]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "asan.h"
81 #include "rtl-iter.h"
82 #include "print-rtl.h"
83 #include "function-abi.h"
84
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
88
89 #include "dwarf2out.h"
90
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
114
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
118
119 /* Line number of last NOTE. */
120 static int last_linenum;
121
122 /* Column number of last NOTE. */
123 static int last_columnnum;
124
125 /* Discriminator written to assembly. */
126 static int last_discriminator;
127
128 /* Discriminator to be written to assembly for current instruction.
129 Note: actual usage depends on loc_discriminator_kind setting. */
130 static int discriminator;
131 static inline int compute_discriminator (location_t loc);
132
133 /* Discriminator identifying current basic block among others sharing
134 the same locus. */
135 static int bb_discriminator;
136
137 /* Basic block discriminator for previous instruction. */
138 static int last_bb_discriminator;
139
140 /* Highest line number in current block. */
141 static int high_block_linenum;
142
143 /* Likewise for function. */
144 static int high_function_linenum;
145
146 /* Filename of last NOTE. */
147 static const char *last_filename;
148
149 /* Override filename, line and column number. */
150 static const char *override_filename;
151 static int override_linenum;
152 static int override_columnnum;
153 static int override_discriminator;
154
155 /* Whether to force emission of a line note before the next insn. */
156 static bool force_source_line = false;
157
158 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
159
160 /* Nonzero while outputting an `asm' with operands.
161 This means that inconsistencies are the user's fault, so don't die.
162 The precise value is the insn being output, to pass to error_for_asm. */
163 const rtx_insn *this_is_asm_operands;
164
165 /* Number of operands of this insn, for an `asm' with operands. */
166 static unsigned int insn_noperands;
167
168 /* Compare optimization flag. */
169
170 static rtx last_ignored_compare = 0;
171
172 /* Assign a unique number to each insn that is output.
173 This can be used to generate unique local labels. */
174
175 static int insn_counter = 0;
176
177 /* This variable contains machine-dependent flags (defined in tm.h)
178 set and examined by output routines
179 that describe how to interpret the condition codes properly. */
180
181 CC_STATUS cc_status;
182
183 /* During output of an insn, this contains a copy of cc_status
184 from before the insn. */
185
186 CC_STATUS cc_prev_status;
187
188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
189
190 static int block_depth;
191
192 /* Nonzero if have enabled APP processing of our assembler output. */
193
194 static int app_on;
195
196 /* If we are outputting an insn sequence, this contains the sequence rtx.
197 Zero otherwise. */
198
199 rtx_sequence *final_sequence;
200
201 #ifdef ASSEMBLER_DIALECT
202
203 /* Number of the assembler dialect to use, starting at 0. */
204 static int dialect_number;
205 #endif
206
207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
208 rtx current_insn_predicate;
209
210 /* True if printing into -fdump-final-insns= dump. */
211 bool final_insns_dump_p;
212
213 /* True if profile_function should be called, but hasn't been called yet. */
214 static bool need_profile_function;
215
216 static int asm_insn_count (rtx);
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx_insn *, bool *);
220 static rtx walk_alter_subreg (rtx *, bool *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx_insn *);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 #ifdef LEAF_REGISTERS
226 static void leaf_renumber_regs (rtx_insn *);
227 #endif
228 #if HAVE_cc0
229 static int alter_cond (rtx);
230 #endif
231 static int align_fuzz (rtx, rtx, int, unsigned);
232 static void collect_fn_hard_reg_usage (void);
233 \f
234 /* Initialize data in final at the beginning of a compilation. */
235
236 void
237 init_final (const char *filename ATTRIBUTE_UNUSED)
238 {
239 app_on = 0;
240 final_sequence = 0;
241
242 #ifdef ASSEMBLER_DIALECT
243 dialect_number = ASSEMBLER_DIALECT;
244 #endif
245 }
246
247 /* Default target function prologue and epilogue assembler output.
248
249 If not overridden for epilogue code, then the function body itself
250 contains return instructions wherever needed. */
251 void
252 default_function_pro_epilogue (FILE *)
253 {
254 }
255
256 void
257 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
258 tree decl ATTRIBUTE_UNUSED,
259 bool new_is_cold ATTRIBUTE_UNUSED)
260 {
261 }
262
263 /* Default target hook that outputs nothing to a stream. */
264 void
265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
266 {
267 }
268
269 /* Enable APP processing of subsequent output.
270 Used before the output from an `asm' statement. */
271
272 void
273 app_enable (void)
274 {
275 if (! app_on)
276 {
277 fputs (ASM_APP_ON, asm_out_file);
278 app_on = 1;
279 }
280 }
281
282 /* Disable APP processing of subsequent output.
283 Called from varasm.c before most kinds of output. */
284
285 void
286 app_disable (void)
287 {
288 if (app_on)
289 {
290 fputs (ASM_APP_OFF, asm_out_file);
291 app_on = 0;
292 }
293 }
294 \f
295 /* Return the number of slots filled in the current
296 delayed branch sequence (we don't count the insn needing the
297 delay slot). Zero if not in a delayed branch sequence. */
298
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 \f
308 /* The next two pages contain routines used to compute the length of an insn
309 and to shorten branches. */
310
311 /* Arrays for insn lengths, and addresses. The latter is referenced by
312 `insn_current_length'. */
313
314 static int *insn_lengths;
315
316 vec<int> insn_addresses_;
317
318 /* Max uid for which the above arrays are valid. */
319 static int insn_lengths_max_uid;
320
321 /* Address of insn being processed. Used by `insn_current_length'. */
322 int insn_current_address;
323
324 /* Address of insn being processed in previous iteration. */
325 int insn_last_address;
326
327 /* known invariant alignment of insn being processed. */
328 int insn_current_align;
329
330 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
331 gives the next following alignment insn that increases the known
332 alignment, or NULL_RTX if there is no such insn.
333 For any alignment obtained this way, we can again index uid_align with
334 its uid to obtain the next following align that in turn increases the
335 alignment, till we reach NULL_RTX; the sequence obtained this way
336 for each insn we'll call the alignment chain of this insn in the following
337 comments. */
338
339 static rtx *uid_align;
340 static int *uid_shuid;
341 static vec<align_flags> label_align;
342
343 /* Indicate that branch shortening hasn't yet been done. */
344
345 void
346 init_insn_lengths (void)
347 {
348 if (uid_shuid)
349 {
350 free (uid_shuid);
351 uid_shuid = 0;
352 }
353 if (insn_lengths)
354 {
355 free (insn_lengths);
356 insn_lengths = 0;
357 insn_lengths_max_uid = 0;
358 }
359 if (HAVE_ATTR_length)
360 INSN_ADDRESSES_FREE ();
361 if (uid_align)
362 {
363 free (uid_align);
364 uid_align = 0;
365 }
366 }
367
368 /* Obtain the current length of an insn. If branch shortening has been done,
369 get its actual length. Otherwise, use FALLBACK_FN to calculate the
370 length. */
371 static int
372 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
373 {
374 rtx body;
375 int i;
376 int length = 0;
377
378 if (!HAVE_ATTR_length)
379 return 0;
380
381 if (insn_lengths_max_uid > INSN_UID (insn))
382 return insn_lengths[INSN_UID (insn)];
383 else
384 switch (GET_CODE (insn))
385 {
386 case NOTE:
387 case BARRIER:
388 case CODE_LABEL:
389 case DEBUG_INSN:
390 return 0;
391
392 case CALL_INSN:
393 case JUMP_INSN:
394 length = fallback_fn (insn);
395 break;
396
397 case INSN:
398 body = PATTERN (insn);
399 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
400 return 0;
401
402 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
403 length = asm_insn_count (body) * fallback_fn (insn);
404 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
405 for (i = 0; i < seq->len (); i++)
406 length += get_attr_length_1 (seq->insn (i), fallback_fn);
407 else
408 length = fallback_fn (insn);
409 break;
410
411 default:
412 break;
413 }
414
415 #ifdef ADJUST_INSN_LENGTH
416 ADJUST_INSN_LENGTH (insn, length);
417 #endif
418 return length;
419 }
420
421 /* Obtain the current length of an insn. If branch shortening has been done,
422 get its actual length. Otherwise, get its maximum length. */
423 int
424 get_attr_length (rtx_insn *insn)
425 {
426 return get_attr_length_1 (insn, insn_default_length);
427 }
428
429 /* Obtain the current length of an insn. If branch shortening has been done,
430 get its actual length. Otherwise, get its minimum length. */
431 int
432 get_attr_min_length (rtx_insn *insn)
433 {
434 return get_attr_length_1 (insn, insn_min_length);
435 }
436 \f
437 /* Code to handle alignment inside shorten_branches. */
438
439 /* Here is an explanation how the algorithm in align_fuzz can give
440 proper results:
441
442 Call a sequence of instructions beginning with alignment point X
443 and continuing until the next alignment point `block X'. When `X'
444 is used in an expression, it means the alignment value of the
445 alignment point.
446
447 Call the distance between the start of the first insn of block X, and
448 the end of the last insn of block X `IX', for the `inner size of X'.
449 This is clearly the sum of the instruction lengths.
450
451 Likewise with the next alignment-delimited block following X, which we
452 shall call block Y.
453
454 Call the distance between the start of the first insn of block X, and
455 the start of the first insn of block Y `OX', for the `outer size of X'.
456
457 The estimated padding is then OX - IX.
458
459 OX can be safely estimated as
460
461 if (X >= Y)
462 OX = round_up(IX, Y)
463 else
464 OX = round_up(IX, X) + Y - X
465
466 Clearly est(IX) >= real(IX), because that only depends on the
467 instruction lengths, and those being overestimated is a given.
468
469 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
470 we needn't worry about that when thinking about OX.
471
472 When X >= Y, the alignment provided by Y adds no uncertainty factor
473 for branch ranges starting before X, so we can just round what we have.
474 But when X < Y, we don't know anything about the, so to speak,
475 `middle bits', so we have to assume the worst when aligning up from an
476 address mod X to one mod Y, which is Y - X. */
477
478 #ifndef LABEL_ALIGN
479 #define LABEL_ALIGN(LABEL) align_labels
480 #endif
481
482 #ifndef LOOP_ALIGN
483 #define LOOP_ALIGN(LABEL) align_loops
484 #endif
485
486 #ifndef LABEL_ALIGN_AFTER_BARRIER
487 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
488 #endif
489
490 #ifndef JUMP_ALIGN
491 #define JUMP_ALIGN(LABEL) align_jumps
492 #endif
493
494 #ifndef ADDR_VEC_ALIGN
495 static int
496 final_addr_vec_align (rtx_jump_table_data *addr_vec)
497 {
498 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
499
500 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
501 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
502 return exact_log2 (align);
503
504 }
505
506 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
507 #endif
508
509 #ifndef INSN_LENGTH_ALIGNMENT
510 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
511 #endif
512
513 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
514
515 static int min_labelno, max_labelno;
516
517 #define LABEL_TO_ALIGNMENT(LABEL) \
518 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
519
520 /* For the benefit of port specific code do this also as a function. */
521
522 align_flags
523 label_to_alignment (rtx label)
524 {
525 if (CODE_LABEL_NUMBER (label) <= max_labelno)
526 return LABEL_TO_ALIGNMENT (label);
527 return align_flags ();
528 }
529
530 /* The differences in addresses
531 between a branch and its target might grow or shrink depending on
532 the alignment the start insn of the range (the branch for a forward
533 branch or the label for a backward branch) starts out on; if these
534 differences are used naively, they can even oscillate infinitely.
535 We therefore want to compute a 'worst case' address difference that
536 is independent of the alignment the start insn of the range end
537 up on, and that is at least as large as the actual difference.
538 The function align_fuzz calculates the amount we have to add to the
539 naively computed difference, by traversing the part of the alignment
540 chain of the start insn of the range that is in front of the end insn
541 of the range, and considering for each alignment the maximum amount
542 that it might contribute to a size increase.
543
544 For casesi tables, we also want to know worst case minimum amounts of
545 address difference, in case a machine description wants to introduce
546 some common offset that is added to all offsets in a table.
547 For this purpose, align_fuzz with a growth argument of 0 computes the
548 appropriate adjustment. */
549
550 /* Compute the maximum delta by which the difference of the addresses of
551 START and END might grow / shrink due to a different address for start
552 which changes the size of alignment insns between START and END.
553 KNOWN_ALIGN_LOG is the alignment known for START.
554 GROWTH should be ~0 if the objective is to compute potential code size
555 increase, and 0 if the objective is to compute potential shrink.
556 The return value is undefined for any other value of GROWTH. */
557
558 static int
559 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
560 {
561 int uid = INSN_UID (start);
562 rtx align_label;
563 int known_align = 1 << known_align_log;
564 int end_shuid = INSN_SHUID (end);
565 int fuzz = 0;
566
567 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
568 {
569 int align_addr, new_align;
570
571 uid = INSN_UID (align_label);
572 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
573 if (uid_shuid[uid] > end_shuid)
574 break;
575 align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
576 new_align = 1 << alignment.levels[0].log;
577 if (new_align < known_align)
578 continue;
579 fuzz += (-align_addr ^ growth) & (new_align - known_align);
580 known_align = new_align;
581 }
582 return fuzz;
583 }
584
585 /* Compute a worst-case reference address of a branch so that it
586 can be safely used in the presence of aligned labels. Since the
587 size of the branch itself is unknown, the size of the branch is
588 not included in the range. I.e. for a forward branch, the reference
589 address is the end address of the branch as known from the previous
590 branch shortening pass, minus a value to account for possible size
591 increase due to alignment. For a backward branch, it is the start
592 address of the branch as known from the current pass, plus a value
593 to account for possible size increase due to alignment.
594 NB.: Therefore, the maximum offset allowed for backward branches needs
595 to exclude the branch size. */
596
597 int
598 insn_current_reference_address (rtx_insn *branch)
599 {
600 rtx dest;
601 int seq_uid;
602
603 if (! INSN_ADDRESSES_SET_P ())
604 return 0;
605
606 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
607 seq_uid = INSN_UID (seq);
608 if (!jump_to_label_p (branch))
609 /* This can happen for example on the PA; the objective is to know the
610 offset to address something in front of the start of the function.
611 Thus, we can treat it like a backward branch.
612 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
613 any alignment we'd encounter, so we skip the call to align_fuzz. */
614 return insn_current_address;
615 dest = JUMP_LABEL (branch);
616
617 /* BRANCH has no proper alignment chain set, so use SEQ.
618 BRANCH also has no INSN_SHUID. */
619 if (INSN_SHUID (seq) < INSN_SHUID (dest))
620 {
621 /* Forward branch. */
622 return (insn_last_address + insn_lengths[seq_uid]
623 - align_fuzz (seq, dest, length_unit_log, ~0));
624 }
625 else
626 {
627 /* Backward branch. */
628 return (insn_current_address
629 + align_fuzz (dest, seq, length_unit_log, ~0));
630 }
631 }
632 \f
633 /* Compute branch alignments based on CFG profile. */
634
635 unsigned int
636 compute_alignments (void)
637 {
638 basic_block bb;
639 align_flags max_alignment;
640
641 label_align.truncate (0);
642
643 max_labelno = max_label_num ();
644 min_labelno = get_first_label_num ();
645 label_align.safe_grow_cleared (max_labelno - min_labelno + 1);
646
647 /* If not optimizing or optimizing for size, don't assign any alignments. */
648 if (! optimize || optimize_function_for_size_p (cfun))
649 return 0;
650
651 if (dump_file)
652 {
653 dump_reg_info (dump_file);
654 dump_flow_info (dump_file, TDF_DETAILS);
655 flow_loops_dump (dump_file, NULL, 1);
656 }
657 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
658 profile_count count_threshold = cfun->cfg->count_max.apply_scale
659 (1, param_align_threshold);
660
661 if (dump_file)
662 {
663 fprintf (dump_file, "count_max: ");
664 cfun->cfg->count_max.dump (dump_file);
665 fprintf (dump_file, "\n");
666 }
667 FOR_EACH_BB_FN (bb, cfun)
668 {
669 rtx_insn *label = BB_HEAD (bb);
670 bool has_fallthru = 0;
671 edge e;
672 edge_iterator ei;
673
674 if (!LABEL_P (label)
675 || optimize_bb_for_size_p (bb))
676 {
677 if (dump_file)
678 fprintf (dump_file,
679 "BB %4i loop %2i loop_depth %2i skipped.\n",
680 bb->index,
681 bb->loop_father->num,
682 bb_loop_depth (bb));
683 continue;
684 }
685 max_alignment = LABEL_ALIGN (label);
686 profile_count fallthru_count = profile_count::zero ();
687 profile_count branch_count = profile_count::zero ();
688
689 FOR_EACH_EDGE (e, ei, bb->preds)
690 {
691 if (e->flags & EDGE_FALLTHRU)
692 has_fallthru = 1, fallthru_count += e->count ();
693 else
694 branch_count += e->count ();
695 }
696 if (dump_file)
697 {
698 fprintf (dump_file, "BB %4i loop %2i loop_depth"
699 " %2i fall ",
700 bb->index, bb->loop_father->num,
701 bb_loop_depth (bb));
702 fallthru_count.dump (dump_file);
703 fprintf (dump_file, " branch ");
704 branch_count.dump (dump_file);
705 if (!bb->loop_father->inner && bb->loop_father->num)
706 fprintf (dump_file, " inner_loop");
707 if (bb->loop_father->header == bb)
708 fprintf (dump_file, " loop_header");
709 fprintf (dump_file, "\n");
710 }
711 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
712 continue;
713
714 /* There are two purposes to align block with no fallthru incoming edge:
715 1) to avoid fetch stalls when branch destination is near cache boundary
716 2) to improve cache efficiency in case the previous block is not executed
717 (so it does not need to be in the cache).
