]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
recog_memoized works on an rtx_insn *
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49
50 #include "tree.h"
51 #include "varasm.h"
52 #include "hard-reg-set.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
66 #include "reload.h"
67 #include "intl.h"
68 #include "basic-block.h"
69 #include "target.h"
70 #include "targhooks.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "tree-pass.h"
74 #include "cgraph.h"
75 #include "tree-ssa.h"
76 #include "coverage.h"
77 #include "df.h"
78 #include "ggc.h"
79 #include "cfgloop.h"
80 #include "params.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
82 #include "asan.h"
83 #include "wide-int-print.h"
84 #include "rtl-iter.h"
85
86 #ifdef XCOFF_DEBUGGING_INFO
87 #include "xcoffout.h" /* Needed for external data
88 declarations for e.g. AIX 4.x. */
89 #endif
90
91 #include "dwarf2out.h"
92
93 #ifdef DBX_DEBUGGING_INFO
94 #include "dbxout.h"
95 #endif
96
97 #ifdef SDB_DEBUGGING_INFO
98 #include "sdbout.h"
99 #endif
100
101 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
102 So define a null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
105 #endif
106
107 /* Is the given character a logical line separator for the assembler? */
108 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
109 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
110 #endif
111
112 #ifndef JUMP_TABLES_IN_TEXT_SECTION
113 #define JUMP_TABLES_IN_TEXT_SECTION 0
114 #endif
115
116 /* Bitflags used by final_scan_insn. */
117 #define SEEN_NOTE 1
118 #define SEEN_EMITTED 2
119
120 /* Last insn processed by final_scan_insn. */
121 static rtx_insn *debug_insn;
122 rtx_insn *current_output_insn;
123
124 /* Line number of last NOTE. */
125 static int last_linenum;
126
127 /* Last discriminator written to assembly. */
128 static int last_discriminator;
129
130 /* Discriminator of current block. */
131 static int discriminator;
132
133 /* Highest line number in current block. */
134 static int high_block_linenum;
135
136 /* Likewise for function. */
137 static int high_function_linenum;
138
139 /* Filename of last NOTE. */
140 static const char *last_filename;
141
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
145
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
148
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
155
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
158
159 /* Compare optimization flag. */
160
161 static rtx last_ignored_compare = 0;
162
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
165
166 static int insn_counter = 0;
167
168 #ifdef HAVE_cc0
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
172
173 CC_STATUS cc_status;
174
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
177
178 CC_STATUS cc_prev_status;
179 #endif
180
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
182
183 static int block_depth;
184
185 /* Nonzero if have enabled APP processing of our assembler output. */
186
187 static int app_on;
188
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
190 Zero otherwise. */
191
192 rtx_sequence *final_sequence;
193
194 #ifdef ASSEMBLER_DIALECT
195
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
198 #endif
199
200 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
201 rtx current_insn_predicate;
202
203 /* True if printing into -fdump-final-insns= dump. */
204 bool final_insns_dump_p;
205
206 /* True if profile_function should be called, but hasn't been called yet. */
207 static bool need_profile_function;
208
209 static int asm_insn_count (rtx);
210 static void profile_function (FILE *);
211 static void profile_after_prologue (FILE *);
212 static bool notice_source_line (rtx_insn *, bool *);
213 static rtx walk_alter_subreg (rtx *, bool *);
214 static void output_asm_name (void);
215 static void output_alternate_entry_point (FILE *, rtx_insn *);
216 static tree get_mem_expr_from_op (rtx, int *);
217 static void output_asm_operand_names (rtx *, int *, int);
218 #ifdef LEAF_REGISTERS
219 static void leaf_renumber_regs (rtx_insn *);
220 #endif
221 #ifdef HAVE_cc0
222 static int alter_cond (rtx);
223 #endif
224 #ifndef ADDR_VEC_ALIGN
225 static int final_addr_vec_align (rtx);
226 #endif
227 static int align_fuzz (rtx, rtx, int, unsigned);
228 static void collect_fn_hard_reg_usage (void);
229 static tree get_call_fndecl (rtx_insn *);
230 \f
231 /* Initialize data in final at the beginning of a compilation. */
232
233 void
234 init_final (const char *filename ATTRIBUTE_UNUSED)
235 {
236 app_on = 0;
237 final_sequence = 0;
238
239 #ifdef ASSEMBLER_DIALECT
240 dialect_number = ASSEMBLER_DIALECT;
241 #endif
242 }
243
244 /* Default target function prologue and epilogue assembler output.
245
246 If not overridden for epilogue code, then the function body itself
247 contains return instructions wherever needed. */
248 void
249 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
250 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
251 {
252 }
253
254 void
255 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
256 tree decl ATTRIBUTE_UNUSED,
257 bool new_is_cold ATTRIBUTE_UNUSED)
258 {
259 }
260
261 /* Default target hook that outputs nothing to a stream. */
262 void
263 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
264 {
265 }
266
267 /* Enable APP processing of subsequent output.
268 Used before the output from an `asm' statement. */
269
270 void
271 app_enable (void)
272 {
273 if (! app_on)
274 {
275 fputs (ASM_APP_ON, asm_out_file);
276 app_on = 1;
277 }
278 }
279
280 /* Disable APP processing of subsequent output.
281 Called from varasm.c before most kinds of output. */
282
283 void
284 app_disable (void)
285 {
286 if (app_on)
287 {
288 fputs (ASM_APP_OFF, asm_out_file);
289 app_on = 0;
290 }
291 }
292 \f
293 /* Return the number of slots filled in the current
294 delayed branch sequence (we don't count the insn needing the
295 delay slot). Zero if not in a delayed branch sequence. */
296
297 #ifdef DELAY_SLOTS
298 int
299 dbr_sequence_length (void)
300 {
301 if (final_sequence != 0)
302 return XVECLEN (final_sequence, 0) - 1;
303 else
304 return 0;
305 }
306 #endif
307 \f
308 /* The next two pages contain routines used to compute the length of an insn
309 and to shorten branches. */
310
311 /* Arrays for insn lengths, and addresses. The latter is referenced by
312 `insn_current_length'. */
313
314 static int *insn_lengths;
315
316 vec<int> insn_addresses_;
317
318 /* Max uid for which the above arrays are valid. */
319 static int insn_lengths_max_uid;
320
321 /* Address of insn being processed. Used by `insn_current_length'. */
322 int insn_current_address;
323
324 /* Address of insn being processed in previous iteration. */
325 int insn_last_address;
326
327 /* known invariant alignment of insn being processed. */
328 int insn_current_align;
329
330 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
331 gives the next following alignment insn that increases the known
332 alignment, or NULL_RTX if there is no such insn.
333 For any alignment obtained this way, we can again index uid_align with
334 its uid to obtain the next following align that in turn increases the
335 alignment, till we reach NULL_RTX; the sequence obtained this way
336 for each insn we'll call the alignment chain of this insn in the following
337 comments. */
338
339 struct label_alignment
340 {
341 short alignment;
342 short max_skip;
343 };
344
345 static rtx *uid_align;
346 static int *uid_shuid;
347 static struct label_alignment *label_align;
348
349 /* Indicate that branch shortening hasn't yet been done. */
350
351 void
352 init_insn_lengths (void)
353 {
354 if (uid_shuid)
355 {
356 free (uid_shuid);
357 uid_shuid = 0;
358 }
359 if (insn_lengths)
360 {
361 free (insn_lengths);
362 insn_lengths = 0;
363 insn_lengths_max_uid = 0;
364 }
365 if (HAVE_ATTR_length)
366 INSN_ADDRESSES_FREE ();
367 if (uid_align)
368 {
369 free (uid_align);
370 uid_align = 0;
371 }
372 }
373
374 /* Obtain the current length of an insn. If branch shortening has been done,
375 get its actual length. Otherwise, use FALLBACK_FN to calculate the
376 length. */
377 static int
378 get_attr_length_1 (rtx uncast_insn, int (*fallback_fn) (rtx))
379 {
380 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
381 rtx body;
382 int i;
383 int length = 0;
384
385 if (!HAVE_ATTR_length)
386 return 0;
387
388 if (insn_lengths_max_uid > INSN_UID (insn))
389 return insn_lengths[INSN_UID (insn)];
390 else
391 switch (GET_CODE (insn))
392 {
393 case NOTE:
394 case BARRIER:
395 case CODE_LABEL:
396 case DEBUG_INSN:
397 return 0;
398
399 case CALL_INSN:
400 case JUMP_INSN:
401 length = fallback_fn (insn);
402 break;
403
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
408
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
412 for (i = 0; i < seq->len (); i++)
413 length += get_attr_length_1 (seq->insn (i), fallback_fn);
414 else
415 length = fallback_fn (insn);
416 break;
417
418 default:
419 break;
420 }
421
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
426 }
427
428 /* Obtain the current length of an insn. If branch shortening has been done,
429 get its actual length. Otherwise, get its maximum length. */
430 int
431 get_attr_length (rtx insn)
432 {
433 return get_attr_length_1 (insn, insn_default_length);
434 }
435
436 /* Obtain the current length of an insn. If branch shortening has been done,
437 get its actual length. Otherwise, get its minimum length. */
438 int
439 get_attr_min_length (rtx insn)
440 {
441 return get_attr_length_1 (insn, insn_min_length);
442 }
443 \f
444 /* Code to handle alignment inside shorten_branches. */
445
446 /* Here is an explanation how the algorithm in align_fuzz can give
447 proper results:
448
449 Call a sequence of instructions beginning with alignment point X
450 and continuing until the next alignment point `block X'. When `X'
451 is used in an expression, it means the alignment value of the
452 alignment point.
453
454 Call the distance between the start of the first insn of block X, and
455 the end of the last insn of block X `IX', for the `inner size of X'.
456 This is clearly the sum of the instruction lengths.
457
458 Likewise with the next alignment-delimited block following X, which we
459 shall call block Y.
460
461 Call the distance between the start of the first insn of block X, and
462 the start of the first insn of block Y `OX', for the `outer size of X'.
463
464 The estimated padding is then OX - IX.
465
466 OX can be safely estimated as
467
468 if (X >= Y)
469 OX = round_up(IX, Y)
470 else
471 OX = round_up(IX, X) + Y - X
472
473 Clearly est(IX) >= real(IX), because that only depends on the
474 instruction lengths, and those being overestimated is a given.
475
476 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
477 we needn't worry about that when thinking about OX.
478
479 When X >= Y, the alignment provided by Y adds no uncertainty factor
480 for branch ranges starting before X, so we can just round what we have.
481 But when X < Y, we don't know anything about the, so to speak,
482 `middle bits', so we have to assume the worst when aligning up from an
483 address mod X to one mod Y, which is Y - X. */
484
485 #ifndef LABEL_ALIGN
486 #define LABEL_ALIGN(LABEL) align_labels_log
487 #endif
488
489 #ifndef LOOP_ALIGN
490 #define LOOP_ALIGN(LABEL) align_loops_log
491 #endif
492
493 #ifndef LABEL_ALIGN_AFTER_BARRIER
494 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
495 #endif
496
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
500
501 int
502 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED)
503 {
504 return 0;
505 }
506
507 int
508 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
509 {
510 return align_loops_max_skip;
511 }
512
513 int
514 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
515 {
516 return align_labels_max_skip;
517 }
518
519 int
520 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
521 {
522 return align_jumps_max_skip;
523 }
524
525 #ifndef ADDR_VEC_ALIGN
526 static int
527 final_addr_vec_align (rtx addr_vec)
528 {
529 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
530
531 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
532 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
533 return exact_log2 (align);
534
535 }
536
537 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
538 #endif
539
540 #ifndef INSN_LENGTH_ALIGNMENT
541 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
542 #endif
543
544 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
545
546 static int min_labelno, max_labelno;
547
548 #define LABEL_TO_ALIGNMENT(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
550
551 #define LABEL_TO_MAX_SKIP(LABEL) \
552 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
553
554 /* For the benefit of port specific code do this also as a function. */
555
556 int
557 label_to_alignment (rtx label)
558 {
559 if (CODE_LABEL_NUMBER (label) <= max_labelno)
560 return LABEL_TO_ALIGNMENT (label);
561 return 0;
562 }
563
564 int
565 label_to_max_skip (rtx label)
566 {
567 if (CODE_LABEL_NUMBER (label) <= max_labelno)
568 return LABEL_TO_MAX_SKIP (label);
569 return 0;
570 }
571
572 /* The differences in addresses
573 between a branch and its target might grow or shrink depending on
574 the alignment the start insn of the range (the branch for a forward
575 branch or the label for a backward branch) starts out on; if these
576 differences are used naively, they can even oscillate infinitely.
577 We therefore want to compute a 'worst case' address difference that
578 is independent of the alignment the start insn of the range end
579 up on, and that is at least as large as the actual difference.
580 The function align_fuzz calculates the amount we have to add to the
581 naively computed difference, by traversing the part of the alignment
582 chain of the start insn of the range that is in front of the end insn
583 of the range, and considering for each alignment the maximum amount
584 that it might contribute to a size increase.
585
586 For casesi tables, we also want to know worst case minimum amounts of
587 address difference, in case a machine description wants to introduce
588 some common offset that is added to all offsets in a table.
589 For this purpose, align_fuzz with a growth argument of 0 computes the
590 appropriate adjustment. */
591
592 /* Compute the maximum delta by which the difference of the addresses of
593 START and END might grow / shrink due to a different address for start
594 which changes the size of alignment insns between START and END.
595 KNOWN_ALIGN_LOG is the alignment known for START.
596 GROWTH should be ~0 if the objective is to compute potential code size
597 increase, and 0 if the objective is to compute potential shrink.
598 The return value is undefined for any other value of GROWTH. */
599
600 static int
601 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
602 {
603 int uid = INSN_UID (start);
604 rtx align_label;
605 int known_align = 1 << known_align_log;
606 int end_shuid = INSN_SHUID (end);
607 int fuzz = 0;
608
609 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
610 {
611 int align_addr, new_align;
612
613 uid = INSN_UID (align_label);
614 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
615 if (uid_shuid[uid] > end_shuid)
616 break;
617 known_align_log = LABEL_TO_ALIGNMENT (align_label);
618 new_align = 1 << known_align_log;
619 if (new_align < known_align)
620 continue;
621 fuzz += (-align_addr ^ growth) & (new_align - known_align);
622 known_align = new_align;
623 }
624 return fuzz;
625 }
626
627 /* Compute a worst-case reference address of a branch so that it
628 can be safely used in the presence of aligned labels. Since the
629 size of the branch itself is unknown, the size of the branch is
630 not included in the range. I.e. for a forward branch, the reference
631 address is the end address of the branch as known from the previous
632 branch shortening pass, minus a value to account for possible size
633 increase due to alignment. For a backward branch, it is the start
634 address of the branch as known from the current pass, plus a value
635 to account for possible size increase due to alignment.
636 NB.: Therefore, the maximum offset allowed for backward branches needs
637 to exclude the branch size. */
638
639 int
640 insn_current_reference_address (rtx_insn *branch)
641 {
642 rtx dest, seq;
643 int seq_uid;
644
645 if (! INSN_ADDRESSES_SET_P ())
646 return 0;
647
648 seq = NEXT_INSN (PREV_INSN (branch));
649 seq_uid = INSN_UID (seq);
650 if (!JUMP_P (branch))
651 /* This can happen for example on the PA; the objective is to know the
652 offset to address something in front of the start of the function.
653 Thus, we can treat it like a backward branch.
654 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
655 any alignment we'd encounter, so we skip the call to align_fuzz. */
656 return insn_current_address;
657 dest = JUMP_LABEL (branch);
658
659 /* BRANCH has no proper alignment chain set, so use SEQ.
660 BRANCH also has no INSN_SHUID. */
661 if (INSN_SHUID (seq) < INSN_SHUID (dest))
662 {
663 /* Forward branch. */
664 return (insn_last_address + insn_lengths[seq_uid]
665 - align_fuzz (seq, dest, length_unit_log, ~0));
666 }
667 else
668 {
669 /* Backward branch. */
670 return (insn_current_address
671 + align_fuzz (dest, seq, length_unit_log, ~0));
672 }
673 }
674 \f
675 /* Compute branch alignments based on frequency information in the
676 CFG. */
677
678 unsigned int
679 compute_alignments (void)
680 {
681 int log, max_skip, max_log;
682 basic_block bb;
683 int freq_max = 0;
684 int freq_threshold = 0;
685
686 if (label_align)
687 {
688 free (label_align);
689 label_align = 0;
690 }
691
692 max_labelno = max_label_num ();
693 min_labelno = get_first_label_num ();
694 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
695
696 /* If not optimizing or optimizing for size, don't assign any alignments. */
697 if (! optimize || optimize_function_for_size_p (cfun))
698 return 0;
699
700 if (dump_file)
701 {
702 dump_reg_info (dump_file);
703 dump_flow_info (dump_file, TDF_DETAILS);
704 flow_loops_dump (dump_file, NULL, 1);
705 }
706 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
707 FOR_EACH_BB_FN (bb, cfun)
708 if (bb->frequency > freq_max)
709 freq_max = bb->frequency;
710 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
711
712 if (dump_file)
713 fprintf (dump_file, "freq_max: %i\n",freq_max);
714 FOR_EACH_BB_FN (bb, cfun)
715 {
716 rtx_insn *label = BB_HEAD (bb);
717 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
718 edge e;
719 edge_iterator ei;
720
721 if (!LABEL_P (label)
722 || optimize_bb_for_size_p (bb))
723 {
724 if (dump_file)
725 fprintf (dump_file,
726 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
727 bb->index, bb->frequency, bb->loop_father->num,
728 bb_loop_depth (bb));
729 continue;
730 }
731 max_log = LABEL_ALIGN (label);
732 max_skip = targetm.asm_out.label_align_max_skip (label);
733
734 FOR_EACH_EDGE (e, ei, bb->preds)
735 {
736 if (e->flags & EDGE_FALLTHRU)
737 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
738 else
739 branch_frequency += EDGE_FREQUENCY (e);
740 }
741 if (dump_file)
742 {
743 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
744 " %2i fall %4i branch %4i",
745 bb->index, bb->frequency, bb->loop_father->num,
746 bb_loop_depth (bb),
747 fallthru_frequency, branch_frequency);
748 if (!bb->loop_father->inner && bb->loop_father->num)
749 fprintf (dump_file, " inner_loop");
750 if (bb->loop_father->header == bb)
751 fprintf (dump_file, " loop_header");
752 fprintf (dump_file, "\n");
753 }
754
755 /* There are two purposes to align block with no fallthru incoming edge:
756 1) to avoid fetch stalls when branch destination is near cache boundary
757 2) to improve cache efficiency in case the previous block is not executed
758 (so it does not need to be in the cache).
