]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
Conditionally compile support for --enable-mapped_location.
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
87
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
93
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
98
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
103
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
107
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Highest line number in current block. */
127 static int high_block_linenum;
128
129 /* Likewise for function. */
130 static int high_function_linenum;
131
132 /* Filename of last NOTE. */
133 static const char *last_filename;
134
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
141
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
144
145 /* Compare optimization flag. */
146
147 static rtx last_ignored_compare = 0;
148
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152 static int insn_counter = 0;
153
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159 CC_STATUS cc_status;
160
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164 CC_STATUS cc_prev_status;
165 #endif
166
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
187
188 int frame_pointer_needed;
189
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191
192 static int block_depth;
193
194 /* Nonzero if have enabled APP processing of our assembler output. */
195
196 static int app_on;
197
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201 rtx final_sequence;
202
203 #ifdef ASSEMBLER_DIALECT
204
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
208
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
213
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
238 \f
239 /* Initialize data in final at the beginning of a compilation. */
240
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
243 {
244 app_on = 0;
245 final_sequence = 0;
246
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
250 }
251
252 /* Default target function prologue and epilogue assembler output.
253
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 {
260 }
261
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271 void
272 app_enable (void)
273 {
274 if (! app_on)
275 {
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
278 }
279 }
280
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284 void
285 app_disable (void)
286 {
287 if (app_on)
288 {
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
291 }
292 }
293 \f
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298 #ifdef DELAY_SLOTS
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 #endif
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 varray_type insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374 }
375
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379 int
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
381 {
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
425
426 default:
427 break;
428 }
429
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
495
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
499
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
503
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
507
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
511
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
515 {
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
521
522 }
523
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
526
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
530
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
533 static int min_labelno, max_labelno;
534
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
540
541 /* For the benefit of port specific code do this also as a function. */
542
543 int
544 label_to_alignment (rtx label)
545 {
546 return LABEL_TO_ALIGNMENT (label);
547 }
548
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
569
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
577
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
580 {
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603 }
604
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
616
617 int
618 insn_current_reference_address (rtx branch)
619 {
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (GET_CODE (branch) != JUMP_INSN)
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 {
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
644 }
645 else
646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651 }
652 #endif /* HAVE_ATTR_length */
653 \f
654 void
655 compute_alignments (void)
656 {
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680
681 if (GET_CODE (label) != CODE_LABEL
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
687 for (e = bb->pred; e; e = e->pred_next)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
699
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
704
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 {
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
713 {
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
716 }
717 }
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
724 {
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
735 }
736 \f
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
747
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 {
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
764
765 #endif
766
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
769
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
772
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
774
775 if (max_labelno != max_label_num ())
776 {
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
780
781 max_labelno = max_label_num ();
782
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
785
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
788
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
803
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
820 else if (GET_CODE (insn) == CODE_LABEL)
821 {
822 rtx next;
823
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && GET_CODE (next) == JUMP_INSN)
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
860 }
861 else if (GET_CODE (insn) == BARRIER)
862 {
863 rtx label;
864
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (GET_CODE (label) == CODE_LABEL)
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
875 break;
876 }
877 }
878 }
879 #ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
887
888 varying_length = xcalloc (max_uid, sizeof (char));
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
896
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
901 {
902 int uid = INSN_UID (seq);
903 int log;
904 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
913 }
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
925 {
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
931 if (GET_CODE (insn) != JUMP_INSN
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
967 }
968 }
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
970
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
975 {
976 uid = INSN_UID (insn);
977
978 insn_lengths[uid] = 0;
979
980 if (GET_CODE (insn) == CODE_LABEL)
981 {
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
984 {
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
988 }
989 }
990
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
992
993 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
994 || GET_CODE (insn) == CODE_LABEL)
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
998
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1001 {
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1009 }
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1013 {
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1025 {
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1029
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1036
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1039 {
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1045 }
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1049 }
1050 }
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1052 {
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1055 }
1056
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1063 }
1064
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1068
1069 while (something_changed)
1070 {
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1076 {
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1082
1083 uid = INSN_UID (insn);
1084
1085 if (GET_CODE (insn) == CODE_LABEL)
1086 {
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1089 {
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1095 }
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1100 }
1101
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1105
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1108
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && GET_CODE (insn) == JUMP_INSN
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1112 {
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1124
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1127
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1135 {
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1138 }
1139
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1157 {
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1163 {
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1166 }
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1169 }
1170 else
1171 {
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1173 {
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1176 }
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1179 }
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1183 {
1184 if (! flags.base_after_vec && flags.max_after_vec)
1185 {
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1188 }
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1191 }
1192 else
1193 {
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1195 {
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1198 }
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1201 }
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1206 {
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1212 }
1213
1214 continue;
1215 }
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1217
1218 if (! (varying_length[uid]))
1219 {
1220 if (GET_CODE (insn) == INSN
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1222 {
1223 int i;
1224
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1227 {
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1230
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1232
1233 insn_current_address += insn_lengths[inner_uid];
1234 }
1235 }
1236 else
1237 insn_current_address += insn_lengths[uid];
1238
1239 continue;
1240 }
1241
1242 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1243 {
1244 int i;
1245
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1249 {
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1253
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1255
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1262
1263 if (inner_length != insn_lengths[inner_uid])
1264 {
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1267 }
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1270 }
1271 }
1272 else
1273 {
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1276 }
1277
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1284
1285 if (new_length != insn_lengths[uid])
1286 {
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1289 }
1290 }
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1294 }
1295
1296 free (varying_length);
1297
1298 #endif /* HAVE_ATTR_length */
1299 }
1300
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1305
1306 static int
1307 asm_insn_count (rtx body)
1308 {
1309 const char *template;
1310 int count = 1;
1311
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1316
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1320
1321 return count;
1322 }
1323 #endif
1324 \f
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1329
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1334
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1338 {
1339 block_depth = 0;
1340
1341 this_is_asm_operands = 0;
1342
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1345
1346 high_block_linenum = high_function_linenum = last_linenum;
1347
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1349
1350 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1354
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1359
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1366
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1371
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1375 {
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1383 }
1384
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1387