718
719 We to catch first case, we align frequently executed blocks.
720 To catch the second, we align blocks that are executed more frequently
721 than the predecessor and the predecessor is likely to not be executed
722 when function is called. */
723
724 if (!has_fallthru
725 && (branch_count > count_threshold
726 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
727 && (bb->prev_bb->count
728 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
729 ->count.apply_scale (1, 2)))))
730 {
731 align_flags alignment = JUMP_ALIGN (label);
732 if (dump_file)
733 fprintf (dump_file, " jump alignment added.\n");
734 max_alignment = align_flags::max (max_alignment, alignment);
735 }
736 /* In case block is frequent and reached mostly by non-fallthru edge,
737 align it. It is most likely a first block of loop. */
738 if (has_fallthru
739 && !(single_succ_p (bb)
740 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
741 && optimize_bb_for_speed_p (bb)
742 && branch_count + fallthru_count > count_threshold
743 && (branch_count
744 > fallthru_count.apply_scale
745 (param_align_loop_iterations, 1)))
746 {
747 align_flags alignment = LOOP_ALIGN (label);
748 if (dump_file)
749 fprintf (dump_file, " internal loop alignment added.\n");
750 max_alignment = align_flags::max (max_alignment, alignment);
751 }
752 LABEL_TO_ALIGNMENT (label) = max_alignment;
753 }
754
755 loop_optimizer_finalize ();
756 free_dominance_info (CDI_DOMINATORS);
757 return 0;
758 }
759
760 /* Grow the LABEL_ALIGN array after new labels are created. */
761
762 static void
763 grow_label_align (void)
764 {
765 int old = max_labelno;
766 int n_labels;
767 int n_old_labels;
768
769 max_labelno = max_label_num ();
770
771 n_labels = max_labelno - min_labelno + 1;
772 n_old_labels = old - min_labelno + 1;
773
774 label_align.safe_grow_cleared (n_labels);
775
776 /* Range of labels grows monotonically in the function. Failing here
777 means that the initialization of array got lost. */
778 gcc_assert (n_old_labels <= n_labels);
779 }
780
781 /* Update the already computed alignment information. LABEL_PAIRS is a vector
782 made up of pairs of labels for which the alignment information of the first
783 element will be copied from that of the second element. */
784
785 void
786 update_alignments (vec<rtx> &label_pairs)
787 {
788 unsigned int i = 0;
789 rtx iter, label = NULL_RTX;
790
791 if (max_labelno != max_label_num ())
792 grow_label_align ();
793
794 FOR_EACH_VEC_ELT (label_pairs, i, iter)
795 if (i & 1)
796 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
797 else
798 label = iter;
799 }
800
801 namespace {
802
803 const pass_data pass_data_compute_alignments =
804 {
805 RTL_PASS, /* type */
806 "alignments", /* name */
807 OPTGROUP_NONE, /* optinfo_flags */
808 TV_NONE, /* tv_id */
809 0, /* properties_required */
810 0, /* properties_provided */
811 0, /* properties_destroyed */
812 0, /* todo_flags_start */
813 0, /* todo_flags_finish */
814 };
815
816 class pass_compute_alignments : public rtl_opt_pass
817 {
818 public:
819 pass_compute_alignments (gcc::context *ctxt)
820 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
821 {}
822
823 /* opt_pass methods: */
824 virtual unsigned int execute (function *) { return compute_alignments (); }
825
826 }; // class pass_compute_alignments
827
828 } // anon namespace
829
830 rtl_opt_pass *
831 make_pass_compute_alignments (gcc::context *ctxt)
832 {
833 return new pass_compute_alignments (ctxt);
834 }
835
836 \f
837 /* Make a pass over all insns and compute their actual lengths by shortening
838 any branches of variable length if possible. */
839
840 /* shorten_branches might be called multiple times: for example, the SH
841 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
842 In order to do this, it needs proper length information, which it obtains
843 by calling shorten_branches. This cannot be collapsed with
844 shorten_branches itself into a single pass unless we also want to integrate
845 reorg.c, since the branch splitting exposes new instructions with delay
846 slots. */
847
848 void
849 shorten_branches (rtx_insn *first)
850 {
851 rtx_insn *insn;
852 int max_uid;
853 int i;
854 rtx_insn *seq;
855 int something_changed = 1;
856 char *varying_length;
857 rtx body;
858 int uid;
859 rtx align_tab[MAX_CODE_ALIGN + 1];
860
861 /* Compute maximum UID and allocate label_align / uid_shuid. */
862 max_uid = get_max_uid ();
863
864 /* Free uid_shuid before reallocating it. */
865 free (uid_shuid);
866
867 uid_shuid = XNEWVEC (int, max_uid);
868
869 if (max_labelno != max_label_num ())
870 grow_label_align ();
871
872 /* Initialize label_align and set up uid_shuid to be strictly
873 monotonically rising with insn order. */
874 /* We use alignment here to keep track of the maximum alignment we want to
875 impose on the next CODE_LABEL (or the current one if we are processing
876 the CODE_LABEL itself). */
877
878 align_flags max_alignment;
879
880 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
881 {
882 INSN_SHUID (insn) = i++;
883 if (INSN_P (insn))
884 continue;
885
886 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
887 {
888 /* Merge in alignments computed by compute_alignments. */
889 align_flags alignment = LABEL_TO_ALIGNMENT (label);
890 max_alignment = align_flags::max (max_alignment, alignment);
891
892 rtx_jump_table_data *table = jump_table_for_label (label);
893 if (!table)
894 {
895 align_flags alignment = LABEL_ALIGN (label);
896 max_alignment = align_flags::max (max_alignment, alignment);
897 }
898 /* ADDR_VECs only take room if read-only data goes into the text
899 section. */
900 if ((JUMP_TABLES_IN_TEXT_SECTION
901 || readonly_data_section == text_section)
902 && table)
903 {
904 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
905 max_alignment = align_flags::max (max_alignment, alignment);
906 }
907 LABEL_TO_ALIGNMENT (label) = max_alignment;
908 max_alignment = align_flags ();
909 }
910 else if (BARRIER_P (insn))
911 {
912 rtx_insn *label;
913
914 for (label = insn; label && ! INSN_P (label);
915 label = NEXT_INSN (label))
916 if (LABEL_P (label))
917 {
918 align_flags alignment
919 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
920 max_alignment = align_flags::max (max_alignment, alignment);
921 break;
922 }
923 }
924 }
925 if (!HAVE_ATTR_length)
926 return;
927
928 /* Allocate the rest of the arrays. */
929 insn_lengths = XNEWVEC (int, max_uid);
930 insn_lengths_max_uid = max_uid;
931 /* Syntax errors can lead to labels being outside of the main insn stream.
932 Initialize insn_addresses, so that we get reproducible results. */
933 INSN_ADDRESSES_ALLOC (max_uid);
934
935 varying_length = XCNEWVEC (char, max_uid);
936
937 /* Initialize uid_align. We scan instructions
938 from end to start, and keep in align_tab[n] the last seen insn
939 that does an alignment of at least n+1, i.e. the successor
940 in the alignment chain for an insn that does / has a known
941 alignment of n. */
942 uid_align = XCNEWVEC (rtx, max_uid);
943
944 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
945 align_tab[i] = NULL_RTX;
946 seq = get_last_insn ();
947 for (; seq; seq = PREV_INSN (seq))
948 {
949 int uid = INSN_UID (seq);
950 int log;
951 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
952 uid_align[uid] = align_tab[0];
953 if (log)
954 {
955 /* Found an alignment label. */
956 gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
957 uid_align[uid] = align_tab[log];
958 for (i = log - 1; i >= 0; i--)
959 align_tab[i] = seq;
960 }
961 }
962
963 /* When optimizing, we start assuming minimum length, and keep increasing
964 lengths as we find the need for this, till nothing changes.
965 When not optimizing, we start assuming maximum lengths, and
966 do a single pass to update the lengths. */
967 bool increasing = optimize != 0;
968
969 #ifdef CASE_VECTOR_SHORTEN_MODE
970 if (optimize)
971 {
972 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
973 label fields. */
974
975 int min_shuid = INSN_SHUID (get_insns ()) - 1;
976 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
977 int rel;
978
979 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
980 {
981 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
982 int len, i, min, max, insn_shuid;
983 int min_align;
984 addr_diff_vec_flags flags;
985
986 if (! JUMP_TABLE_DATA_P (insn)
987 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
988 continue;
989 pat = PATTERN (insn);
990 len = XVECLEN (pat, 1);
991 gcc_assert (len > 0);
992 min_align = MAX_CODE_ALIGN;
993 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
994 {
995 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
996 int shuid = INSN_SHUID (lab);
997 if (shuid < min)
998 {
999 min = shuid;
1000 min_lab = lab;
1001 }
1002 if (shuid > max)
1003 {
1004 max = shuid;
1005 max_lab = lab;
1006 }
1007
1008 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
1009 if (min_align > label_alignment)
1010 min_align = label_alignment;
1011 }
1012 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1013 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1014 insn_shuid = INSN_SHUID (insn);
1015 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1016 memset (&flags, 0, sizeof (flags));
1017 flags.min_align = min_align;
1018 flags.base_after_vec = rel > insn_shuid;
1019 flags.min_after_vec = min > insn_shuid;
1020 flags.max_after_vec = max > insn_shuid;
1021 flags.min_after_base = min > rel;
1022 flags.max_after_base = max > rel;
1023 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1024
1025 if (increasing)
1026 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1027 }
1028 }
1029 #endif /* CASE_VECTOR_SHORTEN_MODE */
1030
1031 /* Compute initial lengths, addresses, and varying flags for each insn. */
1032 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1033
1034 for (insn_current_address = 0, insn = first;
1035 insn != 0;
1036 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1037 {
1038 uid = INSN_UID (insn);
1039
1040 insn_lengths[uid] = 0;
1041
1042 if (LABEL_P (insn))
1043 {
1044 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1045 if (log)
1046 {
1047 int align = 1 << log;
1048 int new_address = (insn_current_address + align - 1) & -align;
1049 insn_lengths[uid] = new_address - insn_current_address;
1050 }
1051 }
1052
1053 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1054
1055 if (NOTE_P (insn) || BARRIER_P (insn)
1056 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1057 continue;
1058 if (insn->deleted ())
1059 continue;
1060
1061 body = PATTERN (insn);
1062 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1063 {
1064 /* This only takes room if read-only data goes into the text
1065 section. */
1066 if (JUMP_TABLES_IN_TEXT_SECTION
1067 || readonly_data_section == text_section)
1068 insn_lengths[uid] = (XVECLEN (body,
1069 GET_CODE (body) == ADDR_DIFF_VEC)
1070 * GET_MODE_SIZE (table->get_data_mode ()));
1071 /* Alignment is handled by ADDR_VEC_ALIGN. */
1072 }
1073 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1074 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1075 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1076 {
1077 int i;
1078 int const_delay_slots;
1079 if (DELAY_SLOTS)
1080 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1081 else
1082 const_delay_slots = 0;
1083
1084 int (*inner_length_fun) (rtx_insn *)
1085 = const_delay_slots ? length_fun : insn_default_length;
1086 /* Inside a delay slot sequence, we do not do any branch shortening
1087 if the shortening could change the number of delay slots
1088 of the branch. */
1089 for (i = 0; i < body_seq->len (); i++)
1090 {
1091 rtx_insn *inner_insn = body_seq->insn (i);
1092 int inner_uid = INSN_UID (inner_insn);
1093 int inner_length;
1094
1095 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1096 || asm_noperands (PATTERN (inner_insn)) >= 0)
1097 inner_length = (asm_insn_count (PATTERN (inner_insn))
1098 * insn_default_length (inner_insn));
1099 else
1100 inner_length = inner_length_fun (inner_insn);
1101
1102 insn_lengths[inner_uid] = inner_length;
1103 if (const_delay_slots)
1104 {
1105 if ((varying_length[inner_uid]
1106 = insn_variable_length_p (inner_insn)) != 0)
1107 varying_length[uid] = 1;
1108 INSN_ADDRESSES (inner_uid) = (insn_current_address
1109 + insn_lengths[uid]);
1110 }
1111 else
1112 varying_length[inner_uid] = 0;
1113 insn_lengths[uid] += inner_length;
1114 }
1115 }
1116 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1117 {
1118 insn_lengths[uid] = length_fun (insn);
1119 varying_length[uid] = insn_variable_length_p (insn);
1120 }
1121
1122 /* If needed, do any adjustment. */
1123 #ifdef ADJUST_INSN_LENGTH
1124 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1125 if (insn_lengths[uid] < 0)
1126 fatal_insn ("negative insn length", insn);
1127 #endif
1128 }
1129
1130 /* Now loop over all the insns finding varying length insns. For each,
1131 get the current insn length. If it has changed, reflect the change.
1132 When nothing changes for a full pass, we are done. */
1133
1134 while (something_changed)
1135 {
1136 something_changed = 0;
1137 insn_current_align = MAX_CODE_ALIGN - 1;
1138 for (insn_current_address = 0, insn = first;
1139 insn != 0;
1140 insn = NEXT_INSN (insn))
1141 {
1142 int new_length;
1143 #ifdef ADJUST_INSN_LENGTH
1144 int tmp_length;
1145 #endif
1146 int length_align;
1147
1148 uid = INSN_UID (insn);
1149
1150 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1151 {
1152 int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1153
1154 #ifdef CASE_VECTOR_SHORTEN_MODE
1155 /* If the mode of a following jump table was changed, we
1156 may need to update the alignment of this label. */
1157
1158 if (JUMP_TABLES_IN_TEXT_SECTION
1159 || readonly_data_section == text_section)
1160 {
1161 rtx_jump_table_data *table = jump_table_for_label (label);
1162 if (table)
1163 {
1164 int newlog = ADDR_VEC_ALIGN (table);
1165 if (newlog != log)
1166 {
1167 log = newlog;
1168 LABEL_TO_ALIGNMENT (insn) = log;
1169 something_changed = 1;
1170 }
1171 }
1172 }
1173 #endif
1174
1175 if (log > insn_current_align)
1176 {
1177 int align = 1 << log;
1178 int new_address= (insn_current_address + align - 1) & -align;
1179 insn_lengths[uid] = new_address - insn_current_address;
1180 insn_current_align = log;
1181 insn_current_address = new_address;
1182 }
1183 else
1184 insn_lengths[uid] = 0;
1185 INSN_ADDRESSES (uid) = insn_current_address;
1186 continue;
1187 }
1188
1189 length_align = INSN_LENGTH_ALIGNMENT (insn);
1190 if (length_align < insn_current_align)
1191 insn_current_align = length_align;
1192
1193 insn_last_address = INSN_ADDRESSES (uid);
1194 INSN_ADDRESSES (uid) = insn_current_address;
1195
1196 #ifdef CASE_VECTOR_SHORTEN_MODE
1197 if (optimize
1198 && JUMP_TABLE_DATA_P (insn)
1199 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1200 {
1201 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1202 rtx body = PATTERN (insn);
1203 int old_length = insn_lengths[uid];
1204 rtx_insn *rel_lab =
1205 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1206 rtx min_lab = XEXP (XEXP (body, 2), 0);
1207 rtx max_lab = XEXP (XEXP (body, 3), 0);
1208 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1209 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1210 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1211 rtx_insn *prev;
1212 int rel_align = 0;
1213 addr_diff_vec_flags flags;
1214 scalar_int_mode vec_mode;
1215
1216 /* Avoid automatic aggregate initialization. */
1217 flags = ADDR_DIFF_VEC_FLAGS (body);
1218
1219 /* Try to find a known alignment for rel_lab. */
1220 for (prev = rel_lab;
1221 prev
1222 && ! insn_lengths[INSN_UID (prev)]
1223 && ! (varying_length[INSN_UID (prev)] & 1);
1224 prev = PREV_INSN (prev))
1225 if (varying_length[INSN_UID (prev)] & 2)
1226 {
1227 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1228 break;
1229 }
1230
1231 /* See the comment on addr_diff_vec_flags in rtl.h for the
1232 meaning of the flags values. base: REL_LAB vec: INSN */
1233 /* Anything after INSN has still addresses from the last
1234 pass; adjust these so that they reflect our current
1235 estimate for this pass. */
1236 if (flags.base_after_vec)
1237 rel_addr += insn_current_address - insn_last_address;
1238 if (flags.min_after_vec)
1239 min_addr += insn_current_address - insn_last_address;
1240 if (flags.max_after_vec)
1241 max_addr += insn_current_address - insn_last_address;
1242 /* We want to know the worst case, i.e. lowest possible value
1243 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1244 its offset is positive, and we have to be wary of code shrink;
1245 otherwise, it is negative, and we have to be vary of code
1246 size increase. */
1247 if (flags.min_after_base)
1248 {
1249 /* If INSN is between REL_LAB and MIN_LAB, the size
1250 changes we are about to make can change the alignment
1251 within the observed offset, therefore we have to break
1252 it up into two parts that are independent. */
1253 if (! flags.base_after_vec && flags.min_after_vec)
1254 {
1255 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1256 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1257 }
1258 else
1259 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1260 }
1261 else
1262 {
1263 if (flags.base_after_vec && ! flags.min_after_vec)
1264 {
1265 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1266 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1267 }
1268 else
1269 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1270 }
1271 /* Likewise, determine the highest lowest possible value
1272 for the offset of MAX_LAB. */
1273 if (flags.max_after_base)
1274 {
1275 if (! flags.base_after_vec && flags.max_after_vec)
1276 {
1277 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1278 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1279 }
1280 else
1281 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1282 }
1283 else
1284 {
1285 if (flags.base_after_vec && ! flags.max_after_vec)
1286 {
1287 max_addr += align_fuzz (max_lab, insn, 0, 0);
1288 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1289 }
1290 else
1291 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1292 }
1293 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1294 max_addr - rel_addr, body);
1295 if (!increasing
1296 || (GET_MODE_SIZE (vec_mode)
1297 >= GET_MODE_SIZE (table->get_data_mode ())))
1298 PUT_MODE (body, vec_mode);
1299 if (JUMP_TABLES_IN_TEXT_SECTION
1300 || readonly_data_section == text_section)
1301 {
1302 insn_lengths[uid]
1303 = (XVECLEN (body, 1)
1304 * GET_MODE_SIZE (table->get_data_mode ()));
1305 insn_current_address += insn_lengths[uid];
1306 if (insn_lengths[uid] != old_length)
1307 something_changed = 1;
1308 }
1309
1310 continue;
1311 }
1312 #endif /* CASE_VECTOR_SHORTEN_MODE */
1313
1314 if (! (varying_length[uid]))
1315 {
1316 if (NONJUMP_INSN_P (insn)
1317 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1318 {
1319 int i;
1320
1321 body = PATTERN (insn);
1322 for (i = 0; i < XVECLEN (body, 0); i++)
1323 {
1324 rtx inner_insn = XVECEXP (body, 0, i);
1325 int inner_uid = INSN_UID (inner_insn);
1326
1327 INSN_ADDRESSES (inner_uid) = insn_current_address;
1328
1329 insn_current_address += insn_lengths[inner_uid];
1330 }
1331 }
1332 else
1333 insn_current_address += insn_lengths[uid];
1334
1335 continue;
1336 }
1337
1338 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1339 {
1340 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1341 int i;
1342
1343 body = PATTERN (insn);
1344 new_length = 0;
1345 for (i = 0; i < seqn->len (); i++)
1346 {
1347 rtx_insn *inner_insn = seqn->insn (i);
1348 int inner_uid = INSN_UID (inner_insn);
1349 int inner_length;
1350
1351 INSN_ADDRESSES (inner_uid) = insn_current_address;
1352
1353 /* insn_current_length returns 0 for insns with a
1354 non-varying length. */
1355 if (! varying_length[inner_uid])
1356 inner_length = insn_lengths[inner_uid];
1357 else
1358 inner_length = insn_current_length (inner_insn);
1359
1360 if (inner_length != insn_lengths[inner_uid])
1361 {
1362 if (!increasing || inner_length > insn_lengths[inner_uid])
1363 {
1364 insn_lengths[inner_uid] = inner_length;
1365 something_changed = 1;
1366 }
1367 else
1368 inner_length = insn_lengths[inner_uid];
1369 }
1370 insn_current_address += inner_length;
1371 new_length += inner_length;
1372 }
1373 }
1374 else
1375 {
1376 new_length = insn_current_length (insn);
1377 insn_current_address += new_length;
1378 }
1379
1380 #ifdef ADJUST_INSN_LENGTH
1381 /* If needed, do any adjustment. */
1382 tmp_length = new_length;
1383 ADJUST_INSN_LENGTH (insn, new_length);
1384 insn_current_address += (new_length - tmp_length);
1385 #endif
1386
1387 if (new_length != insn_lengths[uid]
1388 && (!increasing || new_length > insn_lengths[uid]))
1389 {
1390 insn_lengths[uid] = new_length;
1391 something_changed = 1;
1392 }
1393 else
1394 insn_current_address += insn_lengths[uid] - new_length;
1395 }
1396 /* For a non-optimizing compile, do only a single pass. */
1397 if (!increasing)
1398 break;
1399 }
1400 crtl->max_insn_address = insn_current_address;
1401 free (varying_length);
1402 }
1403
1404 /* Given the body of an INSN known to be generated by an ASM statement, return
1405 the number of machine instructions likely to be generated for this insn.