759
760 We to catch first case, we align frequently executed blocks.
761 To catch the second, we align blocks that are executed more frequently
762 than the predecessor and the predecessor is likely to not be executed
763 when function is called. */
764
765 if (!has_fallthru
766 && (branch_frequency > freq_threshold
767 || (bb->frequency > bb->prev_bb->frequency * 10
768 && (bb->prev_bb->frequency
769 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
770 {
771 log = JUMP_ALIGN (label);
772 if (dump_file)
773 fprintf (dump_file, " jump alignment added.\n");
774 if (max_log < log)
775 {
776 max_log = log;
777 max_skip = targetm.asm_out.jump_align_max_skip (label);
778 }
779 }
780 /* In case block is frequent and reached mostly by non-fallthru edge,
781 align it. It is most likely a first block of loop. */
782 if (has_fallthru
783 && !(single_succ_p (bb)
784 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
785 && optimize_bb_for_speed_p (bb)
786 && branch_frequency + fallthru_frequency > freq_threshold
787 && (branch_frequency
788 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
789 {
790 log = LOOP_ALIGN (label);
791 if (dump_file)
792 fprintf (dump_file, " internal loop alignment added.\n");
793 if (max_log < log)
794 {
795 max_log = log;
796 max_skip = targetm.asm_out.loop_align_max_skip (label);
797 }
798 }
799 LABEL_TO_ALIGNMENT (label) = max_log;
800 LABEL_TO_MAX_SKIP (label) = max_skip;
801 }
802
803 loop_optimizer_finalize ();
804 free_dominance_info (CDI_DOMINATORS);
805 return 0;
806 }
807
808 /* Grow the LABEL_ALIGN array after new labels are created. */
809
810 static void
811 grow_label_align (void)
812 {
813 int old = max_labelno;
814 int n_labels;
815 int n_old_labels;
816
817 max_labelno = max_label_num ();
818
819 n_labels = max_labelno - min_labelno + 1;
820 n_old_labels = old - min_labelno + 1;
821
822 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
823
824 /* Range of labels grows monotonically in the function. Failing here
825 means that the initialization of array got lost. */
826 gcc_assert (n_old_labels <= n_labels);
827
828 memset (label_align + n_old_labels, 0,
829 (n_labels - n_old_labels) * sizeof (struct label_alignment));
830 }
831
832 /* Update the already computed alignment information. LABEL_PAIRS is a vector
833 made up of pairs of labels for which the alignment information of the first
834 element will be copied from that of the second element. */
835
836 void
837 update_alignments (vec<rtx> &label_pairs)
838 {
839 unsigned int i = 0;
840 rtx iter, label = NULL_RTX;
841
842 if (max_labelno != max_label_num ())
843 grow_label_align ();
844
845 FOR_EACH_VEC_ELT (label_pairs, i, iter)
846 if (i & 1)
847 {
848 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
849 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
850 }
851 else
852 label = iter;
853 }
854
855 namespace {
856
857 const pass_data pass_data_compute_alignments =
858 {
859 RTL_PASS, /* type */
860 "alignments", /* name */
861 OPTGROUP_NONE, /* optinfo_flags */
862 TV_NONE, /* tv_id */
863 0, /* properties_required */
864 0, /* properties_provided */
865 0, /* properties_destroyed */
866 0, /* todo_flags_start */
867 0, /* todo_flags_finish */
868 };
869
870 class pass_compute_alignments : public rtl_opt_pass
871 {
872 public:
873 pass_compute_alignments (gcc::context *ctxt)
874 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
875 {}
876
877 /* opt_pass methods: */
878 virtual unsigned int execute (function *) { return compute_alignments (); }
879
880 }; // class pass_compute_alignments
881
882 } // anon namespace
883
884 rtl_opt_pass *
885 make_pass_compute_alignments (gcc::context *ctxt)
886 {
887 return new pass_compute_alignments (ctxt);
888 }
889
890 \f
891 /* Make a pass over all insns and compute their actual lengths by shortening
892 any branches of variable length if possible. */
893
894 /* shorten_branches might be called multiple times: for example, the SH
895 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
896 In order to do this, it needs proper length information, which it obtains
897 by calling shorten_branches. This cannot be collapsed with
898 shorten_branches itself into a single pass unless we also want to integrate
899 reorg.c, since the branch splitting exposes new instructions with delay
900 slots. */
901
902 void
903 shorten_branches (rtx_insn *first)
904 {
905 rtx_insn *insn;
906 int max_uid;
907 int i;
908 int max_log;
909 int max_skip;
910 #define MAX_CODE_ALIGN 16
911 rtx_insn *seq;
912 int something_changed = 1;
913 char *varying_length;
914 rtx body;
915 int uid;
916 rtx align_tab[MAX_CODE_ALIGN];
917
918 /* Compute maximum UID and allocate label_align / uid_shuid. */
919 max_uid = get_max_uid ();
920
921 /* Free uid_shuid before reallocating it. */
922 free (uid_shuid);
923
924 uid_shuid = XNEWVEC (int, max_uid);
925
926 if (max_labelno != max_label_num ())
927 grow_label_align ();
928
929 /* Initialize label_align and set up uid_shuid to be strictly
930 monotonically rising with insn order. */
931 /* We use max_log here to keep track of the maximum alignment we want to
932 impose on the next CODE_LABEL (or the current one if we are processing
933 the CODE_LABEL itself). */
934
935 max_log = 0;
936 max_skip = 0;
937
938 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
939 {
940 int log;
941
942 INSN_SHUID (insn) = i++;
943 if (INSN_P (insn))
944 continue;
945
946 if (LABEL_P (insn))
947 {
948 rtx_insn *next;
949 bool next_is_jumptable;
950
951 /* Merge in alignments computed by compute_alignments. */
952 log = LABEL_TO_ALIGNMENT (insn);
953 if (max_log < log)
954 {
955 max_log = log;
956 max_skip = LABEL_TO_MAX_SKIP (insn);
957 }
958
959 next = next_nonnote_insn (insn);
960 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
961 if (!next_is_jumptable)
962 {
963 log = LABEL_ALIGN (insn);
964 if (max_log < log)
965 {
966 max_log = log;
967 max_skip = targetm.asm_out.label_align_max_skip (insn);
968 }
969 }
970 /* ADDR_VECs only take room if read-only data goes into the text
971 section. */
972 if ((JUMP_TABLES_IN_TEXT_SECTION
973 || readonly_data_section == text_section)
974 && next_is_jumptable)
975 {
976 log = ADDR_VEC_ALIGN (next);
977 if (max_log < log)
978 {
979 max_log = log;
980 max_skip = targetm.asm_out.label_align_max_skip (insn);
981 }
982 }
983 LABEL_TO_ALIGNMENT (insn) = max_log;
984 LABEL_TO_MAX_SKIP (insn) = max_skip;
985 max_log = 0;
986 max_skip = 0;
987 }
988 else if (BARRIER_P (insn))
989 {
990 rtx_insn *label;
991
992 for (label = insn; label && ! INSN_P (label);
993 label = NEXT_INSN (label))
994 if (LABEL_P (label))
995 {
996 log = LABEL_ALIGN_AFTER_BARRIER (insn);
997 if (max_log < log)
998 {
999 max_log = log;
1000 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1001 }
1002 break;
1003 }
1004 }
1005 }
1006 if (!HAVE_ATTR_length)
1007 return;
1008
1009 /* Allocate the rest of the arrays. */
1010 insn_lengths = XNEWVEC (int, max_uid);
1011 insn_lengths_max_uid = max_uid;
1012 /* Syntax errors can lead to labels being outside of the main insn stream.
1013 Initialize insn_addresses, so that we get reproducible results. */
1014 INSN_ADDRESSES_ALLOC (max_uid);
1015
1016 varying_length = XCNEWVEC (char, max_uid);
1017
1018 /* Initialize uid_align. We scan instructions
1019 from end to start, and keep in align_tab[n] the last seen insn
1020 that does an alignment of at least n+1, i.e. the successor
1021 in the alignment chain for an insn that does / has a known
1022 alignment of n. */
1023 uid_align = XCNEWVEC (rtx, max_uid);
1024
1025 for (i = MAX_CODE_ALIGN; --i >= 0;)
1026 align_tab[i] = NULL_RTX;
1027 seq = get_last_insn ();
1028 for (; seq; seq = PREV_INSN (seq))
1029 {
1030 int uid = INSN_UID (seq);
1031 int log;
1032 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1033 uid_align[uid] = align_tab[0];
1034 if (log)
1035 {
1036 /* Found an alignment label. */
1037 uid_align[uid] = align_tab[log];
1038 for (i = log - 1; i >= 0; i--)
1039 align_tab[i] = seq;
1040 }
1041 }
1042
1043 /* When optimizing, we start assuming minimum length, and keep increasing
1044 lengths as we find the need for this, till nothing changes.
1045 When not optimizing, we start assuming maximum lengths, and
1046 do a single pass to update the lengths. */
1047 bool increasing = optimize != 0;
1048
1049 #ifdef CASE_VECTOR_SHORTEN_MODE
1050 if (optimize)
1051 {
1052 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1053 label fields. */
1054
1055 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1056 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1057 int rel;
1058
1059 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1060 {
1061 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1062 int len, i, min, max, insn_shuid;
1063 int min_align;
1064 addr_diff_vec_flags flags;
1065
1066 if (! JUMP_TABLE_DATA_P (insn)
1067 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1068 continue;
1069 pat = PATTERN (insn);
1070 len = XVECLEN (pat, 1);
1071 gcc_assert (len > 0);
1072 min_align = MAX_CODE_ALIGN;
1073 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1074 {
1075 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1076 int shuid = INSN_SHUID (lab);
1077 if (shuid < min)
1078 {
1079 min = shuid;
1080 min_lab = lab;
1081 }
1082 if (shuid > max)
1083 {
1084 max = shuid;
1085 max_lab = lab;
1086 }
1087 if (min_align > LABEL_TO_ALIGNMENT (lab))
1088 min_align = LABEL_TO_ALIGNMENT (lab);
1089 }
1090 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1091 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1092 insn_shuid = INSN_SHUID (insn);
1093 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1094 memset (&flags, 0, sizeof (flags));
1095 flags.min_align = min_align;
1096 flags.base_after_vec = rel > insn_shuid;
1097 flags.min_after_vec = min > insn_shuid;
1098 flags.max_after_vec = max > insn_shuid;
1099 flags.min_after_base = min > rel;
1100 flags.max_after_base = max > rel;
1101 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1102
1103 if (increasing)
1104 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1105 }
1106 }
1107 #endif /* CASE_VECTOR_SHORTEN_MODE */
1108
1109 /* Compute initial lengths, addresses, and varying flags for each insn. */
1110 int (*length_fun) (rtx) = increasing ? insn_min_length : insn_default_length;
1111
1112 for (insn_current_address = 0, insn = first;
1113 insn != 0;
1114 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1115 {
1116 uid = INSN_UID (insn);
1117
1118 insn_lengths[uid] = 0;
1119
1120 if (LABEL_P (insn))
1121 {
1122 int log = LABEL_TO_ALIGNMENT (insn);
1123 if (log)
1124 {
1125 int align = 1 << log;
1126 int new_address = (insn_current_address + align - 1) & -align;
1127 insn_lengths[uid] = new_address - insn_current_address;
1128 }
1129 }
1130
1131 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1132
1133 if (NOTE_P (insn) || BARRIER_P (insn)
1134 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1135 continue;
1136 if (INSN_DELETED_P (insn))
1137 continue;
1138
1139 body = PATTERN (insn);
1140 if (JUMP_TABLE_DATA_P (insn))
1141 {
1142 /* This only takes room if read-only data goes into the text
1143 section. */
1144 if (JUMP_TABLES_IN_TEXT_SECTION
1145 || readonly_data_section == text_section)
1146 insn_lengths[uid] = (XVECLEN (body,
1147 GET_CODE (body) == ADDR_DIFF_VEC)
1148 * GET_MODE_SIZE (GET_MODE (body)));
1149 /* Alignment is handled by ADDR_VEC_ALIGN. */
1150 }
1151 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1152 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1153 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1154 {
1155 int i;
1156 int const_delay_slots;
1157 #ifdef DELAY_SLOTS
1158 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1159 #else
1160 const_delay_slots = 0;
1161 #endif
1162 int (*inner_length_fun) (rtx)
1163 = const_delay_slots ? length_fun : insn_default_length;
1164 /* Inside a delay slot sequence, we do not do any branch shortening
1165 if the shortening could change the number of delay slots
1166 of the branch. */
1167 for (i = 0; i < body_seq->len (); i++)
1168 {
1169 rtx_insn *inner_insn = body_seq->insn (i);
1170 int inner_uid = INSN_UID (inner_insn);
1171 int inner_length;
1172
1173 if (GET_CODE (body) == ASM_INPUT
1174 || asm_noperands (PATTERN (inner_insn)) >= 0)
1175 inner_length = (asm_insn_count (PATTERN (inner_insn))
1176 * insn_default_length (inner_insn));
1177 else
1178 inner_length = inner_length_fun (inner_insn);
1179
1180 insn_lengths[inner_uid] = inner_length;
1181 if (const_delay_slots)
1182 {
1183 if ((varying_length[inner_uid]
1184 = insn_variable_length_p (inner_insn)) != 0)
1185 varying_length[uid] = 1;
1186 INSN_ADDRESSES (inner_uid) = (insn_current_address
1187 + insn_lengths[uid]);
1188 }
1189 else
1190 varying_length[inner_uid] = 0;
1191 insn_lengths[uid] += inner_length;
1192 }
1193 }
1194 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1195 {
1196 insn_lengths[uid] = length_fun (insn);
1197 varying_length[uid] = insn_variable_length_p (insn);
1198 }
1199
1200 /* If needed, do any adjustment. */
1201 #ifdef ADJUST_INSN_LENGTH
1202 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1203 if (insn_lengths[uid] < 0)
1204 fatal_insn ("negative insn length", insn);
1205 #endif
1206 }
1207
1208 /* Now loop over all the insns finding varying length insns. For each,
1209 get the current insn length. If it has changed, reflect the change.
