASSEMBLER_DIALECT;
234 #endif
235 }
236
237 /* Default target function prologue and epilogue assembler output.
238
239 If not overridden for epilogue code, then the function body itself
240 contains return instructions wherever needed. */
241 void
242 default_function_pro_epilogue (FILE *)
243 {
244 }
245
246 void
247 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
248 tree decl ATTRIBUTE_UNUSED,
249 bool new_is_cold ATTRIBUTE_UNUSED)
250 {
251 }
252
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
256 {
257 }
258
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
261
262 void
263 app_enable (void)
264 {
265 if (! app_on)
266 {
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
269 }
270 }
271
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
274
275 void
276 app_disable (void)
277 {
278 if (app_on)
279 {
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
282 }
283 }
284 \f
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
288
289 int
290 dbr_sequence_length (void)
291 {
292 if (final_sequence != 0)
293 return XVECLEN (final_sequence, 0) - 1;
294 else
295 return 0;
296 }
297 \f
298 /* The next two pages contain routines used to compute the length of an insn
299 and to shorten branches. */
300
301 /* Arrays for insn lengths, and addresses. The latter is referenced by
302 `insn_current_length'. */
303
304 static int *insn_lengths;
305
306 vec<int> insn_addresses_;
307
308 /* Max uid for which the above arrays are valid. */
309 static int insn_lengths_max_uid;
310
311 /* Address of insn being processed. Used by `insn_current_length'. */
312 int insn_current_address;
313
314 /* Address of insn being processed in previous iteration. */
315 int insn_last_address;
316
317 /* known invariant alignment of insn being processed. */
318 int insn_current_align;
319
320 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
321 gives the next following alignment insn that increases the known
322 alignment, or NULL_RTX if there is no such insn.
323 For any alignment obtained this way, we can again index uid_align with
324 its uid to obtain the next following align that in turn increases the
325 alignment, till we reach NULL_RTX; the sequence obtained this way
326 for each insn we'll call the alignment chain of this insn in the following
327 comments. */
328
329 struct label_alignment
330 {
331 short alignment;
332 short max_skip;
333 };
334
335 static rtx *uid_align;
336 static int *uid_shuid;
337 static struct label_alignment *label_align;
338
339 /* Indicate that branch shortening hasn't yet been done. */
340
341 void
342 init_insn_lengths (void)
343 {
344 if (uid_shuid)
345 {
346 free (uid_shuid);
347 uid_shuid = 0;
348 }
349 if (insn_lengths)
350 {
351 free (insn_lengths);
352 insn_lengths = 0;
353 insn_lengths_max_uid = 0;
354 }
355 if (HAVE_ATTR_length)
356 INSN_ADDRESSES_FREE ();
357 if (uid_align)
358 {
359 free (uid_align);
360 uid_align = 0;
361 }
362 }
363
364 /* Obtain the current length of an insn. If branch shortening has been done,
365 get its actual length. Otherwise, use FALLBACK_FN to calculate the
366 length. */
367 static int
368 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
369 {
370 rtx body;
371 int i;
372 int length = 0;
373
374 if (!HAVE_ATTR_length)
375 return 0;
376
377 if (insn_lengths_max_uid > INSN_UID (insn))
378 return insn_lengths[INSN_UID (insn)];
379 else
380 switch (GET_CODE (insn))
381 {
382 case NOTE:
383 case BARRIER:
384 case CODE_LABEL:
385 case DEBUG_INSN:
386 return 0;
387
388 case CALL_INSN:
389 case JUMP_INSN:
390 length = fallback_fn (insn);
391 break;
392
393 case INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
396 return 0;
397
398 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
399 length = asm_insn_count (body) * fallback_fn (insn);
400 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
401 for (i = 0; i < seq->len (); i++)
402 length += get_attr_length_1 (seq->insn (i), fallback_fn);
403 else
404 length = fallback_fn (insn);
405 break;
406
407 default:
408 break;
409 }
410
411 #ifdef ADJUST_INSN_LENGTH
412 ADJUST_INSN_LENGTH (insn, length);
413 #endif
414 return length;
415 }
416
417 /* Obtain the current length of an insn. If branch shortening has been done,
418 get its actual length. Otherwise, get its maximum length. */
419 int
420 get_attr_length (rtx_insn *insn)
421 {
422 return get_attr_length_1 (insn, insn_default_length);
423 }
424
425 /* Obtain the current length of an insn. If branch shortening has been done,
426 get its actual length. Otherwise, get its minimum length. */
427 int
428 get_attr_min_length (rtx_insn *insn)
429 {
430 return get_attr_length_1 (insn, insn_min_length);
431 }
432 \f
433 /* Code to handle alignment inside shorten_branches. */
434
435 /* Here is an explanation how the algorithm in align_fuzz can give
436 proper results:
437
438 Call a sequence of instructions beginning with alignment point X
439 and continuing until the next alignment point `block X'. When `X'
440 is used in an expression, it means the alignment value of the
441 alignment point.
442
443 Call the distance between the start of the first insn of block X, and
444 the end of the last insn of block X `IX', for the `inner size of X'.
445 This is clearly the sum of the instruction lengths.
446
447 Likewise with the next alignment-delimited block following X, which we
448 shall call block Y.
449
450 Call the distance between the start of the first insn of block X, and
451 the start of the first insn of block Y `OX', for the `outer size of X'.
452
453 The estimated padding is then OX - IX.
454
455 OX can be safely estimated as
456
457 if (X >= Y)
458 OX = round_up(IX, Y)
459 else
460 OX = round_up(IX, X) + Y - X
461
462 Clearly est(IX) >= real(IX), because that only depends on the
463 instruction lengths, and those being overestimated is a given.
464
465 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
466 we needn't worry about that when thinking about OX.
467
468 When X >= Y, the alignment provided by Y adds no uncertainty factor
469 for branch ranges starting before X, so we can just round what we have.
470 But when X < Y, we don't know anything about the, so to speak,
471 `middle bits', so we have to assume the worst when aligning up from an
472 address mod X to one mod Y, which is Y - X. */
473
474 #ifndef LABEL_ALIGN
475 #define LABEL_ALIGN(LABEL) align_labels_log
476 #endif
477
478 #ifndef LOOP_ALIGN
479 #define LOOP_ALIGN(LABEL) align_loops_log
480 #endif
481
482 #ifndef LABEL_ALIGN_AFTER_BARRIER
483 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
484 #endif
485
486 #ifndef JUMP_ALIGN
487 #define JUMP_ALIGN(LABEL) align_jumps_log
488 #endif
489
490 int
491 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
492 {
493 return 0;
494 }
495
496 int
497 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
498 {
499 return align_loops_max_skip;
500 }
501
502 int
503 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
504 {
505 return align_labels_max_skip;
506 }
507
508 int
509 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
510 {
511 return align_jumps_max_skip;
512 }
513
514 #ifndef ADDR_VEC_ALIGN
515 static int
516 final_addr_vec_align (rtx_jump_table_data *addr_vec)
517 {
518 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
519
520 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
521 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
522 return exact_log2 (align);
523
524 }
525
526 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
527 #endif
528
529 #ifndef INSN_LENGTH_ALIGNMENT
530 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
531 #endif
532
533 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
534
535 static int min_labelno, max_labelno;
536
537 #define LABEL_TO_ALIGNMENT(LABEL) \
538 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
539
540 #define LABEL_TO_MAX_SKIP(LABEL) \
541 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
542
543 /* For the benefit of port specific code do this also as a function. */
544
545 int
546 label_to_alignment (rtx label)
547 {
548 if (CODE_LABEL_NUMBER (label) <= max_labelno)
549 return LABEL_TO_ALIGNMENT (label);
550 return 0;
551 }
552
553 int
554 label_to_max_skip (rtx label)
555 {
556 if (CODE_LABEL_NUMBER (label) <= max_labelno)
557 return LABEL_TO_MAX_SKIP (label);
558 return 0;
559 }
560
561 /* The differences in addresses
562 between a branch and its target might grow or shrink depending on
563 the alignment the start insn of the range (the branch for a forward
564 branch or the label for a backward branch) starts out on; if these
565 differences are used naively, they can even oscillate infinitely.
566 We therefore want to compute a 'worst case' address difference that
567 is independent of the alignment the start insn of the range end
568 up on, and that is at least as large as the actual difference.
569 The function align_fuzz calculates the amount we have to add to the
570 naively computed difference, by traversing the part of the alignment
571 chain of the start insn of the range that is in front of the end insn
572 of the range, and considering for each alignment the maximum amount
573 that it might contribute to a size increase.
574
575 For casesi tables, we also want to know worst case minimum amounts of
576 address difference, in case a machine description wants to introduce
577 some common offset that is added to all offsets in a table.
578 For this purpose, align_fuzz with a growth argument of 0 computes the
579 appropriate adjustment. */
580
581 /* Compute the maximum delta by which the difference of the addresses of
582 START and END might grow / shrink due to a different address for start
583 which changes the size of alignment insns between START and END.
584 KNOWN_ALIGN_LOG is the alignment known for START.
585 GROWTH should be ~0 if the objective is to compute potential code size
586 increase, and 0 if the objective is to compute potential shrink.
587 The return value is undefined for any other value of GROWTH. */
588
589 static int
590 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
591 {
592 int uid = INSN_UID (start);
593 rtx align_label;
594 int known_align = 1 << known_align_log;
595 int end_shuid = INSN_SHUID (end);
596 int fuzz = 0;
597
598 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
599 {
600 int align_addr, new_align;
601
602 uid = INSN_UID (align_label);
603 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
604 if (uid_shuid[uid] > end_shuid)
605 break;
606 known_align_log = LABEL_TO_ALIGNMENT (align_label);
607 new_align = 1 << known_align_log;
608 if (new_align < known_align)
609 continue;
610 fuzz += (-align_addr ^ growth) & (new_align - known_align);
611 known_align = new_align;
612 }
613 return fuzz;
614 }
615
616 /* Compute a worst-case reference address of a branch so that it
617 can be safely used in the presence of aligned labels. Since the
618 size of the branch itself is unknown, the size of the branch is
619 not included in the range. I.e. for a forward branch, the reference
620 address is the end address of the branch as known from the previous
621 branch shortening pass, minus a value to account for possible size
622 increase due to alignment. For a backward branch, it is the start
623 address of the branch as known from the current pass, plus a value
624 to account for possible size increase due to alignment.
625 NB.: Therefore, the maximum offset allowed for backward branches needs
626 to exclude the branch size. */
627
628 int
629 insn_current_reference_address (rtx_insn *branch)
630 {
631 rtx dest;
632 int seq_uid;
633
634 if (! INSN_ADDRESSES_SET_P ())
635 return 0;
636
637 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
638 seq_uid = INSN_UID (seq);
639 if (!JUMP_P (branch))
640 /* This can happen for example on the PA; the objective is to know the
641 offset to address something in front of the start of the function.
642 Thus, we can treat it like a backward branch.
643 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
644 any alignment we'd encounter, so we skip the call to align_fuzz. */
645 return insn_current_address;
646 dest = JUMP_LABEL (branch);
647
648 /* BRANCH has no proper alignment chain set, so use SEQ.
649 BRANCH also has no INSN_SHUID. */
650 if (INSN_SHUID (seq) < INSN_SHUID (dest))
651 {
652 /* Forward branch. */
653 return (insn_last_address + insn_lengths[seq_uid]
654 - align_fuzz (seq, dest, length_unit_log, ~0));
655 }
656 else
657 {
658 /* Backward branch. */
659 return (insn_current_address
660 + align_fuzz (dest, seq, length_unit_log, ~0));
661 }
662 }
663 \f
664 /* Compute branch alignments based on frequency information in the
665 CFG. */
666
667 unsigned int
668 compute_alignments (void)
669 {
670 int log, max_skip, max_log;
671 basic_block bb;
672 int freq_max = 0;
673 int freq_threshold = 0;
674
675 if (label_align)
676 {
677 free (label_align);
678 label_align = 0;
679 }
680
681 max_labelno = max_label_num ();
682 min_labelno = get_first_label_num ();
683 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
684
685 /* If not optimizing or optimizing for size, don't assign any alignments. */
686 if (! optimize || optimize_function_for_size_p (cfun))
687 return 0;
688
689 if (dump_file)
690 {
691 dump_reg_info (dump_file);
692 dump_flow_info (dump_file, TDF_DETAILS);
693 flow_loops_dump (dump_file, NULL, 1);
694 }
695 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
696 FOR_EACH_BB_FN (bb, cfun)
697 if (bb->count.to_frequency (cfun) > freq_max)
698 freq_max = bb->count.to_frequency (cfun);
699 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
700
701 if (dump_file)
702 fprintf (dump_file, "freq_max: %i\n",freq_max);
703 FOR_EACH_BB_FN (bb, cfun)
704 {
705 rtx_insn *label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
709
710 if (!LABEL_P (label)
711 || optimize_bb_for_size_p (bb))
712 {
713 if (dump_file)
714 fprintf (dump_file,
715 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
716 bb->index, bb->count.to_frequency (cfun),
717 bb->loop_father->num,
718 bb_loop_depth (bb));
719 continue;
720 }
721 max_log = LABEL_ALIGN (label);
722 max_skip = targetm.asm_out.label_align_max_skip (label);
723
724 FOR_EACH_EDGE (e, ei, bb->preds)
725 {
726 if (e->flags & EDGE_FALLTHRU)
727 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
728 else
729 branch_frequency += EDGE_FREQUENCY (e);
730 }
731 if (dump_file)
732 {
733 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
734 " %2i fall %4i branch %4i",
735 bb->index, bb->count.to_frequency (cfun), bb->loop_father->num,
736 bb_loop_depth (bb),
737 fallthru_frequency, branch_frequency);
738 if (!bb->loop_father->inner && bb->loop_father->num)
739 fprintf (dump_file, " inner_loop");
740 if (bb->loop_father->header == bb)
741 fprintf (dump_file, " loop_header");
742 fprintf (dump_file, "\n");
743 }
744
745 /* There are two purposes to align block with no fallthru incoming edge:
746 1) to avoid fetch stalls when branch destination is near cache boundary
747 2) to improve cache efficiency in case the previous block is not executed
748 (so it does not need to be in the cache).