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1394 }
1395
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1398 {
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1403 }
1404
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1407 {
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1418
1419 if (! NO_PROFILE_COUNTERS)
1420 {
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1426 }
1427
1428 function_section (current_function_decl);
1429
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1434
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1441 {
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1443 }
1444 #endif
1445 #endif
1446
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1448
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1455 {
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1465 }
1466
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1470
1471 void
1472 final_end_function (void)
1473 {
1474 app_disable ();
1475
1476 (*debug_hooks->end_function) (high_function_linenum);
1477
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1481
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1484
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1490 }
1491 \f
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1494
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1502
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1505 {
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1509
1510 last_ignored_compare = 0;
1511
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1517 {
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1521 {
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif)
1529 )
1530 {
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1533 }
1534 last = insn;
1535 }
1536 }
1537 #endif
1538
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1540 {
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && GET_CODE (insn) == JUMP_INSN)
1547 {
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1550 {
1551 LABEL_REFS (lab) = insn;
1552 }
1553 }
1554 #endif
1555 }
1556
1557 init_recog ();
1558
1559 CC_STATUS_INIT;
1560
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1563 {
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1566 {
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (GET_CODE (insn) == NOTE)
1570 insn_current_address = -1;
1571 else
1572 abort ();
1573 }
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1577
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1579 }
1580 }
1581 \f
1582 const char *
1583 get_insn_template (int code, rtx insn)
1584 {
1585 switch (insn_data[code].output_format)
1586 {
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1595
1596 default:
1597 abort ();
1598 }
1599 }
1600
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1604
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1608 {
1609 const char *name = LABEL_NAME (insn);
1610
1611 switch (LABEL_KIND (insn))
1612 {
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1625
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1629 }
1630 }
1631
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1635
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1638 {
1639 rtx temp;
1640 int bb_note_count = 0;
1641
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1643 {
1644 if (GET_CODE (temp) == NOTE
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (GET_CODE (temp) == NOTE
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1649 {
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1653 }
1654 if (INSN_P (temp))
1655 return false;
1656 }
1657
1658 return false;
1659 }
1660
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1665
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1668
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1674
1675 rtx
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1679 {
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1683
1684 insn_counter++;
1685
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1690
1691 switch (GET_CODE (insn))
1692 {
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1696
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_LOOP_END_TOP_COND:
1703 case NOTE_INSN_LOOP_CONT:
1704 case NOTE_INSN_LOOP_VTOP:
1705 case NOTE_INSN_FUNCTION_END:
1706 case NOTE_INSN_REPEATED_LINE_NUMBER:
1707 case NOTE_INSN_EXPECTED_VALUE:
1708 break;
1709
1710 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1711
1712 /* The presence of this note indicates that this basic block
1713 belongs in the "cold" section of the .o file. If we are
1714 not already writing to the cold section we need to change
1715 to it. */
1716
1717 unlikely_text_section ();
1718 break;
1719
1720 case NOTE_INSN_BASIC_BLOCK:
1721
1722 /* If we are performing the optimization that partitions
1723 basic blocks into hot & cold sections of the .o file,
1724 then at the start of each new basic block, before
1725 beginning to write code for the basic block, we need to
1726 check to see whether the basic block belongs in the hot
1727 or cold section of the .o file, and change the section we
1728 are writing to appropriately. */
1729
1730 if (flag_reorder_blocks_and_partition
1731 && in_unlikely_text_section()
1732 && !scan_ahead_for_unlikely_executed_note (insn))
1733 text_section ();
1734
1735 #ifdef IA64_UNWIND_INFO
1736 IA64_UNWIND_EMIT (asm_out_file, insn);
1737 #endif
1738 if (flag_debug_asm)
1739 fprintf (asm_out_file, "\t%s basic block %d\n",
1740 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1741
1742 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1743 {
1744 *seen |= SEEN_EMITTED;
1745 last_filename = NULL;
1746 }
1747 else
1748 *seen |= SEEN_BB;
1749
1750 break;
1751
1752 case NOTE_INSN_EH_REGION_BEG:
1753 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1754 NOTE_EH_HANDLER (insn));
1755 break;
1756
1757 case NOTE_INSN_EH_REGION_END:
1758 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1759 NOTE_EH_HANDLER (insn));
1760 break;
1761
1762 case NOTE_INSN_PROLOGUE_END:
1763 targetm.asm_out.function_end_prologue (file);
1764 profile_after_prologue (file);
1765
1766 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1767 {
1768 *seen |= SEEN_EMITTED;
1769 last_filename = NULL;
1770 }
1771 else
1772 *seen |= SEEN_NOTE;
1773
1774 break;
1775
1776 case NOTE_INSN_EPILOGUE_BEG:
1777 targetm.asm_out.function_begin_epilogue (file);
1778 break;
1779
1780 case NOTE_INSN_FUNCTION_BEG:
1781 app_disable ();
1782 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1783
1784 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1785 {
1786 *seen |= SEEN_EMITTED;
1787 last_filename = NULL;
1788 }
1789 else
1790 *seen |= SEEN_NOTE;
1791
1792 break;
1793
1794 case NOTE_INSN_BLOCK_BEG:
1795 if (debug_info_level == DINFO_LEVEL_NORMAL
1796 || debug_info_level == DINFO_LEVEL_VERBOSE
1797 || write_symbols == DWARF_DEBUG
1798 || write_symbols == DWARF2_DEBUG
1799 || write_symbols == VMS_AND_DWARF2_DEBUG
1800 || write_symbols == VMS_DEBUG)
1801 {
1802 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1803
1804 app_disable ();
1805 ++block_depth;
1806 high_block_linenum = last_linenum;
1807
1808 /* Output debugging info about the symbol-block beginning. */
1809 (*debug_hooks->begin_block) (last_linenum, n);
1810
1811 /* Mark this block as output. */
1812 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1813 }
1814 break;
1815
1816 case NOTE_INSN_BLOCK_END:
1817 if (debug_info_level == DINFO_LEVEL_NORMAL
1818 || debug_info_level == DINFO_LEVEL_VERBOSE
1819 || write_symbols == DWARF_DEBUG
1820 || write_symbols == DWARF2_DEBUG
1821 || write_symbols == VMS_AND_DWARF2_DEBUG
1822 || write_symbols == VMS_DEBUG)
1823 {
1824 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1825
1826 app_disable ();
1827
1828 /* End of a symbol-block. */
1829 --block_depth;
1830 if (block_depth < 0)
1831 abort ();
1832
1833 (*debug_hooks->end_block) (high_block_linenum, n);
1834 }
1835 break;
1836
1837 case NOTE_INSN_DELETED_LABEL:
1838 /* Emit the label. We may have deleted the CODE_LABEL because
1839 the label could be proved to be unreachable, though still
1840 referenced (in the form of having its address taken. */
1841 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1842 break;
1843
1844 case NOTE_INSN_VAR_LOCATION:
1845 (*debug_hooks->var_location) (insn);
1846 break;
1847
1848 case 0:
1849 break;
1850
1851 default:
1852 if (NOTE_LINE_NUMBER (insn) <= 0)
1853 abort ();
1854 break;
1855 }
1856 break;
1857
1858 case BARRIER:
1859 #if defined (DWARF2_UNWIND_INFO)
1860 if (dwarf2out_do_frame ())
1861 dwarf2out_frame_debug (insn);
1862 #endif
1863 break;
1864
1865 case CODE_LABEL:
1866 /* The target port might emit labels in the output function for
1867 some insn, e.g. sh.c output_branchy_insn. */
1868 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1869 {
1870 int align = LABEL_TO_ALIGNMENT (insn);
1871 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1872 int max_skip = LABEL_TO_MAX_SKIP (insn);
1873 #endif
1874
1875 if (align && NEXT_INSN (insn))
1876 {
1877 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1878 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1879 #else
1880 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1881 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1882 #else
1883 ASM_OUTPUT_ALIGN (file, align);
1884 #endif
1885 #endif
1886 }
1887 }
1888 #ifdef HAVE_cc0
1889 CC_STATUS_INIT;
1890 /* If this label is reached from only one place, set the condition
1891 codes from the instruction just before the branch. */
1892
1893 /* Disabled because some insns set cc_status in the C output code
1894 and NOTICE_UPDATE_CC alone can set incorrect status. */
1895 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1896 {
1897 rtx jump = LABEL_REFS (insn);
1898 rtx barrier = prev_nonnote_insn (insn);
1899 rtx prev;
1900 /* If the LABEL_REFS field of this label has been set to point
1901 at a branch, the predecessor of the branch is a regular
1902 insn, and that branch is the only way to reach this label,
1903 set the condition codes based on the branch and its
1904 predecessor. */
1905 if (barrier && GET_CODE (barrier) == BARRIER
1906 && jump && GET_CODE (jump) == JUMP_INSN
1907 && (prev = prev_nonnote_insn (jump))
1908 && GET_CODE (prev) == INSN)
1909 {
1910 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1911 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1912 }
1913 }
1914 #endif
1915 if (prescan > 0)
1916 break;
1917
1918 if (LABEL_NAME (insn))
1919 (*debug_hooks->label) (insn);
1920
1921 /* If we are doing the optimization that partitions hot & cold
1922 basic blocks into separate sections of the .o file, we need
1923 to ensure the jump table ends up in the correct section... */
1924
1925 if (flag_reorder_blocks_and_partition)
1926 {
1927 rtx tmp_table, tmp_label;
1928 if (GET_CODE (insn) == CODE_LABEL
1929 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1930 {
1931 /* Do nothing; Do NOT change the current section. */
1932 }
1933 else if (scan_ahead_for_unlikely_executed_note (insn))
1934 unlikely_text_section ();
1935 else
1936 {
1937 if (in_unlikely_text_section ())
1938 text_section ();
1939 }
1940 }
1941
1942 if (app_on)
1943 {
1944 fputs (ASM_APP_OFF, file);
1945 app_on = 0;
1946 }
1947 if (NEXT_INSN (insn) != 0
1948 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1949 {
1950 rtx nextbody = PATTERN (NEXT_INSN (insn));
1951
1952 /* If this label is followed by a jump-table,
1953 make sure we put the label in the read-only section. Also
1954 possibly write the label and jump table together. */
1955
1956 if (GET_CODE (nextbody) == ADDR_VEC
1957 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1958 {
1959 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1960 /* In this case, the case vector is being moved by the
1961 target, so don't output the label at all. Leave that
1962 to the back end macros. */
1963 #else
1964 if (! JUMP_TABLES_IN_TEXT_SECTION)
1965 {
1966 int log_align;
1967
1968 readonly_data_section ();
1969
1970 #ifdef ADDR_VEC_ALIGN
1971 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1972 #else
1973 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1974 #endif
1975 ASM_OUTPUT_ALIGN (file, log_align);
1976 }
1977 else
1978 function_section (current_function_decl);
1979
1980 #ifdef ASM_OUTPUT_CASE_LABEL
1981 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1982 NEXT_INSN (insn));
1983 #else
1984 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1985 #endif
1986 #endif
1987 break;
1988 }
1989 }
1990 if (LABEL_ALT_ENTRY_P (insn))
1991 output_alternate_entry_point (file, insn);
1992 else
1993 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1994 break;
1995
1996 default:
1997 {
1998 rtx body = PATTERN (insn);
1999 int insn_code_number;
2000 const char *template;
2001 rtx note;
2002
2003 /* An INSN, JUMP_INSN or CALL_INSN.
