]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
cgraph.h: Flatten.
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49
50 #include "tree.h"
51 #include "varasm.h"
52 #include "hard-reg-set.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "output.h"
62 #include "except.h"
63 #include "hashtab.h"
64 #include "hash-set.h"
65 #include "vec.h"
66 #include "machmode.h"
67 #include "input.h"
68 #include "function.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "predict.h"
74 #include "dominance.h"
75 #include "cfg.h"
76 #include "cfgrtl.h"
77 #include "basic-block.h"
78 #include "target.h"
79 #include "targhooks.h"
80 #include "debug.h"
81 #include "expr.h"
82 #include "tree-pass.h"
83 #include "hash-map.h"
84 #include "is-a.h"
85 #include "plugin-api.h"
86 #include "ipa-ref.h"
87 #include "cgraph.h"
88 #include "tree-ssa.h"
89 #include "coverage.h"
90 #include "df.h"
91 #include "ggc.h"
92 #include "cfgloop.h"
93 #include "params.h"
94 #include "tree-pretty-print.h" /* for dump_function_header */
95 #include "asan.h"
96 #include "wide-int-print.h"
97 #include "rtl-iter.h"
98
99 #ifdef XCOFF_DEBUGGING_INFO
100 #include "xcoffout.h" /* Needed for external data
101 declarations for e.g. AIX 4.x. */
102 #endif
103
104 #include "dwarf2out.h"
105
106 #ifdef DBX_DEBUGGING_INFO
107 #include "dbxout.h"
108 #endif
109
110 #ifdef SDB_DEBUGGING_INFO
111 #include "sdbout.h"
112 #endif
113
114 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
115 So define a null default for it to save conditionalization later. */
116 #ifndef CC_STATUS_INIT
117 #define CC_STATUS_INIT
118 #endif
119
120 /* Is the given character a logical line separator for the assembler? */
121 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
122 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
123 #endif
124
125 #ifndef JUMP_TABLES_IN_TEXT_SECTION
126 #define JUMP_TABLES_IN_TEXT_SECTION 0
127 #endif
128
129 /* Bitflags used by final_scan_insn. */
130 #define SEEN_NOTE 1
131 #define SEEN_EMITTED 2
132
133 /* Last insn processed by final_scan_insn. */
134 static rtx_insn *debug_insn;
135 rtx_insn *current_output_insn;
136
137 /* Line number of last NOTE. */
138 static int last_linenum;
139
140 /* Last discriminator written to assembly. */
141 static int last_discriminator;
142
143 /* Discriminator of current block. */
144 static int discriminator;
145
146 /* Highest line number in current block. */
147 static int high_block_linenum;
148
149 /* Likewise for function. */
150 static int high_function_linenum;
151
152 /* Filename of last NOTE. */
153 static const char *last_filename;
154
155 /* Override filename and line number. */
156 static const char *override_filename;
157 static int override_linenum;
158
159 /* Whether to force emission of a line note before the next insn. */
160 static bool force_source_line = false;
161
162 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
163
164 /* Nonzero while outputting an `asm' with operands.
165 This means that inconsistencies are the user's fault, so don't die.
166 The precise value is the insn being output, to pass to error_for_asm. */
167 const rtx_insn *this_is_asm_operands;
168
169 /* Number of operands of this insn, for an `asm' with operands. */
170 static unsigned int insn_noperands;
171
172 /* Compare optimization flag. */
173
174 static rtx last_ignored_compare = 0;
175
176 /* Assign a unique number to each insn that is output.
177 This can be used to generate unique local labels. */
178
179 static int insn_counter = 0;
180
181 #ifdef HAVE_cc0
182 /* This variable contains machine-dependent flags (defined in tm.h)
183 set and examined by output routines
184 that describe how to interpret the condition codes properly. */
185
186 CC_STATUS cc_status;
187
188 /* During output of an insn, this contains a copy of cc_status
189 from before the insn. */
190
191 CC_STATUS cc_prev_status;
192 #endif
193
194 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
195
196 static int block_depth;
197
198 /* Nonzero if have enabled APP processing of our assembler output. */
199
200 static int app_on;
201
202 /* If we are outputting an insn sequence, this contains the sequence rtx.
203 Zero otherwise. */
204
205 rtx_sequence *final_sequence;
206
207 #ifdef ASSEMBLER_DIALECT
208
209 /* Number of the assembler dialect to use, starting at 0. */
210 static int dialect_number;
211 #endif
212
213 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
214 rtx current_insn_predicate;
215
216 /* True if printing into -fdump-final-insns= dump. */
217 bool final_insns_dump_p;
218
219 /* True if profile_function should be called, but hasn't been called yet. */
220 static bool need_profile_function;
221
222 static int asm_insn_count (rtx);
223 static void profile_function (FILE *);
224 static void profile_after_prologue (FILE *);
225 static bool notice_source_line (rtx_insn *, bool *);
226 static rtx walk_alter_subreg (rtx *, bool *);
227 static void output_asm_name (void);
228 static void output_alternate_entry_point (FILE *, rtx_insn *);
229 static tree get_mem_expr_from_op (rtx, int *);
230 static void output_asm_operand_names (rtx *, int *, int);
231 #ifdef LEAF_REGISTERS
232 static void leaf_renumber_regs (rtx_insn *);
233 #endif
234 #ifdef HAVE_cc0
235 static int alter_cond (rtx);
236 #endif
237 #ifndef ADDR_VEC_ALIGN
238 static int final_addr_vec_align (rtx);
239 #endif
240 static int align_fuzz (rtx, rtx, int, unsigned);
241 static void collect_fn_hard_reg_usage (void);
242 static tree get_call_fndecl (rtx_insn *);
243 \f
244 /* Initialize data in final at the beginning of a compilation. */
245
246 void
247 init_final (const char *filename ATTRIBUTE_UNUSED)
248 {
249 app_on = 0;
250 final_sequence = 0;
251
252 #ifdef ASSEMBLER_DIALECT
253 dialect_number = ASSEMBLER_DIALECT;
254 #endif
255 }
256
257 /* Default target function prologue and epilogue assembler output.
258
259 If not overridden for epilogue code, then the function body itself
260 contains return instructions wherever needed. */
261 void
262 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
263 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
264 {
265 }
266
267 void
268 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
269 tree decl ATTRIBUTE_UNUSED,
270 bool new_is_cold ATTRIBUTE_UNUSED)
271 {
272 }
273
274 /* Default target hook that outputs nothing to a stream. */
275 void
276 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
277 {
278 }
279
280 /* Enable APP processing of subsequent output.
281 Used before the output from an `asm' statement. */
282
283 void
284 app_enable (void)
285 {
286 if (! app_on)
287 {
288 fputs (ASM_APP_ON, asm_out_file);
289 app_on = 1;
290 }
291 }
292
293 /* Disable APP processing of subsequent output.
294 Called from varasm.c before most kinds of output. */
295
296 void
297 app_disable (void)
298 {
299 if (app_on)
300 {
301 fputs (ASM_APP_OFF, asm_out_file);
302 app_on = 0;
303 }
304 }
305 \f
306 /* Return the number of slots filled in the current
307 delayed branch sequence (we don't count the insn needing the
308 delay slot). Zero if not in a delayed branch sequence. */
309
310 #ifdef DELAY_SLOTS
311 int
312 dbr_sequence_length (void)
313 {
314 if (final_sequence != 0)
315 return XVECLEN (final_sequence, 0) - 1;
316 else
317 return 0;
318 }
319 #endif
320 \f
321 /* The next two pages contain routines used to compute the length of an insn
322 and to shorten branches. */
323
324 /* Arrays for insn lengths, and addresses. The latter is referenced by
325 `insn_current_length'. */
326
327 static int *insn_lengths;
328
329 vec<int> insn_addresses_;
330
331 /* Max uid for which the above arrays are valid. */
332 static int insn_lengths_max_uid;
333
334 /* Address of insn being processed. Used by `insn_current_length'. */
335 int insn_current_address;
336
337 /* Address of insn being processed in previous iteration. */
338 int insn_last_address;
339
340 /* known invariant alignment of insn being processed. */
341 int insn_current_align;
342
343 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
344 gives the next following alignment insn that increases the known
345 alignment, or NULL_RTX if there is no such insn.
346 For any alignment obtained this way, we can again index uid_align with
347 its uid to obtain the next following align that in turn increases the
348 alignment, till we reach NULL_RTX; the sequence obtained this way
349 for each insn we'll call the alignment chain of this insn in the following
350 comments. */
351
352 struct label_alignment
353 {
354 short alignment;
355 short max_skip;
356 };
357
358 static rtx *uid_align;
359 static int *uid_shuid;
360 static struct label_alignment *label_align;
361
362 /* Indicate that branch shortening hasn't yet been done. */
363
364 void
365 init_insn_lengths (void)
366 {
367 if (uid_shuid)
368 {
369 free (uid_shuid);
370 uid_shuid = 0;
371 }
372 if (insn_lengths)
373 {
374 free (insn_lengths);
375 insn_lengths = 0;
376 insn_lengths_max_uid = 0;
377 }
378 if (HAVE_ATTR_length)
379 INSN_ADDRESSES_FREE ();
380 if (uid_align)
381 {
382 free (uid_align);
383 uid_align = 0;
384 }
385 }
386
387 /* Obtain the current length of an insn. If branch shortening has been done,
388 get its actual length. Otherwise, use FALLBACK_FN to calculate the
389 length. */
390 static int
391 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
392 {
393 rtx body;
394 int i;
395 int length = 0;
396
397 if (!HAVE_ATTR_length)
398 return 0;
399
400 if (insn_lengths_max_uid > INSN_UID (insn))
401 return insn_lengths[INSN_UID (insn)];
402 else
403 switch (GET_CODE (insn))
404 {
405 case NOTE:
406 case BARRIER:
407 case CODE_LABEL:
408 case DEBUG_INSN:
409 return 0;
410
411 case CALL_INSN:
412 case JUMP_INSN:
413 length = fallback_fn (insn);
414 break;
415
416 case INSN:
417 body = PATTERN (insn);
418 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
419 return 0;
420
421 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
422 length = asm_insn_count (body) * fallback_fn (insn);
423 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
424 for (i = 0; i < seq->len (); i++)
425 length += get_attr_length_1 (seq->insn (i), fallback_fn);
426 else
427 length = fallback_fn (insn);
428 break;
429
430 default:
431 break;
432 }
433
434 #ifdef ADJUST_INSN_LENGTH
435 ADJUST_INSN_LENGTH (insn, length);
436 #endif
437 return length;
438 }
439
440 /* Obtain the current length of an insn. If branch shortening has been done,
441 get its actual length. Otherwise, get its maximum length. */
442 int
443 get_attr_length (rtx_insn *insn)
444 {
445 return get_attr_length_1 (insn, insn_default_length);
446 }
447
448 /* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its minimum length. */
450 int
451 get_attr_min_length (rtx_insn *insn)
452 {
453 return get_attr_length_1 (insn, insn_min_length);
454 }
455 \f
456 /* Code to handle alignment inside shorten_branches. */
457
458 /* Here is an explanation how the algorithm in align_fuzz can give
459 proper results:
460
461 Call a sequence of instructions beginning with alignment point X
462 and continuing until the next alignment point `block X'. When `X'
463 is used in an expression, it means the alignment value of the
464 alignment point.
465
466 Call the distance between the start of the first insn of block X, and
467 the end of the last insn of block X `IX', for the `inner size of X'.
468 This is clearly the sum of the instruction lengths.
469
470 Likewise with the next alignment-delimited block following X, which we
471 shall call block Y.
472
473 Call the distance between the start of the first insn of block X, and
474 the start of the first insn of block Y `OX', for the `outer size of X'.
475
476 The estimated padding is then OX - IX.
477
478 OX can be safely estimated as
479
480 if (X >= Y)
481 OX = round_up(IX, Y)
482 else
483 OX = round_up(IX, X) + Y - X
484
485 Clearly est(IX) >= real(IX), because that only depends on the
486 instruction lengths, and those being overestimated is a given.
487
488 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
489 we needn't worry about that when thinking about OX.
490
491 When X >= Y, the alignment provided by Y adds no uncertainty factor
492 for branch ranges starting before X, so we can just round what we have.
493 But when X < Y, we don't know anything about the, so to speak,
494 `middle bits', so we have to assume the worst when aligning up from an
495 address mod X to one mod Y, which is Y - X. */
496
497 #ifndef LABEL_ALIGN
498 #define LABEL_ALIGN(LABEL) align_labels_log
499 #endif
500
501 #ifndef LOOP_ALIGN
502 #define LOOP_ALIGN(LABEL) align_loops_log
503 #endif
504
505 #ifndef LABEL_ALIGN_AFTER_BARRIER
506 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
507 #endif
508
509 #ifndef JUMP_ALIGN
510 #define JUMP_ALIGN(LABEL) align_jumps_log
511 #endif
512
513 int
514 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
515 {
516 return 0;
517 }
518
519 int
520 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
521 {
522 return align_loops_max_skip;
523 }
524
525 int
526 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
527 {
528 return align_labels_max_skip;
529 }
530
531 int
532 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
533 {
534 return align_jumps_max_skip;
535 }
536
537 #ifndef ADDR_VEC_ALIGN
538 static int
539 final_addr_vec_align (rtx addr_vec)
540 {
541 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
542
543 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
544 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
545 return exact_log2 (align);
546
547 }
548
549 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
550 #endif
551
552 #ifndef INSN_LENGTH_ALIGNMENT
553 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
554 #endif
555
556 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
557
558 static int min_labelno, max_labelno;
559
560 #define LABEL_TO_ALIGNMENT(LABEL) \
561 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
562
563 #define LABEL_TO_MAX_SKIP(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
565
566 /* For the benefit of port specific code do this also as a function. */
567
568 int
569 label_to_alignment (rtx label)
570 {
571 if (CODE_LABEL_NUMBER (label) <= max_labelno)
572 return LABEL_TO_ALIGNMENT (label);
573 return 0;
574 }
575
576 int
577 label_to_max_skip (rtx label)
578 {
579 if (CODE_LABEL_NUMBER (label) <= max_labelno)
580 return LABEL_TO_MAX_SKIP (label);
581 return 0;
582 }
583
584 /* The differences in addresses
585 between a branch and its target might grow or shrink depending on
586 the alignment the start insn of the range (the branch for a forward
587 branch or the label for a backward branch) starts out on; if these
588 differences are used naively, they can even oscillate infinitely.
589 We therefore want to compute a 'worst case' address difference that
590 is independent of the alignment the start insn of the range end
591 up on, and that is at least as large as the actual difference.
592 The function align_fuzz calculates the amount we have to add to the
593 naively computed difference, by traversing the part of the alignment
594 chain of the start insn of the range that is in front of the end insn
595 of the range, and considering for each alignment the maximum amount
596 that it might contribute to a size increase.
597
598 For casesi tables, we also want to know worst case minimum amounts of
599 address difference, in case a machine description wants to introduce
600 some common offset that is added to all offsets in a table.
601 For this purpose, align_fuzz with a growth argument of 0 computes the
602 appropriate adjustment. */
603
604 /* Compute the maximum delta by which the difference of the addresses of
605 START and END might grow / shrink due to a different address for start
606 which changes the size of alignment insns between START and END.
607 KNOWN_ALIGN_LOG is the alignment known for START.
608 GROWTH should be ~0 if the objective is to compute potential code size
609 increase, and 0 if the objective is to compute potential shrink.
610 The return value is undefined for any other value of GROWTH. */
611
612 static int
613 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
614 {
615 int uid = INSN_UID (start);
616 rtx align_label;
617 int known_align = 1 << known_align_log;
618 int end_shuid = INSN_SHUID (end);
619 int fuzz = 0;
620
621 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
622 {
623 int align_addr, new_align;
624
625 uid = INSN_UID (align_label);
626 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
627 if (uid_shuid[uid] > end_shuid)
628 break;
629 known_align_log = LABEL_TO_ALIGNMENT (align_label);
630 new_align = 1 << known_align_log;
631 if (new_align < known_align)
632 continue;
633 fuzz += (-align_addr ^ growth) & (new_align - known_align);
634 known_align = new_align;
635 }
636 return fuzz;
637 }
638
639 /* Compute a worst-case reference address of a branch so that it
640 can be safely used in the presence of aligned labels. Since the
641 size of the branch itself is unknown, the size of the branch is
642 not included in the range. I.e. for a forward branch, the reference
643 address is the end address of the branch as known from the previous
644 branch shortening pass, minus a value to account for possible size
645 increase due to alignment. For a backward branch, it is the start
646 address of the branch as known from the current pass, plus a value
647 to account for possible size increase due to alignment.
648 NB.: Therefore, the maximum offset allowed for backward branches needs
649 to exclude the branch size. */
650
651 int
652 insn_current_reference_address (rtx_insn *branch)
653 {
654 rtx dest, seq;
655 int seq_uid;
656
657 if (! INSN_ADDRESSES_SET_P ())
658 return 0;
659
660 seq = NEXT_INSN (PREV_INSN (branch));
661 seq_uid = INSN_UID (seq);
662 if (!JUMP_P (branch))
663 /* This can happen for example on the PA; the objective is to know the
664 offset to address something in front of the start of the function.
665 Thus, we can treat it like a backward branch.
666 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
667 any alignment we'd encounter, so we skip the call to align_fuzz. */
668 return insn_current_address;
669 dest = JUMP_LABEL (branch);
670
671 /* BRANCH has no proper alignment chain set, so use SEQ.