1406 This is used to compute its length. */
1407
1408 static int
1409 asm_insn_count (rtx body)
1410 {
1411 const char *templ;
1412
1413 if (GET_CODE (body) == ASM_INPUT)
1414 templ = XSTR (body, 0);
1415 else
1416 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1417
1418 return asm_str_count (templ);
1419 }
1420
1421 /* Return the number of machine instructions likely to be generated for the
1422 inline-asm template. */
1423 int
1424 asm_str_count (const char *templ)
1425 {
1426 int count = 1;
1427
1428 if (!*templ)
1429 return 0;
1430
1431 for (; *templ; templ++)
1432 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1433 || *templ == '\n')
1434 count++;
1435
1436 return count;
1437 }
1438 \f
1439 /* Return true if DWARF2 debug info can be emitted for DECL. */
1440
1441 static bool
1442 dwarf2_debug_info_emitted_p (tree decl)
1443 {
1444 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1445 return false;
1446
1447 if (DECL_IGNORED_P (decl))
1448 return false;
1449
1450 return true;
1451 }
1452
1453 /* Return scope resulting from combination of S1 and S2. */
1454 static tree
1455 choose_inner_scope (tree s1, tree s2)
1456 {
1457 if (!s1)
1458 return s2;
1459 if (!s2)
1460 return s1;
1461 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1462 return s1;
1463 return s2;
1464 }
1465
1466 /* Emit lexical block notes needed to change scope from S1 to S2. */
1467
1468 static void
1469 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1470 {
1471 rtx_insn *insn = orig_insn;
1472 tree com = NULL_TREE;
1473 tree ts1 = s1, ts2 = s2;
1474 tree s;
1475
1476 while (ts1 != ts2)
1477 {
1478 gcc_assert (ts1 && ts2);
1479 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1480 ts1 = BLOCK_SUPERCONTEXT (ts1);
1481 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1482 ts2 = BLOCK_SUPERCONTEXT (ts2);
1483 else
1484 {
1485 ts1 = BLOCK_SUPERCONTEXT (ts1);
1486 ts2 = BLOCK_SUPERCONTEXT (ts2);
1487 }
1488 }
1489 com = ts1;
1490
1491 /* Close scopes. */
1492 s = s1;
1493 while (s != com)
1494 {
1495 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1496 NOTE_BLOCK (note) = s;
1497 s = BLOCK_SUPERCONTEXT (s);
1498 }
1499
1500 /* Open scopes. */
1501 s = s2;
1502 while (s != com)
1503 {
1504 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1505 NOTE_BLOCK (insn) = s;
1506 s = BLOCK_SUPERCONTEXT (s);
1507 }
1508 }
1509
1510 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1511 on the scope tree and the newly reordered instructions. */
1512
1513 static void
1514 reemit_insn_block_notes (void)
1515 {
1516 tree cur_block = DECL_INITIAL (cfun->decl);
1517 rtx_insn *insn;
1518
1519 insn = get_insns ();
1520 for (; insn; insn = NEXT_INSN (insn))
1521 {
1522 tree this_block;
1523
1524 /* Prevent lexical blocks from straddling section boundaries. */
1525 if (NOTE_P (insn))
1526 switch (NOTE_KIND (insn))
1527 {
1528 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1529 {
1530 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1531 s = BLOCK_SUPERCONTEXT (s))
1532 {
1533 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1534 NOTE_BLOCK (note) = s;
1535 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1536 NOTE_BLOCK (note) = s;
1537 }
1538 }
1539 break;
1540
1541 case NOTE_INSN_BEGIN_STMT:
1542 case NOTE_INSN_INLINE_ENTRY:
1543 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1544 goto set_cur_block_to_this_block;
1545
1546 default:
1547 continue;
1548 }
1549
1550 if (!active_insn_p (insn))
1551 continue;
1552
1553 /* Avoid putting scope notes between jump table and its label. */
1554 if (JUMP_TABLE_DATA_P (insn))
1555 continue;
1556
1557 this_block = insn_scope (insn);
1558 /* For sequences compute scope resulting from merging all scopes
1559 of instructions nested inside. */
1560 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1561 {
1562 int i;
1563
1564 this_block = NULL;
1565 for (i = 0; i < body->len (); i++)
1566 this_block = choose_inner_scope (this_block,
1567 insn_scope (body->insn (i)));
1568 }
1569 set_cur_block_to_this_block:
1570 if (! this_block)
1571 {
1572 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1573 continue;
1574 else
1575 this_block = DECL_INITIAL (cfun->decl);
1576 }
1577
1578 if (this_block != cur_block)
1579 {
1580 change_scope (insn, cur_block, this_block);
1581 cur_block = this_block;
1582 }
1583 }
1584
1585 /* change_scope emits before the insn, not after. */
1586 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1587 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1588 delete_insn (note);
1589
1590 reorder_blocks ();
1591 }
1592
1593 static const char *some_local_dynamic_name;
1594
1595 /* Locate some local-dynamic symbol still in use by this function
1596 so that we can print its name in local-dynamic base patterns.
1597 Return null if there are no local-dynamic references. */
1598
1599 const char *
1600 get_some_local_dynamic_name ()
1601 {
1602 subrtx_iterator::array_type array;
1603 rtx_insn *insn;
1604
1605 if (some_local_dynamic_name)
1606 return some_local_dynamic_name;
1607
1608 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1609 if (NONDEBUG_INSN_P (insn))
1610 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1611 {
1612 const_rtx x = *iter;
1613 if (GET_CODE (x) == SYMBOL_REF)
1614 {
1615 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1616 return some_local_dynamic_name = XSTR (x, 0);
1617 if (CONSTANT_POOL_ADDRESS_P (x))
1618 iter.substitute (get_pool_constant (x));
1619 }
1620 }
1621
1622 return 0;
1623 }
1624
1625 /* Arrange for us to emit a source location note before any further
1626 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1627 *SEEN, as long as we are keeping track of location views. The bit
1628 indicates we have referenced the next view at the current PC, so we
1629 have to emit it. This should be called next to the var_location
1630 debug hook. */
1631
1632 static inline void
1633 set_next_view_needed (int *seen)
1634 {
1635 if (debug_variable_location_views)
1636 *seen |= SEEN_NEXT_VIEW;
1637 }
1638
1639 /* Clear the flag in *SEEN indicating we need to emit the next view.
1640 This should be called next to the source_line debug hook. */
1641
1642 static inline void
1643 clear_next_view_needed (int *seen)
1644 {
1645 *seen &= ~SEEN_NEXT_VIEW;
1646 }
1647
1648 /* Test whether we have a pending request to emit the next view in
1649 *SEEN, and emit it if needed, clearing the request bit. */
1650
1651 static inline void
1652 maybe_output_next_view (int *seen)
1653 {
1654 if ((*seen & SEEN_NEXT_VIEW) != 0)
1655 {
1656 clear_next_view_needed (seen);
1657 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1658 last_filename, last_discriminator,
1659 false);
1660 }
1661 }
1662
1663 /* We want to emit param bindings (before the first begin_stmt) in the
1664 initial view, if we are emitting views. To that end, we may
1665 consume initial notes in the function, processing them in
1666 final_start_function, before signaling the beginning of the
1667 prologue, rather than in final.
1668
1669 We don't test whether the DECLs are PARM_DECLs: the assumption is
1670 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1671 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1672 there, we'll just have more variable locations bound in the initial
1673 view, which is consistent with their being bound without any code
1674 that would give them a value. */
1675
1676 static inline bool
1677 in_initial_view_p (rtx_insn *insn)
1678 {
1679 return (!DECL_IGNORED_P (current_function_decl)
1680 && debug_variable_location_views
1681 && insn && GET_CODE (insn) == NOTE
1682 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1683 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1684 }
1685
1686 /* Output assembler code for the start of a function,
1687 and initialize some of the variables in this file
1688 for the new function. The label for the function and associated
1689 assembler pseudo-ops have already been output in `assemble_start_function'.
1690
1691 FIRST is the first insn of the rtl for the function being compiled.
1692 FILE is the file to write assembler code to.
1693 SEEN should be initially set to zero, and it may be updated to
1694 indicate we have references to the next location view, that would
1695 require us to emit it at the current PC.
1696 OPTIMIZE_P is nonzero if we should eliminate redundant
1697 test and compare insns. */
1698
1699 static void
1700 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1701 int optimize_p ATTRIBUTE_UNUSED)
1702 {
1703 block_depth = 0;
1704
1705 this_is_asm_operands = 0;
1706
1707 need_profile_function = false;
1708
1709 last_filename = LOCATION_FILE (prologue_location);
1710 last_linenum = LOCATION_LINE (prologue_location);
1711 last_columnnum = LOCATION_COLUMN (prologue_location);
1712 last_discriminator = discriminator = 0;
1713 last_bb_discriminator = bb_discriminator = 0;
1714
1715 high_block_linenum = high_function_linenum = last_linenum;
1716
1717 if (flag_sanitize & SANITIZE_ADDRESS)
1718 asan_function_start ();
1719
1720 rtx_insn *first = *firstp;
1721 if (in_initial_view_p (first))
1722 {
1723 do
1724 {
1725 final_scan_insn (first, file, 0, 0, seen);
1726 first = NEXT_INSN (first);
1727 }
1728 while (in_initial_view_p (first));
1729 *firstp = first;
1730 }
1731
1732 if (!DECL_IGNORED_P (current_function_decl))
1733 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1734 last_filename);
1735
1736 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1737 dwarf2out_begin_prologue (0, 0, NULL);
1738
1739 #ifdef LEAF_REG_REMAP
1740 if (crtl->uses_only_leaf_regs)
1741 leaf_renumber_regs (first);
1742 #endif
1743
1744 /* The Sun386i and perhaps other machines don't work right
1745 if the profiling code comes after the prologue. */
1746 if (targetm.profile_before_prologue () && crtl->profile)
1747 {
1748 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1749 && targetm.have_prologue ())
1750 {
1751 rtx_insn *insn;
1752 for (insn = first; insn; insn = NEXT_INSN (insn))
1753 if (!NOTE_P (insn))
1754 {
1755 insn = NULL;
1756 break;
1757 }
1758 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1759 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1760 break;
1761 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1762 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1763 continue;
1764 else
1765 {
1766 insn = NULL;
1767 break;
1768 }
1769
1770 if (insn)
1771 need_profile_function = true;
1772 else
1773 profile_function (file);
1774 }
1775 else
1776 profile_function (file);
1777 }
1778
1779 /* If debugging, assign block numbers to all of the blocks in this
1780 function. */
1781 if (write_symbols)
1782 {
1783 reemit_insn_block_notes ();
1784 number_blocks (current_function_decl);
1785 /* We never actually put out begin/end notes for the top-level
1786 block in the function. But, conceptually, that block is
1787 always needed. */
1788 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1789 }
1790
1791 unsigned HOST_WIDE_INT min_frame_size
1792 = constant_lower_bound (get_frame_size ());
1793 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1794 {
1795 /* Issue a warning */
1796 warning (OPT_Wframe_larger_than_,
1797 "the frame size of %wu bytes is larger than %wu bytes",
1798 min_frame_size, warn_frame_larger_than_size);
1799 }
1800
1801 /* First output the function prologue: code to set up the stack frame. */
1802 targetm.asm_out.function_prologue (file);
1803
1804 /* If the machine represents the prologue as RTL, the profiling code must
1805 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1806 if (! targetm.have_prologue ())
1807 profile_after_prologue (file);
1808 }
1809
1810 /* This is an exported final_start_function_1, callable without SEEN. */
1811
1812 void
1813 final_start_function (rtx_insn *first, FILE *file,
1814 int optimize_p ATTRIBUTE_UNUSED)
1815 {
1816 int seen = 0;
1817 final_start_function_1 (&first, file, &seen, optimize_p);
1818 gcc_assert (seen == 0);
1819 }
1820
1821 static void
1822 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1823 {
1824 if (!targetm.profile_before_prologue () && crtl->profile)
1825 profile_function (file);
1826 }
1827
1828 static void
1829 profile_function (FILE *file ATTRIBUTE_UNUSED)
1830 {
1831 #ifndef NO_PROFILE_COUNTERS
1832 # define NO_PROFILE_COUNTERS 0
1833 #endif
1834 #ifdef ASM_OUTPUT_REG_PUSH
1835 rtx sval = NULL, chain = NULL;
1836
1837 if (cfun->returns_struct)
1838 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1839 true);
1840 if (cfun->static_chain_decl)
1841 chain = targetm.calls.static_chain (current_function_decl, true);
1842 #endif /* ASM_OUTPUT_REG_PUSH */
1843
1844 if (! NO_PROFILE_COUNTERS)
1845 {
1846 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1847 switch_to_section (data_section);
1848 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1849 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1850 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1851 }
1852
1853 switch_to_section (current_function_section ());
1854
1855 #ifdef ASM_OUTPUT_REG_PUSH
1856 if (sval && REG_P (sval))
1857 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1858 if (chain && REG_P (chain))
1859 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1860 #endif
1861
1862 FUNCTION_PROFILER (file, current_function_funcdef_no);
1863
1864 #ifdef ASM_OUTPUT_REG_PUSH
1865 if (chain && REG_P (chain))
1866 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1867 if (sval && REG_P (sval))
1868 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1869 #endif
1870 }
1871
1872 /* Output assembler code for the end of a function.
1873 For clarity, args are same as those of `final_start_function'
1874 even though not all of them are needed. */
1875
1876 void
1877 final_end_function (void)
1878 {
1879 app_disable ();
1880
1881 if (!DECL_IGNORED_P (current_function_decl))
1882 debug_hooks->end_function (high_function_linenum);
1883
1884 /* Finally, output the function epilogue:
1885 code to restore the stack frame and return to the caller. */
1886 targetm.asm_out.function_epilogue (asm_out_file);
1887
1888 /* And debug output. */
1889 if (!DECL_IGNORED_P (current_function_decl))
1890 debug_hooks->end_epilogue (last_linenum, last_filename);
1891
1892 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1893 && dwarf2out_do_frame ())
1894 dwarf2out_end_epilogue (last_linenum, last_filename);
1895
1896 some_local_dynamic_name = 0;
1897 }
1898 \f
1899
1900 /* Dumper helper for basic block information. FILE is the assembly
1901 output file, and INSN is the instruction being emitted. */
1902
1903 static void
1904 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1905 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1906 {
1907 basic_block bb;
1908
1909 if (!flag_debug_asm)
1910 return;
1911
1912 if (INSN_UID (insn) < bb_map_size
1913 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1914 {
1915 edge e;
1916 edge_iterator ei;
1917
1918 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1919 if (bb->count.initialized_p ())
1920 {
1921 fprintf (file, ", count:");
1922 bb->count.dump (file);
1923 }
1924 fprintf (file, " seq:%d", (*bb_seqn)++);
1925 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1926 FOR_EACH_EDGE (e, ei, bb->preds)
1927 {
1928 dump_edge_info (file, e, TDF_DETAILS, 0);
1929 }
1930 fprintf (file, "\n");
1931 }
1932 if (INSN_UID (insn) < bb_map_size
1933 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1934 {
1935 edge e;
1936 edge_iterator ei;
1937
1938 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1939 FOR_EACH_EDGE (e, ei, bb->succs)
1940 {
1941 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1942 }
1943 fprintf (file, "\n");
1944 }
1945 }
1946
1947 /* Output assembler code for some insns: all or part of a function.
