]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/flow.c
alias.c [...]: Remove unnecessary casts.
[thirdparty/gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
141
142 #include "obstack.h"
143 #include "splay-tree.h"
144
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
152
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
162
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
172
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
178
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
181
182 /* Maximum register number used in this function, plus one. */
183
184 int max_regno;
185
186 /* Indexed by n, giving various register information */
187
188 varray_type reg_n_info;
189
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
192
193 int regset_bytes;
194 int regset_size;
195
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
198
199 regset regs_live_at_setjmp;
200
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
206
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) (tree);
210
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
213
214 static HARD_REG_SET elim_reg_set;
215
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
218 {
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
223
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
227
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
230 };
231
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
234
235 struct propagate_block_info
236 {
237 /* The basic block we're considering. */
238 basic_block bb;
239
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
242
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
245
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
249
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
253
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
257
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
261
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
266
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
270
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
273
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
276
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
279 };
280
281 /* Number of dead insns removed. */
282 static int ndead;
283
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
287
288 /* Forward declarations */
289 static int verify_wide_reg_1 (rtx *, void *);
290 static void verify_wide_reg (int, basic_block);
291 static void verify_local_live_at_start (regset, basic_block);
292 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
293 static void notice_stack_pointer_modification (rtx);
294 static void mark_reg (rtx, void *);
295 static void mark_regs_live_at_end (regset);
296 static int set_phi_alternative_reg (rtx, int, int, void *);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
306
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
331 \f
332
333 void
334 check_function_return_warnings (void)
335 {
336 if (warn_missing_noreturn
337 && !TREE_THIS_VOLATILE (cfun->decl)
338 && EXIT_BLOCK_PTR->pred == NULL
339 && (lang_missing_noreturn_ok_p
340 && !lang_missing_noreturn_ok_p (cfun->decl)))
341 warning ("function might be possible candidate for attribute `noreturn'");
342
343 /* If we have a path to EXIT, then we do return. */
344 if (TREE_THIS_VOLATILE (cfun->decl)
345 && EXIT_BLOCK_PTR->pred != NULL)
346 warning ("`noreturn' function does return");
347
348 /* If the clobber_return_insn appears in some basic block, then we
349 do reach the end without returning a value. */
350 else if (warn_return_type
351 && cfun->x_clobber_return_insn != NULL
352 && EXIT_BLOCK_PTR->pred != NULL)
353 {
354 int max_uid = get_max_uid ();
355
356 /* If clobber_return_insn was excised by jump1, then renumber_insns
357 can make max_uid smaller than the number still recorded in our rtx.
358 That's fine, since this is a quick way of verifying that the insn
359 is no longer in the chain. */
360 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
361 {
362 rtx insn;
363
364 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
365 if (insn == cfun->x_clobber_return_insn)
366 {
367 warning ("control reaches end of non-void function");
368 break;
369 }
370 }
371 }
372 }
373 \f
374 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
375 note associated with the BLOCK. */
376
377 rtx
378 first_insn_after_basic_block_note (basic_block block)
379 {
380 rtx insn;
381
382 /* Get the first instruction in the block. */
383 insn = block->head;
384
385 if (insn == NULL_RTX)
386 return NULL_RTX;
387 if (GET_CODE (insn) == CODE_LABEL)
388 insn = NEXT_INSN (insn);
389 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
390 abort ();
391
392 return NEXT_INSN (insn);
393 }
394 \f
395 /* Perform data flow analysis.
396 F is the first insn of the function; FLAGS is a set of PROP_* flags
397 to be used in accumulating flow info. */
398
399 void
400 life_analysis (rtx f, FILE *file, int flags)
401 {
402 #ifdef ELIMINABLE_REGS
403 int i;
404 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
405 #endif
406
407 /* Record which registers will be eliminated. We use this in
408 mark_used_regs. */
409
410 CLEAR_HARD_REG_SET (elim_reg_set);
411
412 #ifdef ELIMINABLE_REGS
413 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
414 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
415 #else
416 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
417 #endif
418
419
420 #ifdef CANNOT_CHANGE_MODE_CLASS
421 if (flags & PROP_REG_INFO)
422 bitmap_initialize (&subregs_of_mode, 1);
423 #endif
424
425 if (! optimize)
426 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
427
428 /* The post-reload life analysis have (on a global basis) the same
429 registers live as was computed by reload itself. elimination
430 Otherwise offsets and such may be incorrect.
431
432 Reload will make some registers as live even though they do not
433 appear in the rtl.
434
435 We don't want to create new auto-incs after reload, since they
436 are unlikely to be useful and can cause problems with shared
437 stack slots. */
438 if (reload_completed)
439 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
440
441 /* We want alias analysis information for local dead store elimination. */
442 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
443 init_alias_analysis ();
444
445 /* Always remove no-op moves. Do this before other processing so
446 that we don't have to keep re-scanning them. */
447 delete_noop_moves (f);
448
449 /* Some targets can emit simpler epilogues if they know that sp was
450 not ever modified during the function. After reload, of course,
451 we've already emitted the epilogue so there's no sense searching. */
452 if (! reload_completed)
453 notice_stack_pointer_modification (f);
454
455 /* Allocate and zero out data structures that will record the
456 data from lifetime analysis. */
457 allocate_reg_life_data ();
458 allocate_bb_life_data ();
459
460 /* Find the set of registers live on function exit. */
461 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
462
463 /* "Update" life info from zero. It'd be nice to begin the
464 relaxation with just the exit and noreturn blocks, but that set
465 is not immediately handy. */
466
467 if (flags & PROP_REG_INFO)
468 memset (regs_ever_live, 0, sizeof (regs_ever_live));
469 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
470
471 /* Clean up. */
472 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
473 end_alias_analysis ();
474
475 if (file)
476 dump_flow_info (file);
477
478 free_basic_block_vars (1);
479
480 /* Removing dead insns should've made jumptables really dead. */
481 delete_dead_jumptables ();
482 }
483
484 /* A subroutine of verify_wide_reg, called through for_each_rtx.
485 Search for REGNO. If found, return 2 if it is not wider than
486 word_mode. */
487
488 static int
489 verify_wide_reg_1 (rtx *px, void *pregno)
490 {
491 rtx x = *px;
492 unsigned int regno = *(int *) pregno;
493
494 if (GET_CODE (x) == REG && REGNO (x) == regno)
495 {
496 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
497 return 2;
498 return 1;
499 }
500 return 0;
501 }
502
503 /* A subroutine of verify_local_live_at_start. Search through insns
504 of BB looking for register REGNO. */
505
506 static void
507 verify_wide_reg (int regno, basic_block bb)
508 {
509 rtx head = bb->head, end = bb->end;
510
511 while (1)
512 {
513 if (INSN_P (head))
514 {
515 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
516 if (r == 1)
517 return;
518 if (r == 2)
519 break;
520 }
521 if (head == end)
522 break;
523 head = NEXT_INSN (head);
524 }
525
526 if (rtl_dump_file)
527 {
528 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
529 dump_bb (bb, rtl_dump_file);
530 }
531 abort ();
532 }
533
534 /* A subroutine of update_life_info. Verify that there are no untoward
535 changes in live_at_start during a local update. */
536
537 static void
538 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
539 {
540 if (reload_completed)
541 {
542 /* After reload, there are no pseudos, nor subregs of multi-word
543 registers. The regsets should exactly match. */
544 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
545 {
546 if (rtl_dump_file)
547 {
548 fprintf (rtl_dump_file,
549 "live_at_start mismatch in bb %d, aborting\nNew:\n",
550 bb->index);
551 debug_bitmap_file (rtl_dump_file, new_live_at_start);
552 fputs ("Old:\n", rtl_dump_file);
553 dump_bb (bb, rtl_dump_file);
554 }
555 abort ();
556 }
557 }
558 else
559 {
560 int i;
561
562 /* Find the set of changed registers. */
563 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
564
565 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
566 {
567 /* No registers should die. */
568 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
569 {
570 if (rtl_dump_file)
571 {
572 fprintf (rtl_dump_file,
573 "Register %d died unexpectedly.\n", i);
574 dump_bb (bb, rtl_dump_file);
575 }
576 abort ();
577 }
578
579 /* Verify that the now-live register is wider than word_mode. */
580 verify_wide_reg (i, bb);
581 });
582 }
583 }
584
585 /* Updates life information starting with the basic blocks set in BLOCKS.
586 If BLOCKS is null, consider it to be the universal set.
587
588 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
589 we are only expecting local modifications to basic blocks. If we find
590 extra registers live at the beginning of a block, then we either killed
591 useful data, or we have a broken split that wants data not provided.
592 If we find registers removed from live_at_start, that means we have
593 a broken peephole that is killing a register it shouldn't.
594
595 ??? This is not true in one situation -- when a pre-reload splitter
596 generates subregs of a multi-word pseudo, current life analysis will
597 lose the kill. So we _can_ have a pseudo go live. How irritating.