672 BRANCH also has no INSN_SHUID. */
673 if (INSN_SHUID (seq) < INSN_SHUID (dest))
674 {
675 /* Forward branch. */
676 return (insn_last_address + insn_lengths[seq_uid]
677 - align_fuzz (seq, dest, length_unit_log, ~0));
678 }
679 else
680 {
681 /* Backward branch. */
682 return (insn_current_address
683 + align_fuzz (dest, seq, length_unit_log, ~0));
684 }
685 }
686 \f
687 /* Compute branch alignments based on frequency information in the
688 CFG. */
689
690 unsigned int
691 compute_alignments (void)
692 {
693 int log, max_skip, max_log;
694 basic_block bb;
695 int freq_max = 0;
696 int freq_threshold = 0;
697
698 if (label_align)
699 {
700 free (label_align);
701 label_align = 0;
702 }
703
704 max_labelno = max_label_num ();
705 min_labelno = get_first_label_num ();
706 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
707
708 /* If not optimizing or optimizing for size, don't assign any alignments. */
709 if (! optimize || optimize_function_for_size_p (cfun))
710 return 0;
711
712 if (dump_file)
713 {
714 dump_reg_info (dump_file);
715 dump_flow_info (dump_file, TDF_DETAILS);
716 flow_loops_dump (dump_file, NULL, 1);
717 }
718 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
719 FOR_EACH_BB_FN (bb, cfun)
720 if (bb->frequency > freq_max)
721 freq_max = bb->frequency;
722 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
723
724 if (dump_file)
725 fprintf (dump_file, "freq_max: %i\n",freq_max);
726 FOR_EACH_BB_FN (bb, cfun)
727 {
728 rtx_insn *label = BB_HEAD (bb);
729 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
730 edge e;
731 edge_iterator ei;
732
733 if (!LABEL_P (label)
734 || optimize_bb_for_size_p (bb))
735 {
736 if (dump_file)
737 fprintf (dump_file,
738 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
739 bb->index, bb->frequency, bb->loop_father->num,
740 bb_loop_depth (bb));
741 continue;
742 }
743 max_log = LABEL_ALIGN (label);
744 max_skip = targetm.asm_out.label_align_max_skip (label);
745
746 FOR_EACH_EDGE (e, ei, bb->preds)
747 {
748 if (e->flags & EDGE_FALLTHRU)
749 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
750 else
751 branch_frequency += EDGE_FREQUENCY (e);
752 }
753 if (dump_file)
754 {
755 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
756 " %2i fall %4i branch %4i",
757 bb->index, bb->frequency, bb->loop_father->num,
758 bb_loop_depth (bb),
759 fallthru_frequency, branch_frequency);
760 if (!bb->loop_father->inner && bb->loop_father->num)
761 fprintf (dump_file, " inner_loop");
762 if (bb->loop_father->header == bb)
763 fprintf (dump_file, " loop_header");
764 fprintf (dump_file, "\n");
765 }
766
767 /* There are two purposes to align block with no fallthru incoming edge:
768 1) to avoid fetch stalls when branch destination is near cache boundary
769 2) to improve cache efficiency in case the previous block is not executed
770 (so it does not need to be in the cache).
771
772 We to catch first case, we align frequently executed blocks.
773 To catch the second, we align blocks that are executed more frequently
774 than the predecessor and the predecessor is likely to not be executed
775 when function is called. */
776
777 if (!has_fallthru
778 && (branch_frequency > freq_threshold
779 || (bb->frequency > bb->prev_bb->frequency * 10
780 && (bb->prev_bb->frequency
781 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
782 {
783 log = JUMP_ALIGN (label);
784 if (dump_file)
785 fprintf (dump_file, " jump alignment added.\n");
786 if (max_log < log)
787 {
788 max_log = log;
789 max_skip = targetm.asm_out.jump_align_max_skip (label);
790 }
791 }
792 /* In case block is frequent and reached mostly by non-fallthru edge,
793 align it. It is most likely a first block of loop. */
794 if (has_fallthru
795 && !(single_succ_p (bb)
796 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
797 && optimize_bb_for_speed_p (bb)
798 && branch_frequency + fallthru_frequency > freq_threshold
799 && (branch_frequency
800 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
801 {
802 log = LOOP_ALIGN (label);
803 if (dump_file)
804 fprintf (dump_file, " internal loop alignment added.\n");
805 if (max_log < log)
806 {
807 max_log = log;
808 max_skip = targetm.asm_out.loop_align_max_skip (label);
809 }
810 }
811 LABEL_TO_ALIGNMENT (label) = max_log;
812 LABEL_TO_MAX_SKIP (label) = max_skip;
813 }
814
815 loop_optimizer_finalize ();
816 free_dominance_info (CDI_DOMINATORS);
817 return 0;
818 }
819
820 /* Grow the LABEL_ALIGN array after new labels are created. */
821
822 static void
823 grow_label_align (void)
824 {
825 int old = max_labelno;
826 int n_labels;
827 int n_old_labels;
828
829 max_labelno = max_label_num ();
830
831 n_labels = max_labelno - min_labelno + 1;
832 n_old_labels = old - min_labelno + 1;
833
834 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
835
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels <= n_labels);
839
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
842 }
843
844 /* Update the already computed alignment information. LABEL_PAIRS is a vector
845 made up of pairs of labels for which the alignment information of the first
846 element will be copied from that of the second element. */
847
848 void
849 update_alignments (vec<rtx> &label_pairs)
850 {
851 unsigned int i = 0;
852 rtx iter, label = NULL_RTX;
853
854 if (max_labelno != max_label_num ())
855 grow_label_align ();
856
857 FOR_EACH_VEC_ELT (label_pairs, i, iter)
858 if (i & 1)
859 {
860 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
861 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
862 }
863 else
864 label = iter;
865 }
866
867 namespace {
868
869 const pass_data pass_data_compute_alignments =
870 {
871 RTL_PASS, /* type */
872 "alignments", /* name */
873 OPTGROUP_NONE, /* optinfo_flags */
874 TV_NONE, /* tv_id */
875 0, /* properties_required */
876 0, /* properties_provided */
877 0, /* properties_destroyed */
878 0, /* todo_flags_start */
879 0, /* todo_flags_finish */
880 };
881
882 class pass_compute_alignments : public rtl_opt_pass
883 {
884 public:
885 pass_compute_alignments (gcc::context *ctxt)
886 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
887 {}
888
889 /* opt_pass methods: */
890 virtual unsigned int execute (function *) { return compute_alignments (); }
891
892 }; // class pass_compute_alignments
893
894 } // anon namespace
895
896 rtl_opt_pass *
897 make_pass_compute_alignments (gcc::context *ctxt)
898 {
899 return new pass_compute_alignments (ctxt);
900 }
901
902 \f
903 /* Make a pass over all insns and compute their actual lengths by shortening
904 any branches of variable length if possible. */
905
906 /* shorten_branches might be called multiple times: for example, the SH
907 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
908 In order to do this, it needs proper length information, which it obtains
909 by calling shorten_branches. This cannot be collapsed with
910 shorten_branches itself into a single pass unless we also want to integrate
911 reorg.c, since the branch splitting exposes new instructions with delay
912 slots. */
913
914 void
915 shorten_branches (rtx_insn *first)
916 {
917 rtx_insn *insn;
918 int max_uid;
919 int i;
920 int max_log;
921 int max_skip;
922 #define MAX_CODE_ALIGN 16
923 rtx_insn *seq;
924 int something_changed = 1;
925 char *varying_length;
926 rtx body;
927 int uid;
928 rtx align_tab[MAX_CODE_ALIGN];
929
930 /* Compute maximum UID and allocate label_align / uid_shuid. */
931 max_uid = get_max_uid ();
932
933 /* Free uid_shuid before reallocating it. */
934 free (uid_shuid);
935
936 uid_shuid = XNEWVEC (int, max_uid);
937
938 if (max_labelno != max_label_num ())
939 grow_label_align ();
940
941 /* Initialize label_align and set up uid_shuid to be strictly
942 monotonically rising with insn order. */
943 /* We use max_log here to keep track of the maximum alignment we want to
944 impose on the next CODE_LABEL (or the current one if we are processing
945 the CODE_LABEL itself). */
946
947 max_log = 0;
948 max_skip = 0;
949
950 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
951 {
952 int log;
953
954 INSN_SHUID (insn) = i++;
955 if (INSN_P (insn))
956 continue;
957
958 if (LABEL_P (insn))
959 {
960 rtx_insn *next;
961 bool next_is_jumptable;
962
963 /* Merge in alignments computed by compute_alignments. */
964 log = LABEL_TO_ALIGNMENT (insn);
965 if (max_log < log)
966 {
967 max_log = log;
968 max_skip = LABEL_TO_MAX_SKIP (insn);
969 }
970
971 next = next_nonnote_insn (insn);
972 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
973 if (!next_is_jumptable)
974 {
975 log = LABEL_ALIGN (insn);
976 if (max_log < log)
977 {
978 max_log = log;
979 max_skip = targetm.asm_out.label_align_max_skip (insn);
980 }
981 }
982 /* ADDR_VECs only take room if read-only data goes into the text
983 section. */
984 if ((JUMP_TABLES_IN_TEXT_SECTION
985 || readonly_data_section == text_section)
986 && next_is_jumptable)
987 {
988 log = ADDR_VEC_ALIGN (next);
989 if (max_log < log)
990 {
991 max_log = log;
992 max_skip = targetm.asm_out.label_align_max_skip (insn);
993 }
994 }
995 LABEL_TO_ALIGNMENT (insn) = max_log;
996 LABEL_TO_MAX_SKIP (insn) = max_skip;
997 max_log = 0;
998 max_skip = 0;
999 }
1000 else if (BARRIER_P (insn))
1001 {
1002 rtx_insn *label;
1003
1004 for (label = insn; label && ! INSN_P (label);
1005 label = NEXT_INSN (label))
1006 if (LABEL_P (label))
1007 {
1008 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1009 if (max_log < log)
1010 {
1011 max_log = log;
1012 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1013 }
1014 break;
1015 }
1016 }
1017 }
1018 if (!HAVE_ATTR_length)
1019 return;
1020
1021 /* Allocate the rest of the arrays. */
1022 insn_lengths = XNEWVEC (int, max_uid);
1023 insn_lengths_max_uid = max_uid;
1024 /* Syntax errors can lead to labels being outside of the main insn stream.
1025 Initialize insn_addresses, so that we get reproducible results. */
1026 INSN_ADDRESSES_ALLOC (max_uid);
1027
1028 varying_length = XCNEWVEC (char, max_uid);
1029
1030 /* Initialize uid_align. We scan instructions
1031 from end to start, and keep in align_tab[n] the last seen insn
1032 that does an alignment of at least n+1, i.e. the successor
1033 in the alignment chain for an insn that does / has a known
1034 alignment of n. */
1035 uid_align = XCNEWVEC (rtx, max_uid);
1036
1037 for (i = MAX_CODE_ALIGN; --i >= 0;)
1038 align_tab[i] = NULL_RTX;
1039 seq = get_last_insn ();
1040 for (; seq; seq = PREV_INSN (seq))
1041 {
1042 int uid = INSN_UID (seq);
1043 int log;
1044 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1045 uid_align[uid] = align_tab[0];
1046 if (log)
1047 {
1048 /* Found an alignment label. */
1049 uid_align[uid] = align_tab[log];
1050 for (i = log - 1; i >= 0; i--)
1051 align_tab[i] = seq;
1052 }
1053 }
1054
1055 /* When optimizing, we start assuming minimum length, and keep increasing
1056 lengths as we find the need for this, till nothing changes.
1057 When not optimizing, we start assuming maximum lengths, and
1058 do a single pass to update the lengths. */
1059 bool increasing = optimize != 0;
1060
1061 #ifdef CASE_VECTOR_SHORTEN_MODE
1062 if (optimize)
1063 {
1064 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1065 label fields. */
1066
1067 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1068 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1069 int rel;
1070
1071 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1072 {
1073 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1074 int len, i, min, max, insn_shuid;
1075 int min_align;
1076 addr_diff_vec_flags flags;
1077
1078 if (! JUMP_TABLE_DATA_P (insn)
1079 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1080 continue;
1081 pat = PATTERN (insn);
1082 len = XVECLEN (pat, 1);
1083 gcc_assert (len > 0);
1084 min_align = MAX_CODE_ALIGN;
1085 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1086 {
1087 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1088 int shuid = INSN_SHUID (lab);
1089 if (shuid < min)
1090 {
1091 min = shuid;
1092 min_lab = lab;
1093 }
1094 if (shuid > max)
1095 {
1096 max = shuid;
1097 max_lab = lab;
1098 }
1099 if (min_align > LABEL_TO_ALIGNMENT (lab))
1100 min_align = LABEL_TO_ALIGNMENT (lab);
1101 }
1102 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1103 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1104 insn_shuid = INSN_SHUID (insn);
1105 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1106 memset (&flags, 0, sizeof (flags));
1107 flags.min_align = min_align;
1108 flags.base_after_vec = rel > insn_shuid;
1109 flags.min_after_vec = min > insn_shuid;
1110 flags.max_after_vec = max > insn_shuid;
1111 flags.min_after_base = min > rel;
1112 flags.max_after_base = max > rel;
1113 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1114
1115 if (increasing)
1116 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1117 }
1118 }
1119 #endif /* CASE_VECTOR_SHORTEN_MODE */
1120
1121 /* Compute initial lengths, addresses, and varying flags for each insn. */
1122 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1123
1124 for (insn_current_address = 0, insn = first;
1125 insn != 0;
1126 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1127 {
1128 uid = INSN_UID (insn);
1129
1130 insn_lengths[uid] = 0;
1131
1132 if (LABEL_P (insn))
1133 {
1134 int log = LABEL_TO_ALIGNMENT (insn);
1135 if (log)
1136 {
1137 int align = 1 << log;
1138 int new_address = (insn_current_address + align - 1) & -align;
1139 insn_lengths[uid] = new_address - insn_current_address;
1140 }
1141 }
1142
1143 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1144
1145 if (NOTE_P (insn) || BARRIER_P (insn)
1146 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1147 continue;
1148 if (insn->deleted ())
1149 continue;
1150
1151 body = PATTERN (insn);
1152 if (JUMP_TABLE_DATA_P (insn))
1153 {
1154 /* This only takes room if read-only data goes into the text
1155 section. */
1156 if (JUMP_TABLES_IN_TEXT_SECTION
1157 || readonly_data_section == text_section)
1158 insn_lengths[uid] = (XVECLEN (body,
1159 GET_CODE (body) == ADDR_DIFF_VEC)
1160 * GET_MODE_SIZE (GET_MODE (body)));
1161 /* Alignment is handled by ADDR_VEC_ALIGN. */
1162 }
1163 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1164 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1165 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1166 {
1167 int i;
1168 int const_delay_slots;
1169 #ifdef DELAY_SLOTS
1170 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1171 #else
1172 const_delay_slots = 0;
1173 #endif
1174 int (*inner_length_fun) (rtx_insn *)
1175 = const_delay_slots ? length_fun : insn_default_length;
1176 /* Inside a delay slot sequence, we do not do any branch shortening
1177 if the shortening could change the number of delay slots
1178 of the branch. */
1179 for (i = 0; i < body_seq->len (); i++)
1180 {
1181 rtx_insn *inner_insn = body_seq->insn (i);
1182 int inner_uid = INSN_UID (inner_insn);
1183 int inner_length;
1184
1185 if (GET_CODE (body) == ASM_INPUT
1186 || asm_noperands (PATTERN (inner_insn)) >= 0)
1187 inner_length = (asm_insn_count (PATTERN (inner_insn))
1188 * insn_default_length (inner_insn));
1189 else
1190 inner_length = inner_length_fun (inner_insn);
1191
1192 insn_lengths[inner_uid] = inner_length;
1193 if (const_delay_slots)
1194 {
1195 if ((varying_length[inner_uid]
1196 = insn_variable_length_p (inner_insn)) != 0)
1197 varying_length[uid] = 1;
1198 INSN_ADDRESSES (inner_uid) = (insn_current_address
1199 + insn_lengths[uid]);
1200 }
1201 else
1202 varying_length[inner_uid] = 0;
1203 insn_lengths[uid] += inner_length;
1204 }
1205 }
1206 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1207 {
1208 insn_lengths[uid] = length_fun (insn);
1209 varying_length[uid] = insn_variable_length_p (insn);
1210 }
1211
1212 /* If needed, do any adjustment. */
1213 #ifdef ADJUST_INSN_LENGTH
1214 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1215 if (insn_lengths[uid] < 0)
1216 fatal_insn ("negative insn length", insn);
1217 #endif
1218 }
1219
1220 /* Now loop over all the insns finding varying length insns. For each,
1221 get the current insn length. If it has changed, reflect the change.
