]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
PR target/85593
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
84
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
88
89 #include "dwarf2out.h"
90
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
114
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
118
119 /* Line number of last NOTE. */
120 static int last_linenum;
121
122 /* Column number of last NOTE. */
123 static int last_columnnum;
124
125 /* Discriminator written to assembly. */
126 static int last_discriminator;
127
128 /* Discriminator to be written to assembly for current instruction.
129 Note: actual usage depends on loc_discriminator_kind setting. */
130 static int discriminator;
131 static inline int compute_discriminator (location_t loc);
132
133 /* Discriminator identifying current basic block among others sharing
134 the same locus. */
135 static int bb_discriminator;
136
137 /* Basic block discriminator for previous instruction. */
138 static int last_bb_discriminator;
139
140 /* Highest line number in current block. */
141 static int high_block_linenum;
142
143 /* Likewise for function. */
144 static int high_function_linenum;
145
146 /* Filename of last NOTE. */
147 static const char *last_filename;
148
149 /* Override filename, line and column number. */
150 static const char *override_filename;
151 static int override_linenum;
152 static int override_columnnum;
153 static int override_discriminator;
154
155 /* Whether to force emission of a line note before the next insn. */
156 static bool force_source_line = false;
157
158 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
159
160 /* Nonzero while outputting an `asm' with operands.
161 This means that inconsistencies are the user's fault, so don't die.
162 The precise value is the insn being output, to pass to error_for_asm. */
163 const rtx_insn *this_is_asm_operands;
164
165 /* Number of operands of this insn, for an `asm' with operands. */
166 static unsigned int insn_noperands;
167
168 /* Compare optimization flag. */
169
170 static rtx last_ignored_compare = 0;
171
172 /* Assign a unique number to each insn that is output.
173 This can be used to generate unique local labels. */
174
175 static int insn_counter = 0;
176
177 /* This variable contains machine-dependent flags (defined in tm.h)
178 set and examined by output routines
179 that describe how to interpret the condition codes properly. */
180
181 CC_STATUS cc_status;
182
183 /* During output of an insn, this contains a copy of cc_status
184 from before the insn. */
185
186 CC_STATUS cc_prev_status;
187
188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
189
190 static int block_depth;
191
192 /* Nonzero if have enabled APP processing of our assembler output. */
193
194 static int app_on;
195
196 /* If we are outputting an insn sequence, this contains the sequence rtx.
197 Zero otherwise. */
198
199 rtx_sequence *final_sequence;
200
201 #ifdef ASSEMBLER_DIALECT
202
203 /* Number of the assembler dialect to use, starting at 0. */
204 static int dialect_number;
205 #endif
206
207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
208 rtx current_insn_predicate;
209
210 /* True if printing into -fdump-final-insns= dump. */
211 bool final_insns_dump_p;
212
213 /* True if profile_function should be called, but hasn't been called yet. */
214 static bool need_profile_function;
215
216 static int asm_insn_count (rtx);
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx_insn *, bool *);
220 static rtx walk_alter_subreg (rtx *, bool *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx_insn *);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 #ifdef LEAF_REGISTERS
226 static void leaf_renumber_regs (rtx_insn *);
227 #endif
228 #if HAVE_cc0
229 static int alter_cond (rtx);
230 #endif
231 static int align_fuzz (rtx, rtx, int, unsigned);
232 static void collect_fn_hard_reg_usage (void);
233 static tree get_call_fndecl (rtx_insn *);
234 \f
235 /* Initialize data in final at the beginning of a compilation. */
236
237 void
238 init_final (const char *filename ATTRIBUTE_UNUSED)
239 {
240 app_on = 0;
241 final_sequence = 0;
242
243 #ifdef ASSEMBLER_DIALECT
244 dialect_number = ASSEMBLER_DIALECT;
245 #endif
246 }
247
248 /* Default target function prologue and epilogue assembler output.
249
250 If not overridden for epilogue code, then the function body itself
251 contains return instructions wherever needed. */
252 void
253 default_function_pro_epilogue (FILE *)
254 {
255 }
256
257 void
258 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
259 tree decl ATTRIBUTE_UNUSED,
260 bool new_is_cold ATTRIBUTE_UNUSED)
261 {
262 }
263
264 /* Default target hook that outputs nothing to a stream. */
265 void
266 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
267 {
268 }
269
270 /* Enable APP processing of subsequent output.
271 Used before the output from an `asm' statement. */
272
273 void
274 app_enable (void)
275 {
276 if (! app_on)
277 {
278 fputs (ASM_APP_ON, asm_out_file);
279 app_on = 1;
280 }
281 }
282
283 /* Disable APP processing of subsequent output.
284 Called from varasm.c before most kinds of output. */
285
286 void
287 app_disable (void)
288 {
289 if (app_on)
290 {
291 fputs (ASM_APP_OFF, asm_out_file);
292 app_on = 0;
293 }
294 }
295 \f
296 /* Return the number of slots filled in the current
297 delayed branch sequence (we don't count the insn needing the
298 delay slot). Zero if not in a delayed branch sequence. */
299
300 int
301 dbr_sequence_length (void)
302 {
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
307 }
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 vec<int> insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 static rtx *uid_align;
341 static int *uid_shuid;
342 static vec<align_flags> label_align;
343
344 /* Indicate that branch shortening hasn't yet been done. */
345
346 void
347 init_insn_lengths (void)
348 {
349 if (uid_shuid)
350 {
351 free (uid_shuid);
352 uid_shuid = 0;
353 }
354 if (insn_lengths)
355 {
356 free (insn_lengths);
357 insn_lengths = 0;
358 insn_lengths_max_uid = 0;
359 }
360 if (HAVE_ATTR_length)
361 INSN_ADDRESSES_FREE ();
362 if (uid_align)
363 {
364 free (uid_align);
365 uid_align = 0;
366 }
367 }
368
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, use FALLBACK_FN to calculate the
371 length. */
372 static int
373 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
374 {
375 rtx body;
376 int i;
377 int length = 0;
378
379 if (!HAVE_ATTR_length)
380 return 0;
381
382 if (insn_lengths_max_uid > INSN_UID (insn))
383 return insn_lengths[INSN_UID (insn)];
384 else
385 switch (GET_CODE (insn))
386 {
387 case NOTE:
388 case BARRIER:
389 case CODE_LABEL:
390 case DEBUG_INSN:
391 return 0;
392
393 case CALL_INSN:
394 case JUMP_INSN:
395 length = fallback_fn (insn);
396 break;
397
398 case INSN:
399 body = PATTERN (insn);
400 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
401 return 0;
402
403 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
404 length = asm_insn_count (body) * fallback_fn (insn);
405 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
406 for (i = 0; i < seq->len (); i++)
407 length += get_attr_length_1 (seq->insn (i), fallback_fn);
408 else
409 length = fallback_fn (insn);
410 break;
411
412 default:
413 break;
414 }
415
416 #ifdef ADJUST_INSN_LENGTH
417 ADJUST_INSN_LENGTH (insn, length);
418 #endif
419 return length;
420 }
421
422 /* Obtain the current length of an insn. If branch shortening has been done,
423 get its actual length. Otherwise, get its maximum length. */
424 int
425 get_attr_length (rtx_insn *insn)
426 {
427 return get_attr_length_1 (insn, insn_default_length);
428 }
429
430 /* Obtain the current length of an insn. If branch shortening has been done,
431 get its actual length. Otherwise, get its minimum length. */
432 int
433 get_attr_min_length (rtx_insn *insn)
434 {
435 return get_attr_length_1 (insn, insn_min_length);
436 }
437 \f
438 /* Code to handle alignment inside shorten_branches. */
439
440 /* Here is an explanation how the algorithm in align_fuzz can give
441 proper results:
442
443 Call a sequence of instructions beginning with alignment point X
444 and continuing until the next alignment point `block X'. When `X'
445 is used in an expression, it means the alignment value of the
446 alignment point.
447
448 Call the distance between the start of the first insn of block X, and
449 the end of the last insn of block X `IX', for the `inner size of X'.
450 This is clearly the sum of the instruction lengths.
451
452 Likewise with the next alignment-delimited block following X, which we
453 shall call block Y.
454
455 Call the distance between the start of the first insn of block X, and
456 the start of the first insn of block Y `OX', for the `outer size of X'.
457
458 The estimated padding is then OX - IX.
459
460 OX can be safely estimated as
461
462 if (X >= Y)
463 OX = round_up(IX, Y)
464 else
465 OX = round_up(IX, X) + Y - X
466
467 Clearly est(IX) >= real(IX), because that only depends on the
468 instruction lengths, and those being overestimated is a given.
469
470 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
471 we needn't worry about that when thinking about OX.
472
473 When X >= Y, the alignment provided by Y adds no uncertainty factor
474 for branch ranges starting before X, so we can just round what we have.
475 But when X < Y, we don't know anything about the, so to speak,
476 `middle bits', so we have to assume the worst when aligning up from an
477 address mod X to one mod Y, which is Y - X. */
478
479 #ifndef LABEL_ALIGN
480 #define LABEL_ALIGN(LABEL) align_labels
481 #endif
482
483 #ifndef LOOP_ALIGN
484 #define LOOP_ALIGN(LABEL) align_loops
485 #endif
486
487 #ifndef LABEL_ALIGN_AFTER_BARRIER
488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
489 #endif
490
491 #ifndef JUMP_ALIGN
492 #define JUMP_ALIGN(LABEL) align_jumps
493 #endif
494
495 #ifndef ADDR_VEC_ALIGN
496 static int
497 final_addr_vec_align (rtx_jump_table_data *addr_vec)
498 {
499 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
500
501 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
502 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
503 return exact_log2 (align);
504
505 }
506
507 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
508 #endif
509
510 #ifndef INSN_LENGTH_ALIGNMENT
511 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
512 #endif
513
514 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
515
516 static int min_labelno, max_labelno;
517
518 #define LABEL_TO_ALIGNMENT(LABEL) \
519 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
520
521 /* For the benefit of port specific code do this also as a function. */
522
523 align_flags
524 label_to_alignment (rtx label)
525 {
526 if (CODE_LABEL_NUMBER (label) <= max_labelno)
527 return LABEL_TO_ALIGNMENT (label);
528 return align_flags ();
529 }
530
531 /* The differences in addresses
532 between a branch and its target might grow or shrink depending on
533 the alignment the start insn of the range (the branch for a forward
534 branch or the label for a backward branch) starts out on; if these
535 differences are used naively, they can even oscillate infinitely.
536 We therefore want to compute a 'worst case' address difference that
537 is independent of the alignment the start insn of the range end
538 up on, and that is at least as large as the actual difference.
539 The function align_fuzz calculates the amount we have to add to the
540 naively computed difference, by traversing the part of the alignment
541 chain of the start insn of the range that is in front of the end insn
542 of the range, and considering for each alignment the maximum amount
543 that it might contribute to a size increase.
544
545 For casesi tables, we also want to know worst case minimum amounts of
546 address difference, in case a machine description wants to introduce
547 some common offset that is added to all offsets in a table.
548 For this purpose, align_fuzz with a growth argument of 0 computes the
549 appropriate adjustment. */
550
551 /* Compute the maximum delta by which the difference of the addresses of
552 START and END might grow / shrink due to a different address for start
553 which changes the size of alignment insns between START and END.
554 KNOWN_ALIGN_LOG is the alignment known for START.
555 GROWTH should be ~0 if the objective is to compute potential code size
556 increase, and 0 if the objective is to compute potential shrink.
557 The return value is undefined for any other value of GROWTH. */
558
559 static int
560 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
561 {
562 int uid = INSN_UID (start);
563 rtx align_label;
564 int known_align = 1 << known_align_log;
565 int end_shuid = INSN_SHUID (end);
566 int fuzz = 0;
567
568 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
569 {
570 int align_addr, new_align;
571
572 uid = INSN_UID (align_label);
573 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
574 if (uid_shuid[uid] > end_shuid)
575 break;
576 align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
577 new_align = 1 << alignment.levels[0].log;
578 if (new_align < known_align)
579 continue;
580 fuzz += (-align_addr ^ growth) & (new_align - known_align);
581 known_align = new_align;
582 }
583 return fuzz;
584 }
585
586 /* Compute a worst-case reference address of a branch so that it
587 can be safely used in the presence of aligned labels. Since the
588 size of the branch itself is unknown, the size of the branch is
589 not included in the range. I.e. for a forward branch, the reference
590 address is the end address of the branch as known from the previous
591 branch shortening pass, minus a value to account for possible size
592 increase due to alignment. For a backward branch, it is the start
593 address of the branch as known from the current pass, plus a value
594 to account for possible size increase due to alignment.
595 NB.: Therefore, the maximum offset allowed for backward branches needs
596 to exclude the branch size. */
597
598 int
599 insn_current_reference_address (rtx_insn *branch)
600 {
601 rtx dest;
602 int seq_uid;
603
604 if (! INSN_ADDRESSES_SET_P ())
605 return 0;
606
607 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
608 seq_uid = INSN_UID (seq);
609 if (!JUMP_P (branch))
610 /* This can happen for example on the PA; the objective is to know the
611 offset to address something in front of the start of the function.
612 Thus, we can treat it like a backward branch.
613 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
614 any alignment we'd encounter, so we skip the call to align_fuzz. */
615 return insn_current_address;
616 dest = JUMP_LABEL (branch);
617
618 /* BRANCH has no proper alignment chain set, so use SEQ.
619 BRANCH also has no INSN_SHUID. */
620 if (INSN_SHUID (seq) < INSN_SHUID (dest))
621 {
622 /* Forward branch. */
623 return (insn_last_address + insn_lengths[seq_uid]
624 - align_fuzz (seq, dest, length_unit_log, ~0));
625 }
626 else
627 {
628 /* Backward branch. */
629 return (insn_current_address
630 + align_fuzz (dest, seq, length_unit_log, ~0));
631 }
632 }
633 \f
634 /* Compute branch alignments based on CFG profile. */
635
636 unsigned int
637 compute_alignments (void)
638 {
639 basic_block bb;
640 align_flags max_alignment;
641
642 label_align.truncate (0);
643
644 max_labelno = max_label_num ();
645 min_labelno = get_first_label_num ();
646 label_align.safe_grow_cleared (max_labelno - min_labelno + 1);
647
648 /* If not optimizing or optimizing for size, don't assign any alignments. */
649 if (! optimize || optimize_function_for_size_p (cfun))
650 return 0;
651
652 if (dump_file)
653 {
654 dump_reg_info (dump_file);
655 dump_flow_info (dump_file, TDF_DETAILS);
656 flow_loops_dump (dump_file, NULL, 1);
657 }
658 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
659 profile_count count_threshold = cfun->cfg->count_max.apply_scale
660 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
661
662 if (dump_file)
663 {
664 fprintf (dump_file, "count_max: ");
665 cfun->cfg->count_max.dump (dump_file);
666 fprintf (dump_file, "\n");
667 }
668 FOR_EACH_BB_FN (bb, cfun)
669 {
670 rtx_insn *label = BB_HEAD (bb);
671 bool has_fallthru = 0;
672 edge e;
673 edge_iterator ei;
674
675 if (!LABEL_P (label)
676 || optimize_bb_for_size_p (bb))
677 {
678 if (dump_file)
679 fprintf (dump_file,
680 "BB %4i loop %2i loop_depth %2i skipped.\n",
681 bb->index,
682 bb->loop_father->num,
683 bb_loop_depth (bb));
684 continue;
685 }
686 max_alignment = LABEL_ALIGN (label);
687 profile_count fallthru_count = profile_count::zero ();
688 profile_count branch_count = profile_count::zero ();
689
690 FOR_EACH_EDGE (e, ei, bb->preds)
691 {
692 if (e->flags & EDGE_FALLTHRU)
693 has_fallthru = 1, fallthru_count += e->count ();
694 else
695 branch_count += e->count ();
696 }
697 if (dump_file)
698 {
699 fprintf (dump_file, "BB %4i loop %2i loop_depth"
700 " %2i fall ",
701 bb->index, bb->loop_father->num,
702 bb_loop_depth (bb));
703 fallthru_count.dump (dump_file);
704 fprintf (dump_file, " branch ");
705 branch_count.dump (dump_file);
706 if (!bb->loop_father->inner && bb->loop_father->num)
707 fprintf (dump_file, " inner_loop");
708 if (bb->loop_father->header == bb)
709 fprintf (dump_file, " loop_header");
710 fprintf (dump_file, "\n");
711 }
712 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
713 continue;
714
715 /* There are two purposes to align block with no fallthru incoming edge:
716 1) to avoid fetch stalls when branch destination is near cache boundary
717 2) to improve cache efficiency in case the previous block is not executed
718 (so it does not need to be in the cache).