749
750 We to catch first case, we align frequently executed blocks.
751 To catch the second, we align blocks that are executed more frequently
752 than the predecessor and the predecessor is likely to not be executed
753 when function is called. */
754
755 if (!has_fallthru
756 && (branch_frequency > freq_threshold
757 || (bb->count.to_frequency (cfun)
758 > bb->prev_bb->count.to_frequency (cfun) * 10
759 && (bb->prev_bb->count.to_frequency (cfun)
760 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun) / 2))))
761 {
762 log = JUMP_ALIGN (label);
763 if (dump_file)
764 fprintf (dump_file, " jump alignment added.\n");
765 if (max_log < log)
766 {
767 max_log = log;
768 max_skip = targetm.asm_out.jump_align_max_skip (label);
769 }
770 }
771 /* In case block is frequent and reached mostly by non-fallthru edge,
772 align it. It is most likely a first block of loop. */
773 if (has_fallthru
774 && !(single_succ_p (bb)
775 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
776 && optimize_bb_for_speed_p (bb)
777 && branch_frequency + fallthru_frequency > freq_threshold
778 && (branch_frequency
779 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
780 {
781 log = LOOP_ALIGN (label);
782 if (dump_file)
783 fprintf (dump_file, " internal loop alignment added.\n");
784 if (max_log < log)
785 {
786 max_log = log;
787 max_skip = targetm.asm_out.loop_align_max_skip (label);
788 }
789 }
790 LABEL_TO_ALIGNMENT (label) = max_log;
791 LABEL_TO_MAX_SKIP (label) = max_skip;
792 }
793
794 loop_optimizer_finalize ();
795 free_dominance_info (CDI_DOMINATORS);
796 return 0;
797 }
798
799 /* Grow the LABEL_ALIGN array after new labels are created. */
800
801 static void
802 grow_label_align (void)
803 {
804 int old = max_labelno;
805 int n_labels;
806 int n_old_labels;
807
808 max_labelno = max_label_num ();
809
810 n_labels = max_labelno - min_labelno + 1;
811 n_old_labels = old - min_labelno + 1;
812
813 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
814
815 /* Range of labels grows monotonically in the function. Failing here
816 means that the initialization of array got lost. */
817 gcc_assert (n_old_labels <= n_labels);
818
819 memset (label_align + n_old_labels, 0,
820 (n_labels - n_old_labels) * sizeof (struct label_alignment));
821 }
822
823 /* Update the already computed alignment information. LABEL_PAIRS is a vector
824 made up of pairs of labels for which the alignment information of the first
825 element will be copied from that of the second element. */
826
827 void
828 update_alignments (vec<rtx> &label_pairs)
829 {
830 unsigned int i = 0;
831 rtx iter, label = NULL_RTX;
832
833 if (max_labelno != max_label_num ())
834 grow_label_align ();
835
836 FOR_EACH_VEC_ELT (label_pairs, i, iter)
837 if (i & 1)
838 {
839 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
840 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
841 }
842 else
843 label = iter;
844 }
845
846 namespace {
847
848 const pass_data pass_data_compute_alignments =
849 {
850 RTL_PASS, /* type */
851 "alignments", /* name */
852 OPTGROUP_NONE, /* optinfo_flags */
853 TV_NONE, /* tv_id */
854 0, /* properties_required */
855 0, /* properties_provided */
856 0, /* properties_destroyed */
857 0, /* todo_flags_start */
858 0, /* todo_flags_finish */
859 };
860
861 class pass_compute_alignments : public rtl_opt_pass
862 {
863 public:
864 pass_compute_alignments (gcc::context *ctxt)
865 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
866 {}
867
868 /* opt_pass methods: */
869 virtual unsigned int execute (function *) { return compute_alignments (); }
870
871 }; // class pass_compute_alignments
872
873 } // anon namespace
874
875 rtl_opt_pass *
876 make_pass_compute_alignments (gcc::context *ctxt)
877 {
878 return new pass_compute_alignments (ctxt);
879 }
880
881 \f
882 /* Make a pass over all insns and compute their actual lengths by shortening
883 any branches of variable length if possible. */
884
885 /* shorten_branches might be called multiple times: for example, the SH
886 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
887 In order to do this, it needs proper length information, which it obtains
888 by calling shorten_branches. This cannot be collapsed with
889 shorten_branches itself into a single pass unless we also want to integrate
890 reorg.c, since the branch splitting exposes new instructions with delay
891 slots. */
892
893 void
894 shorten_branches (rtx_insn *first)
895 {
896 rtx_insn *insn;
897 int max_uid;
898 int i;
899 int max_log;
900 int max_skip;
901 #define MAX_CODE_ALIGN 16
902 rtx_insn *seq;
903 int something_changed = 1;
904 char *varying_length;
905 rtx body;
906 int uid;
907 rtx align_tab[MAX_CODE_ALIGN];
908
909 /* Compute maximum UID and allocate label_align / uid_shuid. */
910 max_uid = get_max_uid ();
911
912 /* Free uid_shuid before reallocating it. */
913 free (uid_shuid);
914
915 uid_shuid = XNEWVEC (int, max_uid);
916
917 if (max_labelno != max_label_num ())
918 grow_label_align ();
919
920 /* Initialize label_align and set up uid_shuid to be strictly
921 monotonically rising with insn order. */
922 /* We use max_log here to keep track of the maximum alignment we want to
923 impose on the next CODE_LABEL (or the current one if we are processing
924 the CODE_LABEL itself). */
925
926 max_log = 0;
927 max_skip = 0;
928
929 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
930 {
931 int log;
932
933 INSN_SHUID (insn) = i++;
934 if (INSN_P (insn))
935 continue;
936
937 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
938 {
939 /* Merge in alignments computed by compute_alignments. */
940 log = LABEL_TO_ALIGNMENT (label);
941 if (max_log < log)
942 {
943 max_log = log;
944 max_skip = LABEL_TO_MAX_SKIP (label);
945 }
946
947 rtx_jump_table_data *table = jump_table_for_label (label);
948 if (!table)
949 {
950 log = LABEL_ALIGN (label);
951 if (max_log < log)
952 {
953 max_log = log;
954 max_skip = targetm.asm_out.label_align_max_skip (label);
955 }
956 }
957 /* ADDR_VECs only take room if read-only data goes into the text
958 section. */
959 if ((JUMP_TABLES_IN_TEXT_SECTION
960 || readonly_data_section == text_section)
961 && table)
962 {
963 log = ADDR_VEC_ALIGN (table);
964 if (max_log < log)
965 {
966 max_log = log;
967 max_skip = targetm.asm_out.label_align_max_skip (label);
968 }
969 }
970 LABEL_TO_ALIGNMENT (label) = max_log;
971 LABEL_TO_MAX_SKIP (label) = max_skip;
972 max_log = 0;
973 max_skip = 0;
974 }
975 else if (BARRIER_P (insn))
976 {
977 rtx_insn *label;
978
979 for (label = insn; label && ! INSN_P (label);
980 label = NEXT_INSN (label))
981 if (LABEL_P (label))
982 {
983 log = LABEL_ALIGN_AFTER_BARRIER (insn);
984 if (max_log < log)
985 {
986 max_log = log;
987 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
988 }
989 break;
990 }
991 }
992 }
993 if (!HAVE_ATTR_length)
994 return;
995
996 /* Allocate the rest of the arrays. */
997 insn_lengths = XNEWVEC (int, max_uid);
998 insn_lengths_max_uid = max_uid;
999 /* Syntax errors can lead to labels being outside of the main insn stream.
1000 Initialize insn_addresses, so that we get reproducible results. */
1001 INSN_ADDRESSES_ALLOC (max_uid);
1002
1003 varying_length = XCNEWVEC (char, max_uid);
1004
1005 /* Initialize uid_align. We scan instructions
1006 from end to start, and keep in align_tab[n] the last seen insn
1007 that does an alignment of at least n+1, i.e. the successor
1008 in the alignment chain for an insn that does / has a known
1009 alignment of n. */
1010 uid_align = XCNEWVEC (rtx, max_uid);
1011
1012 for (i = MAX_CODE_ALIGN; --i >= 0;)
1013 align_tab[i] = NULL_RTX;
1014 seq = get_last_insn ();
1015 for (; seq; seq = PREV_INSN (seq))
1016 {
1017 int uid = INSN_UID (seq);
1018 int log;
1019 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1020 uid_align[uid] = align_tab[0];
1021 if (log)
1022 {
1023 /* Found an alignment label. */
1024 uid_align[uid] = align_tab[log];
1025 for (i = log - 1; i >= 0; i--)
1026 align_tab[i] = seq;
1027 }
1028 }
1029
1030 /* When optimizing, we start assuming minimum length, and keep increasing
1031 lengths as we find the need for this, till nothing changes.
1032 When not optimizing, we start assuming maximum lengths, and
1033 do a single pass to update the lengths. */
1034 bool increasing = optimize != 0;
1035
1036 #ifdef CASE_VECTOR_SHORTEN_MODE
1037 if (optimize)
1038 {
1039 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1040 label fields. */
1041
1042 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1043 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1044 int rel;
1045
1046 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1047 {
1048 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1049 int len, i, min, max, insn_shuid;
1050 int min_align;
1051 addr_diff_vec_flags flags;
1052
1053 if (! JUMP_TABLE_DATA_P (insn)
1054 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1055 continue;
1056 pat = PATTERN (insn);
1057 len = XVECLEN (pat, 1);
1058 gcc_assert (len > 0);
1059 min_align = MAX_CODE_ALIGN;
1060 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1061 {
1062 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1063 int shuid = INSN_SHUID (lab);
1064 if (shuid < min)
1065 {
1066 min = shuid;
1067 min_lab = lab;
1068 }
1069 if (shuid > max)
1070 {
1071 max = shuid;
1072 max_lab = lab;
1073 }
1074 if (min_align > LABEL_TO_ALIGNMENT (lab))
1075 min_align = LABEL_TO_ALIGNMENT (lab);
1076 }
1077 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1078 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1079 insn_shuid = INSN_SHUID (insn);
1080 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1081 memset (&flags, 0, sizeof (flags));
1082 flags.min_align = min_align;
1083 flags.base_after_vec = rel > insn_shuid;
1084 flags.min_after_vec = min > insn_shuid;
1085 flags.max_after_vec = max > insn_shuid;
1086 flags.min_after_base = min > rel;
1087 flags.max_after_base = max > rel;
1088 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1089
1090 if (increasing)
1091 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1092 }
1093 }
1094 #endif /* CASE_VECTOR_SHORTEN_MODE */
1095
1096 /* Compute initial lengths, addresses, and varying flags for each insn. */
1097 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1098
1099 for (insn_current_address = 0, insn = first;
1100 insn != 0;
1101 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1102 {
1103 uid = INSN_UID (insn);
1104
1105 insn_lengths[uid] = 0;
1106
1107 if (LABEL_P (insn))
1108 {
1109 int log = LABEL_TO_ALIGNMENT (insn);
1110 if (log)
1111 {
1112 int align = 1 << log;
1113 int new_address = (insn_current_address + align - 1) & -align;
1114 insn_lengths[uid] = new_address - insn_current_address;
1115 }
1116 }
1117
1118 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1119
1120 if (NOTE_P (insn) || BARRIER_P (insn)
1121 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1122 continue;
1123 if (insn->deleted ())
1124 continue;
1125
1126 body = PATTERN (insn);
1127 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1128 {
1129 /* This only takes room if read-only data goes into the text
1130 section. */
1131 if (JUMP_TABLES_IN_TEXT_SECTION
1132 || readonly_data_section == text_section)
1133 insn_lengths[uid] = (XVECLEN (body,
1134 GET_CODE (body) == ADDR_DIFF_VEC)
1135 * GET_MODE_SIZE (table->get_data_mode ()));
1136 /* Alignment is handled by ADDR_VEC_ALIGN. */
1137 }
1138 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1139 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1140 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1141 {
1142 int i;
1143 int const_delay_slots;
1144 if (DELAY_SLOTS)
1145 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1146 else
1147 const_delay_slots = 0;
1148
1149 int (*inner_length_fun) (rtx_insn *)
1150 = const_delay_slots ? length_fun : insn_default_length;
1151 /* Inside a delay slot sequence, we do not do any branch shortening
1152 if the shortening could change the number of delay slots
1153 of the branch. */
1154 for (i = 0; i < body_seq->len (); i++)
1155 {
1156 rtx_insn *inner_insn = body_seq->insn (i);
1157 int inner_uid = INSN_UID (inner_insn);
1158 int inner_length;
1159
1160 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1161 || asm_noperands (PATTERN (inner_insn)) >= 0)
1162 inner_length = (asm_insn_count (PATTERN (inner_insn))
1163 * insn_default_length (inner_insn));
1164 else
1165 inner_length = inner_length_fun (inner_insn);
1166
1167 insn_lengths[inner_uid] = inner_length;
1168 if (const_delay_slots)
1169 {
1170 if ((varying_length[inner_uid]
1171 = insn_variable_length_p (inner_insn)) != 0)
1172 varying_length[uid] = 1;
1173 INSN_ADDRESSES (inner_uid) = (insn_current_address
1174 + insn_lengths[uid]);
1175 }
1176 else
1177 varying_length[inner_uid] = 0;
1178 insn_lengths[uid] += inner_length;
1179 }
1180 }
1181 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1182 {
1183 insn_lengths[uid] = length_fun (insn);
1184 varying_length[uid] = insn_variable_length_p (insn);
1185 }
1186
1187 /* If needed, do any adjustment. */
1188 #ifdef ADJUST_INSN_LENGTH
1189 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1190 if (insn_lengths[uid] < 0)
1191 fatal_insn ("negative insn length", insn);
1192 #endif
1193 }
1194
1195 /* Now loop over all the insns finding varying length insns. For each,
1196 get the current insn length. If it has changed, reflect the change.
1197 When nothing changes for a full pass, we are done. */
1198
1199 while (something_changed)
1200 {
1201 something_changed = 0;
1202 insn_current_align = MAX_CODE_ALIGN - 1;
1203 for (insn_current_address = 0, insn = first;
1204 insn != 0;
1205 insn = NEXT_INSN (insn))
1206 {
1207 int new_length;
1208 #ifdef ADJUST_INSN_LENGTH
1209 int tmp_length;
1210 #endif
1211 int length_align;
1212
1213 uid = INSN_UID (insn);
1214
1215 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1216 {
1217 int log = LABEL_TO_ALIGNMENT (label);
1218
1219 #ifdef CASE_VECTOR_SHORTEN_MODE
1220 /* If the mode of a following jump table was changed, we
1221 may need to update the alignment of this label. */
1222
1223 if (JUMP_TABLES_IN_TEXT_SECTION
1224 || readonly_data_section == text_section)
1225 {
1226 rtx_jump_table_data *table = jump_table_for_label (label);
1227 if (table)
1228 {
1229 int newlog = ADDR_VEC_ALIGN (table);
1230 if (newlog != log)
1231 {
1232 log = newlog;
1233 LABEL_TO_ALIGNMENT (insn) = log;
1234 something_changed = 1;
1235 }
1236 }
1237 }
1238 #endif
1239
1240 if (log > insn_current_align)
1241 {
1242 int align = 1 << log;
1243 int new_address= (insn_current_address + align - 1) & -align;
1244 insn_lengths[uid] = new_address - insn_current_address;
1245 insn_current_align = log;
1246 insn_current_address = new_address;
1247 }
1248 else
1249 insn_lengths[uid] = 0;
1250 INSN_ADDRESSES (uid) = insn_current_address;
1251 continue;
1252 }
1253
1254 length_align = INSN_LENGTH_ALIGNMENT (insn);
1255 if (length_align < insn_current_align)
1256 insn_current_align = length_align;
1257
1258 insn_last_address = INSN_ADDRESSES (uid);
1259 INSN_ADDRESSES (uid) = insn_current_address;
1260
1261 #ifdef CASE_VECTOR_SHORTEN_MODE
1262 if (optimize
1263 && JUMP_TABLE_DATA_P (insn)
1264 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1265 {
1266 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1267 rtx body = PATTERN (insn);
1268 int old_length = insn_lengths[uid];
1269 rtx_insn *rel_lab =
1270 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1271 rtx min_lab = XEXP (XEXP (body, 2), 0);
1272 rtx max_lab = XEXP (XEXP (body, 3), 0);
1273 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1274 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1275 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1276 rtx_insn *prev;
1277 int rel_align = 0;
1278 addr_diff_vec_flags flags;
1279 scalar_int_mode vec_mode;
1280
1281 /* Avoid automatic aggregate initialization. */
1282 flags = ADDR_DIFF_VEC_FLAGS (body);
1283
1284 /* Try to find a known alignment for rel_lab. */
1285 for (prev = rel_lab;
1286 prev
1287 && ! insn_lengths[INSN_UID (prev)]
1288 && ! (varying_length[INSN_UID (prev)] & 1);
1289 prev = PREV_INSN (prev))
1290 if (varying_length[INSN_UID (prev)] & 2)
1291 {
1292 rel_align = LABEL_TO_ALIGNMENT (prev);
1293 break;
1294 }
1295
1296 /* See the comment on addr_diff_vec_flags in rtl.h for the
1297 meaning of the flags values. base: REL_LAB vec: INSN */
1298 /* Anything after INSN has still addresses from the last
1299 pass; adjust these so that they reflect our current
1300 estimate for this pass. */
1301 if (flags.base_after_vec)
1302 rel_addr += insn_current_address - insn_last_address;
1303 if (flags.min_after_vec)
1304 min_addr += insn_current_address - insn_last_address;
1305 if (flags.max_after_vec)
1306 max_addr += insn_current_address - insn_last_address;
1307 /* We want to know the worst case, i.e. lowest possible value
1308 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1309 its offset is positive, and we have to be wary of code shrink;
1310 otherwise, it is negative, and we have to be vary of code
1311 size increase. */
1312 if (flags.min_after_base)
1313 {
1314 /* If INSN is between REL_LAB and MIN_LAB, the size
1315 changes we are about to make can change the alignment
1316 within the observed offset, therefore we have to break
1317 it up into two parts that are independent. */
1318 if (! flags.base_after_vec && flags.min_after_vec)
1319 {
1320 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1321 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1322 }
1323 else
1324 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1325 }
1326 else
1327 {
1328 if (flags.base_after_vec && ! flags.min_after_vec)
1329 {
1330 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1331 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1332 }
1333 else
1334 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1335 }
1336 /* Likewise, determine the highest lowest possible value
1337 for the offset of MAX_LAB. */
1338 if (flags.max_after_base)
1339 {
1340 if (! flags.base_after_vec && flags.max_after_vec)
1341 {
1342 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1343 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1344 }
1345 else
1346 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1347 }
1348 else
1349 {
1350 if (flags.base_after_vec && ! flags.max_after_vec)
1351 {
1352 max_addr += align_fuzz (max_lab, insn, 0, 0);
1353 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1354 }
1355 else
1356 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1357 }
1358 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1359 max_addr - rel_addr, body);
1360 if (!increasing
1361 || (GET_MODE_SIZE (vec_mode)
1362 >= GET_MODE_SIZE (table->get_data_mode ())))
1363 PUT_MODE (body, vec_mode);
1364 if (JUMP_TABLES_IN_TEXT_SECTION
1365 || readonly_data_section == text_section)
1366 {
1367 insn_lengths[uid]
1368 = (XVECLEN (body, 1)
1369 * GET_MODE_SIZE (table->get_data_mode ()));
1370 insn_current_address += insn_lengths[uid];
1371 if (insn_lengths[uid] != old_length)
1372 something_changed = 1;
1373 }
1374
1375 continue;
1376 }
1377 #endif /* CASE_VECTOR_SHORTEN_MODE */
1378
1379 if (! (varying_length[uid]))
1380 {
1381 if (NONJUMP_INSN_P (insn)
1382 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1383 {
1384 int i;
1385
1386 body = PATTERN (insn);
1387 for (i = 0; i < XVECLEN (body, 0); i++)
1388 {
1389 rtx inner_insn = XVECEXP (body, 0, i);
1390 int inner_uid = INSN_UID (inner_insn);
1391
1392 INSN_ADDRESSES (inner_uid) = insn_current_address;
1393
1394 insn_current_address += insn_lengths[inner_uid];
1395 }
1396 }
1397 else
1398 insn_current_address += insn_lengths[uid];
1399
1400 continue;
1401 }
1402
1403 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1404 {
1405 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1406 int i;
1407
1408 body = PATTERN (insn);
1409 new_length = 0;
1410 for (i = 0; i < seqn->len (); i++)
1411 {
1412 rtx_insn *inner_insn = seqn->insn (i);
1413 int inner_uid = INSN_UID (inner_insn);
1414 int inner_length;
1415
1416 INSN_ADDRESSES (inner_uid) = insn_current_address;
1417
1418 /* insn_current_length returns 0 for insns with a
1419 non-varying length. */
1420 if (! varying_length[inner_uid])
1421 inner_length = insn_lengths[inner_uid];
1422 else
1423 inner_length = insn_current_length (inner_insn);
1424
1425 if (inner_length != insn_lengths[inner_uid])
1426 {
1427 if (!increasing || inner_length > insn_lengths[inner_uid])
1428 {
1429 insn_lengths[inner_uid] = inner_length;
1430 something_changed = 1;
1431 }
1432 else
1433 inner_length = insn_lengths[inner_uid];
1434 }
1435 insn_current_address += inner_length;
1436 new_length += inner_length;
1437 }
1438 }
1439 else
1440 {
1441 new_length = insn_current_length (insn);
1442 insn_current_address += new_length;
1443 }
1444
1445 #ifdef ADJUST_INSN_LENGTH
1446 /* If needed, do any adjustment. */
1447 tmp_length = new_length;
1448 ADJUST_INSN_LENGTH (insn, new_length);
1449 insn_current_address += (new_length - tmp_length);
1450 #endif
1451
1452 if (new_length != insn_lengths[uid]
1453 && (!increasing || new_length > insn_lengths[uid]))
1454 {
1455 insn_lengths[uid] = new_length;
1456 something_changed = 1;
1457 }
1458 else
1459 insn_current_address += insn_lengths[uid] - new_length;
1460 }
1461 /* For a non-optimizing compile, do only a single pass. */
1462 if (!increasing)
1463 break;
1464 }
1465 crtl->max_insn_address = insn_current_address;
1466 free (varying_length);
1467 }
1468
1469 /* Given the body of an INSN known to be generated by an ASM statement, return
1470 the number of machine instructions likely to be generated for this insn.