1210 When nothing changes for a full pass, we are done. */
1211
1212 while (something_changed)
1213 {
1214 something_changed = 0;
1215 insn_current_align = MAX_CODE_ALIGN - 1;
1216 for (insn_current_address = 0, insn = first;
1217 insn != 0;
1218 insn = NEXT_INSN (insn))
1219 {
1220 int new_length;
1221 #ifdef ADJUST_INSN_LENGTH
1222 int tmp_length;
1223 #endif
1224 int length_align;
1225
1226 uid = INSN_UID (insn);
1227
1228 if (LABEL_P (insn))
1229 {
1230 int log = LABEL_TO_ALIGNMENT (insn);
1231
1232 #ifdef CASE_VECTOR_SHORTEN_MODE
1233 /* If the mode of a following jump table was changed, we
1234 may need to update the alignment of this label. */
1235 rtx_insn *next;
1236 bool next_is_jumptable;
1237
1238 next = next_nonnote_insn (insn);
1239 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1240 if ((JUMP_TABLES_IN_TEXT_SECTION
1241 || readonly_data_section == text_section)
1242 && next_is_jumptable)
1243 {
1244 int newlog = ADDR_VEC_ALIGN (next);
1245 if (newlog != log)
1246 {
1247 log = newlog;
1248 LABEL_TO_ALIGNMENT (insn) = log;
1249 something_changed = 1;
1250 }
1251 }
1252 #endif
1253
1254 if (log > insn_current_align)
1255 {
1256 int align = 1 << log;
1257 int new_address= (insn_current_address + align - 1) & -align;
1258 insn_lengths[uid] = new_address - insn_current_address;
1259 insn_current_align = log;
1260 insn_current_address = new_address;
1261 }
1262 else
1263 insn_lengths[uid] = 0;
1264 INSN_ADDRESSES (uid) = insn_current_address;
1265 continue;
1266 }
1267
1268 length_align = INSN_LENGTH_ALIGNMENT (insn);
1269 if (length_align < insn_current_align)
1270 insn_current_align = length_align;
1271
1272 insn_last_address = INSN_ADDRESSES (uid);
1273 INSN_ADDRESSES (uid) = insn_current_address;
1274
1275 #ifdef CASE_VECTOR_SHORTEN_MODE
1276 if (optimize
1277 && JUMP_TABLE_DATA_P (insn)
1278 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1279 {
1280 rtx body = PATTERN (insn);
1281 int old_length = insn_lengths[uid];
1282 rtx_insn *rel_lab =
1283 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1284 rtx min_lab = XEXP (XEXP (body, 2), 0);
1285 rtx max_lab = XEXP (XEXP (body, 3), 0);
1286 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1287 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1288 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1289 rtx_insn *prev;
1290 int rel_align = 0;
1291 addr_diff_vec_flags flags;
1292 enum machine_mode vec_mode;
1293
1294 /* Avoid automatic aggregate initialization. */
1295 flags = ADDR_DIFF_VEC_FLAGS (body);
1296
1297 /* Try to find a known alignment for rel_lab. */
1298 for (prev = rel_lab;
1299 prev
1300 && ! insn_lengths[INSN_UID (prev)]
1301 && ! (varying_length[INSN_UID (prev)] & 1);
1302 prev = PREV_INSN (prev))
1303 if (varying_length[INSN_UID (prev)] & 2)
1304 {
1305 rel_align = LABEL_TO_ALIGNMENT (prev);
1306 break;
1307 }
1308
1309 /* See the comment on addr_diff_vec_flags in rtl.h for the
1310 meaning of the flags values. base: REL_LAB vec: INSN */
1311 /* Anything after INSN has still addresses from the last
1312 pass; adjust these so that they reflect our current
1313 estimate for this pass. */
1314 if (flags.base_after_vec)
1315 rel_addr += insn_current_address - insn_last_address;
1316 if (flags.min_after_vec)
1317 min_addr += insn_current_address - insn_last_address;
1318 if (flags.max_after_vec)
1319 max_addr += insn_current_address - insn_last_address;
1320 /* We want to know the worst case, i.e. lowest possible value
1321 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1322 its offset is positive, and we have to be wary of code shrink;
1323 otherwise, it is negative, and we have to be vary of code
1324 size increase. */
1325 if (flags.min_after_base)
1326 {
1327 /* If INSN is between REL_LAB and MIN_LAB, the size
1328 changes we are about to make can change the alignment
1329 within the observed offset, therefore we have to break
1330 it up into two parts that are independent. */
1331 if (! flags.base_after_vec && flags.min_after_vec)
1332 {
1333 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1334 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1335 }
1336 else
1337 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1338 }
1339 else
1340 {
1341 if (flags.base_after_vec && ! flags.min_after_vec)
1342 {
1343 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1344 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1345 }
1346 else
1347 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1348 }
1349 /* Likewise, determine the highest lowest possible value
1350 for the offset of MAX_LAB. */
1351 if (flags.max_after_base)
1352 {
1353 if (! flags.base_after_vec && flags.max_after_vec)
1354 {
1355 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1356 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1357 }
1358 else
1359 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1360 }
1361 else
1362 {
1363 if (flags.base_after_vec && ! flags.max_after_vec)
1364 {
1365 max_addr += align_fuzz (max_lab, insn, 0, 0);
1366 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1367 }
1368 else
1369 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1370 }
1371 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1372 max_addr - rel_addr, body);
1373 if (!increasing
1374 || (GET_MODE_SIZE (vec_mode)
1375 >= GET_MODE_SIZE (GET_MODE (body))))
1376 PUT_MODE (body, vec_mode);
1377 if (JUMP_TABLES_IN_TEXT_SECTION
1378 || readonly_data_section == text_section)
1379 {
1380 insn_lengths[uid]
1381 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1382 insn_current_address += insn_lengths[uid];
1383 if (insn_lengths[uid] != old_length)
1384 something_changed = 1;
1385 }
1386
1387 continue;
1388 }
1389 #endif /* CASE_VECTOR_SHORTEN_MODE */
1390
1391 if (! (varying_length[uid]))
1392 {
1393 if (NONJUMP_INSN_P (insn)
1394 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1395 {
1396 int i;
1397
1398 body = PATTERN (insn);
1399 for (i = 0; i < XVECLEN (body, 0); i++)
1400 {
1401 rtx inner_insn = XVECEXP (body, 0, i);
1402 int inner_uid = INSN_UID (inner_insn);
1403
1404 INSN_ADDRESSES (inner_uid) = insn_current_address;
1405
1406 insn_current_address += insn_lengths[inner_uid];
1407 }
1408 }
1409 else
1410 insn_current_address += insn_lengths[uid];
1411
1412 continue;
1413 }
1414
1415 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1416 {
1417 int i;
1418
1419 body = PATTERN (insn);
1420 new_length = 0;
1421 for (i = 0; i < XVECLEN (body, 0); i++)
1422 {
1423 rtx inner_insn = XVECEXP (body, 0, i);
1424 int inner_uid = INSN_UID (inner_insn);
1425 int inner_length;
1426
1427 INSN_ADDRESSES (inner_uid) = insn_current_address;
1428
1429 /* insn_current_length returns 0 for insns with a
1430 non-varying length. */
1431 if (! varying_length[inner_uid])
1432 inner_length = insn_lengths[inner_uid];
1433 else
1434 inner_length = insn_current_length (inner_insn);
1435
1436 if (inner_length != insn_lengths[inner_uid])
1437 {
1438 if (!increasing || inner_length > insn_lengths[inner_uid])
1439 {
1440 insn_lengths[inner_uid] = inner_length;
1441 something_changed = 1;
1442 }
1443 else
1444 inner_length = insn_lengths[inner_uid];
1445 }
1446 insn_current_address += inner_length;
1447 new_length += inner_length;
1448 }
1449 }
1450 else
1451 {
1452 new_length = insn_current_length (insn);
1453 insn_current_address += new_length;
1454 }
1455
1456 #ifdef ADJUST_INSN_LENGTH
1457 /* If needed, do any adjustment. */
1458 tmp_length = new_length;
1459 ADJUST_INSN_LENGTH (insn, new_length);
1460 insn_current_address += (new_length - tmp_length);
1461 #endif
1462
1463 if (new_length != insn_lengths[uid]
1464 && (!increasing || new_length > insn_lengths[uid]))
1465 {
1466 insn_lengths[uid] = new_length;
1467 something_changed = 1;
1468 }
1469 else
1470 insn_current_address += insn_lengths[uid] - new_length;
1471 }
1472 /* For a non-optimizing compile, do only a single pass. */
1473 if (!increasing)
1474 break;
1475 }
1476
1477 free (varying_length);
1478 }
1479
1480 /* Given the body of an INSN known to be generated by an ASM statement, return
1481 the number of machine instructions likely to be generated for this insn.
1482 This is used to compute its length. */
1483
1484 static int
1485 asm_insn_count (rtx body)
1486 {
1487 const char *templ;
1488
1489 if (GET_CODE (body) == ASM_INPUT)
1490 templ = XSTR (body, 0);
1491 else
1492 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1493
1494 return asm_str_count (templ);
1495 }
1496
1497 /* Return the number of machine instructions likely to be generated for the
1498 inline-asm template. */
1499 int
1500 asm_str_count (const char *templ)
1501 {
1502 int count = 1;
1503
1504 if (!*templ)
1505 return 0;
1506
1507 for (; *templ; templ++)
1508 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1509 || *templ == '\n')
1510 count++;
1511
1512 return count;
1513 }
1514 \f
1515 /* ??? This is probably the wrong place for these. */
1516 /* Structure recording the mapping from source file and directory
1517 names at compile time to those to be embedded in debug
1518 information. */
1519 typedef struct debug_prefix_map
1520 {
1521 const char *old_prefix;
1522 const char *new_prefix;
1523 size_t old_len;
1524 size_t new_len;
1525 struct debug_prefix_map *next;
1526 } debug_prefix_map;
1527
1528 /* Linked list of such structures. */
1529 static debug_prefix_map *debug_prefix_maps;
1530
1531
1532 /* Record a debug file prefix mapping. ARG is the argument to
1533 -fdebug-prefix-map and must be of the form OLD=NEW. */
1534
1535 void
1536 add_debug_prefix_map (const char *arg)
1537 {
1538 debug_prefix_map *map;
1539 const char *p;
1540
1541 p = strchr (arg, '=');
1542 if (!p)
1543 {
1544 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1545 return;
1546 }
1547 map = XNEW (debug_prefix_map);
1548 map->old_prefix = xstrndup (arg, p - arg);
1549 map->old_len = p - arg;
1550 p++;
1551 map->new_prefix = xstrdup (p);
1552 map->new_len = strlen (p);
1553 map->next = debug_prefix_maps;
1554 debug_prefix_maps = map;
1555 }
1556
1557 /* Perform user-specified mapping of debug filename prefixes. Return
1558 the new name corresponding to FILENAME. */
1559
1560 const char *
1561 remap_debug_filename (const char *filename)
1562 {
1563 debug_prefix_map *map;
1564 char *s;
1565 const char *name;
1566 size_t name_len;
1567
1568 for (map = debug_prefix_maps; map; map = map->next)
1569 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1570 break;
1571 if (!map)
1572 return filename;
1573 name = filename + map->old_len;
1574 name_len = strlen (name) + 1;
1575 s = (char *) alloca (name_len + map->new_len);
1576 memcpy (s, map->new_prefix, map->new_len);
1577 memcpy (s + map->new_len, name, name_len);
1578 return ggc_strdup (s);
1579 }
1580 \f
1581 /* Return true if DWARF2 debug info can be emitted for DECL. */
1582
1583 static bool
1584 dwarf2_debug_info_emitted_p (tree decl)
1585 {
1586 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1587 return false;
1588
1589 if (DECL_IGNORED_P (decl))
1590 return false;
1591
1592 return true;
1593 }
1594
1595 /* Return scope resulting from combination of S1 and S2. */
1596 static tree
1597 choose_inner_scope (tree s1, tree s2)
1598 {
1599 if (!s1)
1600 return s2;
1601 if (!s2)
1602 return s1;
1603 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1604 return s1;
1605 return s2;
1606 }
1607
1608 /* Emit lexical block notes needed to change scope from S1 to S2. */
1609
1610 static void
1611 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1612 {
1613 rtx_insn *insn = orig_insn;
1614 tree com = NULL_TREE;
1615 tree ts1 = s1, ts2 = s2;
1616 tree s;
1617
1618 while (ts1 != ts2)
1619 {
1620 gcc_assert (ts1 && ts2);
1621 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1622 ts1 = BLOCK_SUPERCONTEXT (ts1);
1623 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1624 ts2 = BLOCK_SUPERCONTEXT (ts2);
1625 else
1626 {
1627 ts1 = BLOCK_SUPERCONTEXT (ts1);
1628 ts2 = BLOCK_SUPERCONTEXT (ts2);
1629 }
1630 }
1631 com = ts1;
1632
1633 /* Close scopes. */
1634 s = s1;
1635 while (s != com)
1636 {
1637 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1638 NOTE_BLOCK (note) = s;
1639 s = BLOCK_SUPERCONTEXT (s);
1640 }
1641
1642 /* Open scopes. */
1643 s = s2;
1644 while (s != com)
1645 {
1646 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1647 NOTE_BLOCK (insn) = s;
1648 s = BLOCK_SUPERCONTEXT (s);
1649 }
1650 }
1651
1652 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1653 on the scope tree and the newly reordered instructions. */
1654
1655 static void
1656 reemit_insn_block_notes (void)
1657 {
1658 tree cur_block = DECL_INITIAL (cfun->decl);
1659 rtx_insn *insn;
1660 rtx_note *note;
1661
1662 insn = get_insns ();
1663 for (; insn; insn = NEXT_INSN (insn))
1664 {
1665 tree this_block;
1666
1667 /* Prevent lexical blocks from straddling section boundaries. */
1668 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1669 {
1670 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1671 s = BLOCK_SUPERCONTEXT (s))
1672 {
1673 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1674 NOTE_BLOCK (note) = s;
1675 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1676 NOTE_BLOCK (note) = s;
1677 }
1678 }
1679
1680 if (!active_insn_p (insn))
1681 continue;
1682
1683 /* Avoid putting scope notes between jump table and its label. */
1684 if (JUMP_TABLE_DATA_P (insn))
1685 continue;
1686
1687 this_block = insn_scope (insn);
1688 /* For sequences compute scope resulting from merging all scopes
1689 of instructions nested inside. */
1690 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1691 {
1692 int i;
1693
1694 this_block = NULL;
1695 for (i = 0; i < body->len (); i++)
1696 this_block = choose_inner_scope (this_block,
1697 insn_scope (body->insn (i)));
1698 }
1699 if (! this_block)
1700 {
1701 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1702 continue;
1703 else
1704 this_block = DECL_INITIAL (cfun->decl);
1705 }
1706
1707 if (this_block != cur_block)
1708 {
1709 change_scope (insn, cur_block, this_block);
1710 cur_block = this_block;
1711 }
1712 }
1713
1714 /* change_scope emits before the insn, not after. */
1715 note = emit_note (NOTE_INSN_DELETED);
1716 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1717 delete_insn (note);
1718
1719 reorder_blocks ();
1720 }
1721
1722 static const char *some_local_dynamic_name;
1723
1724 /* Locate some local-dynamic symbol still in use by this function
1725 so that we can print its name in local-dynamic base patterns.
1726 Return null if there are no local-dynamic references. */
1727
1728 const char *
1729 get_some_local_dynamic_name ()
1730 {
1731 subrtx_iterator::array_type array;
1732 rtx_insn *insn;
1733
1734 if (some_local_dynamic_name)
1735 return some_local_dynamic_name;
1736
1737 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1738 if (NONDEBUG_INSN_P (insn))
1739 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1740 {
1741 const_rtx x = *iter;
1742 if (GET_CODE (x) == SYMBOL_REF)
1743 {
1744 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1745 return some_local_dynamic_name = XSTR (x, 0);
1746 if (CONSTANT_POOL_ADDRESS_P (x))
1747 iter.substitute (get_pool_constant (x));
1748 }
1749 }
1750
1751 return 0;
1752 }
1753
1754 /* Output assembler code for the start of a function,
1755 and initialize some of the variables in this file
1756 for the new function. The label for the function and associated
1757 assembler pseudo-ops have already been output in `assemble_start_function'.
1758
1759 FIRST is the first insn of the rtl for the function being compiled.
1760 FILE is the file to write assembler code to.
1761 OPTIMIZE_P is nonzero if we should eliminate redundant
1762 test and compare insns. */
1763
1764 void
1765 final_start_function (rtx_insn *first, FILE *file,
1766 int optimize_p ATTRIBUTE_UNUSED)
1767 {
1768 block_depth = 0;
1769
1770 this_is_asm_operands = 0;
1771
1772 need_profile_function = false;
1773
1774 last_filename = LOCATION_FILE (prologue_location);
1775 last_linenum = LOCATION_LINE (prologue_location);
1776 last_discriminator = discriminator = 0;
1777
1778 high_block_linenum = high_function_linenum = last_linenum;
1779
1780 if (flag_sanitize & SANITIZE_ADDRESS)
1781 asan_function_start ();
1782
1783 if (!DECL_IGNORED_P (current_function_decl))
1784 debug_hooks->begin_prologue (last_linenum, last_filename);
1785
1786 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1787 dwarf2out_begin_prologue (0, NULL);
1788
1789 #ifdef LEAF_REG_REMAP
1790 if (crtl->uses_only_leaf_regs)
1791 leaf_renumber_regs (first);
1792 #endif
1793
1794 /* The Sun386i and perhaps other machines don't work right
1795 if the profiling code comes after the prologue. */
1796 if (targetm.profile_before_prologue () && crtl->profile)
1797 {
1798 if (targetm.asm_out.function_prologue
1799 == default_function_pro_epilogue
1800 #ifdef HAVE_prologue
1801 && HAVE_prologue
1802 #endif
1803 )
1804 {
1805 rtx_insn *insn;
1806 for (insn = first; insn; insn = NEXT_INSN (insn))
1807 if (!NOTE_P (insn))
1808 {
1809 insn = NULL;
1810 break;
1811 }
1812 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1813 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1814 break;
1815 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1816 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1817 continue;
1818 else
1819 {
1820 insn = NULL;
1821 break;
1822 }
1823
1824 if (insn)
1825 need_profile_function = true;
1826 else
1827 profile_function (file);
1828 }
1829 else
1830 profile_function (file);
1831 }
1832
1833 /* If debugging, assign block numbers to all of the blocks in this
1834 function. */
1835 if (write_symbols)
1836 {
1837 reemit_insn_block_notes ();
1838 number_blocks (current_function_decl);
1839 /* We never actually put out begin/end notes for the top-level
1840 block in the function. But, conceptually, that block is
1841 always needed. */
1842 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1843 }
1844
1845 if (warn_frame_larger_than
1846 && get_frame_size () > frame_larger_than_size)
1847 {
1848 /* Issue a warning */
1849 warning (OPT_Wframe_larger_than_,
1850 "the frame size of %wd bytes is larger than %wd bytes",
1851 get_frame_size (), frame_larger_than_size);
1852 }
1853
1854 /* First output the function prologue: code to set up the stack frame. */
1855 targetm.asm_out.function_prologue (file, get_frame_size ());
1856
1857 /* If the machine represents the prologue as RTL, the profiling code must
1858 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1859 #ifdef HAVE_prologue
1860 if (! HAVE_prologue)
1861 #endif
1862 profile_after_prologue (file);
1863 }
1864
1865 static void
1866 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1867 {
1868 if (!targetm.profile_before_prologue () && crtl->profile)
1869 profile_function (file);
1870 }
1871
1872 static void
1873 profile_function (FILE *file ATTRIBUTE_UNUSED)
1874 {
1875 #ifndef NO_PROFILE_COUNTERS
1876 # define NO_PROFILE_COUNTERS 0
1877 #endif
1878 #ifdef ASM_OUTPUT_REG_PUSH
1879 rtx sval = NULL, chain = NULL;
1880
1881 if (cfun->returns_struct)
1882 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1883 true);
1884 if (cfun->static_chain_decl)
1885 chain = targetm.calls.static_chain (current_function_decl, true);
1886 #endif /* ASM_OUTPUT_REG_PUSH */
1887
1888 if (! NO_PROFILE_COUNTERS)
1889 {
1890 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1891 switch_to_section (data_section);
1892 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1893 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1894 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1895 }
1896
1897 switch_to_section (current_function_section ());
1898
1899 #ifdef ASM_OUTPUT_REG_PUSH
1900 if (sval && REG_P (sval))
1901 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1902 if (chain && REG_P (chain))
1903 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1904 #endif
1905
1906 FUNCTION_PROFILER (file, current_function_funcdef_no);
1907
1908 #ifdef ASM_OUTPUT_REG_PUSH
1909 if (chain && REG_P (chain))
1910 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1911 if (sval && REG_P (sval))
1912 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1913 #endif
1914 }
1915
1916 /* Output assembler code for the end of a function.