2004 First check for special kinds that recog doesn't recognize. */
2005
2006 if (GET_CODE (body) == USE /* These are just declarations. */
2007 || GET_CODE (body) == CLOBBER)
2008 break;
2009
2010 #ifdef HAVE_cc0
2011 /* If there is a REG_CC_SETTER note on this insn, it means that
2012 the setting of the condition code was done in the delay slot
2013 of the insn that branched here. So recover the cc status
2014 from the insn that set it. */
2015
2016 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2017 if (note)
2018 {
2019 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2020 cc_prev_status = cc_status;
2021 }
2022 #endif
2023
2024 /* Detect insns that are really jump-tables
2025 and output them as such. */
2026
2027 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2028 {
2029 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2030 int vlen, idx;
2031 #endif
2032
2033 if (prescan > 0)
2034 break;
2035
2036 if (app_on)
2037 {
2038 fputs (ASM_APP_OFF, file);
2039 app_on = 0;
2040 }
2041
2042 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2043 if (GET_CODE (body) == ADDR_VEC)
2044 {
2045 #ifdef ASM_OUTPUT_ADDR_VEC
2046 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2047 #else
2048 abort ();
2049 #endif
2050 }
2051 else
2052 {
2053 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2054 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2055 #else
2056 abort ();
2057 #endif
2058 }
2059 #else
2060 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2061 for (idx = 0; idx < vlen; idx++)
2062 {
2063 if (GET_CODE (body) == ADDR_VEC)
2064 {
2065 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2066 ASM_OUTPUT_ADDR_VEC_ELT
2067 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2068 #else
2069 abort ();
2070 #endif
2071 }
2072 else
2073 {
2074 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2075 ASM_OUTPUT_ADDR_DIFF_ELT
2076 (file,
2077 body,
2078 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2079 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2080 #else
2081 abort ();
2082 #endif
2083 }
2084 }
2085 #ifdef ASM_OUTPUT_CASE_END
2086 ASM_OUTPUT_CASE_END (file,
2087 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2088 insn);
2089 #endif
2090 #endif
2091
2092 function_section (current_function_decl);
2093
2094 break;
2095 }
2096 /* Output this line note if it is the first or the last line
2097 note in a row. */
2098 if (notice_source_line (insn))
2099 {
2100 (*debug_hooks->source_line) (last_linenum, last_filename);
2101 }
2102
2103 if (GET_CODE (body) == ASM_INPUT)
2104 {
2105 const char *string = XSTR (body, 0);
2106
2107 /* There's no telling what that did to the condition codes. */
2108 CC_STATUS_INIT;
2109 if (prescan > 0)
2110 break;
2111
2112 if (string[0])
2113 {
2114 if (! app_on)
2115 {
2116 fputs (ASM_APP_ON, file);
2117 app_on = 1;
2118 }
2119 fprintf (asm_out_file, "\t%s\n", string);
2120 }
2121 break;
2122 }
2123
2124 /* Detect `asm' construct with operands. */
2125 if (asm_noperands (body) >= 0)
2126 {
2127 unsigned int noperands = asm_noperands (body);
2128 rtx *ops = alloca (noperands * sizeof (rtx));
2129 const char *string;
2130
2131 /* There's no telling what that did to the condition codes. */
2132 CC_STATUS_INIT;
2133 if (prescan > 0)
2134 break;
2135
2136 /* Get out the operand values. */
2137 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2138 /* Inhibit aborts on what would otherwise be compiler bugs. */
2139 insn_noperands = noperands;
2140 this_is_asm_operands = insn;
2141
2142 #ifdef FINAL_PRESCAN_INSN
2143 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2144 #endif
2145
2146 /* Output the insn using them. */
2147 if (string[0])
2148 {
2149 if (! app_on)
2150 {
2151 fputs (ASM_APP_ON, file);
2152 app_on = 1;
2153 }
2154 output_asm_insn (string, ops);
2155 }
2156
2157 this_is_asm_operands = 0;
2158 break;
2159 }
2160
2161 if (prescan <= 0 && app_on)
2162 {
2163 fputs (ASM_APP_OFF, file);
2164 app_on = 0;
2165 }
2166
2167 if (GET_CODE (body) == SEQUENCE)
2168 {
2169 /* A delayed-branch sequence */
2170 int i;
2171 rtx next;
2172
2173 if (prescan > 0)
2174 break;
2175 final_sequence = body;
2176
2177 /* Record the delay slots' frame information before the branch.
2178 This is needed for delayed calls: see execute_cfa_program(). */
2179 #if defined (DWARF2_UNWIND_INFO)
2180 if (dwarf2out_do_frame ())
2181 for (i = 1; i < XVECLEN (body, 0); i++)
2182 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2183 #endif
2184
2185 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2186 force the restoration of a comparison that was previously
2187 thought unnecessary. If that happens, cancel this sequence
2188 and cause that insn to be restored. */
2189
2190 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2191 if (next != XVECEXP (body, 0, 1))
2192 {
2193 final_sequence = 0;
2194 return next;
2195 }
2196
2197 for (i = 1; i < XVECLEN (body, 0); i++)
2198 {
2199 rtx insn = XVECEXP (body, 0, i);
2200 rtx next = NEXT_INSN (insn);
2201 /* We loop in case any instruction in a delay slot gets
2202 split. */
2203 do
2204 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2205 while (insn != next);
2206 }
2207 #ifdef DBR_OUTPUT_SEQEND
2208 DBR_OUTPUT_SEQEND (file);
2209 #endif
2210 final_sequence = 0;
2211
2212 /* If the insn requiring the delay slot was a CALL_INSN, the
2213 insns in the delay slot are actually executed before the
2214 called function. Hence we don't preserve any CC-setting
2215 actions in these insns and the CC must be marked as being
2216 clobbered by the function. */
2217 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2218 {
2219 CC_STATUS_INIT;
2220 }
2221 break;
2222 }
2223
2224 /* We have a real machine instruction as rtl. */
2225
2226 body = PATTERN (insn);
2227
2228 #ifdef HAVE_cc0
2229 set = single_set (insn);
2230
2231 /* Check for redundant test and compare instructions
2232 (when the condition codes are already set up as desired).
2233 This is done only when optimizing; if not optimizing,
2234 it should be possible for the user to alter a variable
2235 with the debugger in between statements
2236 and the next statement should reexamine the variable
2237 to compute the condition codes. */
2238
2239 if (optimize)
2240 {
2241 if (set
2242 && GET_CODE (SET_DEST (set)) == CC0
2243 && insn != last_ignored_compare)
2244 {
2245 if (GET_CODE (SET_SRC (set)) == SUBREG)
2246 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2247 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2248 {
2249 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2250 XEXP (SET_SRC (set), 0)
2251 = alter_subreg (&XEXP (SET_SRC (set), 0));
2252 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2253 XEXP (SET_SRC (set), 1)
2254 = alter_subreg (&XEXP (SET_SRC (set), 1));
2255 }
2256 if ((cc_status.value1 != 0
2257 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2258 || (cc_status.value2 != 0
2259 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2260 {
2261 /* Don't delete insn if it has an addressing side-effect. */
2262 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2263 /* or if anything in it is volatile. */
2264 && ! volatile_refs_p (PATTERN (insn)))
2265 {
2266 /* We don't really delete the insn; just ignore it. */
2267 last_ignored_compare = insn;
2268 break;
2269 }
2270 }
2271 }
2272 }
2273 #endif
2274
2275 #ifndef STACK_REGS
2276 /* Don't bother outputting obvious no-ops, even without -O.
2277 This optimization is fast and doesn't interfere with debugging.
2278 Don't do this if the insn is in a delay slot, since this
2279 will cause an improper number of delay insns to be written. */
2280 if (final_sequence == 0
2281 && prescan >= 0
2282 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2283 && REG_P (SET_SRC (body))
2284 && REG_P (SET_DEST (body))
2285 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2286 break;
2287 #endif
2288
2289 #ifdef HAVE_cc0
2290 /* If this is a conditional branch, maybe modify it
2291 if the cc's are in a nonstandard state
2292 so that it accomplishes the same thing that it would
2293 do straightforwardly if the cc's were set up normally. */
2294
2295 if (cc_status.flags != 0
2296 && GET_CODE (insn) == JUMP_INSN
2297 && GET_CODE (body) == SET
2298 && SET_DEST (body) == pc_rtx
2299 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2300 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2301 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2302 /* This is done during prescan; it is not done again
2303 in final scan when prescan has been done. */
2304 && prescan >= 0)
2305 {
2306 /* This function may alter the contents of its argument
2307 and clear some of the cc_status.flags bits.
2308 It may also return 1 meaning condition now always true
2309 or -1 meaning condition now always false
2310 or 2 meaning condition nontrivial but altered. */
2311 int result = alter_cond (XEXP (SET_SRC (body), 0));
2312 /* If condition now has fixed value, replace the IF_THEN_ELSE
2313 with its then-operand or its else-operand. */
2314 if (result == 1)
2315 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2316 if (result == -1)
2317 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2318
2319 /* The jump is now either unconditional or a no-op.
