]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
[LVU] Introduce location views
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
84
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
88
89 #include "dwarf2out.h"
90
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
114
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
118
119 /* Line number of last NOTE. */
120 static int last_linenum;
121
122 /* Column number of last NOTE. */
123 static int last_columnnum;
124
125 /* Last discriminator written to assembly. */
126 static int last_discriminator;
127
128 /* Discriminator of current block. */
129 static int discriminator;
130
131 /* Highest line number in current block. */
132 static int high_block_linenum;
133
134 /* Likewise for function. */
135 static int high_function_linenum;
136
137 /* Filename of last NOTE. */
138 static const char *last_filename;
139
140 /* Override filename, line and column number. */
141 static const char *override_filename;
142 static int override_linenum;
143 static int override_columnnum;
144
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
147
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
149
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 const rtx_insn *this_is_asm_operands;
154
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
157
158 /* Compare optimization flag. */
159
160 static rtx last_ignored_compare = 0;
161
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
164
165 static int insn_counter = 0;
166
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
170
171 CC_STATUS cc_status;
172
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
175
176 CC_STATUS cc_prev_status;
177
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179
180 static int block_depth;
181
182 /* Nonzero if have enabled APP processing of our assembler output. */
183
184 static int app_on;
185
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
188
189 rtx_sequence *final_sequence;
190
191 #ifdef ASSEMBLER_DIALECT
192
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
196
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate;
199
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p;
202
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function;
205
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 #if HAVE_cc0
219 static int alter_cond (rtx);
220 #endif
221 static int align_fuzz (rtx, rtx, int, unsigned);
222 static void collect_fn_hard_reg_usage (void);
223 static tree get_call_fndecl (rtx_insn *);
224 \f
225 /* Initialize data in final at the beginning of a compilation. */
226
227 void
228 init_final (const char *filename ATTRIBUTE_UNUSED)
229 {
230 app_on = 0;
231 final_sequence = 0;
232
233 #ifdef ASSEMBLER_DIALECT
234 dialect_number = ASSEMBLER_DIALECT;
235 #endif
236 }
237
238 /* Default target function prologue and epilogue assembler output.
239
240 If not overridden for epilogue code, then the function body itself
241 contains return instructions wherever needed. */
242 void
243 default_function_pro_epilogue (FILE *)
244 {
245 }
246
247 void
248 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
249 tree decl ATTRIBUTE_UNUSED,
250 bool new_is_cold ATTRIBUTE_UNUSED)
251 {
252 }
253
254 /* Default target hook that outputs nothing to a stream. */
255 void
256 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
257 {
258 }
259
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
262
263 void
264 app_enable (void)
265 {
266 if (! app_on)
267 {
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
270 }
271 }
272
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
275
276 void
277 app_disable (void)
278 {
279 if (app_on)
280 {
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
283 }
284 }
285 \f
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
289
290 int
291 dbr_sequence_length (void)
292 {
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
297 }
298 \f
299 /* The next two pages contain routines used to compute the length of an insn
300 and to shorten branches. */
301
302 /* Arrays for insn lengths, and addresses. The latter is referenced by
303 `insn_current_length'. */
304
305 static int *insn_lengths;
306
307 vec<int> insn_addresses_;
308
309 /* Max uid for which the above arrays are valid. */
310 static int insn_lengths_max_uid;
311
312 /* Address of insn being processed. Used by `insn_current_length'. */
313 int insn_current_address;
314
315 /* Address of insn being processed in previous iteration. */
316 int insn_last_address;
317
318 /* known invariant alignment of insn being processed. */
319 int insn_current_align;
320
321 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
322 gives the next following alignment insn that increases the known
323 alignment, or NULL_RTX if there is no such insn.
324 For any alignment obtained this way, we can again index uid_align with
325 its uid to obtain the next following align that in turn increases the
326 alignment, till we reach NULL_RTX; the sequence obtained this way
327 for each insn we'll call the alignment chain of this insn in the following
328 comments. */
329
330 struct label_alignment
331 {
332 short alignment;
333 short max_skip;
334 };
335
336 static rtx *uid_align;
337 static int *uid_shuid;
338 static struct label_alignment *label_align;
339
340 /* Indicate that branch shortening hasn't yet been done. */
341
342 void
343 init_insn_lengths (void)
344 {
345 if (uid_shuid)
346 {
347 free (uid_shuid);
348 uid_shuid = 0;
349 }
350 if (insn_lengths)
351 {
352 free (insn_lengths);
353 insn_lengths = 0;
354 insn_lengths_max_uid = 0;
355 }
356 if (HAVE_ATTR_length)
357 INSN_ADDRESSES_FREE ();
358 if (uid_align)
359 {
360 free (uid_align);
361 uid_align = 0;
362 }
363 }
364
365 /* Obtain the current length of an insn. If branch shortening has been done,
366 get its actual length. Otherwise, use FALLBACK_FN to calculate the
367 length. */
368 static int
369 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
370 {
371 rtx body;
372 int i;
373 int length = 0;
374
375 if (!HAVE_ATTR_length)
376 return 0;
377
378 if (insn_lengths_max_uid > INSN_UID (insn))
379 return insn_lengths[INSN_UID (insn)];
380 else
381 switch (GET_CODE (insn))
382 {
383 case NOTE:
384 case BARRIER:
385 case CODE_LABEL:
386 case DEBUG_INSN:
387 return 0;
388
389 case CALL_INSN:
390 case JUMP_INSN:
391 length = fallback_fn (insn);
392 break;
393
394 case INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
397 return 0;
398
399 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
400 length = asm_insn_count (body) * fallback_fn (insn);
401 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
402 for (i = 0; i < seq->len (); i++)
403 length += get_attr_length_1 (seq->insn (i), fallback_fn);
404 else
405 length = fallback_fn (insn);
406 break;
407
408 default:
409 break;
410 }
411
412 #ifdef ADJUST_INSN_LENGTH
413 ADJUST_INSN_LENGTH (insn, length);
414 #endif
415 return length;
416 }
417
418 /* Obtain the current length of an insn. If branch shortening has been done,
419 get its actual length. Otherwise, get its maximum length. */
420 int
421 get_attr_length (rtx_insn *insn)
422 {
423 return get_attr_length_1 (insn, insn_default_length);
424 }
425
426 /* Obtain the current length of an insn. If branch shortening has been done,
427 get its actual length. Otherwise, get its minimum length. */
428 int
429 get_attr_min_length (rtx_insn *insn)
430 {
431 return get_attr_length_1 (insn, insn_min_length);
432 }
433 \f
434 /* Code to handle alignment inside shorten_branches. */
435
436 /* Here is an explanation how the algorithm in align_fuzz can give
437 proper results:
438
439 Call a sequence of instructions beginning with alignment point X
440 and continuing until the next alignment point `block X'. When `X'
441 is used in an expression, it means the alignment value of the
442 alignment point.
443
444 Call the distance between the start of the first insn of block X, and
445 the end of the last insn of block X `IX', for the `inner size of X'.
446 This is clearly the sum of the instruction lengths.
447
448 Likewise with the next alignment-delimited block following X, which we
449 shall call block Y.
450
451 Call the distance between the start of the first insn of block X, and
452 the start of the first insn of block Y `OX', for the `outer size of X'.
453
454 The estimated padding is then OX - IX.
455
456 OX can be safely estimated as
457
458 if (X >= Y)
459 OX = round_up(IX, Y)
460 else
461 OX = round_up(IX, X) + Y - X
462
463 Clearly est(IX) >= real(IX), because that only depends on the
464 instruction lengths, and those being overestimated is a given.
465
466 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
467 we needn't worry about that when thinking about OX.
468
469 When X >= Y, the alignment provided by Y adds no uncertainty factor
470 for branch ranges starting before X, so we can just round what we have.
471 But when X < Y, we don't know anything about the, so to speak,
472 `middle bits', so we have to assume the worst when aligning up from an
473 address mod X to one mod Y, which is Y - X. */
474
475 #ifndef LABEL_ALIGN
476 #define LABEL_ALIGN(LABEL) align_labels_log
477 #endif
478
479 #ifndef LOOP_ALIGN
480 #define LOOP_ALIGN(LABEL) align_loops_log
481 #endif
482
483 #ifndef LABEL_ALIGN_AFTER_BARRIER
484 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
485 #endif
486
487 #ifndef JUMP_ALIGN
488 #define JUMP_ALIGN(LABEL) align_jumps_log
489 #endif
490
491 int
492 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
493 {
494 return 0;
495 }
496
497 int
498 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
499 {
500 return align_loops_max_skip;
501 }
502
503 int
504 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
505 {
506 return align_labels_max_skip;
507 }
508
509 int
510 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
511 {
512 return align_jumps_max_skip;
513 }
514
515 #ifndef ADDR_VEC_ALIGN
516 static int
517 final_addr_vec_align (rtx_jump_table_data *addr_vec)
518 {
519 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
520
521 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
522 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
523 return exact_log2 (align);
524
525 }
526
527 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #endif
529
530 #ifndef INSN_LENGTH_ALIGNMENT
531 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #endif
533
534 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
535
536 static int min_labelno, max_labelno;
537
538 #define LABEL_TO_ALIGNMENT(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
540
541 #define LABEL_TO_MAX_SKIP(LABEL) \
542 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
543
544 /* For the benefit of port specific code do this also as a function. */
545
546 int
547 label_to_alignment (rtx label)
548 {
549 if (CODE_LABEL_NUMBER (label) <= max_labelno)
550 return LABEL_TO_ALIGNMENT (label);
551 return 0;
552 }
553
554 int
555 label_to_max_skip (rtx label)
556 {
557 if (CODE_LABEL_NUMBER (label) <= max_labelno)
558 return LABEL_TO_MAX_SKIP (label);
559 return 0;
560 }
561
562 /* The differences in addresses
563 between a branch and its target might grow or shrink depending on
564 the alignment the start insn of the range (the branch for a forward
565 branch or the label for a backward branch) starts out on; if these
566 differences are used naively, they can even oscillate infinitely.
567 We therefore want to compute a 'worst case' address difference that
568 is independent of the alignment the start insn of the range end
569 up on, and that is at least as large as the actual difference.
570 The function align_fuzz calculates the amount we have to add to the
571 naively computed difference, by traversing the part of the alignment
572 chain of the start insn of the range that is in front of the end insn
573 of the range, and considering for each alignment the maximum amount
574 that it might contribute to a size increase.
575
576 For casesi tables, we also want to know worst case minimum amounts of
577 address difference, in case a machine description wants to introduce
578 some common offset that is added to all offsets in a table.
579 For this purpose, align_fuzz with a growth argument of 0 computes the
580 appropriate adjustment. */
581
582 /* Compute the maximum delta by which the difference of the addresses of
583 START and END might grow / shrink due to a different address for start
584 which changes the size of alignment insns between START and END.
585 KNOWN_ALIGN_LOG is the alignment known for START.
586 GROWTH should be ~0 if the objective is to compute potential code size
587 increase, and 0 if the objective is to compute potential shrink.
588 The return value is undefined for any other value of GROWTH. */
589
590 static int
591 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
592 {
593 int uid = INSN_UID (start);
594 rtx align_label;
595 int known_align = 1 << known_align_log;
596 int end_shuid = INSN_SHUID (end);
597 int fuzz = 0;
598
599 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
600 {
601 int align_addr, new_align;
602
603 uid = INSN_UID (align_label);
604 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
605 if (uid_shuid[uid] > end_shuid)
606 break;
607 known_align_log = LABEL_TO_ALIGNMENT (align_label);
608 new_align = 1 << known_align_log;
609 if (new_align < known_align)
610 continue;
611 fuzz += (-align_addr ^ growth) & (new_align - known_align);
612 known_align = new_align;
613 }
614 return fuzz;
615 }
616
617 /* Compute a worst-case reference address of a branch so that it
618 can be safely used in the presence of aligned labels. Since the
619 size of the branch itself is unknown, the size of the branch is
620 not included in the range. I.e. for a forward branch, the reference
621 address is the end address of the branch as known from the previous
622 branch shortening pass, minus a value to account for possible size
623 increase due to alignment. For a backward branch, it is the start
624 address of the branch as known from the current pass, plus a value
625 to account for possible size increase due to alignment.
626 NB.: Therefore, the maximum offset allowed for backward branches needs
627 to exclude the branch size. */
628
629 int
630 insn_current_reference_address (rtx_insn *branch)
631 {
632 rtx dest;
633 int seq_uid;
634
635 if (! INSN_ADDRESSES_SET_P ())
636 return 0;
637
638 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
639 seq_uid = INSN_UID (seq);
640 if (!JUMP_P (branch))
641 /* This can happen for example on the PA; the objective is to know the
642 offset to address something in front of the start of the function.
643 Thus, we can treat it like a backward branch.
644 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
645 any alignment we'd encounter, so we skip the call to align_fuzz. */
646 return insn_current_address;
647 dest = JUMP_LABEL (branch);
648
649 /* BRANCH has no proper alignment chain set, so use SEQ.
650 BRANCH also has no INSN_SHUID. */
651 if (INSN_SHUID (seq) < INSN_SHUID (dest))
652 {
653 /* Forward branch. */
654 return (insn_last_address + insn_lengths[seq_uid]
655 - align_fuzz (seq, dest, length_unit_log, ~0));
656 }
657 else
658 {
659 /* Backward branch. */
660 return (insn_current_address
661 + align_fuzz (dest, seq, length_unit_log, ~0));
662 }
663 }
664 \f
665 /* Compute branch alignments based on CFG profile. */
666
667 unsigned int
668 compute_alignments (void)
669 {
670 int log, max_skip, max_log;
671 basic_block bb;
672
673 if (label_align)
674 {
675 free (label_align);
676 label_align = 0;
677 }
678
679 max_labelno = max_label_num ();
680 min_labelno = get_first_label_num ();
681 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
682
683 /* If not optimizing or optimizing for size, don't assign any alignments. */
684 if (! optimize || optimize_function_for_size_p (cfun))
685 return 0;
686
687 if (dump_file)
688 {
689 dump_reg_info (dump_file);
690 dump_flow_info (dump_file, TDF_DETAILS);
691 flow_loops_dump (dump_file, NULL, 1);
692 }
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694 profile_count count_threshold = cfun->cfg->count_max.apply_scale
695 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
696
697 if (dump_file)
698 {
699 fprintf (dump_file, "count_max: ");
700 cfun->cfg->count_max.dump (dump_file);
701 fprintf (dump_file, "\n");
702 }
703 FOR_EACH_BB_FN (bb, cfun)
704 {
705 rtx_insn *label = BB_HEAD (bb);
706 bool has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
709
710 if (!LABEL_P (label)
711 || optimize_bb_for_size_p (bb))
712 {
713 if (dump_file)
714 fprintf (dump_file,
715 "BB %4i loop %2i loop_depth %2i skipped.\n",
716 bb->index,
717 bb->loop_father->num,
718 bb_loop_depth (bb));
719 continue;
720 }
721 max_log = LABEL_ALIGN (label);
722 max_skip = targetm.asm_out.label_align_max_skip (label);
723 profile_count fallthru_count = profile_count::zero ();
724 profile_count branch_count = profile_count::zero ();
725
726 FOR_EACH_EDGE (e, ei, bb->preds)
727 {
728 if (e->flags & EDGE_FALLTHRU)
729 has_fallthru = 1, fallthru_count += e->count ();
730 else
731 branch_count += e->count ();
732 }
733 if (dump_file)
734 {
735 fprintf (dump_file, "BB %4i loop %2i loop_depth"
736 " %2i fall ",
737 bb->index, bb->loop_father->num,
738 bb_loop_depth (bb));
739 fallthru_count.dump (dump_file);
740 fprintf (dump_file, " branch ");
741 branch_count.dump (dump_file);
742 if (!bb->loop_father->inner && bb->loop_father->num)
743 fprintf (dump_file, " inner_loop");
744 if (bb->loop_father->header == bb)
745 fprintf (dump_file, " loop_header");
746 fprintf (dump_file, "\n");
747 }
748 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
749 continue;
750
751 /* There are two purposes to align block with no fallthru incoming edge:
752 1) to avoid fetch stalls when branch destination is near cache boundary
753 2) to improve cache efficiency in case the previous block is not executed
754 (so it does not need to be in the cache).