1222 When nothing changes for a full pass, we are done. */
1223
1224 while (something_changed)
1225 {
1226 something_changed = 0;
1227 insn_current_align = MAX_CODE_ALIGN - 1;
1228 for (insn_current_address = 0, insn = first;
1229 insn != 0;
1230 insn = NEXT_INSN (insn))
1231 {
1232 int new_length;
1233 #ifdef ADJUST_INSN_LENGTH
1234 int tmp_length;
1235 #endif
1236 int length_align;
1237
1238 uid = INSN_UID (insn);
1239
1240 if (LABEL_P (insn))
1241 {
1242 int log = LABEL_TO_ALIGNMENT (insn);
1243
1244 #ifdef CASE_VECTOR_SHORTEN_MODE
1245 /* If the mode of a following jump table was changed, we
1246 may need to update the alignment of this label. */
1247 rtx_insn *next;
1248 bool next_is_jumptable;
1249
1250 next = next_nonnote_insn (insn);
1251 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1252 if ((JUMP_TABLES_IN_TEXT_SECTION
1253 || readonly_data_section == text_section)
1254 && next_is_jumptable)
1255 {
1256 int newlog = ADDR_VEC_ALIGN (next);
1257 if (newlog != log)
1258 {
1259 log = newlog;
1260 LABEL_TO_ALIGNMENT (insn) = log;
1261 something_changed = 1;
1262 }
1263 }
1264 #endif
1265
1266 if (log > insn_current_align)
1267 {
1268 int align = 1 << log;
1269 int new_address= (insn_current_address + align - 1) & -align;
1270 insn_lengths[uid] = new_address - insn_current_address;
1271 insn_current_align = log;
1272 insn_current_address = new_address;
1273 }
1274 else
1275 insn_lengths[uid] = 0;
1276 INSN_ADDRESSES (uid) = insn_current_address;
1277 continue;
1278 }
1279
1280 length_align = INSN_LENGTH_ALIGNMENT (insn);
1281 if (length_align < insn_current_align)
1282 insn_current_align = length_align;
1283
1284 insn_last_address = INSN_ADDRESSES (uid);
1285 INSN_ADDRESSES (uid) = insn_current_address;
1286
1287 #ifdef CASE_VECTOR_SHORTEN_MODE
1288 if (optimize
1289 && JUMP_TABLE_DATA_P (insn)
1290 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1291 {
1292 rtx body = PATTERN (insn);
1293 int old_length = insn_lengths[uid];
1294 rtx_insn *rel_lab =
1295 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1296 rtx min_lab = XEXP (XEXP (body, 2), 0);
1297 rtx max_lab = XEXP (XEXP (body, 3), 0);
1298 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1299 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1300 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1301 rtx_insn *prev;
1302 int rel_align = 0;
1303 addr_diff_vec_flags flags;
1304 enum machine_mode vec_mode;
1305
1306 /* Avoid automatic aggregate initialization. */
1307 flags = ADDR_DIFF_VEC_FLAGS (body);
1308
1309 /* Try to find a known alignment for rel_lab. */
1310 for (prev = rel_lab;
1311 prev
1312 && ! insn_lengths[INSN_UID (prev)]
1313 && ! (varying_length[INSN_UID (prev)] & 1);
1314 prev = PREV_INSN (prev))
1315 if (varying_length[INSN_UID (prev)] & 2)
1316 {
1317 rel_align = LABEL_TO_ALIGNMENT (prev);
1318 break;
1319 }
1320
1321 /* See the comment on addr_diff_vec_flags in rtl.h for the
1322 meaning of the flags values. base: REL_LAB vec: INSN */
1323 /* Anything after INSN has still addresses from the last
1324 pass; adjust these so that they reflect our current
1325 estimate for this pass. */
1326 if (flags.base_after_vec)
1327 rel_addr += insn_current_address - insn_last_address;
1328 if (flags.min_after_vec)
1329 min_addr += insn_current_address - insn_last_address;
1330 if (flags.max_after_vec)
1331 max_addr += insn_current_address - insn_last_address;
1332 /* We want to know the worst case, i.e. lowest possible value
1333 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1334 its offset is positive, and we have to be wary of code shrink;
1335 otherwise, it is negative, and we have to be vary of code
1336 size increase. */
1337 if (flags.min_after_base)
1338 {
1339 /* If INSN is between REL_LAB and MIN_LAB, the size
1340 changes we are about to make can change the alignment
1341 within the observed offset, therefore we have to break
1342 it up into two parts that are independent. */
1343 if (! flags.base_after_vec && flags.min_after_vec)
1344 {
1345 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1346 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1347 }
1348 else
1349 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1350 }
1351 else
1352 {
1353 if (flags.base_after_vec && ! flags.min_after_vec)
1354 {
1355 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1356 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1357 }
1358 else
1359 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1360 }
1361 /* Likewise, determine the highest lowest possible value
1362 for the offset of MAX_LAB. */
1363 if (flags.max_after_base)
1364 {
1365 if (! flags.base_after_vec && flags.max_after_vec)
1366 {
1367 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1368 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1369 }
1370 else
1371 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1372 }
1373 else
1374 {
1375 if (flags.base_after_vec && ! flags.max_after_vec)
1376 {
1377 max_addr += align_fuzz (max_lab, insn, 0, 0);
1378 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1379 }
1380 else
1381 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1382 }
1383 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1384 max_addr - rel_addr, body);
1385 if (!increasing
1386 || (GET_MODE_SIZE (vec_mode)
1387 >= GET_MODE_SIZE (GET_MODE (body))))
1388 PUT_MODE (body, vec_mode);
1389 if (JUMP_TABLES_IN_TEXT_SECTION
1390 || readonly_data_section == text_section)
1391 {
1392 insn_lengths[uid]
1393 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1394 insn_current_address += insn_lengths[uid];
1395 if (insn_lengths[uid] != old_length)
1396 something_changed = 1;
1397 }
1398
1399 continue;
1400 }
1401 #endif /* CASE_VECTOR_SHORTEN_MODE */
1402
1403 if (! (varying_length[uid]))
1404 {
1405 if (NONJUMP_INSN_P (insn)
1406 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1407 {
1408 int i;
1409
1410 body = PATTERN (insn);
1411 for (i = 0; i < XVECLEN (body, 0); i++)
1412 {
1413 rtx inner_insn = XVECEXP (body, 0, i);
1414 int inner_uid = INSN_UID (inner_insn);
1415
1416 INSN_ADDRESSES (inner_uid) = insn_current_address;
1417
1418 insn_current_address += insn_lengths[inner_uid];
1419 }
1420 }
1421 else
1422 insn_current_address += insn_lengths[uid];
1423
1424 continue;
1425 }
1426
1427 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1428 {
1429 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1430 int i;
1431
1432 body = PATTERN (insn);
1433 new_length = 0;
1434 for (i = 0; i < seqn->len (); i++)
1435 {
1436 rtx_insn *inner_insn = seqn->insn (i);
1437 int inner_uid = INSN_UID (inner_insn);
1438 int inner_length;
1439
1440 INSN_ADDRESSES (inner_uid) = insn_current_address;
1441
1442 /* insn_current_length returns 0 for insns with a
1443 non-varying length. */
1444 if (! varying_length[inner_uid])
1445 inner_length = insn_lengths[inner_uid];
1446 else
1447 inner_length = insn_current_length (inner_insn);
1448
1449 if (inner_length != insn_lengths[inner_uid])
1450 {
1451 if (!increasing || inner_length > insn_lengths[inner_uid])
1452 {
1453 insn_lengths[inner_uid] = inner_length;
1454 something_changed = 1;
1455 }
1456 else
1457 inner_length = insn_lengths[inner_uid];
1458 }
1459 insn_current_address += inner_length;
1460 new_length += inner_length;
1461 }
1462 }
1463 else
1464 {
1465 new_length = insn_current_length (insn);
1466 insn_current_address += new_length;
1467 }
1468
1469 #ifdef ADJUST_INSN_LENGTH
1470 /* If needed, do any adjustment. */
1471 tmp_length = new_length;
1472 ADJUST_INSN_LENGTH (insn, new_length);
1473 insn_current_address += (new_length - tmp_length);
1474 #endif
1475
1476 if (new_length != insn_lengths[uid]
1477 && (!increasing || new_length > insn_lengths[uid]))
1478 {
1479 insn_lengths[uid] = new_length;
1480 something_changed = 1;
1481 }
1482 else
1483 insn_current_address += insn_lengths[uid] - new_length;
1484 }
1485 /* For a non-optimizing compile, do only a single pass. */
1486 if (!increasing)
1487 break;
1488 }
1489
1490 free (varying_length);
1491 }
1492
1493 /* Given the body of an INSN known to be generated by an ASM statement, return
1494 the number of machine instructions likely to be generated for this insn.
1495 This is used to compute its length. */
1496
1497 static int
1498 asm_insn_count (rtx body)
1499 {
1500 const char *templ;
1501
1502 if (GET_CODE (body) == ASM_INPUT)
1503 templ = XSTR (body, 0);
1504 else
1505 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1506
1507 return asm_str_count (templ);
1508 }
1509
1510 /* Return the number of machine instructions likely to be generated for the
1511 inline-asm template. */
1512 int
1513 asm_str_count (const char *templ)
1514 {
1515 int count = 1;
1516
1517 if (!*templ)
1518 return 0;
1519
1520 for (; *templ; templ++)
1521 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1522 || *templ == '\n')
1523 count++;
1524
1525 return count;
1526 }
1527 \f
1528 /* ??? This is probably the wrong place for these. */
1529 /* Structure recording the mapping from source file and directory
1530 names at compile time to those to be embedded in debug
1531 information. */
1532 typedef struct debug_prefix_map
1533 {
1534 const char *old_prefix;
1535 const char *new_prefix;
1536 size_t old_len;
1537 size_t new_len;
1538 struct debug_prefix_map *next;
1539 } debug_prefix_map;
1540
1541 /* Linked list of such structures. */
1542 static debug_prefix_map *debug_prefix_maps;
1543
1544
1545 /* Record a debug file prefix mapping. ARG is the argument to
1546 -fdebug-prefix-map and must be of the form OLD=NEW. */
1547
1548 void
1549 add_debug_prefix_map (const char *arg)
1550 {
1551 debug_prefix_map *map;
1552 const char *p;
1553
1554 p = strchr (arg, '=');
1555 if (!p)
1556 {
1557 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1558 return;
1559 }
1560 map = XNEW (debug_prefix_map);
1561 map->old_prefix = xstrndup (arg, p - arg);
1562 map->old_len = p - arg;
1563 p++;
1564 map->new_prefix = xstrdup (p);
1565 map->new_len = strlen (p);
1566 map->next = debug_prefix_maps;
1567 debug_prefix_maps = map;
1568 }
1569
1570 /* Perform user-specified mapping of debug filename prefixes. Return
1571 the new name corresponding to FILENAME. */
1572
1573 const char *
1574 remap_debug_filename (const char *filename)
1575 {
1576 debug_prefix_map *map;
1577 char *s;
1578 const char *name;
1579 size_t name_len;
1580
1581 for (map = debug_prefix_maps; map; map = map->next)
1582 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1583 break;
1584 if (!map)
1585 return filename;
1586 name = filename + map->old_len;
1587 name_len = strlen (name) + 1;
1588 s = (char *) alloca (name_len + map->new_len);
1589 memcpy (s, map->new_prefix, map->new_len);
1590 memcpy (s + map->new_len, name, name_len);
1591 return ggc_strdup (s);
1592 }
1593 \f
1594 /* Return true if DWARF2 debug info can be emitted for DECL. */
1595
1596 static bool
1597 dwarf2_debug_info_emitted_p (tree decl)
1598 {
1599 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1600 return false;
1601
1602 if (DECL_IGNORED_P (decl))
1603 return false;
1604
1605 return true;
1606 }
1607
1608 /* Return scope resulting from combination of S1 and S2. */
1609 static tree
1610 choose_inner_scope (tree s1, tree s2)
1611 {
1612 if (!s1)
1613 return s2;
1614 if (!s2)
1615 return s1;
1616 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1617 return s1;
1618 return s2;
1619 }
1620
1621 /* Emit lexical block notes needed to change scope from S1 to S2. */
1622
1623 static void
1624 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1625 {
1626 rtx_insn *insn = orig_insn;
1627 tree com = NULL_TREE;
1628 tree ts1 = s1, ts2 = s2;
1629 tree s;
1630
1631 while (ts1 != ts2)
1632 {
1633 gcc_assert (ts1 && ts2);
1634 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1635 ts1 = BLOCK_SUPERCONTEXT (ts1);
1636 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1637 ts2 = BLOCK_SUPERCONTEXT (ts2);
1638 else
1639 {
1640 ts1 = BLOCK_SUPERCONTEXT (ts1);
1641 ts2 = BLOCK_SUPERCONTEXT (ts2);
1642 }
1643 }
1644 com = ts1;
1645
1646 /* Close scopes. */
1647 s = s1;
1648 while (s != com)
1649 {
1650 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1651 NOTE_BLOCK (note) = s;
1652 s = BLOCK_SUPERCONTEXT (s);
1653 }
1654
1655 /* Open scopes. */
1656 s = s2;
1657 while (s != com)
1658 {
1659 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1660 NOTE_BLOCK (insn) = s;
1661 s = BLOCK_SUPERCONTEXT (s);
1662 }
1663 }
1664
1665 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1666 on the scope tree and the newly reordered instructions. */
1667
1668 static void
1669 reemit_insn_block_notes (void)
1670 {
1671 tree cur_block = DECL_INITIAL (cfun->decl);
1672 rtx_insn *insn;
1673 rtx_note *note;
1674
1675 insn = get_insns ();
1676 for (; insn; insn = NEXT_INSN (insn))
1677 {
1678 tree this_block;
1679
1680 /* Prevent lexical blocks from straddling section boundaries. */
1681 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1682 {
1683 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1684 s = BLOCK_SUPERCONTEXT (s))
1685 {
1686 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1687 NOTE_BLOCK (note) = s;
1688 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1689 NOTE_BLOCK (note) = s;
1690 }
1691 }
1692
1693 if (!active_insn_p (insn))
1694 continue;
1695
1696 /* Avoid putting scope notes between jump table and its label. */
1697 if (JUMP_TABLE_DATA_P (insn))
1698 continue;
1699
1700 this_block = insn_scope (insn);
1701 /* For sequences compute scope resulting from merging all scopes
1702 of instructions nested inside. */
1703 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1704 {
1705 int i;
1706
1707 this_block = NULL;
1708 for (i = 0; i < body->len (); i++)
1709 this_block = choose_inner_scope (this_block,
1710 insn_scope (body->insn (i)));
1711 }
1712 if (! this_block)
1713 {
1714 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1715 continue;
1716 else
1717 this_block = DECL_INITIAL (cfun->decl);
1718 }
1719
1720 if (this_block != cur_block)
1721 {
1722 change_scope (insn, cur_block, this_block);
1723 cur_block = this_block;
1724 }
1725 }
1726
1727 /* change_scope emits before the insn, not after. */
1728 note = emit_note (NOTE_INSN_DELETED);
1729 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1730 delete_insn (note);
1731
1732 reorder_blocks ();
1733 }
1734
1735 static const char *some_local_dynamic_name;
1736
1737 /* Locate some local-dynamic symbol still in use by this function
1738 so that we can print its name in local-dynamic base patterns.
1739 Return null if there are no local-dynamic references. */
1740
1741 const char *
1742 get_some_local_dynamic_name ()
1743 {
1744 subrtx_iterator::array_type array;
1745 rtx_insn *insn;
1746
1747 if (some_local_dynamic_name)
1748 return some_local_dynamic_name;
1749
1750 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1751 if (NONDEBUG_INSN_P (insn))
1752 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1753 {
1754 const_rtx x = *iter;
1755 if (GET_CODE (x) == SYMBOL_REF)
1756 {
1757 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1758 return some_local_dynamic_name = XSTR (x, 0);
1759 if (CONSTANT_POOL_ADDRESS_P (x))
1760 iter.substitute (get_pool_constant (x));
1761 }
1762 }
1763
1764 return 0;
1765 }
1766
1767 /* Output assembler code for the start of a function,
1768 and initialize some of the variables in this file
1769 for the new function. The label for the function and associated
1770 assembler pseudo-ops have already been output in `assemble_start_function'.
1771
1772 FIRST is the first insn of the rtl for the function being compiled.
1773 FILE is the file to write assembler code to.
1774 OPTIMIZE_P is nonzero if we should eliminate redundant
1775 test and compare insns. */
1776
1777 void
1778 final_start_function (rtx_insn *first, FILE *file,
1779 int optimize_p ATTRIBUTE_UNUSED)
1780 {
1781 block_depth = 0;
1782
1783 this_is_asm_operands = 0;
1784
1785 need_profile_function = false;
1786
1787 last_filename = LOCATION_FILE (prologue_location);
1788 last_linenum = LOCATION_LINE (prologue_location);
1789 last_discriminator = discriminator = 0;
1790
1791 high_block_linenum = high_function_linenum = last_linenum;
1792
1793 if (flag_sanitize & SANITIZE_ADDRESS)
1794 asan_function_start ();
1795
1796 if (!DECL_IGNORED_P (current_function_decl))
1797 debug_hooks->begin_prologue (last_linenum, last_filename);
1798
1799 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1800 dwarf2out_begin_prologue (0, NULL);
1801
1802 #ifdef LEAF_REG_REMAP
1803 if (crtl->uses_only_leaf_regs)
1804 leaf_renumber_regs (first);
1805 #endif
1806
1807 /* The Sun386i and perhaps other machines don't work right
1808 if the profiling code comes after the prologue. */
1809 if (targetm.profile_before_prologue () && crtl->profile)
1810 {
1811 if (targetm.asm_out.function_prologue
1812 == default_function_pro_epilogue
1813 #ifdef HAVE_prologue
1814 && HAVE_prologue
1815 #endif
1816 )
1817 {
1818 rtx_insn *insn;
1819 for (insn = first; insn; insn = NEXT_INSN (insn))
1820 if (!NOTE_P (insn))
1821 {
1822 insn = NULL;
1823 break;
1824 }
1825 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1826 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1827 break;
1828 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1829 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1830 continue;
1831 else
1832 {
1833 insn = NULL;
1834 break;
1835 }
1836
1837 if (insn)
1838 need_profile_function = true;
1839 else
1840 profile_function (file);
1841 }
1842 else
1843 profile_function (file);
1844 }
1845
1846 /* If debugging, assign block numbers to all of the blocks in this
1847 function. */
1848 if (write_symbols)
1849 {
1850 reemit_insn_block_notes ();
1851 number_blocks (current_function_decl);
1852 /* We never actually put out begin/end notes for the top-level
1853 block in the function. But, conceptually, that block is
1854 always needed. */
1855 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1856 }
1857
1858 if (warn_frame_larger_than
1859 && get_frame_size () > frame_larger_than_size)
1860 {
1861 /* Issue a warning */
1862 warning (OPT_Wframe_larger_than_,
1863 "the frame size of %wd bytes is larger than %wd bytes",
1864 get_frame_size (), frame_larger_than_size);
1865 }
1866
1867 /* First output the function prologue: code to set up the stack frame. */
1868 targetm.asm_out.function_prologue (file, get_frame_size ());
1869
1870 /* If the machine represents the prologue as RTL, the profiling code must
1871 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1872 #ifdef HAVE_prologue
1873 if (! HAVE_prologue)
1874 #endif
1875 profile_after_prologue (file);
1876 }
1877
1878 static void
1879 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1880 {
1881 if (!targetm.profile_before_prologue () && crtl->profile)
1882 profile_function (file);
1883 }
1884
1885 static void
1886 profile_function (FILE *file ATTRIBUTE_UNUSED)
1887 {
1888 #ifndef NO_PROFILE_COUNTERS
1889 # define NO_PROFILE_COUNTERS 0
1890 #endif
1891 #ifdef ASM_OUTPUT_REG_PUSH
1892 rtx sval = NULL, chain = NULL;
1893
1894 if (cfun->returns_struct)
1895 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1896 true);
1897 if (cfun->static_chain_decl)
1898 chain = targetm.calls.static_chain (current_function_decl, true);
1899 #endif /* ASM_OUTPUT_REG_PUSH */
1900
1901 if (! NO_PROFILE_COUNTERS)
1902 {
1903 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1904 switch_to_section (data_section);
1905 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1906 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1907 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1908 }
1909
1910 switch_to_section (current_function_section ());
1911
1912 #ifdef ASM_OUTPUT_REG_PUSH
1913 if (sval && REG_P (sval))
1914 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1915 if (chain && REG_P (chain))
1916 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1917 #endif
1918
1919 FUNCTION_PROFILER (file, current_function_funcdef_no);
1920
1921 #ifdef ASM_OUTPUT_REG_PUSH
1922 if (chain && REG_P (chain))
1923 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1924 if (sval && REG_P (sval))
1925 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1926 #endif
1927 }
1928
1929 /* Output assembler code for the end of a function.