2320 If it has become a no-op, don't try to output it.
2321 (It would not be recognized.) */
2322 if (SET_SRC (body) == pc_rtx)
2323 {
2324 delete_insn (insn);
2325 break;
2326 }
2327 else if (GET_CODE (SET_SRC (body)) == RETURN)
2328 /* Replace (set (pc) (return)) with (return). */
2329 PATTERN (insn) = body = SET_SRC (body);
2330
2331 /* Rerecognize the instruction if it has changed. */
2332 if (result != 0)
2333 INSN_CODE (insn) = -1;
2334 }
2335
2336 /* Make same adjustments to instructions that examine the
2337 condition codes without jumping and instructions that
2338 handle conditional moves (if this machine has either one). */
2339
2340 if (cc_status.flags != 0
2341 && set != 0)
2342 {
2343 rtx cond_rtx, then_rtx, else_rtx;
2344
2345 if (GET_CODE (insn) != JUMP_INSN
2346 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2347 {
2348 cond_rtx = XEXP (SET_SRC (set), 0);
2349 then_rtx = XEXP (SET_SRC (set), 1);
2350 else_rtx = XEXP (SET_SRC (set), 2);
2351 }
2352 else
2353 {
2354 cond_rtx = SET_SRC (set);
2355 then_rtx = const_true_rtx;
2356 else_rtx = const0_rtx;
2357 }
2358
2359 switch (GET_CODE (cond_rtx))
2360 {
2361 case GTU:
2362 case GT:
2363 case LTU:
2364 case LT:
2365 case GEU:
2366 case GE:
2367 case LEU:
2368 case LE:
2369 case EQ:
2370 case NE:
2371 {
2372 int result;
2373 if (XEXP (cond_rtx, 0) != cc0_rtx)
2374 break;
2375 result = alter_cond (cond_rtx);
2376 if (result == 1)
2377 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2378 else if (result == -1)
2379 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2380 else if (result == 2)
2381 INSN_CODE (insn) = -1;
2382 if (SET_DEST (set) == SET_SRC (set))
2383 delete_insn (insn);
2384 }
2385 break;
2386
2387 default:
2388 break;
2389 }
2390 }
2391
2392 #endif
2393
2394 #ifdef HAVE_peephole
2395 /* Do machine-specific peephole optimizations if desired. */
2396
2397 if (optimize && !flag_no_peephole && !nopeepholes)
2398 {
2399 rtx next = peephole (insn);
2400 /* When peepholing, if there were notes within the peephole,
2401 emit them before the peephole. */
2402 if (next != 0 && next != NEXT_INSN (insn))
2403 {
2404 rtx prev = PREV_INSN (insn);
2405
2406 for (note = NEXT_INSN (insn); note != next;
2407 note = NEXT_INSN (note))
2408 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2409
2410 /* In case this is prescan, put the notes
2411 in proper position for later rescan. */
2412 note = NEXT_INSN (insn);
2413 PREV_INSN (note) = prev;
2414 NEXT_INSN (prev) = note;
2415 NEXT_INSN (PREV_INSN (next)) = insn;
2416 PREV_INSN (insn) = PREV_INSN (next);
2417 NEXT_INSN (insn) = next;
2418 PREV_INSN (next) = insn;
2419 }
2420
2421 /* PEEPHOLE might have changed this. */
2422 body = PATTERN (insn);
2423 }
2424 #endif
2425
2426 /* Try to recognize the instruction.
2427 If successful, verify that the operands satisfy the
2428 constraints for the instruction. Crash if they don't,
2429 since `reload' should have changed them so that they do. */
2430
2431 insn_code_number = recog_memoized (insn);
2432 cleanup_subreg_operands (insn);
2433
2434 /* Dump the insn in the assembly for debugging. */
2435 if (flag_dump_rtl_in_asm)
2436 {
2437 print_rtx_head = ASM_COMMENT_START;
2438 print_rtl_single (asm_out_file, insn);
2439 print_rtx_head = "";
2440 }
2441
2442 if (! constrain_operands_cached (1))
2443 fatal_insn_not_found (insn);
2444
2445 /* Some target machines need to prescan each insn before
2446 it is output. */
2447
2448 #ifdef FINAL_PRESCAN_INSN
2449 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2450 #endif
2451
2452 #ifdef HAVE_conditional_execution
2453 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2454 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2455 else
2456 current_insn_predicate = NULL_RTX;
2457 #endif
2458
2459 #ifdef HAVE_cc0
2460 cc_prev_status = cc_status;
2461
2462 /* Update `cc_status' for this instruction.
2463 The instruction's output routine may change it further.
2464 If the output routine for a jump insn needs to depend
2465 on the cc status, it should look at cc_prev_status. */
2466
2467 NOTICE_UPDATE_CC (body, insn);
2468 #endif
2469
2470 current_output_insn = debug_insn = insn;
2471
2472 #if defined (DWARF2_UNWIND_INFO)
2473 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2474 dwarf2out_frame_debug (insn);
2475 #endif
2476
2477 /* Find the proper template for this insn. */
2478 template = get_insn_template (insn_code_number, insn);
2479
2480 /* If the C code returns 0, it means that it is a jump insn
2481 which follows a deleted test insn, and that test insn
2482 needs to be reinserted. */
2483 if (template == 0)
2484 {
2485 rtx prev;
2486
2487 if (prev_nonnote_insn (insn) != last_ignored_compare)
2488 abort ();
2489
2490 /* We have already processed the notes between the setter and
2491 the user. Make sure we don't process them again, this is
2492 particularly important if one of the notes is a block
2493 scope note or an EH note. */
2494 for (prev = insn;
2495 prev != last_ignored_compare;
2496 prev = PREV_INSN (prev))
2497 {
2498 if (GET_CODE (prev) == NOTE)
2499 delete_insn (prev); /* Use delete_note. */
2500 }
2501
2502 return prev;
2503 }
2504
2505 /* If the template is the string "#", it means that this insn must
2506 be split. */
2507 if (template[0] == '#' && template[1] == '\0')
2508 {
2509 rtx new = try_split (body, insn, 0);
2510
2511 /* If we didn't split the insn, go away. */
2512 if (new == insn && PATTERN (new) == body)
2513 fatal_insn ("could not split insn", insn);
2514
2515 #ifdef HAVE_ATTR_length
2516 /* This instruction should have been split in shorten_branches,
2517 to ensure that we would have valid length info for the
2518 splitees. */
2519 abort ();
2520 #endif
2521
2522 return new;
2523 }
2524
2525 if (prescan > 0)
2526 break;
2527
2528 #ifdef IA64_UNWIND_INFO
2529 IA64_UNWIND_EMIT (asm_out_file, insn);
2530 #endif
2531 /* Output assembler code from the template. */
2532
2533 output_asm_insn (template, recog_data.operand);
2534
2535 /* If necessary, report the effect that the instruction has on
2536 the unwind info. We've already done this for delay slots
2537 and call instructions. */
2538 #if defined (DWARF2_UNWIND_INFO)
2539 if (GET_CODE (insn) == INSN
2540 #if !defined (HAVE_prologue)
2541 && !ACCUMULATE_OUTGOING_ARGS
2542 #endif
2543 && final_sequence == 0
2544 && dwarf2out_do_frame ())
2545 dwarf2out_frame_debug (insn);
2546 #endif
2547
2548 #if 0
2549 /* It's not at all clear why we did this and doing so used to
2550 interfere with tests that used REG_WAS_0 notes, which are
2551 now gone, so let's try with this out. */
2552
2553 /* Mark this insn as having been output. */
2554 INSN_DELETED_P (insn) = 1;
2555 #endif
2556
2557 /* Emit information for vtable gc. */
2558 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2559
2560 current_output_insn = debug_insn = 0;
2561 }
2562 }
2563 return NEXT_INSN (insn);
2564 }
2565 \f
2566 /* Output debugging info to the assembler file FILE
2567 based on the NOTE-insn INSN, assumed to be a line number. */
2568
2569 static bool
2570 notice_source_line (rtx insn)
2571 {
2572 const char *filename = insn_file (insn);
2573 int linenum = insn_line (insn);
2574
2575 if (filename && (filename != last_filename || last_linenum != linenum))
2576 {
2577 last_filename = filename;
2578 last_linenum = linenum;
2579 high_block_linenum = MAX (last_linenum, high_block_linenum);
2580 high_function_linenum = MAX (last_linenum, high_function_linenum);
2581 return true;
2582 }
2583 return false;
2584 }
2585 \f
2586 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2587 directly to the desired hard register. */
2588
2589 void
2590 cleanup_subreg_operands (rtx insn)
2591 {
2592 int i;
2593 extract_insn_cached (insn);
2594 for (i = 0; i < recog_data.n_operands; i++)
2595 {
2596 /* The following test cannot use recog_data.operand when testing
2597 for a SUBREG: the underlying object might have been changed
2598 already if we are inside a match_operator expression that
2599 matches the else clause. Instead we test the underlying
2600 expression directly. */
2601 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2602 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2603 else if (GET_CODE (recog_data.operand[i]) == PLUS
2604 || GET_CODE (recog_data.operand[i]) == MULT
2605 || GET_CODE (recog_data.operand[i]) == MEM)
2606 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2607 }
2608
2609 for (i = 0; i < recog_data.n_dups; i++)
2610 {
2611 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2612 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2613 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2614 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2615 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2616 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2617 }
2618 }
2619
2620 /* If X is a SUBREG, replace it with a REG or a MEM,
2621 based on the thing it is a subreg of. */
2622
2623 rtx
2624 alter_subreg (rtx *xp)
2625 {
2626 rtx x = *xp;
2627 rtx y = SUBREG_REG (x);
2628
2629 /* simplify_subreg does not remove subreg from volatile references.
2630 We are required to. */
2631 if (GET_CODE (y) == MEM)
2632 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2633 else
2634 {
2635 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2636 SUBREG_BYTE (x));
2637
2638 if (new != 0)
2639 *xp = new;
2640 /* Simplify_subreg can't handle some REG cases, but we have to. */
2641 else if (REG_P (y))
2642 {
2643 unsigned int regno = subreg_hard_regno (x, 1);
2644 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2645 }
2646 else
2647 abort ();
2648 }
2649
2650 return *xp;
2651 }
2652
2653 /* Do alter_subreg on all the SUBREGs contained in X. */
2654
2655 static rtx
2656 walk_alter_subreg (rtx *xp)
2657 {
2658 rtx x = *xp;
2659 switch (GET_CODE (x))
2660 {
2661 case PLUS:
2662 case MULT:
2663 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2664 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2665 break;
2666
2667 case MEM:
2668 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2669 break;
2670
2671 case SUBREG:
2672 return alter_subreg (xp);
2673
2674 default:
2675 break;
2676 }
2677
2678 return *xp;
2679 }
2680 \f
2681 #ifdef HAVE_cc0
2682
2683 /* Given BODY, the body of a jump instruction, alter the jump condition
2684 as required by the bits that are set in cc_status.flags.