1471 This is used to compute its length. */
1472
1473 static int
1474 asm_insn_count (rtx body)
1475 {
1476 const char *templ;
1477
1478 if (GET_CODE (body) == ASM_INPUT)
1479 templ = XSTR (body, 0);
1480 else
1481 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1482
1483 return asm_str_count (templ);
1484 }
1485
1486 /* Return the number of machine instructions likely to be generated for the
1487 inline-asm template. */
1488 int
1489 asm_str_count (const char *templ)
1490 {
1491 int count = 1;
1492
1493 if (!*templ)
1494 return 0;
1495
1496 for (; *templ; templ++)
1497 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1498 || *templ == '\n')
1499 count++;
1500
1501 return count;
1502 }
1503 \f
1504 /* ??? This is probably the wrong place for these. */
1505 /* Structure recording the mapping from source file and directory
1506 names at compile time to those to be embedded in debug
1507 information. */
1508 struct debug_prefix_map
1509 {
1510 const char *old_prefix;
1511 const char *new_prefix;
1512 size_t old_len;
1513 size_t new_len;
1514 struct debug_prefix_map *next;
1515 };
1516
1517 /* Linked list of such structures. */
1518 static debug_prefix_map *debug_prefix_maps;
1519
1520
1521 /* Record a debug file prefix mapping. ARG is the argument to
1522 -fdebug-prefix-map and must be of the form OLD=NEW. */
1523
1524 void
1525 add_debug_prefix_map (const char *arg)
1526 {
1527 debug_prefix_map *map;
1528 const char *p;
1529
1530 p = strchr (arg, '=');
1531 if (!p)
1532 {
1533 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1534 return;
1535 }
1536 map = XNEW (debug_prefix_map);
1537 map->old_prefix = xstrndup (arg, p - arg);
1538 map->old_len = p - arg;
1539 p++;
1540 map->new_prefix = xstrdup (p);
1541 map->new_len = strlen (p);
1542 map->next = debug_prefix_maps;
1543 debug_prefix_maps = map;
1544 }
1545
1546 /* Perform user-specified mapping of debug filename prefixes. Return
1547 the new name corresponding to FILENAME. */
1548
1549 const char *
1550 remap_debug_filename (const char *filename)
1551 {
1552 debug_prefix_map *map;
1553 char *s;
1554 const char *name;
1555 size_t name_len;
1556
1557 for (map = debug_prefix_maps; map; map = map->next)
1558 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1559 break;
1560 if (!map)
1561 return filename;
1562 name = filename + map->old_len;
1563 name_len = strlen (name) + 1;
1564 s = (char *) alloca (name_len + map->new_len);
1565 memcpy (s, map->new_prefix, map->new_len);
1566 memcpy (s + map->new_len, name, name_len);
1567 return ggc_strdup (s);
1568 }
1569 \f
1570 /* Return true if DWARF2 debug info can be emitted for DECL. */
1571
1572 static bool
1573 dwarf2_debug_info_emitted_p (tree decl)
1574 {
1575 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1576 return false;
1577
1578 if (DECL_IGNORED_P (decl))
1579 return false;
1580
1581 return true;
1582 }
1583
1584 /* Return scope resulting from combination of S1 and S2. */
1585 static tree
1586 choose_inner_scope (tree s1, tree s2)
1587 {
1588 if (!s1)
1589 return s2;
1590 if (!s2)
1591 return s1;
1592 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1593 return s1;
1594 return s2;
1595 }
1596
1597 /* Emit lexical block notes needed to change scope from S1 to S2. */
1598
1599 static void
1600 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1601 {
1602 rtx_insn *insn = orig_insn;
1603 tree com = NULL_TREE;
1604 tree ts1 = s1, ts2 = s2;
1605 tree s;
1606
1607 while (ts1 != ts2)
1608 {
1609 gcc_assert (ts1 && ts2);
1610 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1611 ts1 = BLOCK_SUPERCONTEXT (ts1);
1612 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1613 ts2 = BLOCK_SUPERCONTEXT (ts2);
1614 else
1615 {
1616 ts1 = BLOCK_SUPERCONTEXT (ts1);
1617 ts2 = BLOCK_SUPERCONTEXT (ts2);
1618 }
1619 }
1620 com = ts1;
1621
1622 /* Close scopes. */
1623 s = s1;
1624 while (s != com)
1625 {
1626 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1627 NOTE_BLOCK (note) = s;
1628 s = BLOCK_SUPERCONTEXT (s);
1629 }
1630
1631 /* Open scopes. */
1632 s = s2;
1633 while (s != com)
1634 {
1635 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1636 NOTE_BLOCK (insn) = s;
1637 s = BLOCK_SUPERCONTEXT (s);
1638 }
1639 }
1640
1641 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1642 on the scope tree and the newly reordered instructions. */
1643
1644 static void
1645 reemit_insn_block_notes (void)
1646 {
1647 tree cur_block = DECL_INITIAL (cfun->decl);
1648 rtx_insn *insn;
1649 rtx_note *note;
1650
1651 insn = get_insns ();
1652 for (; insn; insn = NEXT_INSN (insn))
1653 {
1654 tree this_block;
1655
1656 /* Prevent lexical blocks from straddling section boundaries. */
1657 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1658 {
1659 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1660 s = BLOCK_SUPERCONTEXT (s))
1661 {
1662 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1663 NOTE_BLOCK (note) = s;
1664 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1665 NOTE_BLOCK (note) = s;
1666 }
1667 }
1668
1669 if (!active_insn_p (insn))
1670 continue;
1671
1672 /* Avoid putting scope notes between jump table and its label. */
1673 if (JUMP_TABLE_DATA_P (insn))
1674 continue;
1675
1676 this_block = insn_scope (insn);
1677 /* For sequences compute scope resulting from merging all scopes
1678 of instructions nested inside. */
1679 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1680 {
1681 int i;
1682
1683 this_block = NULL;
1684 for (i = 0; i < body->len (); i++)
1685 this_block = choose_inner_scope (this_block,
1686 insn_scope (body->insn (i)));
1687 }
1688 if (! this_block)
1689 {
1690 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1691 continue;
1692 else
1693 this_block = DECL_INITIAL (cfun->decl);
1694 }
1695
1696 if (this_block != cur_block)
1697 {
1698 change_scope (insn, cur_block, this_block);
1699 cur_block = this_block;
1700 }
1701 }
1702
1703 /* change_scope emits before the insn, not after. */
1704 note = emit_note (NOTE_INSN_DELETED);
1705 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1706 delete_insn (note);
1707
1708 reorder_blocks ();
1709 }
1710
1711 static const char *some_local_dynamic_name;
1712
1713 /* Locate some local-dynamic symbol still in use by this function
1714 so that we can print its name in local-dynamic base patterns.
1715 Return null if there are no local-dynamic references. */
1716
1717 const char *
1718 get_some_local_dynamic_name ()
1719 {
1720 subrtx_iterator::array_type array;
1721 rtx_insn *insn;
1722
1723 if (some_local_dynamic_name)
1724 return some_local_dynamic_name;
1725
1726 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1727 if (NONDEBUG_INSN_P (insn))
1728 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1729 {
1730 const_rtx x = *iter;
1731 if (GET_CODE (x) == SYMBOL_REF)
1732 {
1733 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1734 return some_local_dynamic_name = XSTR (x, 0);
1735 if (CONSTANT_POOL_ADDRESS_P (x))
1736 iter.substitute (get_pool_constant (x));
1737 }
1738 }
1739
1740 return 0;
1741 }
1742
1743 /* Output assembler code for the start of a function,
1744 and initialize some of the variables in this file
1745 for the new function. The label for the function and associated
1746 assembler pseudo-ops have already been output in `assemble_start_function'.
1747
1748 FIRST is the first insn of the rtl for the function being compiled.
1749 FILE is the file to write assembler code to.
1750 OPTIMIZE_P is nonzero if we should eliminate redundant
1751 test and compare insns. */
1752
1753 void
1754 final_start_function (rtx_insn *first, FILE *file,
1755 int optimize_p ATTRIBUTE_UNUSED)
1756 {
1757 block_depth = 0;
1758
1759 this_is_asm_operands = 0;
1760
1761 need_profile_function = false;
1762
1763 last_filename = LOCATION_FILE (prologue_location);
1764 last_linenum = LOCATION_LINE (prologue_location);
1765 last_columnnum = LOCATION_COLUMN (prologue_location);
1766 last_discriminator = discriminator = 0;
1767
1768 high_block_linenum = high_function_linenum = last_linenum;
1769
1770 if (flag_sanitize & SANITIZE_ADDRESS)
1771 asan_function_start ();
1772
1773 if (!DECL_IGNORED_P (current_function_decl))
1774 debug_hooks->begin_prologue (last_linenum, last_columnnum, last_filename);
1775
1776 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1777 dwarf2out_begin_prologue (0, 0, NULL);
1778
1779 #ifdef LEAF_REG_REMAP
1780 if (crtl->uses_only_leaf_regs)
1781 leaf_renumber_regs (first);
1782 #endif
1783
1784 /* The Sun386i and perhaps other machines don't work right
1785 if the profiling code comes after the prologue. */
1786 if (targetm.profile_before_prologue () && crtl->profile)
1787 {
1788 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1789 && targetm.have_prologue ())
1790 {
1791 rtx_insn *insn;
1792 for (insn = first; insn; insn = NEXT_INSN (insn))
1793 if (!NOTE_P (insn))
1794 {
1795 insn = NULL;
1796 break;
1797 }
1798 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1799 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1800 break;
1801 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1802 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1803 continue;
1804 else
1805 {
1806 insn = NULL;
1807 break;
1808 }
1809
1810 if (insn)
1811 need_profile_function = true;
1812 else
1813 profile_function (file);
1814 }
1815 else
1816 profile_function (file);
1817 }
1818
1819 /* If debugging, assign block numbers to all of the blocks in this
1820 function. */
1821 if (write_symbols)
1822 {
1823 reemit_insn_block_notes ();
1824 number_blocks (current_function_decl);
1825 /* We never actually put out begin/end notes for the top-level
1826 block in the function. But, conceptually, that block is
1827 always needed. */
1828 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1829 }
1830
1831 if (warn_frame_larger_than
1832 && get_frame_size () > frame_larger_than_size)
1833 {
1834 /* Issue a warning */
1835 warning (OPT_Wframe_larger_than_,
1836 "the frame size of %wd bytes is larger than %wd bytes",
1837 get_frame_size (), frame_larger_than_size);
1838 }
1839
1840 /* First output the function prologue: code to set up the stack frame. */
1841 targetm.asm_out.function_prologue (file);
1842
1843 /* If the machine represents the prologue as RTL, the profiling code must
1844 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1845 if (! targetm.have_prologue ())
1846 profile_after_prologue (file);
1847 }
1848
1849 static void
1850 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1851 {
1852 if (!targetm.profile_before_prologue () && crtl->profile)
1853 profile_function (file);
1854 }
1855
1856 static void
1857 profile_function (FILE *file ATTRIBUTE_UNUSED)
1858 {
1859 #ifndef NO_PROFILE_COUNTERS
1860 # define NO_PROFILE_COUNTERS 0
1861 #endif
1862 #ifdef ASM_OUTPUT_REG_PUSH
1863 rtx sval = NULL, chain = NULL;
1864
1865 if (cfun->returns_struct)
1866 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1867 true);
1868 if (cfun->static_chain_decl)
1869 chain = targetm.calls.static_chain (current_function_decl, true);
1870 #endif /* ASM_OUTPUT_REG_PUSH */
1871
1872 if (! NO_PROFILE_COUNTERS)
1873 {
1874 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1875 switch_to_section (data_section);
1876 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1877 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1878 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1879 }
1880
1881 switch_to_section (current_function_section ());
1882
1883 #ifdef ASM_OUTPUT_REG_PUSH
1884 if (sval && REG_P (sval))
1885 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1886 if (chain && REG_P (chain))
1887 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1888 #endif
1889
1890 FUNCTION_PROFILER (file, current_function_funcdef_no);
1891
1892 #ifdef ASM_OUTPUT_REG_PUSH
1893 if (chain && REG_P (chain))
1894 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1895 if (sval && REG_P (sval))
1896 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1897 #endif
1898 }
1899
1900 /* Output assembler code for the end of a function.
1901 For clarity, args are same as those of `final_start_function'
1902 even though not all of them are needed. */
1903
1904 void
1905 final_end_function (void)
1906 {
1907 app_disable ();
1908
1909 if (!DECL_IGNORED_P (current_function_decl))
1910 debug_hooks->end_function (high_function_linenum);
1911
1912 /* Finally, output the function epilogue:
1913 code to restore the stack frame and return to the caller. */
1914 targetm.asm_out.function_epilogue (asm_out_file);
1915
1916 /* And debug output. */
1917 if (!DECL_IGNORED_P (current_function_decl))
1918 debug_hooks->end_epilogue (last_linenum, last_filename);
1919
1920 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1921 && dwarf2out_do_frame ())
1922 dwarf2out_end_epilogue (last_linenum, last_filename);
1923
1924 some_local_dynamic_name = 0;
1925 }
1926 \f
1927
1928 /* Dumper helper for basic block information. FILE is the assembly
1929 output file, and INSN is the instruction being emitted. */
1930
1931 static void
1932 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1933 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1934 {
1935 basic_block bb;
1936
1937 if (!flag_debug_asm)
1938 return;
1939
1940 if (INSN_UID (insn) < bb_map_size
1941 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1942 {
1943 edge e;
1944 edge_iterator ei;
1945
1946 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1947 if (bb->count.initialized_p ())
1948 {
1949 fprintf (file, ", count:");
1950 bb->count.dump (file);
1951 }
1952 fprintf (file, " seq:%d", (*bb_seqn)++);
1953 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1954 FOR_EACH_EDGE (e, ei, bb->preds)
1955 {
1956 dump_edge_info (file, e, TDF_DETAILS, 0);
1957 }
1958 fprintf (file, "\n");
1959 }
1960 if (INSN_UID (insn) < bb_map_size
1961 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1962 {
1963 edge e;
1964 edge_iterator ei;
1965
1966 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1967 FOR_EACH_EDGE (e, ei, bb->succs)
1968 {
1969 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1970 }
1971 fprintf (file, "\n");
1972 }
1973 }
1974
1975 /* Output assembler code for some insns: all or part of a function.