598
599 Including PROP_REG_INFO does not properly refresh regs_ever_live
600 unless the caller resets it to zero. */
601
602 int
603 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
604 {
605 regset tmp;
606 regset_head tmp_head;
607 int i;
608 int stabilized_prop_flags = prop_flags;
609 basic_block bb;
610
611 tmp = INITIALIZE_REG_SET (tmp_head);
612 ndead = 0;
613
614 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
615 ? TV_LIFE_UPDATE : TV_LIFE);
616
617 /* Changes to the CFG are only allowed when
618 doing a global update for the entire CFG. */
619 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
620 && (extent == UPDATE_LIFE_LOCAL || blocks))
621 abort ();
622
623 /* For a global update, we go through the relaxation process again. */
624 if (extent != UPDATE_LIFE_LOCAL)
625 {
626 for ( ; ; )
627 {
628 int changed = 0;
629
630 calculate_global_regs_live (blocks, blocks,
631 prop_flags & (PROP_SCAN_DEAD_CODE
632 | PROP_SCAN_DEAD_STORES
633 | PROP_ALLOW_CFG_CHANGES));
634
635 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
636 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
637 break;
638
639 /* Removing dead code may allow the CFG to be simplified which
640 in turn may allow for further dead code detection / removal. */
641 FOR_EACH_BB_REVERSE (bb)
642 {
643 COPY_REG_SET (tmp, bb->global_live_at_end);
644 changed |= propagate_block (bb, tmp, NULL, NULL,
645 prop_flags & (PROP_SCAN_DEAD_CODE
646 | PROP_SCAN_DEAD_STORES
647 | PROP_KILL_DEAD_CODE));
648 }
649
650 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
651 subsequent propagate_block calls, since removing or acting as
652 removing dead code can affect global register liveness, which
653 is supposed to be finalized for this call after this loop. */
654 stabilized_prop_flags
655 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
656 | PROP_KILL_DEAD_CODE);
657
658 if (! changed)
659 break;
660
661 /* We repeat regardless of what cleanup_cfg says. If there were
662 instructions deleted above, that might have been only a
663 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
664 Further improvement may be possible. */
665 cleanup_cfg (CLEANUP_EXPENSIVE);
666
667 /* Zap the life information from the last round. If we don't
668 do this, we can wind up with registers that no longer appear
669 in the code being marked live at entry, which twiggs bogus
670 warnings from regno_uninitialized. */
671 FOR_EACH_BB (bb)
672 {
673 CLEAR_REG_SET (bb->global_live_at_start);
674 CLEAR_REG_SET (bb->global_live_at_end);
675 }
676 }
677
678 /* If asked, remove notes from the blocks we'll update. */
679 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
680 count_or_remove_death_notes (blocks, 1);
681 }
682
683 /* Clear log links in case we are asked to (re)compute them. */
684 if (prop_flags & PROP_LOG_LINKS)
685 clear_log_links (blocks);
686
687 if (blocks)
688 {
689 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
690 {
691 bb = BASIC_BLOCK (i);
692
693 COPY_REG_SET (tmp, bb->global_live_at_end);
694 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
695
696 if (extent == UPDATE_LIFE_LOCAL)
697 verify_local_live_at_start (tmp, bb);
698 });
699 }
700 else
701 {
702 FOR_EACH_BB_REVERSE (bb)
703 {
704 COPY_REG_SET (tmp, bb->global_live_at_end);
705
706 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
707
708 if (extent == UPDATE_LIFE_LOCAL)
709 verify_local_live_at_start (tmp, bb);
710 }
711 }
712
713 FREE_REG_SET (tmp);
714
715 if (prop_flags & PROP_REG_INFO)
716 {
717 /* The only pseudos that are live at the beginning of the function
718 are those that were not set anywhere in the function. local-alloc
719 doesn't know how to handle these correctly, so mark them as not
720 local to any one basic block. */
721 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
722 FIRST_PSEUDO_REGISTER, i,
723 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
724
725 /* We have a problem with any pseudoreg that lives across the setjmp.
726 ANSI says that if a user variable does not change in value between
727 the setjmp and the longjmp, then the longjmp preserves it. This
728 includes longjmp from a place where the pseudo appears dead.
729 (In principle, the value still exists if it is in scope.)
730 If the pseudo goes in a hard reg, some other value may occupy
731 that hard reg where this pseudo is dead, thus clobbering the pseudo.
732 Conclusion: such a pseudo must not go in a hard reg. */
733 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
734 FIRST_PSEUDO_REGISTER, i,
735 {
736 if (regno_reg_rtx[i] != 0)
737 {
738 REG_LIVE_LENGTH (i) = -1;
739 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
740 }
741 });
742 }
743 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
744 ? TV_LIFE_UPDATE : TV_LIFE);
745 if (ndead && rtl_dump_file)
746 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
747 return ndead;
748 }
749
750 /* Update life information in all blocks where BB_DIRTY is set. */
751
752 int
753 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
754 {
755 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
756 int n = 0;
757 basic_block bb;
758 int retval = 0;
759
760 sbitmap_zero (update_life_blocks);
761 FOR_EACH_BB (bb)
762 {
763 if (extent == UPDATE_LIFE_LOCAL)
764 {
765 if (bb->flags & BB_DIRTY)
766 {
767 SET_BIT (update_life_blocks, bb->index);
768 n++;
769 }
770 }
771 else
772 {
773 /* ??? Bootstrap with -march=pentium4 fails to terminate
774 with only a partial life update. */
775 SET_BIT (update_life_blocks, bb->index);
776 if (bb->flags & BB_DIRTY)
777 n++;
778 }
779 }
780
781 if (n)
782 retval = update_life_info (update_life_blocks, extent, prop_flags);
783
784 sbitmap_free (update_life_blocks);
785 return retval;
786 }
787
788 /* Free the variables allocated by find_basic_blocks.
789
790 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
791
792 void
793 free_basic_block_vars (int keep_head_end_p)
794 {
795 if (! keep_head_end_p)
796 {
797 if (basic_block_info)
798 {
799 clear_edges ();
800 VARRAY_FREE (basic_block_info);
801 }
802 n_basic_blocks = 0;
803 last_basic_block = 0;
804
805 ENTRY_BLOCK_PTR->aux = NULL;
806 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
807 EXIT_BLOCK_PTR->aux = NULL;
808 EXIT_BLOCK_PTR->global_live_at_start = NULL;
809 }
810 }
811
812 /* Delete any insns that copy a register to itself. */
813
814 int
815 delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
816 {
817 rtx insn, next;
818 basic_block bb;
819 int nnoops = 0;
820
821 FOR_EACH_BB (bb)
822 {
823 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
824 {
825 next = NEXT_INSN (insn);
826 if (INSN_P (insn) && noop_move_p (insn))
827 {
828 rtx note;
829
830 /* If we're about to remove the first insn of a libcall
831 then move the libcall note to the next real insn and
832 update the retval note. */
833 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
834 && XEXP (note, 0) != insn)
835 {
836 rtx new_libcall_insn = next_real_insn (insn);
837 rtx retval_note = find_reg_note (XEXP (note, 0),
838 REG_RETVAL, NULL_RTX);
839 REG_NOTES (new_libcall_insn)
840 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
841 REG_NOTES (new_libcall_insn));
842 XEXP (retval_note, 0) = new_libcall_insn;
843 }
844
845 delete_insn_and_edges (insn);
846 nnoops++;
847 }
848 }
849 }
850 if (nnoops && rtl_dump_file)
851 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
852 return nnoops;
853 }
854
855 /* Delete any jump tables never referenced. We can't delete them at the
856 time of removing tablejump insn as they are referenced by the preceding
857 insns computing the destination, so we delay deleting and garbagecollect
858 them once life information is computed. */
859 void
860 delete_dead_jumptables (void)
861 {
862 rtx insn, next;
863 for (insn = get_insns (); insn; insn = next)
864 {
865 next = NEXT_INSN (insn);
866 if (GET_CODE (insn) == CODE_LABEL
867 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
868 && GET_CODE (next) == JUMP_INSN
869 && (GET_CODE (PATTERN (next)) == ADDR_VEC
870 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
871 {
872 if (rtl_dump_file)
873 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
874 delete_insn (NEXT_INSN (insn));
875 delete_insn (insn);
876 next = NEXT_INSN (next);
877 }
878 }
879 }
880
881 /* Determine if the stack pointer is constant over the life of the function.