2685 Not all of the bits there can be handled at this level in all cases.
2686
2687 The value is normally 0.
2688 1 means that the condition has become always true.
2689 -1 means that the condition has become always false.
2690 2 means that COND has been altered. */
2691
2692 static int
2693 alter_cond (rtx cond)
2694 {
2695 int value = 0;
2696
2697 if (cc_status.flags & CC_REVERSED)
2698 {
2699 value = 2;
2700 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2701 }
2702
2703 if (cc_status.flags & CC_INVERTED)
2704 {
2705 value = 2;
2706 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2707 }
2708
2709 if (cc_status.flags & CC_NOT_POSITIVE)
2710 switch (GET_CODE (cond))
2711 {
2712 case LE:
2713 case LEU:
2714 case GEU:
2715 /* Jump becomes unconditional. */
2716 return 1;
2717
2718 case GT:
2719 case GTU:
2720 case LTU:
2721 /* Jump becomes no-op. */
2722 return -1;
2723
2724 case GE:
2725 PUT_CODE (cond, EQ);
2726 value = 2;
2727 break;
2728
2729 case LT:
2730 PUT_CODE (cond, NE);
2731 value = 2;
2732 break;
2733
2734 default:
2735 break;
2736 }
2737
2738 if (cc_status.flags & CC_NOT_NEGATIVE)
2739 switch (GET_CODE (cond))
2740 {
2741 case GE:
2742 case GEU:
2743 /* Jump becomes unconditional. */
2744 return 1;
2745
2746 case LT:
2747 case LTU:
2748 /* Jump becomes no-op. */
2749 return -1;
2750
2751 case LE:
2752 case LEU:
2753 PUT_CODE (cond, EQ);
2754 value = 2;
2755 break;
2756
2757 case GT:
2758 case GTU:
2759 PUT_CODE (cond, NE);
2760 value = 2;
2761 break;
2762
2763 default:
2764 break;
2765 }
2766
2767 if (cc_status.flags & CC_NO_OVERFLOW)
2768 switch (GET_CODE (cond))
2769 {
2770 case GEU:
2771 /* Jump becomes unconditional. */
2772 return 1;
2773
2774 case LEU:
2775 PUT_CODE (cond, EQ);
2776 value = 2;
2777 break;
2778
2779 case GTU:
2780 PUT_CODE (cond, NE);
2781 value = 2;
2782 break;
2783
2784 case LTU:
2785 /* Jump becomes no-op. */
2786 return -1;
2787
2788 default:
2789 break;
2790 }
2791
2792 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2793 switch (GET_CODE (cond))
2794 {
2795 default:
2796 abort ();
2797
2798 case NE:
2799 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2800 value = 2;
2801 break;
2802
2803 case EQ:
2804 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2805 value = 2;
2806 break;
2807 }
2808
2809 if (cc_status.flags & CC_NOT_SIGNED)
2810 /* The flags are valid if signed condition operators are converted
2811 to unsigned. */
2812 switch (GET_CODE (cond))
2813 {
2814 case LE:
2815 PUT_CODE (cond, LEU);
2816 value = 2;
2817 break;
2818
2819 case LT:
2820 PUT_CODE (cond, LTU);
2821 value = 2;
2822 break;
2823
2824 case GT:
2825 PUT_CODE (cond, GTU);
2826 value = 2;
2827 break;
2828
2829 case GE:
2830 PUT_CODE (cond, GEU);
2831 value = 2;
2832 break;
2833
2834 default:
2835 break;
2836 }
2837
2838 return value;
2839 }
2840 #endif
2841 \f
2842 /* Report inconsistency between the assembler template and the operands.
2843 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2844
2845 void
2846 output_operand_lossage (const char *msgid, ...)
2847 {
2848 char *fmt_string;
2849 char *new_message;
2850 const char *pfx_str;
2851 va_list ap;
2852
2853 va_start (ap, msgid);
2854
2855 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2856 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2857 vasprintf (&new_message, fmt_string, ap);
2858
2859 if (this_is_asm_operands)
2860 error_for_asm (this_is_asm_operands, "%s", new_message);
2861 else
2862 internal_error ("%s", new_message);
2863
2864 free (fmt_string);
2865 free (new_message);
2866 va_end (ap);
2867 }
2868 \f
2869 /* Output of assembler code from a template, and its subroutines. */
2870
2871 /* Annotate the assembly with a comment describing the pattern and
2872 alternative used. */
2873
2874 static void
2875 output_asm_name (void)
2876 {
2877 if (debug_insn)
2878 {
2879 int num = INSN_CODE (debug_insn);
2880 fprintf (asm_out_file, "\t%s %d\t%s",
2881 ASM_COMMENT_START, INSN_UID (debug_insn),
2882 insn_data[num].name);
2883 if (insn_data[num].n_alternatives > 1)
2884 fprintf (asm_out_file, "/%d", which_alternative + 1);
2885 #ifdef HAVE_ATTR_length
2886 fprintf (asm_out_file, "\t[length = %d]",
2887 get_attr_length (debug_insn));
2888 #endif
2889 /* Clear this so only the first assembler insn
2890 of any rtl insn will get the special comment for -dp. */
2891 debug_insn = 0;
2892 }
2893 }
2894
2895 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2896 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2897 corresponds to the address of the object and 0 if to the object. */
2898
2899 static tree
2900 get_mem_expr_from_op (rtx op, int *paddressp)
2901 {
2902 tree expr;
2903 int inner_addressp;
2904
2905 *paddressp = 0;
2906
2907 if (REG_P (op))
2908 return REG_EXPR (op);
2909 else if (GET_CODE (op) != MEM)
2910 return 0;
2911
2912 if (MEM_EXPR (op) != 0)
2913 return MEM_EXPR (op);
2914
2915 /* Otherwise we have an address, so indicate it and look at the address. */
2916 *paddressp = 1;
2917 op = XEXP (op, 0);
2918
2919 /* First check if we have a decl for the address, then look at the right side
2920 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2921 But don't allow the address to itself be indirect. */
2922 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2923 return expr;
2924 else if (GET_CODE (op) == PLUS
2925 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2926 return expr;
2927
2928 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2929 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2930 op = XEXP (op, 0);
2931
2932 expr = get_mem_expr_from_op (op, &inner_addressp);
2933 return inner_addressp ? 0 : expr;
2934 }
2935
2936 /* Output operand names for assembler instructions. OPERANDS is the
2937 operand vector, OPORDER is the order to write the operands, and NOPS
2938 is the number of operands to write. */
2939
2940 static void
2941 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2942 {
2943 int wrote = 0;
2944 int i;
2945
2946 for (i = 0; i < nops; i++)
2947 {
2948 int addressp;
2949 rtx op = operands[oporder[i]];
2950 tree expr = get_mem_expr_from_op (op, &addressp);
2951
2952 fprintf (asm_out_file, "%c%s",
2953 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2954 wrote = 1;
2955 if (expr)
2956 {
2957 fprintf (asm_out_file, "%s",
2958 addressp ? "*" : "");
2959 print_mem_expr (asm_out_file, expr);
2960 wrote = 1;
2961 }
2962 else if (REG_P (op) && ORIGINAL_REGNO (op)
2963 && ORIGINAL_REGNO (op) != REGNO (op))
2964 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2965 }
2966 }
2967
2968 /* Output text from TEMPLATE to the assembler output file,
2969 obeying %-directions to substitute operands taken from
2970 the vector OPERANDS.
2971
2972 %N (for N a digit) means print operand N in usual manner.
2973 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2974 and print the label name with no punctuation.
2975 %cN means require operand N to be a constant
2976 and print the constant expression with no punctuation.
2977 %aN means expect operand N to be a memory address
2978 (not a memory reference!) and print a reference
2979 to that address.