1917 For clarity, args are same as those of `final_start_function'
1918 even though not all of them are needed. */
1919
1920 void
1921 final_end_function (void)
1922 {
1923 app_disable ();
1924
1925 if (!DECL_IGNORED_P (current_function_decl))
1926 debug_hooks->end_function (high_function_linenum);
1927
1928 /* Finally, output the function epilogue:
1929 code to restore the stack frame and return to the caller. */
1930 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1931
1932 /* And debug output. */
1933 if (!DECL_IGNORED_P (current_function_decl))
1934 debug_hooks->end_epilogue (last_linenum, last_filename);
1935
1936 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1937 && dwarf2out_do_frame ())
1938 dwarf2out_end_epilogue (last_linenum, last_filename);
1939
1940 some_local_dynamic_name = 0;
1941 }
1942 \f
1943
1944 /* Dumper helper for basic block information. FILE is the assembly
1945 output file, and INSN is the instruction being emitted. */
1946
1947 static void
1948 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1949 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1950 {
1951 basic_block bb;
1952
1953 if (!flag_debug_asm)
1954 return;
1955
1956 if (INSN_UID (insn) < bb_map_size
1957 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1958 {
1959 edge e;
1960 edge_iterator ei;
1961
1962 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1963 if (bb->frequency)
1964 fprintf (file, " freq:%d", bb->frequency);
1965 if (bb->count)
1966 fprintf (file, " count:%"PRId64,
1967 bb->count);
1968 fprintf (file, " seq:%d", (*bb_seqn)++);
1969 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1970 FOR_EACH_EDGE (e, ei, bb->preds)
1971 {
1972 dump_edge_info (file, e, TDF_DETAILS, 0);
1973 }
1974 fprintf (file, "\n");
1975 }
1976 if (INSN_UID (insn) < bb_map_size
1977 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1978 {
1979 edge e;
1980 edge_iterator ei;
1981
1982 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1983 FOR_EACH_EDGE (e, ei, bb->succs)
1984 {
1985 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1986 }
1987 fprintf (file, "\n");
1988 }
1989 }
1990
1991 /* Output assembler code for some insns: all or part of a function.
1992 For description of args, see `final_start_function', above. */
1993
1994 void
1995 final (rtx_insn *first, FILE *file, int optimize_p)
1996 {
1997 rtx_insn *insn, *next;
1998 int seen = 0;
1999
2000 /* Used for -dA dump. */
2001 basic_block *start_to_bb = NULL;
2002 basic_block *end_to_bb = NULL;
2003 int bb_map_size = 0;
2004 int bb_seqn = 0;
2005
2006 last_ignored_compare = 0;
2007
2008 #ifdef HAVE_cc0
2009 for (insn = first; insn; insn = NEXT_INSN (insn))
2010 {
2011 /* If CC tracking across branches is enabled, record the insn which
2012 jumps to each branch only reached from one place. */
2013 if (optimize_p && JUMP_P (insn))
2014 {
2015 rtx lab = JUMP_LABEL (insn);
2016 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2017 {
2018 LABEL_REFS (lab) = insn;
2019 }
2020 }
2021 }
2022 #endif
2023
2024 init_recog ();
2025
2026 CC_STATUS_INIT;
2027
2028 if (flag_debug_asm)
2029 {
2030 basic_block bb;
2031
2032 bb_map_size = get_max_uid () + 1;
2033 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2034 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2035
2036 /* There is no cfg for a thunk. */
2037 if (!cfun->is_thunk)
2038 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2039 {
2040 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2041 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2042 }
2043 }
2044
2045 /* Output the insns. */
2046 for (insn = first; insn;)
2047 {
2048 if (HAVE_ATTR_length)
2049 {
2050 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2051 {
2052 /* This can be triggered by bugs elsewhere in the compiler if
2053 new insns are created after init_insn_lengths is called. */
2054 gcc_assert (NOTE_P (insn));
2055 insn_current_address = -1;
2056 }
2057 else
2058 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2059 }
2060
2061 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2062 bb_map_size, &bb_seqn);
2063 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2064 }
2065
2066 if (flag_debug_asm)
2067 {
2068 free (start_to_bb);
2069 free (end_to_bb);
2070 }
2071
2072 /* Remove CFI notes, to avoid compare-debug failures. */
2073 for (insn = first; insn; insn = next)
2074 {
2075 next = NEXT_INSN (insn);
2076 if (NOTE_P (insn)
2077 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2078 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2079 delete_insn (insn);
2080 }
2081 }
2082 \f
2083 const char *
2084 get_insn_template (int code, rtx insn)
2085 {
2086 switch (insn_data[code].output_format)
2087 {
2088 case INSN_OUTPUT_FORMAT_SINGLE:
2089 return insn_data[code].output.single;
2090 case INSN_OUTPUT_FORMAT_MULTI:
2091 return insn_data[code].output.multi[which_alternative];
2092 case INSN_OUTPUT_FORMAT_FUNCTION:
2093 gcc_assert (insn);
2094 return (*insn_data[code].output.function) (recog_data.operand,
2095 as_a <rtx_insn *> (insn));
2096
2097 default:
2098 gcc_unreachable ();
2099 }
2100 }
2101
2102 /* Emit the appropriate declaration for an alternate-entry-point
2103 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2104 LABEL_KIND != LABEL_NORMAL.
2105
2106 The case fall-through in this function is intentional. */
2107 static void
2108 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2109 {
2110 const char *name = LABEL_NAME (insn);
2111
2112 switch (LABEL_KIND (insn))
2113 {
2114 case LABEL_WEAK_ENTRY:
2115 #ifdef ASM_WEAKEN_LABEL
2116 ASM_WEAKEN_LABEL (file, name);
2117 #endif
2118 case LABEL_GLOBAL_ENTRY:
2119 targetm.asm_out.globalize_label (file, name);
2120 case LABEL_STATIC_ENTRY:
2121 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2122 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2123 #endif
2124 ASM_OUTPUT_LABEL (file, name);
2125 break;
2126
2127 case LABEL_NORMAL:
2128 default:
2129 gcc_unreachable ();
2130 }
2131 }
2132
2133 /* Given a CALL_INSN, find and return the nested CALL. */
2134 static rtx
2135 call_from_call_insn (rtx_call_insn *insn)
2136 {
2137 rtx x;
2138 gcc_assert (CALL_P (insn));
2139 x = PATTERN (insn);
2140
2141 while (GET_CODE (x) != CALL)
2142 {
2143 switch (GET_CODE (x))
2144 {
2145 default:
2146 gcc_unreachable ();
2147 case COND_EXEC:
2148 x = COND_EXEC_CODE (x);
2149 break;
2150 case PARALLEL:
2151 x = XVECEXP (x, 0, 0);
2152 break;
2153 case SET:
2154 x = XEXP (x, 1);
2155 break;
2156 }
2157 }
2158 return x;
2159 }
2160
2161 /* The final scan for one insn, INSN.
2162 Args are same as in `final', except that INSN
2163 is the insn being scanned.
2164 Value returned is the next insn to be scanned.
2165
2166 NOPEEPHOLES is the flag to disallow peephole processing (currently
2167 used for within delayed branch sequence output).
2168
2169 SEEN is used to track the end of the prologue, for emitting
2170 debug information. We force the emission of a line note after
2171 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2172
2173 rtx_insn *
2174 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2175 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2176 {
2177 #ifdef HAVE_cc0
2178 rtx set;
2179 #endif
2180 rtx_insn *next;
2181
2182 insn_counter++;
2183
2184 /* Ignore deleted insns. These can occur when we split insns (due to a
2185 template of "#") while not optimizing. */
2186 if (INSN_DELETED_P (insn))
2187 return NEXT_INSN (insn);
2188
2189 switch (GET_CODE (insn))
2190 {
2191 case NOTE:
2192 switch (NOTE_KIND (insn))
2193 {
2194 case NOTE_INSN_DELETED:
2195 break;
2196
2197 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2198 in_cold_section_p = !in_cold_section_p;
2199
2200 if (dwarf2out_do_frame ())
2201 dwarf2out_switch_text_section ();
2202 else if (!DECL_IGNORED_P (current_function_decl))
2203 debug_hooks->switch_text_section ();
2204
2205 switch_to_section (current_function_section ());
2206 targetm.asm_out.function_switched_text_sections (asm_out_file,
2207 current_function_decl,
2208 in_cold_section_p);
2209 /* Emit a label for the split cold section. Form label name by
2210 suffixing "cold" to the original function's name. */
2211 if (in_cold_section_p)
2212 {
2213 tree cold_function_name
2214 = clone_function_name (current_function_decl, "cold");
2215 ASM_OUTPUT_LABEL (asm_out_file,
2216 IDENTIFIER_POINTER (cold_function_name));
2217 }
2218 break;
2219
2220 case NOTE_INSN_BASIC_BLOCK:
2221 if (need_profile_function)
2222 {
2223 profile_function (asm_out_file);
2224 need_profile_function = false;
2225 }
2226
2227 if (targetm.asm_out.unwind_emit)
2228 targetm.asm_out.unwind_emit (asm_out_file, insn);
2229
2230 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2231
2232 break;
2233
2234 case NOTE_INSN_EH_REGION_BEG:
2235 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2236 NOTE_EH_HANDLER (insn));
2237 break;
2238
2239 case NOTE_INSN_EH_REGION_END:
2240 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2241 NOTE_EH_HANDLER (insn));
2242 break;
2243
2244 case NOTE_INSN_PROLOGUE_END:
2245 targetm.asm_out.function_end_prologue (file);
2246 profile_after_prologue (file);
2247
2248 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2249 {
2250 *seen |= SEEN_EMITTED;
2251 force_source_line = true;
2252 }
2253 else
2254 *seen |= SEEN_NOTE;
2255
2256 break;
2257
2258 case NOTE_INSN_EPILOGUE_BEG:
2259 if (!DECL_IGNORED_P (current_function_decl))
2260 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2261 targetm.asm_out.function_begin_epilogue (file);
2262 break;
2263
2264 case NOTE_INSN_CFI:
2265 dwarf2out_emit_cfi (NOTE_CFI (insn));
2266 break;
2267
2268 case NOTE_INSN_CFI_LABEL:
2269 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2270 NOTE_LABEL_NUMBER (insn));
2271 break;
2272
2273 case NOTE_INSN_FUNCTION_BEG:
2274 if (need_profile_function)
2275 {
2276 profile_function (asm_out_file);
2277 need_profile_function = false;
2278 }
2279
2280 app_disable ();
2281 if (!DECL_IGNORED_P (current_function_decl))
2282 debug_hooks->end_prologue (last_linenum, last_filename);
2283
2284 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2285 {
2286 *seen |= SEEN_EMITTED;
2287 force_source_line = true;
2288 }
2289 else
2290 *seen |= SEEN_NOTE;
2291
2292 break;
2293
2294 case NOTE_INSN_BLOCK_BEG:
2295 if (debug_info_level == DINFO_LEVEL_NORMAL
2296 || debug_info_level == DINFO_LEVEL_VERBOSE
2297 || write_symbols == DWARF2_DEBUG
2298 || write_symbols == VMS_AND_DWARF2_DEBUG
2299 || write_symbols == VMS_DEBUG)
2300 {
2301 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2302
2303 app_disable ();
2304 ++block_depth;
2305 high_block_linenum = last_linenum;
2306
2307 /* Output debugging info about the symbol-block beginning. */
2308 if (!DECL_IGNORED_P (current_function_decl))
2309 debug_hooks->begin_block (last_linenum, n);
2310
2311 /* Mark this block as output. */
2312 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2313 }
2314 if (write_symbols == DBX_DEBUG
2315 || write_symbols == SDB_DEBUG)
2316 {
2317 location_t *locus_ptr
2318 = block_nonartificial_location (NOTE_BLOCK (insn));
2319
2320 if (locus_ptr != NULL)
2321 {
2322 override_filename = LOCATION_FILE (*locus_ptr);
2323 override_linenum = LOCATION_LINE (*locus_ptr);
2324 }
2325 }
2326 break;
2327
2328 case NOTE_INSN_BLOCK_END:
2329 if (debug_info_level == DINFO_LEVEL_NORMAL
2330 || debug_info_level == DINFO_LEVEL_VERBOSE
2331 || write_symbols == DWARF2_DEBUG
2332 || write_symbols == VMS_AND_DWARF2_DEBUG
2333 || write_symbols == VMS_DEBUG)
2334 {
2335 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2336
2337 app_disable ();
2338
2339 /* End of a symbol-block. */
2340 --block_depth;
2341 gcc_assert (block_depth >= 0);
2342
2343 if (!DECL_IGNORED_P (current_function_decl))
2344 debug_hooks->end_block (high_block_linenum, n);
2345 }
2346 if (write_symbols == DBX_DEBUG
2347 || write_symbols == SDB_DEBUG)
2348 {
2349 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2350 location_t *locus_ptr
2351 = block_nonartificial_location (outer_block);
2352
2353 if (locus_ptr != NULL)
2354 {
2355 override_filename = LOCATION_FILE (*locus_ptr);
2356 override_linenum = LOCATION_LINE (*locus_ptr);
2357 }
2358 else
2359 {
2360 override_filename = NULL;
2361 override_linenum = 0;
2362 }
2363 }
2364 break;
2365
2366 case NOTE_INSN_DELETED_LABEL:
2367 /* Emit the label. We may have deleted the CODE_LABEL because
2368 the label could be proved to be unreachable, though still
2369 referenced (in the form of having its address taken. */
2370 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2371 break;
2372
2373 case NOTE_INSN_DELETED_DEBUG_LABEL:
2374 /* Similarly, but need to use different namespace for it. */
2375 if (CODE_LABEL_NUMBER (insn) != -1)
2376 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2377 break;
2378
2379 case NOTE_INSN_VAR_LOCATION:
2380 case NOTE_INSN_CALL_ARG_LOCATION:
2381 if (!DECL_IGNORED_P (current_function_decl))
2382 debug_hooks->var_location (insn);
2383 break;
2384
2385 default:
2386 gcc_unreachable ();
2387 break;
2388 }
2389 break;
2390
2391 case BARRIER:
2392 break;
2393
2394 case CODE_LABEL:
2395 /* The target port might emit labels in the output function for
2396 some insn, e.g. sh.c output_branchy_insn. */
2397 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2398 {
2399 int align = LABEL_TO_ALIGNMENT (insn);
2400 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2401 int max_skip = LABEL_TO_MAX_SKIP (insn);
2402 #endif
2403
2404 if (align && NEXT_INSN (insn))
2405 {
2406 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2407 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2408 #else
2409 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2410 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2411 #else
2412 ASM_OUTPUT_ALIGN (file, align);
2413 #endif
2414 #endif
2415 }
2416 }
2417 CC_STATUS_INIT;
2418
2419 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2420 debug_hooks->label (as_a <rtx_code_label *> (insn));
2421
2422 app_disable ();
2423
2424 next = next_nonnote_insn (insn);
2425 /* If this label is followed by a jump-table, make sure we put
2426 the label in the read-only section. Also possibly write the
2427 label and jump table together. */
2428 if (next != 0 && JUMP_TABLE_DATA_P (next))
2429 {
2430 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2431 /* In this case, the case vector is being moved by the
2432 target, so don't output the label at all. Leave that
2433 to the back end macros. */
2434 #else
2435 if (! JUMP_TABLES_IN_TEXT_SECTION)
2436 {
2437 int log_align;
2438
2439 switch_to_section (targetm.asm_out.function_rodata_section
2440 (current_function_decl));
2441
2442 #ifdef ADDR_VEC_ALIGN
2443 log_align = ADDR_VEC_ALIGN (next);
2444 #else
2445 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2446 #endif
2447 ASM_OUTPUT_ALIGN (file, log_align);
2448 }
2449 else
2450 switch_to_section (current_function_section ());
2451
2452 #ifdef ASM_OUTPUT_CASE_LABEL
2453 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2454 next);
2455 #else
2456 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2457 #endif
2458 #endif
2459 break;
2460 }
2461 if (LABEL_ALT_ENTRY_P (insn))
2462 output_alternate_entry_point (file, insn);
2463 else
2464 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2465 break;
2466
2467 default:
2468 {
2469 rtx body = PATTERN (insn);
2470 int insn_code_number;
2471 const char *templ;
2472 bool is_stmt;
2473
2474 /* Reset this early so it is correct for ASM statements. */
2475 current_insn_predicate = NULL_RTX;
2476
2477 /* An INSN, JUMP_INSN or CALL_INSN.