1948 For description of args, see `final_start_function', above. */
1949
1950 static void
1951 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1952 {
1953 rtx_insn *insn, *next;
1954
1955 /* Used for -dA dump. */
1956 basic_block *start_to_bb = NULL;
1957 basic_block *end_to_bb = NULL;
1958 int bb_map_size = 0;
1959 int bb_seqn = 0;
1960
1961 last_ignored_compare = 0;
1962
1963 if (HAVE_cc0)
1964 for (insn = first; insn; insn = NEXT_INSN (insn))
1965 {
1966 /* If CC tracking across branches is enabled, record the insn which
1967 jumps to each branch only reached from one place. */
1968 if (optimize_p && JUMP_P (insn))
1969 {
1970 rtx lab = JUMP_LABEL (insn);
1971 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1972 {
1973 LABEL_REFS (lab) = insn;
1974 }
1975 }
1976 }
1977
1978 init_recog ();
1979
1980 CC_STATUS_INIT;
1981
1982 if (flag_debug_asm)
1983 {
1984 basic_block bb;
1985
1986 bb_map_size = get_max_uid () + 1;
1987 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1988 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1989
1990 /* There is no cfg for a thunk. */
1991 if (!cfun->is_thunk)
1992 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1993 {
1994 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1995 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1996 }
1997 }
1998
1999 /* Output the insns. */
2000 for (insn = first; insn;)
2001 {
2002 if (HAVE_ATTR_length)
2003 {
2004 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2005 {
2006 /* This can be triggered by bugs elsewhere in the compiler if
2007 new insns are created after init_insn_lengths is called. */
2008 gcc_assert (NOTE_P (insn));
2009 insn_current_address = -1;
2010 }
2011 else
2012 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2013 /* final can be seen as an iteration of shorten_branches that
2014 does nothing (since a fixed point has already been reached). */
2015 insn_last_address = insn_current_address;
2016 }
2017
2018 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2019 bb_map_size, &bb_seqn);
2020 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2021 }
2022
2023 maybe_output_next_view (&seen);
2024
2025 if (flag_debug_asm)
2026 {
2027 free (start_to_bb);
2028 free (end_to_bb);
2029 }
2030
2031 /* Remove CFI notes, to avoid compare-debug failures. */
2032 for (insn = first; insn; insn = next)
2033 {
2034 next = NEXT_INSN (insn);
2035 if (NOTE_P (insn)
2036 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2037 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2038 delete_insn (insn);
2039 }
2040 }
2041
2042 /* This is an exported final_1, callable without SEEN. */
2043
2044 void
2045 final (rtx_insn *first, FILE *file, int optimize_p)
2046 {
2047 /* Those that use the internal final_start_function_1/final_1 API
2048 skip initial debug bind notes in final_start_function_1, and pass
2049 the modified FIRST to final_1. But those that use the public
2050 final_start_function/final APIs, final_start_function can't move
2051 FIRST because it's not passed by reference, so if they were
2052 skipped there, skip them again here. */
2053 while (in_initial_view_p (first))
2054 first = NEXT_INSN (first);
2055
2056 final_1 (first, file, 0, optimize_p);
2057 }
2058 \f
2059 const char *
2060 get_insn_template (int code, rtx_insn *insn)
2061 {
2062 switch (insn_data[code].output_format)
2063 {
2064 case INSN_OUTPUT_FORMAT_SINGLE:
2065 return insn_data[code].output.single;
2066 case INSN_OUTPUT_FORMAT_MULTI:
2067 return insn_data[code].output.multi[which_alternative];
2068 case INSN_OUTPUT_FORMAT_FUNCTION:
2069 gcc_assert (insn);
2070 return (*insn_data[code].output.function) (recog_data.operand, insn);
2071
2072 default:
2073 gcc_unreachable ();
2074 }
2075 }
2076
2077 /* Emit the appropriate declaration for an alternate-entry-point
2078 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2079 LABEL_KIND != LABEL_NORMAL.
2080
2081 The case fall-through in this function is intentional. */
2082 static void
2083 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2084 {
2085 const char *name = LABEL_NAME (insn);
2086
2087 switch (LABEL_KIND (insn))
2088 {
2089 case LABEL_WEAK_ENTRY:
2090 #ifdef ASM_WEAKEN_LABEL
2091 ASM_WEAKEN_LABEL (file, name);
2092 gcc_fallthrough ();
2093 #endif
2094 case LABEL_GLOBAL_ENTRY:
2095 targetm.asm_out.globalize_label (file, name);
2096 gcc_fallthrough ();
2097 case LABEL_STATIC_ENTRY:
2098 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2099 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2100 #endif
2101 ASM_OUTPUT_LABEL (file, name);
2102 break;
2103
2104 case LABEL_NORMAL:
2105 default:
2106 gcc_unreachable ();
2107 }
2108 }
2109
2110 /* Given a CALL_INSN, find and return the nested CALL. */
2111 static rtx
2112 call_from_call_insn (rtx_call_insn *insn)
2113 {
2114 rtx x;
2115 gcc_assert (CALL_P (insn));
2116 x = PATTERN (insn);
2117
2118 while (GET_CODE (x) != CALL)
2119 {
2120 switch (GET_CODE (x))
2121 {
2122 default:
2123 gcc_unreachable ();
2124 case COND_EXEC:
2125 x = COND_EXEC_CODE (x);
2126 break;
2127 case PARALLEL:
2128 x = XVECEXP (x, 0, 0);
2129 break;
2130 case SET:
2131 x = XEXP (x, 1);
2132 break;
2133 }
2134 }
2135 return x;
2136 }
2137
2138 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2139 corresponding source line, if available. */
2140
2141 static void
2142 asm_show_source (const char *filename, int linenum)
2143 {
2144 if (!filename)
2145 return;
2146
2147 char_span line = location_get_source_line (filename, linenum);
2148 if (!line)
2149 return;
2150
2151 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2152 /* "line" is not 0-terminated, so we must use its length. */
2153 fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2154 fputc ('\n', asm_out_file);
2155 }
2156
2157 /* The final scan for one insn, INSN.
2158 Args are same as in `final', except that INSN
2159 is the insn being scanned.
2160 Value returned is the next insn to be scanned.
2161
2162 NOPEEPHOLES is the flag to disallow peephole processing (currently
2163 used for within delayed branch sequence output).
2164
2165 SEEN is used to track the end of the prologue, for emitting
2166 debug information. We force the emission of a line note after
2167 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2168
2169 static rtx_insn *
2170 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2171 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2172 {
2173 #if HAVE_cc0
2174 rtx set;
2175 #endif
2176 rtx_insn *next;
2177 rtx_jump_table_data *table;
2178
2179 insn_counter++;
2180
2181 /* Ignore deleted insns. These can occur when we split insns (due to a
2182 template of "#") while not optimizing. */
2183 if (insn->deleted ())
2184 return NEXT_INSN (insn);
2185
2186 switch (GET_CODE (insn))
2187 {
2188 case NOTE:
2189 switch (NOTE_KIND (insn))
2190 {
2191 case NOTE_INSN_DELETED:
2192 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2193 break;
2194
2195 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2196 maybe_output_next_view (seen);
2197
2198 output_function_exception_table (0);
2199
2200 if (targetm.asm_out.unwind_emit)
2201 targetm.asm_out.unwind_emit (asm_out_file, insn);
2202
2203 in_cold_section_p = !in_cold_section_p;
2204
2205 if (in_cold_section_p)
2206 cold_function_name
2207 = clone_function_name (current_function_decl, "cold");
2208
2209 if (dwarf2out_do_frame ())
2210 {
2211 dwarf2out_switch_text_section ();
2212 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2213 && !DECL_IGNORED_P (current_function_decl))
2214 debug_hooks->switch_text_section ();
2215 }
2216 else if (!DECL_IGNORED_P (current_function_decl))
2217 debug_hooks->switch_text_section ();
2218
2219 switch_to_section (current_function_section ());
2220 targetm.asm_out.function_switched_text_sections (asm_out_file,
2221 current_function_decl,
2222 in_cold_section_p);
2223 /* Emit a label for the split cold section. Form label name by
2224 suffixing "cold" to the original function's name. */
2225 if (in_cold_section_p)
2226 {
2227 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2228 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2229 IDENTIFIER_POINTER
2230 (cold_function_name),
2231 current_function_decl);
2232 #else
2233 ASM_OUTPUT_LABEL (asm_out_file,
2234 IDENTIFIER_POINTER (cold_function_name));
2235 #endif
2236 if (dwarf2out_do_frame ()
2237 && cfun->fde->dw_fde_second_begin != NULL)
2238 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2239 }
2240 break;
2241
2242 case NOTE_INSN_BASIC_BLOCK:
2243 if (need_profile_function)
2244 {
2245 profile_function (asm_out_file);
2246 need_profile_function = false;
2247 }
2248
2249 if (targetm.asm_out.unwind_emit)
2250 targetm.asm_out.unwind_emit (asm_out_file, insn);
2251
2252 bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2253 break;
2254
2255 case NOTE_INSN_EH_REGION_BEG:
2256 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2257 NOTE_EH_HANDLER (insn));
2258 break;
2259
2260 case NOTE_INSN_EH_REGION_END:
2261 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2262 NOTE_EH_HANDLER (insn));
2263 break;
2264
2265 case NOTE_INSN_PROLOGUE_END:
2266 targetm.asm_out.function_end_prologue (file);
2267 profile_after_prologue (file);
2268
2269 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2270 {
2271 *seen |= SEEN_EMITTED;
2272 force_source_line = true;
2273 }
2274 else
2275 *seen |= SEEN_NOTE;
2276
2277 break;
2278
2279 case NOTE_INSN_EPILOGUE_BEG:
2280 if (!DECL_IGNORED_P (current_function_decl))
2281 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2282 targetm.asm_out.function_begin_epilogue (file);
2283 break;
2284
2285 case NOTE_INSN_CFI:
2286 dwarf2out_emit_cfi (NOTE_CFI (insn));
2287 break;
2288
2289 case NOTE_INSN_CFI_LABEL:
2290 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2291 NOTE_LABEL_NUMBER (insn));
2292 break;
2293
2294 case NOTE_INSN_FUNCTION_BEG:
2295 if (need_profile_function)
2296 {
2297 profile_function (asm_out_file);
2298 need_profile_function = false;
2299 }
2300
2301 app_disable ();
2302 if (!DECL_IGNORED_P (current_function_decl))
2303 debug_hooks->end_prologue (last_linenum, last_filename);
2304
2305 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2306 {
2307 *seen |= SEEN_EMITTED;
2308 force_source_line = true;
2309 }
2310 else
2311 *seen |= SEEN_NOTE;
2312
2313 break;
2314
2315 case NOTE_INSN_BLOCK_BEG:
2316 if (debug_info_level == DINFO_LEVEL_NORMAL
2317 || debug_info_level == DINFO_LEVEL_VERBOSE
2318 || write_symbols == DWARF2_DEBUG
2319 || write_symbols == VMS_AND_DWARF2_DEBUG
2320 || write_symbols == VMS_DEBUG)
2321 {
2322 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2323
2324 app_disable ();
2325 ++block_depth;
2326 high_block_linenum = last_linenum;
2327
2328 /* Output debugging info about the symbol-block beginning. */
2329 if (!DECL_IGNORED_P (current_function_decl))
2330 debug_hooks->begin_block (last_linenum, n);
2331
2332 /* Mark this block as output. */
2333 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2334 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2335 }
2336 if (write_symbols == DBX_DEBUG)
2337 {
2338 location_t *locus_ptr
2339 = block_nonartificial_location (NOTE_BLOCK (insn));
2340
2341 if (locus_ptr != NULL)
2342 {
2343 override_filename = LOCATION_FILE (*locus_ptr);
2344 override_linenum = LOCATION_LINE (*locus_ptr);
2345 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2346 override_discriminator = compute_discriminator (*locus_ptr);
2347 }
2348 }
2349 break;
2350
2351 case NOTE_INSN_BLOCK_END:
2352 maybe_output_next_view (seen);
2353
2354 if (debug_info_level == DINFO_LEVEL_NORMAL
2355 || debug_info_level == DINFO_LEVEL_VERBOSE
2356 || write_symbols == DWARF2_DEBUG
2357 || write_symbols == VMS_AND_DWARF2_DEBUG
2358 || write_symbols == VMS_DEBUG)
2359 {
2360 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2361
2362 app_disable ();
2363
2364 /* End of a symbol-block. */
2365 --block_depth;
2366 gcc_assert (block_depth >= 0);
2367
2368 if (!DECL_IGNORED_P (current_function_decl))
2369 debug_hooks->end_block (high_block_linenum, n);
2370 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2371 == in_cold_section_p);
2372 }
2373 if (write_symbols == DBX_DEBUG)
2374 {
2375 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2376 location_t *locus_ptr
2377 = block_nonartificial_location (outer_block);
2378
2379 if (locus_ptr != NULL)
2380 {
2381 override_filename = LOCATION_FILE (*locus_ptr);
2382 override_linenum = LOCATION_LINE (*locus_ptr);
2383 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2384 override_discriminator = compute_discriminator (*locus_ptr);
2385 }
2386 else
2387 {
2388 override_filename = NULL;
2389 override_linenum = 0;
2390 override_columnnum = 0;
2391 override_discriminator = 0;
2392 }
2393 }
2394 break;
2395
2396 case NOTE_INSN_DELETED_LABEL:
2397 /* Emit the label. We may have deleted the CODE_LABEL because
2398 the label could be proved to be unreachable, though still
2399 referenced (in the form of having its address taken. */
2400 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2401 break;
2402
2403 case NOTE_INSN_DELETED_DEBUG_LABEL:
2404 /* Similarly, but need to use different namespace for it. */
2405 if (CODE_LABEL_NUMBER (insn) != -1)
2406 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2407 break;
2408
2409 case NOTE_INSN_VAR_LOCATION:
2410 if (!DECL_IGNORED_P (current_function_decl))
2411 {
2412 debug_hooks->var_location (insn);
2413 set_next_view_needed (seen);
2414 }
2415 break;
2416
2417 case NOTE_INSN_BEGIN_STMT:
2418 gcc_checking_assert (cfun->debug_nonbind_markers);
2419 if (!DECL_IGNORED_P (current_function_decl)
2420 && notice_source_line (insn, NULL))
2421 {
2422 output_source_line:
2423 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2424 last_filename, last_discriminator,
2425 true);
2426 clear_next_view_needed (seen);
2427 }
2428 break;
2429
2430 case NOTE_INSN_INLINE_ENTRY:
2431 gcc_checking_assert (cfun->debug_nonbind_markers);
2432 if (!DECL_IGNORED_P (current_function_decl)
2433 && notice_source_line (insn, NULL))
2434 {
2435 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2436 (NOTE_MARKER_LOCATION (insn)));
2437 goto output_source_line;
2438 }
2439 break;
2440
2441 default:
2442 gcc_unreachable ();
2443 break;
2444 }
2445 break;
2446
2447 case BARRIER:
2448 break;
2449
2450 case CODE_LABEL:
2451 /* The target port might emit labels in the output function for
2452 some insn, e.g. sh.c output_branchy_insn. */
2453 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2454 {
2455 align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2456 if (alignment.levels[0].log && NEXT_INSN (insn))
2457 {
2458 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2459 /* Output both primary and secondary alignment. */
2460 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2461 alignment.levels[0].maxskip);
2462 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2463 alignment.levels[1].maxskip);
2464 #else
2465 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2466 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2467 #else
2468 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2469 #endif
2470 #endif
2471 }
2472 }
2473 CC_STATUS_INIT;
2474
2475 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2476 debug_hooks->label (as_a <rtx_code_label *> (insn));
2477
2478 app_disable ();
2479
2480 /* If this label is followed by a jump-table, make sure we put
2481 the label in the read-only section. Also possibly write the
2482 label and jump table together. */
2483 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2484 if (table)
2485 {
2486 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2487 /* In this case, the case vector is being moved by the
2488 target, so don't output the label at all. Leave that
2489 to the back end macros. */
2490 #else
2491 if (! JUMP_TABLES_IN_TEXT_SECTION)
2492 {
2493 int log_align;
2494
2495 switch_to_section (targetm.asm_out.function_rodata_section
2496 (current_function_decl));
2497
2498 #ifdef ADDR_VEC_ALIGN
2499 log_align = ADDR_VEC_ALIGN (table);
2500 #else
2501 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2502 #endif
2503 ASM_OUTPUT_ALIGN (file, log_align);
2504 }
2505 else
2506 switch_to_section (current_function_section ());
2507
2508 #ifdef ASM_OUTPUT_CASE_LABEL
2509 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2510 #else
2511 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2512 #endif
2513 #endif
2514 break;
2515 }
2516 if (LABEL_ALT_ENTRY_P (insn))
2517 output_alternate_entry_point (file, insn);
2518 else
2519 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2520 break;
2521
2522 default:
2523 {
2524 rtx body = PATTERN (insn);
2525 int insn_code_number;
2526 const char *templ;
2527 bool is_stmt, *is_stmt_p;
2528
2529 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2530 {
2531 is_stmt = false;
2532 is_stmt_p = NULL;
2533 }
2534 else
2535 is_stmt_p = &is_stmt;
2536
2537 /* Reset this early so it is correct for ASM statements. */
2538 current_insn_predicate = NULL_RTX;
2539
2540 /* An INSN, JUMP_INSN or CALL_INSN.