1976 For description of args, see `final_start_function', above. */
1977
1978 void
1979 final (rtx_insn *first, FILE *file, int optimize_p)
1980 {
1981 rtx_insn *insn, *next;
1982 int seen = 0;
1983
1984 /* Used for -dA dump. */
1985 basic_block *start_to_bb = NULL;
1986 basic_block *end_to_bb = NULL;
1987 int bb_map_size = 0;
1988 int bb_seqn = 0;
1989
1990 last_ignored_compare = 0;
1991
1992 if (HAVE_cc0)
1993 for (insn = first; insn; insn = NEXT_INSN (insn))
1994 {
1995 /* If CC tracking across branches is enabled, record the insn which
1996 jumps to each branch only reached from one place. */
1997 if (optimize_p && JUMP_P (insn))
1998 {
1999 rtx lab = JUMP_LABEL (insn);
2000 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2001 {
2002 LABEL_REFS (lab) = insn;
2003 }
2004 }
2005 }
2006
2007 init_recog ();
2008
2009 CC_STATUS_INIT;
2010
2011 if (flag_debug_asm)
2012 {
2013 basic_block bb;
2014
2015 bb_map_size = get_max_uid () + 1;
2016 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2017 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2018
2019 /* There is no cfg for a thunk. */
2020 if (!cfun->is_thunk)
2021 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2022 {
2023 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2024 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2025 }
2026 }
2027
2028 /* Output the insns. */
2029 for (insn = first; insn;)
2030 {
2031 if (HAVE_ATTR_length)
2032 {
2033 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2034 {
2035 /* This can be triggered by bugs elsewhere in the compiler if
2036 new insns are created after init_insn_lengths is called. */
2037 gcc_assert (NOTE_P (insn));
2038 insn_current_address = -1;
2039 }
2040 else
2041 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2042 }
2043
2044 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2045 bb_map_size, &bb_seqn);
2046 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2047 }
2048
2049 if (flag_debug_asm)
2050 {
2051 free (start_to_bb);
2052 free (end_to_bb);
2053 }
2054
2055 /* Remove CFI notes, to avoid compare-debug failures. */
2056 for (insn = first; insn; insn = next)
2057 {
2058 next = NEXT_INSN (insn);
2059 if (NOTE_P (insn)
2060 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2061 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2062 delete_insn (insn);
2063 }
2064 }
2065 \f
2066 const char *
2067 get_insn_template (int code, rtx insn)
2068 {
2069 switch (insn_data[code].output_format)
2070 {
2071 case INSN_OUTPUT_FORMAT_SINGLE:
2072 return insn_data[code].output.single;
2073 case INSN_OUTPUT_FORMAT_MULTI:
2074 return insn_data[code].output.multi[which_alternative];
2075 case INSN_OUTPUT_FORMAT_FUNCTION:
2076 gcc_assert (insn);
2077 return (*insn_data[code].output.function) (recog_data.operand,
2078 as_a <rtx_insn *> (insn));
2079
2080 default:
2081 gcc_unreachable ();
2082 }
2083 }
2084
2085 /* Emit the appropriate declaration for an alternate-entry-point
2086 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2087 LABEL_KIND != LABEL_NORMAL.
2088
2089 The case fall-through in this function is intentional. */
2090 static void
2091 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2092 {
2093 const char *name = LABEL_NAME (insn);
2094
2095 switch (LABEL_KIND (insn))
2096 {
2097 case LABEL_WEAK_ENTRY:
2098 #ifdef ASM_WEAKEN_LABEL
2099 ASM_WEAKEN_LABEL (file, name);
2100 gcc_fallthrough ();
2101 #endif
2102 case LABEL_GLOBAL_ENTRY:
2103 targetm.asm_out.globalize_label (file, name);
2104 gcc_fallthrough ();
2105 case LABEL_STATIC_ENTRY:
2106 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2107 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2108 #endif
2109 ASM_OUTPUT_LABEL (file, name);
2110 break;
2111
2112 case LABEL_NORMAL:
2113 default:
2114 gcc_unreachable ();
2115 }
2116 }
2117
2118 /* Given a CALL_INSN, find and return the nested CALL. */
2119 static rtx
2120 call_from_call_insn (rtx_call_insn *insn)
2121 {
2122 rtx x;
2123 gcc_assert (CALL_P (insn));
2124 x = PATTERN (insn);
2125
2126 while (GET_CODE (x) != CALL)
2127 {
2128 switch (GET_CODE (x))
2129 {
2130 default:
2131 gcc_unreachable ();
2132 case COND_EXEC:
2133 x = COND_EXEC_CODE (x);
2134 break;
2135 case PARALLEL:
2136 x = XVECEXP (x, 0, 0);
2137 break;
2138 case SET:
2139 x = XEXP (x, 1);
2140 break;
2141 }
2142 }
2143 return x;
2144 }
2145
2146 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2147 corresponding source line, if available. */
2148
2149 static void
2150 asm_show_source (const char *filename, int linenum)
2151 {
2152 if (!filename)
2153 return;
2154
2155 int line_size;
2156 const char *line = location_get_source_line (filename, linenum, &line_size);
2157 if (!line)
2158 return;
2159
2160 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2161 /* "line" is not 0-terminated, so we must use line_size. */
2162 fwrite (line, 1, line_size, asm_out_file);
2163 fputc ('\n', asm_out_file);
2164 }
2165
2166 /* The final scan for one insn, INSN.
2167 Args are same as in `final', except that INSN
2168 is the insn being scanned.
2169 Value returned is the next insn to be scanned.
2170
2171 NOPEEPHOLES is the flag to disallow peephole processing (currently
2172 used for within delayed branch sequence output).
2173
2174 SEEN is used to track the end of the prologue, for emitting
2175 debug information. We force the emission of a line note after
2176 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2177
2178 rtx_insn *
2179 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2180 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2181 {
2182 #if HAVE_cc0
2183 rtx set;
2184 #endif
2185 rtx_insn *next;
2186 rtx_jump_table_data *table;
2187
2188 insn_counter++;
2189
2190 /* Ignore deleted insns. These can occur when we split insns (due to a
2191 template of "#") while not optimizing. */
2192 if (insn->deleted ())
2193 return NEXT_INSN (insn);
2194
2195 switch (GET_CODE (insn))
2196 {
2197 case NOTE:
2198 switch (NOTE_KIND (insn))
2199 {
2200 case NOTE_INSN_DELETED:
2201 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2202 break;
2203
2204 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2205 in_cold_section_p = !in_cold_section_p;
2206
2207 if (dwarf2out_do_frame ())
2208 dwarf2out_switch_text_section ();
2209 else if (!DECL_IGNORED_P (current_function_decl))
2210 debug_hooks->switch_text_section ();
2211
2212 switch_to_section (current_function_section ());
2213 targetm.asm_out.function_switched_text_sections (asm_out_file,
2214 current_function_decl,
2215 in_cold_section_p);
2216 /* Emit a label for the split cold section. Form label name by
2217 suffixing "cold" to the original function's name. */
2218 if (in_cold_section_p)
2219 {
2220 cold_function_name
2221 = clone_function_name (current_function_decl, "cold");
2222 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2223 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2224 IDENTIFIER_POINTER
2225 (cold_function_name),
2226 current_function_decl);
2227 #else
2228 ASM_OUTPUT_LABEL (asm_out_file,
2229 IDENTIFIER_POINTER (cold_function_name));
2230 #endif
2231 }
2232 break;
2233
2234 case NOTE_INSN_BASIC_BLOCK:
2235 if (need_profile_function)
2236 {
2237 profile_function (asm_out_file);
2238 need_profile_function = false;
2239 }
2240
2241 if (targetm.asm_out.unwind_emit)
2242 targetm.asm_out.unwind_emit (asm_out_file, insn);
2243
2244 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2245
2246 break;
2247
2248 case NOTE_INSN_EH_REGION_BEG:
2249 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2250 NOTE_EH_HANDLER (insn));
2251 break;
2252
2253 case NOTE_INSN_EH_REGION_END:
2254 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2255 NOTE_EH_HANDLER (insn));
2256 break;
2257
2258 case NOTE_INSN_PROLOGUE_END:
2259 targetm.asm_out.function_end_prologue (file);
2260 profile_after_prologue (file);
2261
2262 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2263 {
2264 *seen |= SEEN_EMITTED;
2265 force_source_line = true;
2266 }
2267 else
2268 *seen |= SEEN_NOTE;
2269
2270 break;
2271
2272 case NOTE_INSN_EPILOGUE_BEG:
2273 if (!DECL_IGNORED_P (current_function_decl))
2274 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2275 targetm.asm_out.function_begin_epilogue (file);
2276 break;
2277
2278 case NOTE_INSN_CFI:
2279 dwarf2out_emit_cfi (NOTE_CFI (insn));
2280 break;
2281
2282 case NOTE_INSN_CFI_LABEL:
2283 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2284 NOTE_LABEL_NUMBER (insn));
2285 break;
2286
2287 case NOTE_INSN_FUNCTION_BEG:
2288 if (need_profile_function)
2289 {
2290 profile_function (asm_out_file);
2291 need_profile_function = false;
2292 }
2293
2294 app_disable ();
2295 if (!DECL_IGNORED_P (current_function_decl))
2296 debug_hooks->end_prologue (last_linenum, last_filename);
2297
2298 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2299 {
2300 *seen |= SEEN_EMITTED;
2301 force_source_line = true;
2302 }
2303 else
2304 *seen |= SEEN_NOTE;
2305
2306 break;
2307
2308 case NOTE_INSN_BLOCK_BEG:
2309 if (debug_info_level == DINFO_LEVEL_NORMAL
2310 || debug_info_level == DINFO_LEVEL_VERBOSE
2311 || write_symbols == DWARF2_DEBUG
2312 || write_symbols == VMS_AND_DWARF2_DEBUG
2313 || write_symbols == VMS_DEBUG)
2314 {
2315 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2316
2317 app_disable ();
2318 ++block_depth;
2319 high_block_linenum = last_linenum;
2320
2321 /* Output debugging info about the symbol-block beginning. */
2322 if (!DECL_IGNORED_P (current_function_decl))
2323 debug_hooks->begin_block (last_linenum, n);
2324
2325 /* Mark this block as output. */
2326 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2327 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2328 }
2329 if (write_symbols == DBX_DEBUG)
2330 {
2331 location_t *locus_ptr
2332 = block_nonartificial_location (NOTE_BLOCK (insn));
2333
2334 if (locus_ptr != NULL)
2335 {
2336 override_filename = LOCATION_FILE (*locus_ptr);
2337 override_linenum = LOCATION_LINE (*locus_ptr);
2338 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2339 }
2340 }
2341 break;
2342
2343 case NOTE_INSN_BLOCK_END:
2344 if (debug_info_level == DINFO_LEVEL_NORMAL
2345 || debug_info_level == DINFO_LEVEL_VERBOSE
2346 || write_symbols == DWARF2_DEBUG
2347 || write_symbols == VMS_AND_DWARF2_DEBUG
2348 || write_symbols == VMS_DEBUG)
2349 {
2350 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2351
2352 app_disable ();
2353
2354 /* End of a symbol-block. */
2355 --block_depth;
2356 gcc_assert (block_depth >= 0);
2357
2358 if (!DECL_IGNORED_P (current_function_decl))
2359 debug_hooks->end_block (high_block_linenum, n);
2360 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2361 == in_cold_section_p);
2362 }
2363 if (write_symbols == DBX_DEBUG)
2364 {
2365 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2366 location_t *locus_ptr
2367 = block_nonartificial_location (outer_block);
2368
2369 if (locus_ptr != NULL)
2370 {
2371 override_filename = LOCATION_FILE (*locus_ptr);
2372 override_linenum = LOCATION_LINE (*locus_ptr);
2373 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2374 }
2375 else
2376 {
2377 override_filename = NULL;
2378 override_linenum = 0;
2379 override_columnnum = 0;
2380 }
2381 }
2382 break;
2383
2384 case NOTE_INSN_DELETED_LABEL:
2385 /* Emit the label. We may have deleted the CODE_LABEL because
2386 the label could be proved to be unreachable, though still
2387 referenced (in the form of having its address taken. */
2388 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2389 break;
2390
2391 case NOTE_INSN_DELETED_DEBUG_LABEL:
2392 /* Similarly, but need to use different namespace for it. */
2393 if (CODE_LABEL_NUMBER (insn) != -1)
2394 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2395 break;
2396
2397 case NOTE_INSN_VAR_LOCATION:
2398 case NOTE_INSN_CALL_ARG_LOCATION:
2399 if (!DECL_IGNORED_P (current_function_decl))
2400 debug_hooks->var_location (insn);
2401 break;
2402
2403 default:
2404 gcc_unreachable ();
2405 break;
2406 }
2407 break;
2408
2409 case BARRIER:
2410 break;
2411
2412 case CODE_LABEL:
2413 /* The target port might emit labels in the output function for
2414 some insn, e.g. sh.c output_branchy_insn. */
2415 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2416 {
2417 int align = LABEL_TO_ALIGNMENT (insn);
2418 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2419 int max_skip = LABEL_TO_MAX_SKIP (insn);
2420 #endif
2421
2422 if (align && NEXT_INSN (insn))
2423 {
2424 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2425 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2426 #else
2427 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2428 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2429 #else
2430 ASM_OUTPUT_ALIGN (file, align);
2431 #endif
2432 #endif
2433 }
2434 }
2435 CC_STATUS_INIT;
2436
2437 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2438 debug_hooks->label (as_a <rtx_code_label *> (insn));
2439
2440 app_disable ();
2441
2442 /* If this label is followed by a jump-table, make sure we put
2443 the label in the read-only section. Also possibly write the
2444 label and jump table together. */
2445 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2446 if (table)
2447 {
2448 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2449 /* In this case, the case vector is being moved by the
2450 target, so don't output the label at all. Leave that
2451 to the back end macros. */
2452 #else
2453 if (! JUMP_TABLES_IN_TEXT_SECTION)
2454 {
2455 int log_align;
2456
2457 switch_to_section (targetm.asm_out.function_rodata_section
2458 (current_function_decl));
2459
2460 #ifdef ADDR_VEC_ALIGN
2461 log_align = ADDR_VEC_ALIGN (table);
2462 #else
2463 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2464 #endif
2465 ASM_OUTPUT_ALIGN (file, log_align);
2466 }
2467 else
2468 switch_to_section (current_function_section ());
2469
2470 #ifdef ASM_OUTPUT_CASE_LABEL
2471 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2472 #else
2473 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2474 #endif
2475 #endif
2476 break;
2477 }
2478 if (LABEL_ALT_ENTRY_P (insn))
2479 output_alternate_entry_point (file, insn);
2480 else
2481 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2482 break;
2483
2484 default:
2485 {
2486 rtx body = PATTERN (insn);
2487 int insn_code_number;
2488 const char *templ;
2489 bool is_stmt;
2490
2491 /* Reset this early so it is correct for ASM statements. */
2492 current_insn_predicate = NULL_RTX;
2493
2494 /* An INSN, JUMP_INSN or CALL_INSN.