755
756 We to catch first case, we align frequently executed blocks.
757 To catch the second, we align blocks that are executed more frequently
758 than the predecessor and the predecessor is likely to not be executed
759 when function is called. */
760
761 if (!has_fallthru
762 && (branch_count > count_threshold
763 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
764 && (bb->prev_bb->count
765 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
766 ->count.apply_scale (1, 2)))))
767 {
768 log = JUMP_ALIGN (label);
769 if (dump_file)
770 fprintf (dump_file, " jump alignment added.\n");
771 if (max_log < log)
772 {
773 max_log = log;
774 max_skip = targetm.asm_out.jump_align_max_skip (label);
775 }
776 }
777 /* In case block is frequent and reached mostly by non-fallthru edge,
778 align it. It is most likely a first block of loop. */
779 if (has_fallthru
780 && !(single_succ_p (bb)
781 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 && optimize_bb_for_speed_p (bb)
783 && branch_count + fallthru_count > count_threshold
784 && (branch_count
785 > fallthru_count.apply_scale
786 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
787 {
788 log = LOOP_ALIGN (label);
789 if (dump_file)
790 fprintf (dump_file, " internal loop alignment added.\n");
791 if (max_log < log)
792 {
793 max_log = log;
794 max_skip = targetm.asm_out.loop_align_max_skip (label);
795 }
796 }
797 LABEL_TO_ALIGNMENT (label) = max_log;
798 LABEL_TO_MAX_SKIP (label) = max_skip;
799 }
800
801 loop_optimizer_finalize ();
802 free_dominance_info (CDI_DOMINATORS);
803 return 0;
804 }
805
806 /* Grow the LABEL_ALIGN array after new labels are created. */
807
808 static void
809 grow_label_align (void)
810 {
811 int old = max_labelno;
812 int n_labels;
813 int n_old_labels;
814
815 max_labelno = max_label_num ();
816
817 n_labels = max_labelno - min_labelno + 1;
818 n_old_labels = old - min_labelno + 1;
819
820 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
821
822 /* Range of labels grows monotonically in the function. Failing here
823 means that the initialization of array got lost. */
824 gcc_assert (n_old_labels <= n_labels);
825
826 memset (label_align + n_old_labels, 0,
827 (n_labels - n_old_labels) * sizeof (struct label_alignment));
828 }
829
830 /* Update the already computed alignment information. LABEL_PAIRS is a vector
831 made up of pairs of labels for which the alignment information of the first
832 element will be copied from that of the second element. */
833
834 void
835 update_alignments (vec<rtx> &label_pairs)
836 {
837 unsigned int i = 0;
838 rtx iter, label = NULL_RTX;
839
840 if (max_labelno != max_label_num ())
841 grow_label_align ();
842
843 FOR_EACH_VEC_ELT (label_pairs, i, iter)
844 if (i & 1)
845 {
846 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
847 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
848 }
849 else
850 label = iter;
851 }
852
853 namespace {
854
855 const pass_data pass_data_compute_alignments =
856 {
857 RTL_PASS, /* type */
858 "alignments", /* name */
859 OPTGROUP_NONE, /* optinfo_flags */
860 TV_NONE, /* tv_id */
861 0, /* properties_required */
862 0, /* properties_provided */
863 0, /* properties_destroyed */
864 0, /* todo_flags_start */
865 0, /* todo_flags_finish */
866 };
867
868 class pass_compute_alignments : public rtl_opt_pass
869 {
870 public:
871 pass_compute_alignments (gcc::context *ctxt)
872 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
873 {}
874
875 /* opt_pass methods: */
876 virtual unsigned int execute (function *) { return compute_alignments (); }
877
878 }; // class pass_compute_alignments
879
880 } // anon namespace
881
882 rtl_opt_pass *
883 make_pass_compute_alignments (gcc::context *ctxt)
884 {
885 return new pass_compute_alignments (ctxt);
886 }
887
888 \f
889 /* Make a pass over all insns and compute their actual lengths by shortening
890 any branches of variable length if possible. */
891
892 /* shorten_branches might be called multiple times: for example, the SH
893 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894 In order to do this, it needs proper length information, which it obtains
895 by calling shorten_branches. This cannot be collapsed with
896 shorten_branches itself into a single pass unless we also want to integrate
897 reorg.c, since the branch splitting exposes new instructions with delay
898 slots. */
899
900 void
901 shorten_branches (rtx_insn *first)
902 {
903 rtx_insn *insn;
904 int max_uid;
905 int i;
906 int max_log;
907 int max_skip;
908 #define MAX_CODE_ALIGN 16
909 rtx_insn *seq;
910 int something_changed = 1;
911 char *varying_length;
912 rtx body;
913 int uid;
914 rtx align_tab[MAX_CODE_ALIGN];
915
916 /* Compute maximum UID and allocate label_align / uid_shuid. */
917 max_uid = get_max_uid ();
918
919 /* Free uid_shuid before reallocating it. */
920 free (uid_shuid);
921
922 uid_shuid = XNEWVEC (int, max_uid);
923
924 if (max_labelno != max_label_num ())
925 grow_label_align ();
926
927 /* Initialize label_align and set up uid_shuid to be strictly
928 monotonically rising with insn order. */
929 /* We use max_log here to keep track of the maximum alignment we want to
930 impose on the next CODE_LABEL (or the current one if we are processing
931 the CODE_LABEL itself). */
932
933 max_log = 0;
934 max_skip = 0;
935
936 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
937 {
938 int log;
939
940 INSN_SHUID (insn) = i++;
941 if (INSN_P (insn))
942 continue;
943
944 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
945 {
946 /* Merge in alignments computed by compute_alignments. */
947 log = LABEL_TO_ALIGNMENT (label);
948 if (max_log < log)
949 {
950 max_log = log;
951 max_skip = LABEL_TO_MAX_SKIP (label);
952 }
953
954 rtx_jump_table_data *table = jump_table_for_label (label);
955 if (!table)
956 {
957 log = LABEL_ALIGN (label);
958 if (max_log < log)
959 {
960 max_log = log;
961 max_skip = targetm.asm_out.label_align_max_skip (label);
962 }
963 }
964 /* ADDR_VECs only take room if read-only data goes into the text
965 section. */
966 if ((JUMP_TABLES_IN_TEXT_SECTION
967 || readonly_data_section == text_section)
968 && table)
969 {
970 log = ADDR_VEC_ALIGN (table);
971 if (max_log < log)
972 {
973 max_log = log;
974 max_skip = targetm.asm_out.label_align_max_skip (label);
975 }
976 }
977 LABEL_TO_ALIGNMENT (label) = max_log;
978 LABEL_TO_MAX_SKIP (label) = max_skip;
979 max_log = 0;
980 max_skip = 0;
981 }
982 else if (BARRIER_P (insn))
983 {
984 rtx_insn *label;
985
986 for (label = insn; label && ! INSN_P (label);
987 label = NEXT_INSN (label))
988 if (LABEL_P (label))
989 {
990 log = LABEL_ALIGN_AFTER_BARRIER (insn);
991 if (max_log < log)
992 {
993 max_log = log;
994 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
995 }
996 break;
997 }
998 }
999 }
1000 if (!HAVE_ATTR_length)
1001 return;
1002
1003 /* Allocate the rest of the arrays. */
1004 insn_lengths = XNEWVEC (int, max_uid);
1005 insn_lengths_max_uid = max_uid;
1006 /* Syntax errors can lead to labels being outside of the main insn stream.
1007 Initialize insn_addresses, so that we get reproducible results. */
1008 INSN_ADDRESSES_ALLOC (max_uid);
1009
1010 varying_length = XCNEWVEC (char, max_uid);
1011
1012 /* Initialize uid_align. We scan instructions
1013 from end to start, and keep in align_tab[n] the last seen insn
1014 that does an alignment of at least n+1, i.e. the successor
1015 in the alignment chain for an insn that does / has a known
1016 alignment of n. */
1017 uid_align = XCNEWVEC (rtx, max_uid);
1018
1019 for (i = MAX_CODE_ALIGN; --i >= 0;)
1020 align_tab[i] = NULL_RTX;
1021 seq = get_last_insn ();
1022 for (; seq; seq = PREV_INSN (seq))
1023 {
1024 int uid = INSN_UID (seq);
1025 int log;
1026 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1027 uid_align[uid] = align_tab[0];
1028 if (log)
1029 {
1030 /* Found an alignment label. */
1031 uid_align[uid] = align_tab[log];
1032 for (i = log - 1; i >= 0; i--)
1033 align_tab[i] = seq;
1034 }
1035 }
1036
1037 /* When optimizing, we start assuming minimum length, and keep increasing
1038 lengths as we find the need for this, till nothing changes.
1039 When not optimizing, we start assuming maximum lengths, and
1040 do a single pass to update the lengths. */
1041 bool increasing = optimize != 0;
1042
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1044 if (optimize)
1045 {
1046 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047 label fields. */
1048
1049 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1050 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1051 int rel;
1052
1053 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1054 {
1055 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1056 int len, i, min, max, insn_shuid;
1057 int min_align;
1058 addr_diff_vec_flags flags;
1059
1060 if (! JUMP_TABLE_DATA_P (insn)
1061 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1062 continue;
1063 pat = PATTERN (insn);
1064 len = XVECLEN (pat, 1);
1065 gcc_assert (len > 0);
1066 min_align = MAX_CODE_ALIGN;
1067 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1068 {
1069 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1070 int shuid = INSN_SHUID (lab);
1071 if (shuid < min)
1072 {
1073 min = shuid;
1074 min_lab = lab;
1075 }
1076 if (shuid > max)
1077 {
1078 max = shuid;
1079 max_lab = lab;
1080 }
1081 if (min_align > LABEL_TO_ALIGNMENT (lab))
1082 min_align = LABEL_TO_ALIGNMENT (lab);
1083 }
1084 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1085 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1086 insn_shuid = INSN_SHUID (insn);
1087 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1088 memset (&flags, 0, sizeof (flags));
1089 flags.min_align = min_align;
1090 flags.base_after_vec = rel > insn_shuid;
1091 flags.min_after_vec = min > insn_shuid;
1092 flags.max_after_vec = max > insn_shuid;
1093 flags.min_after_base = min > rel;
1094 flags.max_after_base = max > rel;
1095 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1096
1097 if (increasing)
1098 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1099 }
1100 }
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1102
1103 /* Compute initial lengths, addresses, and varying flags for each insn. */
1104 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1105
1106 for (insn_current_address = 0, insn = first;
1107 insn != 0;
1108 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1109 {
1110 uid = INSN_UID (insn);
1111
1112 insn_lengths[uid] = 0;
1113
1114 if (LABEL_P (insn))
1115 {
1116 int log = LABEL_TO_ALIGNMENT (insn);
1117 if (log)
1118 {
1119 int align = 1 << log;
1120 int new_address = (insn_current_address + align - 1) & -align;
1121 insn_lengths[uid] = new_address - insn_current_address;
1122 }
1123 }
1124
1125 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1126
1127 if (NOTE_P (insn) || BARRIER_P (insn)
1128 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1129 continue;
1130 if (insn->deleted ())
1131 continue;
1132
1133 body = PATTERN (insn);
1134 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1135 {
1136 /* This only takes room if read-only data goes into the text
1137 section. */
1138 if (JUMP_TABLES_IN_TEXT_SECTION
1139 || readonly_data_section == text_section)
1140 insn_lengths[uid] = (XVECLEN (body,
1141 GET_CODE (body) == ADDR_DIFF_VEC)
1142 * GET_MODE_SIZE (table->get_data_mode ()));
1143 /* Alignment is handled by ADDR_VEC_ALIGN. */
1144 }
1145 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1146 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1147 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1148 {
1149 int i;
1150 int const_delay_slots;
1151 if (DELAY_SLOTS)
1152 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1153 else
1154 const_delay_slots = 0;
1155
1156 int (*inner_length_fun) (rtx_insn *)
1157 = const_delay_slots ? length_fun : insn_default_length;
1158 /* Inside a delay slot sequence, we do not do any branch shortening
1159 if the shortening could change the number of delay slots
1160 of the branch. */
1161 for (i = 0; i < body_seq->len (); i++)
1162 {
1163 rtx_insn *inner_insn = body_seq->insn (i);
1164 int inner_uid = INSN_UID (inner_insn);
1165 int inner_length;
1166
1167 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1168 || asm_noperands (PATTERN (inner_insn)) >= 0)
1169 inner_length = (asm_insn_count (PATTERN (inner_insn))
1170 * insn_default_length (inner_insn));
1171 else
1172 inner_length = inner_length_fun (inner_insn);
1173
1174 insn_lengths[inner_uid] = inner_length;
1175 if (const_delay_slots)
1176 {
1177 if ((varying_length[inner_uid]
1178 = insn_variable_length_p (inner_insn)) != 0)
1179 varying_length[uid] = 1;
1180 INSN_ADDRESSES (inner_uid) = (insn_current_address
1181 + insn_lengths[uid]);
1182 }
1183 else
1184 varying_length[inner_uid] = 0;
1185 insn_lengths[uid] += inner_length;
1186 }
1187 }
1188 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1189 {
1190 insn_lengths[uid] = length_fun (insn);
1191 varying_length[uid] = insn_variable_length_p (insn);
1192 }
1193
1194 /* If needed, do any adjustment. */
1195 #ifdef ADJUST_INSN_LENGTH
1196 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1197 if (insn_lengths[uid] < 0)
1198 fatal_insn ("negative insn length", insn);
1199 #endif
1200 }
1201
1202 /* Now loop over all the insns finding varying length insns. For each,
1203 get the current insn length. If it has changed, reflect the change.
1204 When nothing changes for a full pass, we are done. */
1205
1206 while (something_changed)
1207 {
1208 something_changed = 0;
1209 insn_current_align = MAX_CODE_ALIGN - 1;
1210 for (insn_current_address = 0, insn = first;
1211 insn != 0;
1212 insn = NEXT_INSN (insn))
1213 {
1214 int new_length;
1215 #ifdef ADJUST_INSN_LENGTH
1216 int tmp_length;
1217 #endif
1218 int length_align;
1219
1220 uid = INSN_UID (insn);
1221
1222 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1223 {
1224 int log = LABEL_TO_ALIGNMENT (label);
1225
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 /* If the mode of a following jump table was changed, we
1228 may need to update the alignment of this label. */
1229
1230 if (JUMP_TABLES_IN_TEXT_SECTION
1231 || readonly_data_section == text_section)
1232 {
1233 rtx_jump_table_data *table = jump_table_for_label (label);
1234 if (table)
1235 {
1236 int newlog = ADDR_VEC_ALIGN (table);
1237 if (newlog != log)
1238 {
1239 log = newlog;
1240 LABEL_TO_ALIGNMENT (insn) = log;
1241 something_changed = 1;
1242 }
1243 }
1244 }
1245 #endif
1246
1247 if (log > insn_current_align)
1248 {
1249 int align = 1 << log;
1250 int new_address= (insn_current_address + align - 1) & -align;
1251 insn_lengths[uid] = new_address - insn_current_address;
1252 insn_current_align = log;
1253 insn_current_address = new_address;
1254 }
1255 else
1256 insn_lengths[uid] = 0;
1257 INSN_ADDRESSES (uid) = insn_current_address;
1258 continue;
1259 }
1260
1261 length_align = INSN_LENGTH_ALIGNMENT (insn);
1262 if (length_align < insn_current_align)
1263 insn_current_align = length_align;
1264
1265 insn_last_address = INSN_ADDRESSES (uid);
1266 INSN_ADDRESSES (uid) = insn_current_address;
1267
1268 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 if (optimize
1270 && JUMP_TABLE_DATA_P (insn)
1271 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1272 {
1273 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1274 rtx body = PATTERN (insn);
1275 int old_length = insn_lengths[uid];
1276 rtx_insn *rel_lab =
1277 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1278 rtx min_lab = XEXP (XEXP (body, 2), 0);
1279 rtx max_lab = XEXP (XEXP (body, 3), 0);
1280 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1281 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1282 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1283 rtx_insn *prev;
1284 int rel_align = 0;
1285 addr_diff_vec_flags flags;
1286 scalar_int_mode vec_mode;
1287
1288 /* Avoid automatic aggregate initialization. */
1289 flags = ADDR_DIFF_VEC_FLAGS (body);
1290
1291 /* Try to find a known alignment for rel_lab. */
1292 for (prev = rel_lab;
1293 prev
1294 && ! insn_lengths[INSN_UID (prev)]
1295 && ! (varying_length[INSN_UID (prev)] & 1);
1296 prev = PREV_INSN (prev))
1297 if (varying_length[INSN_UID (prev)] & 2)
1298 {
1299 rel_align = LABEL_TO_ALIGNMENT (prev);
1300 break;
1301 }
1302
1303 /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 meaning of the flags values. base: REL_LAB vec: INSN */
1305 /* Anything after INSN has still addresses from the last
1306 pass; adjust these so that they reflect our current
1307 estimate for this pass. */
1308 if (flags.base_after_vec)
1309 rel_addr += insn_current_address - insn_last_address;
1310 if (flags.min_after_vec)
1311 min_addr += insn_current_address - insn_last_address;
1312 if (flags.max_after_vec)
1313 max_addr += insn_current_address - insn_last_address;
1314 /* We want to know the worst case, i.e. lowest possible value
1315 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1316 its offset is positive, and we have to be wary of code shrink;
1317 otherwise, it is negative, and we have to be vary of code
1318 size increase. */
1319 if (flags.min_after_base)
1320 {
1321 /* If INSN is between REL_LAB and MIN_LAB, the size
1322 changes we are about to make can change the alignment
1323 within the observed offset, therefore we have to break
1324 it up into two parts that are independent. */
1325 if (! flags.base_after_vec && flags.min_after_vec)
1326 {
1327 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1328 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1329 }
1330 else
1331 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1332 }
1333 else
1334 {
1335 if (flags.base_after_vec && ! flags.min_after_vec)
1336 {
1337 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1338 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1339 }
1340 else
1341 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1342 }
1343 /* Likewise, determine the highest lowest possible value
1344 for the offset of MAX_LAB. */
1345 if (flags.max_after_base)
1346 {
1347 if (! flags.base_after_vec && flags.max_after_vec)
1348 {
1349 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1350 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1351 }
1352 else
1353 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1354 }
1355 else
1356 {
1357 if (flags.base_after_vec && ! flags.max_after_vec)
1358 {
1359 max_addr += align_fuzz (max_lab, insn, 0, 0);
1360 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1361 }
1362 else
1363 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1364 }
1365 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1366 max_addr - rel_addr, body);
1367 if (!increasing
1368 || (GET_MODE_SIZE (vec_mode)
1369 >= GET_MODE_SIZE (table->get_data_mode ())))
1370 PUT_MODE (body, vec_mode);
1371 if (JUMP_TABLES_IN_TEXT_SECTION
1372 || readonly_data_section == text_section)
1373 {
1374 insn_lengths[uid]
1375 = (XVECLEN (body, 1)
1376 * GET_MODE_SIZE (table->get_data_mode ()));
1377 insn_current_address += insn_lengths[uid];
1378 if (insn_lengths[uid] != old_length)
1379 something_changed = 1;
1380 }
1381
1382 continue;
1383 }
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1385
1386 if (! (varying_length[uid]))
1387 {
1388 if (NONJUMP_INSN_P (insn)
1389 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1390 {
1391 int i;
1392
1393 body = PATTERN (insn);
1394 for (i = 0; i < XVECLEN (body, 0); i++)
1395 {
1396 rtx inner_insn = XVECEXP (body, 0, i);
1397 int inner_uid = INSN_UID (inner_insn);
1398
1399 INSN_ADDRESSES (inner_uid) = insn_current_address;
1400
1401 insn_current_address += insn_lengths[inner_uid];
1402 }
1403 }
1404 else
1405 insn_current_address += insn_lengths[uid];
1406
1407 continue;
1408 }
1409
1410 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1411 {
1412 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1413 int i;
1414
1415 body = PATTERN (insn);
1416 new_length = 0;
1417 for (i = 0; i < seqn->len (); i++)
1418 {
1419 rtx_insn *inner_insn = seqn->insn (i);
1420 int inner_uid = INSN_UID (inner_insn);
1421 int inner_length;
1422
1423 INSN_ADDRESSES (inner_uid) = insn_current_address;
1424
1425 /* insn_current_length returns 0 for insns with a
1426 non-varying length. */
1427 if (! varying_length[inner_uid])
1428 inner_length = insn_lengths[inner_uid];
1429 else
1430 inner_length = insn_current_length (inner_insn);
1431
1432 if (inner_length != insn_lengths[inner_uid])
1433 {
1434 if (!increasing || inner_length > insn_lengths[inner_uid])
1435 {
1436 insn_lengths[inner_uid] = inner_length;
1437 something_changed = 1;
1438 }
1439 else
1440 inner_length = insn_lengths[inner_uid];
1441 }
1442 insn_current_address += inner_length;
1443 new_length += inner_length;
1444 }
1445 }
1446 else
1447 {
1448 new_length = insn_current_length (insn);
1449 insn_current_address += new_length;
1450 }
1451
1452 #ifdef ADJUST_INSN_LENGTH
1453 /* If needed, do any adjustment. */
1454 tmp_length = new_length;
1455 ADJUST_INSN_LENGTH (insn, new_length);
1456 insn_current_address += (new_length - tmp_length);
1457 #endif
1458
1459 if (new_length != insn_lengths[uid]
1460 && (!increasing || new_length > insn_lengths[uid]))
1461 {
1462 insn_lengths[uid] = new_length;
1463 something_changed = 1;
1464 }
1465 else
1466 insn_current_address += insn_lengths[uid] - new_length;
1467 }
1468 /* For a non-optimizing compile, do only a single pass. */
1469 if (!increasing)
1470 break;
1471 }
1472 crtl->max_insn_address = insn_current_address;
1473 free (varying_length);
1474 }
1475
1476 /* Given the body of an INSN known to be generated by an ASM statement, return
1477 the number of machine instructions likely to be generated for this insn.
