]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
Fix failure with pragma once where buffer is NULL and buffer_valid is true.
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
79
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
83 #endif
84
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
87 #endif
88
89 #ifdef DBX_DEBUGGING_INFO
90 #include "dbxout.h"
91 #endif
92
93 #ifdef SDB_DEBUGGING_INFO
94 #include "sdbout.h"
95 #endif
96
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
101 #endif
102
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
106 #endif
107
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111 #endif
112
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
115 #endif
116
117 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
118 #define HAVE_READONLY_DATA_SECTION 1
119 #else
120 #define HAVE_READONLY_DATA_SECTION 0
121 #endif
122
123 /* Bitflags used by final_scan_insn. */
124 #define SEEN_BB 1
125 #define SEEN_NOTE 2
126 #define SEEN_EMITTED 4
127
128 /* Last insn processed by final_scan_insn. */
129 static rtx debug_insn;
130 rtx current_output_insn;
131
132 /* Line number of last NOTE. */
133 static int last_linenum;
134
135 /* Highest line number in current block. */
136 static int high_block_linenum;
137
138 /* Likewise for function. */
139 static int high_function_linenum;
140
141 /* Filename of last NOTE. */
142 static const char *last_filename;
143
144 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
145
146 /* Nonzero while outputting an `asm' with operands.
147 This means that inconsistencies are the user's fault, so don't die.
148 The precise value is the insn being output, to pass to error_for_asm. */
149 rtx this_is_asm_operands;
150
151 /* Number of operands of this insn, for an `asm' with operands. */
152 static unsigned int insn_noperands;
153
154 /* Compare optimization flag. */
155
156 static rtx last_ignored_compare = 0;
157
158 /* Assign a unique number to each insn that is output.
159 This can be used to generate unique local labels. */
160
161 static int insn_counter = 0;
162
163 #ifdef HAVE_cc0
164 /* This variable contains machine-dependent flags (defined in tm.h)
165 set and examined by output routines
166 that describe how to interpret the condition codes properly. */
167
168 CC_STATUS cc_status;
169
170 /* During output of an insn, this contains a copy of cc_status
171 from before the insn. */
172
173 CC_STATUS cc_prev_status;
174 #endif
175
176 /* Indexed by hardware reg number, is 1 if that register is ever
177 used in the current function.
178
179 In life_analysis, or in stupid_life_analysis, this is set
180 up to record the hard regs used explicitly. Reload adds
181 in the hard regs used for holding pseudo regs. Final uses
182 it to generate the code in the function prologue and epilogue
183 to save and restore registers as needed. */
184
185 char regs_ever_live[FIRST_PSEUDO_REGISTER];
186
187 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
188 Unlike regs_ever_live, elements of this array corresponding to
189 eliminable regs like the frame pointer are set if an asm sets them. */
190
191 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
192
193 /* Nonzero means current function must be given a frame pointer.
194 Initialized in function.c to 0. Set only in reload1.c as per
195 the needs of the function. */
196
197 int frame_pointer_needed;
198
199 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
200
201 static int block_depth;
202
203 /* Nonzero if have enabled APP processing of our assembler output. */
204
205 static int app_on;
206
207 /* If we are outputting an insn sequence, this contains the sequence rtx.
208 Zero otherwise. */
209
210 rtx final_sequence;
211
212 #ifdef ASSEMBLER_DIALECT
213
214 /* Number of the assembler dialect to use, starting at 0. */
215 static int dialect_number;
216 #endif
217
218 #ifdef HAVE_conditional_execution
219 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
220 rtx current_insn_predicate;
221 #endif
222
223 #ifdef HAVE_ATTR_length
224 static int asm_insn_count (rtx);
225 #endif
226 static void profile_function (FILE *);
227 static void profile_after_prologue (FILE *);
228 static bool notice_source_line (rtx);
229 static rtx walk_alter_subreg (rtx *);
230 static void output_asm_name (void);
231 static void output_alternate_entry_point (FILE *, rtx);
232 static tree get_mem_expr_from_op (rtx, int *);
233 static void output_asm_operand_names (rtx *, int *, int);
234 static void output_operand (rtx, int);
235 #ifdef LEAF_REGISTERS
236 static void leaf_renumber_regs (rtx);
237 #endif
238 #ifdef HAVE_cc0
239 static int alter_cond (rtx);
240 #endif
241 #ifndef ADDR_VEC_ALIGN
242 static int final_addr_vec_align (rtx);
243 #endif
244 #ifdef HAVE_ATTR_length
245 static int align_fuzz (rtx, rtx, int, unsigned);
246 #endif
247 \f
248 /* Initialize data in final at the beginning of a compilation. */
249
250 void
251 init_final (const char *filename ATTRIBUTE_UNUSED)
252 {
253 app_on = 0;
254 final_sequence = 0;
255
256 #ifdef ASSEMBLER_DIALECT
257 dialect_number = ASSEMBLER_DIALECT;
258 #endif
259 }
260
261 /* Default target function prologue and epilogue assembler output.
262
263 If not overridden for epilogue code, then the function body itself
264 contains return instructions wherever needed. */
265 void
266 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
267 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
268 {
269 }
270
271 /* Default target hook that outputs nothing to a stream. */
272 void
273 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
274 {
275 }
276
277 /* Enable APP processing of subsequent output.
278 Used before the output from an `asm' statement. */
279
280 void
281 app_enable (void)
282 {
283 if (! app_on)
284 {
285 fputs (ASM_APP_ON, asm_out_file);
286 app_on = 1;
287 }
288 }
289
290 /* Disable APP processing of subsequent output.
291 Called from varasm.c before most kinds of output. */
292
293 void
294 app_disable (void)
295 {
296 if (app_on)
297 {
298 fputs (ASM_APP_OFF, asm_out_file);
299 app_on = 0;
300 }
301 }
302 \f
303 /* Return the number of slots filled in the current
304 delayed branch sequence (we don't count the insn needing the
305 delay slot). Zero if not in a delayed branch sequence. */
306
307 #ifdef DELAY_SLOTS
308 int
309 dbr_sequence_length (void)
310 {
311 if (final_sequence != 0)
312 return XVECLEN (final_sequence, 0) - 1;
313 else
314 return 0;
315 }
316 #endif
317 \f
318 /* The next two pages contain routines used to compute the length of an insn
319 and to shorten branches. */
320
321 /* Arrays for insn lengths, and addresses. The latter is referenced by
322 `insn_current_length'. */
323
324 static int *insn_lengths;
325
326 varray_type insn_addresses_;
327
328 /* Max uid for which the above arrays are valid. */
329 static int insn_lengths_max_uid;
330
331 /* Address of insn being processed. Used by `insn_current_length'. */
332 int insn_current_address;
333
334 /* Address of insn being processed in previous iteration. */
335 int insn_last_address;
336
337 /* known invariant alignment of insn being processed. */
338 int insn_current_align;
339
340 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
341 gives the next following alignment insn that increases the known
342 alignment, or NULL_RTX if there is no such insn.
343 For any alignment obtained this way, we can again index uid_align with
344 its uid to obtain the next following align that in turn increases the
345 alignment, till we reach NULL_RTX; the sequence obtained this way
346 for each insn we'll call the alignment chain of this insn in the following
347 comments. */
348
349 struct label_alignment
350 {
351 short alignment;
352 short max_skip;
353 };
354
355 static rtx *uid_align;
356 static int *uid_shuid;
357 static struct label_alignment *label_align;
358
359 /* Indicate that branch shortening hasn't yet been done. */
360
361 void
362 init_insn_lengths (void)
363 {
364 if (uid_shuid)
365 {
366 free (uid_shuid);
367 uid_shuid = 0;
368 }
369 if (insn_lengths)
370 {
371 free (insn_lengths);
372 insn_lengths = 0;
373 insn_lengths_max_uid = 0;
374 }
375 #ifdef HAVE_ATTR_length
376 INSN_ADDRESSES_FREE ();
377 #endif
378 if (uid_align)
379 {
380 free (uid_align);
381 uid_align = 0;
382 }
383 }
384
385 /* Obtain the current length of an insn. If branch shortening has been done,
386 get its actual length. Otherwise, use FALLBACK_FN to calcualte the
387 length. */
388 static inline int
389 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
390 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
391 {
392 #ifdef HAVE_ATTR_length
393 rtx body;
394 int i;
395 int length = 0;
396
397 if (insn_lengths_max_uid > INSN_UID (insn))
398 return insn_lengths[INSN_UID (insn)];
399 else
400 switch (GET_CODE (insn))
401 {
402 case NOTE:
403 case BARRIER:
404 case CODE_LABEL:
405 return 0;
406
407 case CALL_INSN:
408 length = fallback_fn (insn);
409 break;
410
411 case JUMP_INSN:
412 body = PATTERN (insn);
413 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
414 {
415 /* Alignment is machine-dependent and should be handled by
416 ADDR_VEC_ALIGN. */
417 }
418 else
419 length = fallback_fn (insn);
420 break;
421
422 case INSN:
423 body = PATTERN (insn);
424 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
425 return 0;
426
427 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
428 length = asm_insn_count (body) * fallback_fn (insn);
429 else if (GET_CODE (body) == SEQUENCE)
430 for (i = 0; i < XVECLEN (body, 0); i++)
431 length += get_attr_length (XVECEXP (body, 0, i));
432 else
433 length = fallback_fn (insn);
434 break;
435
436 default:
437 break;
438 }
439
440 #ifdef ADJUST_INSN_LENGTH
441 ADJUST_INSN_LENGTH (insn, length);
442 #endif
443 return length;
444 #else /* not HAVE_ATTR_length */
445 return 0;
446 #define insn_default_length 0
447 #define insn_min_length 0
448 #endif /* not HAVE_ATTR_length */
449 }
450
451 /* Obtain the current length of an insn. If branch shortening has been done,
452 get its actual length. Otherwise, get its maximum length. */
453 int
454 get_attr_length (rtx insn)
455 {
456 return get_attr_length_1 (insn, insn_default_length);
457 }
458
459 /* Obtain the current length of an insn. If branch shortening has been done,
460 get its actual length. Otherwise, get its minimum length. */
461 int
462 get_attr_min_length (rtx insn)
463 {
464 return get_attr_length_1 (insn, insn_min_length);
465 }
466 \f
467 /* Code to handle alignment inside shorten_branches. */
468
469 /* Here is an explanation how the algorithm in align_fuzz can give
470 proper results:
471
472 Call a sequence of instructions beginning with alignment point X
473 and continuing until the next alignment point `block X'. When `X'
474 is used in an expression, it means the alignment value of the
475 alignment point.
476
477 Call the distance between the start of the first insn of block X, and
478 the end of the last insn of block X `IX', for the `inner size of X'.
479 This is clearly the sum of the instruction lengths.
480
481 Likewise with the next alignment-delimited block following X, which we
482 shall call block Y.
483
484 Call the distance between the start of the first insn of block X, and
485 the start of the first insn of block Y `OX', for the `outer size of X'.
486
487 The estimated padding is then OX - IX.
488
489 OX can be safely estimated as
490
491 if (X >= Y)
492 OX = round_up(IX, Y)
493 else
494 OX = round_up(IX, X) + Y - X
495
496 Clearly est(IX) >= real(IX), because that only depends on the
497 instruction lengths, and those being overestimated is a given.
498
499 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
500 we needn't worry about that when thinking about OX.
501
502 When X >= Y, the alignment provided by Y adds no uncertainty factor
503 for branch ranges starting before X, so we can just round what we have.
504 But when X < Y, we don't know anything about the, so to speak,
505 `middle bits', so we have to assume the worst when aligning up from an
506 address mod X to one mod Y, which is Y - X. */
507
508 #ifndef LABEL_ALIGN
509 #define LABEL_ALIGN(LABEL) align_labels_log
510 #endif
511
512 #ifndef LABEL_ALIGN_MAX_SKIP
513 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
514 #endif
515
516 #ifndef LOOP_ALIGN
517 #define LOOP_ALIGN(LABEL) align_loops_log
518 #endif
519
520 #ifndef LOOP_ALIGN_MAX_SKIP
521 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
522 #endif
523
524 #ifndef LABEL_ALIGN_AFTER_BARRIER
525 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
526 #endif
527
528 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
529 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
530 #endif
531
532 #ifndef JUMP_ALIGN
533 #define JUMP_ALIGN(LABEL) align_jumps_log
534 #endif
535
536 #ifndef JUMP_ALIGN_MAX_SKIP
537 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
538 #endif
539
540 #ifndef ADDR_VEC_ALIGN
541 static int
542 final_addr_vec_align (rtx addr_vec)
543 {
544 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
545
546 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
547 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
548 return exact_log2 (align);
549
550 }
551
552 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
553 #endif
554
555 #ifndef INSN_LENGTH_ALIGNMENT
556 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
557 #endif
558
559 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
560
561 static int min_labelno, max_labelno;
562
563 #define LABEL_TO_ALIGNMENT(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
565
566 #define LABEL_TO_MAX_SKIP(LABEL) \
567 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
568
569 /* For the benefit of port specific code do this also as a function. */
570
571 int
572 label_to_alignment (rtx label)
573 {
574 return LABEL_TO_ALIGNMENT (label);
575 }
576
577 #ifdef HAVE_ATTR_length
578 /* The differences in addresses
579 between a branch and its target might grow or shrink depending on
580 the alignment the start insn of the range (the branch for a forward
581 branch or the label for a backward branch) starts out on; if these
582 differences are used naively, they can even oscillate infinitely.
583 We therefore want to compute a 'worst case' address difference that
584 is independent of the alignment the start insn of the range end
585 up on, and that is at least as large as the actual difference.
586 The function align_fuzz calculates the amount we have to add to the
587 naively computed difference, by traversing the part of the alignment
588 chain of the start insn of the range that is in front of the end insn
589 of the range, and considering for each alignment the maximum amount
590 that it might contribute to a size increase.
591
592 For casesi tables, we also want to know worst case minimum amounts of
593 address difference, in case a machine description wants to introduce
594 some common offset that is added to all offsets in a table.
595 For this purpose, align_fuzz with a growth argument of 0 computes the
596 appropriate adjustment. */
597
598 /* Compute the maximum delta by which the difference of the addresses of
599 START and END might grow / shrink due to a different address for start
600 which changes the size of alignment insns between START and END.
601 KNOWN_ALIGN_LOG is the alignment known for START.
602 GROWTH should be ~0 if the objective is to compute potential code size
603 increase, and 0 if the objective is to compute potential shrink.