2980 %nN means expect operand N to be a constant
2981 and print a constant expression for minus the value
2982 of the operand, with no other punctuation. */
2983
2984 void
2985 output_asm_insn (const char *template, rtx *operands)
2986 {
2987 const char *p;
2988 int c;
2989 #ifdef ASSEMBLER_DIALECT
2990 int dialect = 0;
2991 #endif
2992 int oporder[MAX_RECOG_OPERANDS];
2993 char opoutput[MAX_RECOG_OPERANDS];
2994 int ops = 0;
2995
2996 /* An insn may return a null string template
2997 in a case where no assembler code is needed. */
2998 if (*template == 0)
2999 return;
3000
3001 memset (opoutput, 0, sizeof opoutput);
3002 p = template;
3003 putc ('\t', asm_out_file);
3004
3005 #ifdef ASM_OUTPUT_OPCODE
3006 ASM_OUTPUT_OPCODE (asm_out_file, p);
3007 #endif
3008
3009 while ((c = *p++))
3010 switch (c)
3011 {
3012 case '\n':
3013 if (flag_verbose_asm)
3014 output_asm_operand_names (operands, oporder, ops);
3015 if (flag_print_asm_name)
3016 output_asm_name ();
3017
3018 ops = 0;
3019 memset (opoutput, 0, sizeof opoutput);
3020
3021 putc (c, asm_out_file);
3022 #ifdef ASM_OUTPUT_OPCODE
3023 while ((c = *p) == '\t')
3024 {
3025 putc (c, asm_out_file);
3026 p++;
3027 }
3028 ASM_OUTPUT_OPCODE (asm_out_file, p);
3029 #endif
3030 break;
3031
3032 #ifdef ASSEMBLER_DIALECT
3033 case '{':
3034 {
3035 int i;
3036
3037 if (dialect)
3038 output_operand_lossage ("nested assembly dialect alternatives");
3039 else
3040 dialect = 1;
3041
3042 /* If we want the first dialect, do nothing. Otherwise, skip
3043 DIALECT_NUMBER of strings ending with '|'. */
3044 for (i = 0; i < dialect_number; i++)
3045 {
3046 while (*p && *p != '}' && *p++ != '|')
3047 ;
3048 if (*p == '}')
3049 break;
3050 if (*p == '|')
3051 p++;
3052 }
3053
3054 if (*p == '\0')
3055 output_operand_lossage ("unterminated assembly dialect alternative");
3056 }
3057 break;
3058
3059 case '|':
3060 if (dialect)
3061 {
3062 /* Skip to close brace. */
3063 do
3064 {
3065 if (*p == '\0')
3066 {
3067 output_operand_lossage ("unterminated assembly dialect alternative");
3068 break;
3069 }
3070 }
3071 while (*p++ != '}');
3072 dialect = 0;
3073 }
3074 else
3075 putc (c, asm_out_file);
3076 break;
3077
3078 case '}':
3079 if (! dialect)
3080 putc (c, asm_out_file);
3081 dialect = 0;
3082 break;
3083 #endif
3084
3085 case '%':
3086 /* %% outputs a single %. */
3087 if (*p == '%')
3088 {
3089 p++;
3090 putc (c, asm_out_file);
3091 }
3092 /* %= outputs a number which is unique to each insn in the entire
3093 compilation. This is useful for making local labels that are
3094 referred to more than once in a given insn. */
3095 else if (*p == '=')
3096 {
3097 p++;
3098 fprintf (asm_out_file, "%d", insn_counter);
3099 }
3100 /* % followed by a letter and some digits
3101 outputs an operand in a special way depending on the letter.
3102 Letters `acln' are implemented directly.
3103 Other letters are passed to `output_operand' so that
3104 the PRINT_OPERAND macro can define them. */
3105 else if (ISALPHA (*p))
3106 {
3107 int letter = *p++;
3108 c = atoi (p);
3109
3110 if (! ISDIGIT (*p))
3111 output_operand_lossage ("operand number missing after %%-letter");
3112 else if (this_is_asm_operands
3113 && (c < 0 || (unsigned int) c >= insn_noperands))
3114 output_operand_lossage ("operand number out of range");
3115 else if (letter == 'l')
3116 output_asm_label (operands[c]);
3117 else if (letter == 'a')
3118 output_address (operands[c]);
3119 else if (letter == 'c')
3120 {
3121 if (CONSTANT_ADDRESS_P (operands[c]))
3122 output_addr_const (asm_out_file, operands[c]);
3123 else
3124 output_operand (operands[c], 'c');
3125 }
3126 else if (letter == 'n')
3127 {
3128 if (GET_CODE (operands[c]) == CONST_INT)
3129 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3130 - INTVAL (operands[c]));
3131 else
3132 {
3133 putc ('-', asm_out_file);
3134 output_addr_const (asm_out_file, operands[c]);
3135 }
3136 }
3137 else
3138 output_operand (operands[c], letter);
3139
3140 if (!opoutput[c])
3141 oporder[ops++] = c;
3142 opoutput[c] = 1;
3143
3144 while (ISDIGIT (c = *p))
3145 p++;
3146 }
3147 /* % followed by a digit outputs an operand the default way. */
3148 else if (ISDIGIT (*p))
3149 {
3150 c = atoi (p);
3151 if (this_is_asm_operands
3152 && (c < 0 || (unsigned int) c >= insn_noperands))
3153 output_operand_lossage ("operand number out of range");
3154 else
3155 output_operand (operands[c], 0);
3156
3157 if (!opoutput[c])
3158 oporder[ops++] = c;
3159 opoutput[c] = 1;
3160
3161 while (ISDIGIT (c = *p))
3162 p++;
3163 }
3164 /* % followed by punctuation: output something for that
3165 punctuation character alone, with no operand.
3166 The PRINT_OPERAND macro decides what is actually done. */
3167 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3168 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3169 output_operand (NULL_RTX, *p++);
3170 #endif
3171 else
3172 output_operand_lossage ("invalid %%-code");
3173 break;
3174
3175 default:
3176 putc (c, asm_out_file);
3177 }
3178
3179 /* Write out the variable names for operands, if we know them. */
3180 if (flag_verbose_asm)
3181 output_asm_operand_names (operands, oporder, ops);
3182 if (flag_print_asm_name)
3183 output_asm_name ();
3184
3185 putc ('\n', asm_out_file);
3186 }
3187 \f
3188 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3189
3190 void
3191 output_asm_label (rtx x)
3192 {
3193 char buf[256];
3194
3195 if (GET_CODE (x) == LABEL_REF)
3196 x = XEXP (x, 0);
3197 if (GET_CODE (x) == CODE_LABEL
3198 || (GET_CODE (x) == NOTE
3199 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3200 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3201 else
3202 output_operand_lossage ("`%%l' operand isn't a label");
3203
3204 assemble_name (asm_out_file, buf);
3205 }
3206
3207 /* Print operand X using machine-dependent assembler syntax.
3208 The macro PRINT_OPERAND is defined just to control this function.
3209 CODE is a non-digit that preceded the operand-number in the % spec,
3210 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3211 between the % and the digits.
3212 When CODE is a non-letter, X is 0.
3213
3214 The meanings of the letters are machine-dependent and controlled
3215 by PRINT_OPERAND. */
3216
3217 static void
3218 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3219 {
3220 if (x && GET_CODE (x) == SUBREG)
3221 x = alter_subreg (&x);
3222
3223 /* If X is a pseudo-register, abort now rather than writing trash to the
3224 assembler file. */
3225
3226 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3227 abort ();
3228
3229 PRINT_OPERAND (asm_out_file, x, code);
3230 }
3231
3232 /* Print a memory reference operand for address X
3233 using machine-dependent assembler syntax.
3234 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3235
3236 void
3237 output_address (rtx x)
3238 {
3239 walk_alter_subreg (&x);
3240 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3241 }
3242 \f
3243 /* Print an integer constant expression in assembler syntax.
3244 Addition and subtraction are the only arithmetic
3245 that may appear in these expressions. */
3246
3247 void
3248 output_addr_const (FILE *file, rtx x)
3249 {
3250 char buf[256];
3251
3252 restart:
3253 switch (GET_CODE (x))
3254 {
3255 case PC:
3256 putc ('.', file);
3257 break;
3258
3259 case SYMBOL_REF:
3260 if (SYMBOL_REF_DECL (x))
3261 mark_decl_referenced (SYMBOL_REF_DECL (x));
3262 #ifdef ASM_OUTPUT_SYMBOL_REF
3263 ASM_OUTPUT_SYMBOL_REF (file, x);
3264 #else
3265 assemble_name (file, XSTR (x, 0));
3266 #endif
3267 break;
3268
3269 case LABEL_REF:
3270 x = XEXP (x, 0);
3271 /* Fall through. */
3272 case CODE_LABEL:
3273 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3274 #ifdef ASM_OUTPUT_LABEL_REF
3275 ASM_OUTPUT_LABEL_REF (file, buf);
3276 #else
3277 assemble_name (file, buf);
3278 #endif
3279 break;
3280
3281 case CONST_INT:
3282 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3283 break;
3284
3285 case CONST:
3286 /* This used to output parentheses around the expression,
3287 but that does not work on the 386 (either ATT or BSD assembler). */
3288 output_addr_const (file, XEXP (x, 0));
3289 break;
3290
3291 case CONST_DOUBLE:
3292 if (GET_MODE (x) == VOIDmode)
3293 {
3294 /* We can use %d if the number is one word and positive. */
3295 if (CONST_DOUBLE_HIGH (x))
3296 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3297 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3298 else if (CONST_DOUBLE_LOW (x) < 0)
3299 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3300 else
3301 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3302 }
3303 else
3304 /* We can't handle floating point constants;
3305 PRINT_OPERAND must handle them. */
3306 output_operand_lossage ("floating constant misused");
3307 break;
3308
3309 case PLUS:
3310 /* Some assemblers need integer constants to appear last (eg masm). */
3311 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3312 {
3313 output_addr_const (file, XEXP (x, 1));
3314 if (INTVAL (XEXP (x, 0)) >= 0)
3315 fprintf (file, "+");
3316 output_addr_const (file, XEXP (x, 0));
3317 }
3318 else
3319 {
3320 output_addr_const (file, XEXP (x, 0));
3321 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3322 || INTVAL (XEXP (x, 1)) >= 0)
3323 fprintf (file, "+");
3324 output_addr_const (file, XEXP (x, 1));
3325 }
3326 break;
3327
3328 case MINUS:
3329 /* Avoid outputting things like x-x or x+5-x,
3330 since some assemblers can't handle that. */
3331 x = simplify_subtraction (x);
3332 if (GET_CODE (x) != MINUS)
3333 goto restart;
3334
3335 output_addr_const (file, XEXP (x, 0));
3336 fprintf (file, "-");
3337 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3338 || GET_CODE (XEXP (x, 1)) == PC
3339 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3340 output_addr_const (file, XEXP (x, 1));
3341 else
3342 {
3343 fputs (targetm.asm_out.open_paren, file);
3344 output_addr_const (file, XEXP (x, 1));
3345 fputs (targetm.asm_out.close_paren, file);
3346 }
3347 break;
3348
3349 case ZERO_EXTEND:
3350 case SIGN_EXTEND:
3351 case SUBREG:
3352 output_addr_const (file, XEXP (x, 0));
3353 break;
3354
3355 default:
3356 #ifdef OUTPUT_ADDR_CONST_EXTRA
3357 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3358 break;
3359
3360 fail:
3361 #endif
3362 output_operand_lossage ("invalid expression as operand");
3363 }
3364 }
3365 \f
3366 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3367 %R prints the value of REGISTER_PREFIX.