1478 This is used to compute its length. */
1479
1480 static int
1481 asm_insn_count (rtx body)
1482 {
1483 const char *templ;
1484
1485 if (GET_CODE (body) == ASM_INPUT)
1486 templ = XSTR (body, 0);
1487 else
1488 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1489
1490 return asm_str_count (templ);
1491 }
1492
1493 /* Return the number of machine instructions likely to be generated for the
1494 inline-asm template. */
1495 int
1496 asm_str_count (const char *templ)
1497 {
1498 int count = 1;
1499
1500 if (!*templ)
1501 return 0;
1502
1503 for (; *templ; templ++)
1504 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1505 || *templ == '\n')
1506 count++;
1507
1508 return count;
1509 }
1510 \f
1511 /* Return true if DWARF2 debug info can be emitted for DECL. */
1512
1513 static bool
1514 dwarf2_debug_info_emitted_p (tree decl)
1515 {
1516 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1517 return false;
1518
1519 if (DECL_IGNORED_P (decl))
1520 return false;
1521
1522 return true;
1523 }
1524
1525 /* Return scope resulting from combination of S1 and S2. */
1526 static tree
1527 choose_inner_scope (tree s1, tree s2)
1528 {
1529 if (!s1)
1530 return s2;
1531 if (!s2)
1532 return s1;
1533 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1534 return s1;
1535 return s2;
1536 }
1537
1538 /* Emit lexical block notes needed to change scope from S1 to S2. */
1539
1540 static void
1541 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1542 {
1543 rtx_insn *insn = orig_insn;
1544 tree com = NULL_TREE;
1545 tree ts1 = s1, ts2 = s2;
1546 tree s;
1547
1548 while (ts1 != ts2)
1549 {
1550 gcc_assert (ts1 && ts2);
1551 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1552 ts1 = BLOCK_SUPERCONTEXT (ts1);
1553 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1554 ts2 = BLOCK_SUPERCONTEXT (ts2);
1555 else
1556 {
1557 ts1 = BLOCK_SUPERCONTEXT (ts1);
1558 ts2 = BLOCK_SUPERCONTEXT (ts2);
1559 }
1560 }
1561 com = ts1;
1562
1563 /* Close scopes. */
1564 s = s1;
1565 while (s != com)
1566 {
1567 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1568 NOTE_BLOCK (note) = s;
1569 s = BLOCK_SUPERCONTEXT (s);
1570 }
1571
1572 /* Open scopes. */
1573 s = s2;
1574 while (s != com)
1575 {
1576 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1577 NOTE_BLOCK (insn) = s;
1578 s = BLOCK_SUPERCONTEXT (s);
1579 }
1580 }
1581
1582 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1583 on the scope tree and the newly reordered instructions. */
1584
1585 static void
1586 reemit_insn_block_notes (void)
1587 {
1588 tree cur_block = DECL_INITIAL (cfun->decl);
1589 rtx_insn *insn;
1590
1591 insn = get_insns ();
1592 for (; insn; insn = NEXT_INSN (insn))
1593 {
1594 tree this_block;
1595
1596 /* Prevent lexical blocks from straddling section boundaries. */
1597 if (NOTE_P (insn))
1598 switch (NOTE_KIND (insn))
1599 {
1600 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1601 {
1602 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1603 s = BLOCK_SUPERCONTEXT (s))
1604 {
1605 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1606 NOTE_BLOCK (note) = s;
1607 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1608 NOTE_BLOCK (note) = s;
1609 }
1610 }
1611 break;
1612
1613 case NOTE_INSN_BEGIN_STMT:
1614 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1615 goto set_cur_block_to_this_block;
1616
1617 default:
1618 continue;
1619 }
1620
1621 if (!active_insn_p (insn))
1622 continue;
1623
1624 /* Avoid putting scope notes between jump table and its label. */
1625 if (JUMP_TABLE_DATA_P (insn))
1626 continue;
1627
1628 this_block = insn_scope (insn);
1629 /* For sequences compute scope resulting from merging all scopes
1630 of instructions nested inside. */
1631 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1632 {
1633 int i;
1634
1635 this_block = NULL;
1636 for (i = 0; i < body->len (); i++)
1637 this_block = choose_inner_scope (this_block,
1638 insn_scope (body->insn (i)));
1639 }
1640 set_cur_block_to_this_block:
1641 if (! this_block)
1642 {
1643 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1644 continue;
1645 else
1646 this_block = DECL_INITIAL (cfun->decl);
1647 }
1648
1649 if (this_block != cur_block)
1650 {
1651 change_scope (insn, cur_block, this_block);
1652 cur_block = this_block;
1653 }
1654 }
1655
1656 /* change_scope emits before the insn, not after. */
1657 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1658 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1659 delete_insn (note);
1660
1661 reorder_blocks ();
1662 }
1663
1664 static const char *some_local_dynamic_name;
1665
1666 /* Locate some local-dynamic symbol still in use by this function
1667 so that we can print its name in local-dynamic base patterns.
1668 Return null if there are no local-dynamic references. */
1669
1670 const char *
1671 get_some_local_dynamic_name ()
1672 {
1673 subrtx_iterator::array_type array;
1674 rtx_insn *insn;
1675
1676 if (some_local_dynamic_name)
1677 return some_local_dynamic_name;
1678
1679 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1680 if (NONDEBUG_INSN_P (insn))
1681 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1682 {
1683 const_rtx x = *iter;
1684 if (GET_CODE (x) == SYMBOL_REF)
1685 {
1686 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1687 return some_local_dynamic_name = XSTR (x, 0);
1688 if (CONSTANT_POOL_ADDRESS_P (x))
1689 iter.substitute (get_pool_constant (x));
1690 }
1691 }
1692
1693 return 0;
1694 }
1695
1696 /* Arrange for us to emit a source location note before any further
1697 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1698 *SEEN, as long as we are keeping track of location views. The bit
1699 indicates we have referenced the next view at the current PC, so we
1700 have to emit it. This should be called next to the var_location
1701 debug hook. */
1702
1703 static inline void
1704 set_next_view_needed (int *seen)
1705 {
1706 if (debug_variable_location_views)
1707 *seen |= SEEN_NEXT_VIEW;
1708 }
1709
1710 /* Clear the flag in *SEEN indicating we need to emit the next view.
1711 This should be called next to the source_line debug hook. */
1712
1713 static inline void
1714 clear_next_view_needed (int *seen)
1715 {
1716 *seen &= ~SEEN_NEXT_VIEW;
1717 }
1718
1719 /* Test whether we have a pending request to emit the next view in
1720 *SEEN, and emit it if needed, clearing the request bit. */
1721
1722 static inline void
1723 maybe_output_next_view (int *seen)
1724 {
1725 if ((*seen & SEEN_NEXT_VIEW) != 0)
1726 {
1727 clear_next_view_needed (seen);
1728 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1729 last_filename, last_discriminator,
1730 false);
1731 }
1732 }
1733
1734 /* We want to emit param bindings (before the first begin_stmt) in the
1735 initial view, if we are emitting views. To that end, we may
1736 consume initial notes in the function, processing them in
1737 final_start_function, before signaling the beginning of the
1738 prologue, rather than in final.
1739
1740 We don't test whether the DECLs are PARM_DECLs: the assumption is
1741 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1742 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1743 there, we'll just have more variable locations bound in the initial
1744 view, which is consistent with their being bound without any code
1745 that would give them a value. */
1746
1747 static inline bool
1748 in_initial_view_p (rtx_insn *insn)
1749 {
1750 return (!DECL_IGNORED_P (current_function_decl)
1751 && debug_variable_location_views
1752 && insn && GET_CODE (insn) == NOTE
1753 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1754 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1755 }
1756
1757 /* Output assembler code for the start of a function,
1758 and initialize some of the variables in this file
1759 for the new function. The label for the function and associated
1760 assembler pseudo-ops have already been output in `assemble_start_function'.
1761
1762 FIRST is the first insn of the rtl for the function being compiled.
1763 FILE is the file to write assembler code to.
1764 SEEN should be initially set to zero, and it may be updated to
1765 indicate we have references to the next location view, that would
1766 require us to emit it at the current PC.
1767 OPTIMIZE_P is nonzero if we should eliminate redundant
1768 test and compare insns. */
1769
1770 static void
1771 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1772 int optimize_p ATTRIBUTE_UNUSED)
1773 {
1774 block_depth = 0;
1775
1776 this_is_asm_operands = 0;
1777
1778 need_profile_function = false;
1779
1780 last_filename = LOCATION_FILE (prologue_location);
1781 last_linenum = LOCATION_LINE (prologue_location);
1782 last_columnnum = LOCATION_COLUMN (prologue_location);
1783 last_discriminator = discriminator = 0;
1784
1785 high_block_linenum = high_function_linenum = last_linenum;
1786
1787 if (flag_sanitize & SANITIZE_ADDRESS)
1788 asan_function_start ();
1789
1790 rtx_insn *first = *firstp;
1791 if (in_initial_view_p (first))
1792 {
1793 do
1794 {
1795 final_scan_insn (first, file, 0, 0, seen);
1796 first = NEXT_INSN (first);
1797 }
1798 while (in_initial_view_p (first));
1799 *firstp = first;
1800 }
1801
1802 if (!DECL_IGNORED_P (current_function_decl))
1803 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1804 last_filename);
1805
1806 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1807 dwarf2out_begin_prologue (0, 0, NULL);
1808
1809 #ifdef LEAF_REG_REMAP
1810 if (crtl->uses_only_leaf_regs)
1811 leaf_renumber_regs (first);
1812 #endif
1813
1814 /* The Sun386i and perhaps other machines don't work right
1815 if the profiling code comes after the prologue. */
1816 if (targetm.profile_before_prologue () && crtl->profile)
1817 {
1818 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1819 && targetm.have_prologue ())
1820 {
1821 rtx_insn *insn;
1822 for (insn = first; insn; insn = NEXT_INSN (insn))
1823 if (!NOTE_P (insn))
1824 {
1825 insn = NULL;
1826 break;
1827 }
1828 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1829 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1830 break;
1831 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1832 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1833 continue;
1834 else
1835 {
1836 insn = NULL;
1837 break;
1838 }
1839
1840 if (insn)
1841 need_profile_function = true;
1842 else
1843 profile_function (file);
1844 }
1845 else
1846 profile_function (file);
1847 }
1848
1849 /* If debugging, assign block numbers to all of the blocks in this
1850 function. */
1851 if (write_symbols)
1852 {
1853 reemit_insn_block_notes ();
1854 number_blocks (current_function_decl);
1855 /* We never actually put out begin/end notes for the top-level
1856 block in the function. But, conceptually, that block is
1857 always needed. */
1858 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1859 }
1860
1861 HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1862 if (warn_frame_larger_than
1863 && min_frame_size > frame_larger_than_size)
1864 {
1865 /* Issue a warning */
1866 warning (OPT_Wframe_larger_than_,
1867 "the frame size of %wd bytes is larger than %wd bytes",
1868 min_frame_size, frame_larger_than_size);
1869 }
1870
1871 /* First output the function prologue: code to set up the stack frame. */
1872 targetm.asm_out.function_prologue (file);
1873
1874 /* If the machine represents the prologue as RTL, the profiling code must
1875 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1876 if (! targetm.have_prologue ())
1877 profile_after_prologue (file);
1878 }
1879
1880 /* This is an exported final_start_function_1, callable without SEEN. */
1881
1882 void
1883 final_start_function (rtx_insn *first, FILE *file,
1884 int optimize_p ATTRIBUTE_UNUSED)
1885 {
1886 int seen = 0;
1887 final_start_function_1 (&first, file, &seen, optimize_p);
1888 gcc_assert (seen == 0);
1889 }
1890
1891 static void
1892 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1893 {
1894 if (!targetm.profile_before_prologue () && crtl->profile)
1895 profile_function (file);
1896 }
1897
1898 static void
1899 profile_function (FILE *file ATTRIBUTE_UNUSED)
1900 {
1901 #ifndef NO_PROFILE_COUNTERS
1902 # define NO_PROFILE_COUNTERS 0
1903 #endif
1904 #ifdef ASM_OUTPUT_REG_PUSH
1905 rtx sval = NULL, chain = NULL;
1906
1907 if (cfun->returns_struct)
1908 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1909 true);
1910 if (cfun->static_chain_decl)
1911 chain = targetm.calls.static_chain (current_function_decl, true);
1912 #endif /* ASM_OUTPUT_REG_PUSH */
1913
1914 if (! NO_PROFILE_COUNTERS)
1915 {
1916 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1917 switch_to_section (data_section);
1918 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1919 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1920 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1921 }
1922
1923 switch_to_section (current_function_section ());
1924
1925 #ifdef ASM_OUTPUT_REG_PUSH
1926 if (sval && REG_P (sval))
1927 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1928 if (chain && REG_P (chain))
1929 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1930 #endif
1931
1932 FUNCTION_PROFILER (file, current_function_funcdef_no);
1933
1934 #ifdef ASM_OUTPUT_REG_PUSH
1935 if (chain && REG_P (chain))
1936 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1937 if (sval && REG_P (sval))
1938 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1939 #endif
1940 }
1941
1942 /* Output assembler code for the end of a function.
1943 For clarity, args are same as those of `final_start_function'
1944 even though not all of them are needed. */
1945
1946 void
1947 final_end_function (void)
1948 {
1949 app_disable ();
1950
1951 if (!DECL_IGNORED_P (current_function_decl))
1952 debug_hooks->end_function (high_function_linenum);
1953
1954 /* Finally, output the function epilogue:
1955 code to restore the stack frame and return to the caller. */
1956 targetm.asm_out.function_epilogue (asm_out_file);
1957
1958 /* And debug output. */
1959 if (!DECL_IGNORED_P (current_function_decl))
1960 debug_hooks->end_epilogue (last_linenum, last_filename);
1961
1962 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1963 && dwarf2out_do_frame ())
1964 dwarf2out_end_epilogue (last_linenum, last_filename);
1965
1966 some_local_dynamic_name = 0;
1967 }
1968 \f
1969
1970 /* Dumper helper for basic block information. FILE is the assembly
1971 output file, and INSN is the instruction being emitted. */
1972
1973 static void
1974 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1975 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1976 {
1977 basic_block bb;
1978
1979 if (!flag_debug_asm)
1980 return;
1981
1982 if (INSN_UID (insn) < bb_map_size
1983 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1984 {
1985 edge e;
1986 edge_iterator ei;
1987
1988 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1989 if (bb->count.initialized_p ())
1990 {
1991 fprintf (file, ", count:");
1992 bb->count.dump (file);
1993 }
1994 fprintf (file, " seq:%d", (*bb_seqn)++);
1995 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1996 FOR_EACH_EDGE (e, ei, bb->preds)
1997 {
1998 dump_edge_info (file, e, TDF_DETAILS, 0);
1999 }
2000 fprintf (file, "\n");
2001 }
2002 if (INSN_UID (insn) < bb_map_size
2003 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2004 {
2005 edge e;
2006 edge_iterator ei;
2007
2008 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2009 FOR_EACH_EDGE (e, ei, bb->succs)
2010 {
2011 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2012 }
2013 fprintf (file, "\n");
2014 }
2015 }
2016
2017 /* Output assembler code for some insns: all or part of a function.