719
720 We to catch first case, we align frequently executed blocks.
721 To catch the second, we align blocks that are executed more frequently
722 than the predecessor and the predecessor is likely to not be executed
723 when function is called. */
724
725 if (!has_fallthru
726 && (branch_count > count_threshold
727 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
728 && (bb->prev_bb->count
729 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
730 ->count.apply_scale (1, 2)))))
731 {
732 align_flags alignment = JUMP_ALIGN (label);
733 if (dump_file)
734 fprintf (dump_file, " jump alignment added.\n");
735 max_alignment = align_flags::max (max_alignment, alignment);
736 }
737 /* In case block is frequent and reached mostly by non-fallthru edge,
738 align it. It is most likely a first block of loop. */
739 if (has_fallthru
740 && !(single_succ_p (bb)
741 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
742 && optimize_bb_for_speed_p (bb)
743 && branch_count + fallthru_count > count_threshold
744 && (branch_count
745 > fallthru_count.apply_scale
746 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
747 {
748 align_flags alignment = LOOP_ALIGN (label);
749 if (dump_file)
750 fprintf (dump_file, " internal loop alignment added.\n");
751 max_alignment = align_flags::max (max_alignment, alignment);
752 }
753 LABEL_TO_ALIGNMENT (label) = max_alignment;
754 }
755
756 loop_optimizer_finalize ();
757 free_dominance_info (CDI_DOMINATORS);
758 return 0;
759 }
760
761 /* Grow the LABEL_ALIGN array after new labels are created. */
762
763 static void
764 grow_label_align (void)
765 {
766 int old = max_labelno;
767 int n_labels;
768 int n_old_labels;
769
770 max_labelno = max_label_num ();
771
772 n_labels = max_labelno - min_labelno + 1;
773 n_old_labels = old - min_labelno + 1;
774
775 label_align.safe_grow_cleared (n_labels);
776
777 /* Range of labels grows monotonically in the function. Failing here
778 means that the initialization of array got lost. */
779 gcc_assert (n_old_labels <= n_labels);
780 }
781
782 /* Update the already computed alignment information. LABEL_PAIRS is a vector
783 made up of pairs of labels for which the alignment information of the first
784 element will be copied from that of the second element. */
785
786 void
787 update_alignments (vec<rtx> &label_pairs)
788 {
789 unsigned int i = 0;
790 rtx iter, label = NULL_RTX;
791
792 if (max_labelno != max_label_num ())
793 grow_label_align ();
794
795 FOR_EACH_VEC_ELT (label_pairs, i, iter)
796 if (i & 1)
797 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
798 else
799 label = iter;
800 }
801
802 namespace {
803
804 const pass_data pass_data_compute_alignments =
805 {
806 RTL_PASS, /* type */
807 "alignments", /* name */
808 OPTGROUP_NONE, /* optinfo_flags */
809 TV_NONE, /* tv_id */
810 0, /* properties_required */
811 0, /* properties_provided */
812 0, /* properties_destroyed */
813 0, /* todo_flags_start */
814 0, /* todo_flags_finish */
815 };
816
817 class pass_compute_alignments : public rtl_opt_pass
818 {
819 public:
820 pass_compute_alignments (gcc::context *ctxt)
821 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
822 {}
823
824 /* opt_pass methods: */
825 virtual unsigned int execute (function *) { return compute_alignments (); }
826
827 }; // class pass_compute_alignments
828
829 } // anon namespace
830
831 rtl_opt_pass *
832 make_pass_compute_alignments (gcc::context *ctxt)
833 {
834 return new pass_compute_alignments (ctxt);
835 }
836
837 \f
838 /* Make a pass over all insns and compute their actual lengths by shortening
839 any branches of variable length if possible. */
840
841 /* shorten_branches might be called multiple times: for example, the SH
842 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
843 In order to do this, it needs proper length information, which it obtains
844 by calling shorten_branches. This cannot be collapsed with
845 shorten_branches itself into a single pass unless we also want to integrate
846 reorg.c, since the branch splitting exposes new instructions with delay
847 slots. */
848
849 void
850 shorten_branches (rtx_insn *first)
851 {
852 rtx_insn *insn;
853 int max_uid;
854 int i;
855 rtx_insn *seq;
856 int something_changed = 1;
857 char *varying_length;
858 rtx body;
859 int uid;
860 rtx align_tab[MAX_CODE_ALIGN + 1];
861
862 /* Compute maximum UID and allocate label_align / uid_shuid. */
863 max_uid = get_max_uid ();
864
865 /* Free uid_shuid before reallocating it. */
866 free (uid_shuid);
867
868 uid_shuid = XNEWVEC (int, max_uid);
869
870 if (max_labelno != max_label_num ())
871 grow_label_align ();
872
873 /* Initialize label_align and set up uid_shuid to be strictly
874 monotonically rising with insn order. */
875 /* We use alignment here to keep track of the maximum alignment we want to
876 impose on the next CODE_LABEL (or the current one if we are processing
877 the CODE_LABEL itself). */
878
879 align_flags max_alignment;
880
881 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
882 {
883 INSN_SHUID (insn) = i++;
884 if (INSN_P (insn))
885 continue;
886
887 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
888 {
889 /* Merge in alignments computed by compute_alignments. */
890 align_flags alignment = LABEL_TO_ALIGNMENT (label);
891 max_alignment = align_flags::max (max_alignment, alignment);
892
893 rtx_jump_table_data *table = jump_table_for_label (label);
894 if (!table)
895 {
896 align_flags alignment = LABEL_ALIGN (label);
897 max_alignment = align_flags::max (max_alignment, alignment);
898 }
899 /* ADDR_VECs only take room if read-only data goes into the text
900 section. */
901 if ((JUMP_TABLES_IN_TEXT_SECTION
902 || readonly_data_section == text_section)
903 && table)
904 {
905 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
906 max_alignment = align_flags::max (max_alignment, alignment);
907 }
908 LABEL_TO_ALIGNMENT (label) = max_alignment;
909 max_alignment = align_flags ();
910 }
911 else if (BARRIER_P (insn))
912 {
913 rtx_insn *label;
914
915 for (label = insn; label && ! INSN_P (label);
916 label = NEXT_INSN (label))
917 if (LABEL_P (label))
918 {
919 align_flags alignment
920 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
921 max_alignment = align_flags::max (max_alignment, alignment);
922 break;
923 }
924 }
925 }
926 if (!HAVE_ATTR_length)
927 return;
928
929 /* Allocate the rest of the arrays. */
930 insn_lengths = XNEWVEC (int, max_uid);
931 insn_lengths_max_uid = max_uid;
932 /* Syntax errors can lead to labels being outside of the main insn stream.
933 Initialize insn_addresses, so that we get reproducible results. */
934 INSN_ADDRESSES_ALLOC (max_uid);
935
936 varying_length = XCNEWVEC (char, max_uid);
937
938 /* Initialize uid_align. We scan instructions
939 from end to start, and keep in align_tab[n] the last seen insn
940 that does an alignment of at least n+1, i.e. the successor
941 in the alignment chain for an insn that does / has a known
942 alignment of n. */
943 uid_align = XCNEWVEC (rtx, max_uid);
944
945 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
946 align_tab[i] = NULL_RTX;
947 seq = get_last_insn ();
948 for (; seq; seq = PREV_INSN (seq))
949 {
950 int uid = INSN_UID (seq);
951 int log;
952 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
953 uid_align[uid] = align_tab[0];
954 if (log)
955 {
956 /* Found an alignment label. */
957 gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
958 uid_align[uid] = align_tab[log];
959 for (i = log - 1; i >= 0; i--)
960 align_tab[i] = seq;
961 }
962 }
963
964 /* When optimizing, we start assuming minimum length, and keep increasing
965 lengths as we find the need for this, till nothing changes.
966 When not optimizing, we start assuming maximum lengths, and
967 do a single pass to update the lengths. */
968 bool increasing = optimize != 0;
969
970 #ifdef CASE_VECTOR_SHORTEN_MODE
971 if (optimize)
972 {
973 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
974 label fields. */
975
976 int min_shuid = INSN_SHUID (get_insns ()) - 1;
977 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
978 int rel;
979
980 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
981 {
982 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
983 int len, i, min, max, insn_shuid;
984 int min_align;
985 addr_diff_vec_flags flags;
986
987 if (! JUMP_TABLE_DATA_P (insn)
988 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
989 continue;
990 pat = PATTERN (insn);
991 len = XVECLEN (pat, 1);
992 gcc_assert (len > 0);
993 min_align = MAX_CODE_ALIGN;
994 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
995 {
996 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
997 int shuid = INSN_SHUID (lab);
998 if (shuid < min)
999 {
1000 min = shuid;
1001 min_lab = lab;
1002 }
1003 if (shuid > max)
1004 {
1005 max = shuid;
1006 max_lab = lab;
1007 }
1008
1009 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
1010 if (min_align > label_alignment)
1011 min_align = label_alignment;
1012 }
1013 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1014 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1015 insn_shuid = INSN_SHUID (insn);
1016 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1017 memset (&flags, 0, sizeof (flags));
1018 flags.min_align = min_align;
1019 flags.base_after_vec = rel > insn_shuid;
1020 flags.min_after_vec = min > insn_shuid;
1021 flags.max_after_vec = max > insn_shuid;
1022 flags.min_after_base = min > rel;
1023 flags.max_after_base = max > rel;
1024 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1025
1026 if (increasing)
1027 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1028 }
1029 }
1030 #endif /* CASE_VECTOR_SHORTEN_MODE */
1031
1032 /* Compute initial lengths, addresses, and varying flags for each insn. */
1033 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1034
1035 for (insn_current_address = 0, insn = first;
1036 insn != 0;
1037 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1038 {
1039 uid = INSN_UID (insn);
1040
1041 insn_lengths[uid] = 0;
1042
1043 if (LABEL_P (insn))
1044 {
1045 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1046 if (log)
1047 {
1048 int align = 1 << log;
1049 int new_address = (insn_current_address + align - 1) & -align;
1050 insn_lengths[uid] = new_address - insn_current_address;
1051 }
1052 }
1053
1054 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1055
1056 if (NOTE_P (insn) || BARRIER_P (insn)
1057 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1058 continue;
1059 if (insn->deleted ())
1060 continue;
1061
1062 body = PATTERN (insn);
1063 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1064 {
1065 /* This only takes room if read-only data goes into the text
1066 section. */
1067 if (JUMP_TABLES_IN_TEXT_SECTION
1068 || readonly_data_section == text_section)
1069 insn_lengths[uid] = (XVECLEN (body,
1070 GET_CODE (body) == ADDR_DIFF_VEC)
1071 * GET_MODE_SIZE (table->get_data_mode ()));
1072 /* Alignment is handled by ADDR_VEC_ALIGN. */
1073 }
1074 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1075 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1076 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1077 {
1078 int i;
1079 int const_delay_slots;
1080 if (DELAY_SLOTS)
1081 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1082 else
1083 const_delay_slots = 0;
1084
1085 int (*inner_length_fun) (rtx_insn *)
1086 = const_delay_slots ? length_fun : insn_default_length;
1087 /* Inside a delay slot sequence, we do not do any branch shortening
1088 if the shortening could change the number of delay slots
1089 of the branch. */
1090 for (i = 0; i < body_seq->len (); i++)
1091 {
1092 rtx_insn *inner_insn = body_seq->insn (i);
1093 int inner_uid = INSN_UID (inner_insn);
1094 int inner_length;
1095
1096 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1097 || asm_noperands (PATTERN (inner_insn)) >= 0)
1098 inner_length = (asm_insn_count (PATTERN (inner_insn))
1099 * insn_default_length (inner_insn));
1100 else
1101 inner_length = inner_length_fun (inner_insn);
1102
1103 insn_lengths[inner_uid] = inner_length;
1104 if (const_delay_slots)
1105 {
1106 if ((varying_length[inner_uid]
1107 = insn_variable_length_p (inner_insn)) != 0)
1108 varying_length[uid] = 1;
1109 INSN_ADDRESSES (inner_uid) = (insn_current_address
1110 + insn_lengths[uid]);
1111 }
1112 else
1113 varying_length[inner_uid] = 0;
1114 insn_lengths[uid] += inner_length;
1115 }
1116 }
1117 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1118 {
1119 insn_lengths[uid] = length_fun (insn);
1120 varying_length[uid] = insn_variable_length_p (insn);
1121 }
1122
1123 /* If needed, do any adjustment. */
1124 #ifdef ADJUST_INSN_LENGTH
1125 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1126 if (insn_lengths[uid] < 0)
1127 fatal_insn ("negative insn length", insn);
1128 #endif
1129 }
1130
1131 /* Now loop over all the insns finding varying length insns. For each,
1132 get the current insn length. If it has changed, reflect the change.
1133 When nothing changes for a full pass, we are done. */
1134
1135 while (something_changed)
1136 {
1137 something_changed = 0;
1138 insn_current_align = MAX_CODE_ALIGN - 1;
1139 for (insn_current_address = 0, insn = first;
1140 insn != 0;
1141 insn = NEXT_INSN (insn))
1142 {
1143 int new_length;
1144 #ifdef ADJUST_INSN_LENGTH
1145 int tmp_length;
1146 #endif
1147 int length_align;
1148
1149 uid = INSN_UID (insn);
1150
1151 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1152 {
1153 int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1154
1155 #ifdef CASE_VECTOR_SHORTEN_MODE
1156 /* If the mode of a following jump table was changed, we
1157 may need to update the alignment of this label. */
1158
1159 if (JUMP_TABLES_IN_TEXT_SECTION
1160 || readonly_data_section == text_section)
1161 {
1162 rtx_jump_table_data *table = jump_table_for_label (label);
1163 if (table)
1164 {
1165 int newlog = ADDR_VEC_ALIGN (table);
1166 if (newlog != log)
1167 {
1168 log = newlog;
1169 LABEL_TO_ALIGNMENT (insn) = log;
1170 something_changed = 1;
1171 }
1172 }
1173 }
1174 #endif
1175
1176 if (log > insn_current_align)
1177 {
1178 int align = 1 << log;
1179 int new_address= (insn_current_address + align - 1) & -align;
1180 insn_lengths[uid] = new_address - insn_current_address;
1181 insn_current_align = log;
1182 insn_current_address = new_address;
1183 }
1184 else
1185 insn_lengths[uid] = 0;
1186 INSN_ADDRESSES (uid) = insn_current_address;
1187 continue;
1188 }
1189
1190 length_align = INSN_LENGTH_ALIGNMENT (insn);
1191 if (length_align < insn_current_align)
1192 insn_current_align = length_align;
1193
1194 insn_last_address = INSN_ADDRESSES (uid);
1195 INSN_ADDRESSES (uid) = insn_current_address;
1196
1197 #ifdef CASE_VECTOR_SHORTEN_MODE
1198 if (optimize
1199 && JUMP_TABLE_DATA_P (insn)
1200 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1201 {
1202 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1203 rtx body = PATTERN (insn);
1204 int old_length = insn_lengths[uid];
1205 rtx_insn *rel_lab =
1206 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1207 rtx min_lab = XEXP (XEXP (body, 2), 0);
1208 rtx max_lab = XEXP (XEXP (body, 3), 0);
1209 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1210 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1211 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1212 rtx_insn *prev;
1213 int rel_align = 0;
1214 addr_diff_vec_flags flags;
1215 scalar_int_mode vec_mode;
1216
1217 /* Avoid automatic aggregate initialization. */
1218 flags = ADDR_DIFF_VEC_FLAGS (body);
1219
1220 /* Try to find a known alignment for rel_lab. */
1221 for (prev = rel_lab;
1222 prev
1223 && ! insn_lengths[INSN_UID (prev)]
1224 && ! (varying_length[INSN_UID (prev)] & 1);
1225 prev = PREV_INSN (prev))
1226 if (varying_length[INSN_UID (prev)] & 2)
1227 {
1228 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1229 break;
1230 }
1231
1232 /* See the comment on addr_diff_vec_flags in rtl.h for the
1233 meaning of the flags values. base: REL_LAB vec: INSN */
1234 /* Anything after INSN has still addresses from the last
1235 pass; adjust these so that they reflect our current
1236 estimate for this pass. */
1237 if (flags.base_after_vec)
1238 rel_addr += insn_current_address - insn_last_address;
1239 if (flags.min_after_vec)
1240 min_addr += insn_current_address - insn_last_address;
1241 if (flags.max_after_vec)
1242 max_addr += insn_current_address - insn_last_address;
1243 /* We want to know the worst case, i.e. lowest possible value
1244 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1245 its offset is positive, and we have to be wary of code shrink;
1246 otherwise, it is negative, and we have to be vary of code
1247 size increase. */
1248 if (flags.min_after_base)
1249 {
1250 /* If INSN is between REL_LAB and MIN_LAB, the size
1251 changes we are about to make can change the alignment
1252 within the observed offset, therefore we have to break
1253 it up into two parts that are independent. */
1254 if (! flags.base_after_vec && flags.min_after_vec)
1255 {
1256 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1257 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1258 }
1259 else
1260 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1261 }
1262 else
1263 {
1264 if (flags.base_after_vec && ! flags.min_after_vec)
1265 {
1266 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1267 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1268 }
1269 else
1270 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1271 }
1272 /* Likewise, determine the highest lowest possible value
1273 for the offset of MAX_LAB. */
1274 if (flags.max_after_base)
1275 {
1276 if (! flags.base_after_vec && flags.max_after_vec)
1277 {
1278 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1279 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1280 }
1281 else
1282 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1283 }
1284 else
1285 {
1286 if (flags.base_after_vec && ! flags.max_after_vec)
1287 {
1288 max_addr += align_fuzz (max_lab, insn, 0, 0);
1289 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1290 }
1291 else
1292 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1293 }
1294 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1295 max_addr - rel_addr, body);
1296 if (!increasing
1297 || (GET_MODE_SIZE (vec_mode)
1298 >= GET_MODE_SIZE (table->get_data_mode ())))
1299 PUT_MODE (body, vec_mode);
1300 if (JUMP_TABLES_IN_TEXT_SECTION
1301 || readonly_data_section == text_section)
1302 {
1303 insn_lengths[uid]
1304 = (XVECLEN (body, 1)
1305 * GET_MODE_SIZE (table->get_data_mode ()));
1306 insn_current_address += insn_lengths[uid];
1307 if (insn_lengths[uid] != old_length)
1308 something_changed = 1;
1309 }
1310
1311 continue;
1312 }
1313 #endif /* CASE_VECTOR_SHORTEN_MODE */
1314
1315 if (! (varying_length[uid]))
1316 {
1317 if (NONJUMP_INSN_P (insn)
1318 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1319 {
1320 int i;
1321
1322 body = PATTERN (insn);
1323 for (i = 0; i < XVECLEN (body, 0); i++)
1324 {
1325 rtx inner_insn = XVECEXP (body, 0, i);
1326 int inner_uid = INSN_UID (inner_insn);
1327
1328 INSN_ADDRESSES (inner_uid) = insn_current_address;
1329
1330 insn_current_address += insn_lengths[inner_uid];
1331 }
1332 }
1333 else
1334 insn_current_address += insn_lengths[uid];
1335
1336 continue;
1337 }
1338
1339 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1340 {
1341 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1342 int i;
1343
1344 body = PATTERN (insn);
1345 new_length = 0;
1346 for (i = 0; i < seqn->len (); i++)
1347 {
1348 rtx_insn *inner_insn = seqn->insn (i);
1349 int inner_uid = INSN_UID (inner_insn);
1350 int inner_length;
1351
1352 INSN_ADDRESSES (inner_uid) = insn_current_address;
1353
1354 /* insn_current_length returns 0 for insns with a
1355 non-varying length. */
1356 if (! varying_length[inner_uid])
1357 inner_length = insn_lengths[inner_uid];
1358 else
1359 inner_length = insn_current_length (inner_insn);
1360
1361 if (inner_length != insn_lengths[inner_uid])
1362 {
1363 if (!increasing || inner_length > insn_lengths[inner_uid])
1364 {
1365 insn_lengths[inner_uid] = inner_length;
1366 something_changed = 1;
1367 }
1368 else
1369 inner_length = insn_lengths[inner_uid];
1370 }
1371 insn_current_address += inner_length;
1372 new_length += inner_length;
1373 }
1374 }
1375 else
1376 {
1377 new_length = insn_current_length (insn);
1378 insn_current_address += new_length;
1379 }
1380
1381 #ifdef ADJUST_INSN_LENGTH
1382 /* If needed, do any adjustment. */
1383 tmp_length = new_length;
1384 ADJUST_INSN_LENGTH (insn, new_length);
1385 insn_current_address += (new_length - tmp_length);
1386 #endif
1387
1388 if (new_length != insn_lengths[uid]
1389 && (!increasing || new_length > insn_lengths[uid]))
1390 {
1391 insn_lengths[uid] = new_length;
1392 something_changed = 1;
1393 }
1394 else
1395 insn_current_address += insn_lengths[uid] - new_length;
1396 }
1397 /* For a non-optimizing compile, do only a single pass. */
1398 if (!increasing)
1399 break;
1400 }
1401 crtl->max_insn_address = insn_current_address;
1402 free (varying_length);
1403 }
1404
1405 /* Given the body of an INSN known to be generated by an ASM statement, return
1406 the number of machine instructions likely to be generated for this insn.