882 Only useful before prologues have been emitted. */
883
884 static void
885 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
886 void *data ATTRIBUTE_UNUSED)
887 {
888 if (x == stack_pointer_rtx
889 /* The stack pointer is only modified indirectly as the result
890 of a push until later in flow. See the comments in rtl.texi
891 regarding Embedded Side-Effects on Addresses. */
892 || (GET_CODE (x) == MEM
893 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
894 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
895 current_function_sp_is_unchanging = 0;
896 }
897
898 static void
899 notice_stack_pointer_modification (rtx f)
900 {
901 rtx insn;
902
903 /* Assume that the stack pointer is unchanging if alloca hasn't
904 been used. */
905 current_function_sp_is_unchanging = !current_function_calls_alloca;
906 if (! current_function_sp_is_unchanging)
907 return;
908
909 for (insn = f; insn; insn = NEXT_INSN (insn))
910 {
911 if (INSN_P (insn))
912 {
913 /* Check if insn modifies the stack pointer. */
914 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
915 NULL);
916 if (! current_function_sp_is_unchanging)
917 return;
918 }
919 }
920 }
921
922 /* Mark a register in SET. Hard registers in large modes get all
923 of their component registers set as well. */
924
925 static void
926 mark_reg (rtx reg, void *xset)
927 {
928 regset set = (regset) xset;
929 int regno = REGNO (reg);
930
931 if (GET_MODE (reg) == BLKmode)
932 abort ();
933
934 SET_REGNO_REG_SET (set, regno);
935 if (regno < FIRST_PSEUDO_REGISTER)
936 {
937 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
938 while (--n > 0)
939 SET_REGNO_REG_SET (set, regno + n);
940 }
941 }
942
943 /* Mark those regs which are needed at the end of the function as live
944 at the end of the last basic block. */
945
946 static void
947 mark_regs_live_at_end (regset set)
948 {
949 unsigned int i;
950
951 /* If exiting needs the right stack value, consider the stack pointer
952 live at the end of the function. */
953 if ((HAVE_epilogue && epilogue_completed)
954 || ! EXIT_IGNORE_STACK
955 || (! FRAME_POINTER_REQUIRED
956 && ! current_function_calls_alloca
957 && flag_omit_frame_pointer)
958 || current_function_sp_is_unchanging)
959 {
960 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
961 }
962
963 /* Mark the frame pointer if needed at the end of the function. If
964 we end up eliminating it, it will be removed from the live list
965 of each basic block by reload. */
966
967 if (! reload_completed || frame_pointer_needed)
968 {
969 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
970 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
971 /* If they are different, also mark the hard frame pointer as live. */
972 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
973 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
974 #endif
975 }
976
977 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
978 /* Many architectures have a GP register even without flag_pic.
979 Assume the pic register is not in use, or will be handled by
980 other means, if it is not fixed. */
981 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
982 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
983 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
984 #endif
985
986 /* Mark all global registers, and all registers used by the epilogue
987 as being live at the end of the function since they may be
988 referenced by our caller. */
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
990 if (global_regs[i] || EPILOGUE_USES (i))
991 SET_REGNO_REG_SET (set, i);
992
993 if (HAVE_epilogue && epilogue_completed)
994 {
995 /* Mark all call-saved registers that we actually used. */
996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
997 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
998 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
999 SET_REGNO_REG_SET (set, i);
1000 }
1001
1002 #ifdef EH_RETURN_DATA_REGNO
1003 /* Mark the registers that will contain data for the handler. */
1004 if (reload_completed && current_function_calls_eh_return)
1005 for (i = 0; ; ++i)
1006 {
1007 unsigned regno = EH_RETURN_DATA_REGNO(i);
1008 if (regno == INVALID_REGNUM)
1009 break;
1010 SET_REGNO_REG_SET (set, regno);
1011 }
1012 #endif
1013 #ifdef EH_RETURN_STACKADJ_RTX
1014 if ((! HAVE_epilogue || ! epilogue_completed)
1015 && current_function_calls_eh_return)
1016 {
1017 rtx tmp = EH_RETURN_STACKADJ_RTX;
1018 if (tmp && REG_P (tmp))
1019 mark_reg (tmp, set);
1020 }
1021 #endif
1022 #ifdef EH_RETURN_HANDLER_RTX
1023 if ((! HAVE_epilogue || ! epilogue_completed)
1024 && current_function_calls_eh_return)
1025 {
1026 rtx tmp = EH_RETURN_HANDLER_RTX;
1027 if (tmp && REG_P (tmp))
1028 mark_reg (tmp, set);
1029 }
1030 #endif
1031
1032 /* Mark function return value. */
1033 diddle_return_value (mark_reg, set);
1034 }
1035
1036 /* Callback function for for_each_successor_phi. DATA is a regset.
1037 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1038 INSN, in the regset. */
1039
1040 static int
1041 set_phi_alternative_reg (rtx insn ATTRIBUTE_UNUSED,
1042 int dest_regno ATTRIBUTE_UNUSED, int src_regno,
1043 void *data)
1044 {
1045 regset live = (regset) data;
1046 SET_REGNO_REG_SET (live, src_regno);
1047 return 0;
1048 }
1049
1050 /* Propagate global life info around the graph of basic blocks. Begin
1051 considering blocks with their corresponding bit set in BLOCKS_IN.
1052 If BLOCKS_IN is null, consider it the universal set.
1053
1054 BLOCKS_OUT is set for every block that was changed. */
1055
1056 static void
1057 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1058 {
1059 basic_block *queue, *qhead, *qtail, *qend, bb;
1060 regset tmp, new_live_at_end, invalidated_by_call;
1061 regset_head tmp_head, invalidated_by_call_head;
1062 regset_head new_live_at_end_head;
1063 int i;
1064
1065 /* Some passes used to forget clear aux field of basic block causing
1066 sick behavior here. */
1067 #ifdef ENABLE_CHECKING
1068 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1069 if (bb->aux)
1070 abort ();
1071 #endif
1072
1073 tmp = INITIALIZE_REG_SET (tmp_head);
1074 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1075 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1076
1077 /* Inconveniently, this is only readily available in hard reg set form. */
1078 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1079 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1080 SET_REGNO_REG_SET (invalidated_by_call, i);
1081
1082 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1083 because the `head == tail' style test for an empty queue doesn't
1084 work with a full queue. */
1085 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1086 qtail = queue;
1087 qhead = qend = queue + n_basic_blocks + 2;
1088
1089 /* Queue the blocks set in the initial mask. Do this in reverse block
1090 number order so that we are more likely for the first round to do
1091 useful work. We use AUX non-null to flag that the block is queued. */
1092 if (blocks_in)
1093 {
1094 FOR_EACH_BB (bb)
1095 if (TEST_BIT (blocks_in, bb->index))
1096 {
1097 *--qhead = bb;
1098 bb->aux = bb;
1099 }
1100 }
1101 else
1102 {
1103 FOR_EACH_BB (bb)
1104 {
1105 *--qhead = bb;
1106 bb->aux = bb;
1107 }
1108 }
1109
1110 /* We clean aux when we remove the initially-enqueued bbs, but we
1111 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1112 unconditionally. */
1113 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1114
1115 if (blocks_out)
1116 sbitmap_zero (blocks_out);
1117
1118 /* We work through the queue until there are no more blocks. What
1119 is live at the end of this block is precisely the union of what
1120 is live at the beginning of all its successors. So, we set its
1121 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1122 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1123 this block by walking through the instructions in this block in
1124 reverse order and updating as we go. If that changed
1125 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1126 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1127
1128 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1129 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1130 must either be live at the end of the block, or used within the
1131 block. In the latter case, it will certainly never disappear
1132 from GLOBAL_LIVE_AT_START. In the former case, the register
1133 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1134 for one of the successor blocks. By induction, that cannot
1135 occur. */
1136 while (qhead != qtail)
1137 {
1138 int rescan, changed;
1139 basic_block bb;
1140 edge e;
1141
1142 bb = *qhead++;
1143 if (qhead == qend)
1144 qhead = queue;
1145 bb->aux = NULL;
1146
1147 /* Begin by propagating live_at_start from the successor blocks. */
1148 CLEAR_REG_SET (new_live_at_end);
1149
1150 if (bb->succ)
1151 for (e = bb->succ; e; e = e->succ_next)
1152 {
1153 basic_block sb = e->dest;
1154
1155 /* Call-clobbered registers die across exception and
1156 call edges. */
1157 /* ??? Abnormal call edges ignored for the moment, as this gets
1158 confused by sibling call edges, which crashes reg-stack. */
1159 if (e->flags & EDGE_EH)
1160 {
1161 bitmap_operation (tmp, sb->global_live_at_start,
1162 invalidated_by_call, BITMAP_AND_COMPL);
1163 IOR_REG_SET (new_live_at_end, tmp);
1164 }
1165 else
1166 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1167
1168 /* If a target saves one register in another (instead of on
1169 the stack) the save register will need to be live for EH. */
1170 if (e->flags & EDGE_EH)
1171 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1172 if (EH_USES (i))
1173 SET_REGNO_REG_SET (new_live_at_end, i);
1174 }
1175 else
1176 {
1177 /* This might be a noreturn function that throws. And
1178 even if it isn't, getting the unwind info right helps
1179 debugging. */
1180 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1181 if (EH_USES (i))
1182 SET_REGNO_REG_SET (new_live_at_end, i);
1183 }
1184
1185 /* The all-important stack pointer must always be live. */
1186 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1187
1188 /* Before reload, there are a few registers that must be forced
1189 live everywhere -- which might not already be the case for
1190 blocks within infinite loops. */
1191 if (! reload_completed)
1192 {
1193 /* Any reference to any pseudo before reload is a potential
1194 reference of the frame pointer. */
1195 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1196
1197 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1198 /* Pseudos with argument area equivalences may require
1199 reloading via the argument pointer. */
1200 if (fixed_regs[ARG_POINTER_REGNUM])
1201 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1202 #endif
1203
1204 /* Any constant, or pseudo with constant equivalences, may
1205 require reloading from memory using the pic register. */
1206 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1207 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1208 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1209 }
1210
1211 /* Regs used in phi nodes are not included in
1212 global_live_at_start, since they are live only along a
1213 particular edge. Set those regs that are live because of a
1214 phi node alternative corresponding to this particular block. */
1215 if (in_ssa_form)
1216 for_each_successor_phi (bb, &set_phi_alternative_reg,
1217 new_live_at_end);
1218
1219 if (bb == ENTRY_BLOCK_PTR)
1220 {
1221 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1222 continue;
1223 }
1224
1225 /* On our first pass through this block, we'll go ahead and continue.