3368 %L prints the value of LOCAL_LABEL_PREFIX.
3369 %U prints the value of USER_LABEL_PREFIX.
3370 %I prints the value of IMMEDIATE_PREFIX.
3371 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3372 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3373
3374 We handle alternate assembler dialects here, just like output_asm_insn. */
3375
3376 void
3377 asm_fprintf (FILE *file, const char *p, ...)
3378 {
3379 char buf[10];
3380 char *q, c;
3381 va_list argptr;
3382
3383 va_start (argptr, p);
3384
3385 buf[0] = '%';
3386
3387 while ((c = *p++))
3388 switch (c)
3389 {
3390 #ifdef ASSEMBLER_DIALECT
3391 case '{':
3392 {
3393 int i;
3394
3395 /* If we want the first dialect, do nothing. Otherwise, skip
3396 DIALECT_NUMBER of strings ending with '|'. */
3397 for (i = 0; i < dialect_number; i++)
3398 {
3399 while (*p && *p++ != '|')
3400 ;
3401
3402 if (*p == '|')
3403 p++;
3404 }
3405 }
3406 break;
3407
3408 case '|':
3409 /* Skip to close brace. */
3410 while (*p && *p++ != '}')
3411 ;
3412 break;
3413
3414 case '}':
3415 break;
3416 #endif
3417
3418 case '%':
3419 c = *p++;
3420 q = &buf[1];
3421 while (strchr ("-+ #0", c))
3422 {
3423 *q++ = c;
3424 c = *p++;
3425 }
3426 while (ISDIGIT (c) || c == '.')
3427 {
3428 *q++ = c;
3429 c = *p++;
3430 }
3431 switch (c)
3432 {
3433 case '%':
3434 putc ('%', file);
3435 break;
3436
3437 case 'd': case 'i': case 'u':
3438 case 'x': case 'X': case 'o':
3439 case 'c':
3440 *q++ = c;
3441 *q = 0;
3442 fprintf (file, buf, va_arg (argptr, int));
3443 break;
3444
3445 case 'w':
3446 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3447 'o' cases, but we do not check for those cases. It
3448 means that the value is a HOST_WIDE_INT, which may be
3449 either `long' or `long long'. */
3450 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3451 q += strlen (HOST_WIDE_INT_PRINT);
3452 *q++ = *p++;
3453 *q = 0;
3454 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3455 break;
3456
3457 case 'l':
3458 *q++ = c;
3459 #ifdef HAVE_LONG_LONG
3460 if (*p == 'l')
3461 {
3462 *q++ = *p++;
3463 *q++ = *p++;
3464 *q = 0;
3465 fprintf (file, buf, va_arg (argptr, long long));
3466 }
3467 else
3468 #endif
3469 {
3470 *q++ = *p++;
3471 *q = 0;
3472 fprintf (file, buf, va_arg (argptr, long));
3473 }
3474
3475 break;
3476
3477 case 's':
3478 *q++ = c;
3479 *q = 0;
3480 fprintf (file, buf, va_arg (argptr, char *));
3481 break;
3482
3483 case 'O':
3484 #ifdef ASM_OUTPUT_OPCODE
3485 ASM_OUTPUT_OPCODE (asm_out_file, p);
3486 #endif
3487 break;
3488
3489 case 'R':
3490 #ifdef REGISTER_PREFIX
3491 fprintf (file, "%s", REGISTER_PREFIX);
3492 #endif
3493 break;
3494
3495 case 'I':
3496 #ifdef IMMEDIATE_PREFIX
3497 fprintf (file, "%s", IMMEDIATE_PREFIX);
3498 #endif
3499 break;
3500
3501 case 'L':
3502 #ifdef LOCAL_LABEL_PREFIX
3503 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3504 #endif
3505 break;
3506
3507 case 'U':
3508 fputs (user_label_prefix, file);
3509 break;
3510
3511 #ifdef ASM_FPRINTF_EXTENSIONS
3512 /* Uppercase letters are reserved for general use by asm_fprintf
3513 and so are not available to target specific code. In order to
3514 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3515 they are defined here. As they get turned into real extensions
3516 to asm_fprintf they should be removed from this list. */
3517 case 'A': case 'B': case 'C': case 'D': case 'E':
3518 case 'F': case 'G': case 'H': case 'J': case 'K':
3519 case 'M': case 'N': case 'P': case 'Q': case 'S':
3520 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3521 break;
3522
3523 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3524 #endif
3525 default:
3526 abort ();
3527 }
3528 break;
3529
3530 default:
3531 putc (c, file);
3532 }
3533 va_end (argptr);
3534 }
3535 \f
3536 /* Split up a CONST_DOUBLE or integer constant rtx
3537 into two rtx's for single words,
3538 storing in *FIRST the word that comes first in memory in the target
3539 and in *SECOND the other. */
3540
3541 void
3542 split_double (rtx value, rtx *first, rtx *second)
3543 {
3544 if (GET_CODE (value) == CONST_INT)
3545 {
3546 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3547 {
3548 /* In this case the CONST_INT holds both target words.
3549 Extract the bits from it into two word-sized pieces.
3550 Sign extend each half to HOST_WIDE_INT. */
3551 unsigned HOST_WIDE_INT low, high;
3552 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3553
3554 /* Set sign_bit to the most significant bit of a word. */
3555 sign_bit = 1;
3556 sign_bit <<= BITS_PER_WORD - 1;
3557
3558 /* Set mask so that all bits of the word are set. We could
3559 have used 1 << BITS_PER_WORD instead of basing the
3560 calculation on sign_bit. However, on machines where
3561 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3562 compiler warning, even though the code would never be
3563 executed. */
3564 mask = sign_bit << 1;
3565 mask--;
3566
3567 /* Set sign_extend as any remaining bits. */
3568 sign_extend = ~mask;
3569
3570 /* Pick the lower word and sign-extend it. */
3571 low = INTVAL (value);
3572 low &= mask;
3573 if (low & sign_bit)
3574 low |= sign_extend;
3575
3576 /* Pick the higher word, shifted to the least significant
3577 bits, and sign-extend it. */
3578 high = INTVAL (value);
3579 high >>= BITS_PER_WORD - 1;
3580 high >>= 1;
3581 high &= mask;
3582 if (high & sign_bit)
3583 high |= sign_extend;
3584
3585 /* Store the words in the target machine order. */
3586 if (WORDS_BIG_ENDIAN)
3587 {
3588 *first = GEN_INT (high);
3589 *second = GEN_INT (low);
3590 }
3591 else
3592 {
3593 *first = GEN_INT (low);
3594 *second = GEN_INT (high);
3595 }
3596 }
3597 else
3598 {
3599 /* The rule for using CONST_INT for a wider mode
3600 is that we regard the value as signed.
3601 So sign-extend it. */
3602 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3603 if (WORDS_BIG_ENDIAN)
3604 {
3605 *first = high;
3606 *second = value;
3607 }
3608 else
3609 {
3610 *first = value;
3611 *second = high;
3612 }
3613 }
3614 }
3615 else if (GET_CODE (value) != CONST_DOUBLE)
3616 {
3617 if (WORDS_BIG_ENDIAN)
3618 {
3619 *first = const0_rtx;
3620 *second = value;
3621 }
3622 else
3623 {
3624 *first = value;
3625 *second = const0_rtx;
3626 }
3627 }
3628 else if (GET_MODE (value) == VOIDmode
3629 /* This is the old way we did CONST_DOUBLE integers. */
3630 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3631 {
3632 /* In an integer, the words are defined as most and least significant.