604 The return value is undefined for any other value of GROWTH. */
605
606 static int
607 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
608 {
609 int uid = INSN_UID (start);
610 rtx align_label;
611 int known_align = 1 << known_align_log;
612 int end_shuid = INSN_SHUID (end);
613 int fuzz = 0;
614
615 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
616 {
617 int align_addr, new_align;
618
619 uid = INSN_UID (align_label);
620 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
621 if (uid_shuid[uid] > end_shuid)
622 break;
623 known_align_log = LABEL_TO_ALIGNMENT (align_label);
624 new_align = 1 << known_align_log;
625 if (new_align < known_align)
626 continue;
627 fuzz += (-align_addr ^ growth) & (new_align - known_align);
628 known_align = new_align;
629 }
630 return fuzz;
631 }
632
633 /* Compute a worst-case reference address of a branch so that it
634 can be safely used in the presence of aligned labels. Since the
635 size of the branch itself is unknown, the size of the branch is
636 not included in the range. I.e. for a forward branch, the reference
637 address is the end address of the branch as known from the previous
638 branch shortening pass, minus a value to account for possible size
639 increase due to alignment. For a backward branch, it is the start
640 address of the branch as known from the current pass, plus a value
641 to account for possible size increase due to alignment.
642 NB.: Therefore, the maximum offset allowed for backward branches needs
643 to exclude the branch size. */
644
645 int
646 insn_current_reference_address (rtx branch)
647 {
648 rtx dest, seq;
649 int seq_uid;
650
651 if (! INSN_ADDRESSES_SET_P ())
652 return 0;
653
654 seq = NEXT_INSN (PREV_INSN (branch));
655 seq_uid = INSN_UID (seq);
656 if (!JUMP_P (branch))
657 /* This can happen for example on the PA; the objective is to know the
658 offset to address something in front of the start of the function.
659 Thus, we can treat it like a backward branch.
660 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
661 any alignment we'd encounter, so we skip the call to align_fuzz. */
662 return insn_current_address;
663 dest = JUMP_LABEL (branch);
664
665 /* BRANCH has no proper alignment chain set, so use SEQ.
666 BRANCH also has no INSN_SHUID. */
667 if (INSN_SHUID (seq) < INSN_SHUID (dest))
668 {
669 /* Forward branch. */
670 return (insn_last_address + insn_lengths[seq_uid]
671 - align_fuzz (seq, dest, length_unit_log, ~0));
672 }
673 else
674 {
675 /* Backward branch. */
676 return (insn_current_address
677 + align_fuzz (dest, seq, length_unit_log, ~0));
678 }
679 }
680 #endif /* HAVE_ATTR_length */
681 \f
682 void
683 compute_alignments (void)
684 {
685 int log, max_skip, max_log;
686 basic_block bb;
687
688 if (label_align)
689 {
690 free (label_align);
691 label_align = 0;
692 }
693
694 max_labelno = max_label_num ();
695 min_labelno = get_first_label_num ();
696 label_align = xcalloc (max_labelno - min_labelno + 1,
697 sizeof (struct label_alignment));
698
699 /* If not optimizing or optimizing for size, don't assign any alignments. */
700 if (! optimize || optimize_size)
701 return;
702
703 FOR_EACH_BB (bb)
704 {
705 rtx label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
709
710 if (!LABEL_P (label)
711 || probably_never_executed_bb_p (bb))
712 continue;
713 max_log = LABEL_ALIGN (label);
714 max_skip = LABEL_ALIGN_MAX_SKIP;
715
716 FOR_EACH_EDGE (e, ei, bb->preds)
717 {
718 if (e->flags & EDGE_FALLTHRU)
719 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
720 else
721 branch_frequency += EDGE_FREQUENCY (e);
722 }
723
724 /* There are two purposes to align block with no fallthru incoming edge:
725 1) to avoid fetch stalls when branch destination is near cache boundary
726 2) to improve cache efficiency in case the previous block is not executed
727 (so it does not need to be in the cache).
728
729 We to catch first case, we align frequently executed blocks.
730 To catch the second, we align blocks that are executed more frequently
731 than the predecessor and the predecessor is likely to not be executed
732 when function is called. */
733
734 if (!has_fallthru
735 && (branch_frequency > BB_FREQ_MAX / 10
736 || (bb->frequency > bb->prev_bb->frequency * 10
737 && (bb->prev_bb->frequency
738 <= ENTRY_BLOCK_PTR->frequency / 2))))
739 {
740 log = JUMP_ALIGN (label);
741 if (max_log < log)
742 {
743 max_log = log;
744 max_skip = JUMP_ALIGN_MAX_SKIP;
745 }
746 }
747 /* In case block is frequent and reached mostly by non-fallthru edge,
748 align it. It is most likely a first block of loop. */
749 if (has_fallthru
750 && maybe_hot_bb_p (bb)
751 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
752 && branch_frequency > fallthru_frequency * 2)
753 {
754 log = LOOP_ALIGN (label);
755 if (max_log < log)
756 {
757 max_log = log;
758 max_skip = LOOP_ALIGN_MAX_SKIP;
759 }
760 }
761 LABEL_TO_ALIGNMENT (label) = max_log;
762 LABEL_TO_MAX_SKIP (label) = max_skip;
763 }
764 }
765
766 struct tree_opt_pass pass_compute_alignments =
767 {
768 NULL, /* name */
769 NULL, /* gate */
770 compute_alignments, /* execute */
771 NULL, /* sub */
772 NULL, /* next */
773 0, /* static_pass_number */
774 0, /* tv_id */
775 0, /* properties_required */
776 0, /* properties_provided */
777 0, /* properties_destroyed */
778 0, /* todo_flags_start */
779 0, /* todo_flags_finish */
780 0 /* letter */
781 };
782
783 \f
784 /* Make a pass over all insns and compute their actual lengths by shortening
785 any branches of variable length if possible. */
786
787 /* shorten_branches might be called multiple times: for example, the SH
788 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789 In order to do this, it needs proper length information, which it obtains
790 by calling shorten_branches. This cannot be collapsed with
791 shorten_branches itself into a single pass unless we also want to integrate
792 reorg.c, since the branch splitting exposes new instructions with delay
793 slots. */
794
795 void
796 shorten_branches (rtx first ATTRIBUTE_UNUSED)
797 {
798 rtx insn;
799 int max_uid;
800 int i;
801 int max_log;
802 int max_skip;
803 #ifdef HAVE_ATTR_length
804 #define MAX_CODE_ALIGN 16
805 rtx seq;
806 int something_changed = 1;
807 char *varying_length;
808 rtx body;
809 int uid;
810 rtx align_tab[MAX_CODE_ALIGN];
811
812 #endif
813
814 /* Compute maximum UID and allocate label_align / uid_shuid. */
815 max_uid = get_max_uid ();
816
817 /* Free uid_shuid before reallocating it. */
818 free (uid_shuid);
819
820 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
821
822 if (max_labelno != max_label_num ())
823 {
824 int old = max_labelno;
825 int n_labels;
826 int n_old_labels;
827
828 max_labelno = max_label_num ();
829
830 n_labels = max_labelno - min_labelno + 1;
831 n_old_labels = old - min_labelno + 1;
832
833 label_align = xrealloc (label_align,
834 n_labels * sizeof (struct label_alignment));
835
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels <= n_labels);
839
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
842 }
843
844 /* Initialize label_align and set up uid_shuid to be strictly
845 monotonically rising with insn order. */
846 /* We use max_log here to keep track of the maximum alignment we want to
847 impose on the next CODE_LABEL (or the current one if we are processing
848 the CODE_LABEL itself). */
849
850 max_log = 0;
851 max_skip = 0;
852
853 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
854 {
855 int log;
856
857 INSN_SHUID (insn) = i++;
858 if (INSN_P (insn))
859 {
860 /* reorg might make the first insn of a loop being run once only,
861 and delete the label in front of it. Then we want to apply
862 the loop alignment to the new label created by reorg, which
863 is separated by the former loop start insn from the
864 NOTE_INSN_LOOP_BEG. */
865 }
866 else if (LABEL_P (insn))
867 {
868 rtx next;
869
870 /* Merge in alignments computed by compute_alignments. */
871 log = LABEL_TO_ALIGNMENT (insn);
872 if (max_log < log)
873 {
874 max_log = log;
875 max_skip = LABEL_TO_MAX_SKIP (insn);
876 }
877
878 log = LABEL_ALIGN (insn);
879 if (max_log < log)
880 {
881 max_log = log;
882 max_skip = LABEL_ALIGN_MAX_SKIP;
883 }
884 next = next_nonnote_insn (insn);
885 /* ADDR_VECs only take room if read-only data goes into the text
886 section. */
887 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
888 if (next && JUMP_P (next))
889 {
890 rtx nextbody = PATTERN (next);
891 if (GET_CODE (nextbody) == ADDR_VEC
892 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
893 {
894 log = ADDR_VEC_ALIGN (next);
895 if (max_log < log)
896 {
897 max_log = log;
898 max_skip = LABEL_ALIGN_MAX_SKIP;
899 }
900 }
901 }
902 LABEL_TO_ALIGNMENT (insn) = max_log;
903 LABEL_TO_MAX_SKIP (insn) = max_skip;
904 max_log = 0;
905 max_skip = 0;
906 }
907 else if (BARRIER_P (insn))
908 {
909 rtx label;
910
911 for (label = insn; label && ! INSN_P (label);
912 label = NEXT_INSN (label))
913 if (LABEL_P (label))
914 {
915 log = LABEL_ALIGN_AFTER_BARRIER (insn);
916 if (max_log < log)
917 {
918 max_log = log;
919 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
920 }
921 break;
922 }
923 }
924 }
925 #ifdef HAVE_ATTR_length
926
927 /* Allocate the rest of the arrays. */
928 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
929 insn_lengths_max_uid = max_uid;
930 /* Syntax errors can lead to labels being outside of the main insn stream.
931 Initialize insn_addresses, so that we get reproducible results. */
932 INSN_ADDRESSES_ALLOC (max_uid);
933
934 varying_length = xcalloc (max_uid, sizeof (char));
935
936 /* Initialize uid_align. We scan instructions
937 from end to start, and keep in align_tab[n] the last seen insn
938 that does an alignment of at least n+1, i.e. the successor
939 in the alignment chain for an insn that does / has a known
940 alignment of n. */
941 uid_align = xcalloc (max_uid, sizeof *uid_align);
942
943 for (i = MAX_CODE_ALIGN; --i >= 0;)
944 align_tab[i] = NULL_RTX;
945 seq = get_last_insn ();
946 for (; seq; seq = PREV_INSN (seq))
947 {
948 int uid = INSN_UID (seq);
949 int log;
950 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
951 uid_align[uid] = align_tab[0];
952 if (log)
953 {
954 /* Found an alignment label. */
955 uid_align[uid] = align_tab[log];
956 for (i = log - 1; i >= 0; i--)
957 align_tab[i] = seq;
958 }
959 }
960 #ifdef CASE_VECTOR_SHORTEN_MODE
961 if (optimize)
962 {
963 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
964 label fields. */
965
966 int min_shuid = INSN_SHUID (get_insns ()) - 1;
967 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
968 int rel;
969
970 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
971 {
972 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
973 int len, i, min, max, insn_shuid;
974 int min_align;
975 addr_diff_vec_flags flags;
976
977 if (!JUMP_P (insn)
978 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
979 continue;
980 pat = PATTERN (insn);
981 len = XVECLEN (pat, 1);
982 gcc_assert (len > 0);
983 min_align = MAX_CODE_ALIGN;
984 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
985 {
986 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
987 int shuid = INSN_SHUID (lab);
988 if (shuid < min)
989 {
990 min = shuid;
991 min_lab = lab;
992 }
993 if (shuid > max)
994 {
995 max = shuid;
996 max_lab = lab;
997 }
998 if (min_align > LABEL_TO_ALIGNMENT (lab))
999 min_align = LABEL_TO_ALIGNMENT (lab);
1000 }
1001 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1002 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1003 insn_shuid = INSN_SHUID (insn);
1004 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1005 memset (&flags, 0, sizeof (flags));
1006 flags.min_align = min_align;
1007 flags.base_after_vec = rel > insn_shuid;
1008 flags.min_after_vec = min > insn_shuid;
1009 flags.max_after_vec = max > insn_shuid;
1010 flags.min_after_base = min > rel;
1011 flags.max_after_base = max > rel;
1012 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1013 }
1014 }
1015 #endif /* CASE_VECTOR_SHORTEN_MODE */
1016
1017 /* Compute initial lengths, addresses, and varying flags for each insn. */
1018 for (insn_current_address = 0, insn = first;
1019 insn != 0;
1020 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1021 {
1022 uid = INSN_UID (insn);
1023
1024 insn_lengths[uid] = 0;
1025
1026 if (LABEL_P (insn))
1027 {
1028 int log = LABEL_TO_ALIGNMENT (insn);
1029 if (log)
1030 {
1031 int align = 1 << log;
1032 int new_address = (insn_current_address + align - 1) & -align;
1033 insn_lengths[uid] = new_address - insn_current_address;
1034 }
1035 }
1036
1037 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1038
1039 if (NOTE_P (insn) || BARRIER_P (insn)
1040 || LABEL_P (insn))
1041 continue;
1042 if (INSN_DELETED_P (insn))
1043 continue;
1044
1045 body = PATTERN (insn);
1046 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1047 {
1048 /* This only takes room if read-only data goes into the text
1049 section. */
1050 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1051 insn_lengths[uid] = (XVECLEN (body,
1052 GET_CODE (body) == ADDR_DIFF_VEC)
1053 * GET_MODE_SIZE (GET_MODE (body)));
1054 /* Alignment is handled by ADDR_VEC_ALIGN. */
1055 }
1056 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1057 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1058 else if (GET_CODE (body) == SEQUENCE)
1059 {
1060 int i;
1061 int const_delay_slots;
1062 #ifdef DELAY_SLOTS
1063 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1064 #else
1065 const_delay_slots = 0;
1066 #endif
1067 /* Inside a delay slot sequence, we do not do any branch shortening
1068 if the shortening could change the number of delay slots
1069 of the branch. */
1070 for (i = 0; i < XVECLEN (body, 0); i++)
1071 {
1072 rtx inner_insn = XVECEXP (body, 0, i);
1073 int inner_uid = INSN_UID (inner_insn);
1074 int inner_length;
1075
1076 if (GET_CODE (body) == ASM_INPUT
1077 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1078 inner_length = (asm_insn_count (PATTERN (inner_insn))
1079 * insn_default_length (inner_insn));
1080 else
1081 inner_length = insn_default_length (inner_insn);
1082
1083 insn_lengths[inner_uid] = inner_length;
1084 if (const_delay_slots)
1085 {
1086 if ((varying_length[inner_uid]
1087 = insn_variable_length_p (inner_insn)) != 0)
1088 varying_length[uid] = 1;
1089 INSN_ADDRESSES (inner_uid) = (insn_current_address
1090 + insn_lengths[uid]);
1091 }
1092 else
1093 varying_length[inner_uid] = 0;
1094 insn_lengths[uid] += inner_length;
1095 }
1096 }
1097 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1098 {
1099 insn_lengths[uid] = insn_default_length (insn);
1100 varying_length[uid] = insn_variable_length_p (insn);
1101 }
1102
1103 /* If needed, do any adjustment. */
1104 #ifdef ADJUST_INSN_LENGTH
1105 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1106 if (insn_lengths[uid] < 0)
1107 fatal_insn ("negative insn length", insn);
1108 #endif
1109 }
1110
1111 /* Now loop over all the insns finding varying length insns. For each,
1112 get the current insn length. If it has changed, reflect the change.