2541 First check for special kinds that recog doesn't recognize. */
2542
2543 if (GET_CODE (body) == USE /* These are just declarations. */
2544 || GET_CODE (body) == CLOBBER)
2545 break;
2546
2547 #if HAVE_cc0
2548 {
2549 /* If there is a REG_CC_SETTER note on this insn, it means that
2550 the setting of the condition code was done in the delay slot
2551 of the insn that branched here. So recover the cc status
2552 from the insn that set it. */
2553
2554 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2555 if (note)
2556 {
2557 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2558 NOTICE_UPDATE_CC (PATTERN (other), other);
2559 cc_prev_status = cc_status;
2560 }
2561 }
2562 #endif
2563
2564 /* Detect insns that are really jump-tables
2565 and output them as such. */
2566
2567 if (JUMP_TABLE_DATA_P (insn))
2568 {
2569 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2570 int vlen, idx;
2571 #endif
2572
2573 if (! JUMP_TABLES_IN_TEXT_SECTION)
2574 switch_to_section (targetm.asm_out.function_rodata_section
2575 (current_function_decl));
2576 else
2577 switch_to_section (current_function_section ());
2578
2579 app_disable ();
2580
2581 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2582 if (GET_CODE (body) == ADDR_VEC)
2583 {
2584 #ifdef ASM_OUTPUT_ADDR_VEC
2585 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2586 #else
2587 gcc_unreachable ();
2588 #endif
2589 }
2590 else
2591 {
2592 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2593 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2594 #else
2595 gcc_unreachable ();
2596 #endif
2597 }
2598 #else
2599 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2600 for (idx = 0; idx < vlen; idx++)
2601 {
2602 if (GET_CODE (body) == ADDR_VEC)
2603 {
2604 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2605 ASM_OUTPUT_ADDR_VEC_ELT
2606 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2607 #else
2608 gcc_unreachable ();
2609 #endif
2610 }
2611 else
2612 {
2613 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2614 ASM_OUTPUT_ADDR_DIFF_ELT
2615 (file,
2616 body,
2617 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2618 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2619 #else
2620 gcc_unreachable ();
2621 #endif
2622 }
2623 }
2624 #ifdef ASM_OUTPUT_CASE_END
2625 ASM_OUTPUT_CASE_END (file,
2626 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2627 insn);
2628 #endif
2629 #endif
2630
2631 switch_to_section (current_function_section ());
2632
2633 if (debug_variable_location_views
2634 && !DECL_IGNORED_P (current_function_decl))
2635 debug_hooks->var_location (insn);
2636
2637 break;
2638 }
2639 /* Output this line note if it is the first or the last line
2640 note in a row. */
2641 if (!DECL_IGNORED_P (current_function_decl)
2642 && notice_source_line (insn, is_stmt_p))
2643 {
2644 if (flag_verbose_asm)
2645 asm_show_source (last_filename, last_linenum);
2646 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2647 last_filename, last_discriminator,
2648 is_stmt);
2649 clear_next_view_needed (seen);
2650 }
2651 else
2652 maybe_output_next_view (seen);
2653
2654 gcc_checking_assert (!DEBUG_INSN_P (insn));
2655
2656 if (GET_CODE (body) == PARALLEL
2657 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2658 body = XVECEXP (body, 0, 0);
2659
2660 if (GET_CODE (body) == ASM_INPUT)
2661 {
2662 const char *string = XSTR (body, 0);
2663
2664 /* There's no telling what that did to the condition codes. */
2665 CC_STATUS_INIT;
2666
2667 if (string[0])
2668 {
2669 expanded_location loc;
2670
2671 app_enable ();
2672 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2673 if (*loc.file && loc.line)
2674 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2675 ASM_COMMENT_START, loc.line, loc.file);
2676 fprintf (asm_out_file, "\t%s\n", string);
2677 #if HAVE_AS_LINE_ZERO
2678 if (*loc.file && loc.line)
2679 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2680 #endif
2681 }
2682 break;
2683 }
2684
2685 /* Detect `asm' construct with operands. */
2686 if (asm_noperands (body) >= 0)
2687 {
2688 unsigned int noperands = asm_noperands (body);
2689 rtx *ops = XALLOCAVEC (rtx, noperands);
2690 const char *string;
2691 location_t loc;
2692 expanded_location expanded;
2693
2694 /* There's no telling what that did to the condition codes. */
2695 CC_STATUS_INIT;
2696
2697 /* Get out the operand values. */
2698 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2699 /* Inhibit dying on what would otherwise be compiler bugs. */
2700 insn_noperands = noperands;
2701 this_is_asm_operands = insn;
2702 expanded = expand_location (loc);
2703
2704 #ifdef FINAL_PRESCAN_INSN
2705 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2706 #endif
2707
2708 /* Output the insn using them. */
2709 if (string[0])
2710 {
2711 app_enable ();
2712 if (expanded.file && expanded.line)
2713 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2714 ASM_COMMENT_START, expanded.line, expanded.file);
2715 output_asm_insn (string, ops);
2716 #if HAVE_AS_LINE_ZERO
2717 if (expanded.file && expanded.line)
2718 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2719 #endif
2720 }
2721
2722 if (targetm.asm_out.final_postscan_insn)
2723 targetm.asm_out.final_postscan_insn (file, insn, ops,
2724 insn_noperands);
2725
2726 this_is_asm_operands = 0;
2727 break;
2728 }
2729
2730 app_disable ();
2731
2732 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2733 {
2734 /* A delayed-branch sequence */
2735 int i;
2736
2737 final_sequence = seq;
2738
2739 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2740 force the restoration of a comparison that was previously
2741 thought unnecessary. If that happens, cancel this sequence
2742 and cause that insn to be restored. */
2743
2744 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2745 if (next != seq->insn (1))
2746 {
2747 final_sequence = 0;
2748 return next;
2749 }
2750
2751 for (i = 1; i < seq->len (); i++)
2752 {
2753 rtx_insn *insn = seq->insn (i);
2754 rtx_insn *next = NEXT_INSN (insn);
2755 /* We loop in case any instruction in a delay slot gets
2756 split. */
2757 do
2758 insn = final_scan_insn (insn, file, 0, 1, seen);
2759 while (insn != next);
2760 }
2761 #ifdef DBR_OUTPUT_SEQEND
2762 DBR_OUTPUT_SEQEND (file);
2763 #endif
2764 final_sequence = 0;
2765
2766 /* If the insn requiring the delay slot was a CALL_INSN, the
2767 insns in the delay slot are actually executed before the
2768 called function. Hence we don't preserve any CC-setting
2769 actions in these insns and the CC must be marked as being
2770 clobbered by the function. */
2771 if (CALL_P (seq->insn (0)))
2772 {
2773 CC_STATUS_INIT;
2774 }
2775 break;
2776 }
2777
2778 /* We have a real machine instruction as rtl. */
2779
2780 body = PATTERN (insn);
2781
2782 #if HAVE_cc0
2783 set = single_set (insn);
2784
2785 /* Check for redundant test and compare instructions
2786 (when the condition codes are already set up as desired).
2787 This is done only when optimizing; if not optimizing,
2788 it should be possible for the user to alter a variable
2789 with the debugger in between statements
2790 and the next statement should reexamine the variable
2791 to compute the condition codes. */
2792
2793 if (optimize_p)
2794 {
2795 if (set
2796 && GET_CODE (SET_DEST (set)) == CC0
2797 && insn != last_ignored_compare)
2798 {
2799 rtx src1, src2;
2800 if (GET_CODE (SET_SRC (set)) == SUBREG)
2801 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2802
2803 src1 = SET_SRC (set);
2804 src2 = NULL_RTX;
2805 if (GET_CODE (SET_SRC (set)) == COMPARE)
2806 {
2807 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2808 XEXP (SET_SRC (set), 0)
2809 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2810 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2811 XEXP (SET_SRC (set), 1)
2812 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2813 if (XEXP (SET_SRC (set), 1)
2814 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2815 src2 = XEXP (SET_SRC (set), 0);
2816 }
2817 if ((cc_status.value1 != 0
2818 && rtx_equal_p (src1, cc_status.value1))
2819 || (cc_status.value2 != 0
2820 && rtx_equal_p (src1, cc_status.value2))
2821 || (src2 != 0 && cc_status.value1 != 0
2822 && rtx_equal_p (src2, cc_status.value1))
2823 || (src2 != 0 && cc_status.value2 != 0
2824 && rtx_equal_p (src2, cc_status.value2)))
2825 {
2826 /* Don't delete insn if it has an addressing side-effect. */
2827 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2828 /* or if anything in it is volatile. */
2829 && ! volatile_refs_p (PATTERN (insn)))
2830 {
2831 /* We don't really delete the insn; just ignore it. */
2832 last_ignored_compare = insn;
2833 break;
2834 }
2835 }
2836 }
2837 }
2838
2839 /* If this is a conditional branch, maybe modify it
2840 if the cc's are in a nonstandard state
2841 so that it accomplishes the same thing that it would
2842 do straightforwardly if the cc's were set up normally. */
2843
2844 if (cc_status.flags != 0
2845 && JUMP_P (insn)
2846 && GET_CODE (body) == SET
2847 && SET_DEST (body) == pc_rtx
2848 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2849 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2850 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2851 {
2852 /* This function may alter the contents of its argument
2853 and clear some of the cc_status.flags bits.
2854 It may also return 1 meaning condition now always true
2855 or -1 meaning condition now always false
2856 or 2 meaning condition nontrivial but altered. */
2857 int result = alter_cond (XEXP (SET_SRC (body), 0));
2858 /* If condition now has fixed value, replace the IF_THEN_ELSE
2859 with its then-operand or its else-operand. */
2860 if (result == 1)
2861 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2862 if (result == -1)
2863 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2864
2865 /* The jump is now either unconditional or a no-op.
2866 If it has become a no-op, don't try to output it.
2867 (It would not be recognized.) */
2868 if (SET_SRC (body) == pc_rtx)
2869 {
2870 delete_insn (insn);
2871 break;
2872 }
2873 else if (ANY_RETURN_P (SET_SRC (body)))
2874 /* Replace (set (pc) (return)) with (return). */
2875 PATTERN (insn) = body = SET_SRC (body);
2876
2877 /* Rerecognize the instruction if it has changed. */
2878 if (result != 0)
2879 INSN_CODE (insn) = -1;
2880 }
2881
2882 /* If this is a conditional trap, maybe modify it if the cc's
2883 are in a nonstandard state so that it accomplishes the same
2884 thing that it would do straightforwardly if the cc's were
2885 set up normally. */
2886 if (cc_status.flags != 0
2887 && NONJUMP_INSN_P (insn)
2888 && GET_CODE (body) == TRAP_IF
2889 && COMPARISON_P (TRAP_CONDITION (body))
2890 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2891 {
2892 /* This function may alter the contents of its argument
2893 and clear some of the cc_status.flags bits.
2894 It may also return 1 meaning condition now always true
2895 or -1 meaning condition now always false
2896 or 2 meaning condition nontrivial but altered. */
2897 int result = alter_cond (TRAP_CONDITION (body));
2898
2899 /* If TRAP_CONDITION has become always false, delete the
2900 instruction. */
2901 if (result == -1)
2902 {
2903 delete_insn (insn);
2904 break;
2905 }
2906
2907 /* If TRAP_CONDITION has become always true, replace
2908 TRAP_CONDITION with const_true_rtx. */
2909 if (result == 1)
2910 TRAP_CONDITION (body) = const_true_rtx;
2911
2912 /* Rerecognize the instruction if it has changed. */
2913 if (result != 0)
2914 INSN_CODE (insn) = -1;
2915 }
2916
2917 /* Make same adjustments to instructions that examine the
2918 condition codes without jumping and instructions that
2919 handle conditional moves (if this machine has either one). */
2920
2921 if (cc_status.flags != 0
2922 && set != 0)
2923 {
2924 rtx cond_rtx, then_rtx, else_rtx;
2925
2926 if (!JUMP_P (insn)
2927 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2928 {
2929 cond_rtx = XEXP (SET_SRC (set), 0);
2930 then_rtx = XEXP (SET_SRC (set), 1);
2931 else_rtx = XEXP (SET_SRC (set), 2);
2932 }
2933 else
2934 {
2935 cond_rtx = SET_SRC (set);
2936 then_rtx = const_true_rtx;
2937 else_rtx = const0_rtx;
2938 }
2939
2940 if (COMPARISON_P (cond_rtx)
2941 && XEXP (cond_rtx, 0) == cc0_rtx)
2942 {
2943 int result;
2944 result = alter_cond (cond_rtx);
2945 if (result == 1)
2946 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2947 else if (result == -1)
2948 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2949 else if (result == 2)
2950 INSN_CODE (insn) = -1;
2951 if (SET_DEST (set) == SET_SRC (set))
2952 delete_insn (insn);
2953 }
2954 }
2955
2956 #endif
2957
2958 /* Do machine-specific peephole optimizations if desired. */
2959
2960 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2961 {
2962 rtx_insn *next = peephole (insn);
2963 /* When peepholing, if there were notes within the peephole,
2964 emit them before the peephole. */
2965 if (next != 0 && next != NEXT_INSN (insn))
2966 {
2967 rtx_insn *note, *prev = PREV_INSN (insn);
2968
2969 for (note = NEXT_INSN (insn); note != next;
2970 note = NEXT_INSN (note))
2971 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2972
2973 /* Put the notes in the proper position for a later
2974 rescan. For example, the SH target can do this
2975 when generating a far jump in a delayed branch
2976 sequence. */
2977 note = NEXT_INSN (insn);
2978 SET_PREV_INSN (note) = prev;
2979 SET_NEXT_INSN (prev) = note;
2980 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2981 SET_PREV_INSN (insn) = PREV_INSN (next);
2982 SET_NEXT_INSN (insn) = next;
2983 SET_PREV_INSN (next) = insn;
2984 }
2985
2986 /* PEEPHOLE might have changed this. */
2987 body = PATTERN (insn);
2988 }
2989
2990 /* Try to recognize the instruction.
2991 If successful, verify that the operands satisfy the
2992 constraints for the instruction. Crash if they don't,
2993 since `reload' should have changed them so that they do. */
2994
2995 insn_code_number = recog_memoized (insn);
2996 cleanup_subreg_operands (insn);
2997
2998 /* Dump the insn in the assembly for debugging (-dAP).
2999 If the final dump is requested as slim RTL, dump slim
3000 RTL to the assembly file also. */
3001 if (flag_dump_rtl_in_asm)
3002 {
3003 print_rtx_head = ASM_COMMENT_START;
3004 if (! (dump_flags & TDF_SLIM))
3005 print_rtl_single (asm_out_file, insn);
3006 else
3007 dump_insn_slim (asm_out_file, insn);
3008 print_rtx_head = "";
3009 }
3010
3011 if (! constrain_operands_cached (insn, 1))
3012 fatal_insn_not_found (insn);
3013
3014 /* Some target machines need to prescan each insn before
3015 it is output. */
3016
3017 #ifdef FINAL_PRESCAN_INSN
3018 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3019 #endif
3020
3021 if (targetm.have_conditional_execution ()
3022 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3023 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3024
3025 #if HAVE_cc0
3026 cc_prev_status = cc_status;
3027
3028 /* Update `cc_status' for this instruction.
3029 The instruction's output routine may change it further.
3030 If the output routine for a jump insn needs to depend
3031 on the cc status, it should look at cc_prev_status. */
3032
3033 NOTICE_UPDATE_CC (body, insn);
3034 #endif
3035
3036 current_output_insn = debug_insn = insn;
3037
3038 /* Find the proper template for this insn. */
3039 templ = get_insn_template (insn_code_number, insn);
3040
3041 /* If the C code returns 0, it means that it is a jump insn
3042 which follows a deleted test insn, and that test insn
3043 needs to be reinserted. */
3044 if (templ == 0)
3045 {
3046 rtx_insn *prev;
3047
3048 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3049
3050 /* We have already processed the notes between the setter and
3051 the user. Make sure we don't process them again, this is
3052 particularly important if one of the notes is a block
3053 scope note or an EH note. */
3054 for (prev = insn;
3055 prev != last_ignored_compare;
3056 prev = PREV_INSN (prev))
3057 {
3058 if (NOTE_P (prev))
3059 delete_insn (prev); /* Use delete_note. */
3060 }
3061
3062 return prev;
3063 }
3064
3065 /* If the template is the string "#", it means that this insn must
3066 be split. */
3067 if (templ[0] == '#' && templ[1] == '\0')
3068 {
3069 rtx_insn *new_rtx = try_split (body, insn, 0);
3070
3071 /* If we didn't split the insn, go away. */
3072 if (new_rtx == insn && PATTERN (new_rtx) == body)
3073 fatal_insn ("could not split insn", insn);
3074
3075 /* If we have a length attribute, this instruction should have
3076 been split in shorten_branches, to ensure that we would have
3077 valid length info for the splitees. */
3078 gcc_assert (!HAVE_ATTR_length);
3079
3080 return new_rtx;
3081 }
3082
3083 /* ??? This will put the directives in the wrong place if
3084 get_insn_template outputs assembly directly. However calling it
3085 before get_insn_template breaks if the insns is split. */
3086 if (targetm.asm_out.unwind_emit_before_insn
3087 && targetm.asm_out.unwind_emit)
3088 targetm.asm_out.unwind_emit (asm_out_file, insn);
3089
3090 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3091 if (call_insn != NULL)
3092 {
3093 rtx x = call_from_call_insn (call_insn);
3094 x = XEXP (x, 0);
3095 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3096 {
3097 tree t;
3098 x = XEXP (x, 0);
3099 t = SYMBOL_REF_DECL (x);
3100 if (t)
3101 assemble_external (t);
3102 }
3103 }
3104
3105 /* Output assembler code from the template. */
3106 output_asm_insn (templ, recog_data.operand);
3107
3108 /* Some target machines need to postscan each insn after
3109 it is output. */
3110 if (targetm.asm_out.final_postscan_insn)
3111 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3112 recog_data.n_operands);
3113
3114 if (!targetm.asm_out.unwind_emit_before_insn
3115 && targetm.asm_out.unwind_emit)
3116 targetm.asm_out.unwind_emit (asm_out_file, insn);
3117
3118 /* Let the debug info back-end know about this call. We do this only
3119 after the instruction has been emitted because labels that may be
3120 created to reference the call instruction must appear after it. */
3121 if ((debug_variable_location_views || call_insn != NULL)
3122 && !DECL_IGNORED_P (current_function_decl))
3123 debug_hooks->var_location (insn);
3124
3125 current_output_insn = debug_insn = 0;
3126 }
3127 }
3128 return NEXT_INSN (insn);
3129 }
3130
3131 /* This is a wrapper around final_scan_insn_1 that allows ports to
3132 call it recursively without a known value for SEEN. The value is
3133 saved at the outermost call, and recovered for recursive calls.