1226 Recognize first pass by local_set NULL. On subsequent passes, we
1227 get to skip out early if live_at_end wouldn't have changed. */
1228
1229 if (bb->local_set == NULL)
1230 {
1231 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1232 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1233 rescan = 1;
1234 }
1235 else
1236 {
1237 /* If any bits were removed from live_at_end, we'll have to
1238 rescan the block. This wouldn't be necessary if we had
1239 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1240 local_live is really dependent on live_at_end. */
1241 CLEAR_REG_SET (tmp);
1242 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1243 new_live_at_end, BITMAP_AND_COMPL);
1244
1245 if (! rescan)
1246 {
1247 /* If any of the registers in the new live_at_end set are
1248 conditionally set in this basic block, we must rescan.
1249 This is because conditional lifetimes at the end of the
1250 block do not just take the live_at_end set into account,
1251 but also the liveness at the start of each successor
1252 block. We can miss changes in those sets if we only
1253 compare the new live_at_end against the previous one. */
1254 CLEAR_REG_SET (tmp);
1255 rescan = bitmap_operation (tmp, new_live_at_end,
1256 bb->cond_local_set, BITMAP_AND);
1257 }
1258
1259 if (! rescan)
1260 {
1261 /* Find the set of changed bits. Take this opportunity
1262 to notice that this set is empty and early out. */
1263 CLEAR_REG_SET (tmp);
1264 changed = bitmap_operation (tmp, bb->global_live_at_end,
1265 new_live_at_end, BITMAP_XOR);
1266 if (! changed)
1267 continue;
1268
1269 /* If any of the changed bits overlap with local_set,
1270 we'll have to rescan the block. Detect overlap by
1271 the AND with ~local_set turning off bits. */
1272 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1273 BITMAP_AND_COMPL);
1274 }
1275 }
1276
1277 /* Let our caller know that BB changed enough to require its
1278 death notes updated. */
1279 if (blocks_out)
1280 SET_BIT (blocks_out, bb->index);
1281
1282 if (! rescan)
1283 {
1284 /* Add to live_at_start the set of all registers in
1285 new_live_at_end that aren't in the old live_at_end. */
1286
1287 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1288 BITMAP_AND_COMPL);
1289 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1290
1291 changed = bitmap_operation (bb->global_live_at_start,
1292 bb->global_live_at_start,
1293 tmp, BITMAP_IOR);
1294 if (! changed)
1295 continue;
1296 }
1297 else
1298 {
1299 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1300
1301 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1302 into live_at_start. */
1303 propagate_block (bb, new_live_at_end, bb->local_set,
1304 bb->cond_local_set, flags);
1305
1306 /* If live_at start didn't change, no need to go farther. */
1307 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1308 continue;
1309
1310 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1311 }
1312
1313 /* Queue all predecessors of BB so that we may re-examine
1314 their live_at_end. */
1315 for (e = bb->pred; e; e = e->pred_next)
1316 {
1317 basic_block pb = e->src;
1318 if (pb->aux == NULL)
1319 {
1320 *qtail++ = pb;
1321 if (qtail == qend)
1322 qtail = queue;
1323 pb->aux = pb;
1324 }
1325 }
1326 }
1327
1328 FREE_REG_SET (tmp);
1329 FREE_REG_SET (new_live_at_end);
1330 FREE_REG_SET (invalidated_by_call);
1331
1332 if (blocks_out)
1333 {
1334 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1335 {
1336 basic_block bb = BASIC_BLOCK (i);
1337 FREE_REG_SET (bb->local_set);
1338 FREE_REG_SET (bb->cond_local_set);
1339 });
1340 }
1341 else
1342 {
1343 FOR_EACH_BB (bb)
1344 {
1345 FREE_REG_SET (bb->local_set);
1346 FREE_REG_SET (bb->cond_local_set);
1347 }
1348 }
1349
1350 free (queue);
1351 }
1352
1353 \f
1354 /* This structure is used to pass parameters to and from the
1355 the function find_regno_partial(). It is used to pass in the
1356 register number we are looking, as well as to return any rtx
1357 we find. */
1358
1359 typedef struct {
1360 unsigned regno_to_find;
1361 rtx retval;
1362 } find_regno_partial_param;
1363
1364
1365 /* Find the rtx for the reg numbers specified in 'data' if it is
1366 part of an expression which only uses part of the register. Return
1367 it in the structure passed in. */
1368 static int
1369 find_regno_partial (rtx *ptr, void *data)
1370 {
1371 find_regno_partial_param *param = (find_regno_partial_param *)data;
1372 unsigned reg = param->regno_to_find;
1373 param->retval = NULL_RTX;
1374
1375 if (*ptr == NULL_RTX)
1376 return 0;
1377
1378 switch (GET_CODE (*ptr))
1379 {
1380 case ZERO_EXTRACT:
1381 case SIGN_EXTRACT:
1382 case STRICT_LOW_PART:
1383 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1384 {
1385 param->retval = XEXP (*ptr, 0);
1386 return 1;
1387 }
1388 break;
1389
1390 case SUBREG:
1391 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1392 && REGNO (SUBREG_REG (*ptr)) == reg)
1393 {
1394 param->retval = SUBREG_REG (*ptr);
1395 return 1;
1396 }
1397 break;
1398
1399 default:
1400 break;
1401 }
1402
1403 return 0;
1404 }
1405
1406 /* Process all immediate successors of the entry block looking for pseudo
1407 registers which are live on entry. Find all of those whose first
1408 instance is a partial register reference of some kind, and initialize
1409 them to 0 after the entry block. This will prevent bit sets within
1410 registers whose value is unknown, and may contain some kind of sticky
1411 bits we don't want. */
1412
1413 int
1414 initialize_uninitialized_subregs (void)
1415 {
1416 rtx insn;
1417 edge e;
1418 int reg, did_something = 0;
1419 find_regno_partial_param param;
1420
1421 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1422 {
1423 basic_block bb = e->dest;
1424 regset map = bb->global_live_at_start;
1425 EXECUTE_IF_SET_IN_REG_SET (map,
1426 FIRST_PSEUDO_REGISTER, reg,
1427 {
1428 int uid = REGNO_FIRST_UID (reg);
1429 rtx i;
1430
1431 /* Find an insn which mentions the register we are looking for.
1432 Its preferable to have an instance of the register's rtl since
1433 there may be various flags set which we need to duplicate.
1434 If we can't find it, its probably an automatic whose initial
1435 value doesn't matter, or hopefully something we don't care about. */
1436 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1437 ;
1438 if (i != NULL_RTX)
1439 {
1440 /* Found the insn, now get the REG rtx, if we can. */
1441 param.regno_to_find = reg;
1442 for_each_rtx (&i, find_regno_partial, &param);
1443 if (param.retval != NULL_RTX)
1444 {
1445 start_sequence ();
1446 emit_move_insn (param.retval,
1447 CONST0_RTX (GET_MODE (param.retval)));
1448 insn = get_insns ();
1449 end_sequence ();
1450 insert_insn_on_edge (insn, e);
1451 did_something = 1;
1452 }
1453 }
1454 });
1455 }
1456
1457 if (did_something)
1458 commit_edge_insertions ();
1459 return did_something;
1460 }
1461
1462 \f
1463 /* Subroutines of life analysis. */
1464
1465 /* Allocate the permanent data structures that represent the results
1466 of life analysis. Not static since used also for stupid life analysis. */
1467
1468 void
1469 allocate_bb_life_data (void)
1470 {
1471 basic_block bb;
1472
1473 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1474 {
1475 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1476 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1477 }
1478
1479 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1480 }
1481
1482 void
1483 allocate_reg_life_data (void)
1484 {
1485 int i;
1486
1487 max_regno = max_reg_num ();
1488
1489 /* Recalculate the register space, in case it has grown. Old style
1490 vector oriented regsets would set regset_{size,bytes} here also. */
1491 allocate_reg_info (max_regno, FALSE, FALSE);
1492
1493 /* Reset all the data we'll collect in propagate_block and its
1494 subroutines. */
1495 for (i = 0; i < max_regno; i++)
1496 {
1497 REG_N_SETS (i) = 0;
1498 REG_N_REFS (i) = 0;
1499 REG_N_DEATHS (i) = 0;
1500 REG_N_CALLS_CROSSED (i) = 0;
1501 REG_LIVE_LENGTH (i) = 0;
1502 REG_FREQ (i) = 0;
1503 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1504 }
1505 }
1506
1507 /* Delete dead instructions for propagate_block. */
1508
1509 static void
1510 propagate_block_delete_insn (rtx insn)
1511 {
1512 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1513
1514 /* If the insn referred to a label, and that label was attached to
1515 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1516 pretty much mandatory to delete it, because the ADDR_VEC may be
1517 referencing labels that no longer exist.