1407 This is used to compute its length. */
1408
1409 static int
1410 asm_insn_count (rtx body)
1411 {
1412 const char *templ;
1413
1414 if (GET_CODE (body) == ASM_INPUT)
1415 templ = XSTR (body, 0);
1416 else
1417 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1418
1419 return asm_str_count (templ);
1420 }
1421
1422 /* Return the number of machine instructions likely to be generated for the
1423 inline-asm template. */
1424 int
1425 asm_str_count (const char *templ)
1426 {
1427 int count = 1;
1428
1429 if (!*templ)
1430 return 0;
1431
1432 for (; *templ; templ++)
1433 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1434 || *templ == '\n')
1435 count++;
1436
1437 return count;
1438 }
1439 \f
1440 /* Return true if DWARF2 debug info can be emitted for DECL. */
1441
1442 static bool
1443 dwarf2_debug_info_emitted_p (tree decl)
1444 {
1445 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1446 return false;
1447
1448 if (DECL_IGNORED_P (decl))
1449 return false;
1450
1451 return true;
1452 }
1453
1454 /* Return scope resulting from combination of S1 and S2. */
1455 static tree
1456 choose_inner_scope (tree s1, tree s2)
1457 {
1458 if (!s1)
1459 return s2;
1460 if (!s2)
1461 return s1;
1462 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1463 return s1;
1464 return s2;
1465 }
1466
1467 /* Emit lexical block notes needed to change scope from S1 to S2. */
1468
1469 static void
1470 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1471 {
1472 rtx_insn *insn = orig_insn;
1473 tree com = NULL_TREE;
1474 tree ts1 = s1, ts2 = s2;
1475 tree s;
1476
1477 while (ts1 != ts2)
1478 {
1479 gcc_assert (ts1 && ts2);
1480 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1481 ts1 = BLOCK_SUPERCONTEXT (ts1);
1482 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1483 ts2 = BLOCK_SUPERCONTEXT (ts2);
1484 else
1485 {
1486 ts1 = BLOCK_SUPERCONTEXT (ts1);
1487 ts2 = BLOCK_SUPERCONTEXT (ts2);
1488 }
1489 }
1490 com = ts1;
1491
1492 /* Close scopes. */
1493 s = s1;
1494 while (s != com)
1495 {
1496 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1497 NOTE_BLOCK (note) = s;
1498 s = BLOCK_SUPERCONTEXT (s);
1499 }
1500
1501 /* Open scopes. */
1502 s = s2;
1503 while (s != com)
1504 {
1505 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1506 NOTE_BLOCK (insn) = s;
1507 s = BLOCK_SUPERCONTEXT (s);
1508 }
1509 }
1510
1511 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1512 on the scope tree and the newly reordered instructions. */
1513
1514 static void
1515 reemit_insn_block_notes (void)
1516 {
1517 tree cur_block = DECL_INITIAL (cfun->decl);
1518 rtx_insn *insn;
1519
1520 insn = get_insns ();
1521 for (; insn; insn = NEXT_INSN (insn))
1522 {
1523 tree this_block;
1524
1525 /* Prevent lexical blocks from straddling section boundaries. */
1526 if (NOTE_P (insn))
1527 switch (NOTE_KIND (insn))
1528 {
1529 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1530 {
1531 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1532 s = BLOCK_SUPERCONTEXT (s))
1533 {
1534 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1535 NOTE_BLOCK (note) = s;
1536 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1537 NOTE_BLOCK (note) = s;
1538 }
1539 }
1540 break;
1541
1542 case NOTE_INSN_BEGIN_STMT:
1543 case NOTE_INSN_INLINE_ENTRY:
1544 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1545 goto set_cur_block_to_this_block;
1546
1547 default:
1548 continue;
1549 }
1550
1551 if (!active_insn_p (insn))
1552 continue;
1553
1554 /* Avoid putting scope notes between jump table and its label. */
1555 if (JUMP_TABLE_DATA_P (insn))
1556 continue;
1557
1558 this_block = insn_scope (insn);
1559 /* For sequences compute scope resulting from merging all scopes
1560 of instructions nested inside. */
1561 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1562 {
1563 int i;
1564
1565 this_block = NULL;
1566 for (i = 0; i < body->len (); i++)
1567 this_block = choose_inner_scope (this_block,
1568 insn_scope (body->insn (i)));
1569 }
1570 set_cur_block_to_this_block:
1571 if (! this_block)
1572 {
1573 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1574 continue;
1575 else
1576 this_block = DECL_INITIAL (cfun->decl);
1577 }
1578
1579 if (this_block != cur_block)
1580 {
1581 change_scope (insn, cur_block, this_block);
1582 cur_block = this_block;
1583 }
1584 }
1585
1586 /* change_scope emits before the insn, not after. */
1587 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1588 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1589 delete_insn (note);
1590
1591 reorder_blocks ();
1592 }
1593
1594 static const char *some_local_dynamic_name;
1595
1596 /* Locate some local-dynamic symbol still in use by this function
1597 so that we can print its name in local-dynamic base patterns.
1598 Return null if there are no local-dynamic references. */
1599
1600 const char *
1601 get_some_local_dynamic_name ()
1602 {
1603 subrtx_iterator::array_type array;
1604 rtx_insn *insn;
1605
1606 if (some_local_dynamic_name)
1607 return some_local_dynamic_name;
1608
1609 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1610 if (NONDEBUG_INSN_P (insn))
1611 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1612 {
1613 const_rtx x = *iter;
1614 if (GET_CODE (x) == SYMBOL_REF)
1615 {
1616 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1617 return some_local_dynamic_name = XSTR (x, 0);
1618 if (CONSTANT_POOL_ADDRESS_P (x))
1619 iter.substitute (get_pool_constant (x));
1620 }
1621 }
1622
1623 return 0;
1624 }
1625
1626 /* Arrange for us to emit a source location note before any further
1627 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1628 *SEEN, as long as we are keeping track of location views. The bit
1629 indicates we have referenced the next view at the current PC, so we
1630 have to emit it. This should be called next to the var_location
1631 debug hook. */
1632
1633 static inline void
1634 set_next_view_needed (int *seen)
1635 {
1636 if (debug_variable_location_views)
1637 *seen |= SEEN_NEXT_VIEW;
1638 }
1639
1640 /* Clear the flag in *SEEN indicating we need to emit the next view.
1641 This should be called next to the source_line debug hook. */
1642
1643 static inline void
1644 clear_next_view_needed (int *seen)
1645 {
1646 *seen &= ~SEEN_NEXT_VIEW;
1647 }
1648
1649 /* Test whether we have a pending request to emit the next view in
1650 *SEEN, and emit it if needed, clearing the request bit. */
1651
1652 static inline void
1653 maybe_output_next_view (int *seen)
1654 {
1655 if ((*seen & SEEN_NEXT_VIEW) != 0)
1656 {
1657 clear_next_view_needed (seen);
1658 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1659 last_filename, last_discriminator,
1660 false);
1661 }
1662 }
1663
1664 /* We want to emit param bindings (before the first begin_stmt) in the
1665 initial view, if we are emitting views. To that end, we may
1666 consume initial notes in the function, processing them in
1667 final_start_function, before signaling the beginning of the
1668 prologue, rather than in final.
1669
1670 We don't test whether the DECLs are PARM_DECLs: the assumption is
1671 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1672 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1673 there, we'll just have more variable locations bound in the initial
1674 view, which is consistent with their being bound without any code
1675 that would give them a value. */
1676
1677 static inline bool
1678 in_initial_view_p (rtx_insn *insn)
1679 {
1680 return (!DECL_IGNORED_P (current_function_decl)
1681 && debug_variable_location_views
1682 && insn && GET_CODE (insn) == NOTE
1683 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1684 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1685 }
1686
1687 /* Output assembler code for the start of a function,
1688 and initialize some of the variables in this file
1689 for the new function. The label for the function and associated
1690 assembler pseudo-ops have already been output in `assemble_start_function'.
1691
1692 FIRST is the first insn of the rtl for the function being compiled.
1693 FILE is the file to write assembler code to.
1694 SEEN should be initially set to zero, and it may be updated to
1695 indicate we have references to the next location view, that would
1696 require us to emit it at the current PC.
1697 OPTIMIZE_P is nonzero if we should eliminate redundant
1698 test and compare insns. */
1699
1700 static void
1701 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1702 int optimize_p ATTRIBUTE_UNUSED)
1703 {
1704 block_depth = 0;
1705
1706 this_is_asm_operands = 0;
1707
1708 need_profile_function = false;
1709
1710 last_filename = LOCATION_FILE (prologue_location);
1711 last_linenum = LOCATION_LINE (prologue_location);
1712 last_columnnum = LOCATION_COLUMN (prologue_location);
1713 last_discriminator = discriminator = 0;
1714 last_bb_discriminator = bb_discriminator = 0;
1715
1716 high_block_linenum = high_function_linenum = last_linenum;
1717
1718 if (flag_sanitize & SANITIZE_ADDRESS)
1719 asan_function_start ();
1720
1721 rtx_insn *first = *firstp;
1722 if (in_initial_view_p (first))
1723 {
1724 do
1725 {
1726 final_scan_insn (first, file, 0, 0, seen);
1727 first = NEXT_INSN (first);
1728 }
1729 while (in_initial_view_p (first));
1730 *firstp = first;
1731 }
1732
1733 if (!DECL_IGNORED_P (current_function_decl))
1734 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1735 last_filename);
1736
1737 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1738 dwarf2out_begin_prologue (0, 0, NULL);
1739
1740 #ifdef LEAF_REG_REMAP
1741 if (crtl->uses_only_leaf_regs)
1742 leaf_renumber_regs (first);
1743 #endif
1744
1745 /* The Sun386i and perhaps other machines don't work right
1746 if the profiling code comes after the prologue. */
1747 if (targetm.profile_before_prologue () && crtl->profile)
1748 {
1749 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1750 && targetm.have_prologue ())
1751 {
1752 rtx_insn *insn;
1753 for (insn = first; insn; insn = NEXT_INSN (insn))
1754 if (!NOTE_P (insn))
1755 {
1756 insn = NULL;
1757 break;
1758 }
1759 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1760 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1761 break;
1762 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1763 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1764 continue;
1765 else
1766 {
1767 insn = NULL;
1768 break;
1769 }
1770
1771 if (insn)
1772 need_profile_function = true;
1773 else
1774 profile_function (file);
1775 }
1776 else
1777 profile_function (file);
1778 }
1779
1780 /* If debugging, assign block numbers to all of the blocks in this
1781 function. */
1782 if (write_symbols)
1783 {
1784 reemit_insn_block_notes ();
1785 number_blocks (current_function_decl);
1786 /* We never actually put out begin/end notes for the top-level
1787 block in the function. But, conceptually, that block is
1788 always needed. */
1789 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1790 }
1791
1792 unsigned HOST_WIDE_INT min_frame_size
1793 = constant_lower_bound (get_frame_size ());
1794 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1795 {
1796 /* Issue a warning */
1797 warning (OPT_Wframe_larger_than_,
1798 "the frame size of %wu bytes is larger than %wu bytes",
1799 min_frame_size, warn_frame_larger_than_size);
1800 }
1801
1802 /* First output the function prologue: code to set up the stack frame. */
1803 targetm.asm_out.function_prologue (file);
1804
1805 /* If the machine represents the prologue as RTL, the profiling code must
1806 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1807 if (! targetm.have_prologue ())
1808 profile_after_prologue (file);
1809 }
1810
1811 /* This is an exported final_start_function_1, callable without SEEN. */
1812
1813 void
1814 final_start_function (rtx_insn *first, FILE *file,
1815 int optimize_p ATTRIBUTE_UNUSED)
1816 {
1817 int seen = 0;
1818 final_start_function_1 (&first, file, &seen, optimize_p);
1819 gcc_assert (seen == 0);
1820 }
1821
1822 static void
1823 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1824 {
1825 if (!targetm.profile_before_prologue () && crtl->profile)
1826 profile_function (file);
1827 }
1828
1829 static void
1830 profile_function (FILE *file ATTRIBUTE_UNUSED)
1831 {
1832 #ifndef NO_PROFILE_COUNTERS
1833 # define NO_PROFILE_COUNTERS 0
1834 #endif
1835 #ifdef ASM_OUTPUT_REG_PUSH
1836 rtx sval = NULL, chain = NULL;
1837
1838 if (cfun->returns_struct)
1839 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1840 true);
1841 if (cfun->static_chain_decl)
1842 chain = targetm.calls.static_chain (current_function_decl, true);
1843 #endif /* ASM_OUTPUT_REG_PUSH */
1844
1845 if (! NO_PROFILE_COUNTERS)
1846 {
1847 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1848 switch_to_section (data_section);
1849 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1850 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1851 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1852 }
1853
1854 switch_to_section (current_function_section ());
1855
1856 #ifdef ASM_OUTPUT_REG_PUSH
1857 if (sval && REG_P (sval))
1858 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1859 if (chain && REG_P (chain))
1860 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1861 #endif
1862
1863 FUNCTION_PROFILER (file, current_function_funcdef_no);
1864
1865 #ifdef ASM_OUTPUT_REG_PUSH
1866 if (chain && REG_P (chain))
1867 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1868 if (sval && REG_P (sval))
1869 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1870 #endif
1871 }
1872
1873 /* Output assembler code for the end of a function.
1874 For clarity, args are same as those of `final_start_function'
1875 even though not all of them are needed. */
1876
1877 void
1878 final_end_function (void)
1879 {
1880 app_disable ();
1881
1882 if (!DECL_IGNORED_P (current_function_decl))
1883 debug_hooks->end_function (high_function_linenum);
1884
1885 /* Finally, output the function epilogue:
1886 code to restore the stack frame and return to the caller. */
1887 targetm.asm_out.function_epilogue (asm_out_file);
1888
1889 /* And debug output. */
1890 if (!DECL_IGNORED_P (current_function_decl))
1891 debug_hooks->end_epilogue (last_linenum, last_filename);
1892
1893 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1894 && dwarf2out_do_frame ())
1895 dwarf2out_end_epilogue (last_linenum, last_filename);
1896
1897 some_local_dynamic_name = 0;
1898 }
1899 \f
1900
1901 /* Dumper helper for basic block information. FILE is the assembly
1902 output file, and INSN is the instruction being emitted. */
1903
1904 static void
1905 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1906 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1907 {
1908 basic_block bb;
1909
1910 if (!flag_debug_asm)
1911 return;
1912
1913 if (INSN_UID (insn) < bb_map_size
1914 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1915 {
1916 edge e;
1917 edge_iterator ei;
1918
1919 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1920 if (bb->count.initialized_p ())
1921 {
1922 fprintf (file, ", count:");
1923 bb->count.dump (file);
1924 }
1925 fprintf (file, " seq:%d", (*bb_seqn)++);
1926 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1927 FOR_EACH_EDGE (e, ei, bb->preds)
1928 {
1929 dump_edge_info (file, e, TDF_DETAILS, 0);
1930 }
1931 fprintf (file, "\n");
1932 }
1933 if (INSN_UID (insn) < bb_map_size
1934 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1935 {
1936 edge e;
1937 edge_iterator ei;
1938
1939 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1940 FOR_EACH_EDGE (e, ei, bb->succs)
1941 {
1942 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1943 }
1944 fprintf (file, "\n");
1945 }
1946 }
1947
1948 /* Output assembler code for some insns: all or part of a function.