3134 Recursive calls MUST pass NULL, or the same pointer if they can
3135 otherwise get to it. */
3136
3137 rtx_insn *
3138 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3139 int nopeepholes, int *seen)
3140 {
3141 static int *enclosing_seen;
3142 static int recursion_counter;
3143
3144 gcc_assert (seen || recursion_counter);
3145 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3146
3147 if (!recursion_counter++)
3148 enclosing_seen = seen;
3149 else if (!seen)
3150 seen = enclosing_seen;
3151
3152 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3153
3154 if (!--recursion_counter)
3155 enclosing_seen = NULL;
3156
3157 return ret;
3158 }
3159
3160 \f
3161
3162 /* Map DECLs to instance discriminators. This is allocated and
3163 defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS.
3164 Mappings from this table are saved and restored for LTO, so
3165 link-time compilation will have this map set, at least in
3166 partitions containing at least one DECL with an associated instance
3167 discriminator. */
3168
3169 decl_to_instance_map_t *decl_to_instance_map;
3170
3171 /* Return the instance number assigned to DECL. */
3172
3173 static inline int
3174 map_decl_to_instance (const_tree decl)
3175 {
3176 int *inst;
3177
3178 if (!decl_to_instance_map || !decl || !DECL_P (decl))
3179 return 0;
3180
3181 inst = decl_to_instance_map->get (decl);
3182
3183 if (!inst)
3184 return 0;
3185
3186 return *inst;
3187 }
3188
3189 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */
3190
3191 static inline int
3192 compute_discriminator (location_t loc)
3193 {
3194 int discriminator;
3195
3196 if (!decl_to_instance_map)
3197 discriminator = bb_discriminator;
3198 else
3199 {
3200 tree block = LOCATION_BLOCK (loc);
3201
3202 while (block && TREE_CODE (block) == BLOCK
3203 && !inlined_function_outer_scope_p (block))
3204 block = BLOCK_SUPERCONTEXT (block);
3205
3206 tree decl;
3207
3208 if (!block)
3209 decl = current_function_decl;
3210 else if (DECL_P (block))
3211 decl = block;
3212 else
3213 decl = block_ultimate_origin (block);
3214
3215 discriminator = map_decl_to_instance (decl);
3216 }
3217
3218 return discriminator;
3219 }
3220
3221 /* Return whether a source line note needs to be emitted before INSN.
3222 Sets IS_STMT to TRUE if the line should be marked as a possible
3223 breakpoint location. */
3224
3225 static bool
3226 notice_source_line (rtx_insn *insn, bool *is_stmt)
3227 {
3228 const char *filename;
3229 int linenum, columnnum;
3230
3231 if (NOTE_MARKER_P (insn))
3232 {
3233 location_t loc = NOTE_MARKER_LOCATION (insn);
3234 expanded_location xloc = expand_location (loc);
3235 if (xloc.line == 0)
3236 {
3237 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3238 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3239 return false;
3240 }
3241 filename = xloc.file;
3242 linenum = xloc.line;
3243 columnnum = xloc.column;
3244 discriminator = compute_discriminator (loc);
3245 force_source_line = true;
3246 }
3247 else if (override_filename)
3248 {
3249 filename = override_filename;
3250 linenum = override_linenum;
3251 columnnum = override_columnnum;
3252 discriminator = override_discriminator;
3253 }
3254 else if (INSN_HAS_LOCATION (insn))
3255 {
3256 expanded_location xloc = insn_location (insn);
3257 filename = xloc.file;
3258 linenum = xloc.line;
3259 columnnum = xloc.column;
3260 discriminator = compute_discriminator (INSN_LOCATION (insn));
3261 }
3262 else
3263 {
3264 filename = NULL;
3265 linenum = 0;
3266 columnnum = 0;
3267 discriminator = 0;
3268 }
3269
3270 if (filename == NULL)
3271 return false;
3272
3273 if (force_source_line
3274 || filename != last_filename
3275 || last_linenum != linenum
3276 || (debug_column_info && last_columnnum != columnnum))
3277 {
3278 force_source_line = false;
3279 last_filename = filename;
3280 last_linenum = linenum;
3281 last_columnnum = columnnum;
3282 last_discriminator = discriminator;
3283 if (is_stmt)
3284 *is_stmt = true;
3285 high_block_linenum = MAX (last_linenum, high_block_linenum);
3286 high_function_linenum = MAX (last_linenum, high_function_linenum);
3287 return true;
3288 }
3289
3290 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3291 {
3292 /* If the discriminator changed, but the line number did not,
3293 output the line table entry with is_stmt false so the
3294 debugger does not treat this as a breakpoint location. */
3295 last_discriminator = discriminator;
3296 if (is_stmt)
3297 *is_stmt = false;
3298 return true;
3299 }
3300
3301 return false;
3302 }
3303 \f
3304 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3305 directly to the desired hard register. */
3306
3307 void
3308 cleanup_subreg_operands (rtx_insn *insn)
3309 {
3310 int i;
3311 bool changed = false;
3312 extract_insn_cached (insn);
3313 for (i = 0; i < recog_data.n_operands; i++)
3314 {
3315 /* The following test cannot use recog_data.operand when testing
3316 for a SUBREG: the underlying object might have been changed
3317 already if we are inside a match_operator expression that
3318 matches the else clause. Instead we test the underlying
3319 expression directly. */
3320 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3321 {
3322 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3323 changed = true;
3324 }
3325 else if (GET_CODE (recog_data.operand[i]) == PLUS
3326 || GET_CODE (recog_data.operand[i]) == MULT
3327 || MEM_P (recog_data.operand[i]))
3328 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3329 }
3330
3331 for (i = 0; i < recog_data.n_dups; i++)
3332 {
3333 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3334 {
3335 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3336 changed = true;
3337 }
3338 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3339 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3340 || MEM_P (*recog_data.dup_loc[i]))
3341 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3342 }
3343 if (changed)
3344 df_insn_rescan (insn);
3345 }
3346
3347 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3348 the thing it is a subreg of. Do it anyway if FINAL_P. */
3349
3350 rtx
3351 alter_subreg (rtx *xp, bool final_p)
3352 {
3353 rtx x = *xp;
3354 rtx y = SUBREG_REG (x);
3355
3356 /* simplify_subreg does not remove subreg from volatile references.
3357 We are required to. */
3358 if (MEM_P (y))
3359 {
3360 poly_int64 offset = SUBREG_BYTE (x);
3361
3362 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3363 contains 0 instead of the proper offset. See simplify_subreg. */
3364 if (paradoxical_subreg_p (x))
3365 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3366
3367 if (final_p)
3368 *xp = adjust_address (y, GET_MODE (x), offset);
3369 else
3370 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3371 }
3372 else if (REG_P (y) && HARD_REGISTER_P (y))
3373 {
3374 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3375 SUBREG_BYTE (x));
3376
3377 if (new_rtx != 0)
3378 *xp = new_rtx;
3379 else if (final_p && REG_P (y))
3380 {
3381 /* Simplify_subreg can't handle some REG cases, but we have to. */
3382 unsigned int regno;
3383 poly_int64 offset;
3384
3385 regno = subreg_regno (x);
3386 if (subreg_lowpart_p (x))
3387 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3388 else
3389 offset = SUBREG_BYTE (x);
3390 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3391 }
3392 }
3393
3394 return *xp;
3395 }
3396
3397 /* Do alter_subreg on all the SUBREGs contained in X. */
3398
3399 static rtx
3400 walk_alter_subreg (rtx *xp, bool *changed)
3401 {
3402 rtx x = *xp;
3403 switch (GET_CODE (x))
3404 {
3405 case PLUS:
3406 case MULT:
3407 case AND:
3408 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3409 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3410 break;
3411
3412 case MEM:
3413 case ZERO_EXTEND:
3414 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3415 break;
3416
3417 case SUBREG:
3418 *changed = true;
3419 return alter_subreg (xp, true);
3420
3421 default:
3422 break;
3423 }
3424
3425 return *xp;
3426 }
3427 \f
3428 #if HAVE_cc0
3429
3430 /* Given BODY, the body of a jump instruction, alter the jump condition
3431 as required by the bits that are set in cc_status.flags.
3432 Not all of the bits there can be handled at this level in all cases.
3433
3434 The value is normally 0.
3435 1 means that the condition has become always true.
3436 -1 means that the condition has become always false.
3437 2 means that COND has been altered. */
3438
3439 static int
3440 alter_cond (rtx cond)
3441 {
3442 int value = 0;
3443
3444 if (cc_status.flags & CC_REVERSED)
3445 {
3446 value = 2;
3447 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3448 }
3449
3450 if (cc_status.flags & CC_INVERTED)
3451 {
3452 value = 2;
3453 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3454 }
3455
3456 if (cc_status.flags & CC_NOT_POSITIVE)
3457 switch (GET_CODE (cond))
3458 {
3459 case LE:
3460 case LEU:
3461 case GEU:
3462 /* Jump becomes unconditional. */
3463 return 1;
3464
3465 case GT:
3466 case GTU:
3467 case LTU:
3468 /* Jump becomes no-op. */
3469 return -1;
3470
3471 case GE:
3472 PUT_CODE (cond, EQ);
3473 value = 2;
3474 break;
3475
3476 case LT:
3477 PUT_CODE (cond, NE);
3478 value = 2;
3479 break;
3480
3481 default:
3482 break;
3483 }
3484
3485 if (cc_status.flags & CC_NOT_NEGATIVE)
3486 switch (GET_CODE (cond))
3487 {
3488 case GE:
3489 case GEU:
3490 /* Jump becomes unconditional. */
3491 return 1;
3492
3493 case LT:
3494 case LTU:
3495 /* Jump becomes no-op. */
3496 return -1;
3497
3498 case LE:
3499 case LEU:
3500 PUT_CODE (cond, EQ);
3501 value = 2;
3502 break;
3503
3504 case GT:
3505 case GTU:
3506 PUT_CODE (cond, NE);
3507 value = 2;
3508 break;
3509
3510 default:
3511 break;
3512 }
3513
3514 if (cc_status.flags & CC_NO_OVERFLOW)
3515 switch (GET_CODE (cond))
3516 {
3517 case GEU:
3518 /* Jump becomes unconditional. */
3519 return 1;
3520
3521 case LEU:
3522 PUT_CODE (cond, EQ);
3523 value = 2;
3524 break;
3525
3526 case GTU:
3527 PUT_CODE (cond, NE);
3528 value = 2;
3529 break;
3530
3531 case LTU:
3532 /* Jump becomes no-op. */
3533 return -1;
3534
3535 default:
3536 break;
3537 }
3538
3539 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3540 switch (GET_CODE (cond))
3541 {
3542 default:
3543 gcc_unreachable ();
3544
3545 case NE:
3546 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3547 value = 2;
3548 break;
3549
3550 case EQ:
3551 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3552 value = 2;
3553 break;
3554 }
3555
3556 if (cc_status.flags & CC_NOT_SIGNED)
3557 /* The flags are valid if signed condition operators are converted
3558 to unsigned. */
3559 switch (GET_CODE (cond))
3560 {
3561 case LE:
3562 PUT_CODE (cond, LEU);
3563 value = 2;
3564 break;
3565
3566 case LT:
3567 PUT_CODE (cond, LTU);
3568 value = 2;
3569 break;
3570
3571 case GT:
3572 PUT_CODE (cond, GTU);
3573 value = 2;
3574 break;
3575
3576 case GE:
3577 PUT_CODE (cond, GEU);
3578 value = 2;
3579 break;
3580
3581 default:
3582 break;
3583 }
3584
3585 return value;
3586 }
3587 #endif
3588 \f
3589 /* Report inconsistency between the assembler template and the operands.
3590 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3591
3592 void
3593 output_operand_lossage (const char *cmsgid, ...)
3594 {
3595 char *fmt_string;
3596 char *new_message;
3597 const char *pfx_str;
3598 va_list ap;
3599
3600 va_start (ap, cmsgid);
3601
3602 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3603 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3604 new_message = xvasprintf (fmt_string, ap);
3605
3606 if (this_is_asm_operands)
3607 error_for_asm (this_is_asm_operands, "%s", new_message);
3608 else
3609 internal_error ("%s", new_message);
3610
3611 free (fmt_string);
3612 free (new_message);
3613 va_end (ap);
3614 }
3615 \f
3616 /* Output of assembler code from a template, and its subroutines. */
3617
3618 /* Annotate the assembly with a comment describing the pattern and
3619 alternative used. */
3620
3621 static void
3622 output_asm_name (void)
3623 {
3624 if (debug_insn)
3625 {
3626 fprintf (asm_out_file, "\t%s %d\t",
3627 ASM_COMMENT_START, INSN_UID (debug_insn));
3628
3629 fprintf (asm_out_file, "[c=%d",
3630 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3631 if (HAVE_ATTR_length)
3632 fprintf (asm_out_file, " l=%d",
3633 get_attr_length (debug_insn));
3634 fprintf (asm_out_file, "] ");
3635
3636 int num = INSN_CODE (debug_insn);
3637 fprintf (asm_out_file, "%s", insn_data[num].name);
3638 if (insn_data[num].n_alternatives > 1)
3639 fprintf (asm_out_file, "/%d", which_alternative);
3640
3641 /* Clear this so only the first assembler insn
3642 of any rtl insn will get the special comment for -dp. */
3643 debug_insn = 0;
3644 }
3645 }
3646
3647 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3648 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3649 corresponds to the address of the object and 0 if to the object. */
3650
3651 static tree
3652 get_mem_expr_from_op (rtx op, int *paddressp)
3653 {
3654 tree expr;
3655 int inner_addressp;
3656
3657 *paddressp = 0;
3658
3659 if (REG_P (op))
3660 return REG_EXPR (op);
3661 else if (!MEM_P (op))
3662 return 0;
3663
3664 if (MEM_EXPR (op) != 0)
3665 return MEM_EXPR (op);
3666
3667 /* Otherwise we have an address, so indicate it and look at the address. */
3668 *paddressp = 1;
3669 op = XEXP (op, 0);
3670
3671 /* First check if we have a decl for the address, then look at the right side
3672 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3673 But don't allow the address to itself be indirect. */
3674 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3675 return expr;
3676 else if (GET_CODE (op) == PLUS
3677 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3678 return expr;
3679
3680 while (UNARY_P (op)
3681 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3682 op = XEXP (op, 0);
3683
3684 expr = get_mem_expr_from_op (op, &inner_addressp);
3685 return inner_addressp ? 0 : expr;
3686 }
3687
3688 /* Output operand names for assembler instructions. OPERANDS is the
3689 operand vector, OPORDER is the order to write the operands, and NOPS
3690 is the number of operands to write. */
3691
3692 static void
3693 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3694 {
3695 int wrote = 0;
3696 int i;
3697
3698 for (i = 0; i < nops; i++)
3699 {
3700 int addressp;
3701 rtx op = operands[oporder[i]];
3702 tree expr = get_mem_expr_from_op (op, &addressp);
3703
3704 fprintf (asm_out_file, "%c%s",
3705 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3706 wrote = 1;
3707 if (expr)
3708 {
3709 fprintf (asm_out_file, "%s",
3710 addressp ? "*" : "");
3711 print_mem_expr (asm_out_file, expr);
3712 wrote = 1;
3713 }
3714 else if (REG_P (op) && ORIGINAL_REGNO (op)
3715 && ORIGINAL_REGNO (op) != REGNO (op))
3716 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3717 }
3718 }
3719
3720 #ifdef ASSEMBLER_DIALECT
3721 /* Helper function to parse assembler dialects in the asm string.
3722 This is called from output_asm_insn and asm_fprintf. */
3723 static const char *
3724 do_assembler_dialects (const char *p, int *dialect)
3725 {
3726 char c = *(p - 1);
3727
3728 switch (c)
3729 {
3730 case '{':
3731 {
3732 int i;
3733
3734 if (*dialect)
3735 output_operand_lossage ("nested assembly dialect alternatives");
3736 else
3737 *dialect = 1;
3738
3739 /* If we want the first dialect, do nothing. Otherwise, skip
3740 DIALECT_NUMBER of strings ending with '|'. */
3741 for (i = 0; i < dialect_number; i++)
3742 {
3743 while (*p && *p != '}')
3744 {
3745 if (*p == '|')
3746 {
3747 p++;
3748 break;
3749 }
3750
3751 /* Skip over any character after a percent sign. */
3752 if (*p == '%')
3753 p++;
3754 if (*p)
3755 p++;
3756 }
3757
3758 if (*p == '}')
3759 break;
3760 }
3761
3762 if (*p == '\0')
3763 output_operand_lossage ("unterminated assembly dialect alternative");
3764 }
3765 break;
3766
3767 case '|':
3768 if (*dialect)
3769 {
3770 /* Skip to close brace. */
3771 do
3772 {
3773 if (*p == '\0')
3774 {
3775 output_operand_lossage ("unterminated assembly dialect alternative");
3776 break;
3777 }
3778
3779 /* Skip over any character after a percent sign. */
3780 if (*p == '%' && p[1])
3781 {
3782 p += 2;
3783 continue;
3784 }
3785
3786 if (*p++ == '}')
3787 break;
3788 }
3789 while (1);
3790
3791 *dialect = 0;
3792 }
3793 else
3794 putc (c, asm_out_file);
3795 break;
3796
3797 case '}':
3798 if (! *dialect)
3799 putc (c, asm_out_file);
3800 *dialect = 0;
3801 break;
3802 default:
3803 gcc_unreachable ();
3804 }
3805
3806 return p;
3807 }
3808 #endif
3809
3810 /* Output text from TEMPLATE to the assembler output file,
3811 obeying %-directions to substitute operands taken from
3812 the vector OPERANDS.