1518
1519 INSN may reference a deleted label, particularly when a jump
1520 table has been optimized into a direct jump. There's no
1521 real good way to fix up the reference to the deleted label
1522 when the label is deleted, so we just allow it here. */
1523
1524 if (inote && GET_CODE (inote) == CODE_LABEL)
1525 {
1526 rtx label = XEXP (inote, 0);
1527 rtx next;
1528
1529 /* The label may be forced if it has been put in the constant
1530 pool. If that is the only use we must discard the table
1531 jump following it, but not the label itself. */
1532 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1533 && (next = next_nonnote_insn (label)) != NULL
1534 && GET_CODE (next) == JUMP_INSN
1535 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1536 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1537 {
1538 rtx pat = PATTERN (next);
1539 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1540 int len = XVECLEN (pat, diff_vec_p);
1541 int i;
1542
1543 for (i = 0; i < len; i++)
1544 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1545
1546 delete_insn_and_edges (next);
1547 ndead++;
1548 }
1549 }
1550
1551 delete_insn_and_edges (insn);
1552 ndead++;
1553 }
1554
1555 /* Delete dead libcalls for propagate_block. Return the insn
1556 before the libcall. */
1557
1558 static rtx
1559 propagate_block_delete_libcall (rtx insn, rtx note)
1560 {
1561 rtx first = XEXP (note, 0);
1562 rtx before = PREV_INSN (first);
1563
1564 delete_insn_chain_and_edges (first, insn);
1565 ndead++;
1566 return before;
1567 }
1568
1569 /* Update the life-status of regs for one insn. Return the previous insn. */
1570
1571 rtx
1572 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1573 {
1574 rtx prev = PREV_INSN (insn);
1575 int flags = pbi->flags;
1576 int insn_is_dead = 0;
1577 int libcall_is_dead = 0;
1578 rtx note;
1579 int i;
1580
1581 if (! INSN_P (insn))
1582 return prev;
1583
1584 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1585 if (flags & PROP_SCAN_DEAD_CODE)
1586 {
1587 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1588 libcall_is_dead = (insn_is_dead && note != 0
1589 && libcall_dead_p (pbi, note, insn));
1590 }
1591
1592 /* If an instruction consists of just dead store(s) on final pass,
1593 delete it. */
1594 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1595 {
1596 /* If we're trying to delete a prologue or epilogue instruction
1597 that isn't flagged as possibly being dead, something is wrong.
1598 But if we are keeping the stack pointer depressed, we might well
1599 be deleting insns that are used to compute the amount to update
1600 it by, so they are fine. */
1601 if (reload_completed
1602 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1603 && (TYPE_RETURNS_STACK_DEPRESSED
1604 (TREE_TYPE (current_function_decl))))
1605 && (((HAVE_epilogue || HAVE_prologue)
1606 && prologue_epilogue_contains (insn))
1607 || (HAVE_sibcall_epilogue
1608 && sibcall_epilogue_contains (insn)))
1609 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1610 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1611
1612 /* Record sets. Do this even for dead instructions, since they
1613 would have killed the values if they hadn't been deleted. */
1614 mark_set_regs (pbi, PATTERN (insn), insn);
1615
1616 /* CC0 is now known to be dead. Either this insn used it,
1617 in which case it doesn't anymore, or clobbered it,
1618 so the next insn can't use it. */
1619 pbi->cc0_live = 0;
1620
1621 if (libcall_is_dead)
1622 prev = propagate_block_delete_libcall ( insn, note);
1623 else
1624 {
1625
1626 /* If INSN contains a RETVAL note and is dead, but the libcall
1627 as a whole is not dead, then we want to remove INSN, but
1628 not the whole libcall sequence.
1629
1630 However, we need to also remove the dangling REG_LIBCALL
1631 note so that we do not have mis-matched LIBCALL/RETVAL
1632 notes. In theory we could find a new location for the
1633 REG_RETVAL note, but it hardly seems worth the effort.
1634
1635 NOTE at this point will be the RETVAL note if it exists. */
1636 if (note)
1637 {
1638 rtx libcall_note;
1639
1640 libcall_note
1641 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1642 remove_note (XEXP (note, 0), libcall_note);
1643 }
1644
1645 /* Similarly if INSN contains a LIBCALL note, remove the
1646 dangling REG_RETVAL note. */
1647 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1648 if (note)
1649 {
1650 rtx retval_note;
1651
1652 retval_note
1653 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1654 remove_note (XEXP (note, 0), retval_note);
1655 }
1656
1657 /* Now delete INSN. */
1658 propagate_block_delete_insn (insn);
1659 }
1660
1661 return prev;
1662 }
1663
1664 /* See if this is an increment or decrement that can be merged into
1665 a following memory address. */
1666 #ifdef AUTO_INC_DEC
1667 {
1668 rtx x = single_set (insn);
1669
1670 /* Does this instruction increment or decrement a register? */
1671 if ((flags & PROP_AUTOINC)
1672 && x != 0
1673 && GET_CODE (SET_DEST (x)) == REG
1674 && (GET_CODE (SET_SRC (x)) == PLUS
1675 || GET_CODE (SET_SRC (x)) == MINUS)
1676 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1677 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1678 /* Ok, look for a following memory ref we can combine with.
1679 If one is found, change the memory ref to a PRE_INC
1680 or PRE_DEC, cancel this insn, and return 1.
1681 Return 0 if nothing has been done. */
1682 && try_pre_increment_1 (pbi, insn))
1683 return prev;
1684 }
1685 #endif /* AUTO_INC_DEC */
1686
1687 CLEAR_REG_SET (pbi->new_set);
1688
1689 /* If this is not the final pass, and this insn is copying the value of
1690 a library call and it's dead, don't scan the insns that perform the
1691 library call, so that the call's arguments are not marked live. */
1692 if (libcall_is_dead)
1693 {
1694 /* Record the death of the dest reg. */
1695 mark_set_regs (pbi, PATTERN (insn), insn);
1696
1697 insn = XEXP (note, 0);
1698 return PREV_INSN (insn);
1699 }
1700 else if (GET_CODE (PATTERN (insn)) == SET
1701 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1702 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1703 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1704 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1705 /* We have an insn to pop a constant amount off the stack.
1706 (Such insns use PLUS regardless of the direction of the stack,
1707 and any insn to adjust the stack by a constant is always a pop.)
1708 These insns, if not dead stores, have no effect on life, though
1709 they do have an effect on the memory stores we are tracking. */
1710 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1711 else
1712 {
1713 rtx note;
1714 /* Any regs live at the time of a call instruction must not go
1715 in a register clobbered by calls. Find all regs now live and
1716 record this for them. */
1717
1718 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1719 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1720 { REG_N_CALLS_CROSSED (i)++; });
1721
1722 /* Record sets. Do this even for dead instructions, since they
1723 would have killed the values if they hadn't been deleted. */
1724 mark_set_regs (pbi, PATTERN (insn), insn);
1725
1726 if (GET_CODE (insn) == CALL_INSN)
1727 {
1728 regset live_at_end;
1729 bool sibcall_p;
1730 rtx note, cond;
1731 int i;
1732
1733 cond = NULL_RTX;
1734 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1735 cond = COND_EXEC_TEST (PATTERN (insn));
1736
1737 /* Non-constant calls clobber memory, constant calls do not
1738 clobber memory, though they may clobber outgoing arguments
1739 on the stack. */
1740 if (! CONST_OR_PURE_CALL_P (insn))
1741 {
1742 free_EXPR_LIST_list (&pbi->mem_set_list);
1743 pbi->mem_set_list_len = 0;
1744 }
1745 else
1746 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1747
1748 /* There may be extra registers to be clobbered. */
1749 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1750 note;
1751 note = XEXP (note, 1))
1752 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1753 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1754 cond, insn, pbi->flags);
1755
1756 /* Calls change all call-used and global registers; sibcalls do not
1757 clobber anything that must be preserved at end-of-function,
1758 except for return values. */
1759
1760 sibcall_p = SIBLING_CALL_P (insn);
1761 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1762 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1763 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1764 && ! (sibcall_p
1765 && REGNO_REG_SET_P (live_at_end, i)
1766 && ! refers_to_regno_p (i, i+1,
1767 current_function_return_rtx,
1768 (rtx *) 0)))
1769 {
1770 /* We do not want REG_UNUSED notes for these registers. */
1771 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1772 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1773 }
1774 }
1775
1776 /* If an insn doesn't use CC0, it becomes dead since we assume
1777 that every insn clobbers it. So show it dead here;
1778 mark_used_regs will set it live if it is referenced. */
1779 pbi->cc0_live = 0;
1780
1781 /* Record uses. */
1782 if (! insn_is_dead)
1783 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1784 if ((flags & PROP_EQUAL_NOTES)
1785 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1786 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1787 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1788
1789 /* Sometimes we may have inserted something before INSN (such as a move)
1790 when we make an auto-inc. So ensure we will scan those insns. */
1791 #ifdef AUTO_INC_DEC
1792 prev = PREV_INSN (insn);
1793 #endif
1794
1795 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1796 {
1797 int i;
1798 rtx note, cond;
1799
1800 cond = NULL_RTX;
1801 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1802 cond = COND_EXEC_TEST (PATTERN (insn));
1803
1804 /* Calls use their arguments, and may clobber memory which
1805 address involves some register. */
1806 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1807 note;
1808 note = XEXP (note, 1))
1809 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1810 of which mark_used_regs knows how to handle. */
1811 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1812
1813 /* The stack ptr is used (honorarily) by a CALL insn. */
1814 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1815
1816 /* Calls may also reference any of the global registers,
1817 so they are made live. */
1818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1819 if (global_regs[i])
1820 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1821 }
1822 }
1823
1824 /* On final pass, update counts of how many insns in which each reg
1825 is live. */
1826 if (flags & PROP_REG_INFO)
1827 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1828 { REG_LIVE_LENGTH (i)++; });
1829
1830 return prev;
1831 }
1832
1833 /* Initialize a propagate_block_info struct for public consumption.