1949 For description of args, see `final_start_function', above. */
1950
1951 static void
1952 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1953 {
1954 rtx_insn *insn, *next;
1955
1956 /* Used for -dA dump. */
1957 basic_block *start_to_bb = NULL;
1958 basic_block *end_to_bb = NULL;
1959 int bb_map_size = 0;
1960 int bb_seqn = 0;
1961
1962 last_ignored_compare = 0;
1963
1964 if (HAVE_cc0)
1965 for (insn = first; insn; insn = NEXT_INSN (insn))
1966 {
1967 /* If CC tracking across branches is enabled, record the insn which
1968 jumps to each branch only reached from one place. */
1969 if (optimize_p && JUMP_P (insn))
1970 {
1971 rtx lab = JUMP_LABEL (insn);
1972 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1973 {
1974 LABEL_REFS (lab) = insn;
1975 }
1976 }
1977 }
1978
1979 init_recog ();
1980
1981 CC_STATUS_INIT;
1982
1983 if (flag_debug_asm)
1984 {
1985 basic_block bb;
1986
1987 bb_map_size = get_max_uid () + 1;
1988 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1989 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1990
1991 /* There is no cfg for a thunk. */
1992 if (!cfun->is_thunk)
1993 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1994 {
1995 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1996 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1997 }
1998 }
1999
2000 /* Output the insns. */
2001 for (insn = first; insn;)
2002 {
2003 if (HAVE_ATTR_length)
2004 {
2005 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2006 {
2007 /* This can be triggered by bugs elsewhere in the compiler if
2008 new insns are created after init_insn_lengths is called. */
2009 gcc_assert (NOTE_P (insn));
2010 insn_current_address = -1;
2011 }
2012 else
2013 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2014 /* final can be seen as an iteration of shorten_branches that
2015 does nothing (since a fixed point has already been reached). */
2016 insn_last_address = insn_current_address;
2017 }
2018
2019 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2020 bb_map_size, &bb_seqn);
2021 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2022 }
2023
2024 maybe_output_next_view (&seen);
2025
2026 if (flag_debug_asm)
2027 {
2028 free (start_to_bb);
2029 free (end_to_bb);
2030 }
2031
2032 /* Remove CFI notes, to avoid compare-debug failures. */
2033 for (insn = first; insn; insn = next)
2034 {
2035 next = NEXT_INSN (insn);
2036 if (NOTE_P (insn)
2037 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2038 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2039 delete_insn (insn);
2040 }
2041 }
2042
2043 /* This is an exported final_1, callable without SEEN. */
2044
2045 void
2046 final (rtx_insn *first, FILE *file, int optimize_p)
2047 {
2048 /* Those that use the internal final_start_function_1/final_1 API
2049 skip initial debug bind notes in final_start_function_1, and pass
2050 the modified FIRST to final_1. But those that use the public
2051 final_start_function/final APIs, final_start_function can't move
2052 FIRST because it's not passed by reference, so if they were
2053 skipped there, skip them again here. */
2054 while (in_initial_view_p (first))
2055 first = NEXT_INSN (first);
2056
2057 final_1 (first, file, 0, optimize_p);
2058 }
2059 \f
2060 const char *
2061 get_insn_template (int code, rtx_insn *insn)
2062 {
2063 switch (insn_data[code].output_format)
2064 {
2065 case INSN_OUTPUT_FORMAT_SINGLE:
2066 return insn_data[code].output.single;
2067 case INSN_OUTPUT_FORMAT_MULTI:
2068 return insn_data[code].output.multi[which_alternative];
2069 case INSN_OUTPUT_FORMAT_FUNCTION:
2070 gcc_assert (insn);
2071 return (*insn_data[code].output.function) (recog_data.operand, insn);
2072
2073 default:
2074 gcc_unreachable ();
2075 }
2076 }
2077
2078 /* Emit the appropriate declaration for an alternate-entry-point
2079 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2080 LABEL_KIND != LABEL_NORMAL.
2081
2082 The case fall-through in this function is intentional. */
2083 static void
2084 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2085 {
2086 const char *name = LABEL_NAME (insn);
2087
2088 switch (LABEL_KIND (insn))
2089 {
2090 case LABEL_WEAK_ENTRY:
2091 #ifdef ASM_WEAKEN_LABEL
2092 ASM_WEAKEN_LABEL (file, name);
2093 gcc_fallthrough ();
2094 #endif
2095 case LABEL_GLOBAL_ENTRY:
2096 targetm.asm_out.globalize_label (file, name);
2097 gcc_fallthrough ();
2098 case LABEL_STATIC_ENTRY:
2099 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2100 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2101 #endif
2102 ASM_OUTPUT_LABEL (file, name);
2103 break;
2104
2105 case LABEL_NORMAL:
2106 default:
2107 gcc_unreachable ();
2108 }
2109 }
2110
2111 /* Given a CALL_INSN, find and return the nested CALL. */
2112 static rtx
2113 call_from_call_insn (rtx_call_insn *insn)
2114 {
2115 rtx x;
2116 gcc_assert (CALL_P (insn));
2117 x = PATTERN (insn);
2118
2119 while (GET_CODE (x) != CALL)
2120 {
2121 switch (GET_CODE (x))
2122 {
2123 default:
2124 gcc_unreachable ();
2125 case COND_EXEC:
2126 x = COND_EXEC_CODE (x);
2127 break;
2128 case PARALLEL:
2129 x = XVECEXP (x, 0, 0);
2130 break;
2131 case SET:
2132 x = XEXP (x, 1);
2133 break;
2134 }
2135 }
2136 return x;
2137 }
2138
2139 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2140 corresponding source line, if available. */
2141
2142 static void
2143 asm_show_source (const char *filename, int linenum)
2144 {
2145 if (!filename)
2146 return;
2147
2148 char_span line = location_get_source_line (filename, linenum);
2149 if (!line)
2150 return;
2151
2152 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2153 /* "line" is not 0-terminated, so we must use its length. */
2154 fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2155 fputc ('\n', asm_out_file);
2156 }
2157
2158 /* The final scan for one insn, INSN.
2159 Args are same as in `final', except that INSN
2160 is the insn being scanned.
2161 Value returned is the next insn to be scanned.
2162
2163 NOPEEPHOLES is the flag to disallow peephole processing (currently
2164 used for within delayed branch sequence output).
2165
2166 SEEN is used to track the end of the prologue, for emitting
2167 debug information. We force the emission of a line note after
2168 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2169
2170 static rtx_insn *
2171 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2172 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2173 {
2174 #if HAVE_cc0
2175 rtx set;
2176 #endif
2177 rtx_insn *next;
2178 rtx_jump_table_data *table;
2179
2180 insn_counter++;
2181
2182 /* Ignore deleted insns. These can occur when we split insns (due to a
2183 template of "#") while not optimizing. */
2184 if (insn->deleted ())
2185 return NEXT_INSN (insn);
2186
2187 switch (GET_CODE (insn))
2188 {
2189 case NOTE:
2190 switch (NOTE_KIND (insn))
2191 {
2192 case NOTE_INSN_DELETED:
2193 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2194 break;
2195
2196 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2197 maybe_output_next_view (seen);
2198
2199 output_function_exception_table (0);
2200
2201 if (targetm.asm_out.unwind_emit)
2202 targetm.asm_out.unwind_emit (asm_out_file, insn);
2203
2204 in_cold_section_p = !in_cold_section_p;
2205
2206 if (in_cold_section_p)
2207 cold_function_name
2208 = clone_function_name (current_function_decl, "cold");
2209
2210 if (dwarf2out_do_frame ())
2211 {
2212 dwarf2out_switch_text_section ();
2213 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2214 && !DECL_IGNORED_P (current_function_decl))
2215 debug_hooks->switch_text_section ();
2216 }
2217 else if (!DECL_IGNORED_P (current_function_decl))
2218 debug_hooks->switch_text_section ();
2219
2220 switch_to_section (current_function_section ());
2221 targetm.asm_out.function_switched_text_sections (asm_out_file,
2222 current_function_decl,
2223 in_cold_section_p);
2224 /* Emit a label for the split cold section. Form label name by
2225 suffixing "cold" to the original function's name. */
2226 if (in_cold_section_p)
2227 {
2228 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2229 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2230 IDENTIFIER_POINTER
2231 (cold_function_name),
2232 current_function_decl);
2233 #else
2234 ASM_OUTPUT_LABEL (asm_out_file,
2235 IDENTIFIER_POINTER (cold_function_name));
2236 #endif
2237 if (dwarf2out_do_frame ()
2238 && cfun->fde->dw_fde_second_begin != NULL)
2239 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2240 }
2241 break;
2242
2243 case NOTE_INSN_BASIC_BLOCK:
2244 if (need_profile_function)
2245 {
2246 profile_function (asm_out_file);
2247 need_profile_function = false;
2248 }
2249
2250 if (targetm.asm_out.unwind_emit)
2251 targetm.asm_out.unwind_emit (asm_out_file, insn);
2252
2253 bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2254 break;
2255
2256 case NOTE_INSN_EH_REGION_BEG:
2257 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2258 NOTE_EH_HANDLER (insn));
2259 break;
2260
2261 case NOTE_INSN_EH_REGION_END:
2262 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2263 NOTE_EH_HANDLER (insn));
2264 break;
2265
2266 case NOTE_INSN_PROLOGUE_END:
2267 targetm.asm_out.function_end_prologue (file);
2268 profile_after_prologue (file);
2269
2270 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2271 {
2272 *seen |= SEEN_EMITTED;
2273 force_source_line = true;
2274 }
2275 else
2276 *seen |= SEEN_NOTE;
2277
2278 break;
2279
2280 case NOTE_INSN_EPILOGUE_BEG:
2281 if (!DECL_IGNORED_P (current_function_decl))
2282 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2283 targetm.asm_out.function_begin_epilogue (file);
2284 break;
2285
2286 case NOTE_INSN_CFI:
2287 dwarf2out_emit_cfi (NOTE_CFI (insn));
2288 break;
2289
2290 case NOTE_INSN_CFI_LABEL:
2291 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2292 NOTE_LABEL_NUMBER (insn));
2293 break;
2294
2295 case NOTE_INSN_FUNCTION_BEG:
2296 if (need_profile_function)
2297 {
2298 profile_function (asm_out_file);
2299 need_profile_function = false;
2300 }
2301
2302 app_disable ();
2303 if (!DECL_IGNORED_P (current_function_decl))
2304 debug_hooks->end_prologue (last_linenum, last_filename);
2305
2306 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2307 {
2308 *seen |= SEEN_EMITTED;
2309 force_source_line = true;
2310 }
2311 else
2312 *seen |= SEEN_NOTE;
2313
2314 break;
2315
2316 case NOTE_INSN_BLOCK_BEG:
2317 if (debug_info_level == DINFO_LEVEL_NORMAL
2318 || debug_info_level == DINFO_LEVEL_VERBOSE
2319 || write_symbols == DWARF2_DEBUG
2320 || write_symbols == VMS_AND_DWARF2_DEBUG
2321 || write_symbols == VMS_DEBUG)
2322 {
2323 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2324
2325 app_disable ();
2326 ++block_depth;
2327 high_block_linenum = last_linenum;
2328
2329 /* Output debugging info about the symbol-block beginning. */
2330 if (!DECL_IGNORED_P (current_function_decl))
2331 debug_hooks->begin_block (last_linenum, n);
2332
2333 /* Mark this block as output. */
2334 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2335 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2336 }
2337 if (write_symbols == DBX_DEBUG)
2338 {
2339 location_t *locus_ptr
2340 = block_nonartificial_location (NOTE_BLOCK (insn));
2341
2342 if (locus_ptr != NULL)
2343 {
2344 override_filename = LOCATION_FILE (*locus_ptr);
2345 override_linenum = LOCATION_LINE (*locus_ptr);
2346 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2347 override_discriminator = compute_discriminator (*locus_ptr);
2348 }
2349 }
2350 break;
2351
2352 case NOTE_INSN_BLOCK_END:
2353 maybe_output_next_view (seen);
2354
2355 if (debug_info_level == DINFO_LEVEL_NORMAL
2356 || debug_info_level == DINFO_LEVEL_VERBOSE
2357 || write_symbols == DWARF2_DEBUG
2358 || write_symbols == VMS_AND_DWARF2_DEBUG
2359 || write_symbols == VMS_DEBUG)
2360 {
2361 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2362
2363 app_disable ();
2364
2365 /* End of a symbol-block. */
2366 --block_depth;
2367 gcc_assert (block_depth >= 0);
2368
2369 if (!DECL_IGNORED_P (current_function_decl))
2370 debug_hooks->end_block (high_block_linenum, n);
2371 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2372 == in_cold_section_p);
2373 }
2374 if (write_symbols == DBX_DEBUG)
2375 {
2376 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2377 location_t *locus_ptr
2378 = block_nonartificial_location (outer_block);
2379
2380 if (locus_ptr != NULL)
2381 {
2382 override_filename = LOCATION_FILE (*locus_ptr);
2383 override_linenum = LOCATION_LINE (*locus_ptr);
2384 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2385 override_discriminator = compute_discriminator (*locus_ptr);
2386 }
2387 else
2388 {
2389 override_filename = NULL;
2390 override_linenum = 0;
2391 override_columnnum = 0;
2392 override_discriminator = 0;
2393 }
2394 }
2395 break;
2396
2397 case NOTE_INSN_DELETED_LABEL:
2398 /* Emit the label. We may have deleted the CODE_LABEL because
2399 the label could be proved to be unreachable, though still
2400 referenced (in the form of having its address taken. */
2401 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2402 break;
2403
2404 case NOTE_INSN_DELETED_DEBUG_LABEL:
2405 /* Similarly, but need to use different namespace for it. */
2406 if (CODE_LABEL_NUMBER (insn) != -1)
2407 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2408 break;
2409
2410 case NOTE_INSN_VAR_LOCATION:
2411 if (!DECL_IGNORED_P (current_function_decl))
2412 {
2413 debug_hooks->var_location (insn);
2414 set_next_view_needed (seen);
2415 }
2416 break;
2417
2418 case NOTE_INSN_BEGIN_STMT:
2419 gcc_checking_assert (cfun->debug_nonbind_markers);
2420 if (!DECL_IGNORED_P (current_function_decl)
2421 && notice_source_line (insn, NULL))
2422 {
2423 output_source_line:
2424 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2425 last_filename, last_discriminator,
2426 true);
2427 clear_next_view_needed (seen);
2428 }
2429 break;
2430
2431 case NOTE_INSN_INLINE_ENTRY:
2432 gcc_checking_assert (cfun->debug_nonbind_markers);
2433 if (!DECL_IGNORED_P (current_function_decl))
2434 {
2435 if (!notice_source_line (insn, NULL))
2436 break;
2437 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2438 (NOTE_MARKER_LOCATION (insn)));
2439 goto output_source_line;
2440 }
2441 break;
2442
2443 default:
2444 gcc_unreachable ();
2445 break;
2446 }
2447 break;
2448
2449 case BARRIER:
2450 break;
2451
2452 case CODE_LABEL:
2453 /* The target port might emit labels in the output function for
2454 some insn, e.g. sh.c output_branchy_insn. */
2455 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2456 {
2457 align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2458 if (alignment.levels[0].log && NEXT_INSN (insn))
2459 {
2460 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2461 /* Output both primary and secondary alignment. */
2462 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2463 alignment.levels[0].maxskip);
2464 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2465 alignment.levels[1].maxskip);
2466 #else
2467 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2468 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2469 #else
2470 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2471 #endif
2472 #endif
2473 }
2474 }
2475 CC_STATUS_INIT;
2476
2477 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2478 debug_hooks->label (as_a <rtx_code_label *> (insn));
2479
2480 app_disable ();
2481
2482 /* If this label is followed by a jump-table, make sure we put
2483 the label in the read-only section. Also possibly write the
2484 label and jump table together. */
2485 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2486 if (table)
2487 {
2488 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2489 /* In this case, the case vector is being moved by the
2490 target, so don't output the label at all. Leave that
2491 to the back end macros. */
2492 #else
2493 if (! JUMP_TABLES_IN_TEXT_SECTION)
2494 {
2495 int log_align;
2496
2497 switch_to_section (targetm.asm_out.function_rodata_section
2498 (current_function_decl));
2499
2500 #ifdef ADDR_VEC_ALIGN
2501 log_align = ADDR_VEC_ALIGN (table);
2502 #else
2503 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2504 #endif
2505 ASM_OUTPUT_ALIGN (file, log_align);
2506 }
2507 else
2508 switch_to_section (current_function_section ());
2509
2510 #ifdef ASM_OUTPUT_CASE_LABEL
2511 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2512 #else
2513 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2514 #endif
2515 #endif
2516 break;
2517 }
2518 if (LABEL_ALT_ENTRY_P (insn))
2519 output_alternate_entry_point (file, insn);
2520 else
2521 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2522 break;
2523
2524 default:
2525 {
2526 rtx body = PATTERN (insn);
2527 int insn_code_number;
2528 const char *templ;
2529 bool is_stmt, *is_stmt_p;
2530
2531 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2532 {
2533 is_stmt = false;
2534 is_stmt_p = NULL;
2535 }
2536 else
2537 is_stmt_p = &is_stmt;
2538
2539 /* Reset this early so it is correct for ASM statements. */
2540 current_insn_predicate = NULL_RTX;
2541
2542 /* An INSN, JUMP_INSN or CALL_INSN.