2495 First check for special kinds that recog doesn't recognize. */
2496
2497 if (GET_CODE (body) == USE /* These are just declarations. */
2498 || GET_CODE (body) == CLOBBER)
2499 break;
2500
2501 #if HAVE_cc0
2502 {
2503 /* If there is a REG_CC_SETTER note on this insn, it means that
2504 the setting of the condition code was done in the delay slot
2505 of the insn that branched here. So recover the cc status
2506 from the insn that set it. */
2507
2508 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2509 if (note)
2510 {
2511 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2512 NOTICE_UPDATE_CC (PATTERN (other), other);
2513 cc_prev_status = cc_status;
2514 }
2515 }
2516 #endif
2517
2518 /* Detect insns that are really jump-tables
2519 and output them as such. */
2520
2521 if (JUMP_TABLE_DATA_P (insn))
2522 {
2523 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2524 int vlen, idx;
2525 #endif
2526
2527 if (! JUMP_TABLES_IN_TEXT_SECTION)
2528 switch_to_section (targetm.asm_out.function_rodata_section
2529 (current_function_decl));
2530 else
2531 switch_to_section (current_function_section ());
2532
2533 app_disable ();
2534
2535 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2536 if (GET_CODE (body) == ADDR_VEC)
2537 {
2538 #ifdef ASM_OUTPUT_ADDR_VEC
2539 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2540 #else
2541 gcc_unreachable ();
2542 #endif
2543 }
2544 else
2545 {
2546 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2547 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2548 #else
2549 gcc_unreachable ();
2550 #endif
2551 }
2552 #else
2553 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2554 for (idx = 0; idx < vlen; idx++)
2555 {
2556 if (GET_CODE (body) == ADDR_VEC)
2557 {
2558 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2559 ASM_OUTPUT_ADDR_VEC_ELT
2560 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2561 #else
2562 gcc_unreachable ();
2563 #endif
2564 }
2565 else
2566 {
2567 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2568 ASM_OUTPUT_ADDR_DIFF_ELT
2569 (file,
2570 body,
2571 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2572 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2573 #else
2574 gcc_unreachable ();
2575 #endif
2576 }
2577 }
2578 #ifdef ASM_OUTPUT_CASE_END
2579 ASM_OUTPUT_CASE_END (file,
2580 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2581 insn);
2582 #endif
2583 #endif
2584
2585 switch_to_section (current_function_section ());
2586
2587 break;
2588 }
2589 /* Output this line note if it is the first or the last line
2590 note in a row. */
2591 if (!DECL_IGNORED_P (current_function_decl)
2592 && notice_source_line (insn, &is_stmt))
2593 {
2594 if (flag_verbose_asm)
2595 asm_show_source (last_filename, last_linenum);
2596 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2597 last_filename, last_discriminator,
2598 is_stmt);
2599 }
2600
2601 if (GET_CODE (body) == PARALLEL
2602 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2603 body = XVECEXP (body, 0, 0);
2604
2605 if (GET_CODE (body) == ASM_INPUT)
2606 {
2607 const char *string = XSTR (body, 0);
2608
2609 /* There's no telling what that did to the condition codes. */
2610 CC_STATUS_INIT;
2611
2612 if (string[0])
2613 {
2614 expanded_location loc;
2615
2616 app_enable ();
2617 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2618 if (*loc.file && loc.line)
2619 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2620 ASM_COMMENT_START, loc.line, loc.file);
2621 fprintf (asm_out_file, "\t%s\n", string);
2622 #if HAVE_AS_LINE_ZERO
2623 if (*loc.file && loc.line)
2624 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2625 #endif
2626 }
2627 break;
2628 }
2629
2630 /* Detect `asm' construct with operands. */
2631 if (asm_noperands (body) >= 0)
2632 {
2633 unsigned int noperands = asm_noperands (body);
2634 rtx *ops = XALLOCAVEC (rtx, noperands);
2635 const char *string;
2636 location_t loc;
2637 expanded_location expanded;
2638
2639 /* There's no telling what that did to the condition codes. */
2640 CC_STATUS_INIT;
2641
2642 /* Get out the operand values. */
2643 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2644 /* Inhibit dying on what would otherwise be compiler bugs. */
2645 insn_noperands = noperands;
2646 this_is_asm_operands = insn;
2647 expanded = expand_location (loc);
2648
2649 #ifdef FINAL_PRESCAN_INSN
2650 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2651 #endif
2652
2653 /* Output the insn using them. */
2654 if (string[0])
2655 {
2656 app_enable ();
2657 if (expanded.file && expanded.line)
2658 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2659 ASM_COMMENT_START, expanded.line, expanded.file);
2660 output_asm_insn (string, ops);
2661 #if HAVE_AS_LINE_ZERO
2662 if (expanded.file && expanded.line)
2663 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2664 #endif
2665 }
2666
2667 if (targetm.asm_out.final_postscan_insn)
2668 targetm.asm_out.final_postscan_insn (file, insn, ops,
2669 insn_noperands);
2670
2671 this_is_asm_operands = 0;
2672 break;
2673 }
2674
2675 app_disable ();
2676
2677 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2678 {
2679 /* A delayed-branch sequence */
2680 int i;
2681
2682 final_sequence = seq;
2683
2684 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2685 force the restoration of a comparison that was previously
2686 thought unnecessary. If that happens, cancel this sequence
2687 and cause that insn to be restored. */
2688
2689 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2690 if (next != seq->insn (1))
2691 {
2692 final_sequence = 0;
2693 return next;
2694 }
2695
2696 for (i = 1; i < seq->len (); i++)
2697 {
2698 rtx_insn *insn = seq->insn (i);
2699 rtx_insn *next = NEXT_INSN (insn);
2700 /* We loop in case any instruction in a delay slot gets
2701 split. */
2702 do
2703 insn = final_scan_insn (insn, file, 0, 1, seen);
2704 while (insn != next);
2705 }
2706 #ifdef DBR_OUTPUT_SEQEND
2707 DBR_OUTPUT_SEQEND (file);
2708 #endif
2709 final_sequence = 0;
2710
2711 /* If the insn requiring the delay slot was a CALL_INSN, the
2712 insns in the delay slot are actually executed before the
2713 called function. Hence we don't preserve any CC-setting
2714 actions in these insns and the CC must be marked as being
2715 clobbered by the function. */
2716 if (CALL_P (seq->insn (0)))
2717 {
2718 CC_STATUS_INIT;
2719 }
2720 break;
2721 }
2722
2723 /* We have a real machine instruction as rtl. */
2724
2725 body = PATTERN (insn);
2726
2727 #if HAVE_cc0
2728 set = single_set (insn);
2729
2730 /* Check for redundant test and compare instructions
2731 (when the condition codes are already set up as desired).
2732 This is done only when optimizing; if not optimizing,
2733 it should be possible for the user to alter a variable
2734 with the debugger in between statements
2735 and the next statement should reexamine the variable
2736 to compute the condition codes. */
2737
2738 if (optimize_p)
2739 {
2740 if (set
2741 && GET_CODE (SET_DEST (set)) == CC0
2742 && insn != last_ignored_compare)
2743 {
2744 rtx src1, src2;
2745 if (GET_CODE (SET_SRC (set)) == SUBREG)
2746 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2747
2748 src1 = SET_SRC (set);
2749 src2 = NULL_RTX;
2750 if (GET_CODE (SET_SRC (set)) == COMPARE)
2751 {
2752 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2753 XEXP (SET_SRC (set), 0)
2754 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2755 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2756 XEXP (SET_SRC (set), 1)
2757 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2758 if (XEXP (SET_SRC (set), 1)
2759 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2760 src2 = XEXP (SET_SRC (set), 0);
2761 }
2762 if ((cc_status.value1 != 0
2763 && rtx_equal_p (src1, cc_status.value1))
2764 || (cc_status.value2 != 0
2765 && rtx_equal_p (src1, cc_status.value2))
2766 || (src2 != 0 && cc_status.value1 != 0
2767 && rtx_equal_p (src2, cc_status.value1))
2768 || (src2 != 0 && cc_status.value2 != 0
2769 && rtx_equal_p (src2, cc_status.value2)))
2770 {
2771 /* Don't delete insn if it has an addressing side-effect. */
2772 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2773 /* or if anything in it is volatile. */
2774 && ! volatile_refs_p (PATTERN (insn)))
2775 {
2776 /* We don't really delete the insn; just ignore it. */
2777 last_ignored_compare = insn;
2778 break;
2779 }
2780 }
2781 }
2782 }
2783
2784 /* If this is a conditional branch, maybe modify it
2785 if the cc's are in a nonstandard state
2786 so that it accomplishes the same thing that it would
2787 do straightforwardly if the cc's were set up normally. */
2788
2789 if (cc_status.flags != 0
2790 && JUMP_P (insn)
2791 && GET_CODE (body) == SET
2792 && SET_DEST (body) == pc_rtx
2793 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2794 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2795 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2796 {
2797 /* This function may alter the contents of its argument
2798 and clear some of the cc_status.flags bits.
2799 It may also return 1 meaning condition now always true
2800 or -1 meaning condition now always false
2801 or 2 meaning condition nontrivial but altered. */
2802 int result = alter_cond (XEXP (SET_SRC (body), 0));
2803 /* If condition now has fixed value, replace the IF_THEN_ELSE
2804 with its then-operand or its else-operand. */
2805 if (result == 1)
2806 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2807 if (result == -1)
2808 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2809
2810 /* The jump is now either unconditional or a no-op.
2811 If it has become a no-op, don't try to output it.
2812 (It would not be recognized.) */
2813 if (SET_SRC (body) == pc_rtx)
2814 {
2815 delete_insn (insn);
2816 break;
2817 }
2818 else if (ANY_RETURN_P (SET_SRC (body)))
2819 /* Replace (set (pc) (return)) with (return). */
2820 PATTERN (insn) = body = SET_SRC (body);
2821
2822 /* Rerecognize the instruction if it has changed. */
2823 if (result != 0)
2824 INSN_CODE (insn) = -1;
2825 }
2826
2827 /* If this is a conditional trap, maybe modify it if the cc's
2828 are in a nonstandard state so that it accomplishes the same
2829 thing that it would do straightforwardly if the cc's were
2830 set up normally. */
2831 if (cc_status.flags != 0
2832 && NONJUMP_INSN_P (insn)
2833 && GET_CODE (body) == TRAP_IF
2834 && COMPARISON_P (TRAP_CONDITION (body))
2835 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2836 {
2837 /* This function may alter the contents of its argument
2838 and clear some of the cc_status.flags bits.
2839 It may also return 1 meaning condition now always true
2840 or -1 meaning condition now always false
2841 or 2 meaning condition nontrivial but altered. */
2842 int result = alter_cond (TRAP_CONDITION (body));
2843
2844 /* If TRAP_CONDITION has become always false, delete the
2845 instruction. */
2846 if (result == -1)
2847 {
2848 delete_insn (insn);
2849 break;
2850 }
2851
2852 /* If TRAP_CONDITION has become always true, replace
2853 TRAP_CONDITION with const_true_rtx. */
2854 if (result == 1)
2855 TRAP_CONDITION (body) = const_true_rtx;
2856
2857 /* Rerecognize the instruction if it has changed. */
2858 if (result != 0)
2859 INSN_CODE (insn) = -1;
2860 }
2861
2862 /* Make same adjustments to instructions that examine the
2863 condition codes without jumping and instructions that
2864 handle conditional moves (if this machine has either one). */
2865
2866 if (cc_status.flags != 0
2867 && set != 0)
2868 {
2869 rtx cond_rtx, then_rtx, else_rtx;
2870
2871 if (!JUMP_P (insn)
2872 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2873 {
2874 cond_rtx = XEXP (SET_SRC (set), 0);
2875 then_rtx = XEXP (SET_SRC (set), 1);
2876 else_rtx = XEXP (SET_SRC (set), 2);
2877 }
2878 else
2879 {
2880 cond_rtx = SET_SRC (set);
2881 then_rtx = const_true_rtx;
2882 else_rtx = const0_rtx;
2883 }
2884
2885 if (COMPARISON_P (cond_rtx)
2886 && XEXP (cond_rtx, 0) == cc0_rtx)
2887 {
2888 int result;
2889 result = alter_cond (cond_rtx);
2890 if (result == 1)
2891 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2892 else if (result == -1)
2893 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2894 else if (result == 2)
2895 INSN_CODE (insn) = -1;
2896 if (SET_DEST (set) == SET_SRC (set))
2897 delete_insn (insn);
2898 }
2899 }
2900
2901 #endif
2902
2903 /* Do machine-specific peephole optimizations if desired. */
2904
2905 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2906 {
2907 rtx_insn *next = peephole (insn);
2908 /* When peepholing, if there were notes within the peephole,
2909 emit them before the peephole. */
2910 if (next != 0 && next != NEXT_INSN (insn))
2911 {
2912 rtx_insn *note, *prev = PREV_INSN (insn);
2913
2914 for (note = NEXT_INSN (insn); note != next;
2915 note = NEXT_INSN (note))
2916 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2917
2918 /* Put the notes in the proper position for a later
2919 rescan. For example, the SH target can do this
2920 when generating a far jump in a delayed branch
2921 sequence. */
2922 note = NEXT_INSN (insn);
2923 SET_PREV_INSN (note) = prev;
2924 SET_NEXT_INSN (prev) = note;
2925 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2926 SET_PREV_INSN (insn) = PREV_INSN (next);
2927 SET_NEXT_INSN (insn) = next;
2928 SET_PREV_INSN (next) = insn;
2929 }
2930
2931 /* PEEPHOLE might have changed this. */
2932 body = PATTERN (insn);
2933 }
2934
2935 /* Try to recognize the instruction.
2936 If successful, verify that the operands satisfy the
2937 constraints for the instruction. Crash if they don't,
2938 since `reload' should have changed them so that they do. */
2939
2940 insn_code_number = recog_memoized (insn);
2941 cleanup_subreg_operands (insn);
2942
2943 /* Dump the insn in the assembly for debugging (-dAP).
2944 If the final dump is requested as slim RTL, dump slim
2945 RTL to the assembly file also. */
2946 if (flag_dump_rtl_in_asm)
2947 {
2948 print_rtx_head = ASM_COMMENT_START;
2949 if (! (dump_flags & TDF_SLIM))
2950 print_rtl_single (asm_out_file, insn);
2951 else
2952 dump_insn_slim (asm_out_file, insn);
2953 print_rtx_head = "";
2954 }
2955
2956 if (! constrain_operands_cached (insn, 1))
2957 fatal_insn_not_found (insn);
2958
2959 /* Some target machines need to prescan each insn before
2960 it is output. */
2961
2962 #ifdef FINAL_PRESCAN_INSN
2963 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2964 #endif
2965
2966 if (targetm.have_conditional_execution ()
2967 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2968 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2969
2970 #if HAVE_cc0
2971 cc_prev_status = cc_status;
2972
2973 /* Update `cc_status' for this instruction.
2974 The instruction's output routine may change it further.
2975 If the output routine for a jump insn needs to depend
2976 on the cc status, it should look at cc_prev_status. */
2977
2978 NOTICE_UPDATE_CC (body, insn);
2979 #endif
2980
2981 current_output_insn = debug_insn = insn;
2982
2983 /* Find the proper template for this insn. */
2984 templ = get_insn_template (insn_code_number, insn);
2985
2986 /* If the C code returns 0, it means that it is a jump insn
2987 which follows a deleted test insn, and that test insn
2988 needs to be reinserted. */
2989 if (templ == 0)
2990 {
2991 rtx_insn *prev;
2992
2993 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2994
2995 /* We have already processed the notes between the setter and
2996 the user. Make sure we don't process them again, this is
2997 particularly important if one of the notes is a block
2998 scope note or an EH note. */
2999 for (prev = insn;
3000 prev != last_ignored_compare;
3001 prev = PREV_INSN (prev))
3002 {
3003 if (NOTE_P (prev))
3004 delete_insn (prev); /* Use delete_note. */
3005 }
3006
3007 return prev;
3008 }
3009
3010 /* If the template is the string "#", it means that this insn must
3011 be split. */
3012 if (templ[0] == '#' && templ[1] == '\0')
3013 {
3014 rtx_insn *new_rtx = try_split (body, insn, 0);
3015
3016 /* If we didn't split the insn, go away. */
3017 if (new_rtx == insn && PATTERN (new_rtx) == body)
3018 fatal_insn ("could not split insn", insn);
3019
3020 /* If we have a length attribute, this instruction should have
3021 been split in shorten_branches, to ensure that we would have
3022 valid length info for the splitees. */
3023 gcc_assert (!HAVE_ATTR_length);
3024
3025 return new_rtx;
3026 }
3027
3028 /* ??? This will put the directives in the wrong place if
3029 get_insn_template outputs assembly directly. However calling it
3030 before get_insn_template breaks if the insns is split. */
3031 if (targetm.asm_out.unwind_emit_before_insn
3032 && targetm.asm_out.unwind_emit)
3033 targetm.asm_out.unwind_emit (asm_out_file, insn);
3034
3035 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3036 if (call_insn != NULL)
3037 {
3038 rtx x = call_from_call_insn (call_insn);
3039 x = XEXP (x, 0);
3040 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3041 {
3042 tree t;
3043 x = XEXP (x, 0);
3044 t = SYMBOL_REF_DECL (x);
3045 if (t)
3046 assemble_external (t);
3047 }
3048 }
3049
3050 /* Output assembler code from the template. */
3051 output_asm_insn (templ, recog_data.operand);
3052
3053 /* Some target machines need to postscan each insn after
3054 it is output. */
3055 if (targetm.asm_out.final_postscan_insn)
3056 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3057 recog_data.n_operands);
3058
3059 if (!targetm.asm_out.unwind_emit_before_insn
3060 && targetm.asm_out.unwind_emit)
3061 targetm.asm_out.unwind_emit (asm_out_file, insn);
3062
3063 /* Let the debug info back-end know about this call. We do this only
3064 after the instruction has been emitted because labels that may be
3065 created to reference the call instruction must appear after it. */
3066 if (call_insn != NULL && !DECL_IGNORED_P (current_function_decl))
3067 debug_hooks->var_location (insn);
3068
3069 current_output_insn = debug_insn = 0;
3070 }
3071 }
3072 return NEXT_INSN (insn);
3073 }
3074 \f
3075 /* Return whether a source line note needs to be emitted before INSN.