2478 First check for special kinds that recog doesn't recognize. */
2479
2480 if (GET_CODE (body) == USE /* These are just declarations. */
2481 || GET_CODE (body) == CLOBBER)
2482 break;
2483
2484 #ifdef HAVE_cc0
2485 {
2486 /* If there is a REG_CC_SETTER note on this insn, it means that
2487 the setting of the condition code was done in the delay slot
2488 of the insn that branched here. So recover the cc status
2489 from the insn that set it. */
2490
2491 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2492 if (note)
2493 {
2494 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2495 NOTICE_UPDATE_CC (PATTERN (other), other);
2496 cc_prev_status = cc_status;
2497 }
2498 }
2499 #endif
2500
2501 /* Detect insns that are really jump-tables
2502 and output them as such. */
2503
2504 if (JUMP_TABLE_DATA_P (insn))
2505 {
2506 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2507 int vlen, idx;
2508 #endif
2509
2510 if (! JUMP_TABLES_IN_TEXT_SECTION)
2511 switch_to_section (targetm.asm_out.function_rodata_section
2512 (current_function_decl));
2513 else
2514 switch_to_section (current_function_section ());
2515
2516 app_disable ();
2517
2518 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2519 if (GET_CODE (body) == ADDR_VEC)
2520 {
2521 #ifdef ASM_OUTPUT_ADDR_VEC
2522 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2523 #else
2524 gcc_unreachable ();
2525 #endif
2526 }
2527 else
2528 {
2529 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2530 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2531 #else
2532 gcc_unreachable ();
2533 #endif
2534 }
2535 #else
2536 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2537 for (idx = 0; idx < vlen; idx++)
2538 {
2539 if (GET_CODE (body) == ADDR_VEC)
2540 {
2541 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2542 ASM_OUTPUT_ADDR_VEC_ELT
2543 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2544 #else
2545 gcc_unreachable ();
2546 #endif
2547 }
2548 else
2549 {
2550 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2551 ASM_OUTPUT_ADDR_DIFF_ELT
2552 (file,
2553 body,
2554 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2555 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2556 #else
2557 gcc_unreachable ();
2558 #endif
2559 }
2560 }
2561 #ifdef ASM_OUTPUT_CASE_END
2562 ASM_OUTPUT_CASE_END (file,
2563 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2564 insn);
2565 #endif
2566 #endif
2567
2568 switch_to_section (current_function_section ());
2569
2570 break;
2571 }
2572 /* Output this line note if it is the first or the last line
2573 note in a row. */
2574 if (!DECL_IGNORED_P (current_function_decl)
2575 && notice_source_line (insn, &is_stmt))
2576 (*debug_hooks->source_line) (last_linenum, last_filename,
2577 last_discriminator, is_stmt);
2578
2579 if (GET_CODE (body) == ASM_INPUT)
2580 {
2581 const char *string = XSTR (body, 0);
2582
2583 /* There's no telling what that did to the condition codes. */
2584 CC_STATUS_INIT;
2585
2586 if (string[0])
2587 {
2588 expanded_location loc;
2589
2590 app_enable ();
2591 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2592 if (*loc.file && loc.line)
2593 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2594 ASM_COMMENT_START, loc.line, loc.file);
2595 fprintf (asm_out_file, "\t%s\n", string);
2596 #if HAVE_AS_LINE_ZERO
2597 if (*loc.file && loc.line)
2598 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2599 #endif
2600 }
2601 break;
2602 }
2603
2604 /* Detect `asm' construct with operands. */
2605 if (asm_noperands (body) >= 0)
2606 {
2607 unsigned int noperands = asm_noperands (body);
2608 rtx *ops = XALLOCAVEC (rtx, noperands);
2609 const char *string;
2610 location_t loc;
2611 expanded_location expanded;
2612
2613 /* There's no telling what that did to the condition codes. */
2614 CC_STATUS_INIT;
2615
2616 /* Get out the operand values. */
2617 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2618 /* Inhibit dying on what would otherwise be compiler bugs. */
2619 insn_noperands = noperands;
2620 this_is_asm_operands = insn;
2621 expanded = expand_location (loc);
2622
2623 #ifdef FINAL_PRESCAN_INSN
2624 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2625 #endif
2626
2627 /* Output the insn using them. */
2628 if (string[0])
2629 {
2630 app_enable ();
2631 if (expanded.file && expanded.line)
2632 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2633 ASM_COMMENT_START, expanded.line, expanded.file);
2634 output_asm_insn (string, ops);
2635 #if HAVE_AS_LINE_ZERO
2636 if (expanded.file && expanded.line)
2637 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2638 #endif
2639 }
2640
2641 if (targetm.asm_out.final_postscan_insn)
2642 targetm.asm_out.final_postscan_insn (file, insn, ops,
2643 insn_noperands);
2644
2645 this_is_asm_operands = 0;
2646 break;
2647 }
2648
2649 app_disable ();
2650
2651 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2652 {
2653 /* A delayed-branch sequence */
2654 int i;
2655
2656 final_sequence = seq;
2657
2658 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2659 force the restoration of a comparison that was previously
2660 thought unnecessary. If that happens, cancel this sequence
2661 and cause that insn to be restored. */
2662
2663 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2664 if (next != seq->insn (1))
2665 {
2666 final_sequence = 0;
2667 return next;
2668 }
2669
2670 for (i = 1; i < seq->len (); i++)
2671 {
2672 rtx_insn *insn = seq->insn (i);
2673 rtx_insn *next = NEXT_INSN (insn);
2674 /* We loop in case any instruction in a delay slot gets
2675 split. */
2676 do
2677 insn = final_scan_insn (insn, file, 0, 1, seen);
2678 while (insn != next);
2679 }
2680 #ifdef DBR_OUTPUT_SEQEND
2681 DBR_OUTPUT_SEQEND (file);
2682 #endif
2683 final_sequence = 0;
2684
2685 /* If the insn requiring the delay slot was a CALL_INSN, the
2686 insns in the delay slot are actually executed before the
2687 called function. Hence we don't preserve any CC-setting
2688 actions in these insns and the CC must be marked as being
2689 clobbered by the function. */
2690 if (CALL_P (seq->insn (0)))
2691 {
2692 CC_STATUS_INIT;
2693 }
2694 break;
2695 }
2696
2697 /* We have a real machine instruction as rtl. */
2698
2699 body = PATTERN (insn);
2700
2701 #ifdef HAVE_cc0
2702 set = single_set (insn);
2703
2704 /* Check for redundant test and compare instructions
2705 (when the condition codes are already set up as desired).
2706 This is done only when optimizing; if not optimizing,
2707 it should be possible for the user to alter a variable
2708 with the debugger in between statements
2709 and the next statement should reexamine the variable
2710 to compute the condition codes. */
2711
2712 if (optimize_p)
2713 {
2714 if (set
2715 && GET_CODE (SET_DEST (set)) == CC0
2716 && insn != last_ignored_compare)
2717 {
2718 rtx src1, src2;
2719 if (GET_CODE (SET_SRC (set)) == SUBREG)
2720 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2721
2722 src1 = SET_SRC (set);
2723 src2 = NULL_RTX;
2724 if (GET_CODE (SET_SRC (set)) == COMPARE)
2725 {
2726 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2727 XEXP (SET_SRC (set), 0)
2728 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2729 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2730 XEXP (SET_SRC (set), 1)
2731 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2732 if (XEXP (SET_SRC (set), 1)
2733 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2734 src2 = XEXP (SET_SRC (set), 0);
2735 }
2736 if ((cc_status.value1 != 0
2737 && rtx_equal_p (src1, cc_status.value1))
2738 || (cc_status.value2 != 0
2739 && rtx_equal_p (src1, cc_status.value2))
2740 || (src2 != 0 && cc_status.value1 != 0
2741 && rtx_equal_p (src2, cc_status.value1))
2742 || (src2 != 0 && cc_status.value2 != 0
2743 && rtx_equal_p (src2, cc_status.value2)))
2744 {
2745 /* Don't delete insn if it has an addressing side-effect. */
2746 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2747 /* or if anything in it is volatile. */
2748 && ! volatile_refs_p (PATTERN (insn)))
2749 {
2750 /* We don't really delete the insn; just ignore it. */
2751 last_ignored_compare = insn;
2752 break;
2753 }
2754 }
2755 }
2756 }
2757
2758 /* If this is a conditional branch, maybe modify it
2759 if the cc's are in a nonstandard state
2760 so that it accomplishes the same thing that it would
2761 do straightforwardly if the cc's were set up normally. */
2762
2763 if (cc_status.flags != 0
2764 && JUMP_P (insn)
2765 && GET_CODE (body) == SET
2766 && SET_DEST (body) == pc_rtx
2767 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2768 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2769 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2770 {
2771 /* This function may alter the contents of its argument
2772 and clear some of the cc_status.flags bits.
2773 It may also return 1 meaning condition now always true
2774 or -1 meaning condition now always false
2775 or 2 meaning condition nontrivial but altered. */
2776 int result = alter_cond (XEXP (SET_SRC (body), 0));
2777 /* If condition now has fixed value, replace the IF_THEN_ELSE
2778 with its then-operand or its else-operand. */
2779 if (result == 1)
2780 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2781 if (result == -1)
2782 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2783
2784 /* The jump is now either unconditional or a no-op.
2785 If it has become a no-op, don't try to output it.
2786 (It would not be recognized.) */
2787 if (SET_SRC (body) == pc_rtx)
2788 {
2789 delete_insn (insn);
2790 break;
2791 }
2792 else if (ANY_RETURN_P (SET_SRC (body)))
2793 /* Replace (set (pc) (return)) with (return). */
2794 PATTERN (insn) = body = SET_SRC (body);
2795
2796 /* Rerecognize the instruction if it has changed. */
2797 if (result != 0)
2798 INSN_CODE (insn) = -1;
2799 }
2800
2801 /* If this is a conditional trap, maybe modify it if the cc's
2802 are in a nonstandard state so that it accomplishes the same
2803 thing that it would do straightforwardly if the cc's were
2804 set up normally. */
2805 if (cc_status.flags != 0
2806 && NONJUMP_INSN_P (insn)
2807 && GET_CODE (body) == TRAP_IF
2808 && COMPARISON_P (TRAP_CONDITION (body))
2809 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2810 {
2811 /* This function may alter the contents of its argument
2812 and clear some of the cc_status.flags bits.
2813 It may also return 1 meaning condition now always true
2814 or -1 meaning condition now always false
2815 or 2 meaning condition nontrivial but altered. */
2816 int result = alter_cond (TRAP_CONDITION (body));
2817
2818 /* If TRAP_CONDITION has become always false, delete the
2819 instruction. */
2820 if (result == -1)
2821 {
2822 delete_insn (insn);
2823 break;
2824 }
2825
2826 /* If TRAP_CONDITION has become always true, replace
2827 TRAP_CONDITION with const_true_rtx. */
2828 if (result == 1)
2829 TRAP_CONDITION (body) = const_true_rtx;
2830
2831 /* Rerecognize the instruction if it has changed. */
2832 if (result != 0)
2833 INSN_CODE (insn) = -1;
2834 }
2835
2836 /* Make same adjustments to instructions that examine the
2837 condition codes without jumping and instructions that
2838 handle conditional moves (if this machine has either one). */
2839
2840 if (cc_status.flags != 0
2841 && set != 0)
2842 {
2843 rtx cond_rtx, then_rtx, else_rtx;
2844
2845 if (!JUMP_P (insn)
2846 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2847 {
2848 cond_rtx = XEXP (SET_SRC (set), 0);
2849 then_rtx = XEXP (SET_SRC (set), 1);
2850 else_rtx = XEXP (SET_SRC (set), 2);
2851 }
2852 else
2853 {
2854 cond_rtx = SET_SRC (set);
2855 then_rtx = const_true_rtx;
2856 else_rtx = const0_rtx;
2857 }
2858
2859 if (COMPARISON_P (cond_rtx)
2860 && XEXP (cond_rtx, 0) == cc0_rtx)
2861 {
2862 int result;
2863 result = alter_cond (cond_rtx);
2864 if (result == 1)
2865 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2866 else if (result == -1)
2867 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2868 else if (result == 2)
2869 INSN_CODE (insn) = -1;
2870 if (SET_DEST (set) == SET_SRC (set))
2871 delete_insn (insn);
2872 }
2873 }
2874
2875 #endif
2876
2877 #ifdef HAVE_peephole
2878 /* Do machine-specific peephole optimizations if desired. */
2879
2880 if (optimize_p && !flag_no_peephole && !nopeepholes)
2881 {
2882 rtx_insn *next = peephole (insn);
2883 /* When peepholing, if there were notes within the peephole,
2884 emit them before the peephole. */
2885 if (next != 0 && next != NEXT_INSN (insn))
2886 {
2887 rtx_insn *note, *prev = PREV_INSN (insn);
2888
2889 for (note = NEXT_INSN (insn); note != next;
2890 note = NEXT_INSN (note))
2891 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2892
2893 /* Put the notes in the proper position for a later
2894 rescan. For example, the SH target can do this
2895 when generating a far jump in a delayed branch
2896 sequence. */
2897 note = NEXT_INSN (insn);
2898 SET_PREV_INSN (note) = prev;
2899 SET_NEXT_INSN (prev) = note;
2900 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2901 SET_PREV_INSN (insn) = PREV_INSN (next);
2902 SET_NEXT_INSN (insn) = next;
2903 SET_PREV_INSN (next) = insn;
2904 }
2905
2906 /* PEEPHOLE might have changed this. */
2907 body = PATTERN (insn);
2908 }
2909 #endif
2910
2911 /* Try to recognize the instruction.
2912 If successful, verify that the operands satisfy the
2913 constraints for the instruction. Crash if they don't,
2914 since `reload' should have changed them so that they do. */
2915
2916 insn_code_number = recog_memoized (insn);
2917 cleanup_subreg_operands (insn);
2918
2919 /* Dump the insn in the assembly for debugging (-dAP).
2920 If the final dump is requested as slim RTL, dump slim
2921 RTL to the assembly file also. */
2922 if (flag_dump_rtl_in_asm)
2923 {
2924 print_rtx_head = ASM_COMMENT_START;
2925 if (! (dump_flags & TDF_SLIM))
2926 print_rtl_single (asm_out_file, insn);
2927 else
2928 dump_insn_slim (asm_out_file, insn);
2929 print_rtx_head = "";
2930 }
2931
2932 if (! constrain_operands_cached (1))
2933 fatal_insn_not_found (insn);
2934
2935 /* Some target machines need to prescan each insn before
2936 it is output. */
2937
2938 #ifdef FINAL_PRESCAN_INSN
2939 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2940 #endif
2941
2942 if (targetm.have_conditional_execution ()
2943 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2944 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2945
2946 #ifdef HAVE_cc0
2947 cc_prev_status = cc_status;
2948
2949 /* Update `cc_status' for this instruction.
2950 The instruction's output routine may change it further.
2951 If the output routine for a jump insn needs to depend
2952 on the cc status, it should look at cc_prev_status. */
2953
2954 NOTICE_UPDATE_CC (body, insn);
2955 #endif
2956
2957 current_output_insn = debug_insn = insn;
2958
2959 /* Find the proper template for this insn. */
2960 templ = get_insn_template (insn_code_number, insn);
2961
2962 /* If the C code returns 0, it means that it is a jump insn
2963 which follows a deleted test insn, and that test insn
2964 needs to be reinserted. */
2965 if (templ == 0)
2966 {
2967 rtx_insn *prev;
2968
2969 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2970
2971 /* We have already processed the notes between the setter and
2972 the user. Make sure we don't process them again, this is
2973 particularly important if one of the notes is a block
2974 scope note or an EH note. */
2975 for (prev = insn;
2976 prev != last_ignored_compare;
2977 prev = PREV_INSN (prev))
2978 {
2979 if (NOTE_P (prev))
2980 delete_insn (prev); /* Use delete_note. */
2981 }
2982
2983 return prev;
2984 }
2985
2986 /* If the template is the string "#", it means that this insn must
2987 be split. */
2988 if (templ[0] == '#' && templ[1] == '\0')
2989 {
2990 rtx_insn *new_rtx = try_split (body, insn, 0);
2991
2992 /* If we didn't split the insn, go away. */
2993 if (new_rtx == insn && PATTERN (new_rtx) == body)
2994 fatal_insn ("could not split insn", insn);
2995
2996 /* If we have a length attribute, this instruction should have
2997 been split in shorten_branches, to ensure that we would have
2998 valid length info for the splitees. */
2999 gcc_assert (!HAVE_ATTR_length);
3000
3001 return new_rtx;
3002 }
3003
3004 /* ??? This will put the directives in the wrong place if
3005 get_insn_template outputs assembly directly. However calling it
3006 before get_insn_template breaks if the insns is split. */
3007 if (targetm.asm_out.unwind_emit_before_insn
3008 && targetm.asm_out.unwind_emit)
3009 targetm.asm_out.unwind_emit (asm_out_file, insn);
3010
3011 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
3012 {
3013 rtx x = call_from_call_insn (call_insn);
3014 x = XEXP (x, 0);
3015 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3016 {
3017 tree t;
3018 x = XEXP (x, 0);
3019 t = SYMBOL_REF_DECL (x);
3020 if (t)
3021 assemble_external (t);
3022 }
3023 if (!DECL_IGNORED_P (current_function_decl))
3024 debug_hooks->var_location (insn);
3025 }
3026
3027 /* Output assembler code from the template. */
3028 output_asm_insn (templ, recog_data.operand);
3029
3030 /* Some target machines need to postscan each insn after
3031 it is output. */
3032 if (targetm.asm_out.final_postscan_insn)
3033 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3034 recog_data.n_operands);
3035
3036 if (!targetm.asm_out.unwind_emit_before_insn
3037 && targetm.asm_out.unwind_emit)
3038 targetm.asm_out.unwind_emit (asm_out_file, insn);
3039
3040 current_output_insn = debug_insn = 0;
3041 }
3042 }
3043 return NEXT_INSN (insn);
3044 }
3045 \f
3046 /* Return whether a source line note needs to be emitted before INSN.