2018 For description of args, see `final_start_function', above. */
2019
2020 static void
2021 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
2022 {
2023 rtx_insn *insn, *next;
2024
2025 /* Used for -dA dump. */
2026 basic_block *start_to_bb = NULL;
2027 basic_block *end_to_bb = NULL;
2028 int bb_map_size = 0;
2029 int bb_seqn = 0;
2030
2031 last_ignored_compare = 0;
2032
2033 if (HAVE_cc0)
2034 for (insn = first; insn; insn = NEXT_INSN (insn))
2035 {
2036 /* If CC tracking across branches is enabled, record the insn which
2037 jumps to each branch only reached from one place. */
2038 if (optimize_p && JUMP_P (insn))
2039 {
2040 rtx lab = JUMP_LABEL (insn);
2041 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2042 {
2043 LABEL_REFS (lab) = insn;
2044 }
2045 }
2046 }
2047
2048 init_recog ();
2049
2050 CC_STATUS_INIT;
2051
2052 if (flag_debug_asm)
2053 {
2054 basic_block bb;
2055
2056 bb_map_size = get_max_uid () + 1;
2057 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2058 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2059
2060 /* There is no cfg for a thunk. */
2061 if (!cfun->is_thunk)
2062 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2063 {
2064 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2065 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2066 }
2067 }
2068
2069 /* Output the insns. */
2070 for (insn = first; insn;)
2071 {
2072 if (HAVE_ATTR_length)
2073 {
2074 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2075 {
2076 /* This can be triggered by bugs elsewhere in the compiler if
2077 new insns are created after init_insn_lengths is called. */
2078 gcc_assert (NOTE_P (insn));
2079 insn_current_address = -1;
2080 }
2081 else
2082 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2083 }
2084
2085 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2086 bb_map_size, &bb_seqn);
2087 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2088 }
2089
2090 maybe_output_next_view (&seen);
2091
2092 if (flag_debug_asm)
2093 {
2094 free (start_to_bb);
2095 free (end_to_bb);
2096 }
2097
2098 /* Remove CFI notes, to avoid compare-debug failures. */
2099 for (insn = first; insn; insn = next)
2100 {
2101 next = NEXT_INSN (insn);
2102 if (NOTE_P (insn)
2103 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2104 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2105 delete_insn (insn);
2106 }
2107 }
2108
2109 /* This is an exported final_1, callable without SEEN. */
2110
2111 void
2112 final (rtx_insn *first, FILE *file, int optimize_p)
2113 {
2114 /* Those that use the internal final_start_function_1/final_1 API
2115 skip initial debug bind notes in final_start_function_1, and pass
2116 the modified FIRST to final_1. But those that use the public
2117 final_start_function/final APIs, final_start_function can't move
2118 FIRST because it's not passed by reference, so if they were
2119 skipped there, skip them again here. */
2120 while (in_initial_view_p (first))
2121 first = NEXT_INSN (first);
2122
2123 final_1 (first, file, 0, optimize_p);
2124 }
2125 \f
2126 const char *
2127 get_insn_template (int code, rtx insn)
2128 {
2129 switch (insn_data[code].output_format)
2130 {
2131 case INSN_OUTPUT_FORMAT_SINGLE:
2132 return insn_data[code].output.single;
2133 case INSN_OUTPUT_FORMAT_MULTI:
2134 return insn_data[code].output.multi[which_alternative];
2135 case INSN_OUTPUT_FORMAT_FUNCTION:
2136 gcc_assert (insn);
2137 return (*insn_data[code].output.function) (recog_data.operand,
2138 as_a <rtx_insn *> (insn));
2139
2140 default:
2141 gcc_unreachable ();
2142 }
2143 }
2144
2145 /* Emit the appropriate declaration for an alternate-entry-point
2146 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2147 LABEL_KIND != LABEL_NORMAL.
2148
2149 The case fall-through in this function is intentional. */
2150 static void
2151 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2152 {
2153 const char *name = LABEL_NAME (insn);
2154
2155 switch (LABEL_KIND (insn))
2156 {
2157 case LABEL_WEAK_ENTRY:
2158 #ifdef ASM_WEAKEN_LABEL
2159 ASM_WEAKEN_LABEL (file, name);
2160 gcc_fallthrough ();
2161 #endif
2162 case LABEL_GLOBAL_ENTRY:
2163 targetm.asm_out.globalize_label (file, name);
2164 gcc_fallthrough ();
2165 case LABEL_STATIC_ENTRY:
2166 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2167 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2168 #endif
2169 ASM_OUTPUT_LABEL (file, name);
2170 break;
2171
2172 case LABEL_NORMAL:
2173 default:
2174 gcc_unreachable ();
2175 }
2176 }
2177
2178 /* Given a CALL_INSN, find and return the nested CALL. */
2179 static rtx
2180 call_from_call_insn (rtx_call_insn *insn)
2181 {
2182 rtx x;
2183 gcc_assert (CALL_P (insn));
2184 x = PATTERN (insn);
2185
2186 while (GET_CODE (x) != CALL)
2187 {
2188 switch (GET_CODE (x))
2189 {
2190 default:
2191 gcc_unreachable ();
2192 case COND_EXEC:
2193 x = COND_EXEC_CODE (x);
2194 break;
2195 case PARALLEL:
2196 x = XVECEXP (x, 0, 0);
2197 break;
2198 case SET:
2199 x = XEXP (x, 1);
2200 break;
2201 }
2202 }
2203 return x;
2204 }
2205
2206 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2207 corresponding source line, if available. */
2208
2209 static void
2210 asm_show_source (const char *filename, int linenum)
2211 {
2212 if (!filename)
2213 return;
2214
2215 int line_size;
2216 const char *line = location_get_source_line (filename, linenum, &line_size);
2217 if (!line)
2218 return;
2219
2220 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2221 /* "line" is not 0-terminated, so we must use line_size. */
2222 fwrite (line, 1, line_size, asm_out_file);
2223 fputc ('\n', asm_out_file);
2224 }
2225
2226 /* The final scan for one insn, INSN.
2227 Args are same as in `final', except that INSN
2228 is the insn being scanned.
2229 Value returned is the next insn to be scanned.
2230
2231 NOPEEPHOLES is the flag to disallow peephole processing (currently
2232 used for within delayed branch sequence output).
2233
2234 SEEN is used to track the end of the prologue, for emitting
2235 debug information. We force the emission of a line note after
2236 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2237
2238 rtx_insn *
2239 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2240 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2241 {
2242 #if HAVE_cc0
2243 rtx set;
2244 #endif
2245 rtx_insn *next;
2246 rtx_jump_table_data *table;
2247
2248 insn_counter++;
2249
2250 /* Ignore deleted insns. These can occur when we split insns (due to a
2251 template of "#") while not optimizing. */
2252 if (insn->deleted ())
2253 return NEXT_INSN (insn);
2254
2255 switch (GET_CODE (insn))
2256 {
2257 case NOTE:
2258 switch (NOTE_KIND (insn))
2259 {
2260 case NOTE_INSN_DELETED:
2261 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2262 break;
2263
2264 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2265 maybe_output_next_view (seen);
2266
2267 in_cold_section_p = !in_cold_section_p;
2268
2269 if (in_cold_section_p)
2270 cold_function_name
2271 = clone_function_name (current_function_decl, "cold");
2272
2273 if (dwarf2out_do_frame ())
2274 {
2275 dwarf2out_switch_text_section ();
2276 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2277 && !DECL_IGNORED_P (current_function_decl))
2278 debug_hooks->switch_text_section ();
2279 }
2280 else if (!DECL_IGNORED_P (current_function_decl))
2281 debug_hooks->switch_text_section ();
2282
2283 switch_to_section (current_function_section ());
2284 targetm.asm_out.function_switched_text_sections (asm_out_file,
2285 current_function_decl,
2286 in_cold_section_p);
2287 /* Emit a label for the split cold section. Form label name by
2288 suffixing "cold" to the original function's name. */
2289 if (in_cold_section_p)
2290 {
2291 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2292 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2293 IDENTIFIER_POINTER
2294 (cold_function_name),
2295 current_function_decl);
2296 #else
2297 ASM_OUTPUT_LABEL (asm_out_file,
2298 IDENTIFIER_POINTER (cold_function_name));
2299 #endif
2300 }
2301 break;
2302
2303 case NOTE_INSN_BASIC_BLOCK:
2304 if (need_profile_function)
2305 {
2306 profile_function (asm_out_file);
2307 need_profile_function = false;
2308 }
2309
2310 if (targetm.asm_out.unwind_emit)
2311 targetm.asm_out.unwind_emit (asm_out_file, insn);
2312
2313 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2314
2315 break;
2316
2317 case NOTE_INSN_EH_REGION_BEG:
2318 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2319 NOTE_EH_HANDLER (insn));
2320 break;
2321
2322 case NOTE_INSN_EH_REGION_END:
2323 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2324 NOTE_EH_HANDLER (insn));
2325 break;
2326
2327 case NOTE_INSN_PROLOGUE_END:
2328 targetm.asm_out.function_end_prologue (file);
2329 profile_after_prologue (file);
2330
2331 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2332 {
2333 *seen |= SEEN_EMITTED;
2334 force_source_line = true;
2335 }
2336 else
2337 *seen |= SEEN_NOTE;
2338
2339 break;
2340
2341 case NOTE_INSN_EPILOGUE_BEG:
2342 if (!DECL_IGNORED_P (current_function_decl))
2343 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2344 targetm.asm_out.function_begin_epilogue (file);
2345 break;
2346
2347 case NOTE_INSN_CFI:
2348 dwarf2out_emit_cfi (NOTE_CFI (insn));
2349 break;
2350
2351 case NOTE_INSN_CFI_LABEL:
2352 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2353 NOTE_LABEL_NUMBER (insn));
2354 break;
2355
2356 case NOTE_INSN_FUNCTION_BEG:
2357 if (need_profile_function)
2358 {
2359 profile_function (asm_out_file);
2360 need_profile_function = false;
2361 }
2362
2363 app_disable ();
2364 if (!DECL_IGNORED_P (current_function_decl))
2365 debug_hooks->end_prologue (last_linenum, last_filename);
2366
2367 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2368 {
2369 *seen |= SEEN_EMITTED;
2370 force_source_line = true;
2371 }
2372 else
2373 *seen |= SEEN_NOTE;
2374
2375 break;
2376
2377 case NOTE_INSN_BLOCK_BEG:
2378 if (debug_info_level == DINFO_LEVEL_NORMAL
2379 || debug_info_level == DINFO_LEVEL_VERBOSE
2380 || write_symbols == DWARF2_DEBUG
2381 || write_symbols == VMS_AND_DWARF2_DEBUG
2382 || write_symbols == VMS_DEBUG)
2383 {
2384 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2385
2386 app_disable ();
2387 ++block_depth;
2388 high_block_linenum = last_linenum;
2389
2390 /* Output debugging info about the symbol-block beginning. */
2391 if (!DECL_IGNORED_P (current_function_decl))
2392 debug_hooks->begin_block (last_linenum, n);
2393
2394 /* Mark this block as output. */
2395 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2396 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2397 }
2398 if (write_symbols == DBX_DEBUG)
2399 {
2400 location_t *locus_ptr
2401 = block_nonartificial_location (NOTE_BLOCK (insn));
2402
2403 if (locus_ptr != NULL)
2404 {
2405 override_filename = LOCATION_FILE (*locus_ptr);
2406 override_linenum = LOCATION_LINE (*locus_ptr);
2407 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2408 }
2409 }
2410 break;
2411
2412 case NOTE_INSN_BLOCK_END:
2413 maybe_output_next_view (seen);
2414
2415 if (debug_info_level == DINFO_LEVEL_NORMAL
2416 || debug_info_level == DINFO_LEVEL_VERBOSE
2417 || write_symbols == DWARF2_DEBUG
2418 || write_symbols == VMS_AND_DWARF2_DEBUG
2419 || write_symbols == VMS_DEBUG)
2420 {
2421 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2422
2423 app_disable ();
2424
2425 /* End of a symbol-block. */
2426 --block_depth;
2427 gcc_assert (block_depth >= 0);
2428
2429 if (!DECL_IGNORED_P (current_function_decl))
2430 debug_hooks->end_block (high_block_linenum, n);
2431 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2432 == in_cold_section_p);
2433 }
2434 if (write_symbols == DBX_DEBUG)
2435 {
2436 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2437 location_t *locus_ptr
2438 = block_nonartificial_location (outer_block);
2439
2440 if (locus_ptr != NULL)
2441 {
2442 override_filename = LOCATION_FILE (*locus_ptr);
2443 override_linenum = LOCATION_LINE (*locus_ptr);
2444 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2445 }
2446 else
2447 {
2448 override_filename = NULL;
2449 override_linenum = 0;
2450 override_columnnum = 0;
2451 }
2452 }
2453 break;
2454
2455 case NOTE_INSN_DELETED_LABEL:
2456 /* Emit the label. We may have deleted the CODE_LABEL because
2457 the label could be proved to be unreachable, though still
2458 referenced (in the form of having its address taken. */
2459 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2460 break;
2461
2462 case NOTE_INSN_DELETED_DEBUG_LABEL:
2463 /* Similarly, but need to use different namespace for it. */
2464 if (CODE_LABEL_NUMBER (insn) != -1)
2465 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2466 break;
2467
2468 case NOTE_INSN_VAR_LOCATION:
2469 case NOTE_INSN_CALL_ARG_LOCATION:
2470 if (!DECL_IGNORED_P (current_function_decl))
2471 {
2472 debug_hooks->var_location (insn);
2473 set_next_view_needed (seen);
2474 }
2475 break;
2476
2477 case NOTE_INSN_BEGIN_STMT:
2478 gcc_checking_assert (cfun->debug_nonbind_markers);
2479 if (!DECL_IGNORED_P (current_function_decl)
2480 && notice_source_line (insn, NULL))
2481 {
2482 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2483 last_filename, last_discriminator,
2484 true);
2485 clear_next_view_needed (seen);
2486 }
2487 break;
2488
2489 default:
2490 gcc_unreachable ();
2491 break;
2492 }
2493 break;
2494
2495 case BARRIER:
2496 break;
2497
2498 case CODE_LABEL:
2499 /* The target port might emit labels in the output function for
2500 some insn, e.g. sh.c output_branchy_insn. */
2501 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2502 {
2503 int align = LABEL_TO_ALIGNMENT (insn);
2504 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2505 int max_skip = LABEL_TO_MAX_SKIP (insn);
2506 #endif
2507
2508 if (align && NEXT_INSN (insn))
2509 {
2510 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2511 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2512 #else
2513 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2514 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2515 #else
2516 ASM_OUTPUT_ALIGN (file, align);
2517 #endif
2518 #endif
2519 }
2520 }
2521 CC_STATUS_INIT;
2522
2523 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2524 debug_hooks->label (as_a <rtx_code_label *> (insn));
2525
2526 app_disable ();
2527
2528 /* If this label is followed by a jump-table, make sure we put
2529 the label in the read-only section. Also possibly write the
2530 label and jump table together. */
2531 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2532 if (table)
2533 {
2534 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2535 /* In this case, the case vector is being moved by the
2536 target, so don't output the label at all. Leave that
2537 to the back end macros. */
2538 #else
2539 if (! JUMP_TABLES_IN_TEXT_SECTION)
2540 {
2541 int log_align;
2542
2543 switch_to_section (targetm.asm_out.function_rodata_section
2544 (current_function_decl));
2545
2546 #ifdef ADDR_VEC_ALIGN
2547 log_align = ADDR_VEC_ALIGN (table);
2548 #else
2549 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2550 #endif
2551 ASM_OUTPUT_ALIGN (file, log_align);
2552 }
2553 else
2554 switch_to_section (current_function_section ());
2555
2556 #ifdef ASM_OUTPUT_CASE_LABEL
2557 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2558 #else
2559 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2560 #endif
2561 #endif
2562 break;
2563 }
2564 if (LABEL_ALT_ENTRY_P (insn))
2565 output_alternate_entry_point (file, insn);
2566 else
2567 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2568 break;
2569
2570 default:
2571 {
2572 rtx body = PATTERN (insn);
2573 int insn_code_number;
2574 const char *templ;
2575 bool is_stmt, *is_stmt_p;
2576
2577 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2578 {
2579 is_stmt = false;
2580 is_stmt_p = NULL;
2581 }
2582 else
2583 is_stmt_p = &is_stmt;
2584
2585 /* Reset this early so it is correct for ASM statements. */
2586 current_insn_predicate = NULL_RTX;
2587
2588 /* An INSN, JUMP_INSN or CALL_INSN.