1113 When nothing changes for a full pass, we are done. */
1114
1115 while (something_changed)
1116 {
1117 something_changed = 0;
1118 insn_current_align = MAX_CODE_ALIGN - 1;
1119 for (insn_current_address = 0, insn = first;
1120 insn != 0;
1121 insn = NEXT_INSN (insn))
1122 {
1123 int new_length;
1124 #ifdef ADJUST_INSN_LENGTH
1125 int tmp_length;
1126 #endif
1127 int length_align;
1128
1129 uid = INSN_UID (insn);
1130
1131 if (LABEL_P (insn))
1132 {
1133 int log = LABEL_TO_ALIGNMENT (insn);
1134 if (log > insn_current_align)
1135 {
1136 int align = 1 << log;
1137 int new_address= (insn_current_address + align - 1) & -align;
1138 insn_lengths[uid] = new_address - insn_current_address;
1139 insn_current_align = log;
1140 insn_current_address = new_address;
1141 }
1142 else
1143 insn_lengths[uid] = 0;
1144 INSN_ADDRESSES (uid) = insn_current_address;
1145 continue;
1146 }
1147
1148 length_align = INSN_LENGTH_ALIGNMENT (insn);
1149 if (length_align < insn_current_align)
1150 insn_current_align = length_align;
1151
1152 insn_last_address = INSN_ADDRESSES (uid);
1153 INSN_ADDRESSES (uid) = insn_current_address;
1154
1155 #ifdef CASE_VECTOR_SHORTEN_MODE
1156 if (optimize && JUMP_P (insn)
1157 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1158 {
1159 rtx body = PATTERN (insn);
1160 int old_length = insn_lengths[uid];
1161 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1162 rtx min_lab = XEXP (XEXP (body, 2), 0);
1163 rtx max_lab = XEXP (XEXP (body, 3), 0);
1164 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1165 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1166 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1167 rtx prev;
1168 int rel_align = 0;
1169 addr_diff_vec_flags flags;
1170
1171 /* Avoid automatic aggregate initialization. */
1172 flags = ADDR_DIFF_VEC_FLAGS (body);
1173
1174 /* Try to find a known alignment for rel_lab. */
1175 for (prev = rel_lab;
1176 prev
1177 && ! insn_lengths[INSN_UID (prev)]
1178 && ! (varying_length[INSN_UID (prev)] & 1);
1179 prev = PREV_INSN (prev))
1180 if (varying_length[INSN_UID (prev)] & 2)
1181 {
1182 rel_align = LABEL_TO_ALIGNMENT (prev);
1183 break;
1184 }
1185
1186 /* See the comment on addr_diff_vec_flags in rtl.h for the
1187 meaning of the flags values. base: REL_LAB vec: INSN */
1188 /* Anything after INSN has still addresses from the last
1189 pass; adjust these so that they reflect our current
1190 estimate for this pass. */
1191 if (flags.base_after_vec)
1192 rel_addr += insn_current_address - insn_last_address;
1193 if (flags.min_after_vec)
1194 min_addr += insn_current_address - insn_last_address;
1195 if (flags.max_after_vec)
1196 max_addr += insn_current_address - insn_last_address;
1197 /* We want to know the worst case, i.e. lowest possible value
1198 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1199 its offset is positive, and we have to be wary of code shrink;
1200 otherwise, it is negative, and we have to be vary of code
1201 size increase. */
1202 if (flags.min_after_base)
1203 {
1204 /* If INSN is between REL_LAB and MIN_LAB, the size
1205 changes we are about to make can change the alignment
1206 within the observed offset, therefore we have to break
1207 it up into two parts that are independent. */
1208 if (! flags.base_after_vec && flags.min_after_vec)
1209 {
1210 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1211 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1212 }
1213 else
1214 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1215 }
1216 else
1217 {
1218 if (flags.base_after_vec && ! flags.min_after_vec)
1219 {
1220 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1221 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1222 }
1223 else
1224 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1225 }
1226 /* Likewise, determine the highest lowest possible value
1227 for the offset of MAX_LAB. */
1228 if (flags.max_after_base)
1229 {
1230 if (! flags.base_after_vec && flags.max_after_vec)
1231 {
1232 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1233 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1234 }
1235 else
1236 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1237 }
1238 else
1239 {
1240 if (flags.base_after_vec && ! flags.max_after_vec)
1241 {
1242 max_addr += align_fuzz (max_lab, insn, 0, 0);
1243 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1244 }
1245 else
1246 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1247 }
1248 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1249 max_addr - rel_addr,
1250 body));
1251 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1252 {
1253 insn_lengths[uid]
1254 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1255 insn_current_address += insn_lengths[uid];
1256 if (insn_lengths[uid] != old_length)
1257 something_changed = 1;
1258 }
1259
1260 continue;
1261 }
1262 #endif /* CASE_VECTOR_SHORTEN_MODE */
1263
1264 if (! (varying_length[uid]))
1265 {
1266 if (NONJUMP_INSN_P (insn)
1267 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1268 {
1269 int i;
1270
1271 body = PATTERN (insn);
1272 for (i = 0; i < XVECLEN (body, 0); i++)
1273 {
1274 rtx inner_insn = XVECEXP (body, 0, i);
1275 int inner_uid = INSN_UID (inner_insn);
1276
1277 INSN_ADDRESSES (inner_uid) = insn_current_address;
1278
1279 insn_current_address += insn_lengths[inner_uid];
1280 }
1281 }
1282 else
1283 insn_current_address += insn_lengths[uid];
1284
1285 continue;
1286 }
1287
1288 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1289 {
1290 int i;
1291
1292 body = PATTERN (insn);
1293 new_length = 0;
1294 for (i = 0; i < XVECLEN (body, 0); i++)
1295 {
1296 rtx inner_insn = XVECEXP (body, 0, i);
1297 int inner_uid = INSN_UID (inner_insn);
1298 int inner_length;
1299
1300 INSN_ADDRESSES (inner_uid) = insn_current_address;
1301
1302 /* insn_current_length returns 0 for insns with a
1303 non-varying length. */
1304 if (! varying_length[inner_uid])
1305 inner_length = insn_lengths[inner_uid];
1306 else
1307 inner_length = insn_current_length (inner_insn);
1308
1309 if (inner_length != insn_lengths[inner_uid])
1310 {
1311 insn_lengths[inner_uid] = inner_length;
1312 something_changed = 1;
1313 }
1314 insn_current_address += insn_lengths[inner_uid];
1315 new_length += inner_length;
1316 }
1317 }
1318 else
1319 {
1320 new_length = insn_current_length (insn);
1321 insn_current_address += new_length;
1322 }
1323
1324 #ifdef ADJUST_INSN_LENGTH
1325 /* If needed, do any adjustment. */
1326 tmp_length = new_length;
1327 ADJUST_INSN_LENGTH (insn, new_length);
1328 insn_current_address += (new_length - tmp_length);
1329 #endif
1330
1331 if (new_length != insn_lengths[uid])
1332 {
1333 insn_lengths[uid] = new_length;
1334 something_changed = 1;
1335 }
1336 }
1337 /* For a non-optimizing compile, do only a single pass. */
1338 if (!optimize)
1339 break;
1340 }
1341
1342 free (varying_length);
1343
1344 #endif /* HAVE_ATTR_length */
1345 }
1346
1347 #ifdef HAVE_ATTR_length
1348 /* Given the body of an INSN known to be generated by an ASM statement, return
1349 the number of machine instructions likely to be generated for this insn.
1350 This is used to compute its length. */
1351
1352 static int
1353 asm_insn_count (rtx body)
1354 {
1355 const char *template;
1356 int count = 1;
1357
1358 if (GET_CODE (body) == ASM_INPUT)
1359 template = XSTR (body, 0);
1360 else
1361 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1362
1363 for (; *template; template++)
1364 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1365 count++;
1366
1367 return count;
1368 }
1369 #endif
1370 \f
1371 /* Output assembler code for the start of a function,
1372 and initialize some of the variables in this file
1373 for the new function. The label for the function and associated
1374 assembler pseudo-ops have already been output in `assemble_start_function'.
1375
1376 FIRST is the first insn of the rtl for the function being compiled.
1377 FILE is the file to write assembler code to.
1378 OPTIMIZE is nonzero if we should eliminate redundant
1379 test and compare insns. */
1380
1381 void
1382 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1383 int optimize ATTRIBUTE_UNUSED)
1384 {
1385 block_depth = 0;
1386
1387 this_is_asm_operands = 0;
1388
1389 last_filename = locator_file (prologue_locator);
1390 last_linenum = locator_line (prologue_locator);
1391
1392 high_block_linenum = high_function_linenum = last_linenum;
1393
1394 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1395
1396 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1397 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1398 dwarf2out_begin_prologue (0, NULL);
1399 #endif
1400
1401 #ifdef LEAF_REG_REMAP
1402 if (current_function_uses_only_leaf_regs)
1403 leaf_renumber_regs (first);
1404 #endif
1405
1406 /* The Sun386i and perhaps other machines don't work right
1407 if the profiling code comes after the prologue. */
1408 #ifdef PROFILE_BEFORE_PROLOGUE
1409 if (current_function_profile)
1410 profile_function (file);
1411 #endif /* PROFILE_BEFORE_PROLOGUE */
1412
1413 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1414 if (dwarf2out_do_frame ())
1415 dwarf2out_frame_debug (NULL_RTX, false);
1416 #endif
1417
1418 /* If debugging, assign block numbers to all of the blocks in this
1419 function. */
1420 if (write_symbols)
1421 {
1422 remove_unnecessary_notes ();
1423 reemit_insn_block_notes ();
1424 number_blocks (current_function_decl);
1425 /* We never actually put out begin/end notes for the top-level
1426 block in the function. But, conceptually, that block is
1427 always needed. */
1428 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1429 }
1430
1431 /* First output the function prologue: code to set up the stack frame. */
1432 targetm.asm_out.function_prologue (file, get_frame_size ());
1433
1434 /* If the machine represents the prologue as RTL, the profiling code must
1435 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1436 #ifdef HAVE_prologue
1437 if (! HAVE_prologue)
1438 #endif
1439 profile_after_prologue (file);
1440 }
1441
1442 static void
1443 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1444 {
1445 #ifndef PROFILE_BEFORE_PROLOGUE
1446 if (current_function_profile)
1447 profile_function (file);
1448 #endif /* not PROFILE_BEFORE_PROLOGUE */
1449 }
1450
1451 static void
1452 profile_function (FILE *file ATTRIBUTE_UNUSED)
1453 {
1454 #ifndef NO_PROFILE_COUNTERS
1455 # define NO_PROFILE_COUNTERS 0
1456 #endif
1457 #if defined(ASM_OUTPUT_REG_PUSH)
1458 int sval = current_function_returns_struct;
1459 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1460 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1461 int cxt = cfun->static_chain_decl != NULL;
1462 #endif
1463 #endif /* ASM_OUTPUT_REG_PUSH */
1464
1465 if (! NO_PROFILE_COUNTERS)
1466 {
1467 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1468 data_section ();
1469 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1470 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1471 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1472 }
1473
1474 current_function_section (current_function_decl);
1475
1476 #if defined(ASM_OUTPUT_REG_PUSH)
1477 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1478 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1479 #endif
1480
1481 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1482 if (cxt)
1483 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1484 #else
1485 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1486 if (cxt)
1487 {
1488 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1489 }
1490 #endif
1491 #endif
1492
1493 FUNCTION_PROFILER (file, current_function_funcdef_no);
1494
1495 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1496 if (cxt)
1497 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1498 #else
1499 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1500 if (cxt)
1501 {
1502 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1503 }
1504 #endif
1505 #endif
1506
1507 #if defined(ASM_OUTPUT_REG_PUSH)
1508 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1509 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1510 #endif
1511 }
1512
1513 /* Output assembler code for the end of a function.
1514 For clarity, args are same as those of `final_start_function'
1515 even though not all of them are needed. */
1516
1517 void
1518 final_end_function (void)
1519 {
1520 app_disable ();
1521
1522 (*debug_hooks->end_function) (high_function_linenum);
1523
1524 /* Finally, output the function epilogue:
1525 code to restore the stack frame and return to the caller. */
1526 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1527
1528 /* And debug output. */
1529 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1530
1531 #if defined (DWARF2_UNWIND_INFO)
1532 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1533 && dwarf2out_do_frame ())
1534 dwarf2out_end_epilogue (last_linenum, last_filename);
1535 #endif
1536 }
1537 \f
1538 /* Output assembler code for some insns: all or part of a function.