3047 Sets IS_STMT to TRUE if the line should be marked as a possible
3048 breakpoint location. */
3049
3050 static bool
3051 notice_source_line (rtx_insn *insn, bool *is_stmt)
3052 {
3053 const char *filename;
3054 int linenum;
3055
3056 if (override_filename)
3057 {
3058 filename = override_filename;
3059 linenum = override_linenum;
3060 }
3061 else if (INSN_HAS_LOCATION (insn))
3062 {
3063 expanded_location xloc = insn_location (insn);
3064 filename = xloc.file;
3065 linenum = xloc.line;
3066 }
3067 else
3068 {
3069 filename = NULL;
3070 linenum = 0;
3071 }
3072
3073 if (filename == NULL)
3074 return false;
3075
3076 if (force_source_line
3077 || filename != last_filename
3078 || last_linenum != linenum)
3079 {
3080 force_source_line = false;
3081 last_filename = filename;
3082 last_linenum = linenum;
3083 last_discriminator = discriminator;
3084 *is_stmt = true;
3085 high_block_linenum = MAX (last_linenum, high_block_linenum);
3086 high_function_linenum = MAX (last_linenum, high_function_linenum);
3087 return true;
3088 }
3089
3090 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3091 {
3092 /* If the discriminator changed, but the line number did not,
3093 output the line table entry with is_stmt false so the
3094 debugger does not treat this as a breakpoint location. */
3095 last_discriminator = discriminator;
3096 *is_stmt = false;
3097 return true;
3098 }
3099
3100 return false;
3101 }
3102 \f
3103 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3104 directly to the desired hard register. */
3105
3106 void
3107 cleanup_subreg_operands (rtx_insn *insn)
3108 {
3109 int i;
3110 bool changed = false;
3111 extract_insn_cached (insn);
3112 for (i = 0; i < recog_data.n_operands; i++)
3113 {
3114 /* The following test cannot use recog_data.operand when testing
3115 for a SUBREG: the underlying object might have been changed
3116 already if we are inside a match_operator expression that
3117 matches the else clause. Instead we test the underlying
3118 expression directly. */
3119 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3120 {
3121 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3122 changed = true;
3123 }
3124 else if (GET_CODE (recog_data.operand[i]) == PLUS
3125 || GET_CODE (recog_data.operand[i]) == MULT
3126 || MEM_P (recog_data.operand[i]))
3127 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3128 }
3129
3130 for (i = 0; i < recog_data.n_dups; i++)
3131 {
3132 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3133 {
3134 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3135 changed = true;
3136 }
3137 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3138 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3139 || MEM_P (*recog_data.dup_loc[i]))
3140 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3141 }
3142 if (changed)
3143 df_insn_rescan (insn);
3144 }
3145
3146 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3147 the thing it is a subreg of. Do it anyway if FINAL_P. */
3148
3149 rtx
3150 alter_subreg (rtx *xp, bool final_p)
3151 {
3152 rtx x = *xp;
3153 rtx y = SUBREG_REG (x);
3154
3155 /* simplify_subreg does not remove subreg from volatile references.
3156 We are required to. */
3157 if (MEM_P (y))
3158 {
3159 int offset = SUBREG_BYTE (x);
3160
3161 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3162 contains 0 instead of the proper offset. See simplify_subreg. */
3163 if (offset == 0
3164 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3165 {
3166 int difference = GET_MODE_SIZE (GET_MODE (y))
3167 - GET_MODE_SIZE (GET_MODE (x));
3168 if (WORDS_BIG_ENDIAN)
3169 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3170 if (BYTES_BIG_ENDIAN)
3171 offset += difference % UNITS_PER_WORD;
3172 }
3173
3174 if (final_p)
3175 *xp = adjust_address (y, GET_MODE (x), offset);
3176 else
3177 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3178 }
3179 else
3180 {
3181 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3182 SUBREG_BYTE (x));
3183
3184 if (new_rtx != 0)
3185 *xp = new_rtx;
3186 else if (final_p && REG_P (y))
3187 {
3188 /* Simplify_subreg can't handle some REG cases, but we have to. */
3189 unsigned int regno;
3190 HOST_WIDE_INT offset;
3191
3192 regno = subreg_regno (x);
3193 if (subreg_lowpart_p (x))
3194 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3195 else
3196 offset = SUBREG_BYTE (x);
3197 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3198 }
3199 }
3200
3201 return *xp;
3202 }
3203
3204 /* Do alter_subreg on all the SUBREGs contained in X. */
3205
3206 static rtx
3207 walk_alter_subreg (rtx *xp, bool *changed)
3208 {
3209 rtx x = *xp;
3210 switch (GET_CODE (x))
3211 {
3212 case PLUS:
3213 case MULT:
3214 case AND:
3215 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3216 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3217 break;
3218
3219 case MEM:
3220 case ZERO_EXTEND:
3221 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3222 break;
3223
3224 case SUBREG:
3225 *changed = true;
3226 return alter_subreg (xp, true);
3227
3228 default:
3229 break;
3230 }
3231
3232 return *xp;
3233 }
3234 \f
3235 #ifdef HAVE_cc0
3236
3237 /* Given BODY, the body of a jump instruction, alter the jump condition
3238 as required by the bits that are set in cc_status.flags.
3239 Not all of the bits there can be handled at this level in all cases.
3240
3241 The value is normally 0.
3242 1 means that the condition has become always true.
3243 -1 means that the condition has become always false.
3244 2 means that COND has been altered. */
3245
3246 static int
3247 alter_cond (rtx cond)
3248 {
3249 int value = 0;
3250
3251 if (cc_status.flags & CC_REVERSED)
3252 {
3253 value = 2;
3254 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3255 }
3256
3257 if (cc_status.flags & CC_INVERTED)
3258 {
3259 value = 2;
3260 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3261 }
3262
3263 if (cc_status.flags & CC_NOT_POSITIVE)
3264 switch (GET_CODE (cond))
3265 {
3266 case LE:
3267 case LEU:
3268 case GEU:
3269 /* Jump becomes unconditional. */
3270 return 1;
3271
3272 case GT:
3273 case GTU:
3274 case LTU:
3275 /* Jump becomes no-op. */
3276 return -1;
3277
3278 case GE:
3279 PUT_CODE (cond, EQ);
3280 value = 2;
3281 break;
3282
3283 case LT:
3284 PUT_CODE (cond, NE);
3285 value = 2;
3286 break;
3287
3288 default:
3289 break;
3290 }
3291
3292 if (cc_status.flags & CC_NOT_NEGATIVE)
3293 switch (GET_CODE (cond))
3294 {
3295 case GE:
3296 case GEU:
3297 /* Jump becomes unconditional. */
3298 return 1;
3299
3300 case LT:
3301 case LTU:
3302 /* Jump becomes no-op. */
3303 return -1;
3304
3305 case LE:
3306 case LEU:
3307 PUT_CODE (cond, EQ);
3308 value = 2;
3309 break;
3310
3311 case GT:
3312 case GTU:
3313 PUT_CODE (cond, NE);
3314 value = 2;
3315 break;
3316
3317 default:
3318 break;
3319 }
3320
3321 if (cc_status.flags & CC_NO_OVERFLOW)
3322 switch (GET_CODE (cond))
3323 {
3324 case GEU:
3325 /* Jump becomes unconditional. */
3326 return 1;
3327
3328 case LEU:
3329 PUT_CODE (cond, EQ);
3330 value = 2;
3331 break;
3332
3333 case GTU:
3334 PUT_CODE (cond, NE);
3335 value = 2;
3336 break;
3337
3338 case LTU:
3339 /* Jump becomes no-op. */
3340 return -1;
3341
3342 default:
3343 break;
3344 }
3345
3346 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3347 switch (GET_CODE (cond))
3348 {
3349 default:
3350 gcc_unreachable ();
3351
3352 case NE:
3353 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3354 value = 2;
3355 break;
3356
3357 case EQ:
3358 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3359 value = 2;
3360 break;
3361 }
3362
3363 if (cc_status.flags & CC_NOT_SIGNED)
3364 /* The flags are valid if signed condition operators are converted
3365 to unsigned. */
3366 switch (GET_CODE (cond))
3367 {
3368 case LE:
3369 PUT_CODE (cond, LEU);
3370 value = 2;
3371 break;
3372
3373 case LT:
3374 PUT_CODE (cond, LTU);
3375 value = 2;
3376 break;
3377
3378 case GT:
3379 PUT_CODE (cond, GTU);
3380 value = 2;
3381 break;
3382
3383 case GE:
3384 PUT_CODE (cond, GEU);
3385 value = 2;
3386 break;
3387
3388 default:
3389 break;
3390 }
3391
3392 return value;
3393 }
3394 #endif
3395 \f
3396 /* Report inconsistency between the assembler template and the operands.
3397 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3398
3399 void
3400 output_operand_lossage (const char *cmsgid, ...)
3401 {
3402 char *fmt_string;
3403 char *new_message;
3404 const char *pfx_str;
3405 va_list ap;
3406
3407 va_start (ap, cmsgid);
3408
3409 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3410 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3411 vasprintf (&new_message, fmt_string, ap);
3412
3413 if (this_is_asm_operands)
3414 error_for_asm (this_is_asm_operands, "%s", new_message);
3415 else
3416 internal_error ("%s", new_message);
3417
3418 free (fmt_string);
3419 free (new_message);
3420 va_end (ap);
3421 }
3422 \f
3423 /* Output of assembler code from a template, and its subroutines. */
3424
3425 /* Annotate the assembly with a comment describing the pattern and
3426 alternative used. */
3427
3428 static void
3429 output_asm_name (void)
3430 {
3431 if (debug_insn)
3432 {
3433 int num = INSN_CODE (debug_insn);
3434 fprintf (asm_out_file, "\t%s %d\t%s",
3435 ASM_COMMENT_START, INSN_UID (debug_insn),
3436 insn_data[num].name);
3437 if (insn_data[num].n_alternatives > 1)
3438 fprintf (asm_out_file, "/%d", which_alternative + 1);
3439
3440 if (HAVE_ATTR_length)
3441 fprintf (asm_out_file, "\t[length = %d]",
3442 get_attr_length (debug_insn));
3443
3444 /* Clear this so only the first assembler insn
3445 of any rtl insn will get the special comment for -dp. */
3446 debug_insn = 0;
3447 }
3448 }
3449
3450 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3451 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3452 corresponds to the address of the object and 0 if to the object. */
3453
3454 static tree
3455 get_mem_expr_from_op (rtx op, int *paddressp)
3456 {
3457 tree expr;
3458 int inner_addressp;
3459
3460 *paddressp = 0;
3461
3462 if (REG_P (op))
3463 return REG_EXPR (op);
3464 else if (!MEM_P (op))
3465 return 0;
3466
3467 if (MEM_EXPR (op) != 0)
3468 return MEM_EXPR (op);
3469
3470 /* Otherwise we have an address, so indicate it and look at the address. */
3471 *paddressp = 1;
3472 op = XEXP (op, 0);
3473
3474 /* First check if we have a decl for the address, then look at the right side
3475 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3476 But don't allow the address to itself be indirect. */
3477 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3478 return expr;
3479 else if (GET_CODE (op) == PLUS
3480 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3481 return expr;
3482
3483 while (UNARY_P (op)
3484 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3485 op = XEXP (op, 0);
3486
3487 expr = get_mem_expr_from_op (op, &inner_addressp);
3488 return inner_addressp ? 0 : expr;
3489 }
3490
3491 /* Output operand names for assembler instructions. OPERANDS is the
3492 operand vector, OPORDER is the order to write the operands, and NOPS
3493 is the number of operands to write. */
3494
3495 static void
3496 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3497 {
3498 int wrote = 0;
3499 int i;
3500
3501 for (i = 0; i < nops; i++)
3502 {
3503 int addressp;
3504 rtx op = operands[oporder[i]];
3505 tree expr = get_mem_expr_from_op (op, &addressp);
3506
3507 fprintf (asm_out_file, "%c%s",
3508 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3509 wrote = 1;
3510 if (expr)
3511 {
3512 fprintf (asm_out_file, "%s",
3513 addressp ? "*" : "");
3514 print_mem_expr (asm_out_file, expr);
3515 wrote = 1;
3516 }
3517 else if (REG_P (op) && ORIGINAL_REGNO (op)
3518 && ORIGINAL_REGNO (op) != REGNO (op))
3519 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3520 }
3521 }
3522
3523 #ifdef ASSEMBLER_DIALECT
3524 /* Helper function to parse assembler dialects in the asm string.
3525 This is called from output_asm_insn and asm_fprintf. */
3526 static const char *
3527 do_assembler_dialects (const char *p, int *dialect)
3528 {
3529 char c = *(p - 1);
3530
3531 switch (c)
3532 {
3533 case '{':
3534 {
3535 int i;
3536
3537 if (*dialect)
3538 output_operand_lossage ("nested assembly dialect alternatives");
3539 else
3540 *dialect = 1;
3541
3542 /* If we want the first dialect, do nothing. Otherwise, skip
3543 DIALECT_NUMBER of strings ending with '|'. */
3544 for (i = 0; i < dialect_number; i++)
3545 {
3546 while (*p && *p != '}')
3547 {
3548 if (*p == '|')
3549 {
3550 p++;
3551 break;
3552 }
3553
3554 /* Skip over any character after a percent sign. */
3555 if (*p == '%')
3556 p++;
3557 if (*p)
3558 p++;
3559 }
3560
3561 if (*p == '}')
3562 break;
3563 }
3564
3565 if (*p == '\0')
3566 output_operand_lossage ("unterminated assembly dialect alternative");
3567 }
3568 break;
3569
3570 case '|':
3571 if (*dialect)
3572 {
3573 /* Skip to close brace. */
3574 do
3575 {
3576 if (*p == '\0')
3577 {
3578 output_operand_lossage ("unterminated assembly dialect alternative");
3579 break;
3580 }
3581
3582 /* Skip over any character after a percent sign. */
3583 if (*p == '%' && p[1])
3584 {
3585 p += 2;
3586 continue;
3587 }
3588
3589 if (*p++ == '}')
3590 break;
3591 }
3592 while (1);
3593
3594 *dialect = 0;
3595 }
3596 else
3597 putc (c, asm_out_file);
3598 break;
3599
3600 case '}':
3601 if (! *dialect)
3602 putc (c, asm_out_file);
3603 *dialect = 0;
3604 break;
3605 default:
3606 gcc_unreachable ();
3607 }
3608
3609 return p;
3610 }
3611 #endif
3612
3613 /* Output text from TEMPLATE to the assembler output file,
3614 obeying %-directions to substitute operands taken from
3615 the vector OPERANDS.
3616
3617 %N (for N a digit) means print operand N in usual manner.
3618 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3619 and print the label name with no punctuation.
3620 %cN means require operand N to be a constant
3621 and print the constant expression with no punctuation.
3622 %aN means expect operand N to be a memory address
3623 (not a memory reference!) and print a reference
3624 to that address.
3625 %nN means expect operand N to be a constant
3626 and print a constant expression for minus the value
3627 of the operand, with no other punctuation. */
3628
3629 void
3630 output_asm_insn (const char *templ, rtx *operands)
3631 {
3632 const char *p;
3633 int c;
3634 #ifdef ASSEMBLER_DIALECT
3635 int dialect = 0;
3636 #endif
3637 int oporder[MAX_RECOG_OPERANDS];
3638 char opoutput[MAX_RECOG_OPERANDS];
3639 int ops = 0;
3640
3641 /* An insn may return a null string template
3642 in a case where no assembler code is needed. */
3643 if (*templ == 0)
3644 return;
3645
3646 memset (opoutput, 0, sizeof opoutput);
3647 p = templ;
3648 putc ('\t', asm_out_file);
3649
3650 #ifdef ASM_OUTPUT_OPCODE
3651 ASM_OUTPUT_OPCODE (asm_out_file, p);
3652 #endif
3653
3654 while ((c = *p++))
3655 switch (c)
3656 {
3657 case '\n':
3658 if (flag_verbose_asm)
3659 output_asm_operand_names (operands, oporder, ops);
3660 if (flag_print_asm_name)
3661 output_asm_name ();
3662
3663 ops = 0;
3664 memset (opoutput, 0, sizeof opoutput);
3665
3666 putc (c, asm_out_file);
3667 #ifdef ASM_OUTPUT_OPCODE
3668 while ((c = *p) == '\t')
3669 {
3670 putc (c, asm_out_file);
3671 p++;
3672 }
3673 ASM_OUTPUT_OPCODE (asm_out_file, p);
3674 #endif
3675 break;
3676
3677 #ifdef ASSEMBLER_DIALECT
3678 case '{':
3679 case '}':
3680 case '|':
3681 p = do_assembler_dialects (p, &dialect);
3682 break;
3683 #endif
3684
3685 case '%':
3686 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3687 if ASSEMBLER_DIALECT defined and these characters have a special
3688 meaning as dialect delimiters.*/
3689 if (*p == '%'
3690 #ifdef ASSEMBLER_DIALECT
3691 || *p == '{' || *p == '}' || *p == '|'
3692 #endif
3693 )
3694 {
3695 putc (*p, asm_out_file);
3696 p++;
3697 }
3698 /* %= outputs a number which is unique to each insn in the entire
3699 compilation. This is useful for making local labels that are
3700 referred to more than once in a given insn. */
3701 else if (*p == '=')
3702 {
3703 p++;
3704 fprintf (asm_out_file, "%d", insn_counter);
3705 }
3706 /* % followed by a letter and some digits
3707 outputs an operand in a special way depending on the letter.