2589 First check for special kinds that recog doesn't recognize. */
2590
2591 if (GET_CODE (body) == USE /* These are just declarations. */
2592 || GET_CODE (body) == CLOBBER)
2593 break;
2594
2595 #if HAVE_cc0
2596 {
2597 /* If there is a REG_CC_SETTER note on this insn, it means that
2598 the setting of the condition code was done in the delay slot
2599 of the insn that branched here. So recover the cc status
2600 from the insn that set it. */
2601
2602 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2603 if (note)
2604 {
2605 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2606 NOTICE_UPDATE_CC (PATTERN (other), other);
2607 cc_prev_status = cc_status;
2608 }
2609 }
2610 #endif
2611
2612 /* Detect insns that are really jump-tables
2613 and output them as such. */
2614
2615 if (JUMP_TABLE_DATA_P (insn))
2616 {
2617 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2618 int vlen, idx;
2619 #endif
2620
2621 if (! JUMP_TABLES_IN_TEXT_SECTION)
2622 switch_to_section (targetm.asm_out.function_rodata_section
2623 (current_function_decl));
2624 else
2625 switch_to_section (current_function_section ());
2626
2627 app_disable ();
2628
2629 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2630 if (GET_CODE (body) == ADDR_VEC)
2631 {
2632 #ifdef ASM_OUTPUT_ADDR_VEC
2633 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2634 #else
2635 gcc_unreachable ();
2636 #endif
2637 }
2638 else
2639 {
2640 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2641 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2642 #else
2643 gcc_unreachable ();
2644 #endif
2645 }
2646 #else
2647 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2648 for (idx = 0; idx < vlen; idx++)
2649 {
2650 if (GET_CODE (body) == ADDR_VEC)
2651 {
2652 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2653 ASM_OUTPUT_ADDR_VEC_ELT
2654 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2655 #else
2656 gcc_unreachable ();
2657 #endif
2658 }
2659 else
2660 {
2661 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2662 ASM_OUTPUT_ADDR_DIFF_ELT
2663 (file,
2664 body,
2665 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2666 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2667 #else
2668 gcc_unreachable ();
2669 #endif
2670 }
2671 }
2672 #ifdef ASM_OUTPUT_CASE_END
2673 ASM_OUTPUT_CASE_END (file,
2674 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2675 insn);
2676 #endif
2677 #endif
2678
2679 switch_to_section (current_function_section ());
2680
2681 if (debug_variable_location_views
2682 && !DECL_IGNORED_P (current_function_decl))
2683 debug_hooks->var_location (insn);
2684
2685 break;
2686 }
2687 /* Output this line note if it is the first or the last line
2688 note in a row. */
2689 if (!DECL_IGNORED_P (current_function_decl)
2690 && notice_source_line (insn, is_stmt_p))
2691 {
2692 if (flag_verbose_asm)
2693 asm_show_source (last_filename, last_linenum);
2694 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2695 last_filename, last_discriminator,
2696 is_stmt);
2697 clear_next_view_needed (seen);
2698 }
2699 else
2700 maybe_output_next_view (seen);
2701
2702 gcc_checking_assert (!DEBUG_INSN_P (insn));
2703
2704 if (GET_CODE (body) == PARALLEL
2705 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2706 body = XVECEXP (body, 0, 0);
2707
2708 if (GET_CODE (body) == ASM_INPUT)
2709 {
2710 const char *string = XSTR (body, 0);
2711
2712 /* There's no telling what that did to the condition codes. */
2713 CC_STATUS_INIT;
2714
2715 if (string[0])
2716 {
2717 expanded_location loc;
2718
2719 app_enable ();
2720 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2721 if (*loc.file && loc.line)
2722 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2723 ASM_COMMENT_START, loc.line, loc.file);
2724 fprintf (asm_out_file, "\t%s\n", string);
2725 #if HAVE_AS_LINE_ZERO
2726 if (*loc.file && loc.line)
2727 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2728 #endif
2729 }
2730 break;
2731 }
2732
2733 /* Detect `asm' construct with operands. */
2734 if (asm_noperands (body) >= 0)
2735 {
2736 unsigned int noperands = asm_noperands (body);
2737 rtx *ops = XALLOCAVEC (rtx, noperands);
2738 const char *string;
2739 location_t loc;
2740 expanded_location expanded;
2741
2742 /* There's no telling what that did to the condition codes. */
2743 CC_STATUS_INIT;
2744
2745 /* Get out the operand values. */
2746 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2747 /* Inhibit dying on what would otherwise be compiler bugs. */
2748 insn_noperands = noperands;
2749 this_is_asm_operands = insn;
2750 expanded = expand_location (loc);
2751
2752 #ifdef FINAL_PRESCAN_INSN
2753 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2754 #endif
2755
2756 /* Output the insn using them. */
2757 if (string[0])
2758 {
2759 app_enable ();
2760 if (expanded.file && expanded.line)
2761 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2762 ASM_COMMENT_START, expanded.line, expanded.file);
2763 output_asm_insn (string, ops);
2764 #if HAVE_AS_LINE_ZERO
2765 if (expanded.file && expanded.line)
2766 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2767 #endif
2768 }
2769
2770 if (targetm.asm_out.final_postscan_insn)
2771 targetm.asm_out.final_postscan_insn (file, insn, ops,
2772 insn_noperands);
2773
2774 this_is_asm_operands = 0;
2775 break;
2776 }
2777
2778 app_disable ();
2779
2780 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2781 {
2782 /* A delayed-branch sequence */
2783 int i;
2784
2785 final_sequence = seq;
2786
2787 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2788 force the restoration of a comparison that was previously
2789 thought unnecessary. If that happens, cancel this sequence
2790 and cause that insn to be restored. */
2791
2792 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2793 if (next != seq->insn (1))
2794 {
2795 final_sequence = 0;
2796 return next;
2797 }
2798
2799 for (i = 1; i < seq->len (); i++)
2800 {
2801 rtx_insn *insn = seq->insn (i);
2802 rtx_insn *next = NEXT_INSN (insn);
2803 /* We loop in case any instruction in a delay slot gets
2804 split. */
2805 do
2806 insn = final_scan_insn (insn, file, 0, 1, seen);
2807 while (insn != next);
2808 }
2809 #ifdef DBR_OUTPUT_SEQEND
2810 DBR_OUTPUT_SEQEND (file);
2811 #endif
2812 final_sequence = 0;
2813
2814 /* If the insn requiring the delay slot was a CALL_INSN, the
2815 insns in the delay slot are actually executed before the
2816 called function. Hence we don't preserve any CC-setting
2817 actions in these insns and the CC must be marked as being
2818 clobbered by the function. */
2819 if (CALL_P (seq->insn (0)))
2820 {
2821 CC_STATUS_INIT;
2822 }
2823 break;
2824 }
2825
2826 /* We have a real machine instruction as rtl. */
2827
2828 body = PATTERN (insn);
2829
2830 #if HAVE_cc0
2831 set = single_set (insn);
2832
2833 /* Check for redundant test and compare instructions
2834 (when the condition codes are already set up as desired).
2835 This is done only when optimizing; if not optimizing,
2836 it should be possible for the user to alter a variable
2837 with the debugger in between statements
2838 and the next statement should reexamine the variable
2839 to compute the condition codes. */
2840
2841 if (optimize_p)
2842 {
2843 if (set
2844 && GET_CODE (SET_DEST (set)) == CC0
2845 && insn != last_ignored_compare)
2846 {
2847 rtx src1, src2;
2848 if (GET_CODE (SET_SRC (set)) == SUBREG)
2849 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2850
2851 src1 = SET_SRC (set);
2852 src2 = NULL_RTX;
2853 if (GET_CODE (SET_SRC (set)) == COMPARE)
2854 {
2855 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2856 XEXP (SET_SRC (set), 0)
2857 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2858 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2859 XEXP (SET_SRC (set), 1)
2860 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2861 if (XEXP (SET_SRC (set), 1)
2862 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2863 src2 = XEXP (SET_SRC (set), 0);
2864 }
2865 if ((cc_status.value1 != 0
2866 && rtx_equal_p (src1, cc_status.value1))
2867 || (cc_status.value2 != 0
2868 && rtx_equal_p (src1, cc_status.value2))
2869 || (src2 != 0 && cc_status.value1 != 0
2870 && rtx_equal_p (src2, cc_status.value1))
2871 || (src2 != 0 && cc_status.value2 != 0
2872 && rtx_equal_p (src2, cc_status.value2)))
2873 {
2874 /* Don't delete insn if it has an addressing side-effect. */
2875 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2876 /* or if anything in it is volatile. */
2877 && ! volatile_refs_p (PATTERN (insn)))
2878 {
2879 /* We don't really delete the insn; just ignore it. */
2880 last_ignored_compare = insn;
2881 break;
2882 }
2883 }
2884 }
2885 }
2886
2887 /* If this is a conditional branch, maybe modify it
2888 if the cc's are in a nonstandard state
2889 so that it accomplishes the same thing that it would
2890 do straightforwardly if the cc's were set up normally. */
2891
2892 if (cc_status.flags != 0
2893 && JUMP_P (insn)
2894 && GET_CODE (body) == SET
2895 && SET_DEST (body) == pc_rtx
2896 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2897 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2898 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2899 {
2900 /* This function may alter the contents of its argument
2901 and clear some of the cc_status.flags bits.
2902 It may also return 1 meaning condition now always true
2903 or -1 meaning condition now always false
2904 or 2 meaning condition nontrivial but altered. */
2905 int result = alter_cond (XEXP (SET_SRC (body), 0));
2906 /* If condition now has fixed value, replace the IF_THEN_ELSE
2907 with its then-operand or its else-operand. */
2908 if (result == 1)
2909 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2910 if (result == -1)
2911 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2912
2913 /* The jump is now either unconditional or a no-op.
2914 If it has become a no-op, don't try to output it.
2915 (It would not be recognized.) */
2916 if (SET_SRC (body) == pc_rtx)
2917 {
2918 delete_insn (insn);
2919 break;
2920 }
2921 else if (ANY_RETURN_P (SET_SRC (body)))
2922 /* Replace (set (pc) (return)) with (return). */
2923 PATTERN (insn) = body = SET_SRC (body);
2924
2925 /* Rerecognize the instruction if it has changed. */
2926 if (result != 0)
2927 INSN_CODE (insn) = -1;
2928 }
2929
2930 /* If this is a conditional trap, maybe modify it if the cc's
2931 are in a nonstandard state so that it accomplishes the same
2932 thing that it would do straightforwardly if the cc's were
2933 set up normally. */
2934 if (cc_status.flags != 0
2935 && NONJUMP_INSN_P (insn)
2936 && GET_CODE (body) == TRAP_IF
2937 && COMPARISON_P (TRAP_CONDITION (body))
2938 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2939 {
2940 /* This function may alter the contents of its argument
2941 and clear some of the cc_status.flags bits.
2942 It may also return 1 meaning condition now always true
2943 or -1 meaning condition now always false
2944 or 2 meaning condition nontrivial but altered. */
2945 int result = alter_cond (TRAP_CONDITION (body));
2946
2947 /* If TRAP_CONDITION has become always false, delete the
2948 instruction. */
2949 if (result == -1)
2950 {
2951 delete_insn (insn);
2952 break;
2953 }
2954
2955 /* If TRAP_CONDITION has become always true, replace
2956 TRAP_CONDITION with const_true_rtx. */
2957 if (result == 1)
2958 TRAP_CONDITION (body) = const_true_rtx;
2959
2960 /* Rerecognize the instruction if it has changed. */
2961 if (result != 0)
2962 INSN_CODE (insn) = -1;
2963 }
2964
2965 /* Make same adjustments to instructions that examine the
2966 condition codes without jumping and instructions that
2967 handle conditional moves (if this machine has either one). */
2968
2969 if (cc_status.flags != 0
2970 && set != 0)
2971 {
2972 rtx cond_rtx, then_rtx, else_rtx;
2973
2974 if (!JUMP_P (insn)
2975 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2976 {
2977 cond_rtx = XEXP (SET_SRC (set), 0);
2978 then_rtx = XEXP (SET_SRC (set), 1);
2979 else_rtx = XEXP (SET_SRC (set), 2);
2980 }
2981 else
2982 {
2983 cond_rtx = SET_SRC (set);
2984 then_rtx = const_true_rtx;
2985 else_rtx = const0_rtx;
2986 }
2987
2988 if (COMPARISON_P (cond_rtx)
2989 && XEXP (cond_rtx, 0) == cc0_rtx)
2990 {
2991 int result;
2992 result = alter_cond (cond_rtx);
2993 if (result == 1)
2994 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2995 else if (result == -1)
2996 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2997 else if (result == 2)
2998 INSN_CODE (insn) = -1;
2999 if (SET_DEST (set) == SET_SRC (set))
3000 delete_insn (insn);
3001 }
3002 }
3003
3004 #endif
3005
3006 /* Do machine-specific peephole optimizations if desired. */
3007
3008 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
3009 {
3010 rtx_insn *next = peephole (insn);
3011 /* When peepholing, if there were notes within the peephole,
3012 emit them before the peephole. */
3013 if (next != 0 && next != NEXT_INSN (insn))
3014 {
3015 rtx_insn *note, *prev = PREV_INSN (insn);
3016
3017 for (note = NEXT_INSN (insn); note != next;
3018 note = NEXT_INSN (note))
3019 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3020
3021 /* Put the notes in the proper position for a later
3022 rescan. For example, the SH target can do this
3023 when generating a far jump in a delayed branch
3024 sequence. */
3025 note = NEXT_INSN (insn);
3026 SET_PREV_INSN (note) = prev;
3027 SET_NEXT_INSN (prev) = note;
3028 SET_NEXT_INSN (PREV_INSN (next)) = insn;
3029 SET_PREV_INSN (insn) = PREV_INSN (next);
3030 SET_NEXT_INSN (insn) = next;
3031 SET_PREV_INSN (next) = insn;
3032 }
3033
3034 /* PEEPHOLE might have changed this. */
3035 body = PATTERN (insn);
3036 }
3037
3038 /* Try to recognize the instruction.
3039 If successful, verify that the operands satisfy the
3040 constraints for the instruction. Crash if they don't,
3041 since `reload' should have changed them so that they do. */
3042
3043 insn_code_number = recog_memoized (insn);
3044 cleanup_subreg_operands (insn);
3045
3046 /* Dump the insn in the assembly for debugging (-dAP).
3047 If the final dump is requested as slim RTL, dump slim
3048 RTL to the assembly file also. */
3049 if (flag_dump_rtl_in_asm)
3050 {
3051 print_rtx_head = ASM_COMMENT_START;
3052 if (! (dump_flags & TDF_SLIM))
3053 print_rtl_single (asm_out_file, insn);
3054 else
3055 dump_insn_slim (asm_out_file, insn);
3056 print_rtx_head = "";
3057 }
3058
3059 if (! constrain_operands_cached (insn, 1))
3060 fatal_insn_not_found (insn);
3061
3062 /* Some target machines need to prescan each insn before
3063 it is output. */
3064
3065 #ifdef FINAL_PRESCAN_INSN
3066 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3067 #endif
3068
3069 if (targetm.have_conditional_execution ()
3070 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3071 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3072
3073 #if HAVE_cc0
3074 cc_prev_status = cc_status;
3075
3076 /* Update `cc_status' for this instruction.
3077 The instruction's output routine may change it further.
3078 If the output routine for a jump insn needs to depend
3079 on the cc status, it should look at cc_prev_status. */
3080
3081 NOTICE_UPDATE_CC (body, insn);
3082 #endif
3083
3084 current_output_insn = debug_insn = insn;
3085
3086 /* Find the proper template for this insn. */
3087 templ = get_insn_template (insn_code_number, insn);
3088
3089 /* If the C code returns 0, it means that it is a jump insn
3090 which follows a deleted test insn, and that test insn
3091 needs to be reinserted. */
3092 if (templ == 0)
3093 {
3094 rtx_insn *prev;
3095
3096 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3097
3098 /* We have already processed the notes between the setter and
3099 the user. Make sure we don't process them again, this is
3100 particularly important if one of the notes is a block
3101 scope note or an EH note. */
3102 for (prev = insn;
3103 prev != last_ignored_compare;
3104 prev = PREV_INSN (prev))
3105 {
3106 if (NOTE_P (prev))
3107 delete_insn (prev); /* Use delete_note. */
3108 }
3109
3110 return prev;
3111 }
3112
3113 /* If the template is the string "#", it means that this insn must
3114 be split. */
3115 if (templ[0] == '#' && templ[1] == '\0')
3116 {
3117 rtx_insn *new_rtx = try_split (body, insn, 0);
3118
3119 /* If we didn't split the insn, go away. */
3120 if (new_rtx == insn && PATTERN (new_rtx) == body)
3121 fatal_insn ("could not split insn", insn);
3122
3123 /* If we have a length attribute, this instruction should have
3124 been split in shorten_branches, to ensure that we would have
3125 valid length info for the splitees. */
3126 gcc_assert (!HAVE_ATTR_length);
3127
3128 return new_rtx;
3129 }
3130
3131 /* ??? This will put the directives in the wrong place if
3132 get_insn_template outputs assembly directly. However calling it
3133 before get_insn_template breaks if the insns is split. */
3134 if (targetm.asm_out.unwind_emit_before_insn
3135 && targetm.asm_out.unwind_emit)
3136 targetm.asm_out.unwind_emit (asm_out_file, insn);
3137
3138 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3139 if (call_insn != NULL)
3140 {
3141 rtx x = call_from_call_insn (call_insn);
3142 x = XEXP (x, 0);
3143 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3144 {
3145 tree t;
3146 x = XEXP (x, 0);
3147 t = SYMBOL_REF_DECL (x);
3148 if (t)
3149 assemble_external (t);
3150 }
3151 }
3152
3153 /* Output assembler code from the template. */
3154 output_asm_insn (templ, recog_data.operand);
3155
3156 /* Some target machines need to postscan each insn after
3157 it is output. */
3158 if (targetm.asm_out.final_postscan_insn)
3159 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3160 recog_data.n_operands);
3161
3162 if (!targetm.asm_out.unwind_emit_before_insn
3163 && targetm.asm_out.unwind_emit)
3164 targetm.asm_out.unwind_emit (asm_out_file, insn);
3165
3166 /* Let the debug info back-end know about this call. We do this only
3167 after the instruction has been emitted because labels that may be
3168 created to reference the call instruction must appear after it. */
3169 if ((debug_variable_location_views || call_insn != NULL)
3170 && !DECL_IGNORED_P (current_function_decl))
3171 debug_hooks->var_location (insn);
3172
3173 current_output_insn = debug_insn = 0;
3174 }
3175 }
3176 return NEXT_INSN (insn);
3177 }
3178 \f
3179 /* Return whether a source line note needs to be emitted before INSN.