1539 For description of args, see `final_start_function', above. */
1540
1541 void
1542 final (rtx first, FILE *file, int optimize)
1543 {
1544 rtx insn;
1545 int max_uid = 0;
1546 int seen = 0;
1547
1548 last_ignored_compare = 0;
1549
1550 #ifdef SDB_DEBUGGING_INFO
1551 /* When producing SDB debugging info, delete troublesome line number
1552 notes from inlined functions in other files as well as duplicate
1553 line number notes. */
1554 if (write_symbols == SDB_DEBUG)
1555 {
1556 rtx last = 0;
1557 for (insn = first; insn; insn = NEXT_INSN (insn))
1558 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1559 {
1560 if (last != 0
1561 #ifdef USE_MAPPED_LOCATION
1562 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1563 #else
1564 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1565 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1566 #endif
1567 )
1568 {
1569 delete_insn (insn); /* Use delete_note. */
1570 continue;
1571 }
1572 last = insn;
1573 }
1574 }
1575 #endif
1576
1577 for (insn = first; insn; insn = NEXT_INSN (insn))
1578 {
1579 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1580 max_uid = INSN_UID (insn);
1581 #ifdef HAVE_cc0
1582 /* If CC tracking across branches is enabled, record the insn which
1583 jumps to each branch only reached from one place. */
1584 if (optimize && JUMP_P (insn))
1585 {
1586 rtx lab = JUMP_LABEL (insn);
1587 if (lab && LABEL_NUSES (lab) == 1)
1588 {
1589 LABEL_REFS (lab) = insn;
1590 }
1591 }
1592 #endif
1593 }
1594
1595 init_recog ();
1596
1597 CC_STATUS_INIT;
1598
1599 /* Output the insns. */
1600 for (insn = NEXT_INSN (first); insn;)
1601 {
1602 #ifdef HAVE_ATTR_length
1603 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1604 {
1605 /* This can be triggered by bugs elsewhere in the compiler if
1606 new insns are created after init_insn_lengths is called. */
1607 gcc_assert (NOTE_P (insn));
1608 insn_current_address = -1;
1609 }
1610 else
1611 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1612 #endif /* HAVE_ATTR_length */
1613
1614 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1615 }
1616 }
1617 \f
1618 const char *
1619 get_insn_template (int code, rtx insn)
1620 {
1621 switch (insn_data[code].output_format)
1622 {
1623 case INSN_OUTPUT_FORMAT_SINGLE:
1624 return insn_data[code].output.single;
1625 case INSN_OUTPUT_FORMAT_MULTI:
1626 return insn_data[code].output.multi[which_alternative];
1627 case INSN_OUTPUT_FORMAT_FUNCTION:
1628 gcc_assert (insn);
1629 return (*insn_data[code].output.function) (recog_data.operand, insn);
1630
1631 default:
1632 gcc_unreachable ();
1633 }
1634 }
1635
1636 /* Emit the appropriate declaration for an alternate-entry-point
1637 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1638 LABEL_KIND != LABEL_NORMAL.
1639
1640 The case fall-through in this function is intentional. */
1641 static void
1642 output_alternate_entry_point (FILE *file, rtx insn)
1643 {
1644 const char *name = LABEL_NAME (insn);
1645
1646 switch (LABEL_KIND (insn))
1647 {
1648 case LABEL_WEAK_ENTRY:
1649 #ifdef ASM_WEAKEN_LABEL
1650 ASM_WEAKEN_LABEL (file, name);
1651 #endif
1652 case LABEL_GLOBAL_ENTRY:
1653 targetm.asm_out.globalize_label (file, name);
1654 case LABEL_STATIC_ENTRY:
1655 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1656 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1657 #endif
1658 ASM_OUTPUT_LABEL (file, name);
1659 break;
1660
1661 case LABEL_NORMAL:
1662 default:
1663 gcc_unreachable ();
1664 }
1665 }
1666
1667 /* The final scan for one insn, INSN.
1668 Args are same as in `final', except that INSN
1669 is the insn being scanned.
1670 Value returned is the next insn to be scanned.
1671
1672 NOPEEPHOLES is the flag to disallow peephole processing (currently
1673 used for within delayed branch sequence output).
1674
1675 SEEN is used to track the end of the prologue, for emitting
1676 debug information. We force the emission of a line note after
1677 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1678 at the beginning of the second basic block, whichever comes
1679 first. */
1680
1681 rtx
1682 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1683 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1684 {
1685 #ifdef HAVE_cc0
1686 rtx set;
1687 #endif
1688 rtx next;
1689
1690 insn_counter++;
1691
1692 /* Ignore deleted insns. These can occur when we split insns (due to a
1693 template of "#") while not optimizing. */
1694 if (INSN_DELETED_P (insn))
1695 return NEXT_INSN (insn);
1696
1697 switch (GET_CODE (insn))
1698 {
1699 case NOTE:
1700 switch (NOTE_LINE_NUMBER (insn))
1701 {
1702 case NOTE_INSN_DELETED:
1703 case NOTE_INSN_LOOP_BEG:
1704 case NOTE_INSN_LOOP_END:
1705 case NOTE_INSN_FUNCTION_END:
1706 case NOTE_INSN_REPEATED_LINE_NUMBER:
1707 case NOTE_INSN_EXPECTED_VALUE:
1708 break;
1709
1710 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1711
1712 /* The presence of this note indicates that this basic block
1713 belongs in the "cold" section of the .o file. If we are
1714 not already writing to the cold section we need to change
1715 to it. */
1716
1717 if (last_text_section == in_text)
1718 {
1719 (*debug_hooks->switch_text_section) ();
1720 unlikely_text_section ();
1721 }
1722 else
1723 {
1724 (*debug_hooks->switch_text_section) ();
1725 text_section ();
1726 }
1727 break;
1728
1729 case NOTE_INSN_BASIC_BLOCK:
1730
1731 #ifdef TARGET_UNWIND_INFO
1732 targetm.asm_out.unwind_emit (asm_out_file, insn);
1733 #endif
1734
1735 if (flag_debug_asm)
1736 fprintf (asm_out_file, "\t%s basic block %d\n",
1737 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1738
1739 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1740 {
1741 *seen |= SEEN_EMITTED;
1742 last_filename = NULL;
1743 }
1744 else
1745 *seen |= SEEN_BB;
1746
1747 break;
1748
1749 case NOTE_INSN_EH_REGION_BEG:
1750 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1751 NOTE_EH_HANDLER (insn));
1752 break;
1753
1754 case NOTE_INSN_EH_REGION_END:
1755 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1756 NOTE_EH_HANDLER (insn));
1757 break;
1758
1759 case NOTE_INSN_PROLOGUE_END:
1760 targetm.asm_out.function_end_prologue (file);
1761 profile_after_prologue (file);
1762
1763 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1764 {
1765 *seen |= SEEN_EMITTED;
1766 last_filename = NULL;
1767 }
1768 else
1769 *seen |= SEEN_NOTE;
1770
1771 break;
1772
1773 case NOTE_INSN_EPILOGUE_BEG:
1774 targetm.asm_out.function_begin_epilogue (file);
1775 break;
1776
1777 case NOTE_INSN_FUNCTION_BEG:
1778 app_disable ();
1779 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1780
1781 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1782 {
1783 *seen |= SEEN_EMITTED;
1784 last_filename = NULL;
1785 }
1786 else
1787 *seen |= SEEN_NOTE;
1788
1789 break;
1790
1791 case NOTE_INSN_BLOCK_BEG:
1792 if (debug_info_level == DINFO_LEVEL_NORMAL
1793 || debug_info_level == DINFO_LEVEL_VERBOSE
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1797 {
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1799
1800 app_disable ();
1801 ++block_depth;
1802 high_block_linenum = last_linenum;
1803
1804 /* Output debugging info about the symbol-block beginning. */
1805 (*debug_hooks->begin_block) (last_linenum, n);
1806
1807 /* Mark this block as output. */
1808 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1809 }
1810 break;
1811
1812 case NOTE_INSN_BLOCK_END:
1813 if (debug_info_level == DINFO_LEVEL_NORMAL
1814 || debug_info_level == DINFO_LEVEL_VERBOSE
1815 || write_symbols == DWARF2_DEBUG
1816 || write_symbols == VMS_AND_DWARF2_DEBUG
1817 || write_symbols == VMS_DEBUG)
1818 {
1819 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1820
1821 app_disable ();
1822
1823 /* End of a symbol-block. */
1824 --block_depth;
1825 gcc_assert (block_depth >= 0);
1826
1827 (*debug_hooks->end_block) (high_block_linenum, n);
1828 }
1829 break;
1830
1831 case NOTE_INSN_DELETED_LABEL:
1832 /* Emit the label. We may have deleted the CODE_LABEL because
1833 the label could be proved to be unreachable, though still
1834 referenced (in the form of having its address taken. */
1835 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1836 break;
1837
1838 case NOTE_INSN_VAR_LOCATION:
1839 (*debug_hooks->var_location) (insn);
1840 break;
1841
1842 case 0:
1843 break;
1844
1845 default:
1846 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1847 break;
1848 }
1849 break;
1850
1851 case BARRIER:
1852 #if defined (DWARF2_UNWIND_INFO)
1853 if (dwarf2out_do_frame ())
1854 dwarf2out_frame_debug (insn, false);
1855 #endif
1856 break;
1857
1858 case CODE_LABEL:
1859 /* The target port might emit labels in the output function for
1860 some insn, e.g. sh.c output_branchy_insn. */
1861 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1862 {
1863 int align = LABEL_TO_ALIGNMENT (insn);
1864 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1865 int max_skip = LABEL_TO_MAX_SKIP (insn);
1866 #endif
1867
1868 if (align && NEXT_INSN (insn))
1869 {
1870 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1871 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1872 #else
1873 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1874 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1875 #else
1876 ASM_OUTPUT_ALIGN (file, align);
1877 #endif
1878 #endif
1879 }
1880 }
1881 #ifdef HAVE_cc0
1882 CC_STATUS_INIT;
1883 /* If this label is reached from only one place, set the condition
1884 codes from the instruction just before the branch. */
1885
1886 /* Disabled because some insns set cc_status in the C output code
1887 and NOTICE_UPDATE_CC alone can set incorrect status. */
1888 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1889 {
1890 rtx jump = LABEL_REFS (insn);
1891 rtx barrier = prev_nonnote_insn (insn);
1892 rtx prev;
1893 /* If the LABEL_REFS field of this label has been set to point
1894 at a branch, the predecessor of the branch is a regular
1895 insn, and that branch is the only way to reach this label,
1896 set the condition codes based on the branch and its
1897 predecessor. */
1898 if (barrier && BARRIER_P (barrier)
1899 && jump && JUMP_P (jump)
1900 && (prev = prev_nonnote_insn (jump))
1901 && NONJUMP_INSN_P (prev))
1902 {
1903 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1904 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1905 }
1906 }
1907 #endif
1908
1909 if (LABEL_NAME (insn))
1910 (*debug_hooks->label) (insn);
1911
1912 if (app_on)
1913 {
1914 fputs (ASM_APP_OFF, file);
1915 app_on = 0;
1916 }
1917
1918 next = next_nonnote_insn (insn);
1919 if (next != 0 && JUMP_P (next))
1920 {
1921 rtx nextbody = PATTERN (next);
1922
1923 /* If this label is followed by a jump-table,
1924 make sure we put the label in the read-only section. Also
1925 possibly write the label and jump table together. */
1926
1927 if (GET_CODE (nextbody) == ADDR_VEC
1928 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1929 {
1930 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1931 /* In this case, the case vector is being moved by the
1932 target, so don't output the label at all. Leave that
1933 to the back end macros. */
1934 #else
1935 if (! JUMP_TABLES_IN_TEXT_SECTION)
1936 {
1937 int log_align;
1938
1939 targetm.asm_out.function_rodata_section (current_function_decl);
1940
1941 #ifdef ADDR_VEC_ALIGN
1942 log_align = ADDR_VEC_ALIGN (next);
1943 #else
1944 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1945 #endif
1946 ASM_OUTPUT_ALIGN (file, log_align);
1947 }
1948 else
1949 current_function_section (current_function_decl);
1950
1951 #ifdef ASM_OUTPUT_CASE_LABEL
1952 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1953 next);
1954 #else
1955 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1956 #endif
1957 #endif
1958 break;
1959 }
1960 }
1961 if (LABEL_ALT_ENTRY_P (insn))
1962 output_alternate_entry_point (file, insn);
1963 else
1964 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1965 break;
1966
1967 default:
1968 {
1969 rtx body = PATTERN (insn);
1970 int insn_code_number;
1971 const char *template;
1972
1973 /* An INSN, JUMP_INSN or CALL_INSN.
1974 First check for special kinds that recog doesn't recognize. */
1975
1976 if (GET_CODE (body) == USE /* These are just declarations. */
1977 || GET_CODE (body) == CLOBBER)
1978 break;
1979
1980 #ifdef HAVE_cc0
1981 {
1982 /* If there is a REG_CC_SETTER note on this insn, it means that
1983 the setting of the condition code was done in the delay slot
1984 of the insn that branched here. So recover the cc status
1985 from the insn that set it. */
1986
1987 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1988 if (note)
1989 {
1990 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1991 cc_prev_status = cc_status;
1992 }
1993 }
1994 #endif
1995
1996 /* Detect insns that are really jump-tables
1997 and output them as such. */
1998
1999 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2000 {
2001 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2002 int vlen, idx;
2003 #endif
2004
2005 if (! JUMP_TABLES_IN_TEXT_SECTION)
2006 targetm.asm_out.function_rodata_section (current_function_decl);
2007 else
2008 current_function_section (current_function_decl);
2009
2010 if (app_on)
2011 {
2012 fputs (ASM_APP_OFF, file);
2013 app_on = 0;
2014 }
2015
2016 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2017 if (GET_CODE (body) == ADDR_VEC)
2018 {
2019 #ifdef ASM_OUTPUT_ADDR_VEC
2020 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2021 #else
2022 gcc_unreachable ();
2023 #endif
2024 }
2025 else
2026 {
2027 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2028 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2029 #else
2030 gcc_unreachable ();
2031 #endif
2032 }
2033 #else
2034 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2035 for (idx = 0; idx < vlen; idx++)
2036 {
2037 if (GET_CODE (body) == ADDR_VEC)
2038 {
2039 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2040 ASM_OUTPUT_ADDR_VEC_ELT
2041 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2042 #else
2043 gcc_unreachable ();
2044 #endif
2045 }
2046 else
2047 {
2048 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2049 ASM_OUTPUT_ADDR_DIFF_ELT
2050 (file,
2051 body,
2052 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2053 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2054 #else
2055 gcc_unreachable ();
2056 #endif
2057 }
2058 }
2059 #ifdef ASM_OUTPUT_CASE_END
2060 ASM_OUTPUT_CASE_END (file,
2061 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2062 insn);
2063 #endif
2064 #endif
2065
2066 current_function_section (current_function_decl);
2067
2068 break;
2069 }
2070 /* Output this line note if it is the first or the last line
2071 note in a row. */
2072 if (notice_source_line (insn))
2073 {
2074 (*debug_hooks->source_line) (last_linenum, last_filename);
2075 }
2076
2077 if (GET_CODE (body) == ASM_INPUT)
2078 {
2079 const char *string = XSTR (body, 0);
2080
2081 /* There's no telling what that did to the condition codes. */
2082 CC_STATUS_INIT;
2083
2084 if (string[0])
2085 {
2086 if (! app_on)
2087 {
2088 fputs (ASM_APP_ON, file);
2089 app_on = 1;
2090 }
2091 fprintf (asm_out_file, "\t%s\n", string);
2092 }
2093 break;
2094 }
2095
2096 /* Detect `asm' construct with operands. */
2097 if (asm_noperands (body) >= 0)
2098 {
2099 unsigned int noperands = asm_noperands (body);
2100 rtx *ops = alloca (noperands * sizeof (rtx));
2101 const char *string;
2102
2103 /* There's no telling what that did to the condition codes. */
2104 CC_STATUS_INIT;
2105
2106 /* Get out the operand values. */
2107 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2108 /* Inhibit dieing on what would otherwise be compiler bugs. */
2109 insn_noperands = noperands;
2110 this_is_asm_operands = insn;
2111
2112 #ifdef FINAL_PRESCAN_INSN
2113 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2114 #endif
2115
2116 /* Output the insn using them. */
2117 if (string[0])
2118 {
2119 if (! app_on)
2120 {
2121 fputs (ASM_APP_ON, file);
2122 app_on = 1;
2123 }
2124 output_asm_insn (string, ops);
2125 }
2126
2127 this_is_asm_operands = 0;
2128 break;
2129 }
2130
2131 if (app_on)
2132 {
2133 fputs (ASM_APP_OFF, file);
2134 app_on = 0;
2135 }
2136
2137 if (GET_CODE (body) == SEQUENCE)
2138 {
2139 /* A delayed-branch sequence */
2140 int i;
2141
2142 final_sequence = body;
2143
2144 /* Record the delay slots' frame information before the branch.