3708 Letters `acln' are implemented directly.
3709 Other letters are passed to `output_operand' so that
3710 the TARGET_PRINT_OPERAND hook can define them. */
3711 else if (ISALPHA (*p))
3712 {
3713 int letter = *p++;
3714 unsigned long opnum;
3715 char *endptr;
3716
3717 opnum = strtoul (p, &endptr, 10);
3718
3719 if (endptr == p)
3720 output_operand_lossage ("operand number missing "
3721 "after %%-letter");
3722 else if (this_is_asm_operands && opnum >= insn_noperands)
3723 output_operand_lossage ("operand number out of range");
3724 else if (letter == 'l')
3725 output_asm_label (operands[opnum]);
3726 else if (letter == 'a')
3727 output_address (operands[opnum]);
3728 else if (letter == 'c')
3729 {
3730 if (CONSTANT_ADDRESS_P (operands[opnum]))
3731 output_addr_const (asm_out_file, operands[opnum]);
3732 else
3733 output_operand (operands[opnum], 'c');
3734 }
3735 else if (letter == 'n')
3736 {
3737 if (CONST_INT_P (operands[opnum]))
3738 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3739 - INTVAL (operands[opnum]));
3740 else
3741 {
3742 putc ('-', asm_out_file);
3743 output_addr_const (asm_out_file, operands[opnum]);
3744 }
3745 }
3746 else
3747 output_operand (operands[opnum], letter);
3748
3749 if (!opoutput[opnum])
3750 oporder[ops++] = opnum;
3751 opoutput[opnum] = 1;
3752
3753 p = endptr;
3754 c = *p;
3755 }
3756 /* % followed by a digit outputs an operand the default way. */
3757 else if (ISDIGIT (*p))
3758 {
3759 unsigned long opnum;
3760 char *endptr;
3761
3762 opnum = strtoul (p, &endptr, 10);
3763 if (this_is_asm_operands && opnum >= insn_noperands)
3764 output_operand_lossage ("operand number out of range");
3765 else
3766 output_operand (operands[opnum], 0);
3767
3768 if (!opoutput[opnum])
3769 oporder[ops++] = opnum;
3770 opoutput[opnum] = 1;
3771
3772 p = endptr;
3773 c = *p;
3774 }
3775 /* % followed by punctuation: output something for that
3776 punctuation character alone, with no operand. The
3777 TARGET_PRINT_OPERAND hook decides what is actually done. */
3778 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3779 output_operand (NULL_RTX, *p++);
3780 else
3781 output_operand_lossage ("invalid %%-code");
3782 break;
3783
3784 default:
3785 putc (c, asm_out_file);
3786 }
3787
3788 /* Write out the variable names for operands, if we know them. */
3789 if (flag_verbose_asm)
3790 output_asm_operand_names (operands, oporder, ops);
3791 if (flag_print_asm_name)
3792 output_asm_name ();
3793
3794 putc ('\n', asm_out_file);
3795 }
3796 \f
3797 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3798
3799 void
3800 output_asm_label (rtx x)
3801 {
3802 char buf[256];
3803
3804 if (GET_CODE (x) == LABEL_REF)
3805 x = XEXP (x, 0);
3806 if (LABEL_P (x)
3807 || (NOTE_P (x)
3808 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3809 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3810 else
3811 output_operand_lossage ("'%%l' operand isn't a label");
3812
3813 assemble_name (asm_out_file, buf);
3814 }
3815
3816 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3817
3818 void
3819 mark_symbol_refs_as_used (rtx x)
3820 {
3821 subrtx_iterator::array_type array;
3822 FOR_EACH_SUBRTX (iter, array, x, ALL)
3823 {
3824 const_rtx x = *iter;
3825 if (GET_CODE (x) == SYMBOL_REF)
3826 if (tree t = SYMBOL_REF_DECL (x))
3827 assemble_external (t);
3828 }
3829 }
3830
3831 /* Print operand X using machine-dependent assembler syntax.
3832 CODE is a non-digit that preceded the operand-number in the % spec,
3833 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3834 between the % and the digits.
3835 When CODE is a non-letter, X is 0.
3836
3837 The meanings of the letters are machine-dependent and controlled
3838 by TARGET_PRINT_OPERAND. */
3839
3840 void
3841 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3842 {
3843 if (x && GET_CODE (x) == SUBREG)
3844 x = alter_subreg (&x, true);
3845
3846 /* X must not be a pseudo reg. */
3847 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3848
3849 targetm.asm_out.print_operand (asm_out_file, x, code);
3850
3851 if (x == NULL_RTX)
3852 return;
3853
3854 mark_symbol_refs_as_used (x);
3855 }
3856
3857 /* Print a memory reference operand for address X using
3858 machine-dependent assembler syntax. */
3859
3860 void
3861 output_address (rtx x)
3862 {
3863 bool changed = false;
3864 walk_alter_subreg (&x, &changed);
3865 targetm.asm_out.print_operand_address (asm_out_file, x);
3866 }
3867 \f
3868 /* Print an integer constant expression in assembler syntax.
3869 Addition and subtraction are the only arithmetic
3870 that may appear in these expressions. */
3871
3872 void
3873 output_addr_const (FILE *file, rtx x)
3874 {
3875 char buf[256];
3876
3877 restart:
3878 switch (GET_CODE (x))
3879 {
3880 case PC:
3881 putc ('.', file);
3882 break;
3883
3884 case SYMBOL_REF:
3885 if (SYMBOL_REF_DECL (x))
3886 assemble_external (SYMBOL_REF_DECL (x));
3887 #ifdef ASM_OUTPUT_SYMBOL_REF
3888 ASM_OUTPUT_SYMBOL_REF (file, x);
3889 #else
3890 assemble_name (file, XSTR (x, 0));
3891 #endif
3892 break;
3893
3894 case LABEL_REF:
3895 x = XEXP (x, 0);
3896 /* Fall through. */
3897 case CODE_LABEL:
3898 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3899 #ifdef ASM_OUTPUT_LABEL_REF
3900 ASM_OUTPUT_LABEL_REF (file, buf);
3901 #else
3902 assemble_name (file, buf);
3903 #endif
3904 break;
3905
3906 case CONST_INT:
3907 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3908 break;
3909
3910 case CONST:
3911 /* This used to output parentheses around the expression,
3912 but that does not work on the 386 (either ATT or BSD assembler). */
3913 output_addr_const (file, XEXP (x, 0));
3914 break;
3915
3916 case CONST_WIDE_INT:
3917 /* We do not know the mode here so we have to use a round about
3918 way to build a wide-int to get it printed properly. */
3919 {
3920 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3921 CONST_WIDE_INT_NUNITS (x),
3922 CONST_WIDE_INT_NUNITS (x)
3923 * HOST_BITS_PER_WIDE_INT,
3924 false);
3925 print_decs (w, file);
3926 }
3927 break;
3928
3929 case CONST_DOUBLE:
3930 if (CONST_DOUBLE_AS_INT_P (x))
3931 {
3932 /* We can use %d if the number is one word and positive. */
3933 if (CONST_DOUBLE_HIGH (x))
3934 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3935 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3936 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3937 else if (CONST_DOUBLE_LOW (x) < 0)
3938 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3939 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3940 else
3941 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3942 }
3943 else
3944 /* We can't handle floating point constants;
3945 PRINT_OPERAND must handle them. */
3946 output_operand_lossage ("floating constant misused");
3947 break;
3948
3949 case CONST_FIXED:
3950 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3951 break;
3952
3953 case PLUS:
3954 /* Some assemblers need integer constants to appear last (eg masm). */
3955 if (CONST_INT_P (XEXP (x, 0)))
3956 {
3957 output_addr_const (file, XEXP (x, 1));
3958 if (INTVAL (XEXP (x, 0)) >= 0)
3959 fprintf (file, "+");
3960 output_addr_const (file, XEXP (x, 0));
3961 }
3962 else
3963 {
3964 output_addr_const (file, XEXP (x, 0));
3965 if (!CONST_INT_P (XEXP (x, 1))
3966 || INTVAL (XEXP (x, 1)) >= 0)
3967 fprintf (file, "+");
3968 output_addr_const (file, XEXP (x, 1));
3969 }
3970 break;
3971
3972 case MINUS:
3973 /* Avoid outputting things like x-x or x+5-x,
3974 since some assemblers can't handle that. */
3975 x = simplify_subtraction (x);
3976 if (GET_CODE (x) != MINUS)
3977 goto restart;
3978
3979 output_addr_const (file, XEXP (x, 0));
3980 fprintf (file, "-");
3981 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3982 || GET_CODE (XEXP (x, 1)) == PC
3983 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3984 output_addr_const (file, XEXP (x, 1));
3985 else
3986 {
3987 fputs (targetm.asm_out.open_paren, file);
3988 output_addr_const (file, XEXP (x, 1));
3989 fputs (targetm.asm_out.close_paren, file);
3990 }
3991 break;
3992
3993 case ZERO_EXTEND:
3994 case SIGN_EXTEND:
3995 case SUBREG:
3996 case TRUNCATE:
3997 output_addr_const (file, XEXP (x, 0));
3998 break;
3999
4000 default:
4001 if (targetm.asm_out.output_addr_const_extra (file, x))
4002 break;
4003
4004 output_operand_lossage ("invalid expression as operand");
4005 }
4006 }
4007 \f
4008 /* Output a quoted string. */
4009
4010 void
4011 output_quoted_string (FILE *asm_file, const char *string)
4012 {
4013 #ifdef OUTPUT_QUOTED_STRING
4014 OUTPUT_QUOTED_STRING (asm_file, string);
4015 #else
4016 char c;
4017
4018 putc ('\"', asm_file);
4019 while ((c = *string++) != 0)
4020 {
4021 if (ISPRINT (c))
4022 {
4023 if (c == '\"' || c == '\\')
4024 putc ('\\', asm_file);
4025 putc (c, asm_file);
4026 }
4027 else
4028 fprintf (asm_file, "\\%03o", (unsigned char) c);
4029 }
4030 putc ('\"', asm_file);
4031 #endif
4032 }
4033 \f
4034 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4035
4036 void
4037 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4038 {
4039 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4040 if (value == 0)
4041 putc ('0', f);
4042 else
4043 {
4044 char *p = buf + sizeof (buf);
4045 do
4046 *--p = "0123456789abcdef"[value % 16];
4047 while ((value /= 16) != 0);
4048 *--p = 'x';
4049 *--p = '0';
4050 fwrite (p, 1, buf + sizeof (buf) - p, f);
4051 }
4052 }
4053
4054 /* Internal function that prints an unsigned long in decimal in reverse.
4055 The output string IS NOT null-terminated. */
4056
4057 static int
4058 sprint_ul_rev (char *s, unsigned long value)
4059 {
4060 int i = 0;
4061 do
4062 {
4063 s[i] = "0123456789"[value % 10];
4064 value /= 10;
4065 i++;
4066 /* alternate version, without modulo */
4067 /* oldval = value; */
4068 /* value /= 10; */
4069 /* s[i] = "0123456789" [oldval - 10*value]; */
4070 /* i++ */
4071 }
4072 while (value != 0);
4073 return i;
4074 }
4075
4076 /* Write an unsigned long as decimal to a file, fast. */
4077
4078 void
4079 fprint_ul (FILE *f, unsigned long value)
4080 {
4081 /* python says: len(str(2**64)) == 20 */
4082 char s[20];
4083 int i;
4084
4085 i = sprint_ul_rev (s, value);
4086
4087 /* It's probably too small to bother with string reversal and fputs. */
4088 do
4089 {
4090 i--;
4091 putc (s[i], f);
4092 }
4093 while (i != 0);
4094 }
4095
4096 /* Write an unsigned long as decimal to a string, fast.
4097 s must be wide enough to not overflow, at least 21 chars.
4098 Returns the length of the string (without terminating '\0'). */
4099
4100 int
4101 sprint_ul (char *s, unsigned long value)
4102 {
4103 int len;
4104 char tmp_c;
4105 int i;
4106 int j;
4107
4108 len = sprint_ul_rev (s, value);
4109 s[len] = '\0';
4110
4111 /* Reverse the string. */
4112 i = 0;
4113 j = len - 1;
4114 while (i < j)
4115 {
4116 tmp_c = s[i];
4117 s[i] = s[j];
4118 s[j] = tmp_c;
4119 i++; j--;
4120 }
4121
4122 return len;
4123 }
4124
4125 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4126 %R prints the value of REGISTER_PREFIX.
4127 %L prints the value of LOCAL_LABEL_PREFIX.
4128 %U prints the value of USER_LABEL_PREFIX.
4129 %I prints the value of IMMEDIATE_PREFIX.
4130 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4131 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4132
4133 We handle alternate assembler dialects here, just like output_asm_insn. */
4134
4135 void
4136 asm_fprintf (FILE *file, const char *p, ...)
4137 {
4138 char buf[10];
4139 char *q, c;
4140 #ifdef ASSEMBLER_DIALECT
4141 int dialect = 0;
4142 #endif
4143 va_list argptr;
4144
4145 va_start (argptr, p);
4146
4147 buf[0] = '%';
4148
4149 while ((c = *p++))
4150 switch (c)
4151 {
4152 #ifdef ASSEMBLER_DIALECT
4153 case '{':
4154 case '}':
4155 case '|':
4156 p = do_assembler_dialects (p, &dialect);
4157 break;
4158 #endif
4159
4160 case '%':
4161 c = *p++;
4162 q = &buf[1];
4163 while (strchr ("-+ #0", c))
4164 {
4165 *q++ = c;
4166 c = *p++;
4167 }
4168 while (ISDIGIT (c) || c == '.')
4169 {
4170 *q++ = c;
4171 c = *p++;
4172 }
4173 switch (c)
4174 {
4175 case '%':
4176 putc ('%', file);
4177 break;
4178
4179 case 'd': case 'i': case 'u':
4180 case 'x': case 'X': case 'o':
4181 case 'c':
4182 *q++ = c;
4183 *q = 0;
4184 fprintf (file, buf, va_arg (argptr, int));
4185 break;
4186
4187 case 'w':
4188 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4189 'o' cases, but we do not check for those cases. It
4190 means that the value is a HOST_WIDE_INT, which may be
4191 either `long' or `long long'. */
4192 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4193 q += strlen (HOST_WIDE_INT_PRINT);
4194 *q++ = *p++;
4195 *q = 0;
4196 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4197 break;
4198
4199 case 'l':
4200 *q++ = c;
4201 #ifdef HAVE_LONG_LONG
4202 if (*p == 'l')
4203 {
4204 *q++ = *p++;
4205 *q++ = *p++;
4206 *q = 0;
4207 fprintf (file, buf, va_arg (argptr, long long));
4208 }
4209 else
4210 #endif
4211 {
4212 *q++ = *p++;
4213 *q = 0;
4214 fprintf (file, buf, va_arg (argptr, long));
4215 }
4216
4217 break;
4218
4219 case 's':
4220 *q++ = c;
4221 *q = 0;
4222 fprintf (file, buf, va_arg (argptr, char *));
4223 break;
4224
4225 case 'O':
4226 #ifdef ASM_OUTPUT_OPCODE
4227 ASM_OUTPUT_OPCODE (asm_out_file, p);
4228 #endif
4229 break;
4230
4231 case 'R':
4232 #ifdef REGISTER_PREFIX
4233 fprintf (file, "%s", REGISTER_PREFIX);
4234 #endif
4235 break;
4236
4237 case 'I':
4238 #ifdef IMMEDIATE_PREFIX
4239 fprintf (file, "%s", IMMEDIATE_PREFIX);
4240 #endif
4241 break;
4242
4243 case 'L':
4244 #ifdef LOCAL_LABEL_PREFIX
4245 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4246 #endif
4247 break;
4248
4249 case 'U':
4250 fputs (user_label_prefix, file);
4251 break;
4252
4253 #ifdef ASM_FPRINTF_EXTENSIONS
4254 /* Uppercase letters are reserved for general use by asm_fprintf
4255 and so are not available to target specific code. In order to
4256 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4257 they are defined here. As they get turned into real extensions
4258 to asm_fprintf they should be removed from this list. */
4259 case 'A': case 'B': case 'C': case 'D': case 'E':
4260 case 'F': case 'G': case 'H': case 'J': case 'K':
4261 case 'M': case 'N': case 'P': case 'Q': case 'S':
4262 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4263 break;
4264
4265 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4266 #endif
4267 default:
4268 gcc_unreachable ();
4269 }
4270 break;
4271
4272 default:
4273 putc (c, file);
4274 }
4275 va_end (argptr);
4276 }
4277 \f
4278 /* Return nonzero if this function has no function calls. */
4279
4280 int
4281 leaf_function_p (void)
4282 {
4283 rtx_insn *insn;
4284
4285 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4286 functions even if they call mcount. */
4287 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4288 return 0;
4289
4290 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4291 {
4292 if (CALL_P (insn)
4293 && ! SIBLING_CALL_P (insn))
4294 return 0;
4295 if (NONJUMP_INSN_P (insn)
4296 && GET_CODE (PATTERN (insn)) == SEQUENCE
4297 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4298 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4299 return 0;
4300 }
4301
4302 return 1;
4303 }
4304
4305 /* Return 1 if branch is a forward branch.