3180 Sets IS_STMT to TRUE if the line should be marked as a possible
3181 breakpoint location. */
3182
3183 static bool
3184 notice_source_line (rtx_insn *insn, bool *is_stmt)
3185 {
3186 const char *filename;
3187 int linenum, columnnum;
3188
3189 if (NOTE_MARKER_P (insn))
3190 {
3191 location_t loc = NOTE_MARKER_LOCATION (insn);
3192 expanded_location xloc = expand_location (loc);
3193 if (xloc.line == 0)
3194 {
3195 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3196 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3197 return false;
3198 }
3199 filename = xloc.file;
3200 linenum = xloc.line;
3201 columnnum = xloc.column;
3202 force_source_line = true;
3203 }
3204 else if (override_filename)
3205 {
3206 filename = override_filename;
3207 linenum = override_linenum;
3208 columnnum = override_columnnum;
3209 }
3210 else if (INSN_HAS_LOCATION (insn))
3211 {
3212 expanded_location xloc = insn_location (insn);
3213 filename = xloc.file;
3214 linenum = xloc.line;
3215 columnnum = xloc.column;
3216 }
3217 else
3218 {
3219 filename = NULL;
3220 linenum = 0;
3221 columnnum = 0;
3222 }
3223
3224 if (filename == NULL)
3225 return false;
3226
3227 if (force_source_line
3228 || filename != last_filename
3229 || last_linenum != linenum
3230 || (debug_column_info && last_columnnum != columnnum))
3231 {
3232 force_source_line = false;
3233 last_filename = filename;
3234 last_linenum = linenum;
3235 last_columnnum = columnnum;
3236 last_discriminator = discriminator;
3237 if (is_stmt)
3238 *is_stmt = true;
3239 high_block_linenum = MAX (last_linenum, high_block_linenum);
3240 high_function_linenum = MAX (last_linenum, high_function_linenum);
3241 return true;
3242 }
3243
3244 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3245 {
3246 /* If the discriminator changed, but the line number did not,
3247 output the line table entry with is_stmt false so the
3248 debugger does not treat this as a breakpoint location. */
3249 last_discriminator = discriminator;
3250 if (is_stmt)
3251 *is_stmt = false;
3252 return true;
3253 }
3254
3255 return false;
3256 }
3257 \f
3258 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3259 directly to the desired hard register. */
3260
3261 void
3262 cleanup_subreg_operands (rtx_insn *insn)
3263 {
3264 int i;
3265 bool changed = false;
3266 extract_insn_cached (insn);
3267 for (i = 0; i < recog_data.n_operands; i++)
3268 {
3269 /* The following test cannot use recog_data.operand when testing
3270 for a SUBREG: the underlying object might have been changed
3271 already if we are inside a match_operator expression that
3272 matches the else clause. Instead we test the underlying
3273 expression directly. */
3274 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3275 {
3276 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3277 changed = true;
3278 }
3279 else if (GET_CODE (recog_data.operand[i]) == PLUS
3280 || GET_CODE (recog_data.operand[i]) == MULT
3281 || MEM_P (recog_data.operand[i]))
3282 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3283 }
3284
3285 for (i = 0; i < recog_data.n_dups; i++)
3286 {
3287 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3288 {
3289 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3290 changed = true;
3291 }
3292 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3293 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3294 || MEM_P (*recog_data.dup_loc[i]))
3295 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3296 }
3297 if (changed)
3298 df_insn_rescan (insn);
3299 }
3300
3301 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3302 the thing it is a subreg of. Do it anyway if FINAL_P. */
3303
3304 rtx
3305 alter_subreg (rtx *xp, bool final_p)
3306 {
3307 rtx x = *xp;
3308 rtx y = SUBREG_REG (x);
3309
3310 /* simplify_subreg does not remove subreg from volatile references.
3311 We are required to. */
3312 if (MEM_P (y))
3313 {
3314 poly_int64 offset = SUBREG_BYTE (x);
3315
3316 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3317 contains 0 instead of the proper offset. See simplify_subreg. */
3318 if (paradoxical_subreg_p (x))
3319 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3320
3321 if (final_p)
3322 *xp = adjust_address (y, GET_MODE (x), offset);
3323 else
3324 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3325 }
3326 else if (REG_P (y) && HARD_REGISTER_P (y))
3327 {
3328 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3329 SUBREG_BYTE (x));
3330
3331 if (new_rtx != 0)
3332 *xp = new_rtx;
3333 else if (final_p && REG_P (y))
3334 {
3335 /* Simplify_subreg can't handle some REG cases, but we have to. */
3336 unsigned int regno;
3337 poly_int64 offset;
3338
3339 regno = subreg_regno (x);
3340 if (subreg_lowpart_p (x))
3341 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3342 else
3343 offset = SUBREG_BYTE (x);
3344 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3345 }
3346 }
3347
3348 return *xp;
3349 }
3350
3351 /* Do alter_subreg on all the SUBREGs contained in X. */
3352
3353 static rtx
3354 walk_alter_subreg (rtx *xp, bool *changed)
3355 {
3356 rtx x = *xp;
3357 switch (GET_CODE (x))
3358 {
3359 case PLUS:
3360 case MULT:
3361 case AND:
3362 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3363 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3364 break;
3365
3366 case MEM:
3367 case ZERO_EXTEND:
3368 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3369 break;
3370
3371 case SUBREG:
3372 *changed = true;
3373 return alter_subreg (xp, true);
3374
3375 default:
3376 break;
3377 }
3378
3379 return *xp;
3380 }
3381 \f
3382 #if HAVE_cc0
3383
3384 /* Given BODY, the body of a jump instruction, alter the jump condition
3385 as required by the bits that are set in cc_status.flags.
3386 Not all of the bits there can be handled at this level in all cases.
3387
3388 The value is normally 0.
3389 1 means that the condition has become always true.
3390 -1 means that the condition has become always false.
3391 2 means that COND has been altered. */
3392
3393 static int
3394 alter_cond (rtx cond)
3395 {
3396 int value = 0;
3397
3398 if (cc_status.flags & CC_REVERSED)
3399 {
3400 value = 2;
3401 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3402 }
3403
3404 if (cc_status.flags & CC_INVERTED)
3405 {
3406 value = 2;
3407 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3408 }
3409
3410 if (cc_status.flags & CC_NOT_POSITIVE)
3411 switch (GET_CODE (cond))
3412 {
3413 case LE:
3414 case LEU:
3415 case GEU:
3416 /* Jump becomes unconditional. */
3417 return 1;
3418
3419 case GT:
3420 case GTU:
3421 case LTU:
3422 /* Jump becomes no-op. */
3423 return -1;
3424
3425 case GE:
3426 PUT_CODE (cond, EQ);
3427 value = 2;
3428 break;
3429
3430 case LT:
3431 PUT_CODE (cond, NE);
3432 value = 2;
3433 break;
3434
3435 default:
3436 break;
3437 }
3438
3439 if (cc_status.flags & CC_NOT_NEGATIVE)
3440 switch (GET_CODE (cond))
3441 {
3442 case GE:
3443 case GEU:
3444 /* Jump becomes unconditional. */
3445 return 1;
3446
3447 case LT:
3448 case LTU:
3449 /* Jump becomes no-op. */
3450 return -1;
3451
3452 case LE:
3453 case LEU:
3454 PUT_CODE (cond, EQ);
3455 value = 2;
3456 break;
3457
3458 case GT:
3459 case GTU:
3460 PUT_CODE (cond, NE);
3461 value = 2;
3462 break;
3463
3464 default:
3465 break;
3466 }
3467
3468 if (cc_status.flags & CC_NO_OVERFLOW)
3469 switch (GET_CODE (cond))
3470 {
3471 case GEU:
3472 /* Jump becomes unconditional. */
3473 return 1;
3474
3475 case LEU:
3476 PUT_CODE (cond, EQ);
3477 value = 2;
3478 break;
3479
3480 case GTU:
3481 PUT_CODE (cond, NE);
3482 value = 2;
3483 break;
3484
3485 case LTU:
3486 /* Jump becomes no-op. */
3487 return -1;
3488
3489 default:
3490 break;
3491 }
3492
3493 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3494 switch (GET_CODE (cond))
3495 {
3496 default:
3497 gcc_unreachable ();
3498
3499 case NE:
3500 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3501 value = 2;
3502 break;
3503
3504 case EQ:
3505 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3506 value = 2;
3507 break;
3508 }
3509
3510 if (cc_status.flags & CC_NOT_SIGNED)
3511 /* The flags are valid if signed condition operators are converted
3512 to unsigned. */
3513 switch (GET_CODE (cond))
3514 {
3515 case LE:
3516 PUT_CODE (cond, LEU);
3517 value = 2;
3518 break;
3519
3520 case LT:
3521 PUT_CODE (cond, LTU);
3522 value = 2;
3523 break;
3524
3525 case GT:
3526 PUT_CODE (cond, GTU);
3527 value = 2;
3528 break;
3529
3530 case GE:
3531 PUT_CODE (cond, GEU);
3532 value = 2;
3533 break;
3534
3535 default:
3536 break;
3537 }
3538
3539 return value;
3540 }
3541 #endif
3542 \f
3543 /* Report inconsistency between the assembler template and the operands.
3544 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3545
3546 void
3547 output_operand_lossage (const char *cmsgid, ...)
3548 {
3549 char *fmt_string;
3550 char *new_message;
3551 const char *pfx_str;
3552 va_list ap;
3553
3554 va_start (ap, cmsgid);
3555
3556 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3557 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3558 new_message = xvasprintf (fmt_string, ap);
3559
3560 if (this_is_asm_operands)
3561 error_for_asm (this_is_asm_operands, "%s", new_message);
3562 else
3563 internal_error ("%s", new_message);
3564
3565 free (fmt_string);
3566 free (new_message);
3567 va_end (ap);
3568 }
3569 \f
3570 /* Output of assembler code from a template, and its subroutines. */
3571
3572 /* Annotate the assembly with a comment describing the pattern and
3573 alternative used. */
3574
3575 static void
3576 output_asm_name (void)
3577 {
3578 if (debug_insn)
3579 {
3580 fprintf (asm_out_file, "\t%s %d\t",
3581 ASM_COMMENT_START, INSN_UID (debug_insn));
3582
3583 fprintf (asm_out_file, "[c=%d",
3584 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3585 if (HAVE_ATTR_length)
3586 fprintf (asm_out_file, " l=%d",
3587 get_attr_length (debug_insn));
3588 fprintf (asm_out_file, "] ");
3589
3590 int num = INSN_CODE (debug_insn);
3591 fprintf (asm_out_file, "%s", insn_data[num].name);
3592 if (insn_data[num].n_alternatives > 1)
3593 fprintf (asm_out_file, "/%d", which_alternative);
3594
3595 /* Clear this so only the first assembler insn
3596 of any rtl insn will get the special comment for -dp. */
3597 debug_insn = 0;
3598 }
3599 }
3600
3601 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3602 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3603 corresponds to the address of the object and 0 if to the object. */
3604
3605 static tree
3606 get_mem_expr_from_op (rtx op, int *paddressp)
3607 {
3608 tree expr;
3609 int inner_addressp;
3610
3611 *paddressp = 0;
3612
3613 if (REG_P (op))
3614 return REG_EXPR (op);
3615 else if (!MEM_P (op))
3616 return 0;
3617
3618 if (MEM_EXPR (op) != 0)
3619 return MEM_EXPR (op);
3620
3621 /* Otherwise we have an address, so indicate it and look at the address. */
3622 *paddressp = 1;
3623 op = XEXP (op, 0);
3624
3625 /* First check if we have a decl for the address, then look at the right side
3626 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3627 But don't allow the address to itself be indirect. */
3628 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3629 return expr;
3630 else if (GET_CODE (op) == PLUS
3631 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3632 return expr;
3633
3634 while (UNARY_P (op)
3635 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3636 op = XEXP (op, 0);
3637
3638 expr = get_mem_expr_from_op (op, &inner_addressp);
3639 return inner_addressp ? 0 : expr;
3640 }
3641
3642 /* Output operand names for assembler instructions. OPERANDS is the
3643 operand vector, OPORDER is the order to write the operands, and NOPS
3644 is the number of operands to write. */
3645
3646 static void
3647 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3648 {
3649 int wrote = 0;
3650 int i;
3651
3652 for (i = 0; i < nops; i++)
3653 {
3654 int addressp;
3655 rtx op = operands[oporder[i]];
3656 tree expr = get_mem_expr_from_op (op, &addressp);
3657
3658 fprintf (asm_out_file, "%c%s",
3659 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3660 wrote = 1;
3661 if (expr)
3662 {
3663 fprintf (asm_out_file, "%s",
3664 addressp ? "*" : "");
3665 print_mem_expr (asm_out_file, expr);
3666 wrote = 1;
3667 }
3668 else if (REG_P (op) && ORIGINAL_REGNO (op)
3669 && ORIGINAL_REGNO (op) != REGNO (op))
3670 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3671 }
3672 }
3673
3674 #ifdef ASSEMBLER_DIALECT
3675 /* Helper function to parse assembler dialects in the asm string.
3676 This is called from output_asm_insn and asm_fprintf. */
3677 static const char *
3678 do_assembler_dialects (const char *p, int *dialect)
3679 {
3680 char c = *(p - 1);
3681
3682 switch (c)
3683 {
3684 case '{':
3685 {
3686 int i;
3687
3688 if (*dialect)
3689 output_operand_lossage ("nested assembly dialect alternatives");
3690 else
3691 *dialect = 1;
3692
3693 /* If we want the first dialect, do nothing. Otherwise, skip
3694 DIALECT_NUMBER of strings ending with '|'. */
3695 for (i = 0; i < dialect_number; i++)
3696 {
3697 while (*p && *p != '}')
3698 {
3699 if (*p == '|')
3700 {
3701 p++;
3702 break;
3703 }
3704
3705 /* Skip over any character after a percent sign. */
3706 if (*p == '%')
3707 p++;
3708 if (*p)
3709 p++;
3710 }
3711
3712 if (*p == '}')
3713 break;
3714 }
3715
3716 if (*p == '\0')
3717 output_operand_lossage ("unterminated assembly dialect alternative");
3718 }
3719 break;
3720
3721 case '|':
3722 if (*dialect)
3723 {
3724 /* Skip to close brace. */
3725 do
3726 {
3727 if (*p == '\0')
3728 {
3729 output_operand_lossage ("unterminated assembly dialect alternative");
3730 break;
3731 }
3732
3733 /* Skip over any character after a percent sign. */
3734 if (*p == '%' && p[1])
3735 {
3736 p += 2;
3737 continue;
3738 }
3739
3740 if (*p++ == '}')
3741 break;
3742 }
3743 while (1);
3744
3745 *dialect = 0;
3746 }
3747 else
3748 putc (c, asm_out_file);
3749 break;
3750
3751 case '}':
3752 if (! *dialect)
3753 putc (c, asm_out_file);
3754 *dialect = 0;
3755 break;
3756 default:
3757 gcc_unreachable ();
3758 }
3759
3760 return p;
3761 }
3762 #endif
3763
3764 /* Output text from TEMPLATE to the assembler output file,
3765 obeying %-directions to substitute operands taken from
3766 the vector OPERANDS.
3767
3768 %N (for N a digit) means print operand N in usual manner.
3769 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3770 and print the label name with no punctuation.
3771 %cN means require operand N to be a constant
3772 and print the constant expression with no punctuation.
3773 %aN means expect operand N to be a memory address
3774 (not a memory reference!) and print a reference
3775 to that address.
3776 %nN means expect operand N to be a constant
3777 and print a constant expression for minus the value
3778 of the operand, with no other punctuation. */
3779
3780 void
3781 output_asm_insn (const char *templ, rtx *operands)
3782 {
3783 const char *p;
3784 int c;
3785 #ifdef ASSEMBLER_DIALECT
3786 int dialect = 0;
3787 #endif
3788 int oporder[MAX_RECOG_OPERANDS];
3789 char opoutput[MAX_RECOG_OPERANDS];
3790 int ops = 0;
3791
3792 /* An insn may return a null string template
3793 in a case where no assembler code is needed. */
3794 if (*templ == 0)
3795 return;
3796
3797 memset (opoutput, 0, sizeof opoutput);
3798 p = templ;
3799 putc ('\t', asm_out_file);
3800
3801 #ifdef ASM_OUTPUT_OPCODE
3802 ASM_OUTPUT_OPCODE (asm_out_file, p);
3803 #endif
3804
3805 while ((c = *p++))
3806 switch (c)
3807 {
3808 case '\n':
3809 if (flag_verbose_asm)
3810 output_asm_operand_names (operands, oporder, ops);
3811 if (flag_print_asm_name)
3812 output_asm_name ();
3813
3814 ops = 0;
3815 memset (opoutput, 0, sizeof opoutput);
3816
3817 putc (c, asm_out_file);
3818 #ifdef ASM_OUTPUT_OPCODE
3819 while ((c = *p) == '\t')
3820 {
3821 putc (c, asm_out_file);
3822 p++;
3823 }
3824 ASM_OUTPUT_OPCODE (asm_out_file, p);
3825 #endif
3826 break;
3827
3828 #ifdef ASSEMBLER_DIALECT
3829 case '{':
3830 case '}':
3831 case '|':
3832 p = do_assembler_dialects (p, &dialect);
3833 break;
3834 #endif
3835
3836 case '%':
3837 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3838 if ASSEMBLER_DIALECT defined and these characters have a special
3839 meaning as dialect delimiters.*/
3840 if (*p == '%'
3841 #ifdef ASSEMBLER_DIALECT
3842 || *p == '{' || *p == '}' || *p == '|'
3843 #endif
3844 )
3845 {
3846 putc (*p, asm_out_file);
3847 p++;
3848 }
3849 /* %= outputs a number which is unique to each insn in the entire
3850 compilation. This is useful for making local labels that are
3851 referred to more than once in a given insn. */
3852 else if (*p == '=')
3853 {
3854 p++;
3855 fprintf (asm_out_file, "%d", insn_counter);
3856 }
3857 /* % followed by a letter and some digits
3858 outputs an operand in a special way depending on the letter.