1834 Note that the structure itself is opaque to this file, but that
1835 the user can use the regsets provided here. */
1836
1837 struct propagate_block_info *
1838 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1839 regset cond_local_set, int flags)
1840 {
1841 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1842
1843 pbi->bb = bb;
1844 pbi->reg_live = live;
1845 pbi->mem_set_list = NULL_RTX;
1846 pbi->mem_set_list_len = 0;
1847 pbi->local_set = local_set;
1848 pbi->cond_local_set = cond_local_set;
1849 pbi->cc0_live = 0;
1850 pbi->flags = flags;
1851
1852 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1853 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1854 else
1855 pbi->reg_next_use = NULL;
1856
1857 pbi->new_set = BITMAP_XMALLOC ();
1858
1859 #ifdef HAVE_conditional_execution
1860 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1861 free_reg_cond_life_info);
1862 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1863
1864 /* If this block ends in a conditional branch, for each register live
1865 from one side of the branch and not the other, record the register
1866 as conditionally dead. */
1867 if (GET_CODE (bb->end) == JUMP_INSN
1868 && any_condjump_p (bb->end))
1869 {
1870 regset_head diff_head;
1871 regset diff = INITIALIZE_REG_SET (diff_head);
1872 basic_block bb_true, bb_false;
1873 rtx cond_true, cond_false, set_src;
1874 int i;
1875
1876 /* Identify the successor blocks. */
1877 bb_true = bb->succ->dest;
1878 if (bb->succ->succ_next != NULL)
1879 {
1880 bb_false = bb->succ->succ_next->dest;
1881
1882 if (bb->succ->flags & EDGE_FALLTHRU)
1883 {
1884 basic_block t = bb_false;
1885 bb_false = bb_true;
1886 bb_true = t;
1887 }
1888 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1889 abort ();
1890 }
1891 else
1892 {
1893 /* This can happen with a conditional jump to the next insn. */
1894 if (JUMP_LABEL (bb->end) != bb_true->head)
1895 abort ();
1896
1897 /* Simplest way to do nothing. */
1898 bb_false = bb_true;
1899 }
1900
1901 /* Extract the condition from the branch. */
1902 set_src = SET_SRC (pc_set (bb->end));
1903 cond_true = XEXP (set_src, 0);
1904 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1905 GET_MODE (cond_true), XEXP (cond_true, 0),
1906 XEXP (cond_true, 1));
1907 if (GET_CODE (XEXP (set_src, 1)) == PC)
1908 {
1909 rtx t = cond_false;
1910 cond_false = cond_true;
1911 cond_true = t;
1912 }
1913
1914 /* Compute which register lead different lives in the successors. */
1915 if (bitmap_operation (diff, bb_true->global_live_at_start,
1916 bb_false->global_live_at_start, BITMAP_XOR))
1917 {
1918 rtx reg = XEXP (cond_true, 0);
1919
1920 if (GET_CODE (reg) == SUBREG)
1921 reg = SUBREG_REG (reg);
1922
1923 if (GET_CODE (reg) != REG)
1924 abort ();
1925
1926 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1927
1928 /* For each such register, mark it conditionally dead. */
1929 EXECUTE_IF_SET_IN_REG_SET
1930 (diff, 0, i,
1931 {
1932 struct reg_cond_life_info *rcli;
1933 rtx cond;
1934
1935 rcli = xmalloc (sizeof (*rcli));
1936
1937 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1938 cond = cond_false;
1939 else
1940 cond = cond_true;
1941 rcli->condition = cond;
1942 rcli->stores = const0_rtx;
1943 rcli->orig_condition = cond;
1944
1945 splay_tree_insert (pbi->reg_cond_dead, i,
1946 (splay_tree_value) rcli);
1947 });
1948 }
1949
1950 FREE_REG_SET (diff);
1951 }
1952 #endif
1953
1954 /* If this block has no successors, any stores to the frame that aren't
1955 used later in the block are dead. So make a pass over the block
1956 recording any such that are made and show them dead at the end. We do
1957 a very conservative and simple job here. */
1958 if (optimize
1959 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1960 && (TYPE_RETURNS_STACK_DEPRESSED
1961 (TREE_TYPE (current_function_decl))))
1962 && (flags & PROP_SCAN_DEAD_STORES)
1963 && (bb->succ == NULL
1964 || (bb->succ->succ_next == NULL
1965 && bb->succ->dest == EXIT_BLOCK_PTR
1966 && ! current_function_calls_eh_return)))
1967 {
1968 rtx insn, set;
1969 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1970 if (GET_CODE (insn) == INSN
1971 && (set = single_set (insn))
1972 && GET_CODE (SET_DEST (set)) == MEM)
1973 {
1974 rtx mem = SET_DEST (set);
1975 rtx canon_mem = canon_rtx (mem);
1976
1977 /* This optimization is performed by faking a store to the
1978 memory at the end of the block. This doesn't work for
1979 unchanging memories because multiple stores to unchanging
1980 memory is illegal and alias analysis doesn't consider it. */
1981 if (RTX_UNCHANGING_P (canon_mem))
1982 continue;
1983
1984 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1985 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1986 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1987 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1988 add_to_mem_set_list (pbi, canon_mem);
1989 }
1990 }
1991
1992 return pbi;
1993 }
1994
1995 /* Release a propagate_block_info struct. */
1996
1997 void
1998 free_propagate_block_info (struct propagate_block_info *pbi)
1999 {
2000 free_EXPR_LIST_list (&pbi->mem_set_list);
2001
2002 BITMAP_XFREE (pbi->new_set);
2003
2004 #ifdef HAVE_conditional_execution
2005 splay_tree_delete (pbi->reg_cond_dead);
2006 BITMAP_XFREE (pbi->reg_cond_reg);
2007 #endif
2008
2009 if (pbi->reg_next_use)
2010 free (pbi->reg_next_use);
2011
2012 free (pbi);
2013 }
2014
2015 /* Compute the registers live at the beginning of a basic block BB from
2016 those live at the end.
2017
2018 When called, REG_LIVE contains those live at the end. On return, it
2019 contains those live at the beginning.
2020
2021 LOCAL_SET, if non-null, will be set with all registers killed
2022 unconditionally by this basic block.
2023 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2024 killed conditionally by this basic block. If there is any unconditional
2025 set of a register, then the corresponding bit will be set in LOCAL_SET
2026 and cleared in COND_LOCAL_SET.
2027 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2028 case, the resulting set will be equal to the union of the two sets that
2029 would otherwise be computed.
2030
2031 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2032
2033 int
2034 propagate_block (basic_block bb, regset live, regset local_set,
2035 regset cond_local_set, int flags)
2036 {
2037 struct propagate_block_info *pbi;
2038 rtx insn, prev;
2039 int changed;
2040
2041 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2042
2043 if (flags & PROP_REG_INFO)
2044 {
2045 int i;
2046
2047 /* Process the regs live at the end of the block.
2048 Mark them as not local to any one basic block. */
2049 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2050 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2051 }
2052
2053 /* Scan the block an insn at a time from end to beginning. */
2054
2055 changed = 0;
2056 for (insn = bb->end;; insn = prev)
2057 {
2058 /* If this is a call to `setjmp' et al, warn if any
2059 non-volatile datum is live. */
2060 if ((flags & PROP_REG_INFO)
2061 && GET_CODE (insn) == CALL_INSN
2062 && find_reg_note (insn, REG_SETJMP, NULL))
2063 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2064
2065 prev = propagate_one_insn (pbi, insn);
2066 if (!prev)
2067 changed |= insn != get_insns ();
2068 else
2069 changed |= NEXT_INSN (prev) != insn;
2070
2071 if (insn == bb->head)
2072 break;
2073 }
2074
2075 free_propagate_block_info (pbi);
2076
2077 return changed;
2078 }
2079 \f
2080 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2081 (SET expressions whose destinations are registers dead after the insn).