1930 For clarity, args are same as those of `final_start_function'
1931 even though not all of them are needed. */
1932
1933 void
1934 final_end_function (void)
1935 {
1936 app_disable ();
1937
1938 if (!DECL_IGNORED_P (current_function_decl))
1939 debug_hooks->end_function (high_function_linenum);
1940
1941 /* Finally, output the function epilogue:
1942 code to restore the stack frame and return to the caller. */
1943 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1944
1945 /* And debug output. */
1946 if (!DECL_IGNORED_P (current_function_decl))
1947 debug_hooks->end_epilogue (last_linenum, last_filename);
1948
1949 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1950 && dwarf2out_do_frame ())
1951 dwarf2out_end_epilogue (last_linenum, last_filename);
1952
1953 some_local_dynamic_name = 0;
1954 }
1955 \f
1956
1957 /* Dumper helper for basic block information. FILE is the assembly
1958 output file, and INSN is the instruction being emitted. */
1959
1960 static void
1961 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1962 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1963 {
1964 basic_block bb;
1965
1966 if (!flag_debug_asm)
1967 return;
1968
1969 if (INSN_UID (insn) < bb_map_size
1970 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1971 {
1972 edge e;
1973 edge_iterator ei;
1974
1975 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1976 if (bb->frequency)
1977 fprintf (file, " freq:%d", bb->frequency);
1978 if (bb->count)
1979 fprintf (file, " count:%"PRId64,
1980 bb->count);
1981 fprintf (file, " seq:%d", (*bb_seqn)++);
1982 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1983 FOR_EACH_EDGE (e, ei, bb->preds)
1984 {
1985 dump_edge_info (file, e, TDF_DETAILS, 0);
1986 }
1987 fprintf (file, "\n");
1988 }
1989 if (INSN_UID (insn) < bb_map_size
1990 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1991 {
1992 edge e;
1993 edge_iterator ei;
1994
1995 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1996 FOR_EACH_EDGE (e, ei, bb->succs)
1997 {
1998 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1999 }
2000 fprintf (file, "\n");
2001 }
2002 }
2003
2004 /* Output assembler code for some insns: all or part of a function.
2005 For description of args, see `final_start_function', above. */
2006
2007 void
2008 final (rtx_insn *first, FILE *file, int optimize_p)
2009 {
2010 rtx_insn *insn, *next;
2011 int seen = 0;
2012
2013 /* Used for -dA dump. */
2014 basic_block *start_to_bb = NULL;
2015 basic_block *end_to_bb = NULL;
2016 int bb_map_size = 0;
2017 int bb_seqn = 0;
2018
2019 last_ignored_compare = 0;
2020
2021 #ifdef HAVE_cc0
2022 for (insn = first; insn; insn = NEXT_INSN (insn))
2023 {
2024 /* If CC tracking across branches is enabled, record the insn which
2025 jumps to each branch only reached from one place. */
2026 if (optimize_p && JUMP_P (insn))
2027 {
2028 rtx lab = JUMP_LABEL (insn);
2029 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2030 {
2031 LABEL_REFS (lab) = insn;
2032 }
2033 }
2034 }
2035 #endif
2036
2037 init_recog ();
2038
2039 CC_STATUS_INIT;
2040
2041 if (flag_debug_asm)
2042 {
2043 basic_block bb;
2044
2045 bb_map_size = get_max_uid () + 1;
2046 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2047 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2048
2049 /* There is no cfg for a thunk. */
2050 if (!cfun->is_thunk)
2051 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2052 {
2053 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2054 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2055 }
2056 }
2057
2058 /* Output the insns. */
2059 for (insn = first; insn;)
2060 {
2061 if (HAVE_ATTR_length)
2062 {
2063 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2064 {
2065 /* This can be triggered by bugs elsewhere in the compiler if
2066 new insns are created after init_insn_lengths is called. */
2067 gcc_assert (NOTE_P (insn));
2068 insn_current_address = -1;
2069 }
2070 else
2071 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2072 }
2073
2074 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2075 bb_map_size, &bb_seqn);
2076 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2077 }
2078
2079 if (flag_debug_asm)
2080 {
2081 free (start_to_bb);
2082 free (end_to_bb);
2083 }
2084
2085 /* Remove CFI notes, to avoid compare-debug failures. */
2086 for (insn = first; insn; insn = next)
2087 {
2088 next = NEXT_INSN (insn);
2089 if (NOTE_P (insn)
2090 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2091 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2092 delete_insn (insn);
2093 }
2094 }
2095 \f
2096 const char *
2097 get_insn_template (int code, rtx insn)
2098 {
2099 switch (insn_data[code].output_format)
2100 {
2101 case INSN_OUTPUT_FORMAT_SINGLE:
2102 return insn_data[code].output.single;
2103 case INSN_OUTPUT_FORMAT_MULTI:
2104 return insn_data[code].output.multi[which_alternative];
2105 case INSN_OUTPUT_FORMAT_FUNCTION:
2106 gcc_assert (insn);
2107 return (*insn_data[code].output.function) (recog_data.operand,
2108 as_a <rtx_insn *> (insn));
2109
2110 default:
2111 gcc_unreachable ();
2112 }
2113 }
2114
2115 /* Emit the appropriate declaration for an alternate-entry-point
2116 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2117 LABEL_KIND != LABEL_NORMAL.
2118
2119 The case fall-through in this function is intentional. */
2120 static void
2121 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2122 {
2123 const char *name = LABEL_NAME (insn);
2124
2125 switch (LABEL_KIND (insn))
2126 {
2127 case LABEL_WEAK_ENTRY:
2128 #ifdef ASM_WEAKEN_LABEL
2129 ASM_WEAKEN_LABEL (file, name);
2130 #endif
2131 case LABEL_GLOBAL_ENTRY:
2132 targetm.asm_out.globalize_label (file, name);
2133 case LABEL_STATIC_ENTRY:
2134 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2135 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2136 #endif
2137 ASM_OUTPUT_LABEL (file, name);
2138 break;
2139
2140 case LABEL_NORMAL:
2141 default:
2142 gcc_unreachable ();
2143 }
2144 }
2145
2146 /* Given a CALL_INSN, find and return the nested CALL. */
2147 static rtx
2148 call_from_call_insn (rtx_call_insn *insn)
2149 {
2150 rtx x;
2151 gcc_assert (CALL_P (insn));
2152 x = PATTERN (insn);
2153
2154 while (GET_CODE (x) != CALL)
2155 {
2156 switch (GET_CODE (x))
2157 {
2158 default:
2159 gcc_unreachable ();
2160 case COND_EXEC:
2161 x = COND_EXEC_CODE (x);
2162 break;
2163 case PARALLEL:
2164 x = XVECEXP (x, 0, 0);
2165 break;
2166 case SET:
2167 x = XEXP (x, 1);
2168 break;
2169 }
2170 }
2171 return x;
2172 }
2173
2174 /* The final scan for one insn, INSN.
2175 Args are same as in `final', except that INSN
2176 is the insn being scanned.
2177 Value returned is the next insn to be scanned.
2178
2179 NOPEEPHOLES is the flag to disallow peephole processing (currently
2180 used for within delayed branch sequence output).
2181
2182 SEEN is used to track the end of the prologue, for emitting
2183 debug information. We force the emission of a line note after
2184 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2185
2186 rtx_insn *
2187 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2188 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2189 {
2190 #ifdef HAVE_cc0
2191 rtx set;
2192 #endif
2193 rtx_insn *next;
2194
2195 insn_counter++;
2196
2197 /* Ignore deleted insns. These can occur when we split insns (due to a
2198 template of "#") while not optimizing. */
2199 if (insn->deleted ())
2200 return NEXT_INSN (insn);
2201
2202 switch (GET_CODE (insn))
2203 {
2204 case NOTE:
2205 switch (NOTE_KIND (insn))
2206 {
2207 case NOTE_INSN_DELETED:
2208 break;
2209
2210 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2211 in_cold_section_p = !in_cold_section_p;
2212
2213 if (dwarf2out_do_frame ())
2214 dwarf2out_switch_text_section ();
2215 else if (!DECL_IGNORED_P (current_function_decl))
2216 debug_hooks->switch_text_section ();
2217
2218 switch_to_section (current_function_section ());
2219 targetm.asm_out.function_switched_text_sections (asm_out_file,
2220 current_function_decl,
2221 in_cold_section_p);
2222 /* Emit a label for the split cold section. Form label name by
2223 suffixing "cold" to the original function's name. */
2224 if (in_cold_section_p)
2225 {
2226 tree cold_function_name
2227 = clone_function_name (current_function_decl, "cold");
2228 ASM_OUTPUT_LABEL (asm_out_file,
2229 IDENTIFIER_POINTER (cold_function_name));
2230 }
2231 break;
2232
2233 case NOTE_INSN_BASIC_BLOCK:
2234 if (need_profile_function)
2235 {
2236 profile_function (asm_out_file);
2237 need_profile_function = false;
2238 }
2239
2240 if (targetm.asm_out.unwind_emit)
2241 targetm.asm_out.unwind_emit (asm_out_file, insn);
2242
2243 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2244
2245 break;
2246
2247 case NOTE_INSN_EH_REGION_BEG:
2248 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2249 NOTE_EH_HANDLER (insn));
2250 break;
2251
2252 case NOTE_INSN_EH_REGION_END:
2253 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2254 NOTE_EH_HANDLER (insn));
2255 break;
2256
2257 case NOTE_INSN_PROLOGUE_END:
2258 targetm.asm_out.function_end_prologue (file);
2259 profile_after_prologue (file);
2260
2261 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2262 {
2263 *seen |= SEEN_EMITTED;
2264 force_source_line = true;
2265 }
2266 else
2267 *seen |= SEEN_NOTE;
2268
2269 break;
2270
2271 case NOTE_INSN_EPILOGUE_BEG:
2272 if (!DECL_IGNORED_P (current_function_decl))
2273 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2274 targetm.asm_out.function_begin_epilogue (file);
2275 break;
2276
2277 case NOTE_INSN_CFI:
2278 dwarf2out_emit_cfi (NOTE_CFI (insn));
2279 break;
2280
2281 case NOTE_INSN_CFI_LABEL:
2282 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2283 NOTE_LABEL_NUMBER (insn));
2284 break;
2285
2286 case NOTE_INSN_FUNCTION_BEG:
2287 if (need_profile_function)
2288 {
2289 profile_function (asm_out_file);
2290 need_profile_function = false;
2291 }
2292
2293 app_disable ();
2294 if (!DECL_IGNORED_P (current_function_decl))
2295 debug_hooks->end_prologue (last_linenum, last_filename);
2296
2297 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2298 {
2299 *seen |= SEEN_EMITTED;
2300 force_source_line = true;
2301 }
2302 else
2303 *seen |= SEEN_NOTE;
2304
2305 break;
2306
2307 case NOTE_INSN_BLOCK_BEG:
2308 if (debug_info_level == DINFO_LEVEL_NORMAL
2309 || debug_info_level == DINFO_LEVEL_VERBOSE
2310 || write_symbols == DWARF2_DEBUG
2311 || write_symbols == VMS_AND_DWARF2_DEBUG
2312 || write_symbols == VMS_DEBUG)
2313 {
2314 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2315
2316 app_disable ();
2317 ++block_depth;
2318 high_block_linenum = last_linenum;
2319
2320 /* Output debugging info about the symbol-block beginning. */
2321 if (!DECL_IGNORED_P (current_function_decl))
2322 debug_hooks->begin_block (last_linenum, n);
2323
2324 /* Mark this block as output. */
2325 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2326 }
2327 if (write_symbols == DBX_DEBUG
2328 || write_symbols == SDB_DEBUG)
2329 {
2330 location_t *locus_ptr
2331 = block_nonartificial_location (NOTE_BLOCK (insn));
2332
2333 if (locus_ptr != NULL)
2334 {
2335 override_filename = LOCATION_FILE (*locus_ptr);
2336 override_linenum = LOCATION_LINE (*locus_ptr);
2337 }
2338 }
2339 break;
2340
2341 case NOTE_INSN_BLOCK_END:
2342 if (debug_info_level == DINFO_LEVEL_NORMAL
2343 || debug_info_level == DINFO_LEVEL_VERBOSE
2344 || write_symbols == DWARF2_DEBUG
2345 || write_symbols == VMS_AND_DWARF2_DEBUG
2346 || write_symbols == VMS_DEBUG)
2347 {
2348 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2349
2350 app_disable ();
2351
2352 /* End of a symbol-block. */
2353 --block_depth;
2354 gcc_assert (block_depth >= 0);
2355
2356 if (!DECL_IGNORED_P (current_function_decl))
2357 debug_hooks->end_block (high_block_linenum, n);
2358 }
2359 if (write_symbols == DBX_DEBUG
2360 || write_symbols == SDB_DEBUG)
2361 {
2362 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2363 location_t *locus_ptr
2364 = block_nonartificial_location (outer_block);
2365
2366 if (locus_ptr != NULL)
2367 {
2368 override_filename = LOCATION_FILE (*locus_ptr);
2369 override_linenum = LOCATION_LINE (*locus_ptr);
2370 }
2371 else
2372 {
2373 override_filename = NULL;
2374 override_linenum = 0;
2375 }
2376 }
2377 break;
2378
2379 case NOTE_INSN_DELETED_LABEL:
2380 /* Emit the label. We may have deleted the CODE_LABEL because
2381 the label could be proved to be unreachable, though still
2382 referenced (in the form of having its address taken. */
2383 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2384 break;
2385
2386 case NOTE_INSN_DELETED_DEBUG_LABEL:
2387 /* Similarly, but need to use different namespace for it. */
2388 if (CODE_LABEL_NUMBER (insn) != -1)
2389 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2390 break;
2391
2392 case NOTE_INSN_VAR_LOCATION:
2393 case NOTE_INSN_CALL_ARG_LOCATION:
2394 if (!DECL_IGNORED_P (current_function_decl))
2395 debug_hooks->var_location (insn);
2396 break;
2397
2398 default:
2399 gcc_unreachable ();
2400 break;
2401 }
2402 break;
2403
2404 case BARRIER:
2405 break;
2406
2407 case CODE_LABEL:
2408 /* The target port might emit labels in the output function for
2409 some insn, e.g. sh.c output_branchy_insn. */
2410 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2411 {
2412 int align = LABEL_TO_ALIGNMENT (insn);
2413 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2414 int max_skip = LABEL_TO_MAX_SKIP (insn);
2415 #endif
2416
2417 if (align && NEXT_INSN (insn))
2418 {
2419 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2420 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2421 #else
2422 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2423 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2424 #else
2425 ASM_OUTPUT_ALIGN (file, align);
2426 #endif
2427 #endif
2428 }
2429 }
2430 CC_STATUS_INIT;
2431
2432 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2433 debug_hooks->label (as_a <rtx_code_label *> (insn));
2434
2435 app_disable ();
2436
2437 next = next_nonnote_insn (insn);
2438 /* If this label is followed by a jump-table, make sure we put
2439 the label in the read-only section. Also possibly write the
2440 label and jump table together. */
2441 if (next != 0 && JUMP_TABLE_DATA_P (next))
2442 {
2443 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2444 /* In this case, the case vector is being moved by the
2445 target, so don't output the label at all. Leave that
2446 to the back end macros. */
2447 #else
2448 if (! JUMP_TABLES_IN_TEXT_SECTION)
2449 {
2450 int log_align;
2451
2452 switch_to_section (targetm.asm_out.function_rodata_section
2453 (current_function_decl));
2454
2455 #ifdef ADDR_VEC_ALIGN
2456 log_align = ADDR_VEC_ALIGN (next);
2457 #else
2458 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2459 #endif
2460 ASM_OUTPUT_ALIGN (file, log_align);
2461 }
2462 else
2463 switch_to_section (current_function_section ());
2464
2465 #ifdef ASM_OUTPUT_CASE_LABEL
2466 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2467 next);
2468 #else
2469 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2470 #endif
2471 #endif
2472 break;
2473 }
2474 if (LABEL_ALT_ENTRY_P (insn))
2475 output_alternate_entry_point (file, insn);
2476 else
2477 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2478 break;
2479
2480 default:
2481 {
2482 rtx body = PATTERN (insn);
2483 int insn_code_number;
2484 const char *templ;
2485 bool is_stmt;
2486
2487 /* Reset this early so it is correct for ASM statements. */
2488 current_insn_predicate = NULL_RTX;
2489
2490 /* An INSN, JUMP_INSN or CALL_INSN.