3076 Sets IS_STMT to TRUE if the line should be marked as a possible
3077 breakpoint location. */
3078
3079 static bool
3080 notice_source_line (rtx_insn *insn, bool *is_stmt)
3081 {
3082 const char *filename;
3083 int linenum, columnnum;
3084
3085 if (override_filename)
3086 {
3087 filename = override_filename;
3088 linenum = override_linenum;
3089 columnnum = override_columnnum;
3090 }
3091 else if (INSN_HAS_LOCATION (insn))
3092 {
3093 expanded_location xloc = insn_location (insn);
3094 filename = xloc.file;
3095 linenum = xloc.line;
3096 columnnum = xloc.column;
3097 }
3098 else
3099 {
3100 filename = NULL;
3101 linenum = 0;
3102 columnnum = 0;
3103 }
3104
3105 if (filename == NULL)
3106 return false;
3107
3108 if (force_source_line
3109 || filename != last_filename
3110 || last_linenum != linenum
3111 || (debug_column_info && last_columnnum != columnnum))
3112 {
3113 force_source_line = false;
3114 last_filename = filename;
3115 last_linenum = linenum;
3116 last_columnnum = columnnum;
3117 last_discriminator = discriminator;
3118 *is_stmt = true;
3119 high_block_linenum = MAX (last_linenum, high_block_linenum);
3120 high_function_linenum = MAX (last_linenum, high_function_linenum);
3121 return true;
3122 }
3123
3124 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3125 {
3126 /* If the discriminator changed, but the line number did not,
3127 output the line table entry with is_stmt false so the
3128 debugger does not treat this as a breakpoint location. */
3129 last_discriminator = discriminator;
3130 *is_stmt = false;
3131 return true;
3132 }
3133
3134 return false;
3135 }
3136 \f
3137 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3138 directly to the desired hard register. */
3139
3140 void
3141 cleanup_subreg_operands (rtx_insn *insn)
3142 {
3143 int i;
3144 bool changed = false;
3145 extract_insn_cached (insn);
3146 for (i = 0; i < recog_data.n_operands; i++)
3147 {
3148 /* The following test cannot use recog_data.operand when testing
3149 for a SUBREG: the underlying object might have been changed
3150 already if we are inside a match_operator expression that
3151 matches the else clause. Instead we test the underlying
3152 expression directly. */
3153 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3154 {
3155 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3156 changed = true;
3157 }
3158 else if (GET_CODE (recog_data.operand[i]) == PLUS
3159 || GET_CODE (recog_data.operand[i]) == MULT
3160 || MEM_P (recog_data.operand[i]))
3161 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3162 }
3163
3164 for (i = 0; i < recog_data.n_dups; i++)
3165 {
3166 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3167 {
3168 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3169 changed = true;
3170 }
3171 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3172 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3173 || MEM_P (*recog_data.dup_loc[i]))
3174 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3175 }
3176 if (changed)
3177 df_insn_rescan (insn);
3178 }
3179
3180 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3181 the thing it is a subreg of. Do it anyway if FINAL_P. */
3182
3183 rtx
3184 alter_subreg (rtx *xp, bool final_p)
3185 {
3186 rtx x = *xp;
3187 rtx y = SUBREG_REG (x);
3188
3189 /* simplify_subreg does not remove subreg from volatile references.
3190 We are required to. */
3191 if (MEM_P (y))
3192 {
3193 int offset = SUBREG_BYTE (x);
3194
3195 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3196 contains 0 instead of the proper offset. See simplify_subreg. */
3197 if (paradoxical_subreg_p (x))
3198 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3199
3200 if (final_p)
3201 *xp = adjust_address (y, GET_MODE (x), offset);
3202 else
3203 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3204 }
3205 else if (REG_P (y) && HARD_REGISTER_P (y))
3206 {
3207 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3208 SUBREG_BYTE (x));
3209
3210 if (new_rtx != 0)
3211 *xp = new_rtx;
3212 else if (final_p && REG_P (y))
3213 {
3214 /* Simplify_subreg can't handle some REG cases, but we have to. */
3215 unsigned int regno;
3216 HOST_WIDE_INT offset;
3217
3218 regno = subreg_regno (x);
3219 if (subreg_lowpart_p (x))
3220 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3221 else
3222 offset = SUBREG_BYTE (x);
3223 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3224 }
3225 }
3226
3227 return *xp;
3228 }
3229
3230 /* Do alter_subreg on all the SUBREGs contained in X. */
3231
3232 static rtx
3233 walk_alter_subreg (rtx *xp, bool *changed)
3234 {
3235 rtx x = *xp;
3236 switch (GET_CODE (x))
3237 {
3238 case PLUS:
3239 case MULT:
3240 case AND:
3241 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3242 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3243 break;
3244
3245 case MEM:
3246 case ZERO_EXTEND:
3247 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3248 break;
3249
3250 case SUBREG:
3251 *changed = true;
3252 return alter_subreg (xp, true);
3253
3254 default:
3255 break;
3256 }
3257
3258 return *xp;
3259 }
3260 \f
3261 #if HAVE_cc0
3262
3263 /* Given BODY, the body of a jump instruction, alter the jump condition
3264 as required by the bits that are set in cc_status.flags.
3265 Not all of the bits there can be handled at this level in all cases.
3266
3267 The value is normally 0.
3268 1 means that the condition has become always true.
3269 -1 means that the condition has become always false.
3270 2 means that COND has been altered. */
3271
3272 static int
3273 alter_cond (rtx cond)
3274 {
3275 int value = 0;
3276
3277 if (cc_status.flags & CC_REVERSED)
3278 {
3279 value = 2;
3280 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3281 }
3282
3283 if (cc_status.flags & CC_INVERTED)
3284 {
3285 value = 2;
3286 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3287 }
3288
3289 if (cc_status.flags & CC_NOT_POSITIVE)
3290 switch (GET_CODE (cond))
3291 {
3292 case LE:
3293 case LEU:
3294 case GEU:
3295 /* Jump becomes unconditional. */
3296 return 1;
3297
3298 case GT:
3299 case GTU:
3300 case LTU:
3301 /* Jump becomes no-op. */
3302 return -1;
3303
3304 case GE:
3305 PUT_CODE (cond, EQ);
3306 value = 2;
3307 break;
3308
3309 case LT:
3310 PUT_CODE (cond, NE);
3311 value = 2;
3312 break;
3313
3314 default:
3315 break;
3316 }
3317
3318 if (cc_status.flags & CC_NOT_NEGATIVE)
3319 switch (GET_CODE (cond))
3320 {
3321 case GE:
3322 case GEU:
3323 /* Jump becomes unconditional. */
3324 return 1;
3325
3326 case LT:
3327 case LTU:
3328 /* Jump becomes no-op. */
3329 return -1;
3330
3331 case LE:
3332 case LEU:
3333 PUT_CODE (cond, EQ);
3334 value = 2;
3335 break;
3336
3337 case GT:
3338 case GTU:
3339 PUT_CODE (cond, NE);
3340 value = 2;
3341 break;
3342
3343 default:
3344 break;
3345 }
3346
3347 if (cc_status.flags & CC_NO_OVERFLOW)
3348 switch (GET_CODE (cond))
3349 {
3350 case GEU:
3351 /* Jump becomes unconditional. */
3352 return 1;
3353
3354 case LEU:
3355 PUT_CODE (cond, EQ);
3356 value = 2;
3357 break;
3358
3359 case GTU:
3360 PUT_CODE (cond, NE);
3361 value = 2;
3362 break;
3363
3364 case LTU:
3365 /* Jump becomes no-op. */
3366 return -1;
3367
3368 default:
3369 break;
3370 }
3371
3372 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3373 switch (GET_CODE (cond))
3374 {
3375 default:
3376 gcc_unreachable ();
3377
3378 case NE:
3379 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3380 value = 2;
3381 break;
3382
3383 case EQ:
3384 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3385 value = 2;
3386 break;
3387 }
3388
3389 if (cc_status.flags & CC_NOT_SIGNED)
3390 /* The flags are valid if signed condition operators are converted
3391 to unsigned. */
3392 switch (GET_CODE (cond))
3393 {
3394 case LE:
3395 PUT_CODE (cond, LEU);
3396 value = 2;
3397 break;
3398
3399 case LT:
3400 PUT_CODE (cond, LTU);
3401 value = 2;
3402 break;
3403
3404 case GT:
3405 PUT_CODE (cond, GTU);
3406 value = 2;
3407 break;
3408
3409 case GE:
3410 PUT_CODE (cond, GEU);
3411 value = 2;
3412 break;
3413
3414 default:
3415 break;
3416 }
3417
3418 return value;
3419 }
3420 #endif
3421 \f
3422 /* Report inconsistency between the assembler template and the operands.
3423 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3424
3425 void
3426 output_operand_lossage (const char *cmsgid, ...)
3427 {
3428 char *fmt_string;
3429 char *new_message;
3430 const char *pfx_str;
3431 va_list ap;
3432
3433 va_start (ap, cmsgid);
3434
3435 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3436 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3437 new_message = xvasprintf (fmt_string, ap);
3438
3439 if (this_is_asm_operands)
3440 error_for_asm (this_is_asm_operands, "%s", new_message);
3441 else
3442 internal_error ("%s", new_message);
3443
3444 free (fmt_string);
3445 free (new_message);
3446 va_end (ap);
3447 }
3448 \f
3449 /* Output of assembler code from a template, and its subroutines. */
3450
3451 /* Annotate the assembly with a comment describing the pattern and
3452 alternative used. */
3453
3454 static void
3455 output_asm_name (void)
3456 {
3457 if (debug_insn)
3458 {
3459 int num = INSN_CODE (debug_insn);
3460 fprintf (asm_out_file, "\t%s %d\t%s",
3461 ASM_COMMENT_START, INSN_UID (debug_insn),
3462 insn_data[num].name);
3463 if (insn_data[num].n_alternatives > 1)
3464 fprintf (asm_out_file, "/%d", which_alternative + 1);
3465
3466 if (HAVE_ATTR_length)
3467 fprintf (asm_out_file, "\t[length = %d]",
3468 get_attr_length (debug_insn));
3469
3470 /* Clear this so only the first assembler insn
3471 of any rtl insn will get the special comment for -dp. */
3472 debug_insn = 0;
3473 }
3474 }
3475
3476 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3477 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3478 corresponds to the address of the object and 0 if to the object. */
3479
3480 static tree
3481 get_mem_expr_from_op (rtx op, int *paddressp)
3482 {
3483 tree expr;
3484 int inner_addressp;
3485
3486 *paddressp = 0;
3487
3488 if (REG_P (op))
3489 return REG_EXPR (op);
3490 else if (!MEM_P (op))
3491 return 0;
3492
3493 if (MEM_EXPR (op) != 0)
3494 return MEM_EXPR (op);
3495
3496 /* Otherwise we have an address, so indicate it and look at the address. */
3497 *paddressp = 1;
3498 op = XEXP (op, 0);
3499
3500 /* First check if we have a decl for the address, then look at the right side
3501 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3502 But don't allow the address to itself be indirect. */
3503 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3504 return expr;
3505 else if (GET_CODE (op) == PLUS
3506 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3507 return expr;
3508
3509 while (UNARY_P (op)
3510 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3511 op = XEXP (op, 0);
3512
3513 expr = get_mem_expr_from_op (op, &inner_addressp);
3514 return inner_addressp ? 0 : expr;
3515 }
3516
3517 /* Output operand names for assembler instructions. OPERANDS is the
3518 operand vector, OPORDER is the order to write the operands, and NOPS
3519 is the number of operands to write. */
3520
3521 static void
3522 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3523 {
3524 int wrote = 0;
3525 int i;
3526
3527 for (i = 0; i < nops; i++)
3528 {
3529 int addressp;
3530 rtx op = operands[oporder[i]];
3531 tree expr = get_mem_expr_from_op (op, &addressp);
3532
3533 fprintf (asm_out_file, "%c%s",
3534 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3535 wrote = 1;
3536 if (expr)
3537 {
3538 fprintf (asm_out_file, "%s",
3539 addressp ? "*" : "");
3540 print_mem_expr (asm_out_file, expr);
3541 wrote = 1;
3542 }
3543 else if (REG_P (op) && ORIGINAL_REGNO (op)
3544 && ORIGINAL_REGNO (op) != REGNO (op))
3545 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3546 }
3547 }
3548
3549 #ifdef ASSEMBLER_DIALECT
3550 /* Helper function to parse assembler dialects in the asm string.
3551 This is called from output_asm_insn and asm_fprintf. */
3552 static const char *
3553 do_assembler_dialects (const char *p, int *dialect)
3554 {
3555 char c = *(p - 1);
3556
3557 switch (c)
3558 {
3559 case '{':
3560 {
3561 int i;
3562
3563 if (*dialect)
3564 output_operand_lossage ("nested assembly dialect alternatives");
3565 else
3566 *dialect = 1;
3567
3568 /* If we want the first dialect, do nothing. Otherwise, skip
3569 DIALECT_NUMBER of strings ending with '|'. */
3570 for (i = 0; i < dialect_number; i++)
3571 {
3572 while (*p && *p != '}')
3573 {
3574 if (*p == '|')
3575 {
3576 p++;
3577 break;
3578 }
3579
3580 /* Skip over any character after a percent sign. */
3581 if (*p == '%')
3582 p++;
3583 if (*p)
3584 p++;
3585 }
3586
3587 if (*p == '}')
3588 break;
3589 }
3590
3591 if (*p == '\0')
3592 output_operand_lossage ("unterminated assembly dialect alternative");
3593 }
3594 break;
3595
3596 case '|':
3597 if (*dialect)
3598 {
3599 /* Skip to close brace. */
3600 do
3601 {
3602 if (*p == '\0')
3603 {
3604 output_operand_lossage ("unterminated assembly dialect alternative");
3605 break;
3606 }
3607
3608 /* Skip over any character after a percent sign. */
3609 if (*p == '%' && p[1])
3610 {
3611 p += 2;
3612 continue;
3613 }
3614
3615 if (*p++ == '}')
3616 break;
3617 }
3618 while (1);
3619
3620 *dialect = 0;
3621 }
3622 else
3623 putc (c, asm_out_file);
3624 break;
3625
3626 case '}':
3627 if (! *dialect)
3628 putc (c, asm_out_file);
3629 *dialect = 0;
3630 break;
3631 default:
3632 gcc_unreachable ();
3633 }
3634
3635 return p;
3636 }
3637 #endif
3638
3639 /* Output text from TEMPLATE to the assembler output file,
3640 obeying %-directions to substitute operands taken from
3641 the vector OPERANDS.
3642
3643 %N (for N a digit) means print operand N in usual manner.
3644 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3645 and print the label name with no punctuation.
3646 %cN means require operand N to be a constant
3647 and print the constant expression with no punctuation.
3648 %aN means expect operand N to be a memory address
3649 (not a memory reference!) and print a reference
3650 to that address.
3651 %nN means expect operand N to be a constant
3652 and print a constant expression for minus the value
3653 of the operand, with no other punctuation. */
3654
3655 void
3656 output_asm_insn (const char *templ, rtx *operands)
3657 {
3658 const char *p;
3659 int c;
3660 #ifdef ASSEMBLER_DIALECT
3661 int dialect = 0;
3662 #endif
3663 int oporder[MAX_RECOG_OPERANDS];
3664 char opoutput[MAX_RECOG_OPERANDS];
3665 int ops = 0;
3666
3667 /* An insn may return a null string template
3668 in a case where no assembler code is needed. */
3669 if (*templ == 0)
3670 return;
3671
3672 memset (opoutput, 0, sizeof opoutput);
3673 p = templ;
3674 putc ('\t', asm_out_file);
3675
3676 #ifdef ASM_OUTPUT_OPCODE
3677 ASM_OUTPUT_OPCODE (asm_out_file, p);
3678 #endif
3679
3680 while ((c = *p++))
3681 switch (c)
3682 {
3683 case '\n':
3684 if (flag_verbose_asm)
3685 output_asm_operand_names (operands, oporder, ops);
3686 if (flag_print_asm_name)
3687 output_asm_name ();
3688
3689 ops = 0;
3690 memset (opoutput, 0, sizeof opoutput);
3691
3692 putc (c, asm_out_file);
3693 #ifdef ASM_OUTPUT_OPCODE
3694 while ((c = *p) == '\t')
3695 {
3696 putc (c, asm_out_file);
3697 p++;
3698 }
3699 ASM_OUTPUT_OPCODE (asm_out_file, p);
3700 #endif
3701 break;
3702
3703 #ifdef ASSEMBLER_DIALECT
3704 case '{':
3705 case '}':
3706 case '|':
3707 p = do_assembler_dialects (p, &dialect);
3708 break;
3709 #endif
3710
3711 case '%':
3712 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3713 if ASSEMBLER_DIALECT defined and these characters have a special
3714 meaning as dialect delimiters.*/
3715 if (*p == '%'
3716 #ifdef ASSEMBLER_DIALECT
3717 || *p == '{' || *p == '}' || *p == '|'
3718 #endif
3719 )
3720 {
3721 putc (*p, asm_out_file);
3722 p++;
3723 }
3724 /* %= outputs a number which is unique to each insn in the entire
3725 compilation. This is useful for making local labels that are
3726 referred to more than once in a given insn. */
3727 else if (*p == '=')
3728 {
3729 p++;
3730 fprintf (asm_out_file, "%d", insn_counter);
3731 }
3732 /* % followed by a letter and some digits
3733 outputs an operand in a special way depending on the letter.