3813
3814 %N (for N a digit) means print operand N in usual manner.
3815 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3816 and print the label name with no punctuation.
3817 %cN means require operand N to be a constant
3818 and print the constant expression with no punctuation.
3819 %aN means expect operand N to be a memory address
3820 (not a memory reference!) and print a reference
3821 to that address.
3822 %nN means expect operand N to be a constant
3823 and print a constant expression for minus the value
3824 of the operand, with no other punctuation. */
3825
3826 void
3827 output_asm_insn (const char *templ, rtx *operands)
3828 {
3829 const char *p;
3830 int c;
3831 #ifdef ASSEMBLER_DIALECT
3832 int dialect = 0;
3833 #endif
3834 int oporder[MAX_RECOG_OPERANDS];
3835 char opoutput[MAX_RECOG_OPERANDS];
3836 int ops = 0;
3837
3838 /* An insn may return a null string template
3839 in a case where no assembler code is needed. */
3840 if (*templ == 0)
3841 return;
3842
3843 memset (opoutput, 0, sizeof opoutput);
3844 p = templ;
3845 putc ('\t', asm_out_file);
3846
3847 #ifdef ASM_OUTPUT_OPCODE
3848 ASM_OUTPUT_OPCODE (asm_out_file, p);
3849 #endif
3850
3851 while ((c = *p++))
3852 switch (c)
3853 {
3854 case '\n':
3855 if (flag_verbose_asm)
3856 output_asm_operand_names (operands, oporder, ops);
3857 if (flag_print_asm_name)
3858 output_asm_name ();
3859
3860 ops = 0;
3861 memset (opoutput, 0, sizeof opoutput);
3862
3863 putc (c, asm_out_file);
3864 #ifdef ASM_OUTPUT_OPCODE
3865 while ((c = *p) == '\t')
3866 {
3867 putc (c, asm_out_file);
3868 p++;
3869 }
3870 ASM_OUTPUT_OPCODE (asm_out_file, p);
3871 #endif
3872 break;
3873
3874 #ifdef ASSEMBLER_DIALECT
3875 case '{':
3876 case '}':
3877 case '|':
3878 p = do_assembler_dialects (p, &dialect);
3879 break;
3880 #endif
3881
3882 case '%':
3883 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3884 if ASSEMBLER_DIALECT defined and these characters have a special
3885 meaning as dialect delimiters.*/
3886 if (*p == '%'
3887 #ifdef ASSEMBLER_DIALECT
3888 || *p == '{' || *p == '}' || *p == '|'
3889 #endif
3890 )
3891 {
3892 putc (*p, asm_out_file);
3893 p++;
3894 }
3895 /* %= outputs a number which is unique to each insn in the entire
3896 compilation. This is useful for making local labels that are
3897 referred to more than once in a given insn. */
3898 else if (*p == '=')
3899 {
3900 p++;
3901 fprintf (asm_out_file, "%d", insn_counter);
3902 }
3903 /* % followed by a letter and some digits
3904 outputs an operand in a special way depending on the letter.
3905 Letters `acln' are implemented directly.
3906 Other letters are passed to `output_operand' so that
3907 the TARGET_PRINT_OPERAND hook can define them. */
3908 else if (ISALPHA (*p))
3909 {
3910 int letter = *p++;
3911 unsigned long opnum;
3912 char *endptr;
3913
3914 opnum = strtoul (p, &endptr, 10);
3915
3916 if (endptr == p)
3917 output_operand_lossage ("operand number missing "
3918 "after %%-letter");
3919 else if (this_is_asm_operands && opnum >= insn_noperands)
3920 output_operand_lossage ("operand number out of range");
3921 else if (letter == 'l')
3922 output_asm_label (operands[opnum]);
3923 else if (letter == 'a')
3924 output_address (VOIDmode, operands[opnum]);
3925 else if (letter == 'c')
3926 {
3927 if (CONSTANT_ADDRESS_P (operands[opnum]))
3928 output_addr_const (asm_out_file, operands[opnum]);
3929 else
3930 output_operand (operands[opnum], 'c');
3931 }
3932 else if (letter == 'n')
3933 {
3934 if (CONST_INT_P (operands[opnum]))
3935 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3936 - INTVAL (operands[opnum]));
3937 else
3938 {
3939 putc ('-', asm_out_file);
3940 output_addr_const (asm_out_file, operands[opnum]);
3941 }
3942 }
3943 else
3944 output_operand (operands[opnum], letter);
3945
3946 if (!opoutput[opnum])
3947 oporder[ops++] = opnum;
3948 opoutput[opnum] = 1;
3949
3950 p = endptr;
3951 c = *p;
3952 }
3953 /* % followed by a digit outputs an operand the default way. */
3954 else if (ISDIGIT (*p))
3955 {
3956 unsigned long opnum;
3957 char *endptr;
3958
3959 opnum = strtoul (p, &endptr, 10);
3960 if (this_is_asm_operands && opnum >= insn_noperands)
3961 output_operand_lossage ("operand number out of range");
3962 else
3963 output_operand (operands[opnum], 0);
3964
3965 if (!opoutput[opnum])
3966 oporder[ops++] = opnum;
3967 opoutput[opnum] = 1;
3968
3969 p = endptr;
3970 c = *p;
3971 }
3972 /* % followed by punctuation: output something for that
3973 punctuation character alone, with no operand. The
3974 TARGET_PRINT_OPERAND hook decides what is actually done. */
3975 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3976 output_operand (NULL_RTX, *p++);
3977 else
3978 output_operand_lossage ("invalid %%-code");
3979 break;
3980
3981 default:
3982 putc (c, asm_out_file);
3983 }
3984
3985 /* Try to keep the asm a bit more readable. */
3986 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3987 putc ('\t', asm_out_file);
3988
3989 /* Write out the variable names for operands, if we know them. */
3990 if (flag_verbose_asm)
3991 output_asm_operand_names (operands, oporder, ops);
3992 if (flag_print_asm_name)
3993 output_asm_name ();
3994
3995 putc ('\n', asm_out_file);
3996 }
3997 \f
3998 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3999
4000 void
4001 output_asm_label (rtx x)
4002 {
4003 char buf[256];
4004
4005 if (GET_CODE (x) == LABEL_REF)
4006 x = label_ref_label (x);
4007 if (LABEL_P (x)
4008 || (NOTE_P (x)
4009 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4010 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4011 else
4012 output_operand_lossage ("'%%l' operand isn't a label");
4013
4014 assemble_name (asm_out_file, buf);
4015 }
4016
4017 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4018
4019 void
4020 mark_symbol_refs_as_used (rtx x)
4021 {
4022 subrtx_iterator::array_type array;
4023 FOR_EACH_SUBRTX (iter, array, x, ALL)
4024 {
4025 const_rtx x = *iter;
4026 if (GET_CODE (x) == SYMBOL_REF)
4027 if (tree t = SYMBOL_REF_DECL (x))
4028 assemble_external (t);
4029 }
4030 }
4031
4032 /* Print operand X using machine-dependent assembler syntax.
4033 CODE is a non-digit that preceded the operand-number in the % spec,
4034 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4035 between the % and the digits.
4036 When CODE is a non-letter, X is 0.
4037
4038 The meanings of the letters are machine-dependent and controlled
4039 by TARGET_PRINT_OPERAND. */
4040
4041 void
4042 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4043 {
4044 if (x && GET_CODE (x) == SUBREG)
4045 x = alter_subreg (&x, true);
4046
4047 /* X must not be a pseudo reg. */
4048 if (!targetm.no_register_allocation)
4049 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4050
4051 targetm.asm_out.print_operand (asm_out_file, x, code);
4052
4053 if (x == NULL_RTX)
4054 return;
4055
4056 mark_symbol_refs_as_used (x);
4057 }
4058
4059 /* Print a memory reference operand for address X using
4060 machine-dependent assembler syntax. */
4061
4062 void
4063 output_address (machine_mode mode, rtx x)
4064 {
4065 bool changed = false;
4066 walk_alter_subreg (&x, &changed);
4067 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4068 }
4069 \f
4070 /* Print an integer constant expression in assembler syntax.
4071 Addition and subtraction are the only arithmetic
4072 that may appear in these expressions. */
4073
4074 void
4075 output_addr_const (FILE *file, rtx x)
4076 {
4077 char buf[256];
4078
4079 restart:
4080 switch (GET_CODE (x))
4081 {
4082 case PC:
4083 putc ('.', file);
4084 break;
4085
4086 case SYMBOL_REF:
4087 if (SYMBOL_REF_DECL (x))
4088 assemble_external (SYMBOL_REF_DECL (x));
4089 #ifdef ASM_OUTPUT_SYMBOL_REF
4090 ASM_OUTPUT_SYMBOL_REF (file, x);
4091 #else
4092 assemble_name (file, XSTR (x, 0));
4093 #endif
4094 break;
4095
4096 case LABEL_REF:
4097 x = label_ref_label (x);
4098 /* Fall through. */
4099 case CODE_LABEL:
4100 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4101 #ifdef ASM_OUTPUT_LABEL_REF
4102 ASM_OUTPUT_LABEL_REF (file, buf);
4103 #else
4104 assemble_name (file, buf);
4105 #endif
4106 break;
4107
4108 case CONST_INT:
4109 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4110 break;
4111
4112 case CONST:
4113 /* This used to output parentheses around the expression,
4114 but that does not work on the 386 (either ATT or BSD assembler). */
4115 output_addr_const (file, XEXP (x, 0));
4116 break;
4117
4118 case CONST_WIDE_INT:
4119 /* We do not know the mode here so we have to use a round about
4120 way to build a wide-int to get it printed properly. */
4121 {
4122 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4123 CONST_WIDE_INT_NUNITS (x),
4124 CONST_WIDE_INT_NUNITS (x)
4125 * HOST_BITS_PER_WIDE_INT,
4126 false);
4127 print_decs (w, file);
4128 }
4129 break;
4130
4131 case CONST_DOUBLE:
4132 if (CONST_DOUBLE_AS_INT_P (x))
4133 {
4134 /* We can use %d if the number is one word and positive. */
4135 if (CONST_DOUBLE_HIGH (x))
4136 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4137 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4138 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4139 else if (CONST_DOUBLE_LOW (x) < 0)
4140 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4141 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4142 else
4143 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4144 }
4145 else
4146 /* We can't handle floating point constants;
4147 PRINT_OPERAND must handle them. */
4148 output_operand_lossage ("floating constant misused");
4149 break;
4150
4151 case CONST_FIXED:
4152 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4153 break;
4154
4155 case PLUS:
4156 /* Some assemblers need integer constants to appear last (eg masm). */
4157 if (CONST_INT_P (XEXP (x, 0)))
4158 {
4159 output_addr_const (file, XEXP (x, 1));
4160 if (INTVAL (XEXP (x, 0)) >= 0)
4161 fprintf (file, "+");
4162 output_addr_const (file, XEXP (x, 0));
4163 }
4164 else
4165 {
4166 output_addr_const (file, XEXP (x, 0));
4167 if (!CONST_INT_P (XEXP (x, 1))
4168 || INTVAL (XEXP (x, 1)) >= 0)
4169 fprintf (file, "+");
4170 output_addr_const (file, XEXP (x, 1));
4171 }
4172 break;
4173
4174 case MINUS:
4175 /* Avoid outputting things like x-x or x+5-x,
4176 since some assemblers can't handle that. */
4177 x = simplify_subtraction (x);
4178 if (GET_CODE (x) != MINUS)
4179 goto restart;
4180
4181 output_addr_const (file, XEXP (x, 0));
4182 fprintf (file, "-");
4183 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4184 || GET_CODE (XEXP (x, 1)) == PC
4185 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4186 output_addr_const (file, XEXP (x, 1));
4187 else
4188 {
4189 fputs (targetm.asm_out.open_paren, file);
4190 output_addr_const (file, XEXP (x, 1));
4191 fputs (targetm.asm_out.close_paren, file);
4192 }
4193 break;
4194
4195 case ZERO_EXTEND:
4196 case SIGN_EXTEND:
4197 case SUBREG:
4198 case TRUNCATE:
4199 output_addr_const (file, XEXP (x, 0));
4200 break;
4201
4202 default:
4203 if (targetm.asm_out.output_addr_const_extra (file, x))
4204 break;
4205
4206 output_operand_lossage ("invalid expression as operand");
4207 }
4208 }
4209 \f
4210 /* Output a quoted string. */
4211
4212 void
4213 output_quoted_string (FILE *asm_file, const char *string)
4214 {
4215 #ifdef OUTPUT_QUOTED_STRING
4216 OUTPUT_QUOTED_STRING (asm_file, string);
4217 #else
4218 char c;
4219
4220 putc ('\"', asm_file);
4221 while ((c = *string++) != 0)
4222 {
4223 if (ISPRINT (c))
4224 {
4225 if (c == '\"' || c == '\\')
4226 putc ('\\', asm_file);
4227 putc (c, asm_file);
4228 }
4229 else
4230 fprintf (asm_file, "\\%03o", (unsigned char) c);
4231 }
4232 putc ('\"', asm_file);
4233 #endif
4234 }
4235 \f
4236 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4237
4238 void
4239 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4240 {
4241 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4242 if (value == 0)
4243 putc ('0', f);
4244 else
4245 {
4246 char *p = buf + sizeof (buf);
4247 do
4248 *--p = "0123456789abcdef"[value % 16];
4249 while ((value /= 16) != 0);
4250 *--p = 'x';
4251 *--p = '0';
4252 fwrite (p, 1, buf + sizeof (buf) - p, f);
4253 }
4254 }
4255
4256 /* Internal function that prints an unsigned long in decimal in reverse.
4257 The output string IS NOT null-terminated. */
4258
4259 static int
4260 sprint_ul_rev (char *s, unsigned long value)
4261 {
4262 int i = 0;
4263 do
4264 {
4265 s[i] = "0123456789"[value % 10];
4266 value /= 10;
4267 i++;
4268 /* alternate version, without modulo */
4269 /* oldval = value; */
4270 /* value /= 10; */
4271 /* s[i] = "0123456789" [oldval - 10*value]; */
4272 /* i++ */
4273 }
4274 while (value != 0);
4275 return i;
4276 }
4277
4278 /* Write an unsigned long as decimal to a file, fast. */
4279
4280 void
4281 fprint_ul (FILE *f, unsigned long value)
4282 {
4283 /* python says: len(str(2**64)) == 20 */
4284 char s[20];
4285 int i;
4286
4287 i = sprint_ul_rev (s, value);
4288
4289 /* It's probably too small to bother with string reversal and fputs. */
4290 do
4291 {
4292 i--;
4293 putc (s[i], f);
4294 }
4295 while (i != 0);
4296 }
4297
4298 /* Write an unsigned long as decimal to a string, fast.
4299 s must be wide enough to not overflow, at least 21 chars.
4300 Returns the length of the string (without terminating '\0'). */
4301
4302 int
4303 sprint_ul (char *s, unsigned long value)
4304 {
4305 int len = sprint_ul_rev (s, value);
4306 s[len] = '\0';
4307
4308 std::reverse (s, s + len);
4309 return len;
4310 }
4311
4312 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4313 %R prints the value of REGISTER_PREFIX.
4314 %L prints the value of LOCAL_LABEL_PREFIX.
4315 %U prints the value of USER_LABEL_PREFIX.
4316 %I prints the value of IMMEDIATE_PREFIX.
4317 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4318 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4319
4320 We handle alternate assembler dialects here, just like output_asm_insn. */
4321
4322 void
4323 asm_fprintf (FILE *file, const char *p, ...)
4324 {
4325 char buf[10];
4326 char *q, c;
4327 #ifdef ASSEMBLER_DIALECT
4328 int dialect = 0;
4329 #endif
4330 va_list argptr;
4331
4332 va_start (argptr, p);
4333
4334 buf[0] = '%';
4335
4336 while ((c = *p++))
4337 switch (c)
4338 {
4339 #ifdef ASSEMBLER_DIALECT
4340 case '{':
4341 case '}':
4342 case '|':
4343 p = do_assembler_dialects (p, &dialect);
4344 break;
4345 #endif
4346
4347 case '%':
4348 c = *p++;
4349 q = &buf[1];
4350 while (strchr ("-+ #0", c))
4351 {
4352 *q++ = c;
4353 c = *p++;
4354 }
4355 while (ISDIGIT (c) || c == '.')