2491 First check for special kinds that recog doesn't recognize. */
2492
2493 if (GET_CODE (body) == USE /* These are just declarations. */
2494 || GET_CODE (body) == CLOBBER)
2495 break;
2496
2497 #ifdef HAVE_cc0
2498 {
2499 /* If there is a REG_CC_SETTER note on this insn, it means that
2500 the setting of the condition code was done in the delay slot
2501 of the insn that branched here. So recover the cc status
2502 from the insn that set it. */
2503
2504 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2505 if (note)
2506 {
2507 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2508 NOTICE_UPDATE_CC (PATTERN (other), other);
2509 cc_prev_status = cc_status;
2510 }
2511 }
2512 #endif
2513
2514 /* Detect insns that are really jump-tables
2515 and output them as such. */
2516
2517 if (JUMP_TABLE_DATA_P (insn))
2518 {
2519 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2520 int vlen, idx;
2521 #endif
2522
2523 if (! JUMP_TABLES_IN_TEXT_SECTION)
2524 switch_to_section (targetm.asm_out.function_rodata_section
2525 (current_function_decl));
2526 else
2527 switch_to_section (current_function_section ());
2528
2529 app_disable ();
2530
2531 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2532 if (GET_CODE (body) == ADDR_VEC)
2533 {
2534 #ifdef ASM_OUTPUT_ADDR_VEC
2535 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2536 #else
2537 gcc_unreachable ();
2538 #endif
2539 }
2540 else
2541 {
2542 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2543 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2544 #else
2545 gcc_unreachable ();
2546 #endif
2547 }
2548 #else
2549 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2550 for (idx = 0; idx < vlen; idx++)
2551 {
2552 if (GET_CODE (body) == ADDR_VEC)
2553 {
2554 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2555 ASM_OUTPUT_ADDR_VEC_ELT
2556 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2557 #else
2558 gcc_unreachable ();
2559 #endif
2560 }
2561 else
2562 {
2563 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2564 ASM_OUTPUT_ADDR_DIFF_ELT
2565 (file,
2566 body,
2567 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2568 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2569 #else
2570 gcc_unreachable ();
2571 #endif
2572 }
2573 }
2574 #ifdef ASM_OUTPUT_CASE_END
2575 ASM_OUTPUT_CASE_END (file,
2576 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2577 insn);
2578 #endif
2579 #endif
2580
2581 switch_to_section (current_function_section ());
2582
2583 break;
2584 }
2585 /* Output this line note if it is the first or the last line
2586 note in a row. */
2587 if (!DECL_IGNORED_P (current_function_decl)
2588 && notice_source_line (insn, &is_stmt))
2589 (*debug_hooks->source_line) (last_linenum, last_filename,
2590 last_discriminator, is_stmt);
2591
2592 if (GET_CODE (body) == ASM_INPUT)
2593 {
2594 const char *string = XSTR (body, 0);
2595
2596 /* There's no telling what that did to the condition codes. */
2597 CC_STATUS_INIT;
2598
2599 if (string[0])
2600 {
2601 expanded_location loc;
2602
2603 app_enable ();
2604 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2605 if (*loc.file && loc.line)
2606 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2607 ASM_COMMENT_START, loc.line, loc.file);
2608 fprintf (asm_out_file, "\t%s\n", string);
2609 #if HAVE_AS_LINE_ZERO
2610 if (*loc.file && loc.line)
2611 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2612 #endif
2613 }
2614 break;
2615 }
2616
2617 /* Detect `asm' construct with operands. */
2618 if (asm_noperands (body) >= 0)
2619 {
2620 unsigned int noperands = asm_noperands (body);
2621 rtx *ops = XALLOCAVEC (rtx, noperands);
2622 const char *string;
2623 location_t loc;
2624 expanded_location expanded;
2625
2626 /* There's no telling what that did to the condition codes. */
2627 CC_STATUS_INIT;
2628
2629 /* Get out the operand values. */
2630 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2631 /* Inhibit dying on what would otherwise be compiler bugs. */
2632 insn_noperands = noperands;
2633 this_is_asm_operands = insn;
2634 expanded = expand_location (loc);
2635
2636 #ifdef FINAL_PRESCAN_INSN
2637 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2638 #endif
2639
2640 /* Output the insn using them. */
2641 if (string[0])
2642 {
2643 app_enable ();
2644 if (expanded.file && expanded.line)
2645 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2646 ASM_COMMENT_START, expanded.line, expanded.file);
2647 output_asm_insn (string, ops);
2648 #if HAVE_AS_LINE_ZERO
2649 if (expanded.file && expanded.line)
2650 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2651 #endif
2652 }
2653
2654 if (targetm.asm_out.final_postscan_insn)
2655 targetm.asm_out.final_postscan_insn (file, insn, ops,
2656 insn_noperands);
2657
2658 this_is_asm_operands = 0;
2659 break;
2660 }
2661
2662 app_disable ();
2663
2664 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2665 {
2666 /* A delayed-branch sequence */
2667 int i;
2668
2669 final_sequence = seq;
2670
2671 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2672 force the restoration of a comparison that was previously
2673 thought unnecessary. If that happens, cancel this sequence
2674 and cause that insn to be restored. */
2675
2676 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2677 if (next != seq->insn (1))
2678 {
2679 final_sequence = 0;
2680 return next;
2681 }
2682
2683 for (i = 1; i < seq->len (); i++)
2684 {
2685 rtx_insn *insn = seq->insn (i);
2686 rtx_insn *next = NEXT_INSN (insn);
2687 /* We loop in case any instruction in a delay slot gets
2688 split. */
2689 do
2690 insn = final_scan_insn (insn, file, 0, 1, seen);
2691 while (insn != next);
2692 }
2693 #ifdef DBR_OUTPUT_SEQEND
2694 DBR_OUTPUT_SEQEND (file);
2695 #endif
2696 final_sequence = 0;
2697
2698 /* If the insn requiring the delay slot was a CALL_INSN, the
2699 insns in the delay slot are actually executed before the
2700 called function. Hence we don't preserve any CC-setting
2701 actions in these insns and the CC must be marked as being
2702 clobbered by the function. */
2703 if (CALL_P (seq->insn (0)))
2704 {
2705 CC_STATUS_INIT;
2706 }
2707 break;
2708 }
2709
2710 /* We have a real machine instruction as rtl. */
2711
2712 body = PATTERN (insn);
2713
2714 #ifdef HAVE_cc0
2715 set = single_set (insn);
2716
2717 /* Check for redundant test and compare instructions
2718 (when the condition codes are already set up as desired).
2719 This is done only when optimizing; if not optimizing,
2720 it should be possible for the user to alter a variable
2721 with the debugger in between statements
2722 and the next statement should reexamine the variable
2723 to compute the condition codes. */
2724
2725 if (optimize_p)
2726 {
2727 if (set
2728 && GET_CODE (SET_DEST (set)) == CC0
2729 && insn != last_ignored_compare)
2730 {
2731 rtx src1, src2;
2732 if (GET_CODE (SET_SRC (set)) == SUBREG)
2733 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2734
2735 src1 = SET_SRC (set);
2736 src2 = NULL_RTX;
2737 if (GET_CODE (SET_SRC (set)) == COMPARE)
2738 {
2739 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2740 XEXP (SET_SRC (set), 0)
2741 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2742 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2743 XEXP (SET_SRC (set), 1)
2744 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2745 if (XEXP (SET_SRC (set), 1)
2746 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2747 src2 = XEXP (SET_SRC (set), 0);
2748 }
2749 if ((cc_status.value1 != 0
2750 && rtx_equal_p (src1, cc_status.value1))
2751 || (cc_status.value2 != 0
2752 && rtx_equal_p (src1, cc_status.value2))
2753 || (src2 != 0 && cc_status.value1 != 0
2754 && rtx_equal_p (src2, cc_status.value1))
2755 || (src2 != 0 && cc_status.value2 != 0
2756 && rtx_equal_p (src2, cc_status.value2)))
2757 {
2758 /* Don't delete insn if it has an addressing side-effect. */
2759 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2760 /* or if anything in it is volatile. */
2761 && ! volatile_refs_p (PATTERN (insn)))
2762 {
2763 /* We don't really delete the insn; just ignore it. */
2764 last_ignored_compare = insn;
2765 break;
2766 }
2767 }
2768 }
2769 }
2770
2771 /* If this is a conditional branch, maybe modify it
2772 if the cc's are in a nonstandard state
2773 so that it accomplishes the same thing that it would
2774 do straightforwardly if the cc's were set up normally. */
2775
2776 if (cc_status.flags != 0
2777 && JUMP_P (insn)
2778 && GET_CODE (body) == SET
2779 && SET_DEST (body) == pc_rtx
2780 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2781 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2782 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2783 {
2784 /* This function may alter the contents of its argument
2785 and clear some of the cc_status.flags bits.
2786 It may also return 1 meaning condition now always true
2787 or -1 meaning condition now always false
2788 or 2 meaning condition nontrivial but altered. */
2789 int result = alter_cond (XEXP (SET_SRC (body), 0));
2790 /* If condition now has fixed value, replace the IF_THEN_ELSE
2791 with its then-operand or its else-operand. */
2792 if (result == 1)
2793 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2794 if (result == -1)
2795 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2796
2797 /* The jump is now either unconditional or a no-op.
2798 If it has become a no-op, don't try to output it.
2799 (It would not be recognized.) */
2800 if (SET_SRC (body) == pc_rtx)
2801 {
2802 delete_insn (insn);
2803 break;
2804 }
2805 else if (ANY_RETURN_P (SET_SRC (body)))
2806 /* Replace (set (pc) (return)) with (return). */
2807 PATTERN (insn) = body = SET_SRC (body);
2808
2809 /* Rerecognize the instruction if it has changed. */
2810 if (result != 0)
2811 INSN_CODE (insn) = -1;
2812 }
2813
2814 /* If this is a conditional trap, maybe modify it if the cc's
2815 are in a nonstandard state so that it accomplishes the same
2816 thing that it would do straightforwardly if the cc's were
2817 set up normally. */
2818 if (cc_status.flags != 0
2819 && NONJUMP_INSN_P (insn)
2820 && GET_CODE (body) == TRAP_IF
2821 && COMPARISON_P (TRAP_CONDITION (body))
2822 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2823 {
2824 /* This function may alter the contents of its argument
2825 and clear some of the cc_status.flags bits.
2826 It may also return 1 meaning condition now always true
2827 or -1 meaning condition now always false
2828 or 2 meaning condition nontrivial but altered. */
2829 int result = alter_cond (TRAP_CONDITION (body));
2830
2831 /* If TRAP_CONDITION has become always false, delete the
2832 instruction. */
2833 if (result == -1)
2834 {
2835 delete_insn (insn);
2836 break;
2837 }
2838
2839 /* If TRAP_CONDITION has become always true, replace
2840 TRAP_CONDITION with const_true_rtx. */
2841 if (result == 1)
2842 TRAP_CONDITION (body) = const_true_rtx;
2843
2844 /* Rerecognize the instruction if it has changed. */
2845 if (result != 0)
2846 INSN_CODE (insn) = -1;
2847 }
2848
2849 /* Make same adjustments to instructions that examine the
2850 condition codes without jumping and instructions that
2851 handle conditional moves (if this machine has either one). */
2852
2853 if (cc_status.flags != 0
2854 && set != 0)
2855 {
2856 rtx cond_rtx, then_rtx, else_rtx;
2857
2858 if (!JUMP_P (insn)
2859 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2860 {
2861 cond_rtx = XEXP (SET_SRC (set), 0);
2862 then_rtx = XEXP (SET_SRC (set), 1);
2863 else_rtx = XEXP (SET_SRC (set), 2);
2864 }
2865 else
2866 {
2867 cond_rtx = SET_SRC (set);
2868 then_rtx = const_true_rtx;
2869 else_rtx = const0_rtx;
2870 }
2871
2872 if (COMPARISON_P (cond_rtx)
2873 && XEXP (cond_rtx, 0) == cc0_rtx)
2874 {
2875 int result;
2876 result = alter_cond (cond_rtx);
2877 if (result == 1)
2878 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2879 else if (result == -1)
2880 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2881 else if (result == 2)
2882 INSN_CODE (insn) = -1;
2883 if (SET_DEST (set) == SET_SRC (set))
2884 delete_insn (insn);
2885 }
2886 }
2887
2888 #endif
2889
2890 #ifdef HAVE_peephole
2891 /* Do machine-specific peephole optimizations if desired. */
2892
2893 if (optimize_p && !flag_no_peephole && !nopeepholes)
2894 {
2895 rtx_insn *next = peephole (insn);
2896 /* When peepholing, if there were notes within the peephole,
2897 emit them before the peephole. */
2898 if (next != 0 && next != NEXT_INSN (insn))
2899 {
2900 rtx_insn *note, *prev = PREV_INSN (insn);
2901
2902 for (note = NEXT_INSN (insn); note != next;
2903 note = NEXT_INSN (note))
2904 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2905
2906 /* Put the notes in the proper position for a later
2907 rescan. For example, the SH target can do this
2908 when generating a far jump in a delayed branch
2909 sequence. */
2910 note = NEXT_INSN (insn);
2911 SET_PREV_INSN (note) = prev;
2912 SET_NEXT_INSN (prev) = note;
2913 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2914 SET_PREV_INSN (insn) = PREV_INSN (next);
2915 SET_NEXT_INSN (insn) = next;
2916 SET_PREV_INSN (next) = insn;
2917 }
2918
2919 /* PEEPHOLE might have changed this. */
2920 body = PATTERN (insn);
2921 }
2922 #endif
2923
2924 /* Try to recognize the instruction.
2925 If successful, verify that the operands satisfy the
2926 constraints for the instruction. Crash if they don't,
2927 since `reload' should have changed them so that they do. */
2928
2929 insn_code_number = recog_memoized (insn);
2930 cleanup_subreg_operands (insn);
2931
2932 /* Dump the insn in the assembly for debugging (-dAP).
2933 If the final dump is requested as slim RTL, dump slim
2934 RTL to the assembly file also. */
2935 if (flag_dump_rtl_in_asm)
2936 {
2937 print_rtx_head = ASM_COMMENT_START;
2938 if (! (dump_flags & TDF_SLIM))
2939 print_rtl_single (asm_out_file, insn);
2940 else
2941 dump_insn_slim (asm_out_file, insn);
2942 print_rtx_head = "";
2943 }
2944
2945 if (! constrain_operands_cached (insn, 1))
2946 fatal_insn_not_found (insn);
2947
2948 /* Some target machines need to prescan each insn before
2949 it is output. */
2950
2951 #ifdef FINAL_PRESCAN_INSN
2952 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2953 #endif
2954
2955 if (targetm.have_conditional_execution ()
2956 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2957 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2958
2959 #ifdef HAVE_cc0
2960 cc_prev_status = cc_status;
2961
2962 /* Update `cc_status' for this instruction.
2963 The instruction's output routine may change it further.
2964 If the output routine for a jump insn needs to depend
2965 on the cc status, it should look at cc_prev_status. */
2966
2967 NOTICE_UPDATE_CC (body, insn);
2968 #endif
2969
2970 current_output_insn = debug_insn = insn;
2971
2972 /* Find the proper template for this insn. */
2973 templ = get_insn_template (insn_code_number, insn);
2974
2975 /* If the C code returns 0, it means that it is a jump insn
2976 which follows a deleted test insn, and that test insn
2977 needs to be reinserted. */
2978 if (templ == 0)
2979 {
2980 rtx_insn *prev;
2981
2982 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2983
2984 /* We have already processed the notes between the setter and
2985 the user. Make sure we don't process them again, this is
2986 particularly important if one of the notes is a block
2987 scope note or an EH note. */
2988 for (prev = insn;
2989 prev != last_ignored_compare;
2990 prev = PREV_INSN (prev))
2991 {
2992 if (NOTE_P (prev))
2993 delete_insn (prev); /* Use delete_note. */
2994 }
2995
2996 return prev;
2997 }
2998
2999 /* If the template is the string "#", it means that this insn must
3000 be split. */
3001 if (templ[0] == '#' && templ[1] == '\0')
3002 {
3003 rtx_insn *new_rtx = try_split (body, insn, 0);
3004
3005 /* If we didn't split the insn, go away. */
3006 if (new_rtx == insn && PATTERN (new_rtx) == body)
3007 fatal_insn ("could not split insn", insn);
3008
3009 /* If we have a length attribute, this instruction should have
3010 been split in shorten_branches, to ensure that we would have
3011 valid length info for the splitees. */
3012 gcc_assert (!HAVE_ATTR_length);
3013
3014 return new_rtx;
3015 }
3016
3017 /* ??? This will put the directives in the wrong place if
3018 get_insn_template outputs assembly directly. However calling it
3019 before get_insn_template breaks if the insns is split. */
3020 if (targetm.asm_out.unwind_emit_before_insn
3021 && targetm.asm_out.unwind_emit)
3022 targetm.asm_out.unwind_emit (asm_out_file, insn);
3023
3024 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
3025 {
3026 rtx x = call_from_call_insn (call_insn);
3027 x = XEXP (x, 0);
3028 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3029 {
3030 tree t;
3031 x = XEXP (x, 0);
3032 t = SYMBOL_REF_DECL (x);
3033 if (t)
3034 assemble_external (t);
3035 }
3036 if (!DECL_IGNORED_P (current_function_decl))
3037 debug_hooks->var_location (insn);
3038 }
3039
3040 /* Output assembler code from the template. */
3041 output_asm_insn (templ, recog_data.operand);
3042
3043 /* Some target machines need to postscan each insn after
3044 it is output. */
3045 if (targetm.asm_out.final_postscan_insn)
3046 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3047 recog_data.n_operands);
3048
3049 if (!targetm.asm_out.unwind_emit_before_insn
3050 && targetm.asm_out.unwind_emit)
3051 targetm.asm_out.unwind_emit (asm_out_file, insn);
3052
3053 current_output_insn = debug_insn = 0;
3054 }
3055 }
3056 return NEXT_INSN (insn);
3057 }
3058 \f
3059 /* Return whether a source line note needs to be emitted before INSN.