3859 Letters `acln' are implemented directly.
3860 Other letters are passed to `output_operand' so that
3861 the TARGET_PRINT_OPERAND hook can define them. */
3862 else if (ISALPHA (*p))
3863 {
3864 int letter = *p++;
3865 unsigned long opnum;
3866 char *endptr;
3867
3868 opnum = strtoul (p, &endptr, 10);
3869
3870 if (endptr == p)
3871 output_operand_lossage ("operand number missing "
3872 "after %%-letter");
3873 else if (this_is_asm_operands && opnum >= insn_noperands)
3874 output_operand_lossage ("operand number out of range");
3875 else if (letter == 'l')
3876 output_asm_label (operands[opnum]);
3877 else if (letter == 'a')
3878 output_address (VOIDmode, operands[opnum]);
3879 else if (letter == 'c')
3880 {
3881 if (CONSTANT_ADDRESS_P (operands[opnum]))
3882 output_addr_const (asm_out_file, operands[opnum]);
3883 else
3884 output_operand (operands[opnum], 'c');
3885 }
3886 else if (letter == 'n')
3887 {
3888 if (CONST_INT_P (operands[opnum]))
3889 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3890 - INTVAL (operands[opnum]));
3891 else
3892 {
3893 putc ('-', asm_out_file);
3894 output_addr_const (asm_out_file, operands[opnum]);
3895 }
3896 }
3897 else
3898 output_operand (operands[opnum], letter);
3899
3900 if (!opoutput[opnum])
3901 oporder[ops++] = opnum;
3902 opoutput[opnum] = 1;
3903
3904 p = endptr;
3905 c = *p;
3906 }
3907 /* % followed by a digit outputs an operand the default way. */
3908 else if (ISDIGIT (*p))
3909 {
3910 unsigned long opnum;
3911 char *endptr;
3912
3913 opnum = strtoul (p, &endptr, 10);
3914 if (this_is_asm_operands && opnum >= insn_noperands)
3915 output_operand_lossage ("operand number out of range");
3916 else
3917 output_operand (operands[opnum], 0);
3918
3919 if (!opoutput[opnum])
3920 oporder[ops++] = opnum;
3921 opoutput[opnum] = 1;
3922
3923 p = endptr;
3924 c = *p;
3925 }
3926 /* % followed by punctuation: output something for that
3927 punctuation character alone, with no operand. The
3928 TARGET_PRINT_OPERAND hook decides what is actually done. */
3929 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3930 output_operand (NULL_RTX, *p++);
3931 else
3932 output_operand_lossage ("invalid %%-code");
3933 break;
3934
3935 default:
3936 putc (c, asm_out_file);
3937 }
3938
3939 /* Try to keep the asm a bit more readable. */
3940 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3941 putc ('\t', asm_out_file);
3942
3943 /* Write out the variable names for operands, if we know them. */
3944 if (flag_verbose_asm)
3945 output_asm_operand_names (operands, oporder, ops);
3946 if (flag_print_asm_name)
3947 output_asm_name ();
3948
3949 putc ('\n', asm_out_file);
3950 }
3951 \f
3952 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3953
3954 void
3955 output_asm_label (rtx x)
3956 {
3957 char buf[256];
3958
3959 if (GET_CODE (x) == LABEL_REF)
3960 x = label_ref_label (x);
3961 if (LABEL_P (x)
3962 || (NOTE_P (x)
3963 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3964 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3965 else
3966 output_operand_lossage ("'%%l' operand isn't a label");
3967
3968 assemble_name (asm_out_file, buf);
3969 }
3970
3971 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3972
3973 void
3974 mark_symbol_refs_as_used (rtx x)
3975 {
3976 subrtx_iterator::array_type array;
3977 FOR_EACH_SUBRTX (iter, array, x, ALL)
3978 {
3979 const_rtx x = *iter;
3980 if (GET_CODE (x) == SYMBOL_REF)
3981 if (tree t = SYMBOL_REF_DECL (x))
3982 assemble_external (t);
3983 }
3984 }
3985
3986 /* Print operand X using machine-dependent assembler syntax.
3987 CODE is a non-digit that preceded the operand-number in the % spec,
3988 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3989 between the % and the digits.
3990 When CODE is a non-letter, X is 0.
3991
3992 The meanings of the letters are machine-dependent and controlled
3993 by TARGET_PRINT_OPERAND. */
3994
3995 void
3996 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3997 {
3998 if (x && GET_CODE (x) == SUBREG)
3999 x = alter_subreg (&x, true);
4000
4001 /* X must not be a pseudo reg. */
4002 if (!targetm.no_register_allocation)
4003 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4004
4005 targetm.asm_out.print_operand (asm_out_file, x, code);
4006
4007 if (x == NULL_RTX)
4008 return;
4009
4010 mark_symbol_refs_as_used (x);
4011 }
4012
4013 /* Print a memory reference operand for address X using
4014 machine-dependent assembler syntax. */
4015
4016 void
4017 output_address (machine_mode mode, rtx x)
4018 {
4019 bool changed = false;
4020 walk_alter_subreg (&x, &changed);
4021 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4022 }
4023 \f
4024 /* Print an integer constant expression in assembler syntax.
4025 Addition and subtraction are the only arithmetic
4026 that may appear in these expressions. */
4027
4028 void
4029 output_addr_const (FILE *file, rtx x)
4030 {
4031 char buf[256];
4032
4033 restart:
4034 switch (GET_CODE (x))
4035 {
4036 case PC:
4037 putc ('.', file);
4038 break;
4039
4040 case SYMBOL_REF:
4041 if (SYMBOL_REF_DECL (x))
4042 assemble_external (SYMBOL_REF_DECL (x));
4043 #ifdef ASM_OUTPUT_SYMBOL_REF
4044 ASM_OUTPUT_SYMBOL_REF (file, x);
4045 #else
4046 assemble_name (file, XSTR (x, 0));
4047 #endif
4048 break;
4049
4050 case LABEL_REF:
4051 x = label_ref_label (x);
4052 /* Fall through. */
4053 case CODE_LABEL:
4054 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4055 #ifdef ASM_OUTPUT_LABEL_REF
4056 ASM_OUTPUT_LABEL_REF (file, buf);
4057 #else
4058 assemble_name (file, buf);
4059 #endif
4060 break;
4061
4062 case CONST_INT:
4063 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4064 break;
4065
4066 case CONST:
4067 /* This used to output parentheses around the expression,
4068 but that does not work on the 386 (either ATT or BSD assembler). */
4069 output_addr_const (file, XEXP (x, 0));
4070 break;
4071
4072 case CONST_WIDE_INT:
4073 /* We do not know the mode here so we have to use a round about
4074 way to build a wide-int to get it printed properly. */
4075 {
4076 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4077 CONST_WIDE_INT_NUNITS (x),
4078 CONST_WIDE_INT_NUNITS (x)
4079 * HOST_BITS_PER_WIDE_INT,
4080 false);
4081 print_decs (w, file);
4082 }
4083 break;
4084
4085 case CONST_DOUBLE:
4086 if (CONST_DOUBLE_AS_INT_P (x))
4087 {
4088 /* We can use %d if the number is one word and positive. */
4089 if (CONST_DOUBLE_HIGH (x))
4090 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4091 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4092 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4093 else if (CONST_DOUBLE_LOW (x) < 0)
4094 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4095 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4096 else
4097 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4098 }
4099 else
4100 /* We can't handle floating point constants;
4101 PRINT_OPERAND must handle them. */
4102 output_operand_lossage ("floating constant misused");
4103 break;
4104
4105 case CONST_FIXED:
4106 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4107 break;
4108
4109 case PLUS:
4110 /* Some assemblers need integer constants to appear last (eg masm). */
4111 if (CONST_INT_P (XEXP (x, 0)))
4112 {
4113 output_addr_const (file, XEXP (x, 1));
4114 if (INTVAL (XEXP (x, 0)) >= 0)
4115 fprintf (file, "+");
4116 output_addr_const (file, XEXP (x, 0));
4117 }
4118 else
4119 {
4120 output_addr_const (file, XEXP (x, 0));
4121 if (!CONST_INT_P (XEXP (x, 1))
4122 || INTVAL (XEXP (x, 1)) >= 0)
4123 fprintf (file, "+");
4124 output_addr_const (file, XEXP (x, 1));
4125 }
4126 break;
4127
4128 case MINUS:
4129 /* Avoid outputting things like x-x or x+5-x,
4130 since some assemblers can't handle that. */
4131 x = simplify_subtraction (x);
4132 if (GET_CODE (x) != MINUS)
4133 goto restart;
4134
4135 output_addr_const (file, XEXP (x, 0));
4136 fprintf (file, "-");
4137 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4138 || GET_CODE (XEXP (x, 1)) == PC
4139 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4140 output_addr_const (file, XEXP (x, 1));
4141 else
4142 {
4143 fputs (targetm.asm_out.open_paren, file);
4144 output_addr_const (file, XEXP (x, 1));
4145 fputs (targetm.asm_out.close_paren, file);
4146 }
4147 break;
4148
4149 case ZERO_EXTEND:
4150 case SIGN_EXTEND:
4151 case SUBREG:
4152 case TRUNCATE:
4153 output_addr_const (file, XEXP (x, 0));
4154 break;
4155
4156 default:
4157 if (targetm.asm_out.output_addr_const_extra (file, x))
4158 break;
4159
4160 output_operand_lossage ("invalid expression as operand");
4161 }
4162 }
4163 \f
4164 /* Output a quoted string. */
4165
4166 void
4167 output_quoted_string (FILE *asm_file, const char *string)
4168 {
4169 #ifdef OUTPUT_QUOTED_STRING
4170 OUTPUT_QUOTED_STRING (asm_file, string);
4171 #else
4172 char c;
4173
4174 putc ('\"', asm_file);
4175 while ((c = *string++) != 0)
4176 {
4177 if (ISPRINT (c))
4178 {
4179 if (c == '\"' || c == '\\')
4180 putc ('\\', asm_file);
4181 putc (c, asm_file);
4182 }
4183 else
4184 fprintf (asm_file, "\\%03o", (unsigned char) c);
4185 }
4186 putc ('\"', asm_file);
4187 #endif
4188 }
4189 \f
4190 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4191
4192 void
4193 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4194 {
4195 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4196 if (value == 0)
4197 putc ('0', f);
4198 else
4199 {
4200 char *p = buf + sizeof (buf);
4201 do
4202 *--p = "0123456789abcdef"[value % 16];
4203 while ((value /= 16) != 0);
4204 *--p = 'x';
4205 *--p = '0';
4206 fwrite (p, 1, buf + sizeof (buf) - p, f);
4207 }
4208 }
4209
4210 /* Internal function that prints an unsigned long in decimal in reverse.
4211 The output string IS NOT null-terminated. */
4212
4213 static int
4214 sprint_ul_rev (char *s, unsigned long value)
4215 {
4216 int i = 0;
4217 do
4218 {
4219 s[i] = "0123456789"[value % 10];
4220 value /= 10;
4221 i++;
4222 /* alternate version, without modulo */
4223 /* oldval = value; */
4224 /* value /= 10; */
4225 /* s[i] = "0123456789" [oldval - 10*value]; */
4226 /* i++ */
4227 }
4228 while (value != 0);
4229 return i;
4230 }
4231
4232 /* Write an unsigned long as decimal to a file, fast. */
4233
4234 void
4235 fprint_ul (FILE *f, unsigned long value)
4236 {
4237 /* python says: len(str(2**64)) == 20 */
4238 char s[20];
4239 int i;
4240
4241 i = sprint_ul_rev (s, value);
4242
4243 /* It's probably too small to bother with string reversal and fputs. */
4244 do
4245 {
4246 i--;
4247 putc (s[i], f);
4248 }
4249 while (i != 0);
4250 }
4251
4252 /* Write an unsigned long as decimal to a string, fast.
4253 s must be wide enough to not overflow, at least 21 chars.
4254 Returns the length of the string (without terminating '\0'). */
4255
4256 int
4257 sprint_ul (char *s, unsigned long value)
4258 {
4259 int len = sprint_ul_rev (s, value);
4260 s[len] = '\0';
4261
4262 std::reverse (s, s + len);
4263 return len;
4264 }
4265
4266 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4267 %R prints the value of REGISTER_PREFIX.
4268 %L prints the value of LOCAL_LABEL_PREFIX.
4269 %U prints the value of USER_LABEL_PREFIX.
4270 %I prints the value of IMMEDIATE_PREFIX.
4271 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4272 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4273
4274 We handle alternate assembler dialects here, just like output_asm_insn. */
4275
4276 void
4277 asm_fprintf (FILE *file, const char *p, ...)
4278 {
4279 char buf[10];
4280 char *q, c;
4281 #ifdef ASSEMBLER_DIALECT
4282 int dialect = 0;
4283 #endif
4284 va_list argptr;
4285
4286 va_start (argptr, p);
4287
4288 buf[0] = '%';
4289
4290 while ((c = *p++))
4291 switch (c)
4292 {
4293 #ifdef ASSEMBLER_DIALECT
4294 case '{':
4295 case '}':
4296 case '|':
4297 p = do_assembler_dialects (p, &dialect);
4298 break;
4299 #endif
4300
4301 case '%':
4302 c = *p++;
4303 q = &buf[1];
4304 while (strchr ("-+ #0", c))
4305 {
4306 *q++ = c;
4307 c = *p++;
4308 }
4309 while (ISDIGIT (c) || c == '.')
4310 {
4311 *q++ = c;
4312 c = *p++;
4313 }
4314 switch (c)
4315 {
4316 case '%':
4317 putc ('%', file);
4318 break;
4319
4320 case 'd': case 'i': case 'u':
4321 case 'x': case 'X': case 'o':
4322 case 'c':
4323 *q++ = c;
4324 *q = 0;
4325 fprintf (file, buf, va_arg (argptr, int));
4326 break;
4327
4328 case 'w':
4329 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4330 'o' cases, but we do not check for those cases. It
4331 means that the value is a HOST_WIDE_INT, which may be
4332 either `long' or `long long'. */
4333 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4334 q += strlen (HOST_WIDE_INT_PRINT);
4335 *q++ = *p++;
4336 *q = 0;
4337 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4338 break;
4339
4340 case 'l':
4341 *q++ = c;
4342 #ifdef HAVE_LONG_LONG
4343 if (*p == 'l')
4344 {
4345 *q++ = *p++;
4346 *q++ = *p++;
4347 *q = 0;
4348 fprintf (file, buf, va_arg (argptr, long long));
4349 }
4350 else
4351 #endif
4352 {
4353 *q++ = *p++;
4354 *q = 0;
4355 fprintf (file, buf, va_arg (argptr, long));
4356 }
4357
4358 break;
4359
4360 case 's':
4361 *q++ = c;
4362 *q = 0;
4363 fprintf (file, buf, va_arg (argptr, char *));
4364 break;
4365
4366 case 'O':
4367 #ifdef ASM_OUTPUT_OPCODE
4368 ASM_OUTPUT_OPCODE (asm_out_file, p);
4369 #endif
4370 break;
4371
4372 case 'R':
4373 #ifdef REGISTER_PREFIX
4374 fprintf (file, "%s", REGISTER_PREFIX);
4375 #endif
4376 break;
4377
4378 case 'I':
4379 #ifdef IMMEDIATE_PREFIX
4380 fprintf (file, "%s", IMMEDIATE_PREFIX);
4381 #endif
4382 break;
4383
4384 case 'L':
4385 #ifdef LOCAL_LABEL_PREFIX
4386 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4387 #endif
4388 break;
4389
4390 case 'U':
4391 fputs (user_label_prefix, file);
4392 break;
4393
4394 #ifdef ASM_FPRINTF_EXTENSIONS
4395 /* Uppercase letters are reserved for general use by asm_fprintf
4396 and so are not available to target specific code. In order to
4397 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4398 they are defined here. As they get turned into real extensions
4399 to asm_fprintf they should be removed from this list. */
4400 case 'A': case 'B': case 'C': case 'D': case 'E':
4401 case 'F': case 'G': case 'H': case 'J': case 'K':
4402 case 'M': case 'N': case 'P': case 'Q': case 'S':
4403 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4404 break;
4405
4406 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4407 #endif
4408 default:
4409 gcc_unreachable ();
4410 }
4411 break;
4412
4413 default:
4414 putc (c, file);
4415 }
4416 va_end (argptr);
4417 }
4418 \f
4419 /* Return nonzero if this function has no function calls. */
4420
4421 int
4422 leaf_function_p (void)
4423 {
4424 rtx_insn *insn;
4425
4426 /* Ensure we walk the entire function body. */
4427 gcc_assert (!in_sequence_p ());
4428
4429 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4430 functions even if they call mcount. */
4431 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4432 return 0;
4433
4434 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4435 {
4436 if (CALL_P (insn)
4437 && ! SIBLING_CALL_P (insn))
4438 return 0;
4439 if (NONJUMP_INSN_P (insn)
4440 && GET_CODE (PATTERN (insn)) == SEQUENCE
4441 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4442 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4443 return 0;
4444 }
4445
4446 return 1;
4447 }
4448
4449 /* Return 1 if branch is a forward branch.