2543 First check for special kinds that recog doesn't recognize. */
2544
2545 if (GET_CODE (body) == USE /* These are just declarations. */
2546 || GET_CODE (body) == CLOBBER)
2547 break;
2548
2549 #if HAVE_cc0
2550 {
2551 /* If there is a REG_CC_SETTER note on this insn, it means that
2552 the setting of the condition code was done in the delay slot
2553 of the insn that branched here. So recover the cc status
2554 from the insn that set it. */
2555
2556 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2557 if (note)
2558 {
2559 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2560 NOTICE_UPDATE_CC (PATTERN (other), other);
2561 cc_prev_status = cc_status;
2562 }
2563 }
2564 #endif
2565
2566 /* Detect insns that are really jump-tables
2567 and output them as such. */
2568
2569 if (JUMP_TABLE_DATA_P (insn))
2570 {
2571 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2572 int vlen, idx;
2573 #endif
2574
2575 if (! JUMP_TABLES_IN_TEXT_SECTION)
2576 switch_to_section (targetm.asm_out.function_rodata_section
2577 (current_function_decl));
2578 else
2579 switch_to_section (current_function_section ());
2580
2581 app_disable ();
2582
2583 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2584 if (GET_CODE (body) == ADDR_VEC)
2585 {
2586 #ifdef ASM_OUTPUT_ADDR_VEC
2587 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2588 #else
2589 gcc_unreachable ();
2590 #endif
2591 }
2592 else
2593 {
2594 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2595 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2596 #else
2597 gcc_unreachable ();
2598 #endif
2599 }
2600 #else
2601 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2602 for (idx = 0; idx < vlen; idx++)
2603 {
2604 if (GET_CODE (body) == ADDR_VEC)
2605 {
2606 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2607 ASM_OUTPUT_ADDR_VEC_ELT
2608 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2609 #else
2610 gcc_unreachable ();
2611 #endif
2612 }
2613 else
2614 {
2615 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2616 ASM_OUTPUT_ADDR_DIFF_ELT
2617 (file,
2618 body,
2619 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2620 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2621 #else
2622 gcc_unreachable ();
2623 #endif
2624 }
2625 }
2626 #ifdef ASM_OUTPUT_CASE_END
2627 ASM_OUTPUT_CASE_END (file,
2628 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2629 insn);
2630 #endif
2631 #endif
2632
2633 switch_to_section (current_function_section ());
2634
2635 if (debug_variable_location_views
2636 && !DECL_IGNORED_P (current_function_decl))
2637 debug_hooks->var_location (insn);
2638
2639 break;
2640 }
2641 /* Output this line note if it is the first or the last line
2642 note in a row. */
2643 if (!DECL_IGNORED_P (current_function_decl)
2644 && notice_source_line (insn, is_stmt_p))
2645 {
2646 if (flag_verbose_asm)
2647 asm_show_source (last_filename, last_linenum);
2648 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2649 last_filename, last_discriminator,
2650 is_stmt);
2651 clear_next_view_needed (seen);
2652 }
2653 else
2654 maybe_output_next_view (seen);
2655
2656 gcc_checking_assert (!DEBUG_INSN_P (insn));
2657
2658 if (GET_CODE (body) == PARALLEL
2659 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2660 body = XVECEXP (body, 0, 0);
2661
2662 if (GET_CODE (body) == ASM_INPUT)
2663 {
2664 const char *string = XSTR (body, 0);
2665
2666 /* There's no telling what that did to the condition codes. */
2667 CC_STATUS_INIT;
2668
2669 if (string[0])
2670 {
2671 expanded_location loc;
2672
2673 app_enable ();
2674 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2675 if (*loc.file && loc.line)
2676 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2677 ASM_COMMENT_START, loc.line, loc.file);
2678 fprintf (asm_out_file, "\t%s\n", string);
2679 #if HAVE_AS_LINE_ZERO
2680 if (*loc.file && loc.line)
2681 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2682 #endif
2683 }
2684 break;
2685 }
2686
2687 /* Detect `asm' construct with operands. */
2688 if (asm_noperands (body) >= 0)
2689 {
2690 unsigned int noperands = asm_noperands (body);
2691 rtx *ops = XALLOCAVEC (rtx, noperands);
2692 const char *string;
2693 location_t loc;
2694 expanded_location expanded;
2695
2696 /* There's no telling what that did to the condition codes. */
2697 CC_STATUS_INIT;
2698
2699 /* Get out the operand values. */
2700 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2701 /* Inhibit dying on what would otherwise be compiler bugs. */
2702 insn_noperands = noperands;
2703 this_is_asm_operands = insn;
2704 expanded = expand_location (loc);
2705
2706 #ifdef FINAL_PRESCAN_INSN
2707 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2708 #endif
2709
2710 /* Output the insn using them. */
2711 if (string[0])
2712 {
2713 app_enable ();
2714 if (expanded.file && expanded.line)
2715 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2716 ASM_COMMENT_START, expanded.line, expanded.file);
2717 output_asm_insn (string, ops);
2718 #if HAVE_AS_LINE_ZERO
2719 if (expanded.file && expanded.line)
2720 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2721 #endif
2722 }
2723
2724 if (targetm.asm_out.final_postscan_insn)
2725 targetm.asm_out.final_postscan_insn (file, insn, ops,
2726 insn_noperands);
2727
2728 this_is_asm_operands = 0;
2729 break;
2730 }
2731
2732 app_disable ();
2733
2734 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2735 {
2736 /* A delayed-branch sequence */
2737 int i;
2738
2739 final_sequence = seq;
2740
2741 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2742 force the restoration of a comparison that was previously
2743 thought unnecessary. If that happens, cancel this sequence
2744 and cause that insn to be restored. */
2745
2746 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2747 if (next != seq->insn (1))
2748 {
2749 final_sequence = 0;
2750 return next;
2751 }
2752
2753 for (i = 1; i < seq->len (); i++)
2754 {
2755 rtx_insn *insn = seq->insn (i);
2756 rtx_insn *next = NEXT_INSN (insn);
2757 /* We loop in case any instruction in a delay slot gets
2758 split. */
2759 do
2760 insn = final_scan_insn (insn, file, 0, 1, seen);
2761 while (insn != next);
2762 }
2763 #ifdef DBR_OUTPUT_SEQEND
2764 DBR_OUTPUT_SEQEND (file);
2765 #endif
2766 final_sequence = 0;
2767
2768 /* If the insn requiring the delay slot was a CALL_INSN, the
2769 insns in the delay slot are actually executed before the
2770 called function. Hence we don't preserve any CC-setting
2771 actions in these insns and the CC must be marked as being
2772 clobbered by the function. */
2773 if (CALL_P (seq->insn (0)))
2774 {
2775 CC_STATUS_INIT;
2776 }
2777 break;
2778 }
2779
2780 /* We have a real machine instruction as rtl. */
2781
2782 body = PATTERN (insn);
2783
2784 #if HAVE_cc0
2785 set = single_set (insn);
2786
2787 /* Check for redundant test and compare instructions
2788 (when the condition codes are already set up as desired).
2789 This is done only when optimizing; if not optimizing,
2790 it should be possible for the user to alter a variable
2791 with the debugger in between statements
2792 and the next statement should reexamine the variable
2793 to compute the condition codes. */
2794
2795 if (optimize_p)
2796 {
2797 if (set
2798 && GET_CODE (SET_DEST (set)) == CC0
2799 && insn != last_ignored_compare)
2800 {
2801 rtx src1, src2;
2802 if (GET_CODE (SET_SRC (set)) == SUBREG)
2803 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2804
2805 src1 = SET_SRC (set);
2806 src2 = NULL_RTX;
2807 if (GET_CODE (SET_SRC (set)) == COMPARE)
2808 {
2809 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2810 XEXP (SET_SRC (set), 0)
2811 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2812 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2813 XEXP (SET_SRC (set), 1)
2814 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2815 if (XEXP (SET_SRC (set), 1)
2816 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2817 src2 = XEXP (SET_SRC (set), 0);
2818 }
2819 if ((cc_status.value1 != 0
2820 && rtx_equal_p (src1, cc_status.value1))
2821 || (cc_status.value2 != 0
2822 && rtx_equal_p (src1, cc_status.value2))
2823 || (src2 != 0 && cc_status.value1 != 0
2824 && rtx_equal_p (src2, cc_status.value1))
2825 || (src2 != 0 && cc_status.value2 != 0
2826 && rtx_equal_p (src2, cc_status.value2)))
2827 {
2828 /* Don't delete insn if it has an addressing side-effect. */
2829 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2830 /* or if anything in it is volatile. */
2831 && ! volatile_refs_p (PATTERN (insn)))
2832 {
2833 /* We don't really delete the insn; just ignore it. */
2834 last_ignored_compare = insn;
2835 break;
2836 }
2837 }
2838 }
2839 }
2840
2841 /* If this is a conditional branch, maybe modify it
2842 if the cc's are in a nonstandard state
2843 so that it accomplishes the same thing that it would
2844 do straightforwardly if the cc's were set up normally. */
2845
2846 if (cc_status.flags != 0
2847 && JUMP_P (insn)
2848 && GET_CODE (body) == SET
2849 && SET_DEST (body) == pc_rtx
2850 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2851 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2852 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2853 {
2854 /* This function may alter the contents of its argument
2855 and clear some of the cc_status.flags bits.
2856 It may also return 1 meaning condition now always true
2857 or -1 meaning condition now always false
2858 or 2 meaning condition nontrivial but altered. */
2859 int result = alter_cond (XEXP (SET_SRC (body), 0));
2860 /* If condition now has fixed value, replace the IF_THEN_ELSE
2861 with its then-operand or its else-operand. */
2862 if (result == 1)
2863 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2864 if (result == -1)
2865 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2866
2867 /* The jump is now either unconditional or a no-op.
2868 If it has become a no-op, don't try to output it.
2869 (It would not be recognized.) */
2870 if (SET_SRC (body) == pc_rtx)
2871 {
2872 delete_insn (insn);
2873 break;
2874 }
2875 else if (ANY_RETURN_P (SET_SRC (body)))
2876 /* Replace (set (pc) (return)) with (return). */
2877 PATTERN (insn) = body = SET_SRC (body);
2878
2879 /* Rerecognize the instruction if it has changed. */
2880 if (result != 0)
2881 INSN_CODE (insn) = -1;
2882 }
2883
2884 /* If this is a conditional trap, maybe modify it if the cc's
2885 are in a nonstandard state so that it accomplishes the same
2886 thing that it would do straightforwardly if the cc's were
2887 set up normally. */
2888 if (cc_status.flags != 0
2889 && NONJUMP_INSN_P (insn)
2890 && GET_CODE (body) == TRAP_IF
2891 && COMPARISON_P (TRAP_CONDITION (body))
2892 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2893 {
2894 /* This function may alter the contents of its argument
2895 and clear some of the cc_status.flags bits.
2896 It may also return 1 meaning condition now always true
2897 or -1 meaning condition now always false
2898 or 2 meaning condition nontrivial but altered. */
2899 int result = alter_cond (TRAP_CONDITION (body));
2900
2901 /* If TRAP_CONDITION has become always false, delete the
2902 instruction. */
2903 if (result == -1)
2904 {
2905 delete_insn (insn);
2906 break;
2907 }
2908
2909 /* If TRAP_CONDITION has become always true, replace
2910 TRAP_CONDITION with const_true_rtx. */
2911 if (result == 1)
2912 TRAP_CONDITION (body) = const_true_rtx;
2913
2914 /* Rerecognize the instruction if it has changed. */
2915 if (result != 0)
2916 INSN_CODE (insn) = -1;
2917 }
2918
2919 /* Make same adjustments to instructions that examine the
2920 condition codes without jumping and instructions that
2921 handle conditional moves (if this machine has either one). */
2922
2923 if (cc_status.flags != 0
2924 && set != 0)
2925 {
2926 rtx cond_rtx, then_rtx, else_rtx;
2927
2928 if (!JUMP_P (insn)
2929 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2930 {
2931 cond_rtx = XEXP (SET_SRC (set), 0);
2932 then_rtx = XEXP (SET_SRC (set), 1);
2933 else_rtx = XEXP (SET_SRC (set), 2);
2934 }
2935 else
2936 {
2937 cond_rtx = SET_SRC (set);
2938 then_rtx = const_true_rtx;
2939 else_rtx = const0_rtx;
2940 }
2941
2942 if (COMPARISON_P (cond_rtx)
2943 && XEXP (cond_rtx, 0) == cc0_rtx)
2944 {
2945 int result;
2946 result = alter_cond (cond_rtx);
2947 if (result == 1)
2948 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2949 else if (result == -1)
2950 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2951 else if (result == 2)
2952 INSN_CODE (insn) = -1;
2953 if (SET_DEST (set) == SET_SRC (set))
2954 delete_insn (insn);
2955 }
2956 }
2957
2958 #endif
2959
2960 /* Do machine-specific peephole optimizations if desired. */
2961
2962 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2963 {
2964 rtx_insn *next = peephole (insn);
2965 /* When peepholing, if there were notes within the peephole,
2966 emit them before the peephole. */
2967 if (next != 0 && next != NEXT_INSN (insn))
2968 {
2969 rtx_insn *note, *prev = PREV_INSN (insn);
2970
2971 for (note = NEXT_INSN (insn); note != next;
2972 note = NEXT_INSN (note))
2973 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2974
2975 /* Put the notes in the proper position for a later
2976 rescan. For example, the SH target can do this
2977 when generating a far jump in a delayed branch
2978 sequence. */
2979 note = NEXT_INSN (insn);
2980 SET_PREV_INSN (note) = prev;
2981 SET_NEXT_INSN (prev) = note;
2982 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2983 SET_PREV_INSN (insn) = PREV_INSN (next);
2984 SET_NEXT_INSN (insn) = next;
2985 SET_PREV_INSN (next) = insn;
2986 }
2987
2988 /* PEEPHOLE might have changed this. */
2989 body = PATTERN (insn);
2990 }
2991
2992 /* Try to recognize the instruction.
2993 If successful, verify that the operands satisfy the
2994 constraints for the instruction. Crash if they don't,
2995 since `reload' should have changed them so that they do. */
2996
2997 insn_code_number = recog_memoized (insn);
2998 cleanup_subreg_operands (insn);
2999
3000 /* Dump the insn in the assembly for debugging (-dAP).
3001 If the final dump is requested as slim RTL, dump slim
3002 RTL to the assembly file also. */
3003 if (flag_dump_rtl_in_asm)
3004 {
3005 print_rtx_head = ASM_COMMENT_START;
3006 if (! (dump_flags & TDF_SLIM))
3007 print_rtl_single (asm_out_file, insn);
3008 else
3009 dump_insn_slim (asm_out_file, insn);
3010 print_rtx_head = "";
3011 }
3012
3013 if (! constrain_operands_cached (insn, 1))
3014 fatal_insn_not_found (insn);
3015
3016 /* Some target machines need to prescan each insn before
3017 it is output. */
3018
3019 #ifdef FINAL_PRESCAN_INSN
3020 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3021 #endif
3022
3023 if (targetm.have_conditional_execution ()
3024 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3025 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3026
3027 #if HAVE_cc0
3028 cc_prev_status = cc_status;
3029
3030 /* Update `cc_status' for this instruction.
3031 The instruction's output routine may change it further.
3032 If the output routine for a jump insn needs to depend
3033 on the cc status, it should look at cc_prev_status. */
3034
3035 NOTICE_UPDATE_CC (body, insn);
3036 #endif
3037
3038 current_output_insn = debug_insn = insn;
3039
3040 /* Find the proper template for this insn. */
3041 templ = get_insn_template (insn_code_number, insn);
3042
3043 /* If the C code returns 0, it means that it is a jump insn
3044 which follows a deleted test insn, and that test insn
3045 needs to be reinserted. */
3046 if (templ == 0)
3047 {
3048 rtx_insn *prev;
3049
3050 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3051
3052 /* We have already processed the notes between the setter and
3053 the user. Make sure we don't process them again, this is
3054 particularly important if one of the notes is a block
3055 scope note or an EH note. */
3056 for (prev = insn;
3057 prev != last_ignored_compare;
3058 prev = PREV_INSN (prev))
3059 {
3060 if (NOTE_P (prev))
3061 delete_insn (prev); /* Use delete_note. */
3062 }
3063
3064 return prev;
3065 }
3066
3067 /* If the template is the string "#", it means that this insn must
3068 be split. */
3069 if (templ[0] == '#' && templ[1] == '\0')
3070 {
3071 rtx_insn *new_rtx = try_split (body, insn, 0);
3072
3073 /* If we didn't split the insn, go away. */
3074 if (new_rtx == insn && PATTERN (new_rtx) == body)
3075 fatal_insn ("could not split insn", insn);
3076
3077 /* If we have a length attribute, this instruction should have
3078 been split in shorten_branches, to ensure that we would have
3079 valid length info for the splitees. */
3080 gcc_assert (!HAVE_ATTR_length);
3081
3082 return new_rtx;
3083 }
3084
3085 /* ??? This will put the directives in the wrong place if
3086 get_insn_template outputs assembly directly. However calling it
3087 before get_insn_template breaks if the insns is split. */
3088 if (targetm.asm_out.unwind_emit_before_insn
3089 && targetm.asm_out.unwind_emit)
3090 targetm.asm_out.unwind_emit (asm_out_file, insn);
3091
3092 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3093 if (call_insn != NULL)
3094 {
3095 rtx x = call_from_call_insn (call_insn);
3096 x = XEXP (x, 0);
3097 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3098 {
3099 tree t;
3100 x = XEXP (x, 0);
3101 t = SYMBOL_REF_DECL (x);
3102 if (t)
3103 assemble_external (t);
3104 }
3105 }
3106
3107 /* Output assembler code from the template. */
3108 output_asm_insn (templ, recog_data.operand);
3109
3110 /* Some target machines need to postscan each insn after
3111 it is output. */
3112 if (targetm.asm_out.final_postscan_insn)
3113 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3114 recog_data.n_operands);
3115
3116 if (!targetm.asm_out.unwind_emit_before_insn
3117 && targetm.asm_out.unwind_emit)
3118 targetm.asm_out.unwind_emit (asm_out_file, insn);
3119
3120 /* Let the debug info back-end know about this call. We do this only
3121 after the instruction has been emitted because labels that may be
3122 created to reference the call instruction must appear after it. */
3123 if ((debug_variable_location_views || call_insn != NULL)
3124 && !DECL_IGNORED_P (current_function_decl))
3125 debug_hooks->var_location (insn);
3126
3127 current_output_insn = debug_insn = 0;
3128 }
3129 }
3130 return NEXT_INSN (insn);
3131 }
3132
3133 /* This is a wrapper around final_scan_insn_1 that allows ports to
3134 call it recursively without a known value for SEEN. The value is
3135 saved at the outermost call, and recovered for recursive calls.
3136 Recursive calls MUST pass NULL, or the same pointer if they can
3137 otherwise get to it. */
3138
3139 rtx_insn *
3140 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3141 int nopeepholes, int *seen)
3142 {
3143 static int *enclosing_seen;
3144 static int recursion_counter;
3145
3146 gcc_assert (seen || recursion_counter);
3147 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3148
3149 if (!recursion_counter++)
3150 enclosing_seen = seen;
3151 else if (!seen)
3152 seen = enclosing_seen;
3153
3154 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3155
3156 if (!--recursion_counter)
3157 enclosing_seen = NULL;
3158
3159 return ret;
3160 }
3161
3162 \f
3163
3164 /* Map DECLs to instance discriminators. This is allocated and
3165 defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS.