3060 Sets IS_STMT to TRUE if the line should be marked as a possible
3061 breakpoint location. */
3062
3063 static bool
3064 notice_source_line (rtx_insn *insn, bool *is_stmt)
3065 {
3066 const char *filename;
3067 int linenum;
3068
3069 if (override_filename)
3070 {
3071 filename = override_filename;
3072 linenum = override_linenum;
3073 }
3074 else if (INSN_HAS_LOCATION (insn))
3075 {
3076 expanded_location xloc = insn_location (insn);
3077 filename = xloc.file;
3078 linenum = xloc.line;
3079 }
3080 else
3081 {
3082 filename = NULL;
3083 linenum = 0;
3084 }
3085
3086 if (filename == NULL)
3087 return false;
3088
3089 if (force_source_line
3090 || filename != last_filename
3091 || last_linenum != linenum)
3092 {
3093 force_source_line = false;
3094 last_filename = filename;
3095 last_linenum = linenum;
3096 last_discriminator = discriminator;
3097 *is_stmt = true;
3098 high_block_linenum = MAX (last_linenum, high_block_linenum);
3099 high_function_linenum = MAX (last_linenum, high_function_linenum);
3100 return true;
3101 }
3102
3103 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3104 {
3105 /* If the discriminator changed, but the line number did not,
3106 output the line table entry with is_stmt false so the
3107 debugger does not treat this as a breakpoint location. */
3108 last_discriminator = discriminator;
3109 *is_stmt = false;
3110 return true;
3111 }
3112
3113 return false;
3114 }
3115 \f
3116 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3117 directly to the desired hard register. */
3118
3119 void
3120 cleanup_subreg_operands (rtx_insn *insn)
3121 {
3122 int i;
3123 bool changed = false;
3124 extract_insn_cached (insn);
3125 for (i = 0; i < recog_data.n_operands; i++)
3126 {
3127 /* The following test cannot use recog_data.operand when testing
3128 for a SUBREG: the underlying object might have been changed
3129 already if we are inside a match_operator expression that
3130 matches the else clause. Instead we test the underlying
3131 expression directly. */
3132 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3133 {
3134 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3135 changed = true;
3136 }
3137 else if (GET_CODE (recog_data.operand[i]) == PLUS
3138 || GET_CODE (recog_data.operand[i]) == MULT
3139 || MEM_P (recog_data.operand[i]))
3140 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3141 }
3142
3143 for (i = 0; i < recog_data.n_dups; i++)
3144 {
3145 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3146 {
3147 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3148 changed = true;
3149 }
3150 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3151 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3152 || MEM_P (*recog_data.dup_loc[i]))
3153 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3154 }
3155 if (changed)
3156 df_insn_rescan (insn);
3157 }
3158
3159 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3160 the thing it is a subreg of. Do it anyway if FINAL_P. */
3161
3162 rtx
3163 alter_subreg (rtx *xp, bool final_p)
3164 {
3165 rtx x = *xp;
3166 rtx y = SUBREG_REG (x);
3167
3168 /* simplify_subreg does not remove subreg from volatile references.
3169 We are required to. */
3170 if (MEM_P (y))
3171 {
3172 int offset = SUBREG_BYTE (x);
3173
3174 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3175 contains 0 instead of the proper offset. See simplify_subreg. */
3176 if (offset == 0
3177 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3178 {
3179 int difference = GET_MODE_SIZE (GET_MODE (y))
3180 - GET_MODE_SIZE (GET_MODE (x));
3181 if (WORDS_BIG_ENDIAN)
3182 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3183 if (BYTES_BIG_ENDIAN)
3184 offset += difference % UNITS_PER_WORD;
3185 }
3186
3187 if (final_p)
3188 *xp = adjust_address (y, GET_MODE (x), offset);
3189 else
3190 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3191 }
3192 else
3193 {
3194 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3195 SUBREG_BYTE (x));
3196
3197 if (new_rtx != 0)
3198 *xp = new_rtx;
3199 else if (final_p && REG_P (y))
3200 {
3201 /* Simplify_subreg can't handle some REG cases, but we have to. */
3202 unsigned int regno;
3203 HOST_WIDE_INT offset;
3204
3205 regno = subreg_regno (x);
3206 if (subreg_lowpart_p (x))
3207 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3208 else
3209 offset = SUBREG_BYTE (x);
3210 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3211 }
3212 }
3213
3214 return *xp;
3215 }
3216
3217 /* Do alter_subreg on all the SUBREGs contained in X. */
3218
3219 static rtx
3220 walk_alter_subreg (rtx *xp, bool *changed)
3221 {
3222 rtx x = *xp;
3223 switch (GET_CODE (x))
3224 {
3225 case PLUS:
3226 case MULT:
3227 case AND:
3228 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3229 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3230 break;
3231
3232 case MEM:
3233 case ZERO_EXTEND:
3234 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3235 break;
3236
3237 case SUBREG:
3238 *changed = true;
3239 return alter_subreg (xp, true);
3240
3241 default:
3242 break;
3243 }
3244
3245 return *xp;
3246 }
3247 \f
3248 #ifdef HAVE_cc0
3249
3250 /* Given BODY, the body of a jump instruction, alter the jump condition
3251 as required by the bits that are set in cc_status.flags.
3252 Not all of the bits there can be handled at this level in all cases.
3253
3254 The value is normally 0.
3255 1 means that the condition has become always true.
3256 -1 means that the condition has become always false.
3257 2 means that COND has been altered. */
3258
3259 static int
3260 alter_cond (rtx cond)
3261 {
3262 int value = 0;
3263
3264 if (cc_status.flags & CC_REVERSED)
3265 {
3266 value = 2;
3267 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3268 }
3269
3270 if (cc_status.flags & CC_INVERTED)
3271 {
3272 value = 2;
3273 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3274 }
3275
3276 if (cc_status.flags & CC_NOT_POSITIVE)
3277 switch (GET_CODE (cond))
3278 {
3279 case LE:
3280 case LEU:
3281 case GEU:
3282 /* Jump becomes unconditional. */
3283 return 1;
3284
3285 case GT:
3286 case GTU:
3287 case LTU:
3288 /* Jump becomes no-op. */
3289 return -1;
3290
3291 case GE:
3292 PUT_CODE (cond, EQ);
3293 value = 2;
3294 break;
3295
3296 case LT:
3297 PUT_CODE (cond, NE);
3298 value = 2;
3299 break;
3300
3301 default:
3302 break;
3303 }
3304
3305 if (cc_status.flags & CC_NOT_NEGATIVE)
3306 switch (GET_CODE (cond))
3307 {
3308 case GE:
3309 case GEU:
3310 /* Jump becomes unconditional. */
3311 return 1;
3312
3313 case LT:
3314 case LTU:
3315 /* Jump becomes no-op. */
3316 return -1;
3317
3318 case LE:
3319 case LEU:
3320 PUT_CODE (cond, EQ);
3321 value = 2;
3322 break;
3323
3324 case GT:
3325 case GTU:
3326 PUT_CODE (cond, NE);
3327 value = 2;
3328 break;
3329
3330 default:
3331 break;
3332 }
3333
3334 if (cc_status.flags & CC_NO_OVERFLOW)
3335 switch (GET_CODE (cond))
3336 {
3337 case GEU:
3338 /* Jump becomes unconditional. */
3339 return 1;
3340
3341 case LEU:
3342 PUT_CODE (cond, EQ);
3343 value = 2;
3344 break;
3345
3346 case GTU:
3347 PUT_CODE (cond, NE);
3348 value = 2;
3349 break;
3350
3351 case LTU:
3352 /* Jump becomes no-op. */
3353 return -1;
3354
3355 default:
3356 break;
3357 }
3358
3359 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3360 switch (GET_CODE (cond))
3361 {
3362 default:
3363 gcc_unreachable ();
3364
3365 case NE:
3366 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3367 value = 2;
3368 break;
3369
3370 case EQ:
3371 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3372 value = 2;
3373 break;
3374 }
3375
3376 if (cc_status.flags & CC_NOT_SIGNED)
3377 /* The flags are valid if signed condition operators are converted
3378 to unsigned. */
3379 switch (GET_CODE (cond))
3380 {
3381 case LE:
3382 PUT_CODE (cond, LEU);
3383 value = 2;
3384 break;
3385
3386 case LT:
3387 PUT_CODE (cond, LTU);
3388 value = 2;
3389 break;
3390
3391 case GT:
3392 PUT_CODE (cond, GTU);
3393 value = 2;
3394 break;
3395
3396 case GE:
3397 PUT_CODE (cond, GEU);
3398 value = 2;
3399 break;
3400
3401 default:
3402 break;
3403 }
3404
3405 return value;
3406 }
3407 #endif
3408 \f
3409 /* Report inconsistency between the assembler template and the operands.
3410 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3411
3412 void
3413 output_operand_lossage (const char *cmsgid, ...)
3414 {
3415 char *fmt_string;
3416 char *new_message;
3417 const char *pfx_str;
3418 va_list ap;
3419
3420 va_start (ap, cmsgid);
3421
3422 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3423 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3424 vasprintf (&new_message, fmt_string, ap);
3425
3426 if (this_is_asm_operands)
3427 error_for_asm (this_is_asm_operands, "%s", new_message);
3428 else
3429 internal_error ("%s", new_message);
3430
3431 free (fmt_string);
3432 free (new_message);
3433 va_end (ap);
3434 }
3435 \f
3436 /* Output of assembler code from a template, and its subroutines. */
3437
3438 /* Annotate the assembly with a comment describing the pattern and
3439 alternative used. */
3440
3441 static void
3442 output_asm_name (void)
3443 {
3444 if (debug_insn)
3445 {
3446 int num = INSN_CODE (debug_insn);
3447 fprintf (asm_out_file, "\t%s %d\t%s",
3448 ASM_COMMENT_START, INSN_UID (debug_insn),
3449 insn_data[num].name);
3450 if (insn_data[num].n_alternatives > 1)
3451 fprintf (asm_out_file, "/%d", which_alternative + 1);
3452
3453 if (HAVE_ATTR_length)
3454 fprintf (asm_out_file, "\t[length = %d]",
3455 get_attr_length (debug_insn));
3456
3457 /* Clear this so only the first assembler insn
3458 of any rtl insn will get the special comment for -dp. */
3459 debug_insn = 0;
3460 }
3461 }
3462
3463 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3464 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3465 corresponds to the address of the object and 0 if to the object. */
3466
3467 static tree
3468 get_mem_expr_from_op (rtx op, int *paddressp)
3469 {
3470 tree expr;
3471 int inner_addressp;
3472
3473 *paddressp = 0;
3474
3475 if (REG_P (op))
3476 return REG_EXPR (op);
3477 else if (!MEM_P (op))
3478 return 0;
3479
3480 if (MEM_EXPR (op) != 0)
3481 return MEM_EXPR (op);
3482
3483 /* Otherwise we have an address, so indicate it and look at the address. */
3484 *paddressp = 1;
3485 op = XEXP (op, 0);
3486
3487 /* First check if we have a decl for the address, then look at the right side
3488 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3489 But don't allow the address to itself be indirect. */
3490 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3491 return expr;
3492 else if (GET_CODE (op) == PLUS
3493 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3494 return expr;
3495
3496 while (UNARY_P (op)
3497 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3498 op = XEXP (op, 0);
3499
3500 expr = get_mem_expr_from_op (op, &inner_addressp);
3501 return inner_addressp ? 0 : expr;
3502 }
3503
3504 /* Output operand names for assembler instructions. OPERANDS is the
3505 operand vector, OPORDER is the order to write the operands, and NOPS
3506 is the number of operands to write. */
3507
3508 static void
3509 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3510 {
3511 int wrote = 0;
3512 int i;
3513
3514 for (i = 0; i < nops; i++)
3515 {
3516 int addressp;
3517 rtx op = operands[oporder[i]];
3518 tree expr = get_mem_expr_from_op (op, &addressp);
3519
3520 fprintf (asm_out_file, "%c%s",
3521 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3522 wrote = 1;
3523 if (expr)
3524 {
3525 fprintf (asm_out_file, "%s",
3526 addressp ? "*" : "");
3527 print_mem_expr (asm_out_file, expr);
3528 wrote = 1;
3529 }
3530 else if (REG_P (op) && ORIGINAL_REGNO (op)
3531 && ORIGINAL_REGNO (op) != REGNO (op))
3532 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3533 }
3534 }
3535
3536 #ifdef ASSEMBLER_DIALECT
3537 /* Helper function to parse assembler dialects in the asm string.
3538 This is called from output_asm_insn and asm_fprintf. */
3539 static const char *
3540 do_assembler_dialects (const char *p, int *dialect)
3541 {
3542 char c = *(p - 1);
3543
3544 switch (c)
3545 {
3546 case '{':
3547 {
3548 int i;
3549
3550 if (*dialect)
3551 output_operand_lossage ("nested assembly dialect alternatives");
3552 else
3553 *dialect = 1;
3554
3555 /* If we want the first dialect, do nothing. Otherwise, skip
3556 DIALECT_NUMBER of strings ending with '|'. */
3557 for (i = 0; i < dialect_number; i++)
3558 {
3559 while (*p && *p != '}')
3560 {
3561 if (*p == '|')
3562 {
3563 p++;
3564 break;
3565 }
3566
3567 /* Skip over any character after a percent sign. */
3568 if (*p == '%')
3569 p++;
3570 if (*p)
3571 p++;
3572 }
3573
3574 if (*p == '}')
3575 break;
3576 }
3577
3578 if (*p == '\0')
3579 output_operand_lossage ("unterminated assembly dialect alternative");
3580 }
3581 break;
3582
3583 case '|':
3584 if (*dialect)
3585 {
3586 /* Skip to close brace. */
3587 do
3588 {
3589 if (*p == '\0')
3590 {
3591 output_operand_lossage ("unterminated assembly dialect alternative");
3592 break;
3593 }
3594
3595 /* Skip over any character after a percent sign. */
3596 if (*p == '%' && p[1])
3597 {
3598 p += 2;
3599 continue;
3600 }
3601
3602 if (*p++ == '}')
3603 break;
3604 }
3605 while (1);
3606
3607 *dialect = 0;
3608 }
3609 else
3610 putc (c, asm_out_file);
3611 break;
3612
3613 case '}':
3614 if (! *dialect)
3615 putc (c, asm_out_file);
3616 *dialect = 0;
3617 break;
3618 default:
3619 gcc_unreachable ();
3620 }
3621
3622 return p;
3623 }
3624 #endif
3625
3626 /* Output text from TEMPLATE to the assembler output file,
3627 obeying %-directions to substitute operands taken from
3628 the vector OPERANDS.
3629
3630 %N (for N a digit) means print operand N in usual manner.
3631 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3632 and print the label name with no punctuation.
3633 %cN means require operand N to be a constant
3634 and print the constant expression with no punctuation.
3635 %aN means expect operand N to be a memory address
3636 (not a memory reference!) and print a reference
3637 to that address.
3638 %nN means expect operand N to be a constant
3639 and print a constant expression for minus the value
3640 of the operand, with no other punctuation. */
3641
3642 void
3643 output_asm_insn (const char *templ, rtx *operands)
3644 {
3645 const char *p;
3646 int c;
3647 #ifdef ASSEMBLER_DIALECT
3648 int dialect = 0;
3649 #endif
3650 int oporder[MAX_RECOG_OPERANDS];
3651 char opoutput[MAX_RECOG_OPERANDS];
3652 int ops = 0;
3653
3654 /* An insn may return a null string template
3655 in a case where no assembler code is needed. */
3656 if (*templ == 0)
3657 return;
3658
3659 memset (opoutput, 0, sizeof opoutput);
3660 p = templ;
3661 putc ('\t', asm_out_file);
3662
3663 #ifdef ASM_OUTPUT_OPCODE
3664 ASM_OUTPUT_OPCODE (asm_out_file, p);
3665 #endif
3666
3667 while ((c = *p++))
3668 switch (c)
3669 {
3670 case '\n':
3671 if (flag_verbose_asm)
3672 output_asm_operand_names (operands, oporder, ops);
3673 if (flag_print_asm_name)
3674 output_asm_name ();
3675
3676 ops = 0;
3677 memset (opoutput, 0, sizeof opoutput);
3678
3679 putc (c, asm_out_file);
3680 #ifdef ASM_OUTPUT_OPCODE
3681 while ((c = *p) == '\t')
3682 {
3683 putc (c, asm_out_file);
3684 p++;
3685 }
3686 ASM_OUTPUT_OPCODE (asm_out_file, p);
3687 #endif
3688 break;
3689
3690 #ifdef ASSEMBLER_DIALECT
3691 case '{':
3692 case '}':
3693 case '|':
3694 p = do_assembler_dialects (p, &dialect);
3695 break;
3696 #endif
3697
3698 case '%':
3699 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3700 if ASSEMBLER_DIALECT defined and these characters have a special
3701 meaning as dialect delimiters.*/
3702 if (*p == '%'
3703 #ifdef ASSEMBLER_DIALECT
3704 || *p == '{' || *p == '}' || *p == '|'
3705 #endif
3706 )
3707 {
3708 putc (*p, asm_out_file);
3709 p++;
3710 }
3711 /* %= outputs a number which is unique to each insn in the entire
3712 compilation. This is useful for making local labels that are
3713 referred to more than once in a given insn. */
3714 else if (*p == '=')
3715 {
3716 p++;
3717 fprintf (asm_out_file, "%d", insn_counter);
3718 }
3719 /* % followed by a letter and some digits
3720 outputs an operand in a special way depending on the letter.