2145 This is needed for delayed calls: see execute_cfa_program(). */
2146 #if defined (DWARF2_UNWIND_INFO)
2147 if (dwarf2out_do_frame ())
2148 for (i = 1; i < XVECLEN (body, 0); i++)
2149 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2150 #endif
2151
2152 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2153 force the restoration of a comparison that was previously
2154 thought unnecessary. If that happens, cancel this sequence
2155 and cause that insn to be restored. */
2156
2157 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2158 if (next != XVECEXP (body, 0, 1))
2159 {
2160 final_sequence = 0;
2161 return next;
2162 }
2163
2164 for (i = 1; i < XVECLEN (body, 0); i++)
2165 {
2166 rtx insn = XVECEXP (body, 0, i);
2167 rtx next = NEXT_INSN (insn);
2168 /* We loop in case any instruction in a delay slot gets
2169 split. */
2170 do
2171 insn = final_scan_insn (insn, file, 0, 1, seen);
2172 while (insn != next);
2173 }
2174 #ifdef DBR_OUTPUT_SEQEND
2175 DBR_OUTPUT_SEQEND (file);
2176 #endif
2177 final_sequence = 0;
2178
2179 /* If the insn requiring the delay slot was a CALL_INSN, the
2180 insns in the delay slot are actually executed before the
2181 called function. Hence we don't preserve any CC-setting
2182 actions in these insns and the CC must be marked as being
2183 clobbered by the function. */
2184 if (CALL_P (XVECEXP (body, 0, 0)))
2185 {
2186 CC_STATUS_INIT;
2187 }
2188 break;
2189 }
2190
2191 /* We have a real machine instruction as rtl. */
2192
2193 body = PATTERN (insn);
2194
2195 #ifdef HAVE_cc0
2196 set = single_set (insn);
2197
2198 /* Check for redundant test and compare instructions
2199 (when the condition codes are already set up as desired).
2200 This is done only when optimizing; if not optimizing,
2201 it should be possible for the user to alter a variable
2202 with the debugger in between statements
2203 and the next statement should reexamine the variable
2204 to compute the condition codes. */
2205
2206 if (optimize)
2207 {
2208 if (set
2209 && GET_CODE (SET_DEST (set)) == CC0
2210 && insn != last_ignored_compare)
2211 {
2212 if (GET_CODE (SET_SRC (set)) == SUBREG)
2213 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2214 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2215 {
2216 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2217 XEXP (SET_SRC (set), 0)
2218 = alter_subreg (&XEXP (SET_SRC (set), 0));
2219 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2220 XEXP (SET_SRC (set), 1)
2221 = alter_subreg (&XEXP (SET_SRC (set), 1));
2222 }
2223 if ((cc_status.value1 != 0
2224 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2225 || (cc_status.value2 != 0
2226 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2227 {
2228 /* Don't delete insn if it has an addressing side-effect. */
2229 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2230 /* or if anything in it is volatile. */
2231 && ! volatile_refs_p (PATTERN (insn)))
2232 {
2233 /* We don't really delete the insn; just ignore it. */
2234 last_ignored_compare = insn;
2235 break;
2236 }
2237 }
2238 }
2239 }
2240 #endif
2241
2242 #ifdef HAVE_cc0
2243 /* If this is a conditional branch, maybe modify it
2244 if the cc's are in a nonstandard state
2245 so that it accomplishes the same thing that it would
2246 do straightforwardly if the cc's were set up normally. */
2247
2248 if (cc_status.flags != 0
2249 && JUMP_P (insn)
2250 && GET_CODE (body) == SET
2251 && SET_DEST (body) == pc_rtx
2252 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2253 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2254 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2255 {
2256 /* This function may alter the contents of its argument
2257 and clear some of the cc_status.flags bits.
2258 It may also return 1 meaning condition now always true
2259 or -1 meaning condition now always false
2260 or 2 meaning condition nontrivial but altered. */
2261 int result = alter_cond (XEXP (SET_SRC (body), 0));
2262 /* If condition now has fixed value, replace the IF_THEN_ELSE
2263 with its then-operand or its else-operand. */
2264 if (result == 1)
2265 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2266 if (result == -1)
2267 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2268
2269 /* The jump is now either unconditional or a no-op.
2270 If it has become a no-op, don't try to output it.
2271 (It would not be recognized.) */
2272 if (SET_SRC (body) == pc_rtx)
2273 {
2274 delete_insn (insn);
2275 break;
2276 }
2277 else if (GET_CODE (SET_SRC (body)) == RETURN)
2278 /* Replace (set (pc) (return)) with (return). */
2279 PATTERN (insn) = body = SET_SRC (body);
2280
2281 /* Rerecognize the instruction if it has changed. */
2282 if (result != 0)
2283 INSN_CODE (insn) = -1;
2284 }
2285
2286 /* Make same adjustments to instructions that examine the
2287 condition codes without jumping and instructions that
2288 handle conditional moves (if this machine has either one). */
2289
2290 if (cc_status.flags != 0
2291 && set != 0)
2292 {
2293 rtx cond_rtx, then_rtx, else_rtx;
2294
2295 if (!JUMP_P (insn)
2296 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2297 {
2298 cond_rtx = XEXP (SET_SRC (set), 0);
2299 then_rtx = XEXP (SET_SRC (set), 1);
2300 else_rtx = XEXP (SET_SRC (set), 2);
2301 }
2302 else
2303 {
2304 cond_rtx = SET_SRC (set);
2305 then_rtx = const_true_rtx;
2306 else_rtx = const0_rtx;
2307 }
2308
2309 switch (GET_CODE (cond_rtx))
2310 {
2311 case GTU:
2312 case GT:
2313 case LTU:
2314 case LT:
2315 case GEU:
2316 case GE:
2317 case LEU:
2318 case LE:
2319 case EQ:
2320 case NE:
2321 {
2322 int result;
2323 if (XEXP (cond_rtx, 0) != cc0_rtx)
2324 break;
2325 result = alter_cond (cond_rtx);
2326 if (result == 1)
2327 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2328 else if (result == -1)
2329 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2330 else if (result == 2)
2331 INSN_CODE (insn) = -1;
2332 if (SET_DEST (set) == SET_SRC (set))
2333 delete_insn (insn);
2334 }
2335 break;
2336
2337 default:
2338 break;
2339 }
2340 }
2341
2342 #endif
2343
2344 #ifdef HAVE_peephole
2345 /* Do machine-specific peephole optimizations if desired. */
2346
2347 if (optimize && !flag_no_peephole && !nopeepholes)
2348 {
2349 rtx next = peephole (insn);
2350 /* When peepholing, if there were notes within the peephole,
2351 emit them before the peephole. */
2352 if (next != 0 && next != NEXT_INSN (insn))
2353 {
2354 rtx note, prev = PREV_INSN (insn);
2355
2356 for (note = NEXT_INSN (insn); note != next;
2357 note = NEXT_INSN (note))
2358 final_scan_insn (note, file, optimize, nopeepholes, seen);
2359
2360 /* Put the notes in the proper position for a later
2361 rescan. For example, the SH target can do this
2362 when generating a far jump in a delayed branch
2363 sequence. */
2364 note = NEXT_INSN (insn);
2365 PREV_INSN (note) = prev;
2366 NEXT_INSN (prev) = note;
2367 NEXT_INSN (PREV_INSN (next)) = insn;
2368 PREV_INSN (insn) = PREV_INSN (next);
2369 NEXT_INSN (insn) = next;
2370 PREV_INSN (next) = insn;
2371 }
2372
2373 /* PEEPHOLE might have changed this. */
2374 body = PATTERN (insn);
2375 }
2376 #endif
2377
2378 /* Try to recognize the instruction.
2379 If successful, verify that the operands satisfy the
2380 constraints for the instruction. Crash if they don't,
2381 since `reload' should have changed them so that they do. */
2382
2383 insn_code_number = recog_memoized (insn);
2384 cleanup_subreg_operands (insn);
2385
2386 /* Dump the insn in the assembly for debugging. */
2387 if (flag_dump_rtl_in_asm)
2388 {
2389 print_rtx_head = ASM_COMMENT_START;
2390 print_rtl_single (asm_out_file, insn);
2391 print_rtx_head = "";
2392 }
2393
2394 if (! constrain_operands_cached (1))
2395 fatal_insn_not_found (insn);
2396
2397 /* Some target machines need to prescan each insn before
2398 it is output. */
2399
2400 #ifdef FINAL_PRESCAN_INSN
2401 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2402 #endif
2403
2404 #ifdef HAVE_conditional_execution
2405 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2406 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2407 else
2408 current_insn_predicate = NULL_RTX;
2409 #endif
2410
2411 #ifdef HAVE_cc0
2412 cc_prev_status = cc_status;
2413
2414 /* Update `cc_status' for this instruction.
2415 The instruction's output routine may change it further.
2416 If the output routine for a jump insn needs to depend
2417 on the cc status, it should look at cc_prev_status. */
2418
2419 NOTICE_UPDATE_CC (body, insn);
2420 #endif
2421
2422 current_output_insn = debug_insn = insn;
2423
2424 #if defined (DWARF2_UNWIND_INFO)
2425 if (CALL_P (insn) && dwarf2out_do_frame ())
2426 dwarf2out_frame_debug (insn, false);
2427 #endif
2428
2429 /* Find the proper template for this insn. */
2430 template = get_insn_template (insn_code_number, insn);
2431
2432 /* If the C code returns 0, it means that it is a jump insn
2433 which follows a deleted test insn, and that test insn
2434 needs to be reinserted. */
2435 if (template == 0)
2436 {
2437 rtx prev;
2438
2439 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2440
2441 /* We have already processed the notes between the setter and
2442 the user. Make sure we don't process them again, this is
2443 particularly important if one of the notes is a block
2444 scope note or an EH note. */
2445 for (prev = insn;
2446 prev != last_ignored_compare;
2447 prev = PREV_INSN (prev))
2448 {
2449 if (NOTE_P (prev))
2450 delete_insn (prev); /* Use delete_note. */
2451 }
2452
2453 return prev;
2454 }
2455
2456 /* If the template is the string "#", it means that this insn must
2457 be split. */
2458 if (template[0] == '#' && template[1] == '\0')
2459 {
2460 rtx new = try_split (body, insn, 0);
2461
2462 /* If we didn't split the insn, go away. */
2463 if (new == insn && PATTERN (new) == body)
2464 fatal_insn ("could not split insn", insn);
2465
2466 #ifdef HAVE_ATTR_length
2467 /* This instruction should have been split in shorten_branches,
2468 to ensure that we would have valid length info for the
2469 splitees. */
2470 gcc_unreachable ();
2471 #endif
2472
2473 return new;
2474 }
2475
2476 #ifdef TARGET_UNWIND_INFO
2477 /* ??? This will put the directives in the wrong place if
2478 get_insn_template outputs assembly directly. However calling it
2479 before get_insn_template breaks if the insns is split. */
2480 targetm.asm_out.unwind_emit (asm_out_file, insn);
2481 #endif
2482
2483 /* Output assembler code from the template. */
2484 output_asm_insn (template, recog_data.operand);
2485
2486 /* If necessary, report the effect that the instruction has on
2487 the unwind info. We've already done this for delay slots
2488 and call instructions. */
2489 #if defined (DWARF2_UNWIND_INFO)
2490 if (final_sequence == 0
2491 #if !defined (HAVE_prologue)
2492 && !ACCUMULATE_OUTGOING_ARGS
2493 #endif
2494 && dwarf2out_do_frame ())
2495 dwarf2out_frame_debug (insn, true);
2496 #endif
2497
2498 current_output_insn = debug_insn = 0;
2499 }
2500 }
2501 return NEXT_INSN (insn);
2502 }
2503 \f
2504 /* Output debugging info to the assembler file FILE
2505 based on the NOTE-insn INSN, assumed to be a line number. */
2506
2507 static bool
2508 notice_source_line (rtx insn)
2509 {
2510 const char *filename = insn_file (insn);
2511 int linenum = insn_line (insn);
2512
2513 if (filename && (filename != last_filename || last_linenum != linenum))
2514 {
2515 last_filename = filename;
2516 last_linenum = linenum;
2517 high_block_linenum = MAX (last_linenum, high_block_linenum);
2518 high_function_linenum = MAX (last_linenum, high_function_linenum);
2519 return true;
2520 }
2521 return false;
2522 }
2523 \f
2524 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2525 directly to the desired hard register. */
2526
2527 void
2528 cleanup_subreg_operands (rtx insn)
2529 {
2530 int i;
2531 extract_insn_cached (insn);
2532 for (i = 0; i < recog_data.n_operands; i++)
2533 {
2534 /* The following test cannot use recog_data.operand when testing
2535 for a SUBREG: the underlying object might have been changed
2536 already if we are inside a match_operator expression that
2537 matches the else clause. Instead we test the underlying
2538 expression directly. */
2539 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2540 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2541 else if (GET_CODE (recog_data.operand[i]) == PLUS
2542 || GET_CODE (recog_data.operand[i]) == MULT
2543 || MEM_P (recog_data.operand[i]))
2544 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2545 }
2546
2547 for (i = 0; i < recog_data.n_dups; i++)
2548 {
2549 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2550 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2551 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2552 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2553 || MEM_P (*recog_data.dup_loc[i]))
2554 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2555 }
2556 }
2557
2558 /* If X is a SUBREG, replace it with a REG or a MEM,
2559 based on the thing it is a subreg of. */
2560
2561 rtx
2562 alter_subreg (rtx *xp)
2563 {
2564 rtx x = *xp;
2565 rtx y = SUBREG_REG (x);
2566
2567 /* simplify_subreg does not remove subreg from volatile references.