3633 So order them by the target's convention. */
3634 if (WORDS_BIG_ENDIAN)
3635 {
3636 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3637 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3638 }
3639 else
3640 {
3641 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3642 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3643 }
3644 }
3645 else
3646 {
3647 REAL_VALUE_TYPE r;
3648 long l[2];
3649 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3650
3651 /* Note, this converts the REAL_VALUE_TYPE to the target's
3652 format, splits up the floating point double and outputs
3653 exactly 32 bits of it into each of l[0] and l[1] --
3654 not necessarily BITS_PER_WORD bits. */
3655 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3656
3657 /* If 32 bits is an entire word for the target, but not for the host,
3658 then sign-extend on the host so that the number will look the same
3659 way on the host that it would on the target. See for instance
3660 simplify_unary_operation. The #if is needed to avoid compiler
3661 warnings. */
3662
3663 #if HOST_BITS_PER_LONG > 32
3664 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3665 {
3666 if (l[0] & ((long) 1 << 31))
3667 l[0] |= ((long) (-1) << 32);
3668 if (l[1] & ((long) 1 << 31))
3669 l[1] |= ((long) (-1) << 32);
3670 }
3671 #endif
3672
3673 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3674 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3675 }
3676 }
3677 \f
3678 /* Return nonzero if this function has no function calls. */
3679
3680 int
3681 leaf_function_p (void)
3682 {
3683 rtx insn;
3684 rtx link;
3685
3686 if (current_function_profile || profile_arc_flag)
3687 return 0;
3688
3689 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3690 {
3691 if (GET_CODE (insn) == CALL_INSN
3692 && ! SIBLING_CALL_P (insn))
3693 return 0;
3694 if (GET_CODE (insn) == INSN
3695 && GET_CODE (PATTERN (insn)) == SEQUENCE
3696 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3697 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3698 return 0;
3699 }
3700 for (link = current_function_epilogue_delay_list;
3701 link;
3702 link = XEXP (link, 1))
3703 {
3704 insn = XEXP (link, 0);
3705
3706 if (GET_CODE (insn) == CALL_INSN
3707 && ! SIBLING_CALL_P (insn))
3708 return 0;
3709 if (GET_CODE (insn) == INSN
3710 && GET_CODE (PATTERN (insn)) == SEQUENCE
3711 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3712 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3713 return 0;
3714 }
3715
3716 return 1;
3717 }
3718
3719 /* Return 1 if branch is a forward branch.
3720 Uses insn_shuid array, so it works only in the final pass. May be used by
3721 output templates to customary add branch prediction hints.
3722 */
3723 int
3724 final_forward_branch_p (rtx insn)
3725 {
3726 int insn_id, label_id;
3727 if (!uid_shuid)
3728 abort ();
3729 insn_id = INSN_SHUID (insn);
3730 label_id = INSN_SHUID (JUMP_LABEL (insn));
3731 /* We've hit some insns that does not have id information available. */
3732 if (!insn_id || !label_id)
3733 abort ();
3734 return insn_id < label_id;
3735 }
3736
3737 /* On some machines, a function with no call insns
3738 can run faster if it doesn't create its own register window.
3739 When output, the leaf function should use only the "output"
3740 registers. Ordinarily, the function would be compiled to use
3741 the "input" registers to find its arguments; it is a candidate
3742 for leaf treatment if it uses only the "input" registers.
3743 Leaf function treatment means renumbering so the function
3744 uses the "output" registers instead. */
3745
3746 #ifdef LEAF_REGISTERS
3747
3748 /* Return 1 if this function uses only the registers that can be
3749 safely renumbered. */
3750
3751 int
3752 only_leaf_regs_used (void)
3753 {
3754 int i;
3755 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3756
3757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3758 if ((regs_ever_live[i] || global_regs[i])
3759 && ! permitted_reg_in_leaf_functions[i])
3760 return 0;
3761
3762 if (current_function_uses_pic_offset_table
3763 && pic_offset_table_rtx != 0
3764 && REG_P (pic_offset_table_rtx)
3765 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3766 return 0;
3767
3768 return 1;
3769 }
3770
3771 /* Scan all instructions and renumber all registers into those
3772 available in leaf functions. */
3773
3774 static void
3775 leaf_renumber_regs (rtx first)
3776 {
3777 rtx insn;
3778
3779 /* Renumber only the actual patterns.
3780 The reg-notes can contain frame pointer refs,
3781 and renumbering them could crash, and should not be needed. */
3782 for (insn = first; insn; insn = NEXT_INSN (insn))
3783 if (INSN_P (insn))
3784 leaf_renumber_regs_insn (PATTERN (insn));
3785 for (insn = current_function_epilogue_delay_list;
3786 insn;
3787 insn = XEXP (insn, 1))
3788 if (INSN_P (XEXP (insn, 0)))
3789 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3790 }
3791
3792 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3793 available in leaf functions. */
3794
3795 void
3796 leaf_renumber_regs_insn (rtx in_rtx)
3797 {
3798 int i, j;
3799 const char *format_ptr;
3800
3801 if (in_rtx == 0)
3802 return;
3803
3804 /* Renumber all input-registers into output-registers.
3805 renumbered_regs would be 1 for an output-register;
3806 they */
3807
3808 if (REG_P (in_rtx))
3809 {
3810 int newreg;
3811
3812 /* Don't renumber the same reg twice. */
3813 if (in_rtx->used)
3814 return;
3815
3816 newreg = REGNO (in_rtx);
3817 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3818 to reach here as part of a REG_NOTE. */
3819 if (newreg >= FIRST_PSEUDO_REGISTER)
3820 {
3821 in_rtx->used = 1;
3822 return;
3823 }
3824 newreg = LEAF_REG_REMAP (newreg);
3825 if (newreg < 0)
3826 abort ();
3827 regs_ever_live[REGNO (in_rtx)] = 0;
3828 regs_ever_live[newreg] = 1;
3829 REGNO (in_rtx) = newreg;
3830 in_rtx->used = 1;
3831 }
3832
3833 if (INSN_P (in_rtx))
3834 {
3835 /* Inside a SEQUENCE, we find insns.
3836 Renumber just the patterns of these insns,
3837 just as we do for the top-level insns. */
3838 leaf_renumber_regs_insn (PATTERN (in_rtx));
3839 return;
3840 }
3841
3842 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3843
3844 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3845 switch (*format_ptr++)
3846 {
3847 case 'e':
3848 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3849 break;
3850
3851 case 'E':
3852 if (NULL != XVEC (in_rtx, i))
3853 {
3854 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3855 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3856 }
3857 break;
3858
3859 case 'S':
3860 case 's':
3861 case '0':
3862 case 'i':
3863 case 'w':
3864 case 'n':
3865 case 'u':
3866 break;
3867
3868 default:
3869 abort ();
3870 }
3871 }
3872 #endif
3873
3874
3875 /* When -gused is used, emit debug info for only used symbols. But in
3876 addition to the standard intercepted debug_hooks there are some direct
3877 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3878 Those routines may also be called from a higher level intercepted routine. So
3879 to prevent recording data for an inner call to one of these for an intercept,
3880 we maintain an intercept nesting counter (debug_nesting). We only save the
3881 intercepted arguments if the nesting is 1. */
3882 int debug_nesting = 0;
3883
3884 static tree *symbol_queue;
3885 int symbol_queue_index = 0;
3886 static int symbol_queue_size = 0;
3887
3888 /* Generate the symbols for any queued up type symbols we encountered
3889 while generating the type info for some originally used symbol.
3890 This might generate additional entries in the queue. Only when
3891 the nesting depth goes to 0 is this routine called. */
3892
3893 void
3894 debug_flush_symbol_queue (void)
3895 {
3896 int i;
3897
3898 /* Make sure that additionally queued items are not flushed
3899 prematurely. */
3900
3901 ++debug_nesting;
3902
3903 for (i = 0; i < symbol_queue_index; ++i)
3904 {
3905 /* If we pushed queued symbols then such symbols are must be
3906 output no matter what anyone else says. Specifically,
3907 we need to make sure dbxout_symbol() thinks the symbol was
3908 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3909 which may be set for outside reasons. */
3910 int saved_tree_used = TREE_USED (symbol_queue[i]);
3911 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3912 TREE_USED (symbol_queue[i]) = 1;
3913 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3914
3915 #ifdef DBX_DEBUGGING_INFO
3916 dbxout_symbol (symbol_queue[i], 0);
3917 #endif
3918
3919 TREE_USED (symbol_queue[i]) = saved_tree_used;
3920 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3921 }
3922
3923 symbol_queue_index = 0;
3924 --debug_nesting;
3925 }
3926
3927 /* Queue a type symbol needed as part of the definition of a decl
3928 symbol. These symbols are generated when debug_flush_symbol_queue()
3929 is called. */
3930
3931 void
3932 debug_queue_symbol (tree decl)
3933 {
3934 if (symbol_queue_index >= symbol_queue_size)
3935 {
3936 symbol_queue_size += 10;
3937 symbol_queue = xrealloc (symbol_queue,
3938 symbol_queue_size * sizeof (tree));
3939 }
3940
3941 symbol_queue[symbol_queue_index++] = decl;
3942 }
3943
3944 /* Free symbol queue. */
3945 void
3946 debug_free_queue (void)
3947 {
3948 if (symbol_queue)
3949 {
3950 free (symbol_queue);
3951 symbol_queue = NULL;
3952 symbol_queue_size = 0;
3953 }
3954 }