2082 NEEDED is the regset that says which regs are alive after the insn.
2083
2084 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2085
2086 If X is the entire body of an insn, NOTES contains the reg notes
2087 pertaining to the insn. */
2088
2089 static int
2090 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2091 rtx notes ATTRIBUTE_UNUSED)
2092 {
2093 enum rtx_code code = GET_CODE (x);
2094
2095 /* Don't eliminate insns that may trap. */
2096 if (flag_non_call_exceptions && may_trap_p (x))
2097 return 0;
2098
2099 #ifdef AUTO_INC_DEC
2100 /* As flow is invoked after combine, we must take existing AUTO_INC
2101 expressions into account. */
2102 for (; notes; notes = XEXP (notes, 1))
2103 {
2104 if (REG_NOTE_KIND (notes) == REG_INC)
2105 {
2106 int regno = REGNO (XEXP (notes, 0));
2107
2108 /* Don't delete insns to set global regs. */
2109 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2110 || REGNO_REG_SET_P (pbi->reg_live, regno))
2111 return 0;
2112 }
2113 }
2114 #endif
2115
2116 /* If setting something that's a reg or part of one,
2117 see if that register's altered value will be live. */
2118
2119 if (code == SET)
2120 {
2121 rtx r = SET_DEST (x);
2122
2123 #ifdef HAVE_cc0
2124 if (GET_CODE (r) == CC0)
2125 return ! pbi->cc0_live;
2126 #endif
2127
2128 /* A SET that is a subroutine call cannot be dead. */
2129 if (GET_CODE (SET_SRC (x)) == CALL)
2130 {
2131 if (! call_ok)
2132 return 0;
2133 }
2134
2135 /* Don't eliminate loads from volatile memory or volatile asms. */
2136 else if (volatile_refs_p (SET_SRC (x)))
2137 return 0;
2138
2139 if (GET_CODE (r) == MEM)
2140 {
2141 rtx temp, canon_r;
2142
2143 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2144 return 0;
2145
2146 canon_r = canon_rtx (r);
2147
2148 /* Walk the set of memory locations we are currently tracking
2149 and see if one is an identical match to this memory location.
2150 If so, this memory write is dead (remember, we're walking
2151 backwards from the end of the block to the start). Since
2152 rtx_equal_p does not check the alias set or flags, we also
2153 must have the potential for them to conflict (anti_dependence). */
2154 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2155 if (anti_dependence (r, XEXP (temp, 0)))
2156 {
2157 rtx mem = XEXP (temp, 0);
2158
2159 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2160 && (GET_MODE_SIZE (GET_MODE (canon_r))
2161 <= GET_MODE_SIZE (GET_MODE (mem))))
2162 return 1;
2163
2164 #ifdef AUTO_INC_DEC
2165 /* Check if memory reference matches an auto increment. Only
2166 post increment/decrement or modify are valid. */
2167 if (GET_MODE (mem) == GET_MODE (r)
2168 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2169 || GET_CODE (XEXP (mem, 0)) == POST_INC
2170 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2171 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2172 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2173 return 1;
2174 #endif
2175 }
2176 }
2177 else
2178 {
2179 while (GET_CODE (r) == SUBREG
2180 || GET_CODE (r) == STRICT_LOW_PART
2181 || GET_CODE (r) == ZERO_EXTRACT)
2182 r = XEXP (r, 0);
2183
2184 if (GET_CODE (r) == REG)
2185 {
2186 int regno = REGNO (r);
2187
2188 /* Obvious. */
2189 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2190 return 0;
2191
2192 /* If this is a hard register, verify that subsequent
2193 words are not needed. */
2194 if (regno < FIRST_PSEUDO_REGISTER)
2195 {
2196 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2197
2198 while (--n > 0)
2199 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2200 return 0;
2201 }
2202
2203 /* Don't delete insns to set global regs. */
2204 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2205 return 0;
2206
2207 /* Make sure insns to set the stack pointer aren't deleted. */
2208 if (regno == STACK_POINTER_REGNUM)
2209 return 0;
2210
2211 /* ??? These bits might be redundant with the force live bits
2212 in calculate_global_regs_live. We would delete from
2213 sequential sets; whether this actually affects real code
2214 for anything but the stack pointer I don't know. */
2215 /* Make sure insns to set the frame pointer aren't deleted. */
2216 if (regno == FRAME_POINTER_REGNUM
2217 && (! reload_completed || frame_pointer_needed))
2218 return 0;
2219 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2220 if (regno == HARD_FRAME_POINTER_REGNUM
2221 && (! reload_completed || frame_pointer_needed))
2222 return 0;
2223 #endif
2224
2225 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2226 /* Make sure insns to set arg pointer are never deleted
2227 (if the arg pointer isn't fixed, there will be a USE
2228 for it, so we can treat it normally). */
2229 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2230 return 0;
2231 #endif
2232
2233 /* Otherwise, the set is dead. */
2234 return 1;
2235 }
2236 }
2237 }
2238
2239 /* If performing several activities, insn is dead if each activity
2240 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2241 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2242 worth keeping. */
2243 else if (code == PARALLEL)
2244 {
2245 int i = XVECLEN (x, 0);
2246
2247 for (i--; i >= 0; i--)
2248 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2249 && GET_CODE (XVECEXP (x, 0, i)) != USE
2250 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2251 return 0;
2252
2253 return 1;
2254 }
2255
2256 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2257 is not necessarily true for hard registers. */
2258 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2259 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2260 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2261 return 1;
2262
2263 /* We do not check other CLOBBER or USE here. An insn consisting of just
2264 a CLOBBER or just a USE should not be deleted. */
2265 return 0;
2266 }
2267
2268 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2269 return 1 if the entire library call is dead.
2270 This is true if INSN copies a register (hard or pseudo)
2271 and if the hard return reg of the call insn is dead.
2272 (The caller should have tested the destination of the SET inside
2273 INSN already for death.)
2274
2275 If this insn doesn't just copy a register, then we don't
2276 have an ordinary libcall. In that case, cse could not have
2277 managed to substitute the source for the dest later on,
2278 so we can assume the libcall is dead.
2279
2280 PBI is the block info giving pseudoregs live before this insn.
2281 NOTE is the REG_RETVAL note of the insn. */
2282
2283 static int
2284 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2285 {
2286 rtx x = single_set (insn);
2287
2288 if (x)
2289 {
2290 rtx r = SET_SRC (x);
2291
2292 if (GET_CODE (r) == REG)
2293 {
2294 rtx call = XEXP (note, 0);
2295 rtx call_pat;
2296 int i;
2297
2298 /* Find the call insn. */
2299 while (call != insn && GET_CODE (call) != CALL_INSN)
2300 call = NEXT_INSN (call);
2301
2302 /* If there is none, do nothing special,
2303 since ordinary death handling can understand these insns. */
2304 if (call == insn)
2305 return 0;
2306
2307 /* See if the hard reg holding the value is dead.
2308 If this is a PARALLEL, find the call within it. */
2309 call_pat = PATTERN (call);
2310 if (GET_CODE (call_pat) == PARALLEL)
2311 {
2312 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2313 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2314 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2315 break;
2316
2317 /* This may be a library call that is returning a value
2318 via invisible pointer. Do nothing special, since
2319 ordinary death handling can understand these insns. */
2320 if (i < 0)
2321 return 0;
2322
2323 call_pat = XVECEXP (call_pat, 0, i);
2324 }
2325
2326 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2327 }
2328 }
2329 return 1;
2330 }
2331
2332 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2333 live at function entry. Don't count global register variables, variables
2334 in registers that can be used for function arg passing, or variables in
2335 fixed hard registers. */
2336
2337 int
2338 regno_uninitialized (unsigned int regno)
2339 {
2340 if (n_basic_blocks == 0
2341 || (regno < FIRST_PSEUDO_REGISTER
2342 && (global_regs[regno]
2343 || fixed_regs[regno]
2344 || FUNCTION_ARG_REGNO_P (regno))))
2345 return 0;
2346
2347 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2348 }
2349
2350 /* 1 if register REGNO was alive at a place where `setjmp' was called
2351 and was set more than once or is an argument.
2352 Such regs may be clobbered by `longjmp'. */
2353
2354 int
2355 regno_clobbered_at_setjmp (int regno)
2356 {
2357 if (n_basic_blocks == 0)
2358 return 0;
2359
2360 return ((REG_N_SETS (regno) > 1
2361 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2362 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2363 }
2364 \f
2365 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2366 maximal list size; look for overlaps in mode and select the largest. */
2367 static void
2368 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2369 {
2370 rtx i;
2371
2372 /* We don't know how large a BLKmode store is, so we must not
2373 take them into consideration. */
2374 if (GET_MODE (mem) == BLKmode)
2375 return;
2376
2377 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2378 {
2379 rtx e = XEXP (i, 0);
2380 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2381 {
2382 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2383 {
2384 #ifdef AUTO_INC_DEC
2385 /* If we must store a copy of the mem, we can just modify
2386 the mode of the stored copy. */
2387 if (pbi->flags & PROP_AUTOINC)
2388 PUT_MODE (e, GET_MODE (mem));
2389 else
2390 #endif
2391 XEXP (i, 0) = mem;
2392 }
2393 return;
2394 }
2395 }
2396
2397 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2398 {
2399 #ifdef AUTO_INC_DEC
2400 /* Store a copy of mem, otherwise the address may be
2401 scrogged by find_auto_inc. */
2402 if (pbi->flags & PROP_AUTOINC)
2403 mem = shallow_copy_rtx (mem);
2404 #endif
2405 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2406 pbi->mem_set_list_len++;
2407 }
2408 }
2409
2410 /* INSN references memory, possibly using autoincrement addressing modes.