2568 We are required to. */
2569 if (MEM_P (y))
2570 {
2571 int offset = SUBREG_BYTE (x);
2572
2573 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2574 contains 0 instead of the proper offset. See simplify_subreg. */
2575 if (offset == 0
2576 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2577 {
2578 int difference = GET_MODE_SIZE (GET_MODE (y))
2579 - GET_MODE_SIZE (GET_MODE (x));
2580 if (WORDS_BIG_ENDIAN)
2581 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2582 if (BYTES_BIG_ENDIAN)
2583 offset += difference % UNITS_PER_WORD;
2584 }
2585
2586 *xp = adjust_address (y, GET_MODE (x), offset);
2587 }
2588 else
2589 {
2590 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2591 SUBREG_BYTE (x));
2592
2593 if (new != 0)
2594 *xp = new;
2595 else if (REG_P (y))
2596 {
2597 /* Simplify_subreg can't handle some REG cases, but we have to. */
2598 unsigned int regno = subreg_regno (x);
2599 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2600 }
2601 }
2602
2603 return *xp;
2604 }
2605
2606 /* Do alter_subreg on all the SUBREGs contained in X. */
2607
2608 static rtx
2609 walk_alter_subreg (rtx *xp)
2610 {
2611 rtx x = *xp;
2612 switch (GET_CODE (x))
2613 {
2614 case PLUS:
2615 case MULT:
2616 case AND:
2617 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2618 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2619 break;
2620
2621 case MEM:
2622 case ZERO_EXTEND:
2623 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2624 break;
2625
2626 case SUBREG:
2627 return alter_subreg (xp);
2628
2629 default:
2630 break;
2631 }
2632
2633 return *xp;
2634 }
2635 \f
2636 #ifdef HAVE_cc0
2637
2638 /* Given BODY, the body of a jump instruction, alter the jump condition
2639 as required by the bits that are set in cc_status.flags.
2640 Not all of the bits there can be handled at this level in all cases.
2641
2642 The value is normally 0.
2643 1 means that the condition has become always true.
2644 -1 means that the condition has become always false.
2645 2 means that COND has been altered. */
2646
2647 static int
2648 alter_cond (rtx cond)
2649 {
2650 int value = 0;
2651
2652 if (cc_status.flags & CC_REVERSED)
2653 {
2654 value = 2;
2655 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2656 }
2657
2658 if (cc_status.flags & CC_INVERTED)
2659 {
2660 value = 2;
2661 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2662 }
2663
2664 if (cc_status.flags & CC_NOT_POSITIVE)
2665 switch (GET_CODE (cond))
2666 {
2667 case LE:
2668 case LEU:
2669 case GEU:
2670 /* Jump becomes unconditional. */
2671 return 1;
2672
2673 case GT:
2674 case GTU:
2675 case LTU:
2676 /* Jump becomes no-op. */
2677 return -1;
2678
2679 case GE:
2680 PUT_CODE (cond, EQ);
2681 value = 2;
2682 break;
2683
2684 case LT:
2685 PUT_CODE (cond, NE);
2686 value = 2;
2687 break;
2688
2689 default:
2690 break;
2691 }
2692
2693 if (cc_status.flags & CC_NOT_NEGATIVE)
2694 switch (GET_CODE (cond))
2695 {
2696 case GE:
2697 case GEU:
2698 /* Jump becomes unconditional. */
2699 return 1;
2700
2701 case LT:
2702 case LTU:
2703 /* Jump becomes no-op. */
2704 return -1;
2705
2706 case LE:
2707 case LEU:
2708 PUT_CODE (cond, EQ);
2709 value = 2;
2710 break;
2711
2712 case GT:
2713 case GTU:
2714 PUT_CODE (cond, NE);
2715 value = 2;
2716 break;
2717
2718 default:
2719 break;
2720 }
2721
2722 if (cc_status.flags & CC_NO_OVERFLOW)
2723 switch (GET_CODE (cond))
2724 {
2725 case GEU:
2726 /* Jump becomes unconditional. */
2727 return 1;
2728
2729 case LEU:
2730 PUT_CODE (cond, EQ);
2731 value = 2;
2732 break;
2733
2734 case GTU:
2735 PUT_CODE (cond, NE);
2736 value = 2;
2737 break;
2738
2739 case LTU:
2740 /* Jump becomes no-op. */
2741 return -1;
2742
2743 default:
2744 break;
2745 }
2746
2747 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2748 switch (GET_CODE (cond))
2749 {
2750 default:
2751 gcc_unreachable ();
2752
2753 case NE:
2754 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2755 value = 2;
2756 break;
2757
2758 case EQ:
2759 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2760 value = 2;
2761 break;
2762 }
2763
2764 if (cc_status.flags & CC_NOT_SIGNED)
2765 /* The flags are valid if signed condition operators are converted
2766 to unsigned. */
2767 switch (GET_CODE (cond))
2768 {
2769 case LE:
2770 PUT_CODE (cond, LEU);
2771 value = 2;
2772 break;
2773
2774 case LT:
2775 PUT_CODE (cond, LTU);
2776 value = 2;
2777 break;
2778
2779 case GT:
2780 PUT_CODE (cond, GTU);
2781 value = 2;
2782 break;
2783
2784 case GE:
2785 PUT_CODE (cond, GEU);
2786 value = 2;
2787 break;
2788
2789 default:
2790 break;
2791 }
2792
2793 return value;
2794 }
2795 #endif
2796 \f
2797 /* Report inconsistency between the assembler template and the operands.
2798 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2799
2800 void
2801 output_operand_lossage (const char *cmsgid, ...)
2802 {
2803 char *fmt_string;
2804 char *new_message;
2805 const char *pfx_str;
2806 va_list ap;
2807
2808 va_start (ap, cmsgid);
2809
2810 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2811 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2812 vasprintf (&new_message, fmt_string, ap);
2813
2814 if (this_is_asm_operands)
2815 error_for_asm (this_is_asm_operands, "%s", new_message);
2816 else
2817 internal_error ("%s", new_message);
2818
2819 free (fmt_string);
2820 free (new_message);
2821 va_end (ap);
2822 }
2823 \f
2824 /* Output of assembler code from a template, and its subroutines. */
2825
2826 /* Annotate the assembly with a comment describing the pattern and
2827 alternative used. */
2828
2829 static void
2830 output_asm_name (void)
2831 {
2832 if (debug_insn)
2833 {
2834 int num = INSN_CODE (debug_insn);
2835 fprintf (asm_out_file, "\t%s %d\t%s",
2836 ASM_COMMENT_START, INSN_UID (debug_insn),
2837 insn_data[num].name);
2838 if (insn_data[num].n_alternatives > 1)
2839 fprintf (asm_out_file, "/%d", which_alternative + 1);
2840 #ifdef HAVE_ATTR_length
2841 fprintf (asm_out_file, "\t[length = %d]",
2842 get_attr_length (debug_insn));
2843 #endif
2844 /* Clear this so only the first assembler insn
2845 of any rtl insn will get the special comment for -dp. */
2846 debug_insn = 0;
2847 }
2848 }
2849
2850 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2851 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2852 corresponds to the address of the object and 0 if to the object. */
2853
2854 static tree
2855 get_mem_expr_from_op (rtx op, int *paddressp)
2856 {
2857 tree expr;
2858 int inner_addressp;
2859
2860 *paddressp = 0;
2861
2862 if (REG_P (op))
2863 return REG_EXPR (op);
2864 else if (!MEM_P (op))
2865 return 0;
2866
2867 if (MEM_EXPR (op) != 0)
2868 return MEM_EXPR (op);
2869
2870 /* Otherwise we have an address, so indicate it and look at the address. */
2871 *paddressp = 1;
2872 op = XEXP (op, 0);
2873
2874 /* First check if we have a decl for the address, then look at the right side
2875 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2876 But don't allow the address to itself be indirect. */
2877 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2878 return expr;
2879 else if (GET_CODE (op) == PLUS
2880 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2881 return expr;
2882
2883 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2884 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2885 op = XEXP (op, 0);
2886
2887 expr = get_mem_expr_from_op (op, &inner_addressp);
2888 return inner_addressp ? 0 : expr;
2889 }
2890
2891 /* Output operand names for assembler instructions. OPERANDS is the
2892 operand vector, OPORDER is the order to write the operands, and NOPS
2893 is the number of operands to write. */
2894
2895 static void
2896 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2897 {
2898 int wrote = 0;
2899 int i;
2900
2901 for (i = 0; i < nops; i++)
2902 {
2903 int addressp;
2904 rtx op = operands[oporder[i]];
2905 tree expr = get_mem_expr_from_op (op, &addressp);
2906
2907 fprintf (asm_out_file, "%c%s",
2908 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2909 wrote = 1;
2910 if (expr)
2911 {
2912 fprintf (asm_out_file, "%s",
2913 addressp ? "*" : "");
2914 print_mem_expr (asm_out_file, expr);
2915 wrote = 1;
2916 }
2917 else if (REG_P (op) && ORIGINAL_REGNO (op)
2918 && ORIGINAL_REGNO (op) != REGNO (op))
2919 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2920 }
2921 }
2922
2923 /* Output text from TEMPLATE to the assembler output file,
2924 obeying %-directions to substitute operands taken from
2925 the vector OPERANDS.
2926
2927 %N (for N a digit) means print operand N in usual manner.
2928 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2929 and print the label name with no punctuation.
2930 %cN means require operand N to be a constant
2931 and print the constant expression with no punctuation.
2932 %aN means expect operand N to be a memory address
2933 (not a memory reference!) and print a reference
2934 to that address.
2935 %nN means expect operand N to be a constant
2936 and print a constant expression for minus the value
2937 of the operand, with no other punctuation. */
2938
2939 void
2940 output_asm_insn (const char *template, rtx *operands)
2941 {
2942 const char *p;
2943 int c;
2944 #ifdef ASSEMBLER_DIALECT
2945 int dialect = 0;
2946 #endif
2947 int oporder[MAX_RECOG_OPERANDS];
2948 char opoutput[MAX_RECOG_OPERANDS];
2949 int ops = 0;
2950
2951 /* An insn may return a null string template
2952 in a case where no assembler code is needed. */
2953 if (*template == 0)
2954 return;
2955
2956 memset (opoutput, 0, sizeof opoutput);
2957 p = template;
2958 putc ('\t', asm_out_file);
2959
2960 #ifdef ASM_OUTPUT_OPCODE
2961 ASM_OUTPUT_OPCODE (asm_out_file, p);
2962 #endif
2963
2964 while ((c = *p++))
2965 switch (c)
2966 {
2967 case '\n':
2968 if (flag_verbose_asm)
2969 output_asm_operand_names (operands, oporder, ops);
2970 if (flag_print_asm_name)
2971 output_asm_name ();
2972
2973 ops = 0;
2974 memset (opoutput, 0, sizeof opoutput);
2975
2976 putc (c, asm_out_file);
2977 #ifdef ASM_OUTPUT_OPCODE
2978 while ((c = *p) == '\t')
2979 {
2980 putc (c, asm_out_file);
2981 p++;
2982 }
2983 ASM_OUTPUT_OPCODE (asm_out_file, p);
2984 #endif
2985 break;
2986
2987 #ifdef ASSEMBLER_DIALECT
2988 case '{':
2989 {
2990 int i;
2991
2992 if (dialect)
2993 output_operand_lossage ("nested assembly dialect alternatives");
2994 else
2995 dialect = 1;
2996
2997 /* If we want the first dialect, do nothing. Otherwise, skip
2998 DIALECT_NUMBER of strings ending with '|'. */
2999 for (i = 0; i < dialect_number; i++)
3000 {
3001 while (*p && *p != '}' && *p++ != '|')
3002 ;
3003 if (*p == '}')
3004 break;
3005 if (*p == '|')
3006 p++;
3007 }
3008
3009 if (*p == '\0')
3010 output_operand_lossage ("unterminated assembly dialect alternative");
3011 }
3012 break;
3013
3014 case '|':
3015 if (dialect)
3016 {
3017 /* Skip to close brace. */
3018 do
3019 {
3020 if (*p == '\0')
3021 {
3022 output_operand_lossage ("unterminated assembly dialect alternative");
3023 break;
3024 }
3025 }
3026 while (*p++ != '}');
3027 dialect = 0;
3028 }
3029 else
3030 putc (c, asm_out_file);
3031 break;
3032
3033 case '}':
3034 if (! dialect)
3035 putc (c, asm_out_file);
3036 dialect = 0;
3037 break;
3038 #endif
3039
3040 case '%':
3041 /* %% outputs a single %. */
3042 if (*p == '%')
3043 {
3044 p++;
3045 putc (c, asm_out_file);
3046 }
3047 /* %= outputs a number which is unique to each insn in the entire
3048 compilation. This is useful for making local labels that are
3049 referred to more than once in a given insn. */
3050 else if (*p == '=')
3051 {
3052 p++;
3053 fprintf (asm_out_file, "%d", insn_counter);
3054 }
3055 /* % followed by a letter and some digits
3056 outputs an operand in a special way depending on the letter.
3057 Letters `acln' are implemented directly.
3058 Other letters are passed to `output_operand' so that
3059 the PRINT_OPERAND macro can define them. */
3060 else if (ISALPHA (*p))
3061 {
3062 int letter = *p++;
3063 unsigned long opnum;
3064 char *endptr;
3065
3066 opnum = strtoul (p, &endptr, 10);
3067
3068 if (endptr == p)
3069 output_operand_lossage ("operand number missing "
3070 "after %%-letter");
3071 else if (this_is_asm_operands && opnum >= insn_noperands)
3072 output_operand_lossage ("operand number out of range");
3073 else if (letter == 'l')
3074 output_asm_label (operands[opnum]);
3075 else if (letter == 'a')
3076 output_address (operands[opnum]);
3077 else if (letter == 'c')
3078 {
3079 if (CONSTANT_ADDRESS_P (operands[opnum]))
3080 output_addr_const (asm_out_file, operands[opnum]);
3081 else
3082 output_operand (operands[opnum], 'c');
3083 }
3084 else if (letter == 'n')
3085 {
3086 if (GET_CODE (operands[opnum]) == CONST_INT)
3087 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3088 - INTVAL (operands[opnum]));
3089 else
3090 {
3091 putc ('-', asm_out_file);
3092 output_addr_const (asm_out_file, operands[opnum]);
3093 }
3094 }
3095 else
3096 output_operand (operands[opnum], letter);
3097
3098 if (!opoutput[opnum])
3099 oporder[ops++] = opnum;
3100 opoutput[opnum] = 1;
3101
3102 p = endptr;
3103 c = *p;
3104 }
3105 /* % followed by a digit outputs an operand the default way. */
3106 else if (ISDIGIT (*p))
3107 {
3108 unsigned long opnum;
3109 char *endptr;
3110
3111 opnum = strtoul (p, &endptr, 10);
3112 if (this_is_asm_operands && opnum >= insn_noperands)
3113 output_operand_lossage ("operand number out of range");
3114 else
3115 output_operand (operands[opnum], 0);
3116
3117 if (!opoutput[opnum])
3118 oporder[ops++] = opnum;
3119 opoutput[opnum] = 1;
3120
3121 p = endptr;
3122 c = *p;
3123 }
3124 /* % followed by punctuation: output something for that
3125 punctuation character alone, with no operand.