3734 Letters `acln' are implemented directly.
3735 Other letters are passed to `output_operand' so that
3736 the TARGET_PRINT_OPERAND hook can define them. */
3737 else if (ISALPHA (*p))
3738 {
3739 int letter = *p++;
3740 unsigned long opnum;
3741 char *endptr;
3742
3743 opnum = strtoul (p, &endptr, 10);
3744
3745 if (endptr == p)
3746 output_operand_lossage ("operand number missing "
3747 "after %%-letter");
3748 else if (this_is_asm_operands && opnum >= insn_noperands)
3749 output_operand_lossage ("operand number out of range");
3750 else if (letter == 'l')
3751 output_asm_label (operands[opnum]);
3752 else if (letter == 'a')
3753 output_address (VOIDmode, operands[opnum]);
3754 else if (letter == 'c')
3755 {
3756 if (CONSTANT_ADDRESS_P (operands[opnum]))
3757 output_addr_const (asm_out_file, operands[opnum]);
3758 else
3759 output_operand (operands[opnum], 'c');
3760 }
3761 else if (letter == 'n')
3762 {
3763 if (CONST_INT_P (operands[opnum]))
3764 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3765 - INTVAL (operands[opnum]));
3766 else
3767 {
3768 putc ('-', asm_out_file);
3769 output_addr_const (asm_out_file, operands[opnum]);
3770 }
3771 }
3772 else
3773 output_operand (operands[opnum], letter);
3774
3775 if (!opoutput[opnum])
3776 oporder[ops++] = opnum;
3777 opoutput[opnum] = 1;
3778
3779 p = endptr;
3780 c = *p;
3781 }
3782 /* % followed by a digit outputs an operand the default way. */
3783 else if (ISDIGIT (*p))
3784 {
3785 unsigned long opnum;
3786 char *endptr;
3787
3788 opnum = strtoul (p, &endptr, 10);
3789 if (this_is_asm_operands && opnum >= insn_noperands)
3790 output_operand_lossage ("operand number out of range");
3791 else
3792 output_operand (operands[opnum], 0);
3793
3794 if (!opoutput[opnum])
3795 oporder[ops++] = opnum;
3796 opoutput[opnum] = 1;
3797
3798 p = endptr;
3799 c = *p;
3800 }
3801 /* % followed by punctuation: output something for that
3802 punctuation character alone, with no operand. The
3803 TARGET_PRINT_OPERAND hook decides what is actually done. */
3804 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3805 output_operand (NULL_RTX, *p++);
3806 else
3807 output_operand_lossage ("invalid %%-code");
3808 break;
3809
3810 default:
3811 putc (c, asm_out_file);
3812 }
3813
3814 /* Write out the variable names for operands, if we know them. */
3815 if (flag_verbose_asm)
3816 output_asm_operand_names (operands, oporder, ops);
3817 if (flag_print_asm_name)
3818 output_asm_name ();
3819
3820 putc ('\n', asm_out_file);
3821 }
3822 \f
3823 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3824
3825 void
3826 output_asm_label (rtx x)
3827 {
3828 char buf[256];
3829
3830 if (GET_CODE (x) == LABEL_REF)
3831 x = label_ref_label (x);
3832 if (LABEL_P (x)
3833 || (NOTE_P (x)
3834 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3835 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3836 else
3837 output_operand_lossage ("'%%l' operand isn't a label");
3838
3839 assemble_name (asm_out_file, buf);
3840 }
3841
3842 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3843
3844 void
3845 mark_symbol_refs_as_used (rtx x)
3846 {
3847 subrtx_iterator::array_type array;
3848 FOR_EACH_SUBRTX (iter, array, x, ALL)
3849 {
3850 const_rtx x = *iter;
3851 if (GET_CODE (x) == SYMBOL_REF)
3852 if (tree t = SYMBOL_REF_DECL (x))
3853 assemble_external (t);
3854 }
3855 }
3856
3857 /* Print operand X using machine-dependent assembler syntax.
3858 CODE is a non-digit that preceded the operand-number in the % spec,
3859 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3860 between the % and the digits.
3861 When CODE is a non-letter, X is 0.
3862
3863 The meanings of the letters are machine-dependent and controlled
3864 by TARGET_PRINT_OPERAND. */
3865
3866 void
3867 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3868 {
3869 if (x && GET_CODE (x) == SUBREG)
3870 x = alter_subreg (&x, true);
3871
3872 /* X must not be a pseudo reg. */
3873 if (!targetm.no_register_allocation)
3874 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3875
3876 targetm.asm_out.print_operand (asm_out_file, x, code);
3877
3878 if (x == NULL_RTX)
3879 return;
3880
3881 mark_symbol_refs_as_used (x);
3882 }
3883
3884 /* Print a memory reference operand for address X using
3885 machine-dependent assembler syntax. */
3886
3887 void
3888 output_address (machine_mode mode, rtx x)
3889 {
3890 bool changed = false;
3891 walk_alter_subreg (&x, &changed);
3892 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3893 }
3894 \f
3895 /* Print an integer constant expression in assembler syntax.
3896 Addition and subtraction are the only arithmetic
3897 that may appear in these expressions. */
3898
3899 void
3900 output_addr_const (FILE *file, rtx x)
3901 {
3902 char buf[256];
3903
3904 restart:
3905 switch (GET_CODE (x))
3906 {
3907 case PC:
3908 putc ('.', file);
3909 break;
3910
3911 case SYMBOL_REF:
3912 if (SYMBOL_REF_DECL (x))
3913 assemble_external (SYMBOL_REF_DECL (x));
3914 #ifdef ASM_OUTPUT_SYMBOL_REF
3915 ASM_OUTPUT_SYMBOL_REF (file, x);
3916 #else
3917 assemble_name (file, XSTR (x, 0));
3918 #endif
3919 break;
3920
3921 case LABEL_REF:
3922 x = label_ref_label (x);
3923 /* Fall through. */
3924 case CODE_LABEL:
3925 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3926 #ifdef ASM_OUTPUT_LABEL_REF
3927 ASM_OUTPUT_LABEL_REF (file, buf);
3928 #else
3929 assemble_name (file, buf);
3930 #endif
3931 break;
3932
3933 case CONST_INT:
3934 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3935 break;
3936
3937 case CONST:
3938 /* This used to output parentheses around the expression,
3939 but that does not work on the 386 (either ATT or BSD assembler). */
3940 output_addr_const (file, XEXP (x, 0));
3941 break;
3942
3943 case CONST_WIDE_INT:
3944 /* We do not know the mode here so we have to use a round about
3945 way to build a wide-int to get it printed properly. */
3946 {
3947 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3948 CONST_WIDE_INT_NUNITS (x),
3949 CONST_WIDE_INT_NUNITS (x)
3950 * HOST_BITS_PER_WIDE_INT,
3951 false);
3952 print_decs (w, file);
3953 }
3954 break;
3955
3956 case CONST_DOUBLE:
3957 if (CONST_DOUBLE_AS_INT_P (x))
3958 {
3959 /* We can use %d if the number is one word and positive. */
3960 if (CONST_DOUBLE_HIGH (x))
3961 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3962 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3963 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3964 else if (CONST_DOUBLE_LOW (x) < 0)
3965 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3966 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3967 else
3968 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3969 }
3970 else
3971 /* We can't handle floating point constants;
3972 PRINT_OPERAND must handle them. */
3973 output_operand_lossage ("floating constant misused");
3974 break;
3975
3976 case CONST_FIXED:
3977 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3978 break;
3979
3980 case PLUS:
3981 /* Some assemblers need integer constants to appear last (eg masm). */
3982 if (CONST_INT_P (XEXP (x, 0)))
3983 {
3984 output_addr_const (file, XEXP (x, 1));
3985 if (INTVAL (XEXP (x, 0)) >= 0)
3986 fprintf (file, "+");
3987 output_addr_const (file, XEXP (x, 0));
3988 }
3989 else
3990 {
3991 output_addr_const (file, XEXP (x, 0));
3992 if (!CONST_INT_P (XEXP (x, 1))
3993 || INTVAL (XEXP (x, 1)) >= 0)
3994 fprintf (file, "+");
3995 output_addr_const (file, XEXP (x, 1));
3996 }
3997 break;
3998
3999 case MINUS:
4000 /* Avoid outputting things like x-x or x+5-x,
4001 since some assemblers can't handle that. */
4002 x = simplify_subtraction (x);
4003 if (GET_CODE (x) != MINUS)
4004 goto restart;
4005
4006 output_addr_const (file, XEXP (x, 0));
4007 fprintf (file, "-");
4008 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4009 || GET_CODE (XEXP (x, 1)) == PC
4010 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4011 output_addr_const (file, XEXP (x, 1));
4012 else
4013 {
4014 fputs (targetm.asm_out.open_paren, file);
4015 output_addr_const (file, XEXP (x, 1));
4016 fputs (targetm.asm_out.close_paren, file);
4017 }
4018 break;
4019
4020 case ZERO_EXTEND:
4021 case SIGN_EXTEND:
4022 case SUBREG:
4023 case TRUNCATE:
4024 output_addr_const (file, XEXP (x, 0));
4025 break;
4026
4027 default:
4028 if (targetm.asm_out.output_addr_const_extra (file, x))
4029 break;
4030
4031 output_operand_lossage ("invalid expression as operand");
4032 }
4033 }
4034 \f
4035 /* Output a quoted string. */
4036
4037 void
4038 output_quoted_string (FILE *asm_file, const char *string)
4039 {
4040 #ifdef OUTPUT_QUOTED_STRING
4041 OUTPUT_QUOTED_STRING (asm_file, string);
4042 #else
4043 char c;
4044
4045 putc ('\"', asm_file);
4046 while ((c = *string++) != 0)
4047 {
4048 if (ISPRINT (c))
4049 {
4050 if (c == '\"' || c == '\\')
4051 putc ('\\', asm_file);
4052 putc (c, asm_file);
4053 }
4054 else
4055 fprintf (asm_file, "\\%03o", (unsigned char) c);
4056 }
4057 putc ('\"', asm_file);
4058 #endif
4059 }
4060 \f
4061 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4062
4063 void
4064 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4065 {
4066 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4067 if (value == 0)
4068 putc ('0', f);
4069 else
4070 {
4071 char *p = buf + sizeof (buf);
4072 do
4073 *--p = "0123456789abcdef"[value % 16];
4074 while ((value /= 16) != 0);
4075 *--p = 'x';
4076 *--p = '0';
4077 fwrite (p, 1, buf + sizeof (buf) - p, f);
4078 }
4079 }
4080
4081 /* Internal function that prints an unsigned long in decimal in reverse.
4082 The output string IS NOT null-terminated. */
4083
4084 static int
4085 sprint_ul_rev (char *s, unsigned long value)
4086 {
4087 int i = 0;
4088 do
4089 {
4090 s[i] = "0123456789"[value % 10];
4091 value /= 10;
4092 i++;
4093 /* alternate version, without modulo */
4094 /* oldval = value; */
4095 /* value /= 10; */
4096 /* s[i] = "0123456789" [oldval - 10*value]; */
4097 /* i++ */
4098 }
4099 while (value != 0);
4100 return i;
4101 }
4102
4103 /* Write an unsigned long as decimal to a file, fast. */
4104
4105 void
4106 fprint_ul (FILE *f, unsigned long value)
4107 {
4108 /* python says: len(str(2**64)) == 20 */
4109 char s[20];
4110 int i;
4111
4112 i = sprint_ul_rev (s, value);
4113
4114 /* It's probably too small to bother with string reversal and fputs. */
4115 do
4116 {
4117 i--;
4118 putc (s[i], f);
4119 }
4120 while (i != 0);
4121 }
4122
4123 /* Write an unsigned long as decimal to a string, fast.
4124 s must be wide enough to not overflow, at least 21 chars.
4125 Returns the length of the string (without terminating '\0'). */
4126
4127 int
4128 sprint_ul (char *s, unsigned long value)
4129 {
4130 int len = sprint_ul_rev (s, value);
4131 s[len] = '\0';
4132
4133 std::reverse (s, s + len);
4134 return len;
4135 }
4136
4137 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4138 %R prints the value of REGISTER_PREFIX.
4139 %L prints the value of LOCAL_LABEL_PREFIX.
4140 %U prints the value of USER_LABEL_PREFIX.
4141 %I prints the value of IMMEDIATE_PREFIX.
4142 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4143 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4144
4145 We handle alternate assembler dialects here, just like output_asm_insn. */
4146
4147 void
4148 asm_fprintf (FILE *file, const char *p, ...)
4149 {
4150 char buf[10];
4151 char *q, c;
4152 #ifdef ASSEMBLER_DIALECT
4153 int dialect = 0;
4154 #endif
4155 va_list argptr;
4156
4157 va_start (argptr, p);
4158
4159 buf[0] = '%';
4160
4161 while ((c = *p++))
4162 switch (c)
4163 {
4164 #ifdef ASSEMBLER_DIALECT
4165 case '{':
4166 case '}':
4167 case '|':
4168 p = do_assembler_dialects (p, &dialect);
4169 break;
4170 #endif
4171
4172 case '%':
4173 c = *p++;
4174 q = &buf[1];
4175 while (strchr ("-+ #0", c))
4176 {
4177 *q++ = c;
4178 c = *p++;
4179 }
4180 while (ISDIGIT (c) || c == '.')
4181 {
4182 *q++ = c;
4183 c = *p++;
4184 }
4185 switch (c)
4186 {
4187 case '%':
4188 putc ('%', file);
4189 break;
4190
4191 case 'd': case 'i': case 'u':
4192 case 'x': case 'X': case 'o':
4193 case 'c':
4194 *q++ = c;
4195 *q = 0;
4196 fprintf (file, buf, va_arg (argptr, int));
4197 break;
4198
4199 case 'w':
4200 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4201 'o' cases, but we do not check for those cases. It
4202 means that the value is a HOST_WIDE_INT, which may be
4203 either `long' or `long long'. */
4204 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4205 q += strlen (HOST_WIDE_INT_PRINT);
4206 *q++ = *p++;
4207 *q = 0;
4208 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4209 break;
4210
4211 case 'l':
4212 *q++ = c;
4213 #ifdef HAVE_LONG_LONG
4214 if (*p == 'l')
4215 {
4216 *q++ = *p++;
4217 *q++ = *p++;
4218 *q = 0;
4219 fprintf (file, buf, va_arg (argptr, long long));
4220 }
4221 else
4222 #endif
4223 {
4224 *q++ = *p++;
4225 *q = 0;
4226 fprintf (file, buf, va_arg (argptr, long));
4227 }
4228
4229 break;
4230
4231 case 's':
4232 *q++ = c;
4233 *q = 0;
4234 fprintf (file, buf, va_arg (argptr, char *));
4235 break;
4236
4237 case 'O':
4238 #ifdef ASM_OUTPUT_OPCODE
4239 ASM_OUTPUT_OPCODE (asm_out_file, p);
4240 #endif
4241 break;
4242
4243 case 'R':
4244 #ifdef REGISTER_PREFIX
4245 fprintf (file, "%s", REGISTER_PREFIX);
4246 #endif
4247 break;
4248
4249 case 'I':
4250 #ifdef IMMEDIATE_PREFIX
4251 fprintf (file, "%s", IMMEDIATE_PREFIX);
4252 #endif
4253 break;
4254
4255 case 'L':
4256 #ifdef LOCAL_LABEL_PREFIX
4257 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4258 #endif
4259 break;
4260
4261 case 'U':
4262 fputs (user_label_prefix, file);
4263 break;
4264
4265 #ifdef ASM_FPRINTF_EXTENSIONS
4266 /* Uppercase letters are reserved for general use by asm_fprintf
4267 and so are not available to target specific code. In order to
4268 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4269 they are defined here. As they get turned into real extensions
4270 to asm_fprintf they should be removed from this list. */
4271 case 'A': case 'B': case 'C': case 'D': case 'E':
4272 case 'F': case 'G': case 'H': case 'J': case 'K':
4273 case 'M': case 'N': case 'P': case 'Q': case 'S':
4274 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4275 break;
4276
4277 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4278 #endif
4279 default:
4280 gcc_unreachable ();
4281 }
4282 break;
4283
4284 default:
4285 putc (c, file);
4286 }
4287 va_end (argptr);
4288 }
4289 \f
4290 /* Return nonzero if this function has no function calls. */
4291
4292 int
4293 leaf_function_p (void)
4294 {
4295 rtx_insn *insn;
4296
4297 /* Ensure we walk the entire function body. */
4298 gcc_assert (!in_sequence_p ());
4299
4300 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4301 functions even if they call mcount. */
4302 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4303 return 0;
4304
4305 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4306 {
4307 if (CALL_P (insn)
4308 && ! SIBLING_CALL_P (insn))
4309 return 0;
4310 if (NONJUMP_INSN_P (insn)
4311 && GET_CODE (PATTERN (insn)) == SEQUENCE
4312 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4313 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4314 return 0;
4315 }
4316
4317 return 1;
4318 }
4319
4320 /* Return 1 if branch is a forward branch.