3166 Mappings from this table are saved and restored for LTO, so
3167 link-time compilation will have this map set, at least in
3168 partitions containing at least one DECL with an associated instance
3169 discriminator. */
3170
3171 decl_to_instance_map_t *decl_to_instance_map;
3172
3173 /* Return the instance number assigned to DECL. */
3174
3175 static inline int
3176 map_decl_to_instance (const_tree decl)
3177 {
3178 int *inst;
3179
3180 if (!decl_to_instance_map || !decl || !DECL_P (decl))
3181 return 0;
3182
3183 inst = decl_to_instance_map->get (decl);
3184
3185 if (!inst)
3186 return 0;
3187
3188 return *inst;
3189 }
3190
3191 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */
3192
3193 static inline int
3194 compute_discriminator (location_t loc)
3195 {
3196 int discriminator;
3197
3198 if (!decl_to_instance_map)
3199 discriminator = bb_discriminator;
3200 else
3201 {
3202 tree block = LOCATION_BLOCK (loc);
3203
3204 while (block && TREE_CODE (block) == BLOCK
3205 && !inlined_function_outer_scope_p (block))
3206 block = BLOCK_SUPERCONTEXT (block);
3207
3208 tree decl;
3209
3210 if (!block)
3211 decl = current_function_decl;
3212 else if (DECL_P (block))
3213 decl = block;
3214 else
3215 decl = block_ultimate_origin (block);
3216
3217 discriminator = map_decl_to_instance (decl);
3218 }
3219
3220 return discriminator;
3221 }
3222
3223 /* Return whether a source line note needs to be emitted before INSN.
3224 Sets IS_STMT to TRUE if the line should be marked as a possible
3225 breakpoint location. */
3226
3227 static bool
3228 notice_source_line (rtx_insn *insn, bool *is_stmt)
3229 {
3230 const char *filename;
3231 int linenum, columnnum;
3232
3233 if (NOTE_MARKER_P (insn))
3234 {
3235 location_t loc = NOTE_MARKER_LOCATION (insn);
3236 expanded_location xloc = expand_location (loc);
3237 if (xloc.line == 0)
3238 {
3239 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3240 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3241 return false;
3242 }
3243 filename = xloc.file;
3244 linenum = xloc.line;
3245 columnnum = xloc.column;
3246 discriminator = compute_discriminator (loc);
3247 force_source_line = true;
3248 }
3249 else if (override_filename)
3250 {
3251 filename = override_filename;
3252 linenum = override_linenum;
3253 columnnum = override_columnnum;
3254 discriminator = override_discriminator;
3255 }
3256 else if (INSN_HAS_LOCATION (insn))
3257 {
3258 expanded_location xloc = insn_location (insn);
3259 filename = xloc.file;
3260 linenum = xloc.line;
3261 columnnum = xloc.column;
3262 discriminator = compute_discriminator (INSN_LOCATION (insn));
3263 }
3264 else
3265 {
3266 filename = NULL;
3267 linenum = 0;
3268 columnnum = 0;
3269 discriminator = 0;
3270 }
3271
3272 if (filename == NULL)
3273 return false;
3274
3275 if (force_source_line
3276 || filename != last_filename
3277 || last_linenum != linenum
3278 || (debug_column_info && last_columnnum != columnnum))
3279 {
3280 force_source_line = false;
3281 last_filename = filename;
3282 last_linenum = linenum;
3283 last_columnnum = columnnum;
3284 last_discriminator = discriminator;
3285 if (is_stmt)
3286 *is_stmt = true;
3287 high_block_linenum = MAX (last_linenum, high_block_linenum);
3288 high_function_linenum = MAX (last_linenum, high_function_linenum);
3289 return true;
3290 }
3291
3292 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3293 {
3294 /* If the discriminator changed, but the line number did not,
3295 output the line table entry with is_stmt false so the
3296 debugger does not treat this as a breakpoint location. */
3297 last_discriminator = discriminator;
3298 if (is_stmt)
3299 *is_stmt = false;
3300 return true;
3301 }
3302
3303 return false;
3304 }
3305 \f
3306 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3307 directly to the desired hard register. */
3308
3309 void
3310 cleanup_subreg_operands (rtx_insn *insn)
3311 {
3312 int i;
3313 bool changed = false;
3314 extract_insn_cached (insn);
3315 for (i = 0; i < recog_data.n_operands; i++)
3316 {
3317 /* The following test cannot use recog_data.operand when testing
3318 for a SUBREG: the underlying object might have been changed
3319 already if we are inside a match_operator expression that
3320 matches the else clause. Instead we test the underlying
3321 expression directly. */
3322 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3323 {
3324 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3325 changed = true;
3326 }
3327 else if (GET_CODE (recog_data.operand[i]) == PLUS
3328 || GET_CODE (recog_data.operand[i]) == MULT
3329 || MEM_P (recog_data.operand[i]))
3330 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3331 }
3332
3333 for (i = 0; i < recog_data.n_dups; i++)
3334 {
3335 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3336 {
3337 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3338 changed = true;
3339 }
3340 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3341 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3342 || MEM_P (*recog_data.dup_loc[i]))
3343 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3344 }
3345 if (changed)
3346 df_insn_rescan (insn);
3347 }
3348
3349 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3350 the thing it is a subreg of. Do it anyway if FINAL_P. */
3351
3352 rtx
3353 alter_subreg (rtx *xp, bool final_p)
3354 {
3355 rtx x = *xp;
3356 rtx y = SUBREG_REG (x);
3357
3358 /* simplify_subreg does not remove subreg from volatile references.
3359 We are required to. */
3360 if (MEM_P (y))
3361 {
3362 poly_int64 offset = SUBREG_BYTE (x);
3363
3364 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3365 contains 0 instead of the proper offset. See simplify_subreg. */
3366 if (paradoxical_subreg_p (x))
3367 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3368
3369 if (final_p)
3370 *xp = adjust_address (y, GET_MODE (x), offset);
3371 else
3372 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3373 }
3374 else if (REG_P (y) && HARD_REGISTER_P (y))
3375 {
3376 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3377 SUBREG_BYTE (x));
3378
3379 if (new_rtx != 0)
3380 *xp = new_rtx;
3381 else if (final_p && REG_P (y))
3382 {
3383 /* Simplify_subreg can't handle some REG cases, but we have to. */
3384 unsigned int regno;
3385 poly_int64 offset;
3386
3387 regno = subreg_regno (x);
3388 if (subreg_lowpart_p (x))
3389 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3390 else
3391 offset = SUBREG_BYTE (x);
3392 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3393 }
3394 }
3395
3396 return *xp;
3397 }
3398
3399 /* Do alter_subreg on all the SUBREGs contained in X. */
3400
3401 static rtx
3402 walk_alter_subreg (rtx *xp, bool *changed)
3403 {
3404 rtx x = *xp;
3405 switch (GET_CODE (x))
3406 {
3407 case PLUS:
3408 case MULT:
3409 case AND:
3410 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3411 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3412 break;
3413
3414 case MEM:
3415 case ZERO_EXTEND:
3416 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3417 break;
3418
3419 case SUBREG:
3420 *changed = true;
3421 return alter_subreg (xp, true);
3422
3423 default:
3424 break;
3425 }
3426
3427 return *xp;
3428 }
3429 \f
3430 #if HAVE_cc0
3431
3432 /* Given BODY, the body of a jump instruction, alter the jump condition
3433 as required by the bits that are set in cc_status.flags.
3434 Not all of the bits there can be handled at this level in all cases.
3435
3436 The value is normally 0.
3437 1 means that the condition has become always true.
3438 -1 means that the condition has become always false.
3439 2 means that COND has been altered. */
3440
3441 static int
3442 alter_cond (rtx cond)
3443 {
3444 int value = 0;
3445
3446 if (cc_status.flags & CC_REVERSED)
3447 {
3448 value = 2;
3449 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3450 }
3451
3452 if (cc_status.flags & CC_INVERTED)
3453 {
3454 value = 2;
3455 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3456 }
3457
3458 if (cc_status.flags & CC_NOT_POSITIVE)
3459 switch (GET_CODE (cond))
3460 {
3461 case LE:
3462 case LEU:
3463 case GEU:
3464 /* Jump becomes unconditional. */
3465 return 1;
3466
3467 case GT:
3468 case GTU:
3469 case LTU:
3470 /* Jump becomes no-op. */
3471 return -1;
3472
3473 case GE:
3474 PUT_CODE (cond, EQ);
3475 value = 2;
3476 break;
3477
3478 case LT:
3479 PUT_CODE (cond, NE);
3480 value = 2;
3481 break;
3482
3483 default:
3484 break;
3485 }
3486
3487 if (cc_status.flags & CC_NOT_NEGATIVE)
3488 switch (GET_CODE (cond))
3489 {
3490 case GE:
3491 case GEU:
3492 /* Jump becomes unconditional. */
3493 return 1;
3494
3495 case LT:
3496 case LTU:
3497 /* Jump becomes no-op. */
3498 return -1;
3499
3500 case LE:
3501 case LEU:
3502 PUT_CODE (cond, EQ);
3503 value = 2;
3504 break;
3505
3506 case GT:
3507 case GTU:
3508 PUT_CODE (cond, NE);
3509 value = 2;
3510 break;
3511
3512 default:
3513 break;
3514 }
3515
3516 if (cc_status.flags & CC_NO_OVERFLOW)
3517 switch (GET_CODE (cond))
3518 {
3519 case GEU:
3520 /* Jump becomes unconditional. */
3521 return 1;
3522
3523 case LEU:
3524 PUT_CODE (cond, EQ);
3525 value = 2;
3526 break;
3527
3528 case GTU:
3529 PUT_CODE (cond, NE);
3530 value = 2;
3531 break;
3532
3533 case LTU:
3534 /* Jump becomes no-op. */
3535 return -1;
3536
3537 default:
3538 break;
3539 }
3540
3541 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3542 switch (GET_CODE (cond))
3543 {
3544 default:
3545 gcc_unreachable ();
3546
3547 case NE:
3548 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3549 value = 2;
3550 break;
3551
3552 case EQ:
3553 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3554 value = 2;
3555 break;
3556 }
3557
3558 if (cc_status.flags & CC_NOT_SIGNED)
3559 /* The flags are valid if signed condition operators are converted
3560 to unsigned. */
3561 switch (GET_CODE (cond))
3562 {
3563 case LE:
3564 PUT_CODE (cond, LEU);
3565 value = 2;
3566 break;
3567
3568 case LT:
3569 PUT_CODE (cond, LTU);
3570 value = 2;
3571 break;
3572
3573 case GT:
3574 PUT_CODE (cond, GTU);
3575 value = 2;
3576 break;
3577
3578 case GE:
3579 PUT_CODE (cond, GEU);
3580 value = 2;
3581 break;
3582
3583 default:
3584 break;
3585 }
3586
3587 return value;
3588 }
3589 #endif
3590 \f
3591 /* Report inconsistency between the assembler template and the operands.
3592 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3593
3594 void
3595 output_operand_lossage (const char *cmsgid, ...)
3596 {
3597 char *fmt_string;
3598 char *new_message;
3599 const char *pfx_str;
3600 va_list ap;
3601
3602 va_start (ap, cmsgid);
3603
3604 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3605 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3606 new_message = xvasprintf (fmt_string, ap);
3607
3608 if (this_is_asm_operands)
3609 error_for_asm (this_is_asm_operands, "%s", new_message);
3610 else
3611 internal_error ("%s", new_message);
3612
3613 free (fmt_string);
3614 free (new_message);
3615 va_end (ap);
3616 }
3617 \f
3618 /* Output of assembler code from a template, and its subroutines. */
3619
3620 /* Annotate the assembly with a comment describing the pattern and
3621 alternative used. */
3622
3623 static void
3624 output_asm_name (void)
3625 {
3626 if (debug_insn)
3627 {
3628 fprintf (asm_out_file, "\t%s %d\t",
3629 ASM_COMMENT_START, INSN_UID (debug_insn));
3630
3631 fprintf (asm_out_file, "[c=%d",
3632 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3633 if (HAVE_ATTR_length)
3634 fprintf (asm_out_file, " l=%d",
3635 get_attr_length (debug_insn));
3636 fprintf (asm_out_file, "] ");
3637
3638 int num = INSN_CODE (debug_insn);
3639 fprintf (asm_out_file, "%s", insn_data[num].name);
3640 if (insn_data[num].n_alternatives > 1)
3641 fprintf (asm_out_file, "/%d", which_alternative);
3642
3643 /* Clear this so only the first assembler insn
3644 of any rtl insn will get the special comment for -dp. */
3645 debug_insn = 0;
3646 }
3647 }
3648
3649 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3650 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3651 corresponds to the address of the object and 0 if to the object. */
3652
3653 static tree
3654 get_mem_expr_from_op (rtx op, int *paddressp)
3655 {
3656 tree expr;
3657 int inner_addressp;
3658
3659 *paddressp = 0;
3660
3661 if (REG_P (op))
3662 return REG_EXPR (op);
3663 else if (!MEM_P (op))
3664 return 0;
3665
3666 if (MEM_EXPR (op) != 0)
3667 return MEM_EXPR (op);
3668
3669 /* Otherwise we have an address, so indicate it and look at the address. */
3670 *paddressp = 1;
3671 op = XEXP (op, 0);
3672
3673 /* First check if we have a decl for the address, then look at the right side
3674 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3675 But don't allow the address to itself be indirect. */
3676 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3677 return expr;
3678 else if (GET_CODE (op) == PLUS
3679 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3680 return expr;
3681
3682 while (UNARY_P (op)
3683 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3684 op = XEXP (op, 0);
3685
3686 expr = get_mem_expr_from_op (op, &inner_addressp);
3687 return inner_addressp ? 0 : expr;
3688 }
3689
3690 /* Output operand names for assembler instructions. OPERANDS is the
3691 operand vector, OPORDER is the order to write the operands, and NOPS
3692 is the number of operands to write. */
3693
3694 static void
3695 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3696 {
3697 int wrote = 0;
3698 int i;
3699
3700 for (i = 0; i < nops; i++)
3701 {
3702 int addressp;
3703 rtx op = operands[oporder[i]];
3704 tree expr = get_mem_expr_from_op (op, &addressp);
3705
3706 fprintf (asm_out_file, "%c%s",
3707 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3708 wrote = 1;
3709 if (expr)
3710 {
3711 fprintf (asm_out_file, "%s",
3712 addressp ? "*" : "");
3713 print_mem_expr (asm_out_file, expr);
3714 wrote = 1;
3715 }
3716 else if (REG_P (op) && ORIGINAL_REGNO (op)
3717 && ORIGINAL_REGNO (op) != REGNO (op))
3718 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3719 }
3720 }
3721
3722 #ifdef ASSEMBLER_DIALECT
3723 /* Helper function to parse assembler dialects in the asm string.
3724 This is called from output_asm_insn and asm_fprintf. */
3725 static const char *
3726 do_assembler_dialects (const char *p, int *dialect)
3727 {
3728 char c = *(p - 1);
3729
3730 switch (c)
3731 {
3732 case '{':
3733 {
3734 int i;
3735
3736 if (*dialect)
3737 output_operand_lossage ("nested assembly dialect alternatives");
3738 else
3739 *dialect = 1;
3740
3741 /* If we want the first dialect, do nothing. Otherwise, skip
3742 DIALECT_NUMBER of strings ending with '|'. */
3743 for (i = 0; i < dialect_number; i++)
3744 {
3745 while (*p && *p != '}')
3746 {
3747 if (*p == '|')
3748 {
3749 p++;
3750 break;
3751 }
3752
3753 /* Skip over any character after a percent sign. */
3754 if (*p == '%')
3755 p++;
3756 if (*p)
3757 p++;
3758 }
3759
3760 if (*p == '}')
3761 break;
3762 }
3763
3764 if (*p == '\0')
3765 output_operand_lossage ("unterminated assembly dialect alternative");
3766 }
3767 break;
3768
3769 case '|':
3770 if (*dialect)
3771 {
3772 /* Skip to close brace. */
3773 do
3774 {
3775 if (*p == '\0')
3776 {
3777 output_operand_lossage ("unterminated assembly dialect alternative");
3778 break;
3779 }
3780
3781 /* Skip over any character after a percent sign. */
3782 if (*p == '%' && p[1])
3783 {
3784 p += 2;
3785 continue;
3786 }
3787
3788 if (*p++ == '}')
3789 break;
3790 }
3791 while (1);
3792
3793 *dialect = 0;
3794 }
3795 else
3796 putc (c, asm_out_file);
3797 break;
3798
3799 case '}':
3800 if (! *dialect)
3801 putc (c, asm_out_file);
3802 *dialect = 0;
3803 break;
3804 default:
3805 gcc_unreachable ();
3806 }
3807
3808 return p;
3809 }
3810 #endif
3811
3812 /* Output text from TEMPLATE to the assembler output file,
3813 obeying %-directions to substitute operands taken from
3814 the vector OPERANDS.
3815
3816 %N (for N a digit) means print operand N in usual manner.
3817 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3818 and print the label name with no punctuation.
3819 %cN means require operand N to be a constant
3820 and print the constant expression with no punctuation.
3821 %aN means expect operand N to be a memory address
3822 (not a memory reference!) and print a reference
3823 to that address.