3721 Letters `acln' are implemented directly.
3722 Other letters are passed to `output_operand' so that
3723 the TARGET_PRINT_OPERAND hook can define them. */
3724 else if (ISALPHA (*p))
3725 {
3726 int letter = *p++;
3727 unsigned long opnum;
3728 char *endptr;
3729
3730 opnum = strtoul (p, &endptr, 10);
3731
3732 if (endptr == p)
3733 output_operand_lossage ("operand number missing "
3734 "after %%-letter");
3735 else if (this_is_asm_operands && opnum >= insn_noperands)
3736 output_operand_lossage ("operand number out of range");
3737 else if (letter == 'l')
3738 output_asm_label (operands[opnum]);
3739 else if (letter == 'a')
3740 output_address (operands[opnum]);
3741 else if (letter == 'c')
3742 {
3743 if (CONSTANT_ADDRESS_P (operands[opnum]))
3744 output_addr_const (asm_out_file, operands[opnum]);
3745 else
3746 output_operand (operands[opnum], 'c');
3747 }
3748 else if (letter == 'n')
3749 {
3750 if (CONST_INT_P (operands[opnum]))
3751 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3752 - INTVAL (operands[opnum]));
3753 else
3754 {
3755 putc ('-', asm_out_file);
3756 output_addr_const (asm_out_file, operands[opnum]);
3757 }
3758 }
3759 else
3760 output_operand (operands[opnum], letter);
3761
3762 if (!opoutput[opnum])
3763 oporder[ops++] = opnum;
3764 opoutput[opnum] = 1;
3765
3766 p = endptr;
3767 c = *p;
3768 }
3769 /* % followed by a digit outputs an operand the default way. */
3770 else if (ISDIGIT (*p))
3771 {
3772 unsigned long opnum;
3773 char *endptr;
3774
3775 opnum = strtoul (p, &endptr, 10);
3776 if (this_is_asm_operands && opnum >= insn_noperands)
3777 output_operand_lossage ("operand number out of range");
3778 else
3779 output_operand (operands[opnum], 0);
3780
3781 if (!opoutput[opnum])
3782 oporder[ops++] = opnum;
3783 opoutput[opnum] = 1;
3784
3785 p = endptr;
3786 c = *p;
3787 }
3788 /* % followed by punctuation: output something for that
3789 punctuation character alone, with no operand. The
3790 TARGET_PRINT_OPERAND hook decides what is actually done. */
3791 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3792 output_operand (NULL_RTX, *p++);
3793 else
3794 output_operand_lossage ("invalid %%-code");
3795 break;
3796
3797 default:
3798 putc (c, asm_out_file);
3799 }
3800
3801 /* Write out the variable names for operands, if we know them. */
3802 if (flag_verbose_asm)
3803 output_asm_operand_names (operands, oporder, ops);
3804 if (flag_print_asm_name)
3805 output_asm_name ();
3806
3807 putc ('\n', asm_out_file);
3808 }
3809 \f
3810 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3811
3812 void
3813 output_asm_label (rtx x)
3814 {
3815 char buf[256];
3816
3817 if (GET_CODE (x) == LABEL_REF)
3818 x = LABEL_REF_LABEL (x);
3819 if (LABEL_P (x)
3820 || (NOTE_P (x)
3821 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3822 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3823 else
3824 output_operand_lossage ("'%%l' operand isn't a label");
3825
3826 assemble_name (asm_out_file, buf);
3827 }
3828
3829 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3830
3831 void
3832 mark_symbol_refs_as_used (rtx x)
3833 {
3834 subrtx_iterator::array_type array;
3835 FOR_EACH_SUBRTX (iter, array, x, ALL)
3836 {
3837 const_rtx x = *iter;
3838 if (GET_CODE (x) == SYMBOL_REF)
3839 if (tree t = SYMBOL_REF_DECL (x))
3840 assemble_external (t);
3841 }
3842 }
3843
3844 /* Print operand X using machine-dependent assembler syntax.
3845 CODE is a non-digit that preceded the operand-number in the % spec,
3846 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3847 between the % and the digits.
3848 When CODE is a non-letter, X is 0.
3849
3850 The meanings of the letters are machine-dependent and controlled
3851 by TARGET_PRINT_OPERAND. */
3852
3853 void
3854 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3855 {
3856 if (x && GET_CODE (x) == SUBREG)
3857 x = alter_subreg (&x, true);
3858
3859 /* X must not be a pseudo reg. */
3860 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3861
3862 targetm.asm_out.print_operand (asm_out_file, x, code);
3863
3864 if (x == NULL_RTX)
3865 return;
3866
3867 mark_symbol_refs_as_used (x);
3868 }
3869
3870 /* Print a memory reference operand for address X using
3871 machine-dependent assembler syntax. */
3872
3873 void
3874 output_address (rtx x)
3875 {
3876 bool changed = false;
3877 walk_alter_subreg (&x, &changed);
3878 targetm.asm_out.print_operand_address (asm_out_file, x);
3879 }
3880 \f
3881 /* Print an integer constant expression in assembler syntax.
3882 Addition and subtraction are the only arithmetic
3883 that may appear in these expressions. */
3884
3885 void
3886 output_addr_const (FILE *file, rtx x)
3887 {
3888 char buf[256];
3889
3890 restart:
3891 switch (GET_CODE (x))
3892 {
3893 case PC:
3894 putc ('.', file);
3895 break;
3896
3897 case SYMBOL_REF:
3898 if (SYMBOL_REF_DECL (x))
3899 assemble_external (SYMBOL_REF_DECL (x));
3900 #ifdef ASM_OUTPUT_SYMBOL_REF
3901 ASM_OUTPUT_SYMBOL_REF (file, x);
3902 #else
3903 assemble_name (file, XSTR (x, 0));
3904 #endif
3905 break;
3906
3907 case LABEL_REF:
3908 x = LABEL_REF_LABEL (x);
3909 /* Fall through. */
3910 case CODE_LABEL:
3911 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3912 #ifdef ASM_OUTPUT_LABEL_REF
3913 ASM_OUTPUT_LABEL_REF (file, buf);
3914 #else
3915 assemble_name (file, buf);
3916 #endif
3917 break;
3918
3919 case CONST_INT:
3920 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3921 break;
3922
3923 case CONST:
3924 /* This used to output parentheses around the expression,
3925 but that does not work on the 386 (either ATT or BSD assembler). */
3926 output_addr_const (file, XEXP (x, 0));
3927 break;
3928
3929 case CONST_WIDE_INT:
3930 /* We do not know the mode here so we have to use a round about
3931 way to build a wide-int to get it printed properly. */
3932 {
3933 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3934 CONST_WIDE_INT_NUNITS (x),
3935 CONST_WIDE_INT_NUNITS (x)
3936 * HOST_BITS_PER_WIDE_INT,
3937 false);
3938 print_decs (w, file);
3939 }
3940 break;
3941
3942 case CONST_DOUBLE:
3943 if (CONST_DOUBLE_AS_INT_P (x))
3944 {
3945 /* We can use %d if the number is one word and positive. */
3946 if (CONST_DOUBLE_HIGH (x))
3947 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3948 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3949 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3950 else if (CONST_DOUBLE_LOW (x) < 0)
3951 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3952 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3953 else
3954 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3955 }
3956 else
3957 /* We can't handle floating point constants;
3958 PRINT_OPERAND must handle them. */
3959 output_operand_lossage ("floating constant misused");
3960 break;
3961
3962 case CONST_FIXED:
3963 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3964 break;
3965
3966 case PLUS:
3967 /* Some assemblers need integer constants to appear last (eg masm). */
3968 if (CONST_INT_P (XEXP (x, 0)))
3969 {
3970 output_addr_const (file, XEXP (x, 1));
3971 if (INTVAL (XEXP (x, 0)) >= 0)
3972 fprintf (file, "+");
3973 output_addr_const (file, XEXP (x, 0));
3974 }
3975 else
3976 {
3977 output_addr_const (file, XEXP (x, 0));
3978 if (!CONST_INT_P (XEXP (x, 1))
3979 || INTVAL (XEXP (x, 1)) >= 0)
3980 fprintf (file, "+");
3981 output_addr_const (file, XEXP (x, 1));
3982 }
3983 break;
3984
3985 case MINUS:
3986 /* Avoid outputting things like x-x or x+5-x,
3987 since some assemblers can't handle that. */
3988 x = simplify_subtraction (x);
3989 if (GET_CODE (x) != MINUS)
3990 goto restart;
3991
3992 output_addr_const (file, XEXP (x, 0));
3993 fprintf (file, "-");
3994 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3995 || GET_CODE (XEXP (x, 1)) == PC
3996 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3997 output_addr_const (file, XEXP (x, 1));
3998 else
3999 {
4000 fputs (targetm.asm_out.open_paren, file);
4001 output_addr_const (file, XEXP (x, 1));
4002 fputs (targetm.asm_out.close_paren, file);
4003 }
4004 break;
4005
4006 case ZERO_EXTEND:
4007 case SIGN_EXTEND:
4008 case SUBREG:
4009 case TRUNCATE:
4010 output_addr_const (file, XEXP (x, 0));
4011 break;
4012
4013 default:
4014 if (targetm.asm_out.output_addr_const_extra (file, x))
4015 break;
4016
4017 output_operand_lossage ("invalid expression as operand");
4018 }
4019 }
4020 \f
4021 /* Output a quoted string. */
4022
4023 void
4024 output_quoted_string (FILE *asm_file, const char *string)
4025 {
4026 #ifdef OUTPUT_QUOTED_STRING
4027 OUTPUT_QUOTED_STRING (asm_file, string);
4028 #else
4029 char c;
4030
4031 putc ('\"', asm_file);
4032 while ((c = *string++) != 0)
4033 {
4034 if (ISPRINT (c))
4035 {
4036 if (c == '\"' || c == '\\')
4037 putc ('\\', asm_file);
4038 putc (c, asm_file);
4039 }
4040 else
4041 fprintf (asm_file, "\\%03o", (unsigned char) c);
4042 }
4043 putc ('\"', asm_file);
4044 #endif
4045 }
4046 \f
4047 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4048
4049 void
4050 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4051 {
4052 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4053 if (value == 0)
4054 putc ('0', f);
4055 else
4056 {
4057 char *p = buf + sizeof (buf);
4058 do
4059 *--p = "0123456789abcdef"[value % 16];
4060 while ((value /= 16) != 0);
4061 *--p = 'x';
4062 *--p = '0';
4063 fwrite (p, 1, buf + sizeof (buf) - p, f);
4064 }
4065 }
4066
4067 /* Internal function that prints an unsigned long in decimal in reverse.
4068 The output string IS NOT null-terminated. */
4069
4070 static int
4071 sprint_ul_rev (char *s, unsigned long value)
4072 {
4073 int i = 0;
4074 do
4075 {
4076 s[i] = "0123456789"[value % 10];
4077 value /= 10;
4078 i++;
4079 /* alternate version, without modulo */
4080 /* oldval = value; */
4081 /* value /= 10; */
4082 /* s[i] = "0123456789" [oldval - 10*value]; */
4083 /* i++ */
4084 }
4085 while (value != 0);
4086 return i;
4087 }
4088
4089 /* Write an unsigned long as decimal to a file, fast. */
4090
4091 void
4092 fprint_ul (FILE *f, unsigned long value)
4093 {
4094 /* python says: len(str(2**64)) == 20 */
4095 char s[20];
4096 int i;
4097
4098 i = sprint_ul_rev (s, value);
4099
4100 /* It's probably too small to bother with string reversal and fputs. */
4101 do
4102 {
4103 i--;
4104 putc (s[i], f);
4105 }
4106 while (i != 0);
4107 }
4108
4109 /* Write an unsigned long as decimal to a string, fast.
4110 s must be wide enough to not overflow, at least 21 chars.
4111 Returns the length of the string (without terminating '\0'). */
4112
4113 int
4114 sprint_ul (char *s, unsigned long value)
4115 {
4116 int len;
4117 char tmp_c;
4118 int i;
4119 int j;
4120
4121 len = sprint_ul_rev (s, value);
4122 s[len] = '\0';
4123
4124 /* Reverse the string. */
4125 i = 0;
4126 j = len - 1;
4127 while (i < j)
4128 {
4129 tmp_c = s[i];
4130 s[i] = s[j];
4131 s[j] = tmp_c;
4132 i++; j--;
4133 }
4134
4135 return len;
4136 }
4137
4138 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4139 %R prints the value of REGISTER_PREFIX.
4140 %L prints the value of LOCAL_LABEL_PREFIX.
4141 %U prints the value of USER_LABEL_PREFIX.
4142 %I prints the value of IMMEDIATE_PREFIX.
4143 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4144 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4145
4146 We handle alternate assembler dialects here, just like output_asm_insn. */
4147
4148 void
4149 asm_fprintf (FILE *file, const char *p, ...)
4150 {
4151 char buf[10];
4152 char *q, c;
4153 #ifdef ASSEMBLER_DIALECT
4154 int dialect = 0;
4155 #endif
4156 va_list argptr;
4157
4158 va_start (argptr, p);
4159
4160 buf[0] = '%';
4161
4162 while ((c = *p++))
4163 switch (c)
4164 {
4165 #ifdef ASSEMBLER_DIALECT
4166 case '{':
4167 case '}':
4168 case '|':
4169 p = do_assembler_dialects (p, &dialect);
4170 break;
4171 #endif
4172
4173 case '%':
4174 c = *p++;
4175 q = &buf[1];
4176 while (strchr ("-+ #0", c))
4177 {
4178 *q++ = c;
4179 c = *p++;
4180 }
4181 while (ISDIGIT (c) || c == '.')
4182 {
4183 *q++ = c;
4184 c = *p++;
4185 }
4186 switch (c)
4187 {
4188 case '%':
4189 putc ('%', file);
4190 break;
4191
4192 case 'd': case 'i': case 'u':
4193 case 'x': case 'X': case 'o':
4194 case 'c':
4195 *q++ = c;
4196 *q = 0;
4197 fprintf (file, buf, va_arg (argptr, int));
4198 break;
4199
4200 case 'w':
4201 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4202 'o' cases, but we do not check for those cases. It
4203 means that the value is a HOST_WIDE_INT, which may be
4204 either `long' or `long long'. */
4205 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4206 q += strlen (HOST_WIDE_INT_PRINT);
4207 *q++ = *p++;
4208 *q = 0;
4209 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4210 break;
4211
4212 case 'l':
4213 *q++ = c;
4214 #ifdef HAVE_LONG_LONG
4215 if (*p == 'l')
4216 {
4217 *q++ = *p++;
4218 *q++ = *p++;
4219 *q = 0;
4220 fprintf (file, buf, va_arg (argptr, long long));
4221 }
4222 else
4223 #endif
4224 {
4225 *q++ = *p++;
4226 *q = 0;
4227 fprintf (file, buf, va_arg (argptr, long));
4228 }
4229
4230 break;
4231
4232 case 's':
4233 *q++ = c;
4234 *q = 0;
4235 fprintf (file, buf, va_arg (argptr, char *));
4236 break;
4237
4238 case 'O':
4239 #ifdef ASM_OUTPUT_OPCODE
4240 ASM_OUTPUT_OPCODE (asm_out_file, p);
4241 #endif
4242 break;
4243
4244 case 'R':
4245 #ifdef REGISTER_PREFIX
4246 fprintf (file, "%s", REGISTER_PREFIX);
4247 #endif
4248 break;
4249
4250 case 'I':
4251 #ifdef IMMEDIATE_PREFIX
4252 fprintf (file, "%s", IMMEDIATE_PREFIX);
4253 #endif
4254 break;
4255
4256 case 'L':
4257 #ifdef LOCAL_LABEL_PREFIX
4258 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4259 #endif
4260 break;
4261
4262 case 'U':
4263 fputs (user_label_prefix, file);
4264 break;
4265
4266 #ifdef ASM_FPRINTF_EXTENSIONS
4267 /* Uppercase letters are reserved for general use by asm_fprintf
4268 and so are not available to target specific code. In order to
4269 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4270 they are defined here. As they get turned into real extensions
4271 to asm_fprintf they should be removed from this list. */
4272 case 'A': case 'B': case 'C': case 'D': case 'E':
4273 case 'F': case 'G': case 'H': case 'J': case 'K':
4274 case 'M': case 'N': case 'P': case 'Q': case 'S':
4275 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4276 break;
4277
4278 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4279 #endif
4280 default:
4281 gcc_unreachable ();
4282 }
4283 break;
4284
4285 default:
4286 putc (c, file);
4287 }
4288 va_end (argptr);
4289 }
4290 \f
4291 /* Return nonzero if this function has no function calls. */
4292
4293 int
4294 leaf_function_p (void)
4295 {
4296 rtx_insn *insn;
4297
4298 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4299 functions even if they call mcount. */
4300 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4301 return 0;
4302
4303 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4304 {
4305 if (CALL_P (insn)
4306 && ! SIBLING_CALL_P (insn))
4307 return 0;
4308 if (NONJUMP_INSN_P (insn)
4309 && GET_CODE (PATTERN (insn)) == SEQUENCE
4310 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4311 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4312 return 0;
4313 }
4314
4315 return 1;
4316 }
4317
4318 /* Return 1 if branch is a forward branch.