4306 Uses insn_shuid array, so it works only in the final pass. May be used by
4307 output templates to customary add branch prediction hints.
4308 */
4309 int
4310 final_forward_branch_p (rtx_insn *insn)
4311 {
4312 int insn_id, label_id;
4313
4314 gcc_assert (uid_shuid);
4315 insn_id = INSN_SHUID (insn);
4316 label_id = INSN_SHUID (JUMP_LABEL (insn));
4317 /* We've hit some insns that does not have id information available. */
4318 gcc_assert (insn_id && label_id);
4319 return insn_id < label_id;
4320 }
4321
4322 /* On some machines, a function with no call insns
4323 can run faster if it doesn't create its own register window.
4324 When output, the leaf function should use only the "output"
4325 registers. Ordinarily, the function would be compiled to use
4326 the "input" registers to find its arguments; it is a candidate
4327 for leaf treatment if it uses only the "input" registers.
4328 Leaf function treatment means renumbering so the function
4329 uses the "output" registers instead. */
4330
4331 #ifdef LEAF_REGISTERS
4332
4333 /* Return 1 if this function uses only the registers that can be
4334 safely renumbered. */
4335
4336 int
4337 only_leaf_regs_used (void)
4338 {
4339 int i;
4340 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4341
4342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4343 if ((df_regs_ever_live_p (i) || global_regs[i])
4344 && ! permitted_reg_in_leaf_functions[i])
4345 return 0;
4346
4347 if (crtl->uses_pic_offset_table
4348 && pic_offset_table_rtx != 0
4349 && REG_P (pic_offset_table_rtx)
4350 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4351 return 0;
4352
4353 return 1;
4354 }
4355
4356 /* Scan all instructions and renumber all registers into those
4357 available in leaf functions. */
4358
4359 static void
4360 leaf_renumber_regs (rtx_insn *first)
4361 {
4362 rtx_insn *insn;
4363
4364 /* Renumber only the actual patterns.
4365 The reg-notes can contain frame pointer refs,
4366 and renumbering them could crash, and should not be needed. */
4367 for (insn = first; insn; insn = NEXT_INSN (insn))
4368 if (INSN_P (insn))
4369 leaf_renumber_regs_insn (PATTERN (insn));
4370 }
4371
4372 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4373 available in leaf functions. */
4374
4375 void
4376 leaf_renumber_regs_insn (rtx in_rtx)
4377 {
4378 int i, j;
4379 const char *format_ptr;
4380
4381 if (in_rtx == 0)
4382 return;
4383
4384 /* Renumber all input-registers into output-registers.
4385 renumbered_regs would be 1 for an output-register;
4386 they */
4387
4388 if (REG_P (in_rtx))
4389 {
4390 int newreg;
4391
4392 /* Don't renumber the same reg twice. */
4393 if (in_rtx->used)
4394 return;
4395
4396 newreg = REGNO (in_rtx);
4397 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4398 to reach here as part of a REG_NOTE. */
4399 if (newreg >= FIRST_PSEUDO_REGISTER)
4400 {
4401 in_rtx->used = 1;
4402 return;
4403 }
4404 newreg = LEAF_REG_REMAP (newreg);
4405 gcc_assert (newreg >= 0);
4406 df_set_regs_ever_live (REGNO (in_rtx), false);
4407 df_set_regs_ever_live (newreg, true);
4408 SET_REGNO (in_rtx, newreg);
4409 in_rtx->used = 1;
4410 }
4411
4412 if (INSN_P (in_rtx))
4413 {
4414 /* Inside a SEQUENCE, we find insns.
4415 Renumber just the patterns of these insns,
4416 just as we do for the top-level insns. */
4417 leaf_renumber_regs_insn (PATTERN (in_rtx));
4418 return;
4419 }
4420
4421 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4422
4423 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4424 switch (*format_ptr++)
4425 {
4426 case 'e':
4427 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4428 break;
4429
4430 case 'E':
4431 if (NULL != XVEC (in_rtx, i))
4432 {
4433 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4434 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4435 }
4436 break;
4437
4438 case 'S':
4439 case 's':
4440 case '0':
4441 case 'i':
4442 case 'w':
4443 case 'n':
4444 case 'u':
4445 break;
4446
4447 default:
4448 gcc_unreachable ();
4449 }
4450 }
4451 #endif
4452 \f
4453 /* Turn the RTL into assembly. */
4454 static unsigned int
4455 rest_of_handle_final (void)
4456 {
4457 rtx x;
4458 const char *fnname;
4459
4460 /* Get the function's name, as described by its RTL. This may be
4461 different from the DECL_NAME name used in the source file. */
4462
4463 x = DECL_RTL (current_function_decl);
4464 gcc_assert (MEM_P (x));
4465 x = XEXP (x, 0);
4466 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4467 fnname = XSTR (x, 0);
4468
4469 assemble_start_function (current_function_decl, fnname);
4470 final_start_function (get_insns (), asm_out_file, optimize);
4471 final (get_insns (), asm_out_file, optimize);
4472 if (flag_use_caller_save)
4473 collect_fn_hard_reg_usage ();
4474 final_end_function ();
4475
4476 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4477 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4478 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4479 output_function_exception_table (fnname);
4480
4481 assemble_end_function (current_function_decl, fnname);
4482
4483 user_defined_section_attribute = false;
4484
4485 /* Free up reg info memory. */
4486 free_reg_info ();
4487
4488 if (! quiet_flag)
4489 fflush (asm_out_file);
4490
4491 /* Write DBX symbols if requested. */
4492
4493 /* Note that for those inline functions where we don't initially
4494 know for certain that we will be generating an out-of-line copy,
4495 the first invocation of this routine (rest_of_compilation) will
4496 skip over this code by doing a `goto exit_rest_of_compilation;'.
4497 Later on, wrapup_global_declarations will (indirectly) call
4498 rest_of_compilation again for those inline functions that need
4499 to have out-of-line copies generated. During that call, we
4500 *will* be routed past here. */
4501
4502 timevar_push (TV_SYMOUT);
4503 if (!DECL_IGNORED_P (current_function_decl))
4504 debug_hooks->function_decl (current_function_decl);
4505 timevar_pop (TV_SYMOUT);
4506
4507 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4508 DECL_INITIAL (current_function_decl) = error_mark_node;
4509
4510 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4511 && targetm.have_ctors_dtors)
4512 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4513 decl_init_priority_lookup
4514 (current_function_decl));
4515 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4516 && targetm.have_ctors_dtors)
4517 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4518 decl_fini_priority_lookup
4519 (current_function_decl));
4520 return 0;
4521 }
4522
4523 namespace {
4524
4525 const pass_data pass_data_final =
4526 {
4527 RTL_PASS, /* type */
4528 "final", /* name */
4529 OPTGROUP_NONE, /* optinfo_flags */
4530 TV_FINAL, /* tv_id */
4531 0, /* properties_required */
4532 0, /* properties_provided */
4533 0, /* properties_destroyed */
4534 0, /* todo_flags_start */
4535 0, /* todo_flags_finish */
4536 };
4537
4538 class pass_final : public rtl_opt_pass
4539 {
4540 public:
4541 pass_final (gcc::context *ctxt)
4542 : rtl_opt_pass (pass_data_final, ctxt)
4543 {}
4544
4545 /* opt_pass methods: */
4546 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4547
4548 }; // class pass_final
4549
4550 } // anon namespace
4551
4552 rtl_opt_pass *
4553 make_pass_final (gcc::context *ctxt)
4554 {
4555 return new pass_final (ctxt);
4556 }
4557
4558
4559 static unsigned int
4560 rest_of_handle_shorten_branches (void)
4561 {
4562 /* Shorten branches. */
4563 shorten_branches (get_insns ());
4564 return 0;
4565 }
4566
4567 namespace {
4568
4569 const pass_data pass_data_shorten_branches =
4570 {
4571 RTL_PASS, /* type */
4572 "shorten", /* name */
4573 OPTGROUP_NONE, /* optinfo_flags */
4574 TV_SHORTEN_BRANCH, /* tv_id */
4575 0, /* properties_required */
4576 0, /* properties_provided */
4577 0, /* properties_destroyed */
4578 0, /* todo_flags_start */
4579 0, /* todo_flags_finish */
4580 };
4581
4582 class pass_shorten_branches : public rtl_opt_pass
4583 {
4584 public:
4585 pass_shorten_branches (gcc::context *ctxt)
4586 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4587 {}
4588
4589 /* opt_pass methods: */
4590 virtual unsigned int execute (function *)
4591 {
4592 return rest_of_handle_shorten_branches ();
4593 }
4594
4595 }; // class pass_shorten_branches
4596
4597 } // anon namespace
4598
4599 rtl_opt_pass *
4600 make_pass_shorten_branches (gcc::context *ctxt)
4601 {
4602 return new pass_shorten_branches (ctxt);
4603 }
4604
4605
4606 static unsigned int
4607 rest_of_clean_state (void)
4608 {
4609 rtx_insn *insn, *next;
4610 FILE *final_output = NULL;
4611 int save_unnumbered = flag_dump_unnumbered;
4612 int save_noaddr = flag_dump_noaddr;
4613
4614 if (flag_dump_final_insns)
4615 {
4616 final_output = fopen (flag_dump_final_insns, "a");
4617 if (!final_output)
4618 {
4619 error ("could not open final insn dump file %qs: %m",
4620 flag_dump_final_insns);
4621 flag_dump_final_insns = NULL;
4622 }
4623 else
4624 {
4625 flag_dump_noaddr = flag_dump_unnumbered = 1;
4626 if (flag_compare_debug_opt || flag_compare_debug)
4627 dump_flags |= TDF_NOUID;
4628 dump_function_header (final_output, current_function_decl,
4629 dump_flags);
4630 final_insns_dump_p = true;
4631
4632 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4633 if (LABEL_P (insn))
4634 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4635 else
4636 {
4637 if (NOTE_P (insn))
4638 set_block_for_insn (insn, NULL);
4639 INSN_UID (insn) = 0;
4640 }
4641 }
4642 }
4643
4644 /* It is very important to decompose the RTL instruction chain here:
4645 debug information keeps pointing into CODE_LABEL insns inside the function
4646 body. If these remain pointing to the other insns, we end up preserving
4647 whole RTL chain and attached detailed debug info in memory. */
4648 for (insn = get_insns (); insn; insn = next)
4649 {
4650 next = NEXT_INSN (insn);
4651 SET_NEXT_INSN (insn) = NULL;
4652 SET_PREV_INSN (insn) = NULL;
4653
4654 if (final_output
4655 && (!NOTE_P (insn) ||
4656 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4657 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4658 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4659 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4660 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4661 print_rtl_single (final_output, insn);
4662 }
4663
4664 if (final_output)
4665 {
4666 flag_dump_noaddr = save_noaddr;
4667 flag_dump_unnumbered = save_unnumbered;
4668 final_insns_dump_p = false;
4669
4670 if (fclose (final_output))
4671 {
4672 error ("could not close final insn dump file %qs: %m",
4673 flag_dump_final_insns);
4674 flag_dump_final_insns = NULL;
4675 }
4676 }
4677
4678 /* In case the function was not output,
4679 don't leave any temporary anonymous types
4680 queued up for sdb output. */
4681 #ifdef SDB_DEBUGGING_INFO
4682 if (write_symbols == SDB_DEBUG)
4683 sdbout_types (NULL_TREE);
4684 #endif
4685
4686 flag_rerun_cse_after_global_opts = 0;
4687 reload_completed = 0;
4688 epilogue_completed = 0;
4689 #ifdef STACK_REGS
4690 regstack_completed = 0;
4691 #endif
4692
4693 /* Clear out the insn_length contents now that they are no
4694 longer valid. */
4695 init_insn_lengths ();
4696
4697 /* Show no temporary slots allocated. */
4698 init_temp_slots ();
4699
4700 free_bb_for_insn ();
4701
4702 delete_tree_ssa ();
4703
4704 /* We can reduce stack alignment on call site only when we are sure that
4705 the function body just produced will be actually used in the final
4706 executable. */
4707 if (decl_binds_to_current_def_p (current_function_decl))
4708 {
4709 unsigned int pref = crtl->preferred_stack_boundary;
4710 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4711 pref = crtl->stack_alignment_needed;
4712 cgraph_node::rtl_info (current_function_decl)
4713 ->preferred_incoming_stack_boundary = pref;
4714 }
4715
4716 /* Make sure volatile mem refs aren't considered valid operands for
4717 arithmetic insns. We must call this here if this is a nested inline
4718 function, since the above code leaves us in the init_recog state,
4719 and the function context push/pop code does not save/restore volatile_ok.
4720
4721 ??? Maybe it isn't necessary for expand_start_function to call this
4722 anymore if we do it here? */
4723
4724 init_recog_no_volatile ();
4725
4726 /* We're done with this function. Free up memory if we can. */
4727 free_after_parsing (cfun);
4728 free_after_compilation (cfun);
4729 return 0;
4730 }
4731
4732 namespace {
4733
4734 const pass_data pass_data_clean_state =
4735 {
4736 RTL_PASS, /* type */
4737 "*clean_state", /* name */
4738 OPTGROUP_NONE, /* optinfo_flags */
4739 TV_FINAL, /* tv_id */
4740 0, /* properties_required */
4741 0, /* properties_provided */
4742 PROP_rtl, /* properties_destroyed */
4743 0, /* todo_flags_start */
4744 0, /* todo_flags_finish */
4745 };
4746
4747 class pass_clean_state : public rtl_opt_pass
4748 {
4749 public:
4750 pass_clean_state (gcc::context *ctxt)
4751 : rtl_opt_pass (pass_data_clean_state, ctxt)
4752 {}
4753
4754 /* opt_pass methods: */
4755 virtual unsigned int execute (function *)
4756 {
4757 return rest_of_clean_state ();
4758 }
4759
4760 }; // class pass_clean_state
4761
4762 } // anon namespace
4763
4764 rtl_opt_pass *
4765 make_pass_clean_state (gcc::context *ctxt)
4766 {
4767 return new pass_clean_state (ctxt);
4768 }
4769
4770 /* Return true if INSN is a call to the the current function. */
4771
4772 static bool
4773 self_recursive_call_p (rtx_insn *insn)
4774 {
4775 tree fndecl = get_call_fndecl (insn);
4776 return (fndecl == current_function_decl
4777 && decl_binds_to_current_def_p (fndecl));
4778 }
4779
4780 /* Collect hard register usage for the current function. */
4781
4782 static void
4783 collect_fn_hard_reg_usage (void)
4784 {
4785 rtx_insn *insn;
4786 #ifdef STACK_REGS
4787 int i;
4788 #endif
4789 struct cgraph_rtl_info *node;
4790 HARD_REG_SET function_used_regs;
4791
4792 /* ??? To be removed when all the ports have been fixed. */
4793 if (!targetm.call_fusage_contains_non_callee_clobbers)
4794 return;
4795
4796 CLEAR_HARD_REG_SET (function_used_regs);
4797
4798 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4799 {
4800 HARD_REG_SET insn_used_regs;
4801
4802 if (!NONDEBUG_INSN_P (insn))
4803 continue;
4804
4805 if (CALL_P (insn)
4806 && !self_recursive_call_p (insn))
4807 {
4808 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4809 call_used_reg_set))
4810 return;
4811
4812 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4813 }
4814
4815 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4816 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4817 }
4818
4819 /* Be conservative - mark fixed and global registers as used. */
4820 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4821
4822 #ifdef STACK_REGS
4823 /* Handle STACK_REGS conservatively, since the df-framework does not
4824 provide accurate information for them. */
4825
4826 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4827 SET_HARD_REG_BIT (function_used_regs, i);
4828 #endif
4829
4830 /* The information we have gathered is only interesting if it exposes a
4831 register from the call_used_regs that is not used in this function. */
4832 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4833 return;
4834
4835 node = cgraph_node::rtl_info (current_function_decl);
4836 gcc_assert (node != NULL);
4837
4838 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4839 node->function_used_regs_valid = 1;
4840 }
4841
4842 /* Get the declaration of the function called by INSN. */
4843
4844 static tree
4845 get_call_fndecl (rtx_insn *insn)
4846 {
4847 rtx note, datum;
4848
4849 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4850 if (note == NULL_RTX)
4851 return NULL_TREE;
4852
4853 datum = XEXP (note, 0);
4854 if (datum != NULL_RTX)
4855 return SYMBOL_REF_DECL (datum);
4856
4857 return NULL_TREE;
4858 }
4859
4860 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4861 call targets that can be overwritten. */
4862
4863 static struct cgraph_rtl_info *
4864 get_call_cgraph_rtl_info (rtx_insn *insn)
4865 {
4866 tree fndecl;
4867
4868 if (insn == NULL_RTX)
4869 return NULL;
4870
4871 fndecl = get_call_fndecl (insn);
4872 if (fndecl == NULL_TREE
4873 || !decl_binds_to_current_def_p (fndecl))
4874 return NULL;
4875
4876 return cgraph_node::rtl_info (fndecl);
4877 }
4878
4879 /* Find hard registers used by function call instruction INSN, and return them
4880 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4881
4882 bool
4883 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4884 HARD_REG_SET default_set)
4885 {
4886 if (flag_use_caller_save)
4887 {
4888 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4889 if (node != NULL
4890 && node->function_used_regs_valid)
4891 {
4892 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4893 AND_HARD_REG_SET (*reg_set, default_set);
4894 return true;
4895 }
4896 }
4897
4898 COPY_HARD_REG_SET (*reg_set, default_set);
4899 return false;
4900 }