4356 {
4357 *q++ = c;
4358 c = *p++;
4359 }
4360 switch (c)
4361 {
4362 case '%':
4363 putc ('%', file);
4364 break;
4365
4366 case 'd': case 'i': case 'u':
4367 case 'x': case 'X': case 'o':
4368 case 'c':
4369 *q++ = c;
4370 *q = 0;
4371 fprintf (file, buf, va_arg (argptr, int));
4372 break;
4373
4374 case 'w':
4375 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4376 'o' cases, but we do not check for those cases. It
4377 means that the value is a HOST_WIDE_INT, which may be
4378 either `long' or `long long'. */
4379 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4380 q += strlen (HOST_WIDE_INT_PRINT);
4381 *q++ = *p++;
4382 *q = 0;
4383 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4384 break;
4385
4386 case 'l':
4387 *q++ = c;
4388 #ifdef HAVE_LONG_LONG
4389 if (*p == 'l')
4390 {
4391 *q++ = *p++;
4392 *q++ = *p++;
4393 *q = 0;
4394 fprintf (file, buf, va_arg (argptr, long long));
4395 }
4396 else
4397 #endif
4398 {
4399 *q++ = *p++;
4400 *q = 0;
4401 fprintf (file, buf, va_arg (argptr, long));
4402 }
4403
4404 break;
4405
4406 case 's':
4407 *q++ = c;
4408 *q = 0;
4409 fprintf (file, buf, va_arg (argptr, char *));
4410 break;
4411
4412 case 'O':
4413 #ifdef ASM_OUTPUT_OPCODE
4414 ASM_OUTPUT_OPCODE (asm_out_file, p);
4415 #endif
4416 break;
4417
4418 case 'R':
4419 #ifdef REGISTER_PREFIX
4420 fprintf (file, "%s", REGISTER_PREFIX);
4421 #endif
4422 break;
4423
4424 case 'I':
4425 #ifdef IMMEDIATE_PREFIX
4426 fprintf (file, "%s", IMMEDIATE_PREFIX);
4427 #endif
4428 break;
4429
4430 case 'L':
4431 #ifdef LOCAL_LABEL_PREFIX
4432 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4433 #endif
4434 break;
4435
4436 case 'U':
4437 fputs (user_label_prefix, file);
4438 break;
4439
4440 #ifdef ASM_FPRINTF_EXTENSIONS
4441 /* Uppercase letters are reserved for general use by asm_fprintf
4442 and so are not available to target specific code. In order to
4443 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4444 they are defined here. As they get turned into real extensions
4445 to asm_fprintf they should be removed from this list. */
4446 case 'A': case 'B': case 'C': case 'D': case 'E':
4447 case 'F': case 'G': case 'H': case 'J': case 'K':
4448 case 'M': case 'N': case 'P': case 'Q': case 'S':
4449 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4450 break;
4451
4452 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4453 #endif
4454 default:
4455 gcc_unreachable ();
4456 }
4457 break;
4458
4459 default:
4460 putc (c, file);
4461 }
4462 va_end (argptr);
4463 }
4464 \f
4465 /* Return nonzero if this function has no function calls. */
4466
4467 int
4468 leaf_function_p (void)
4469 {
4470 rtx_insn *insn;
4471
4472 /* Ensure we walk the entire function body. */
4473 gcc_assert (!in_sequence_p ());
4474
4475 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4476 functions even if they call mcount. */
4477 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4478 return 0;
4479
4480 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4481 {
4482 if (CALL_P (insn)
4483 && ! SIBLING_CALL_P (insn))
4484 return 0;
4485 if (NONJUMP_INSN_P (insn)
4486 && GET_CODE (PATTERN (insn)) == SEQUENCE
4487 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4488 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4489 return 0;
4490 }
4491
4492 return 1;
4493 }
4494
4495 /* Return 1 if branch is a forward branch.
4496 Uses insn_shuid array, so it works only in the final pass. May be used by
4497 output templates to customary add branch prediction hints.
4498 */
4499 int
4500 final_forward_branch_p (rtx_insn *insn)
4501 {
4502 int insn_id, label_id;
4503
4504 gcc_assert (uid_shuid);
4505 insn_id = INSN_SHUID (insn);
4506 label_id = INSN_SHUID (JUMP_LABEL (insn));
4507 /* We've hit some insns that does not have id information available. */
4508 gcc_assert (insn_id && label_id);
4509 return insn_id < label_id;
4510 }
4511
4512 /* On some machines, a function with no call insns
4513 can run faster if it doesn't create its own register window.
4514 When output, the leaf function should use only the "output"
4515 registers. Ordinarily, the function would be compiled to use
4516 the "input" registers to find its arguments; it is a candidate
4517 for leaf treatment if it uses only the "input" registers.
4518 Leaf function treatment means renumbering so the function
4519 uses the "output" registers instead. */
4520
4521 #ifdef LEAF_REGISTERS
4522
4523 /* Return 1 if this function uses only the registers that can be
4524 safely renumbered. */
4525
4526 int
4527 only_leaf_regs_used (void)
4528 {
4529 int i;
4530 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4531
4532 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4533 if ((df_regs_ever_live_p (i) || global_regs[i])
4534 && ! permitted_reg_in_leaf_functions[i])
4535 return 0;
4536
4537 if (crtl->uses_pic_offset_table
4538 && pic_offset_table_rtx != 0
4539 && REG_P (pic_offset_table_rtx)
4540 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4541 return 0;
4542
4543 return 1;
4544 }
4545
4546 /* Scan all instructions and renumber all registers into those
4547 available in leaf functions. */
4548
4549 static void
4550 leaf_renumber_regs (rtx_insn *first)
4551 {
4552 rtx_insn *insn;
4553
4554 /* Renumber only the actual patterns.
4555 The reg-notes can contain frame pointer refs,
4556 and renumbering them could crash, and should not be needed. */
4557 for (insn = first; insn; insn = NEXT_INSN (insn))
4558 if (INSN_P (insn))
4559 leaf_renumber_regs_insn (PATTERN (insn));
4560 }
4561
4562 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4563 available in leaf functions. */
4564
4565 void
4566 leaf_renumber_regs_insn (rtx in_rtx)
4567 {
4568 int i, j;
4569 const char *format_ptr;
4570
4571 if (in_rtx == 0)
4572 return;
4573
4574 /* Renumber all input-registers into output-registers.
4575 renumbered_regs would be 1 for an output-register;
4576 they */
4577
4578 if (REG_P (in_rtx))
4579 {
4580 int newreg;
4581
4582 /* Don't renumber the same reg twice. */
4583 if (in_rtx->used)
4584 return;
4585
4586 newreg = REGNO (in_rtx);
4587 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4588 to reach here as part of a REG_NOTE. */
4589 if (newreg >= FIRST_PSEUDO_REGISTER)
4590 {
4591 in_rtx->used = 1;
4592 return;
4593 }
4594 newreg = LEAF_REG_REMAP (newreg);
4595 gcc_assert (newreg >= 0);
4596 df_set_regs_ever_live (REGNO (in_rtx), false);
4597 df_set_regs_ever_live (newreg, true);
4598 SET_REGNO (in_rtx, newreg);
4599 in_rtx->used = 1;
4600 return;
4601 }
4602
4603 if (INSN_P (in_rtx))
4604 {
4605 /* Inside a SEQUENCE, we find insns.
4606 Renumber just the patterns of these insns,
4607 just as we do for the top-level insns. */
4608 leaf_renumber_regs_insn (PATTERN (in_rtx));
4609 return;
4610 }
4611
4612 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4613
4614 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4615 switch (*format_ptr++)
4616 {
4617 case 'e':
4618 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4619 break;
4620
4621 case 'E':
4622 if (XVEC (in_rtx, i) != NULL)
4623 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4624 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4625 break;
4626
4627 case 'S':
4628 case 's':
4629 case '0':
4630 case 'i':
4631 case 'w':
4632 case 'p':
4633 case 'n':
4634 case 'u':
4635 break;
4636
4637 default:
4638 gcc_unreachable ();
4639 }
4640 }
4641 #endif
4642 \f
4643 /* Turn the RTL into assembly. */
4644 static unsigned int
4645 rest_of_handle_final (void)
4646 {
4647 const char *fnname = get_fnname_from_decl (current_function_decl);
4648
4649 /* Turn debug markers into notes if the var-tracking pass has not
4650 been invoked. */
4651 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4652 delete_vta_debug_insns (false);
4653
4654 assemble_start_function (current_function_decl, fnname);
4655 rtx_insn *first = get_insns ();
4656 int seen = 0;
4657 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4658 final_1 (first, asm_out_file, seen, optimize);
4659 if (flag_ipa_ra
4660 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4661 /* Functions with naked attributes are supported only with basic asm
4662 statements in the body, thus for supported use cases the information
4663 on clobbered registers is not available. */
4664 && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4665 collect_fn_hard_reg_usage ();
4666 final_end_function ();
4667
4668 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4669 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4670 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4671 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4672
4673 assemble_end_function (current_function_decl, fnname);
4674
4675 /* Free up reg info memory. */
4676 free_reg_info ();
4677
4678 if (! quiet_flag)
4679 fflush (asm_out_file);
4680
4681 /* Write DBX symbols if requested. */
4682
4683 /* Note that for those inline functions where we don't initially
4684 know for certain that we will be generating an out-of-line copy,
4685 the first invocation of this routine (rest_of_compilation) will
4686 skip over this code by doing a `goto exit_rest_of_compilation;'.
4687 Later on, wrapup_global_declarations will (indirectly) call
4688 rest_of_compilation again for those inline functions that need
4689 to have out-of-line copies generated. During that call, we
4690 *will* be routed past here. */
4691
4692 timevar_push (TV_SYMOUT);
4693 if (!DECL_IGNORED_P (current_function_decl))
4694 debug_hooks->function_decl (current_function_decl);
4695 timevar_pop (TV_SYMOUT);
4696
4697 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4698 DECL_INITIAL (current_function_decl) = error_mark_node;
4699
4700 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4701 && targetm.have_ctors_dtors)
4702 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4703 decl_init_priority_lookup
4704 (current_function_decl));
4705 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4706 && targetm.have_ctors_dtors)
4707 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4708 decl_fini_priority_lookup
4709 (current_function_decl));
4710 return 0;
4711 }
4712
4713 namespace {
4714
4715 const pass_data pass_data_final =
4716 {
4717 RTL_PASS, /* type */
4718 "final", /* name */
4719 OPTGROUP_NONE, /* optinfo_flags */
4720 TV_FINAL, /* tv_id */
4721 0, /* properties_required */
4722 0, /* properties_provided */
4723 0, /* properties_destroyed */
4724 0, /* todo_flags_start */
4725 0, /* todo_flags_finish */
4726 };
4727
4728 class pass_final : public rtl_opt_pass
4729 {
4730 public:
4731 pass_final (gcc::context *ctxt)
4732 : rtl_opt_pass (pass_data_final, ctxt)
4733 {}
4734
4735 /* opt_pass methods: */
4736 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4737
4738 }; // class pass_final
4739
4740 } // anon namespace
4741
4742 rtl_opt_pass *
4743 make_pass_final (gcc::context *ctxt)
4744 {
4745 return new pass_final (ctxt);
4746 }
4747
4748
4749 static unsigned int
4750 rest_of_handle_shorten_branches (void)
4751 {
4752 /* Shorten branches. */
4753 shorten_branches (get_insns ());
4754 return 0;
4755 }
4756
4757 namespace {
4758
4759 const pass_data pass_data_shorten_branches =
4760 {
4761 RTL_PASS, /* type */
4762 "shorten", /* name */
4763 OPTGROUP_NONE, /* optinfo_flags */
4764 TV_SHORTEN_BRANCH, /* tv_id */
4765 0, /* properties_required */
4766 0, /* properties_provided */
4767 0, /* properties_destroyed */
4768 0, /* todo_flags_start */
4769 0, /* todo_flags_finish */
4770 };
4771
4772 class pass_shorten_branches : public rtl_opt_pass
4773 {
4774 public:
4775 pass_shorten_branches (gcc::context *ctxt)
4776 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4777 {}
4778
4779 /* opt_pass methods: */
4780 virtual unsigned int execute (function *)
4781 {
4782 return rest_of_handle_shorten_branches ();
4783 }
4784
4785 }; // class pass_shorten_branches
4786
4787 } // anon namespace
4788
4789 rtl_opt_pass *
4790 make_pass_shorten_branches (gcc::context *ctxt)
4791 {
4792 return new pass_shorten_branches (ctxt);
4793 }
4794
4795
4796 static unsigned int
4797 rest_of_clean_state (void)
4798 {
4799 rtx_insn *insn, *next;
4800 FILE *final_output = NULL;
4801 int save_unnumbered = flag_dump_unnumbered;
4802 int save_noaddr = flag_dump_noaddr;
4803
4804 if (flag_dump_final_insns)
4805 {
4806 final_output = fopen (flag_dump_final_insns, "a");
4807 if (!final_output)
4808 {
4809 error ("could not open final insn dump file %qs: %m",
4810 flag_dump_final_insns);
4811 flag_dump_final_insns = NULL;
4812 }
4813 else
4814 {
4815 flag_dump_noaddr = flag_dump_unnumbered = 1;
4816 if (flag_compare_debug_opt || flag_compare_debug)
4817 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4818 dump_function_header (final_output, current_function_decl,
4819 dump_flags);
4820 final_insns_dump_p = true;
4821
4822 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4823 if (LABEL_P (insn))
4824 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4825 else
4826 {
4827 if (NOTE_P (insn))
4828 set_block_for_insn (insn, NULL);
4829 INSN_UID (insn) = 0;
4830 }
4831 }
4832 }
4833
4834 /* It is very important to decompose the RTL instruction chain here:
4835 debug information keeps pointing into CODE_LABEL insns inside the function
4836 body. If these remain pointing to the other insns, we end up preserving
4837 whole RTL chain and attached detailed debug info in memory. */
4838 for (insn = get_insns (); insn; insn = next)
4839 {
4840 next = NEXT_INSN (insn);
4841 SET_NEXT_INSN (insn) = NULL;
4842 SET_PREV_INSN (insn) = NULL;
4843
4844 rtx_insn *call_insn = insn;
4845 if (NONJUMP_INSN_P (call_insn)
4846 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4847 {
4848 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4849 call_insn = seq->insn (0);
4850 }
4851 if (CALL_P (call_insn))
4852 {
4853 rtx note
4854 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4855 if (note)
4856 remove_note (call_insn, note);
4857 }
4858
4859 if (final_output
4860 && (!NOTE_P (insn)
4861 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4862 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4863 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4864 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4865 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4866 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4867 print_rtl_single (final_output, insn);
4868 }
4869
4870 if (final_output)
4871 {
4872 flag_dump_noaddr = save_noaddr;
4873 flag_dump_unnumbered = save_unnumbered;
4874 final_insns_dump_p = false;
4875
4876 if (fclose (final_output))
4877 {
4878 error ("could not close final insn dump file %qs: %m",
4879 flag_dump_final_insns);
4880 flag_dump_final_insns = NULL;
4881 }
4882 }
4883
4884 flag_rerun_cse_after_global_opts = 0;
4885 reload_completed = 0;
4886 epilogue_completed = 0;
4887 #ifdef STACK_REGS
4888 regstack_completed = 0;
4889 #endif
4890
4891 /* Clear out the insn_length contents now that they are no
4892 longer valid. */
4893 init_insn_lengths ();
4894
4895 /* Show no temporary slots allocated. */
4896 init_temp_slots ();
4897
4898 free_bb_for_insn ();
4899
4900 if (cfun->gimple_df)
4901 delete_tree_ssa (cfun);
4902
4903 /* We can reduce stack alignment on call site only when we are sure that
4904 the function body just produced will be actually used in the final
4905 executable. */
4906 if (flag_ipa_stack_alignment
4907 && decl_binds_to_current_def_p (current_function_decl))
4908 {
4909 unsigned int pref = crtl->preferred_stack_boundary;
4910 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4911 pref = crtl->stack_alignment_needed;
4912 cgraph_node::rtl_info (current_function_decl)
4913 ->preferred_incoming_stack_boundary = pref;
4914 }
4915
4916 /* Make sure volatile mem refs aren't considered valid operands for
4917 arithmetic insns. We must call this here if this is a nested inline
4918 function, since the above code leaves us in the init_recog state,
4919 and the function context push/pop code does not save/restore volatile_ok.
4920
4921 ??? Maybe it isn't necessary for expand_start_function to call this
4922 anymore if we do it here? */
4923
4924 init_recog_no_volatile ();
4925
4926 /* We're done with this function. Free up memory if we can. */
4927 free_after_parsing (cfun);
4928 free_after_compilation (cfun);
4929 return 0;
4930 }
4931
4932 namespace {
4933
4934 const pass_data pass_data_clean_state =
4935 {
4936 RTL_PASS, /* type */
4937 "*clean_state", /* name */
4938 OPTGROUP_NONE, /* optinfo_flags */
4939 TV_FINAL, /* tv_id */
4940 0, /* properties_required */
4941 0, /* properties_provided */
4942 PROP_rtl, /* properties_destroyed */
4943 0, /* todo_flags_start */
4944 0, /* todo_flags_finish */
4945 };
4946
4947 class pass_clean_state : public rtl_opt_pass
4948 {
4949 public:
4950 pass_clean_state (gcc::context *ctxt)
4951 : rtl_opt_pass (pass_data_clean_state, ctxt)
4952 {}
4953
4954 /* opt_pass methods: */
4955 virtual unsigned int execute (function *)
4956 {
4957 return rest_of_clean_state ();
4958 }
4959
4960 }; // class pass_clean_state
4961
4962 } // anon namespace
4963
4964 rtl_opt_pass *
4965 make_pass_clean_state (gcc::context *ctxt)
4966 {
4967 return new pass_clean_state (ctxt);
4968 }
4969
4970 /* Return true if INSN is a call to the current function. */
4971
4972 static bool
4973 self_recursive_call_p (rtx_insn *insn)
4974 {
4975 tree fndecl = get_call_fndecl (insn);
4976 return (fndecl == current_function_decl
4977 && decl_binds_to_current_def_p (fndecl));
4978 }
4979
4980 /* Collect hard register usage for the current function. */
4981
4982 static void
4983 collect_fn_hard_reg_usage (void)
4984 {
4985 rtx_insn *insn;
4986 #ifdef STACK_REGS
4987 int i;
4988 #endif
4989 struct cgraph_rtl_info *node;
4990 HARD_REG_SET function_used_regs;
4991
4992 /* ??? To be removed when all the ports have been fixed. */
4993 if (!targetm.call_fusage_contains_non_callee_clobbers)
4994 return;
4995
4996 /* Be conservative - mark fixed and global registers as used. */
4997 function_used_regs = fixed_reg_set;
4998
4999 #ifdef STACK_REGS
5000 /* Handle STACK_REGS conservatively, since the df-framework does not
5001 provide accurate information for them. */
5002
5003 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5004 SET_HARD_REG_BIT (function_used_regs, i);
5005 #endif
5006
5007 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5008 {
5009 HARD_REG_SET insn_used_regs;
5010
5011 if (!NONDEBUG_INSN_P (insn))
5012 continue;
5013
5014 if (CALL_P (insn)
5015 && !self_recursive_call_p (insn))
5016 function_used_regs
5017 |= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
5018
5019 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5020 function_used_regs |= insn_used_regs;
5021
5022 if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (),
5023 function_used_regs))
5024 return;
5025 }
5026
5027 /* Mask out fully-saved registers, so that they don't affect equality
5028 comparisons between function_abis. */
5029 function_used_regs &= crtl->abi->full_and_partial_reg_clobbers ();
5030
5031 node = cgraph_node::rtl_info (current_function_decl);
5032 gcc_assert (node != NULL);
5033
5034 node->function_used_regs = function_used_regs;
5035 }