3126 The PRINT_OPERAND macro decides what is actually done. */
3127 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3128 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3129 output_operand (NULL_RTX, *p++);
3130 #endif
3131 else
3132 output_operand_lossage ("invalid %%-code");
3133 break;
3134
3135 default:
3136 putc (c, asm_out_file);
3137 }
3138
3139 /* Write out the variable names for operands, if we know them. */
3140 if (flag_verbose_asm)
3141 output_asm_operand_names (operands, oporder, ops);
3142 if (flag_print_asm_name)
3143 output_asm_name ();
3144
3145 putc ('\n', asm_out_file);
3146 }
3147 \f
3148 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3149
3150 void
3151 output_asm_label (rtx x)
3152 {
3153 char buf[256];
3154
3155 if (GET_CODE (x) == LABEL_REF)
3156 x = XEXP (x, 0);
3157 if (LABEL_P (x)
3158 || (NOTE_P (x)
3159 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3160 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3161 else
3162 output_operand_lossage ("'%%l' operand isn't a label");
3163
3164 assemble_name (asm_out_file, buf);
3165 }
3166
3167 /* Print operand X using machine-dependent assembler syntax.
3168 The macro PRINT_OPERAND is defined just to control this function.
3169 CODE is a non-digit that preceded the operand-number in the % spec,
3170 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3171 between the % and the digits.
3172 When CODE is a non-letter, X is 0.
3173
3174 The meanings of the letters are machine-dependent and controlled
3175 by PRINT_OPERAND. */
3176
3177 static void
3178 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3179 {
3180 if (x && GET_CODE (x) == SUBREG)
3181 x = alter_subreg (&x);
3182
3183 /* X must not be a pseudo reg. */
3184 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3185
3186 PRINT_OPERAND (asm_out_file, x, code);
3187 }
3188
3189 /* Print a memory reference operand for address X
3190 using machine-dependent assembler syntax.
3191 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3192
3193 void
3194 output_address (rtx x)
3195 {
3196 walk_alter_subreg (&x);
3197 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3198 }
3199 \f
3200 /* Print an integer constant expression in assembler syntax.
3201 Addition and subtraction are the only arithmetic
3202 that may appear in these expressions. */
3203
3204 void
3205 output_addr_const (FILE *file, rtx x)
3206 {
3207 char buf[256];
3208
3209 restart:
3210 switch (GET_CODE (x))
3211 {
3212 case PC:
3213 putc ('.', file);
3214 break;
3215
3216 case SYMBOL_REF:
3217 if (SYMBOL_REF_DECL (x))
3218 mark_decl_referenced (SYMBOL_REF_DECL (x));
3219 #ifdef ASM_OUTPUT_SYMBOL_REF
3220 ASM_OUTPUT_SYMBOL_REF (file, x);
3221 #else
3222 assemble_name (file, XSTR (x, 0));
3223 #endif
3224 break;
3225
3226 case LABEL_REF:
3227 x = XEXP (x, 0);
3228 /* Fall through. */
3229 case CODE_LABEL:
3230 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3231 #ifdef ASM_OUTPUT_LABEL_REF
3232 ASM_OUTPUT_LABEL_REF (file, buf);
3233 #else
3234 assemble_name (file, buf);
3235 #endif
3236 break;
3237
3238 case CONST_INT:
3239 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3240 break;
3241
3242 case CONST:
3243 /* This used to output parentheses around the expression,
3244 but that does not work on the 386 (either ATT or BSD assembler). */
3245 output_addr_const (file, XEXP (x, 0));
3246 break;
3247
3248 case CONST_DOUBLE:
3249 if (GET_MODE (x) == VOIDmode)
3250 {
3251 /* We can use %d if the number is one word and positive. */
3252 if (CONST_DOUBLE_HIGH (x))
3253 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3254 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3255 else if (CONST_DOUBLE_LOW (x) < 0)
3256 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3257 else
3258 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3259 }
3260 else
3261 /* We can't handle floating point constants;
3262 PRINT_OPERAND must handle them. */
3263 output_operand_lossage ("floating constant misused");
3264 break;
3265
3266 case PLUS:
3267 /* Some assemblers need integer constants to appear last (eg masm). */
3268 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3269 {
3270 output_addr_const (file, XEXP (x, 1));
3271 if (INTVAL (XEXP (x, 0)) >= 0)
3272 fprintf (file, "+");
3273 output_addr_const (file, XEXP (x, 0));
3274 }
3275 else
3276 {
3277 output_addr_const (file, XEXP (x, 0));
3278 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3279 || INTVAL (XEXP (x, 1)) >= 0)
3280 fprintf (file, "+");
3281 output_addr_const (file, XEXP (x, 1));
3282 }
3283 break;
3284
3285 case MINUS:
3286 /* Avoid outputting things like x-x or x+5-x,
3287 since some assemblers can't handle that. */
3288 x = simplify_subtraction (x);
3289 if (GET_CODE (x) != MINUS)
3290 goto restart;
3291
3292 output_addr_const (file, XEXP (x, 0));
3293 fprintf (file, "-");
3294 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3295 || GET_CODE (XEXP (x, 1)) == PC
3296 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3297 output_addr_const (file, XEXP (x, 1));
3298 else
3299 {
3300 fputs (targetm.asm_out.open_paren, file);
3301 output_addr_const (file, XEXP (x, 1));
3302 fputs (targetm.asm_out.close_paren, file);
3303 }
3304 break;
3305
3306 case ZERO_EXTEND:
3307 case SIGN_EXTEND:
3308 case SUBREG:
3309 output_addr_const (file, XEXP (x, 0));
3310 break;
3311
3312 default:
3313 #ifdef OUTPUT_ADDR_CONST_EXTRA
3314 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3315 break;
3316
3317 fail:
3318 #endif
3319 output_operand_lossage ("invalid expression as operand");
3320 }
3321 }
3322 \f
3323 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3324 %R prints the value of REGISTER_PREFIX.
3325 %L prints the value of LOCAL_LABEL_PREFIX.
3326 %U prints the value of USER_LABEL_PREFIX.
3327 %I prints the value of IMMEDIATE_PREFIX.
3328 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3329 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3330
3331 We handle alternate assembler dialects here, just like output_asm_insn. */
3332
3333 void
3334 asm_fprintf (FILE *file, const char *p, ...)
3335 {
3336 char buf[10];
3337 char *q, c;
3338 va_list argptr;
3339
3340 va_start (argptr, p);
3341
3342 buf[0] = '%';
3343
3344 while ((c = *p++))
3345 switch (c)
3346 {
3347 #ifdef ASSEMBLER_DIALECT
3348 case '{':
3349 {
3350 int i;
3351
3352 /* If we want the first dialect, do nothing. Otherwise, skip
3353 DIALECT_NUMBER of strings ending with '|'. */
3354 for (i = 0; i < dialect_number; i++)
3355 {
3356 while (*p && *p++ != '|')
3357 ;
3358
3359 if (*p == '|')
3360 p++;
3361 }
3362 }
3363 break;
3364
3365 case '|':
3366 /* Skip to close brace. */
3367 while (*p && *p++ != '}')
3368 ;
3369 break;
3370
3371 case '}':
3372 break;
3373 #endif
3374
3375 case '%':
3376 c = *p++;
3377 q = &buf[1];
3378 while (strchr ("-+ #0", c))
3379 {
3380 *q++ = c;
3381 c = *p++;
3382 }
3383 while (ISDIGIT (c) || c == '.')
3384 {
3385 *q++ = c;
3386 c = *p++;
3387 }
3388 switch (c)
3389 {
3390 case '%':
3391 putc ('%', file);
3392 break;
3393
3394 case 'd': case 'i': case 'u':
3395 case 'x': case 'X': case 'o':
3396 case 'c':
3397 *q++ = c;
3398 *q = 0;
3399 fprintf (file, buf, va_arg (argptr, int));
3400 break;
3401
3402 case 'w':
3403 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3404 'o' cases, but we do not check for those cases. It
3405 means that the value is a HOST_WIDE_INT, which may be
3406 either `long' or `long long'. */
3407 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3408 q += strlen (HOST_WIDE_INT_PRINT);
3409 *q++ = *p++;
3410 *q = 0;
3411 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3412 break;
3413
3414 case 'l':
3415 *q++ = c;
3416 #ifdef HAVE_LONG_LONG
3417 if (*p == 'l')
3418 {
3419 *q++ = *p++;
3420 *q++ = *p++;
3421 *q = 0;
3422 fprintf (file, buf, va_arg (argptr, long long));
3423 }
3424 else
3425 #endif
3426 {
3427 *q++ = *p++;
3428 *q = 0;
3429 fprintf (file, buf, va_arg (argptr, long));
3430 }
3431
3432 break;
3433
3434 case 's':
3435 *q++ = c;
3436 *q = 0;
3437 fprintf (file, buf, va_arg (argptr, char *));
3438 break;
3439
3440 case 'O':
3441 #ifdef ASM_OUTPUT_OPCODE
3442 ASM_OUTPUT_OPCODE (asm_out_file, p);
3443 #endif
3444 break;
3445
3446 case 'R':
3447 #ifdef REGISTER_PREFIX
3448 fprintf (file, "%s", REGISTER_PREFIX);
3449 #endif
3450 break;
3451
3452 case 'I':
3453 #ifdef IMMEDIATE_PREFIX
3454 fprintf (file, "%s", IMMEDIATE_PREFIX);
3455 #endif
3456 break;
3457
3458 case 'L':
3459 #ifdef LOCAL_LABEL_PREFIX
3460 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3461 #endif
3462 break;
3463
3464 case 'U':
3465 fputs (user_label_prefix, file);
3466 break;
3467
3468 #ifdef ASM_FPRINTF_EXTENSIONS
3469 /* Uppercase letters are reserved for general use by asm_fprintf
3470 and so are not available to target specific code. In order to
3471 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3472 they are defined here. As they get turned into real extensions
3473 to asm_fprintf they should be removed from this list. */
3474 case 'A': case 'B': case 'C': case 'D': case 'E':
3475 case 'F': case 'G': case 'H': case 'J': case 'K':
3476 case 'M': case 'N': case 'P': case 'Q': case 'S':
3477 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3478 break;
3479
3480 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3481 #endif
3482 default:
3483 gcc_unreachable ();
3484 }
3485 break;
3486
3487 default:
3488 putc (c, file);
3489 }
3490 va_end (argptr);
3491 }
3492 \f
3493 /* Split up a CONST_DOUBLE or integer constant rtx
3494 into two rtx's for single words,
3495 storing in *FIRST the word that comes first in memory in the target
3496 and in *SECOND the other. */
3497
3498 void
3499 split_double (rtx value, rtx *first, rtx *second)
3500 {
3501 if (GET_CODE (value) == CONST_INT)
3502 {
3503 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3504 {
3505 /* In this case the CONST_INT holds both target words.
3506 Extract the bits from it into two word-sized pieces.
3507 Sign extend each half to HOST_WIDE_INT. */
3508 unsigned HOST_WIDE_INT low, high;
3509 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3510
3511 /* Set sign_bit to the most significant bit of a word. */
3512 sign_bit = 1;
3513 sign_bit <<= BITS_PER_WORD - 1;
3514
3515 /* Set mask so that all bits of the word are set. We could
3516 have used 1 << BITS_PER_WORD instead of basing the
3517 calculation on sign_bit. However, on machines where
3518 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3519 compiler warning, even though the code would never be
3520 executed. */
3521 mask = sign_bit << 1;
3522 mask--;
3523
3524 /* Set sign_extend as any remaining bits. */
3525 sign_extend = ~mask;
3526
3527 /* Pick the lower word and sign-extend it. */
3528 low = INTVAL (value);
3529 low &= mask;
3530 if (low & sign_bit)
3531 low |= sign_extend;
3532
3533 /* Pick the higher word, shifted to the least significant
3534 bits, and sign-extend it. */
3535 high = INTVAL (value);
3536 high >>= BITS_PER_WORD - 1;
3537 high >>= 1;
3538 high &= mask;
3539 if (high & sign_bit)
3540 high |= sign_extend;
3541
3542 /* Store the words in the target machine order. */
3543 if (WORDS_BIG_ENDIAN)
3544 {
3545 *first = GEN_INT (high);
3546 *second = GEN_INT (low);
3547 }
3548 else
3549 {
3550 *first = GEN_INT (low);
3551 *second = GEN_INT (high);
3552 }
3553 }
3554 else
3555 {
3556 /* The rule for using CONST_INT for a wider mode
3557 is that we regard the value as signed.
3558 So sign-extend it. */
3559 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3560 if (WORDS_BIG_ENDIAN)
3561 {
3562 *first = high;
3563 *second = value;
3564 }
3565 else
3566 {
3567 *first = value;
3568 *second = high;
3569 }
3570 }
3571 }
3572 else if (GET_CODE (value) != CONST_DOUBLE)
3573 {
3574 if (WORDS_BIG_ENDIAN)
3575 {
3576 *first = const0_rtx;
3577 *second = value;
3578 }
3579 else
3580 {
3581 *first = value;
3582 *second = const0_rtx;
3583 }
3584 }
3585 else if (GET_MODE (value) == VOIDmode
3586 /* This is the old way we did CONST_DOUBLE integers. */
3587 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3588 {
3589 /* In an integer, the words are defined as most and least significant.