3824 %nN means expect operand N to be a constant
3825 and print a constant expression for minus the value
3826 of the operand, with no other punctuation. */
3827
3828 void
3829 output_asm_insn (const char *templ, rtx *operands)
3830 {
3831 const char *p;
3832 int c;
3833 #ifdef ASSEMBLER_DIALECT
3834 int dialect = 0;
3835 #endif
3836 int oporder[MAX_RECOG_OPERANDS];
3837 char opoutput[MAX_RECOG_OPERANDS];
3838 int ops = 0;
3839
3840 /* An insn may return a null string template
3841 in a case where no assembler code is needed. */
3842 if (*templ == 0)
3843 return;
3844
3845 memset (opoutput, 0, sizeof opoutput);
3846 p = templ;
3847 putc ('\t', asm_out_file);
3848
3849 #ifdef ASM_OUTPUT_OPCODE
3850 ASM_OUTPUT_OPCODE (asm_out_file, p);
3851 #endif
3852
3853 while ((c = *p++))
3854 switch (c)
3855 {
3856 case '\n':
3857 if (flag_verbose_asm)
3858 output_asm_operand_names (operands, oporder, ops);
3859 if (flag_print_asm_name)
3860 output_asm_name ();
3861
3862 ops = 0;
3863 memset (opoutput, 0, sizeof opoutput);
3864
3865 putc (c, asm_out_file);
3866 #ifdef ASM_OUTPUT_OPCODE
3867 while ((c = *p) == '\t')
3868 {
3869 putc (c, asm_out_file);
3870 p++;
3871 }
3872 ASM_OUTPUT_OPCODE (asm_out_file, p);
3873 #endif
3874 break;
3875
3876 #ifdef ASSEMBLER_DIALECT
3877 case '{':
3878 case '}':
3879 case '|':
3880 p = do_assembler_dialects (p, &dialect);
3881 break;
3882 #endif
3883
3884 case '%':
3885 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3886 if ASSEMBLER_DIALECT defined and these characters have a special
3887 meaning as dialect delimiters.*/
3888 if (*p == '%'
3889 #ifdef ASSEMBLER_DIALECT
3890 || *p == '{' || *p == '}' || *p == '|'
3891 #endif
3892 )
3893 {
3894 putc (*p, asm_out_file);
3895 p++;
3896 }
3897 /* %= outputs a number which is unique to each insn in the entire
3898 compilation. This is useful for making local labels that are
3899 referred to more than once in a given insn. */
3900 else if (*p == '=')
3901 {
3902 p++;
3903 fprintf (asm_out_file, "%d", insn_counter);
3904 }
3905 /* % followed by a letter and some digits
3906 outputs an operand in a special way depending on the letter.
3907 Letters `acln' are implemented directly.
3908 Other letters are passed to `output_operand' so that
3909 the TARGET_PRINT_OPERAND hook can define them. */
3910 else if (ISALPHA (*p))
3911 {
3912 int letter = *p++;
3913 unsigned long opnum;
3914 char *endptr;
3915
3916 opnum = strtoul (p, &endptr, 10);
3917
3918 if (endptr == p)
3919 output_operand_lossage ("operand number missing "
3920 "after %%-letter");
3921 else if (this_is_asm_operands && opnum >= insn_noperands)
3922 output_operand_lossage ("operand number out of range");
3923 else if (letter == 'l')
3924 output_asm_label (operands[opnum]);
3925 else if (letter == 'a')
3926 output_address (VOIDmode, operands[opnum]);
3927 else if (letter == 'c')
3928 {
3929 if (CONSTANT_ADDRESS_P (operands[opnum]))
3930 output_addr_const (asm_out_file, operands[opnum]);
3931 else
3932 output_operand (operands[opnum], 'c');
3933 }
3934 else if (letter == 'n')
3935 {
3936 if (CONST_INT_P (operands[opnum]))
3937 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3938 - INTVAL (operands[opnum]));
3939 else
3940 {
3941 putc ('-', asm_out_file);
3942 output_addr_const (asm_out_file, operands[opnum]);
3943 }
3944 }
3945 else
3946 output_operand (operands[opnum], letter);
3947
3948 if (!opoutput[opnum])
3949 oporder[ops++] = opnum;
3950 opoutput[opnum] = 1;
3951
3952 p = endptr;
3953 c = *p;
3954 }
3955 /* % followed by a digit outputs an operand the default way. */
3956 else if (ISDIGIT (*p))
3957 {
3958 unsigned long opnum;
3959 char *endptr;
3960
3961 opnum = strtoul (p, &endptr, 10);
3962 if (this_is_asm_operands && opnum >= insn_noperands)
3963 output_operand_lossage ("operand number out of range");
3964 else
3965 output_operand (operands[opnum], 0);
3966
3967 if (!opoutput[opnum])
3968 oporder[ops++] = opnum;
3969 opoutput[opnum] = 1;
3970
3971 p = endptr;
3972 c = *p;
3973 }
3974 /* % followed by punctuation: output something for that
3975 punctuation character alone, with no operand. The
3976 TARGET_PRINT_OPERAND hook decides what is actually done. */
3977 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3978 output_operand (NULL_RTX, *p++);
3979 else
3980 output_operand_lossage ("invalid %%-code");
3981 break;
3982
3983 default:
3984 putc (c, asm_out_file);
3985 }
3986
3987 /* Try to keep the asm a bit more readable. */
3988 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3989 putc ('\t', asm_out_file);
3990
3991 /* Write out the variable names for operands, if we know them. */
3992 if (flag_verbose_asm)
3993 output_asm_operand_names (operands, oporder, ops);
3994 if (flag_print_asm_name)
3995 output_asm_name ();
3996
3997 putc ('\n', asm_out_file);
3998 }
3999 \f
4000 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
4001
4002 void
4003 output_asm_label (rtx x)
4004 {
4005 char buf[256];
4006
4007 if (GET_CODE (x) == LABEL_REF)
4008 x = label_ref_label (x);
4009 if (LABEL_P (x)
4010 || (NOTE_P (x)
4011 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4012 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4013 else
4014 output_operand_lossage ("'%%l' operand isn't a label");
4015
4016 assemble_name (asm_out_file, buf);
4017 }
4018
4019 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4020
4021 void
4022 mark_symbol_refs_as_used (rtx x)
4023 {
4024 subrtx_iterator::array_type array;
4025 FOR_EACH_SUBRTX (iter, array, x, ALL)
4026 {
4027 const_rtx x = *iter;
4028 if (GET_CODE (x) == SYMBOL_REF)
4029 if (tree t = SYMBOL_REF_DECL (x))
4030 assemble_external (t);
4031 }
4032 }
4033
4034 /* Print operand X using machine-dependent assembler syntax.
4035 CODE is a non-digit that preceded the operand-number in the % spec,
4036 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4037 between the % and the digits.
4038 When CODE is a non-letter, X is 0.
4039
4040 The meanings of the letters are machine-dependent and controlled
4041 by TARGET_PRINT_OPERAND. */
4042
4043 void
4044 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4045 {
4046 if (x && GET_CODE (x) == SUBREG)
4047 x = alter_subreg (&x, true);
4048
4049 /* X must not be a pseudo reg. */
4050 if (!targetm.no_register_allocation)
4051 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4052
4053 targetm.asm_out.print_operand (asm_out_file, x, code);
4054
4055 if (x == NULL_RTX)
4056 return;
4057
4058 mark_symbol_refs_as_used (x);
4059 }
4060
4061 /* Print a memory reference operand for address X using
4062 machine-dependent assembler syntax. */
4063
4064 void
4065 output_address (machine_mode mode, rtx x)
4066 {
4067 bool changed = false;
4068 walk_alter_subreg (&x, &changed);
4069 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4070 }
4071 \f
4072 /* Print an integer constant expression in assembler syntax.
4073 Addition and subtraction are the only arithmetic
4074 that may appear in these expressions. */
4075
4076 void
4077 output_addr_const (FILE *file, rtx x)
4078 {
4079 char buf[256];
4080
4081 restart:
4082 switch (GET_CODE (x))
4083 {
4084 case PC:
4085 putc ('.', file);
4086 break;
4087
4088 case SYMBOL_REF:
4089 if (SYMBOL_REF_DECL (x))
4090 assemble_external (SYMBOL_REF_DECL (x));
4091 #ifdef ASM_OUTPUT_SYMBOL_REF
4092 ASM_OUTPUT_SYMBOL_REF (file, x);
4093 #else
4094 assemble_name (file, XSTR (x, 0));
4095 #endif
4096 break;
4097
4098 case LABEL_REF:
4099 x = label_ref_label (x);
4100 /* Fall through. */
4101 case CODE_LABEL:
4102 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4103 #ifdef ASM_OUTPUT_LABEL_REF
4104 ASM_OUTPUT_LABEL_REF (file, buf);
4105 #else
4106 assemble_name (file, buf);
4107 #endif
4108 break;
4109
4110 case CONST_INT:
4111 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4112 break;
4113
4114 case CONST:
4115 /* This used to output parentheses around the expression,
4116 but that does not work on the 386 (either ATT or BSD assembler). */
4117 output_addr_const (file, XEXP (x, 0));
4118 break;
4119
4120 case CONST_WIDE_INT:
4121 /* We do not know the mode here so we have to use a round about
4122 way to build a wide-int to get it printed properly. */
4123 {
4124 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4125 CONST_WIDE_INT_NUNITS (x),
4126 CONST_WIDE_INT_NUNITS (x)
4127 * HOST_BITS_PER_WIDE_INT,
4128 false);
4129 print_decs (w, file);
4130 }
4131 break;
4132
4133 case CONST_DOUBLE:
4134 if (CONST_DOUBLE_AS_INT_P (x))
4135 {
4136 /* We can use %d if the number is one word and positive. */
4137 if (CONST_DOUBLE_HIGH (x))
4138 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4139 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4140 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4141 else if (CONST_DOUBLE_LOW (x) < 0)
4142 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4143 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4144 else
4145 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4146 }
4147 else
4148 /* We can't handle floating point constants;
4149 PRINT_OPERAND must handle them. */
4150 output_operand_lossage ("floating constant misused");
4151 break;
4152
4153 case CONST_FIXED:
4154 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4155 break;
4156
4157 case PLUS:
4158 /* Some assemblers need integer constants to appear last (eg masm). */
4159 if (CONST_INT_P (XEXP (x, 0)))
4160 {
4161 output_addr_const (file, XEXP (x, 1));
4162 if (INTVAL (XEXP (x, 0)) >= 0)
4163 fprintf (file, "+");
4164 output_addr_const (file, XEXP (x, 0));
4165 }
4166 else
4167 {
4168 output_addr_const (file, XEXP (x, 0));
4169 if (!CONST_INT_P (XEXP (x, 1))
4170 || INTVAL (XEXP (x, 1)) >= 0)
4171 fprintf (file, "+");
4172 output_addr_const (file, XEXP (x, 1));
4173 }
4174 break;
4175
4176 case MINUS:
4177 /* Avoid outputting things like x-x or x+5-x,
4178 since some assemblers can't handle that. */
4179 x = simplify_subtraction (x);
4180 if (GET_CODE (x) != MINUS)
4181 goto restart;
4182
4183 output_addr_const (file, XEXP (x, 0));
4184 fprintf (file, "-");
4185 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4186 || GET_CODE (XEXP (x, 1)) == PC
4187 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4188 output_addr_const (file, XEXP (x, 1));
4189 else
4190 {
4191 fputs (targetm.asm_out.open_paren, file);
4192 output_addr_const (file, XEXP (x, 1));
4193 fputs (targetm.asm_out.close_paren, file);
4194 }
4195 break;
4196
4197 case ZERO_EXTEND:
4198 case SIGN_EXTEND:
4199 case SUBREG:
4200 case TRUNCATE:
4201 output_addr_const (file, XEXP (x, 0));
4202 break;
4203
4204 default:
4205 if (targetm.asm_out.output_addr_const_extra (file, x))
4206 break;
4207
4208 output_operand_lossage ("invalid expression as operand");
4209 }
4210 }
4211 \f
4212 /* Output a quoted string. */
4213
4214 void
4215 output_quoted_string (FILE *asm_file, const char *string)
4216 {
4217 #ifdef OUTPUT_QUOTED_STRING
4218 OUTPUT_QUOTED_STRING (asm_file, string);
4219 #else
4220 char c;
4221
4222 putc ('\"', asm_file);
4223 while ((c = *string++) != 0)
4224 {
4225 if (ISPRINT (c))
4226 {
4227 if (c == '\"' || c == '\\')
4228 putc ('\\', asm_file);
4229 putc (c, asm_file);
4230 }
4231 else
4232 fprintf (asm_file, "\\%03o", (unsigned char) c);
4233 }
4234 putc ('\"', asm_file);
4235 #endif
4236 }
4237 \f
4238 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4239
4240 void
4241 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4242 {
4243 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4244 if (value == 0)
4245 putc ('0', f);
4246 else
4247 {
4248 char *p = buf + sizeof (buf);
4249 do
4250 *--p = "0123456789abcdef"[value % 16];
4251 while ((value /= 16) != 0);
4252 *--p = 'x';
4253 *--p = '0';
4254 fwrite (p, 1, buf + sizeof (buf) - p, f);
4255 }
4256 }
4257
4258 /* Internal function that prints an unsigned long in decimal in reverse.
4259 The output string IS NOT null-terminated. */
4260
4261 static int
4262 sprint_ul_rev (char *s, unsigned long value)
4263 {
4264 int i = 0;
4265 do
4266 {
4267 s[i] = "0123456789"[value % 10];
4268 value /= 10;
4269 i++;
4270 /* alternate version, without modulo */
4271 /* oldval = value; */
4272 /* value /= 10; */
4273 /* s[i] = "0123456789" [oldval - 10*value]; */
4274 /* i++ */
4275 }
4276 while (value != 0);
4277 return i;
4278 }
4279
4280 /* Write an unsigned long as decimal to a file, fast. */
4281
4282 void
4283 fprint_ul (FILE *f, unsigned long value)
4284 {
4285 /* python says: len(str(2**64)) == 20 */
4286 char s[20];
4287 int i;
4288
4289 i = sprint_ul_rev (s, value);
4290
4291 /* It's probably too small to bother with string reversal and fputs. */
4292 do
4293 {
4294 i--;
4295 putc (s[i], f);
4296 }
4297 while (i != 0);
4298 }
4299
4300 /* Write an unsigned long as decimal to a string, fast.
4301 s must be wide enough to not overflow, at least 21 chars.
4302 Returns the length of the string (without terminating '\0'). */
4303
4304 int
4305 sprint_ul (char *s, unsigned long value)
4306 {
4307 int len = sprint_ul_rev (s, value);
4308 s[len] = '\0';
4309
4310 std::reverse (s, s + len);
4311 return len;
4312 }
4313
4314 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4315 %R prints the value of REGISTER_PREFIX.
4316 %L prints the value of LOCAL_LABEL_PREFIX.
4317 %U prints the value of USER_LABEL_PREFIX.
4318 %I prints the value of IMMEDIATE_PREFIX.
4319 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4320 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4321
4322 We handle alternate assembler dialects here, just like output_asm_insn. */
4323
4324 void
4325 asm_fprintf (FILE *file, const char *p, ...)
4326 {
4327 char buf[10];
4328 char *q, c;
4329 #ifdef ASSEMBLER_DIALECT
4330 int dialect = 0;
4331 #endif
4332 va_list argptr;
4333
4334 va_start (argptr, p);
4335
4336 buf[0] = '%';
4337
4338 while ((c = *p++))
4339 switch (c)
4340 {
4341 #ifdef ASSEMBLER_DIALECT
4342 case '{':
4343 case '}':
4344 case '|':
4345 p = do_assembler_dialects (p, &dialect);
4346 break;
4347 #endif
4348
4349 case '%':
4350 c = *p++;
4351 q = &buf[1];
4352 while (strchr ("-+ #0", c))
4353 {
4354 *q++ = c;
4355 c = *p++;
4356 }
4357 while (ISDIGIT (c) || c == '.')
4358 {
4359 *q++ = c;
4360 c = *p++;
4361 }
4362 switch (c)
4363 {
4364 case '%':
4365 putc ('%', file);
4366 break;
4367
4368 case 'd': case 'i': case 'u':
4369 case 'x': case 'X': case 'o':
4370 case 'c':
4371 *q++ = c;
4372 *q = 0;
4373 fprintf (file, buf, va_arg (argptr, int));
4374 break;
4375
4376 case 'w':
4377 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4378 'o' cases, but we do not check for those cases. It
4379 means that the value is a HOST_WIDE_INT, which may be
4380 either `long' or `long long'. */
4381 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4382 q += strlen (HOST_WIDE_INT_PRINT);
4383 *q++ = *p++;
4384 *q = 0;
4385 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4386 break;
4387
4388 case 'l':
4389 *q++ = c;
4390 #ifdef HAVE_LONG_LONG
4391 if (*p == 'l')
4392 {
4393 *q++ = *p++;
4394 *q++ = *p++;
4395 *q = 0;
4396 fprintf (file, buf, va_arg (argptr, long long));
4397 }
4398 else
4399 #endif
4400 {
4401 *q++ = *p++;
4402 *q = 0;
4403 fprintf (file, buf, va_arg (argptr, long));
4404 }
4405
4406 break;
4407
4408 case 's':
4409 *q++ = c;
4410 *q = 0;
4411 fprintf (file, buf, va_arg (argptr, char *));
4412 break;
4413
4414 case 'O':
4415 #ifdef ASM_OUTPUT_OPCODE
4416 ASM_OUTPUT_OPCODE (asm_out_file, p);
4417 #endif
4418 break;
4419
4420 case 'R':
4421 #ifdef REGISTER_PREFIX
4422 fprintf (file, "%s", REGISTER_PREFIX);
4423 #endif
4424 break;
4425
4426 case 'I':
4427 #ifdef IMMEDIATE_PREFIX
4428 fprintf (file, "%s", IMMEDIATE_PREFIX);
4429 #endif
4430 break;
4431
4432 case 'L':
4433 #ifdef LOCAL_LABEL_PREFIX
4434 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4435 #endif
4436 break;
4437
4438 case 'U':
4439 fputs (user_label_prefix, file);
4440 break;
4441
4442 #ifdef ASM_FPRINTF_EXTENSIONS
4443 /* Uppercase letters are reserved for general use by asm_fprintf
4444 and so are not available to target specific code. In order to
4445 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4446 they are defined here. As they get turned into real extensions
4447 to asm_fprintf they should be removed from this list. */
4448 case 'A': case 'B': case 'C': case 'D': case 'E':
4449 case 'F': case 'G': case 'H': case 'J': case 'K':
4450 case 'M': case 'N': case 'P': case 'Q': case 'S':
4451 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4452 break;
4453
4454 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4455 #endif
4456 default:
4457 gcc_unreachable ();
4458 }
4459 break;
4460
4461 default:
4462 putc (c, file);
4463 }
4464 va_end (argptr);
4465 }
4466 \f
4467 /* Return nonzero if this function has no function calls. */
4468
4469 int
4470 leaf_function_p (void)
4471 {
4472 rtx_insn *insn;
4473
4474 /* Ensure we walk the entire function body. */
4475 gcc_assert (!in_sequence_p ());
4476
4477 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4478 functions even if they call mcount. */
4479 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4480 return 0;
4481
4482 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4483 {
4484 if (CALL_P (insn)
4485 && ! SIBLING_CALL_P (insn))
4486 return 0;
4487 if (NONJUMP_INSN_P (insn)
4488 && GET_CODE (PATTERN (insn)) == SEQUENCE
4489 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4490 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4491 return 0;
4492 }
4493
4494 return 1;
4495 }
4496
4497 /* Return 1 if branch is a forward branch.