4450 Uses insn_shuid array, so it works only in the final pass. May be used by
4451 output templates to customary add branch prediction hints.
4452 */
4453 int
4454 final_forward_branch_p (rtx_insn *insn)
4455 {
4456 int insn_id, label_id;
4457
4458 gcc_assert (uid_shuid);
4459 insn_id = INSN_SHUID (insn);
4460 label_id = INSN_SHUID (JUMP_LABEL (insn));
4461 /* We've hit some insns that does not have id information available. */
4462 gcc_assert (insn_id && label_id);
4463 return insn_id < label_id;
4464 }
4465
4466 /* On some machines, a function with no call insns
4467 can run faster if it doesn't create its own register window.
4468 When output, the leaf function should use only the "output"
4469 registers. Ordinarily, the function would be compiled to use
4470 the "input" registers to find its arguments; it is a candidate
4471 for leaf treatment if it uses only the "input" registers.
4472 Leaf function treatment means renumbering so the function
4473 uses the "output" registers instead. */
4474
4475 #ifdef LEAF_REGISTERS
4476
4477 /* Return 1 if this function uses only the registers that can be
4478 safely renumbered. */
4479
4480 int
4481 only_leaf_regs_used (void)
4482 {
4483 int i;
4484 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4485
4486 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4487 if ((df_regs_ever_live_p (i) || global_regs[i])
4488 && ! permitted_reg_in_leaf_functions[i])
4489 return 0;
4490
4491 if (crtl->uses_pic_offset_table
4492 && pic_offset_table_rtx != 0
4493 && REG_P (pic_offset_table_rtx)
4494 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4495 return 0;
4496
4497 return 1;
4498 }
4499
4500 /* Scan all instructions and renumber all registers into those
4501 available in leaf functions. */
4502
4503 static void
4504 leaf_renumber_regs (rtx_insn *first)
4505 {
4506 rtx_insn *insn;
4507
4508 /* Renumber only the actual patterns.
4509 The reg-notes can contain frame pointer refs,
4510 and renumbering them could crash, and should not be needed. */
4511 for (insn = first; insn; insn = NEXT_INSN (insn))
4512 if (INSN_P (insn))
4513 leaf_renumber_regs_insn (PATTERN (insn));
4514 }
4515
4516 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4517 available in leaf functions. */
4518
4519 void
4520 leaf_renumber_regs_insn (rtx in_rtx)
4521 {
4522 int i, j;
4523 const char *format_ptr;
4524
4525 if (in_rtx == 0)
4526 return;
4527
4528 /* Renumber all input-registers into output-registers.
4529 renumbered_regs would be 1 for an output-register;
4530 they */
4531
4532 if (REG_P (in_rtx))
4533 {
4534 int newreg;
4535
4536 /* Don't renumber the same reg twice. */
4537 if (in_rtx->used)
4538 return;
4539
4540 newreg = REGNO (in_rtx);
4541 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4542 to reach here as part of a REG_NOTE. */
4543 if (newreg >= FIRST_PSEUDO_REGISTER)
4544 {
4545 in_rtx->used = 1;
4546 return;
4547 }
4548 newreg = LEAF_REG_REMAP (newreg);
4549 gcc_assert (newreg >= 0);
4550 df_set_regs_ever_live (REGNO (in_rtx), false);
4551 df_set_regs_ever_live (newreg, true);
4552 SET_REGNO (in_rtx, newreg);
4553 in_rtx->used = 1;
4554 return;
4555 }
4556
4557 if (INSN_P (in_rtx))
4558 {
4559 /* Inside a SEQUENCE, we find insns.
4560 Renumber just the patterns of these insns,
4561 just as we do for the top-level insns. */
4562 leaf_renumber_regs_insn (PATTERN (in_rtx));
4563 return;
4564 }
4565
4566 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4567
4568 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4569 switch (*format_ptr++)
4570 {
4571 case 'e':
4572 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4573 break;
4574
4575 case 'E':
4576 if (XVEC (in_rtx, i) != NULL)
4577 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4578 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4579 break;
4580
4581 case 'S':
4582 case 's':
4583 case '0':
4584 case 'i':
4585 case 'w':
4586 case 'p':
4587 case 'n':
4588 case 'u':
4589 break;
4590
4591 default:
4592 gcc_unreachable ();
4593 }
4594 }
4595 #endif
4596 \f
4597 /* Turn the RTL into assembly. */
4598 static unsigned int
4599 rest_of_handle_final (void)
4600 {
4601 const char *fnname = get_fnname_from_decl (current_function_decl);
4602
4603 /* Turn debug markers into notes if the var-tracking pass has not
4604 been invoked. */
4605 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4606 delete_vta_debug_insns (false);
4607
4608 assemble_start_function (current_function_decl, fnname);
4609 rtx_insn *first = get_insns ();
4610 int seen = 0;
4611 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4612 final_1 (first, asm_out_file, seen, optimize);
4613 if (flag_ipa_ra
4614 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4615 collect_fn_hard_reg_usage ();
4616 final_end_function ();
4617
4618 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4619 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4620 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4621 output_function_exception_table (fnname);
4622
4623 assemble_end_function (current_function_decl, fnname);
4624
4625 /* Free up reg info memory. */
4626 free_reg_info ();
4627
4628 if (! quiet_flag)
4629 fflush (asm_out_file);
4630
4631 /* Write DBX symbols if requested. */
4632
4633 /* Note that for those inline functions where we don't initially
4634 know for certain that we will be generating an out-of-line copy,
4635 the first invocation of this routine (rest_of_compilation) will
4636 skip over this code by doing a `goto exit_rest_of_compilation;'.
4637 Later on, wrapup_global_declarations will (indirectly) call
4638 rest_of_compilation again for those inline functions that need
4639 to have out-of-line copies generated. During that call, we
4640 *will* be routed past here. */
4641
4642 timevar_push (TV_SYMOUT);
4643 if (!DECL_IGNORED_P (current_function_decl))
4644 debug_hooks->function_decl (current_function_decl);
4645 timevar_pop (TV_SYMOUT);
4646
4647 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4648 DECL_INITIAL (current_function_decl) = error_mark_node;
4649
4650 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4651 && targetm.have_ctors_dtors)
4652 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4653 decl_init_priority_lookup
4654 (current_function_decl));
4655 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4656 && targetm.have_ctors_dtors)
4657 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4658 decl_fini_priority_lookup
4659 (current_function_decl));
4660 return 0;
4661 }
4662
4663 namespace {
4664
4665 const pass_data pass_data_final =
4666 {
4667 RTL_PASS, /* type */
4668 "final", /* name */
4669 OPTGROUP_NONE, /* optinfo_flags */
4670 TV_FINAL, /* tv_id */
4671 0, /* properties_required */
4672 0, /* properties_provided */
4673 0, /* properties_destroyed */
4674 0, /* todo_flags_start */
4675 0, /* todo_flags_finish */
4676 };
4677
4678 class pass_final : public rtl_opt_pass
4679 {
4680 public:
4681 pass_final (gcc::context *ctxt)
4682 : rtl_opt_pass (pass_data_final, ctxt)
4683 {}
4684
4685 /* opt_pass methods: */
4686 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4687
4688 }; // class pass_final
4689
4690 } // anon namespace
4691
4692 rtl_opt_pass *
4693 make_pass_final (gcc::context *ctxt)
4694 {
4695 return new pass_final (ctxt);
4696 }
4697
4698
4699 static unsigned int
4700 rest_of_handle_shorten_branches (void)
4701 {
4702 /* Shorten branches. */
4703 shorten_branches (get_insns ());
4704 return 0;
4705 }
4706
4707 namespace {
4708
4709 const pass_data pass_data_shorten_branches =
4710 {
4711 RTL_PASS, /* type */
4712 "shorten", /* name */
4713 OPTGROUP_NONE, /* optinfo_flags */
4714 TV_SHORTEN_BRANCH, /* tv_id */
4715 0, /* properties_required */
4716 0, /* properties_provided */
4717 0, /* properties_destroyed */
4718 0, /* todo_flags_start */
4719 0, /* todo_flags_finish */
4720 };
4721
4722 class pass_shorten_branches : public rtl_opt_pass
4723 {
4724 public:
4725 pass_shorten_branches (gcc::context *ctxt)
4726 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4727 {}
4728
4729 /* opt_pass methods: */
4730 virtual unsigned int execute (function *)
4731 {
4732 return rest_of_handle_shorten_branches ();
4733 }
4734
4735 }; // class pass_shorten_branches
4736
4737 } // anon namespace
4738
4739 rtl_opt_pass *
4740 make_pass_shorten_branches (gcc::context *ctxt)
4741 {
4742 return new pass_shorten_branches (ctxt);
4743 }
4744
4745
4746 static unsigned int
4747 rest_of_clean_state (void)
4748 {
4749 rtx_insn *insn, *next;
4750 FILE *final_output = NULL;
4751 int save_unnumbered = flag_dump_unnumbered;
4752 int save_noaddr = flag_dump_noaddr;
4753
4754 if (flag_dump_final_insns)
4755 {
4756 final_output = fopen (flag_dump_final_insns, "a");
4757 if (!final_output)
4758 {
4759 error ("could not open final insn dump file %qs: %m",
4760 flag_dump_final_insns);
4761 flag_dump_final_insns = NULL;
4762 }
4763 else
4764 {
4765 flag_dump_noaddr = flag_dump_unnumbered = 1;
4766 if (flag_compare_debug_opt || flag_compare_debug)
4767 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4768 dump_function_header (final_output, current_function_decl,
4769 dump_flags);
4770 final_insns_dump_p = true;
4771
4772 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4773 if (LABEL_P (insn))
4774 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4775 else
4776 {
4777 if (NOTE_P (insn))
4778 set_block_for_insn (insn, NULL);
4779 INSN_UID (insn) = 0;
4780 }
4781 }
4782 }
4783
4784 /* It is very important to decompose the RTL instruction chain here:
4785 debug information keeps pointing into CODE_LABEL insns inside the function
4786 body. If these remain pointing to the other insns, we end up preserving
4787 whole RTL chain and attached detailed debug info in memory. */
4788 for (insn = get_insns (); insn; insn = next)
4789 {
4790 next = NEXT_INSN (insn);
4791 SET_NEXT_INSN (insn) = NULL;
4792 SET_PREV_INSN (insn) = NULL;
4793
4794 if (final_output
4795 && (!NOTE_P (insn) ||
4796 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4797 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4798 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4799 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4800 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4801 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4802 print_rtl_single (final_output, insn);
4803 }
4804
4805 if (final_output)
4806 {
4807 flag_dump_noaddr = save_noaddr;
4808 flag_dump_unnumbered = save_unnumbered;
4809 final_insns_dump_p = false;
4810
4811 if (fclose (final_output))
4812 {
4813 error ("could not close final insn dump file %qs: %m",
4814 flag_dump_final_insns);
4815 flag_dump_final_insns = NULL;
4816 }
4817 }
4818
4819 flag_rerun_cse_after_global_opts = 0;
4820 reload_completed = 0;
4821 epilogue_completed = 0;
4822 #ifdef STACK_REGS
4823 regstack_completed = 0;
4824 #endif
4825
4826 /* Clear out the insn_length contents now that they are no
4827 longer valid. */
4828 init_insn_lengths ();
4829
4830 /* Show no temporary slots allocated. */
4831 init_temp_slots ();
4832
4833 free_bb_for_insn ();
4834
4835 if (cfun->gimple_df)
4836 delete_tree_ssa (cfun);
4837
4838 /* We can reduce stack alignment on call site only when we are sure that
4839 the function body just produced will be actually used in the final
4840 executable. */
4841 if (decl_binds_to_current_def_p (current_function_decl))
4842 {
4843 unsigned int pref = crtl->preferred_stack_boundary;
4844 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4845 pref = crtl->stack_alignment_needed;
4846 cgraph_node::rtl_info (current_function_decl)
4847 ->preferred_incoming_stack_boundary = pref;
4848 }
4849
4850 /* Make sure volatile mem refs aren't considered valid operands for
4851 arithmetic insns. We must call this here if this is a nested inline
4852 function, since the above code leaves us in the init_recog state,
4853 and the function context push/pop code does not save/restore volatile_ok.
4854
4855 ??? Maybe it isn't necessary for expand_start_function to call this
4856 anymore if we do it here? */
4857
4858 init_recog_no_volatile ();
4859
4860 /* We're done with this function. Free up memory if we can. */
4861 free_after_parsing (cfun);
4862 free_after_compilation (cfun);
4863 return 0;
4864 }
4865
4866 namespace {
4867
4868 const pass_data pass_data_clean_state =
4869 {
4870 RTL_PASS, /* type */
4871 "*clean_state", /* name */
4872 OPTGROUP_NONE, /* optinfo_flags */
4873 TV_FINAL, /* tv_id */
4874 0, /* properties_required */
4875 0, /* properties_provided */
4876 PROP_rtl, /* properties_destroyed */
4877 0, /* todo_flags_start */
4878 0, /* todo_flags_finish */
4879 };
4880
4881 class pass_clean_state : public rtl_opt_pass
4882 {
4883 public:
4884 pass_clean_state (gcc::context *ctxt)
4885 : rtl_opt_pass (pass_data_clean_state, ctxt)
4886 {}
4887
4888 /* opt_pass methods: */
4889 virtual unsigned int execute (function *)
4890 {
4891 return rest_of_clean_state ();
4892 }
4893
4894 }; // class pass_clean_state
4895
4896 } // anon namespace
4897
4898 rtl_opt_pass *
4899 make_pass_clean_state (gcc::context *ctxt)
4900 {
4901 return new pass_clean_state (ctxt);
4902 }
4903
4904 /* Return true if INSN is a call to the current function. */
4905
4906 static bool
4907 self_recursive_call_p (rtx_insn *insn)
4908 {
4909 tree fndecl = get_call_fndecl (insn);
4910 return (fndecl == current_function_decl
4911 && decl_binds_to_current_def_p (fndecl));
4912 }
4913
4914 /* Collect hard register usage for the current function. */
4915
4916 static void
4917 collect_fn_hard_reg_usage (void)
4918 {
4919 rtx_insn *insn;
4920 #ifdef STACK_REGS
4921 int i;
4922 #endif
4923 struct cgraph_rtl_info *node;
4924 HARD_REG_SET function_used_regs;
4925
4926 /* ??? To be removed when all the ports have been fixed. */
4927 if (!targetm.call_fusage_contains_non_callee_clobbers)
4928 return;
4929
4930 CLEAR_HARD_REG_SET (function_used_regs);
4931
4932 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4933 {
4934 HARD_REG_SET insn_used_regs;
4935
4936 if (!NONDEBUG_INSN_P (insn))
4937 continue;
4938
4939 if (CALL_P (insn)
4940 && !self_recursive_call_p (insn))
4941 {
4942 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4943 call_used_reg_set))
4944 return;
4945
4946 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4947 }
4948
4949 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4950 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4951 }
4952
4953 /* Be conservative - mark fixed and global registers as used. */
4954 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4955
4956 #ifdef STACK_REGS
4957 /* Handle STACK_REGS conservatively, since the df-framework does not
4958 provide accurate information for them. */
4959
4960 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4961 SET_HARD_REG_BIT (function_used_regs, i);
4962 #endif
4963
4964 /* The information we have gathered is only interesting if it exposes a
4965 register from the call_used_regs that is not used in this function. */
4966 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4967 return;
4968
4969 node = cgraph_node::rtl_info (current_function_decl);
4970 gcc_assert (node != NULL);
4971
4972 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4973 node->function_used_regs_valid = 1;
4974 }
4975
4976 /* Get the declaration of the function called by INSN. */
4977
4978 static tree
4979 get_call_fndecl (rtx_insn *insn)
4980 {
4981 rtx note, datum;
4982
4983 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4984 if (note == NULL_RTX)
4985 return NULL_TREE;
4986
4987 datum = XEXP (note, 0);
4988 if (datum != NULL_RTX)
4989 return SYMBOL_REF_DECL (datum);
4990
4991 return NULL_TREE;
4992 }
4993
4994 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4995 call targets that can be overwritten. */
4996
4997 static struct cgraph_rtl_info *
4998 get_call_cgraph_rtl_info (rtx_insn *insn)
4999 {
5000 tree fndecl;
5001
5002 if (insn == NULL_RTX)
5003 return NULL;
5004
5005 fndecl = get_call_fndecl (insn);
5006 if (fndecl == NULL_TREE
5007 || !decl_binds_to_current_def_p (fndecl))
5008 return NULL;
5009
5010 return cgraph_node::rtl_info (fndecl);
5011 }
5012
5013 /* Find hard registers used by function call instruction INSN, and return them
5014 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
5015
5016 bool
5017 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5018 HARD_REG_SET default_set)
5019 {
5020 if (flag_ipa_ra)
5021 {
5022 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5023 if (node != NULL
5024 && node->function_used_regs_valid)
5025 {
5026 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5027 AND_HARD_REG_SET (*reg_set, default_set);
5028 return true;
5029 }
5030 }
5031
5032 COPY_HARD_REG_SET (*reg_set, default_set);
5033 return false;
5034 }