3590 So order them by the target's convention. */
3591 if (WORDS_BIG_ENDIAN)
3592 {
3593 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3594 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3595 }
3596 else
3597 {
3598 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3599 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3600 }
3601 }
3602 else
3603 {
3604 REAL_VALUE_TYPE r;
3605 long l[2];
3606 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3607
3608 /* Note, this converts the REAL_VALUE_TYPE to the target's
3609 format, splits up the floating point double and outputs
3610 exactly 32 bits of it into each of l[0] and l[1] --
3611 not necessarily BITS_PER_WORD bits. */
3612 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3613
3614 /* If 32 bits is an entire word for the target, but not for the host,
3615 then sign-extend on the host so that the number will look the same
3616 way on the host that it would on the target. See for instance
3617 simplify_unary_operation. The #if is needed to avoid compiler
3618 warnings. */
3619
3620 #if HOST_BITS_PER_LONG > 32
3621 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3622 {
3623 if (l[0] & ((long) 1 << 31))
3624 l[0] |= ((long) (-1) << 32);
3625 if (l[1] & ((long) 1 << 31))
3626 l[1] |= ((long) (-1) << 32);
3627 }
3628 #endif
3629
3630 *first = GEN_INT (l[0]);
3631 *second = GEN_INT (l[1]);
3632 }
3633 }
3634 \f
3635 /* Return nonzero if this function has no function calls. */
3636
3637 int
3638 leaf_function_p (void)
3639 {
3640 rtx insn;
3641 rtx link;
3642
3643 if (current_function_profile || profile_arc_flag)
3644 return 0;
3645
3646 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3647 {
3648 if (CALL_P (insn)
3649 && ! SIBLING_CALL_P (insn))
3650 return 0;
3651 if (NONJUMP_INSN_P (insn)
3652 && GET_CODE (PATTERN (insn)) == SEQUENCE
3653 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3654 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3655 return 0;
3656 }
3657 for (link = current_function_epilogue_delay_list;
3658 link;
3659 link = XEXP (link, 1))
3660 {
3661 insn = XEXP (link, 0);
3662
3663 if (CALL_P (insn)
3664 && ! SIBLING_CALL_P (insn))
3665 return 0;
3666 if (NONJUMP_INSN_P (insn)
3667 && GET_CODE (PATTERN (insn)) == SEQUENCE
3668 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3669 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3670 return 0;
3671 }
3672
3673 return 1;
3674 }
3675
3676 /* Return 1 if branch is a forward branch.
3677 Uses insn_shuid array, so it works only in the final pass. May be used by
3678 output templates to customary add branch prediction hints.
3679 */
3680 int
3681 final_forward_branch_p (rtx insn)
3682 {
3683 int insn_id, label_id;
3684
3685 gcc_assert (uid_shuid);
3686 insn_id = INSN_SHUID (insn);
3687 label_id = INSN_SHUID (JUMP_LABEL (insn));
3688 /* We've hit some insns that does not have id information available. */
3689 gcc_assert (insn_id && label_id);
3690 return insn_id < label_id;
3691 }
3692
3693 /* On some machines, a function with no call insns
3694 can run faster if it doesn't create its own register window.
3695 When output, the leaf function should use only the "output"
3696 registers. Ordinarily, the function would be compiled to use
3697 the "input" registers to find its arguments; it is a candidate
3698 for leaf treatment if it uses only the "input" registers.
3699 Leaf function treatment means renumbering so the function
3700 uses the "output" registers instead. */
3701
3702 #ifdef LEAF_REGISTERS
3703
3704 /* Return 1 if this function uses only the registers that can be
3705 safely renumbered. */
3706
3707 int
3708 only_leaf_regs_used (void)
3709 {
3710 int i;
3711 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3712
3713 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3714 if ((regs_ever_live[i] || global_regs[i])
3715 && ! permitted_reg_in_leaf_functions[i])
3716 return 0;
3717
3718 if (current_function_uses_pic_offset_table
3719 && pic_offset_table_rtx != 0
3720 && REG_P (pic_offset_table_rtx)
3721 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3722 return 0;
3723
3724 return 1;
3725 }
3726
3727 /* Scan all instructions and renumber all registers into those
3728 available in leaf functions. */
3729
3730 static void
3731 leaf_renumber_regs (rtx first)
3732 {
3733 rtx insn;
3734
3735 /* Renumber only the actual patterns.
3736 The reg-notes can contain frame pointer refs,
3737 and renumbering them could crash, and should not be needed. */
3738 for (insn = first; insn; insn = NEXT_INSN (insn))
3739 if (INSN_P (insn))
3740 leaf_renumber_regs_insn (PATTERN (insn));
3741 for (insn = current_function_epilogue_delay_list;
3742 insn;
3743 insn = XEXP (insn, 1))
3744 if (INSN_P (XEXP (insn, 0)))
3745 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3746 }
3747
3748 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3749 available in leaf functions. */
3750
3751 void
3752 leaf_renumber_regs_insn (rtx in_rtx)
3753 {
3754 int i, j;
3755 const char *format_ptr;
3756
3757 if (in_rtx == 0)
3758 return;
3759
3760 /* Renumber all input-registers into output-registers.
3761 renumbered_regs would be 1 for an output-register;
3762 they */
3763
3764 if (REG_P (in_rtx))
3765 {
3766 int newreg;
3767
3768 /* Don't renumber the same reg twice. */
3769 if (in_rtx->used)
3770 return;
3771
3772 newreg = REGNO (in_rtx);
3773 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3774 to reach here as part of a REG_NOTE. */
3775 if (newreg >= FIRST_PSEUDO_REGISTER)
3776 {
3777 in_rtx->used = 1;
3778 return;
3779 }
3780 newreg = LEAF_REG_REMAP (newreg);
3781 gcc_assert (newreg >= 0);
3782 regs_ever_live[REGNO (in_rtx)] = 0;
3783 regs_ever_live[newreg] = 1;
3784 REGNO (in_rtx) = newreg;
3785 in_rtx->used = 1;
3786 }
3787
3788 if (INSN_P (in_rtx))
3789 {
3790 /* Inside a SEQUENCE, we find insns.
3791 Renumber just the patterns of these insns,
3792 just as we do for the top-level insns. */
3793 leaf_renumber_regs_insn (PATTERN (in_rtx));
3794 return;
3795 }
3796
3797 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3798
3799 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3800 switch (*format_ptr++)
3801 {
3802 case 'e':
3803 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3804 break;
3805
3806 case 'E':
3807 if (NULL != XVEC (in_rtx, i))
3808 {
3809 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3810 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3811 }
3812 break;
3813
3814 case 'S':
3815 case 's':
3816 case '0':
3817 case 'i':
3818 case 'w':
3819 case 'n':
3820 case 'u':
3821 break;
3822
3823 default:
3824 gcc_unreachable ();
3825 }
3826 }
3827 #endif
3828
3829
3830 /* When -gused is used, emit debug info for only used symbols. But in
3831 addition to the standard intercepted debug_hooks there are some direct
3832 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3833 Those routines may also be called from a higher level intercepted routine. So
3834 to prevent recording data for an inner call to one of these for an intercept,
3835 we maintain an intercept nesting counter (debug_nesting). We only save the
3836 intercepted arguments if the nesting is 1. */
3837 int debug_nesting = 0;
3838
3839 static tree *symbol_queue;
3840 int symbol_queue_index = 0;
3841 static int symbol_queue_size = 0;
3842
3843 /* Generate the symbols for any queued up type symbols we encountered
3844 while generating the type info for some originally used symbol.
3845 This might generate additional entries in the queue. Only when
3846 the nesting depth goes to 0 is this routine called. */
3847
3848 void
3849 debug_flush_symbol_queue (void)
3850 {
3851 int i;
3852
3853 /* Make sure that additionally queued items are not flushed
3854 prematurely. */
3855
3856 ++debug_nesting;
3857
3858 for (i = 0; i < symbol_queue_index; ++i)
3859 {
3860 /* If we pushed queued symbols then such symbols are must be
3861 output no matter what anyone else says. Specifically,
3862 we need to make sure dbxout_symbol() thinks the symbol was
3863 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3864 which may be set for outside reasons. */
3865 int saved_tree_used = TREE_USED (symbol_queue[i]);
3866 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3867 TREE_USED (symbol_queue[i]) = 1;
3868 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3869
3870 #ifdef DBX_DEBUGGING_INFO
3871 dbxout_symbol (symbol_queue[i], 0);
3872 #endif
3873
3874 TREE_USED (symbol_queue[i]) = saved_tree_used;
3875 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3876 }
3877
3878 symbol_queue_index = 0;
3879 --debug_nesting;
3880 }
3881
3882 /* Queue a type symbol needed as part of the definition of a decl
3883 symbol. These symbols are generated when debug_flush_symbol_queue()
3884 is called. */
3885
3886 void
3887 debug_queue_symbol (tree decl)
3888 {
3889 if (symbol_queue_index >= symbol_queue_size)
3890 {
3891 symbol_queue_size += 10;
3892 symbol_queue = xrealloc (symbol_queue,
3893 symbol_queue_size * sizeof (tree));
3894 }
3895
3896 symbol_queue[symbol_queue_index++] = decl;
3897 }
3898
3899 /* Free symbol queue. */
3900 void
3901 debug_free_queue (void)
3902 {
3903 if (symbol_queue)
3904 {
3905 free (symbol_queue);
3906 symbol_queue = NULL;
3907 symbol_queue_size = 0;
3908 }
3909 }
3910 \f
3911 /* Turn the RTL into assembly. */
3912 static void
3913 rest_of_handle_final (void)
3914 {
3915 rtx x;
3916 const char *fnname;
3917
3918 /* Get the function's name, as described by its RTL. This may be
3919 different from the DECL_NAME name used in the source file. */
3920
3921 x = DECL_RTL (current_function_decl);
3922 gcc_assert (MEM_P (x));
3923 x = XEXP (x, 0);
3924 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3925 fnname = XSTR (x, 0);
3926
3927 assemble_start_function (current_function_decl, fnname);
3928 final_start_function (get_insns (), asm_out_file, optimize);
3929 final (get_insns (), asm_out_file, optimize);
3930 final_end_function ();
3931
3932 #ifdef TARGET_UNWIND_INFO
3933 /* ??? The IA-64 ".handlerdata" directive must be issued before
3934 the ".endp" directive that closes the procedure descriptor. */
3935 output_function_exception_table ();
3936 #endif
3937
3938 assemble_end_function (current_function_decl, fnname);
3939
3940 #ifndef TARGET_UNWIND_INFO
3941 /* Otherwise, it feels unclean to switch sections in the middle. */
3942 output_function_exception_table ();
3943 #endif
3944
3945 user_defined_section_attribute = false;
3946
3947 if (! quiet_flag)
3948 fflush (asm_out_file);
3949
3950 /* Release all memory allocated by flow. */
3951 free_basic_block_vars ();
3952
3953 /* Write DBX symbols if requested. */
3954
3955 /* Note that for those inline functions where we don't initially
3956 know for certain that we will be generating an out-of-line copy,
3957 the first invocation of this routine (rest_of_compilation) will
3958 skip over this code by doing a `goto exit_rest_of_compilation;'.
3959 Later on, wrapup_global_declarations will (indirectly) call
3960 rest_of_compilation again for those inline functions that need
3961 to have out-of-line copies generated. During that call, we
3962 *will* be routed past here. */
3963
3964 timevar_push (TV_SYMOUT);
3965 (*debug_hooks->function_decl) (current_function_decl);
3966 timevar_pop (TV_SYMOUT);
3967 }
3968
3969 struct tree_opt_pass pass_final =
3970 {
3971 NULL, /* name */
3972 NULL, /* gate */
3973 rest_of_handle_final, /* execute */
3974 NULL, /* sub */
3975 NULL, /* next */
3976 0, /* static_pass_number */
3977 TV_FINAL, /* tv_id */
3978 0, /* properties_required */
3979 0, /* properties_provided */
3980 0, /* properties_destroyed */
3981 0, /* todo_flags_start */
3982 TODO_ggc_collect, /* todo_flags_finish */
3983 0 /* letter */
3984 };
3985
3986
3987 static void
3988 rest_of_handle_shorten_branches (void)
3989 {
3990 /* Shorten branches. */
3991 shorten_branches (get_insns ());
3992 }
3993
3994 struct tree_opt_pass pass_shorten_branches =
3995 {
3996 "shorten", /* name */
3997 NULL, /* gate */
3998 rest_of_handle_shorten_branches, /* execute */
3999 NULL, /* sub */
4000 NULL, /* next */
4001 0, /* static_pass_number */
4002 TV_FINAL, /* tv_id */
4003 0, /* properties_required */
4004 0, /* properties_provided */
4005 0, /* properties_destroyed */
4006 0, /* todo_flags_start */
4007 TODO_dump_func, /* todo_flags_finish */
4008 0 /* letter */
4009 };
4010
4011
4012 static void
4013 rest_of_clean_state (void)
4014 {
4015 rtx insn, next;
4016
4017 /* It is very important to decompose the RTL instruction chain here:
4018 debug information keeps pointing into CODE_LABEL insns inside the function
4019 body. If these remain pointing to the other insns, we end up preserving
4020 whole RTL chain and attached detailed debug info in memory. */
4021 for (insn = get_insns (); insn; insn = next)
4022 {
4023 next = NEXT_INSN (insn);
4024 NEXT_INSN (insn) = NULL;
4025 PREV_INSN (insn) = NULL;
4026 }
4027
4028 /* In case the function was not output,
4029 don't leave any temporary anonymous types
4030 queued up for sdb output. */
4031 #ifdef SDB_DEBUGGING_INFO
4032 if (write_symbols == SDB_DEBUG)
4033 sdbout_types (NULL_TREE);
4034 #endif
4035
4036 reload_completed = 0;
4037 epilogue_completed = 0;
4038 flow2_completed = 0;
4039 no_new_pseudos = 0;
4040
4041 /* Clear out the insn_length contents now that they are no
4042 longer valid. */
4043 init_insn_lengths ();
4044
4045 /* Show no temporary slots allocated. */
4046 init_temp_slots ();
4047
4048 free_basic_block_vars ();
4049 free_bb_for_insn ();
4050
4051
4052 if (targetm.binds_local_p (current_function_decl))
4053 {
4054 int pref = cfun->preferred_stack_boundary;
4055 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4056 pref = cfun->stack_alignment_needed;
4057 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4058 = pref;
4059 }
4060
4061 /* Make sure volatile mem refs aren't considered valid operands for
4062 arithmetic insns. We must call this here if this is a nested inline
4063 function, since the above code leaves us in the init_recog state,
4064 and the function context push/pop code does not save/restore volatile_ok.
4065
4066 ??? Maybe it isn't necessary for expand_start_function to call this
4067 anymore if we do it here? */
4068
4069 init_recog_no_volatile ();
4070
4071 /* We're done with this function. Free up memory if we can. */
4072 free_after_parsing (cfun);
4073 free_after_compilation (cfun);
4074 }
4075
4076 struct tree_opt_pass pass_clean_state =
4077 {
4078 NULL, /* name */
4079 NULL, /* gate */
4080 rest_of_clean_state, /* execute */
4081 NULL, /* sub */
4082 NULL, /* next */
4083 0, /* static_pass_number */
4084 TV_FINAL, /* tv_id */
4085 0, /* properties_required */
4086 0, /* properties_provided */
4087 PROP_rtl, /* properties_destroyed */
4088 0, /* todo_flags_start */
4089 0, /* todo_flags_finish */
4090 0 /* letter */
4091 };
4092