4321 Uses insn_shuid array, so it works only in the final pass. May be used by
4322 output templates to customary add branch prediction hints.
4323 */
4324 int
4325 final_forward_branch_p (rtx_insn *insn)
4326 {
4327 int insn_id, label_id;
4328
4329 gcc_assert (uid_shuid);
4330 insn_id = INSN_SHUID (insn);
4331 label_id = INSN_SHUID (JUMP_LABEL (insn));
4332 /* We've hit some insns that does not have id information available. */
4333 gcc_assert (insn_id && label_id);
4334 return insn_id < label_id;
4335 }
4336
4337 /* On some machines, a function with no call insns
4338 can run faster if it doesn't create its own register window.
4339 When output, the leaf function should use only the "output"
4340 registers. Ordinarily, the function would be compiled to use
4341 the "input" registers to find its arguments; it is a candidate
4342 for leaf treatment if it uses only the "input" registers.
4343 Leaf function treatment means renumbering so the function
4344 uses the "output" registers instead. */
4345
4346 #ifdef LEAF_REGISTERS
4347
4348 /* Return 1 if this function uses only the registers that can be
4349 safely renumbered. */
4350
4351 int
4352 only_leaf_regs_used (void)
4353 {
4354 int i;
4355 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4356
4357 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4358 if ((df_regs_ever_live_p (i) || global_regs[i])
4359 && ! permitted_reg_in_leaf_functions[i])
4360 return 0;
4361
4362 if (crtl->uses_pic_offset_table
4363 && pic_offset_table_rtx != 0
4364 && REG_P (pic_offset_table_rtx)
4365 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4366 return 0;
4367
4368 return 1;
4369 }
4370
4371 /* Scan all instructions and renumber all registers into those
4372 available in leaf functions. */
4373
4374 static void
4375 leaf_renumber_regs (rtx_insn *first)
4376 {
4377 rtx_insn *insn;
4378
4379 /* Renumber only the actual patterns.
4380 The reg-notes can contain frame pointer refs,
4381 and renumbering them could crash, and should not be needed. */
4382 for (insn = first; insn; insn = NEXT_INSN (insn))
4383 if (INSN_P (insn))
4384 leaf_renumber_regs_insn (PATTERN (insn));
4385 }
4386
4387 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4388 available in leaf functions. */
4389
4390 void
4391 leaf_renumber_regs_insn (rtx in_rtx)
4392 {
4393 int i, j;
4394 const char *format_ptr;
4395
4396 if (in_rtx == 0)
4397 return;
4398
4399 /* Renumber all input-registers into output-registers.
4400 renumbered_regs would be 1 for an output-register;
4401 they */
4402
4403 if (REG_P (in_rtx))
4404 {
4405 int newreg;
4406
4407 /* Don't renumber the same reg twice. */
4408 if (in_rtx->used)
4409 return;
4410
4411 newreg = REGNO (in_rtx);
4412 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4413 to reach here as part of a REG_NOTE. */
4414 if (newreg >= FIRST_PSEUDO_REGISTER)
4415 {
4416 in_rtx->used = 1;
4417 return;
4418 }
4419 newreg = LEAF_REG_REMAP (newreg);
4420 gcc_assert (newreg >= 0);
4421 df_set_regs_ever_live (REGNO (in_rtx), false);
4422 df_set_regs_ever_live (newreg, true);
4423 SET_REGNO (in_rtx, newreg);
4424 in_rtx->used = 1;
4425 return;
4426 }
4427
4428 if (INSN_P (in_rtx))
4429 {
4430 /* Inside a SEQUENCE, we find insns.
4431 Renumber just the patterns of these insns,
4432 just as we do for the top-level insns. */
4433 leaf_renumber_regs_insn (PATTERN (in_rtx));
4434 return;
4435 }
4436
4437 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4438
4439 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4440 switch (*format_ptr++)
4441 {
4442 case 'e':
4443 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4444 break;
4445
4446 case 'E':
4447 if (NULL != XVEC (in_rtx, i))
4448 {
4449 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4450 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4451 }
4452 break;
4453
4454 case 'S':
4455 case 's':
4456 case '0':
4457 case 'i':
4458 case 'w':
4459 case 'n':
4460 case 'u':
4461 break;
4462
4463 default:
4464 gcc_unreachable ();
4465 }
4466 }
4467 #endif
4468 \f
4469 /* Turn the RTL into assembly. */
4470 static unsigned int
4471 rest_of_handle_final (void)
4472 {
4473 const char *fnname = get_fnname_from_decl (current_function_decl);
4474
4475 assemble_start_function (current_function_decl, fnname);
4476 final_start_function (get_insns (), asm_out_file, optimize);
4477 final (get_insns (), asm_out_file, optimize);
4478 if (flag_ipa_ra
4479 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4480 collect_fn_hard_reg_usage ();
4481 final_end_function ();
4482
4483 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4484 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4485 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4486 output_function_exception_table (fnname);
4487
4488 assemble_end_function (current_function_decl, fnname);
4489
4490 /* Free up reg info memory. */
4491 free_reg_info ();
4492
4493 if (! quiet_flag)
4494 fflush (asm_out_file);
4495
4496 /* Write DBX symbols if requested. */
4497
4498 /* Note that for those inline functions where we don't initially
4499 know for certain that we will be generating an out-of-line copy,
4500 the first invocation of this routine (rest_of_compilation) will
4501 skip over this code by doing a `goto exit_rest_of_compilation;'.
4502 Later on, wrapup_global_declarations will (indirectly) call
4503 rest_of_compilation again for those inline functions that need
4504 to have out-of-line copies generated. During that call, we
4505 *will* be routed past here. */
4506
4507 timevar_push (TV_SYMOUT);
4508 if (!DECL_IGNORED_P (current_function_decl))
4509 debug_hooks->function_decl (current_function_decl);
4510 timevar_pop (TV_SYMOUT);
4511
4512 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4513 DECL_INITIAL (current_function_decl) = error_mark_node;
4514
4515 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4516 && targetm.have_ctors_dtors)
4517 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4518 decl_init_priority_lookup
4519 (current_function_decl));
4520 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4521 && targetm.have_ctors_dtors)
4522 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4523 decl_fini_priority_lookup
4524 (current_function_decl));
4525 return 0;
4526 }
4527
4528 namespace {
4529
4530 const pass_data pass_data_final =
4531 {
4532 RTL_PASS, /* type */
4533 "final", /* name */
4534 OPTGROUP_NONE, /* optinfo_flags */
4535 TV_FINAL, /* tv_id */
4536 0, /* properties_required */
4537 0, /* properties_provided */
4538 0, /* properties_destroyed */
4539 0, /* todo_flags_start */
4540 0, /* todo_flags_finish */
4541 };
4542
4543 class pass_final : public rtl_opt_pass
4544 {
4545 public:
4546 pass_final (gcc::context *ctxt)
4547 : rtl_opt_pass (pass_data_final, ctxt)
4548 {}
4549
4550 /* opt_pass methods: */
4551 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4552
4553 }; // class pass_final
4554
4555 } // anon namespace
4556
4557 rtl_opt_pass *
4558 make_pass_final (gcc::context *ctxt)
4559 {
4560 return new pass_final (ctxt);
4561 }
4562
4563
4564 static unsigned int
4565 rest_of_handle_shorten_branches (void)
4566 {
4567 /* Shorten branches. */
4568 shorten_branches (get_insns ());
4569 return 0;
4570 }
4571
4572 namespace {
4573
4574 const pass_data pass_data_shorten_branches =
4575 {
4576 RTL_PASS, /* type */
4577 "shorten", /* name */
4578 OPTGROUP_NONE, /* optinfo_flags */
4579 TV_SHORTEN_BRANCH, /* tv_id */
4580 0, /* properties_required */
4581 0, /* properties_provided */
4582 0, /* properties_destroyed */
4583 0, /* todo_flags_start */
4584 0, /* todo_flags_finish */
4585 };
4586
4587 class pass_shorten_branches : public rtl_opt_pass
4588 {
4589 public:
4590 pass_shorten_branches (gcc::context *ctxt)
4591 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4592 {}
4593
4594 /* opt_pass methods: */
4595 virtual unsigned int execute (function *)
4596 {
4597 return rest_of_handle_shorten_branches ();
4598 }
4599
4600 }; // class pass_shorten_branches
4601
4602 } // anon namespace
4603
4604 rtl_opt_pass *
4605 make_pass_shorten_branches (gcc::context *ctxt)
4606 {
4607 return new pass_shorten_branches (ctxt);
4608 }
4609
4610
4611 static unsigned int
4612 rest_of_clean_state (void)
4613 {
4614 rtx_insn *insn, *next;
4615 FILE *final_output = NULL;
4616 int save_unnumbered = flag_dump_unnumbered;
4617 int save_noaddr = flag_dump_noaddr;
4618
4619 if (flag_dump_final_insns)
4620 {
4621 final_output = fopen (flag_dump_final_insns, "a");
4622 if (!final_output)
4623 {
4624 error ("could not open final insn dump file %qs: %m",
4625 flag_dump_final_insns);
4626 flag_dump_final_insns = NULL;
4627 }
4628 else
4629 {
4630 flag_dump_noaddr = flag_dump_unnumbered = 1;
4631 if (flag_compare_debug_opt || flag_compare_debug)
4632 dump_flags |= TDF_NOUID;
4633 dump_function_header (final_output, current_function_decl,
4634 dump_flags);
4635 final_insns_dump_p = true;
4636
4637 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4638 if (LABEL_P (insn))
4639 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4640 else
4641 {
4642 if (NOTE_P (insn))
4643 set_block_for_insn (insn, NULL);
4644 INSN_UID (insn) = 0;
4645 }
4646 }
4647 }
4648
4649 /* It is very important to decompose the RTL instruction chain here:
4650 debug information keeps pointing into CODE_LABEL insns inside the function
4651 body. If these remain pointing to the other insns, we end up preserving
4652 whole RTL chain and attached detailed debug info in memory. */
4653 for (insn = get_insns (); insn; insn = next)
4654 {
4655 next = NEXT_INSN (insn);
4656 SET_NEXT_INSN (insn) = NULL;
4657 SET_PREV_INSN (insn) = NULL;
4658
4659 if (final_output
4660 && (!NOTE_P (insn) ||
4661 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4662 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4663 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4664 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4665 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4666 print_rtl_single (final_output, insn);
4667 }
4668
4669 if (final_output)
4670 {
4671 flag_dump_noaddr = save_noaddr;
4672 flag_dump_unnumbered = save_unnumbered;
4673 final_insns_dump_p = false;
4674
4675 if (fclose (final_output))
4676 {
4677 error ("could not close final insn dump file %qs: %m",
4678 flag_dump_final_insns);
4679 flag_dump_final_insns = NULL;
4680 }
4681 }
4682
4683 flag_rerun_cse_after_global_opts = 0;
4684 reload_completed = 0;
4685 epilogue_completed = 0;
4686 #ifdef STACK_REGS
4687 regstack_completed = 0;
4688 #endif
4689
4690 /* Clear out the insn_length contents now that they are no
4691 longer valid. */
4692 init_insn_lengths ();
4693
4694 /* Show no temporary slots allocated. */
4695 init_temp_slots ();
4696
4697 free_bb_for_insn ();
4698
4699 if (cfun->gimple_df)
4700 delete_tree_ssa (cfun);
4701
4702 /* We can reduce stack alignment on call site only when we are sure that
4703 the function body just produced will be actually used in the final
4704 executable. */
4705 if (decl_binds_to_current_def_p (current_function_decl))
4706 {
4707 unsigned int pref = crtl->preferred_stack_boundary;
4708 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4709 pref = crtl->stack_alignment_needed;
4710 cgraph_node::rtl_info (current_function_decl)
4711 ->preferred_incoming_stack_boundary = pref;
4712 }
4713
4714 /* Make sure volatile mem refs aren't considered valid operands for
4715 arithmetic insns. We must call this here if this is a nested inline
4716 function, since the above code leaves us in the init_recog state,
4717 and the function context push/pop code does not save/restore volatile_ok.
4718
4719 ??? Maybe it isn't necessary for expand_start_function to call this
4720 anymore if we do it here? */
4721
4722 init_recog_no_volatile ();
4723
4724 /* We're done with this function. Free up memory if we can. */
4725 free_after_parsing (cfun);
4726 free_after_compilation (cfun);
4727 return 0;
4728 }
4729
4730 namespace {
4731
4732 const pass_data pass_data_clean_state =
4733 {
4734 RTL_PASS, /* type */
4735 "*clean_state", /* name */
4736 OPTGROUP_NONE, /* optinfo_flags */
4737 TV_FINAL, /* tv_id */
4738 0, /* properties_required */
4739 0, /* properties_provided */
4740 PROP_rtl, /* properties_destroyed */
4741 0, /* todo_flags_start */
4742 0, /* todo_flags_finish */
4743 };
4744
4745 class pass_clean_state : public rtl_opt_pass
4746 {
4747 public:
4748 pass_clean_state (gcc::context *ctxt)
4749 : rtl_opt_pass (pass_data_clean_state, ctxt)
4750 {}
4751
4752 /* opt_pass methods: */
4753 virtual unsigned int execute (function *)
4754 {
4755 return rest_of_clean_state ();
4756 }
4757
4758 }; // class pass_clean_state
4759
4760 } // anon namespace
4761
4762 rtl_opt_pass *
4763 make_pass_clean_state (gcc::context *ctxt)
4764 {
4765 return new pass_clean_state (ctxt);
4766 }
4767
4768 /* Return true if INSN is a call to the current function. */
4769
4770 static bool
4771 self_recursive_call_p (rtx_insn *insn)
4772 {
4773 tree fndecl = get_call_fndecl (insn);
4774 return (fndecl == current_function_decl
4775 && decl_binds_to_current_def_p (fndecl));
4776 }
4777
4778 /* Collect hard register usage for the current function. */
4779
4780 static void
4781 collect_fn_hard_reg_usage (void)
4782 {
4783 rtx_insn *insn;
4784 #ifdef STACK_REGS
4785 int i;
4786 #endif
4787 struct cgraph_rtl_info *node;
4788 HARD_REG_SET function_used_regs;
4789
4790 /* ??? To be removed when all the ports have been fixed. */
4791 if (!targetm.call_fusage_contains_non_callee_clobbers)
4792 return;
4793
4794 CLEAR_HARD_REG_SET (function_used_regs);
4795
4796 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4797 {
4798 HARD_REG_SET insn_used_regs;
4799
4800 if (!NONDEBUG_INSN_P (insn))
4801 continue;
4802
4803 if (CALL_P (insn)
4804 && !self_recursive_call_p (insn))
4805 {
4806 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4807 call_used_reg_set))
4808 return;
4809
4810 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4811 }
4812
4813 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4814 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4815 }
4816
4817 /* Be conservative - mark fixed and global registers as used. */
4818 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4819
4820 #ifdef STACK_REGS
4821 /* Handle STACK_REGS conservatively, since the df-framework does not
4822 provide accurate information for them. */
4823
4824 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4825 SET_HARD_REG_BIT (function_used_regs, i);
4826 #endif
4827
4828 /* The information we have gathered is only interesting if it exposes a
4829 register from the call_used_regs that is not used in this function. */
4830 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4831 return;
4832
4833 node = cgraph_node::rtl_info (current_function_decl);
4834 gcc_assert (node != NULL);
4835
4836 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4837 node->function_used_regs_valid = 1;
4838 }
4839
4840 /* Get the declaration of the function called by INSN. */
4841
4842 static tree
4843 get_call_fndecl (rtx_insn *insn)
4844 {
4845 rtx note, datum;
4846
4847 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4848 if (note == NULL_RTX)
4849 return NULL_TREE;
4850
4851 datum = XEXP (note, 0);
4852 if (datum != NULL_RTX)
4853 return SYMBOL_REF_DECL (datum);
4854
4855 return NULL_TREE;
4856 }
4857
4858 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4859 call targets that can be overwritten. */
4860
4861 static struct cgraph_rtl_info *
4862 get_call_cgraph_rtl_info (rtx_insn *insn)
4863 {
4864 tree fndecl;
4865
4866 if (insn == NULL_RTX)
4867 return NULL;
4868
4869 fndecl = get_call_fndecl (insn);
4870 if (fndecl == NULL_TREE
4871 || !decl_binds_to_current_def_p (fndecl))
4872 return NULL;
4873
4874 return cgraph_node::rtl_info (fndecl);
4875 }
4876
4877 /* Find hard registers used by function call instruction INSN, and return them
4878 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4879
4880 bool
4881 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4882 HARD_REG_SET default_set)
4883 {
4884 if (flag_ipa_ra)
4885 {
4886 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4887 if (node != NULL
4888 && node->function_used_regs_valid)
4889 {
4890 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4891 AND_HARD_REG_SET (*reg_set, default_set);
4892 return true;
4893 }
4894 }
4895
4896 COPY_HARD_REG_SET (*reg_set, default_set);
4897 return false;
4898 }