4498 Uses insn_shuid array, so it works only in the final pass. May be used by
4499 output templates to customary add branch prediction hints.
4500 */
4501 int
4502 final_forward_branch_p (rtx_insn *insn)
4503 {
4504 int insn_id, label_id;
4505
4506 gcc_assert (uid_shuid);
4507 insn_id = INSN_SHUID (insn);
4508 label_id = INSN_SHUID (JUMP_LABEL (insn));
4509 /* We've hit some insns that does not have id information available. */
4510 gcc_assert (insn_id && label_id);
4511 return insn_id < label_id;
4512 }
4513
4514 /* On some machines, a function with no call insns
4515 can run faster if it doesn't create its own register window.
4516 When output, the leaf function should use only the "output"
4517 registers. Ordinarily, the function would be compiled to use
4518 the "input" registers to find its arguments; it is a candidate
4519 for leaf treatment if it uses only the "input" registers.
4520 Leaf function treatment means renumbering so the function
4521 uses the "output" registers instead. */
4522
4523 #ifdef LEAF_REGISTERS
4524
4525 /* Return 1 if this function uses only the registers that can be
4526 safely renumbered. */
4527
4528 int
4529 only_leaf_regs_used (void)
4530 {
4531 int i;
4532 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4533
4534 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4535 if ((df_regs_ever_live_p (i) || global_regs[i])
4536 && ! permitted_reg_in_leaf_functions[i])
4537 return 0;
4538
4539 if (crtl->uses_pic_offset_table
4540 && pic_offset_table_rtx != 0
4541 && REG_P (pic_offset_table_rtx)
4542 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4543 return 0;
4544
4545 return 1;
4546 }
4547
4548 /* Scan all instructions and renumber all registers into those
4549 available in leaf functions. */
4550
4551 static void
4552 leaf_renumber_regs (rtx_insn *first)
4553 {
4554 rtx_insn *insn;
4555
4556 /* Renumber only the actual patterns.
4557 The reg-notes can contain frame pointer refs,
4558 and renumbering them could crash, and should not be needed. */
4559 for (insn = first; insn; insn = NEXT_INSN (insn))
4560 if (INSN_P (insn))
4561 leaf_renumber_regs_insn (PATTERN (insn));
4562 }
4563
4564 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4565 available in leaf functions. */
4566
4567 void
4568 leaf_renumber_regs_insn (rtx in_rtx)
4569 {
4570 int i, j;
4571 const char *format_ptr;
4572
4573 if (in_rtx == 0)
4574 return;
4575
4576 /* Renumber all input-registers into output-registers.
4577 renumbered_regs would be 1 for an output-register;
4578 they */
4579
4580 if (REG_P (in_rtx))
4581 {
4582 int newreg;
4583
4584 /* Don't renumber the same reg twice. */
4585 if (in_rtx->used)
4586 return;
4587
4588 newreg = REGNO (in_rtx);
4589 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4590 to reach here as part of a REG_NOTE. */
4591 if (newreg >= FIRST_PSEUDO_REGISTER)
4592 {
4593 in_rtx->used = 1;
4594 return;
4595 }
4596 newreg = LEAF_REG_REMAP (newreg);
4597 gcc_assert (newreg >= 0);
4598 df_set_regs_ever_live (REGNO (in_rtx), false);
4599 df_set_regs_ever_live (newreg, true);
4600 SET_REGNO (in_rtx, newreg);
4601 in_rtx->used = 1;
4602 return;
4603 }
4604
4605 if (INSN_P (in_rtx))
4606 {
4607 /* Inside a SEQUENCE, we find insns.
4608 Renumber just the patterns of these insns,
4609 just as we do for the top-level insns. */
4610 leaf_renumber_regs_insn (PATTERN (in_rtx));
4611 return;
4612 }
4613
4614 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4615
4616 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4617 switch (*format_ptr++)
4618 {
4619 case 'e':
4620 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4621 break;
4622
4623 case 'E':
4624 if (XVEC (in_rtx, i) != NULL)
4625 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4626 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4627 break;
4628
4629 case 'S':
4630 case 's':
4631 case '0':
4632 case 'i':
4633 case 'w':
4634 case 'p':
4635 case 'n':
4636 case 'u':
4637 break;
4638
4639 default:
4640 gcc_unreachable ();
4641 }
4642 }
4643 #endif
4644 \f
4645 /* Turn the RTL into assembly. */
4646 static unsigned int
4647 rest_of_handle_final (void)
4648 {
4649 const char *fnname = get_fnname_from_decl (current_function_decl);
4650
4651 /* Turn debug markers into notes if the var-tracking pass has not
4652 been invoked. */
4653 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4654 delete_vta_debug_insns (false);
4655
4656 assemble_start_function (current_function_decl, fnname);
4657 rtx_insn *first = get_insns ();
4658 int seen = 0;
4659 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4660 final_1 (first, asm_out_file, seen, optimize);
4661 if (flag_ipa_ra
4662 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4663 /* Functions with naked attributes are supported only with basic asm
4664 statements in the body, thus for supported use cases the information
4665 on clobbered registers is not available. */
4666 && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4667 collect_fn_hard_reg_usage ();
4668 final_end_function ();
4669
4670 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4671 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4672 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4673 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4674
4675 assemble_end_function (current_function_decl, fnname);
4676
4677 /* Free up reg info memory. */
4678 free_reg_info ();
4679
4680 if (! quiet_flag)
4681 fflush (asm_out_file);
4682
4683 /* Write DBX symbols if requested. */
4684
4685 /* Note that for those inline functions where we don't initially
4686 know for certain that we will be generating an out-of-line copy,
4687 the first invocation of this routine (rest_of_compilation) will
4688 skip over this code by doing a `goto exit_rest_of_compilation;'.
4689 Later on, wrapup_global_declarations will (indirectly) call
4690 rest_of_compilation again for those inline functions that need
4691 to have out-of-line copies generated. During that call, we
4692 *will* be routed past here. */
4693
4694 timevar_push (TV_SYMOUT);
4695 if (!DECL_IGNORED_P (current_function_decl))
4696 debug_hooks->function_decl (current_function_decl);
4697 timevar_pop (TV_SYMOUT);
4698
4699 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4700 DECL_INITIAL (current_function_decl) = error_mark_node;
4701
4702 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4703 && targetm.have_ctors_dtors)
4704 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4705 decl_init_priority_lookup
4706 (current_function_decl));
4707 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4708 && targetm.have_ctors_dtors)
4709 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4710 decl_fini_priority_lookup
4711 (current_function_decl));
4712 return 0;
4713 }
4714
4715 namespace {
4716
4717 const pass_data pass_data_final =
4718 {
4719 RTL_PASS, /* type */
4720 "final", /* name */
4721 OPTGROUP_NONE, /* optinfo_flags */
4722 TV_FINAL, /* tv_id */
4723 0, /* properties_required */
4724 0, /* properties_provided */
4725 0, /* properties_destroyed */
4726 0, /* todo_flags_start */
4727 0, /* todo_flags_finish */
4728 };
4729
4730 class pass_final : public rtl_opt_pass
4731 {
4732 public:
4733 pass_final (gcc::context *ctxt)
4734 : rtl_opt_pass (pass_data_final, ctxt)
4735 {}
4736
4737 /* opt_pass methods: */
4738 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4739
4740 }; // class pass_final
4741
4742 } // anon namespace
4743
4744 rtl_opt_pass *
4745 make_pass_final (gcc::context *ctxt)
4746 {
4747 return new pass_final (ctxt);
4748 }
4749
4750
4751 static unsigned int
4752 rest_of_handle_shorten_branches (void)
4753 {
4754 /* Shorten branches. */
4755 shorten_branches (get_insns ());
4756 return 0;
4757 }
4758
4759 namespace {
4760
4761 const pass_data pass_data_shorten_branches =
4762 {
4763 RTL_PASS, /* type */
4764 "shorten", /* name */
4765 OPTGROUP_NONE, /* optinfo_flags */
4766 TV_SHORTEN_BRANCH, /* tv_id */
4767 0, /* properties_required */
4768 0, /* properties_provided */
4769 0, /* properties_destroyed */
4770 0, /* todo_flags_start */
4771 0, /* todo_flags_finish */
4772 };
4773
4774 class pass_shorten_branches : public rtl_opt_pass
4775 {
4776 public:
4777 pass_shorten_branches (gcc::context *ctxt)
4778 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4779 {}
4780
4781 /* opt_pass methods: */
4782 virtual unsigned int execute (function *)
4783 {
4784 return rest_of_handle_shorten_branches ();
4785 }
4786
4787 }; // class pass_shorten_branches
4788
4789 } // anon namespace
4790
4791 rtl_opt_pass *
4792 make_pass_shorten_branches (gcc::context *ctxt)
4793 {
4794 return new pass_shorten_branches (ctxt);
4795 }
4796
4797
4798 static unsigned int
4799 rest_of_clean_state (void)
4800 {
4801 rtx_insn *insn, *next;
4802 FILE *final_output = NULL;
4803 int save_unnumbered = flag_dump_unnumbered;
4804 int save_noaddr = flag_dump_noaddr;
4805
4806 if (flag_dump_final_insns)
4807 {
4808 final_output = fopen (flag_dump_final_insns, "a");
4809 if (!final_output)
4810 {
4811 error ("could not open final insn dump file %qs: %m",
4812 flag_dump_final_insns);
4813 flag_dump_final_insns = NULL;
4814 }
4815 else
4816 {
4817 flag_dump_noaddr = flag_dump_unnumbered = 1;
4818 if (flag_compare_debug_opt || flag_compare_debug)
4819 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4820 dump_function_header (final_output, current_function_decl,
4821 dump_flags);
4822 final_insns_dump_p = true;
4823
4824 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4825 if (LABEL_P (insn))
4826 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4827 else
4828 {
4829 if (NOTE_P (insn))
4830 set_block_for_insn (insn, NULL);
4831 INSN_UID (insn) = 0;
4832 }
4833 }
4834 }
4835
4836 /* It is very important to decompose the RTL instruction chain here:
4837 debug information keeps pointing into CODE_LABEL insns inside the function
4838 body. If these remain pointing to the other insns, we end up preserving
4839 whole RTL chain and attached detailed debug info in memory. */
4840 for (insn = get_insns (); insn; insn = next)
4841 {
4842 next = NEXT_INSN (insn);
4843 SET_NEXT_INSN (insn) = NULL;
4844 SET_PREV_INSN (insn) = NULL;
4845
4846 rtx_insn *call_insn = insn;
4847 if (NONJUMP_INSN_P (call_insn)
4848 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4849 {
4850 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4851 call_insn = seq->insn (0);
4852 }
4853 if (CALL_P (call_insn))
4854 {
4855 rtx note
4856 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4857 if (note)
4858 remove_note (call_insn, note);
4859 }
4860
4861 if (final_output
4862 && (!NOTE_P (insn)
4863 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4864 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4865 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4866 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4867 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4868 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4869 print_rtl_single (final_output, insn);
4870 }
4871
4872 if (final_output)
4873 {
4874 flag_dump_noaddr = save_noaddr;
4875 flag_dump_unnumbered = save_unnumbered;
4876 final_insns_dump_p = false;
4877
4878 if (fclose (final_output))
4879 {
4880 error ("could not close final insn dump file %qs: %m",
4881 flag_dump_final_insns);
4882 flag_dump_final_insns = NULL;
4883 }
4884 }
4885
4886 flag_rerun_cse_after_global_opts = 0;
4887 reload_completed = 0;
4888 epilogue_completed = 0;
4889 #ifdef STACK_REGS
4890 regstack_completed = 0;
4891 #endif
4892
4893 /* Clear out the insn_length contents now that they are no
4894 longer valid. */
4895 init_insn_lengths ();
4896
4897 /* Show no temporary slots allocated. */
4898 init_temp_slots ();
4899
4900 free_bb_for_insn ();
4901
4902 if (cfun->gimple_df)
4903 delete_tree_ssa (cfun);
4904
4905 /* We can reduce stack alignment on call site only when we are sure that
4906 the function body just produced will be actually used in the final
4907 executable. */
4908 if (flag_ipa_stack_alignment
4909 && decl_binds_to_current_def_p (current_function_decl))
4910 {
4911 unsigned int pref = crtl->preferred_stack_boundary;
4912 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4913 pref = crtl->stack_alignment_needed;
4914 cgraph_node::rtl_info (current_function_decl)
4915 ->preferred_incoming_stack_boundary = pref;
4916 }
4917
4918 /* Make sure volatile mem refs aren't considered valid operands for
4919 arithmetic insns. We must call this here if this is a nested inline
4920 function, since the above code leaves us in the init_recog state,
4921 and the function context push/pop code does not save/restore volatile_ok.
4922
4923 ??? Maybe it isn't necessary for expand_start_function to call this
4924 anymore if we do it here? */
4925
4926 init_recog_no_volatile ();
4927
4928 /* We're done with this function. Free up memory if we can. */
4929 free_after_parsing (cfun);
4930 free_after_compilation (cfun);
4931 return 0;
4932 }
4933
4934 namespace {
4935
4936 const pass_data pass_data_clean_state =
4937 {
4938 RTL_PASS, /* type */
4939 "*clean_state", /* name */
4940 OPTGROUP_NONE, /* optinfo_flags */
4941 TV_FINAL, /* tv_id */
4942 0, /* properties_required */
4943 0, /* properties_provided */
4944 PROP_rtl, /* properties_destroyed */
4945 0, /* todo_flags_start */
4946 0, /* todo_flags_finish */
4947 };
4948
4949 class pass_clean_state : public rtl_opt_pass
4950 {
4951 public:
4952 pass_clean_state (gcc::context *ctxt)
4953 : rtl_opt_pass (pass_data_clean_state, ctxt)
4954 {}
4955
4956 /* opt_pass methods: */
4957 virtual unsigned int execute (function *)
4958 {
4959 return rest_of_clean_state ();
4960 }
4961
4962 }; // class pass_clean_state
4963
4964 } // anon namespace
4965
4966 rtl_opt_pass *
4967 make_pass_clean_state (gcc::context *ctxt)
4968 {
4969 return new pass_clean_state (ctxt);
4970 }
4971
4972 /* Return true if INSN is a call to the current function. */
4973
4974 static bool
4975 self_recursive_call_p (rtx_insn *insn)
4976 {
4977 tree fndecl = get_call_fndecl (insn);
4978 return (fndecl == current_function_decl
4979 && decl_binds_to_current_def_p (fndecl));
4980 }
4981
4982 /* Collect hard register usage for the current function. */
4983
4984 static void
4985 collect_fn_hard_reg_usage (void)
4986 {
4987 rtx_insn *insn;
4988 #ifdef STACK_REGS
4989 int i;
4990 #endif
4991 struct cgraph_rtl_info *node;
4992 HARD_REG_SET function_used_regs;
4993
4994 /* ??? To be removed when all the ports have been fixed. */
4995 if (!targetm.call_fusage_contains_non_callee_clobbers)
4996 return;
4997
4998 CLEAR_HARD_REG_SET (function_used_regs);
4999
5000 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5001 {
5002 HARD_REG_SET insn_used_regs;
5003
5004 if (!NONDEBUG_INSN_P (insn))
5005 continue;
5006
5007 if (CALL_P (insn)
5008 && !self_recursive_call_p (insn))
5009 {
5010 if (!get_call_reg_set_usage (insn, &insn_used_regs,
5011 call_used_reg_set))
5012 return;
5013
5014 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5015 }
5016
5017 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5018 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5019 }
5020
5021 /* Be conservative - mark fixed and global registers as used. */
5022 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5023
5024 #ifdef STACK_REGS
5025 /* Handle STACK_REGS conservatively, since the df-framework does not
5026 provide accurate information for them. */
5027
5028 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5029 SET_HARD_REG_BIT (function_used_regs, i);
5030 #endif
5031
5032 /* The information we have gathered is only interesting if it exposes a
5033 register from the call_used_regs that is not used in this function. */
5034 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5035 return;
5036
5037 node = cgraph_node::rtl_info (current_function_decl);
5038 gcc_assert (node != NULL);
5039
5040 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5041 node->function_used_regs_valid = 1;
5042 }
5043
5044 /* Get the declaration of the function called by INSN. */
5045
5046 static tree
5047 get_call_fndecl (rtx_insn *insn)
5048 {
5049 rtx note, datum;
5050
5051 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5052 if (note == NULL_RTX)
5053 return NULL_TREE;
5054
5055 datum = XEXP (note, 0);
5056 if (datum != NULL_RTX)
5057 return SYMBOL_REF_DECL (datum);
5058
5059 return NULL_TREE;
5060 }
5061
5062 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
5063 call targets that can be overwritten. */
5064
5065 static struct cgraph_rtl_info *
5066 get_call_cgraph_rtl_info (rtx_insn *insn)
5067 {
5068 tree fndecl;
5069
5070 if (insn == NULL_RTX)
5071 return NULL;
5072
5073 fndecl = get_call_fndecl (insn);
5074 if (fndecl == NULL_TREE
5075 || !decl_binds_to_current_def_p (fndecl))
5076 return NULL;
5077
5078 return cgraph_node::rtl_info (fndecl);
5079 }
5080
5081 /* Find hard registers used by function call instruction INSN, and return them
5082 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
5083
5084 bool
5085 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5086 HARD_REG_SET default_set)
5087 {
5088 if (flag_ipa_ra)
5089 {
5090 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5091 if (node != NULL
5092 && node->function_used_regs_valid)
5093 {
5094 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5095 AND_HARD_REG_SET (*reg_set, default_set);
5096 return true;
5097 }
5098 }
5099
5100 COPY_HARD_REG_SET (*reg_set, default_set);
5101 return false;
5102 }