4319 Uses insn_shuid array, so it works only in the final pass. May be used by
4320 output templates to customary add branch prediction hints.
4321 */
4322 int
4323 final_forward_branch_p (rtx_insn *insn)
4324 {
4325 int insn_id, label_id;
4326
4327 gcc_assert (uid_shuid);
4328 insn_id = INSN_SHUID (insn);
4329 label_id = INSN_SHUID (JUMP_LABEL (insn));
4330 /* We've hit some insns that does not have id information available. */
4331 gcc_assert (insn_id && label_id);
4332 return insn_id < label_id;
4333 }
4334
4335 /* On some machines, a function with no call insns
4336 can run faster if it doesn't create its own register window.
4337 When output, the leaf function should use only the "output"
4338 registers. Ordinarily, the function would be compiled to use
4339 the "input" registers to find its arguments; it is a candidate
4340 for leaf treatment if it uses only the "input" registers.
4341 Leaf function treatment means renumbering so the function
4342 uses the "output" registers instead. */
4343
4344 #ifdef LEAF_REGISTERS
4345
4346 /* Return 1 if this function uses only the registers that can be
4347 safely renumbered. */
4348
4349 int
4350 only_leaf_regs_used (void)
4351 {
4352 int i;
4353 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4354
4355 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4356 if ((df_regs_ever_live_p (i) || global_regs[i])
4357 && ! permitted_reg_in_leaf_functions[i])
4358 return 0;
4359
4360 if (crtl->uses_pic_offset_table
4361 && pic_offset_table_rtx != 0
4362 && REG_P (pic_offset_table_rtx)
4363 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4364 return 0;
4365
4366 return 1;
4367 }
4368
4369 /* Scan all instructions and renumber all registers into those
4370 available in leaf functions. */
4371
4372 static void
4373 leaf_renumber_regs (rtx_insn *first)
4374 {
4375 rtx_insn *insn;
4376
4377 /* Renumber only the actual patterns.
4378 The reg-notes can contain frame pointer refs,
4379 and renumbering them could crash, and should not be needed. */
4380 for (insn = first; insn; insn = NEXT_INSN (insn))
4381 if (INSN_P (insn))
4382 leaf_renumber_regs_insn (PATTERN (insn));
4383 }
4384
4385 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4386 available in leaf functions. */
4387
4388 void
4389 leaf_renumber_regs_insn (rtx in_rtx)
4390 {
4391 int i, j;
4392 const char *format_ptr;
4393
4394 if (in_rtx == 0)
4395 return;
4396
4397 /* Renumber all input-registers into output-registers.
4398 renumbered_regs would be 1 for an output-register;
4399 they */
4400
4401 if (REG_P (in_rtx))
4402 {
4403 int newreg;
4404
4405 /* Don't renumber the same reg twice. */
4406 if (in_rtx->used)
4407 return;
4408
4409 newreg = REGNO (in_rtx);
4410 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4411 to reach here as part of a REG_NOTE. */
4412 if (newreg >= FIRST_PSEUDO_REGISTER)
4413 {
4414 in_rtx->used = 1;
4415 return;
4416 }
4417 newreg = LEAF_REG_REMAP (newreg);
4418 gcc_assert (newreg >= 0);
4419 df_set_regs_ever_live (REGNO (in_rtx), false);
4420 df_set_regs_ever_live (newreg, true);
4421 SET_REGNO (in_rtx, newreg);
4422 in_rtx->used = 1;
4423 }
4424
4425 if (INSN_P (in_rtx))
4426 {
4427 /* Inside a SEQUENCE, we find insns.
4428 Renumber just the patterns of these insns,
4429 just as we do for the top-level insns. */
4430 leaf_renumber_regs_insn (PATTERN (in_rtx));
4431 return;
4432 }
4433
4434 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4435
4436 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4437 switch (*format_ptr++)
4438 {
4439 case 'e':
4440 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4441 break;
4442
4443 case 'E':
4444 if (NULL != XVEC (in_rtx, i))
4445 {
4446 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4447 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4448 }
4449 break;
4450
4451 case 'S':
4452 case 's':
4453 case '0':
4454 case 'i':
4455 case 'w':
4456 case 'n':
4457 case 'u':
4458 break;
4459
4460 default:
4461 gcc_unreachable ();
4462 }
4463 }
4464 #endif
4465 \f
4466 /* Turn the RTL into assembly. */
4467 static unsigned int
4468 rest_of_handle_final (void)
4469 {
4470 rtx x;
4471 const char *fnname;
4472
4473 /* Get the function's name, as described by its RTL. This may be
4474 different from the DECL_NAME name used in the source file. */
4475
4476 x = DECL_RTL (current_function_decl);
4477 gcc_assert (MEM_P (x));
4478 x = XEXP (x, 0);
4479 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4480 fnname = XSTR (x, 0);
4481
4482 assemble_start_function (current_function_decl, fnname);
4483 final_start_function (get_insns (), asm_out_file, optimize);
4484 final (get_insns (), asm_out_file, optimize);
4485 if (flag_use_caller_save)
4486 collect_fn_hard_reg_usage ();
4487 final_end_function ();
4488
4489 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4490 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4491 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4492 output_function_exception_table (fnname);
4493
4494 assemble_end_function (current_function_decl, fnname);
4495
4496 user_defined_section_attribute = false;
4497
4498 /* Free up reg info memory. */
4499 free_reg_info ();
4500
4501 if (! quiet_flag)
4502 fflush (asm_out_file);
4503
4504 /* Write DBX symbols if requested. */
4505
4506 /* Note that for those inline functions where we don't initially
4507 know for certain that we will be generating an out-of-line copy,
4508 the first invocation of this routine (rest_of_compilation) will
4509 skip over this code by doing a `goto exit_rest_of_compilation;'.
4510 Later on, wrapup_global_declarations will (indirectly) call
4511 rest_of_compilation again for those inline functions that need
4512 to have out-of-line copies generated. During that call, we
4513 *will* be routed past here. */
4514
4515 timevar_push (TV_SYMOUT);
4516 if (!DECL_IGNORED_P (current_function_decl))
4517 debug_hooks->function_decl (current_function_decl);
4518 timevar_pop (TV_SYMOUT);
4519
4520 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4521 DECL_INITIAL (current_function_decl) = error_mark_node;
4522
4523 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4524 && targetm.have_ctors_dtors)
4525 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4526 decl_init_priority_lookup
4527 (current_function_decl));
4528 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4529 && targetm.have_ctors_dtors)
4530 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4531 decl_fini_priority_lookup
4532 (current_function_decl));
4533 return 0;
4534 }
4535
4536 namespace {
4537
4538 const pass_data pass_data_final =
4539 {
4540 RTL_PASS, /* type */
4541 "final", /* name */
4542 OPTGROUP_NONE, /* optinfo_flags */
4543 TV_FINAL, /* tv_id */
4544 0, /* properties_required */
4545 0, /* properties_provided */
4546 0, /* properties_destroyed */
4547 0, /* todo_flags_start */
4548 0, /* todo_flags_finish */
4549 };
4550
4551 class pass_final : public rtl_opt_pass
4552 {
4553 public:
4554 pass_final (gcc::context *ctxt)
4555 : rtl_opt_pass (pass_data_final, ctxt)
4556 {}
4557
4558 /* opt_pass methods: */
4559 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4560
4561 }; // class pass_final
4562
4563 } // anon namespace
4564
4565 rtl_opt_pass *
4566 make_pass_final (gcc::context *ctxt)
4567 {
4568 return new pass_final (ctxt);
4569 }
4570
4571
4572 static unsigned int
4573 rest_of_handle_shorten_branches (void)
4574 {
4575 /* Shorten branches. */
4576 shorten_branches (get_insns ());
4577 return 0;
4578 }
4579
4580 namespace {
4581
4582 const pass_data pass_data_shorten_branches =
4583 {
4584 RTL_PASS, /* type */
4585 "shorten", /* name */
4586 OPTGROUP_NONE, /* optinfo_flags */
4587 TV_SHORTEN_BRANCH, /* tv_id */
4588 0, /* properties_required */
4589 0, /* properties_provided */
4590 0, /* properties_destroyed */
4591 0, /* todo_flags_start */
4592 0, /* todo_flags_finish */
4593 };
4594
4595 class pass_shorten_branches : public rtl_opt_pass
4596 {
4597 public:
4598 pass_shorten_branches (gcc::context *ctxt)
4599 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4600 {}
4601
4602 /* opt_pass methods: */
4603 virtual unsigned int execute (function *)
4604 {
4605 return rest_of_handle_shorten_branches ();
4606 }
4607
4608 }; // class pass_shorten_branches
4609
4610 } // anon namespace
4611
4612 rtl_opt_pass *
4613 make_pass_shorten_branches (gcc::context *ctxt)
4614 {
4615 return new pass_shorten_branches (ctxt);
4616 }
4617
4618
4619 static unsigned int
4620 rest_of_clean_state (void)
4621 {
4622 rtx_insn *insn, *next;
4623 FILE *final_output = NULL;
4624 int save_unnumbered = flag_dump_unnumbered;
4625 int save_noaddr = flag_dump_noaddr;
4626
4627 if (flag_dump_final_insns)
4628 {
4629 final_output = fopen (flag_dump_final_insns, "a");
4630 if (!final_output)
4631 {
4632 error ("could not open final insn dump file %qs: %m",
4633 flag_dump_final_insns);
4634 flag_dump_final_insns = NULL;
4635 }
4636 else
4637 {
4638 flag_dump_noaddr = flag_dump_unnumbered = 1;
4639 if (flag_compare_debug_opt || flag_compare_debug)
4640 dump_flags |= TDF_NOUID;
4641 dump_function_header (final_output, current_function_decl,
4642 dump_flags);
4643 final_insns_dump_p = true;
4644
4645 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4646 if (LABEL_P (insn))
4647 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4648 else
4649 {
4650 if (NOTE_P (insn))
4651 set_block_for_insn (insn, NULL);
4652 INSN_UID (insn) = 0;
4653 }
4654 }
4655 }
4656
4657 /* It is very important to decompose the RTL instruction chain here:
4658 debug information keeps pointing into CODE_LABEL insns inside the function
4659 body. If these remain pointing to the other insns, we end up preserving
4660 whole RTL chain and attached detailed debug info in memory. */
4661 for (insn = get_insns (); insn; insn = next)
4662 {
4663 next = NEXT_INSN (insn);
4664 SET_NEXT_INSN (insn) = NULL;
4665 SET_PREV_INSN (insn) = NULL;
4666
4667 if (final_output
4668 && (!NOTE_P (insn) ||
4669 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4670 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4671 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4672 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4673 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4674 print_rtl_single (final_output, insn);
4675 }
4676
4677 if (final_output)
4678 {
4679 flag_dump_noaddr = save_noaddr;
4680 flag_dump_unnumbered = save_unnumbered;
4681 final_insns_dump_p = false;
4682
4683 if (fclose (final_output))
4684 {
4685 error ("could not close final insn dump file %qs: %m",
4686 flag_dump_final_insns);
4687 flag_dump_final_insns = NULL;
4688 }
4689 }
4690
4691 /* In case the function was not output,
4692 don't leave any temporary anonymous types
4693 queued up for sdb output. */
4694 #ifdef SDB_DEBUGGING_INFO
4695 if (write_symbols == SDB_DEBUG)
4696 sdbout_types (NULL_TREE);
4697 #endif
4698
4699 flag_rerun_cse_after_global_opts = 0;
4700 reload_completed = 0;
4701 epilogue_completed = 0;
4702 #ifdef STACK_REGS
4703 regstack_completed = 0;
4704 #endif
4705
4706 /* Clear out the insn_length contents now that they are no
4707 longer valid. */
4708 init_insn_lengths ();
4709
4710 /* Show no temporary slots allocated. */
4711 init_temp_slots ();
4712
4713 free_bb_for_insn ();
4714
4715 delete_tree_ssa ();
4716
4717 /* We can reduce stack alignment on call site only when we are sure that
4718 the function body just produced will be actually used in the final
4719 executable. */
4720 if (decl_binds_to_current_def_p (current_function_decl))
4721 {
4722 unsigned int pref = crtl->preferred_stack_boundary;
4723 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4724 pref = crtl->stack_alignment_needed;
4725 cgraph_node::rtl_info (current_function_decl)
4726 ->preferred_incoming_stack_boundary = pref;
4727 }
4728
4729 /* Make sure volatile mem refs aren't considered valid operands for
4730 arithmetic insns. We must call this here if this is a nested inline
4731 function, since the above code leaves us in the init_recog state,
4732 and the function context push/pop code does not save/restore volatile_ok.
4733
4734 ??? Maybe it isn't necessary for expand_start_function to call this
4735 anymore if we do it here? */
4736
4737 init_recog_no_volatile ();
4738
4739 /* We're done with this function. Free up memory if we can. */
4740 free_after_parsing (cfun);
4741 free_after_compilation (cfun);
4742 return 0;
4743 }
4744
4745 namespace {
4746
4747 const pass_data pass_data_clean_state =
4748 {
4749 RTL_PASS, /* type */
4750 "*clean_state", /* name */
4751 OPTGROUP_NONE, /* optinfo_flags */
4752 TV_FINAL, /* tv_id */
4753 0, /* properties_required */
4754 0, /* properties_provided */
4755 PROP_rtl, /* properties_destroyed */
4756 0, /* todo_flags_start */
4757 0, /* todo_flags_finish */
4758 };
4759
4760 class pass_clean_state : public rtl_opt_pass
4761 {
4762 public:
4763 pass_clean_state (gcc::context *ctxt)
4764 : rtl_opt_pass (pass_data_clean_state, ctxt)
4765 {}
4766
4767 /* opt_pass methods: */
4768 virtual unsigned int execute (function *)
4769 {
4770 return rest_of_clean_state ();
4771 }
4772
4773 }; // class pass_clean_state
4774
4775 } // anon namespace
4776
4777 rtl_opt_pass *
4778 make_pass_clean_state (gcc::context *ctxt)
4779 {
4780 return new pass_clean_state (ctxt);
4781 }
4782
4783 /* Return true if INSN is a call to the the current function. */
4784
4785 static bool
4786 self_recursive_call_p (rtx_insn *insn)
4787 {
4788 tree fndecl = get_call_fndecl (insn);
4789 return (fndecl == current_function_decl
4790 && decl_binds_to_current_def_p (fndecl));
4791 }
4792
4793 /* Collect hard register usage for the current function. */
4794
4795 static void
4796 collect_fn_hard_reg_usage (void)
4797 {
4798 rtx_insn *insn;
4799 #ifdef STACK_REGS
4800 int i;
4801 #endif
4802 struct cgraph_rtl_info *node;
4803 HARD_REG_SET function_used_regs;
4804
4805 /* ??? To be removed when all the ports have been fixed. */
4806 if (!targetm.call_fusage_contains_non_callee_clobbers)
4807 return;
4808
4809 CLEAR_HARD_REG_SET (function_used_regs);
4810
4811 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4812 {
4813 HARD_REG_SET insn_used_regs;
4814
4815 if (!NONDEBUG_INSN_P (insn))
4816 continue;
4817
4818 if (CALL_P (insn)
4819 && !self_recursive_call_p (insn))
4820 {
4821 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4822 call_used_reg_set))
4823 return;
4824
4825 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4826 }
4827
4828 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4829 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4830 }
4831
4832 /* Be conservative - mark fixed and global registers as used. */
4833 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4834
4835 #ifdef STACK_REGS
4836 /* Handle STACK_REGS conservatively, since the df-framework does not
4837 provide accurate information for them. */
4838
4839 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4840 SET_HARD_REG_BIT (function_used_regs, i);
4841 #endif
4842
4843 /* The information we have gathered is only interesting if it exposes a
4844 register from the call_used_regs that is not used in this function. */
4845 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4846 return;
4847
4848 node = cgraph_node::rtl_info (current_function_decl);
4849 gcc_assert (node != NULL);
4850
4851 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4852 node->function_used_regs_valid = 1;
4853 }
4854
4855 /* Get the declaration of the function called by INSN. */
4856
4857 static tree
4858 get_call_fndecl (rtx_insn *insn)
4859 {
4860 rtx note, datum;
4861
4862 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4863 if (note == NULL_RTX)
4864 return NULL_TREE;
4865
4866 datum = XEXP (note, 0);
4867 if (datum != NULL_RTX)
4868 return SYMBOL_REF_DECL (datum);
4869
4870 return NULL_TREE;
4871 }
4872
4873 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4874 call targets that can be overwritten. */
4875
4876 static struct cgraph_rtl_info *
4877 get_call_cgraph_rtl_info (rtx_insn *insn)
4878 {
4879 tree fndecl;
4880
4881 if (insn == NULL_RTX)
4882 return NULL;
4883
4884 fndecl = get_call_fndecl (insn);
4885 if (fndecl == NULL_TREE
4886 || !decl_binds_to_current_def_p (fndecl))
4887 return NULL;
4888
4889 return cgraph_node::rtl_info (fndecl);
4890 }
4891
4892 /* Find hard registers used by function call instruction INSN, and return them
4893 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4894
4895 bool
4896 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4897 HARD_REG_SET default_set)
4898 {
4899 if (flag_use_caller_save)
4900 {
4901 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4902 if (node != NULL
4903 && node->function_used_regs_valid)
4904 {
4905 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4906 AND_HARD_REG_SET (*reg_set, default_set);
4907 return true;
4908 }
4909 }
4910
4911 COPY_HARD_REG_SET (*reg_set, default_set);
4912 return false;
4913 }