2411 Find any entries on the mem_set_list that need to be invalidated due
2412 to an address change. */
2413
2414 static int
2415 invalidate_mems_from_autoinc (rtx *px, void *data)
2416 {
2417 rtx x = *px;
2418 struct propagate_block_info *pbi = data;
2419
2420 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2421 {
2422 invalidate_mems_from_set (pbi, XEXP (x, 0));
2423 return -1;
2424 }
2425
2426 return 0;
2427 }
2428
2429 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2430
2431 static void
2432 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2433 {
2434 rtx temp = pbi->mem_set_list;
2435 rtx prev = NULL_RTX;
2436 rtx next;
2437
2438 while (temp)
2439 {
2440 next = XEXP (temp, 1);
2441 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2442 {
2443 /* Splice this entry out of the list. */
2444 if (prev)
2445 XEXP (prev, 1) = next;
2446 else
2447 pbi->mem_set_list = next;
2448 free_EXPR_LIST_node (temp);
2449 pbi->mem_set_list_len--;
2450 }
2451 else
2452 prev = temp;
2453 temp = next;
2454 }
2455 }
2456
2457 /* Process the registers that are set within X. Their bits are set to
2458 1 in the regset DEAD, because they are dead prior to this insn.
2459
2460 If INSN is nonzero, it is the insn being processed.
2461
2462 FLAGS is the set of operations to perform. */
2463
2464 static void
2465 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2466 {
2467 rtx cond = NULL_RTX;
2468 rtx link;
2469 enum rtx_code code;
2470
2471 if (insn)
2472 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2473 {
2474 if (REG_NOTE_KIND (link) == REG_INC)
2475 mark_set_1 (pbi, SET, XEXP (link, 0),
2476 (GET_CODE (x) == COND_EXEC
2477 ? COND_EXEC_TEST (x) : NULL_RTX),
2478 insn, pbi->flags);
2479 }
2480 retry:
2481 switch (code = GET_CODE (x))
2482 {
2483 case SET:
2484 case CLOBBER:
2485 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2486 return;
2487
2488 case COND_EXEC:
2489 cond = COND_EXEC_TEST (x);
2490 x = COND_EXEC_CODE (x);
2491 goto retry;
2492
2493 case PARALLEL:
2494 {
2495 int i;
2496
2497 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2498 {
2499 rtx sub = XVECEXP (x, 0, i);
2500 switch (code = GET_CODE (sub))
2501 {
2502 case COND_EXEC:
2503 if (cond != NULL_RTX)
2504 abort ();
2505
2506 cond = COND_EXEC_TEST (sub);
2507 sub = COND_EXEC_CODE (sub);
2508 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2509 break;
2510 /* Fall through. */
2511
2512 case SET:
2513 case CLOBBER:
2514 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2515 break;
2516
2517 default:
2518 break;
2519 }
2520 }
2521 break;
2522 }
2523
2524 default:
2525 break;
2526 }
2527 }
2528
2529 /* Process a single set, which appears in INSN. REG (which may not
2530 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2531 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2532 If the set is conditional (because it appear in a COND_EXEC), COND
2533 will be the condition. */
2534
2535 static void
2536 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2537 {
2538 int regno_first = -1, regno_last = -1;
2539 unsigned long not_dead = 0;
2540 int i;
2541
2542 /* Modifying just one hardware register of a multi-reg value or just a
2543 byte field of a register does not mean the value from before this insn
2544 is now dead. Of course, if it was dead after it's unused now. */
2545
2546 switch (GET_CODE (reg))
2547 {
2548 case PARALLEL:
2549 /* Some targets place small structures in registers for return values of
2550 functions. We have to detect this case specially here to get correct
2551 flow information. */
2552 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2553 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2554 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2555 flags);
2556 return;
2557
2558 case ZERO_EXTRACT:
2559 case SIGN_EXTRACT:
2560 case STRICT_LOW_PART:
2561 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2562 do
2563 reg = XEXP (reg, 0);
2564 while (GET_CODE (reg) == SUBREG
2565 || GET_CODE (reg) == ZERO_EXTRACT
2566 || GET_CODE (reg) == SIGN_EXTRACT
2567 || GET_CODE (reg) == STRICT_LOW_PART);
2568 if (GET_CODE (reg) == MEM)
2569 break;
2570 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2571 /* Fall through. */
2572
2573 case REG:
2574 regno_last = regno_first = REGNO (reg);
2575 if (regno_first < FIRST_PSEUDO_REGISTER)
2576 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2577 break;
2578
2579 case SUBREG:
2580 if (GET_CODE (SUBREG_REG (reg)) == REG)
2581 {
2582 enum machine_mode outer_mode = GET_MODE (reg);
2583 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2584
2585 /* Identify the range of registers affected. This is moderately
2586 tricky for hard registers. See alter_subreg. */
2587
2588 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2589 if (regno_first < FIRST_PSEUDO_REGISTER)
2590 {
2591 regno_first += subreg_regno_offset (regno_first, inner_mode,
2592 SUBREG_BYTE (reg),
2593 outer_mode);
2594 regno_last = (regno_first
2595 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2596
2597 /* Since we've just adjusted the register number ranges, make
2598 sure REG matches. Otherwise some_was_live will be clear
2599 when it shouldn't have been, and we'll create incorrect
2600 REG_UNUSED notes. */
2601 reg = gen_rtx_REG (outer_mode, regno_first);
2602 }
2603 else
2604 {
2605 /* If the number of words in the subreg is less than the number
2606 of words in the full register, we have a well-defined partial
2607 set. Otherwise the high bits are undefined.
2608
2609 This is only really applicable to pseudos, since we just took
2610 care of multi-word hard registers. */
2611 if (((GET_MODE_SIZE (outer_mode)
2612 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2613 < ((GET_MODE_SIZE (inner_mode)
2614 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2615 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2616 regno_first);
2617
2618 reg = SUBREG_REG (reg);
2619 }
2620 }
2621 else
2622 reg = SUBREG_REG (reg);
2623 break;
2624
2625 default:
2626 break;
2627 }
2628
2629 /* If this set is a MEM, then it kills any aliased writes.
2630 If this set is a REG, then it kills any MEMs which use the reg. */
2631 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2632 {
2633 if (GET_CODE (reg) == REG)
2634 invalidate_mems_from_set (pbi, reg);
2635
2636 /* If the memory reference had embedded side effects (autoincrement
2637 address modes. Then we may need to kill some entries on the
2638 memory set list. */
2639 if (insn && GET_CODE (reg) == MEM)
2640 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2641
2642 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2643 /* ??? With more effort we could track conditional memory life. */
2644 && ! cond)
2645 add_to_mem_set_list (pbi, canon_rtx (reg));
2646 }
2647
2648 if (GET_CODE (reg) == REG
2649 && ! (regno_first == FRAME_POINTER_REGNUM
2650 && (! reload_completed || frame_pointer_needed))
2651 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2652 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2653 && (! reload_completed || frame_pointer_needed))
2654 #endif
2655 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2656 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2657 #endif
2658 )
2659 {
2660 int some_was_live = 0, some_was_dead = 0;
2661
2662 for (i = regno_first; i <= regno_last; ++i)
2663 {
2664 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2665 if (pbi->local_set)
2666 {
2667 /* Order of the set operation matters here since both
2668 sets may be the same. */
2669 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2670 if (cond != NULL_RTX
2671 && ! REGNO_REG_SET_P (pbi->local_set, i))
2672 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2673 else
2674 SET_REGNO_REG_SET (pbi->local_set, i);
2675 }
2676 if (code != CLOBBER)
2677 SET_REGNO_REG_SET (pbi->new_set, i);
2678
2679 some_was_live |= needed_regno;
2680 some_was_dead |= ! needed_regno;
2681 }
2682
2683 #ifdef HAVE_conditional_execution
2684 /* Consider conditional death in deciding that the register needs
2685 a death note. */
2686 if (some_was_live && ! not_dead
2687 /* The stack pointer is never dead. Well, not strictly true,
2688 but it's very difficult to tell from here. Hopefully
2689 combine_stack_adjustments will fix up the most egregious
2690 errors. */
2691 && regno_first != STACK_POINTER_REGNUM)
2692 {
2693 for (i = regno_first; i <= regno_last; ++i)
2694 if (! mark_regno_cond_dead (pbi, i, cond))
2695 not_dead |= ((unsigned long) 1) << (i - regno_first);
2696 }
2697 #endif
2698
2699 /* Additional data to record if this is the final pass. */
2700 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2701 | PROP_DEATH_NOTES | PROP_AUTOINC))
2702 {
2703 rtx y;
2704 int blocknum = pbi->bb->index;
2705
2706 y = NULL_RTX;
2707 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2708 {
2709 y = pbi->reg_next_use[regno_first];
2710
2711 /* The next use is no longer next, since a store intervenes. */
2712 for (i = regno_first; i <= regno_last; ++i)
2713 pbi->reg_next_use[i] = 0;
2714 }
2715
2716 if (flags & PROP_REG_INFO)
2717 {
2718 for (i = regno_first; i <= regno_last; ++i)
2719 {
2720 /* Count (weighted) references, stores, etc. This counts a
2721 register twice if it is modified, but that is correct. */
2722 REG_N_SETS (i) += 1;
2723 REG_N_REFS (i) += 1;
2724 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2725
2726 /* The insns where a reg is live are normally counted
2727 elsewhere, but we want the count to include the insn
2728 where the reg is set, and the normal counting mechanism
2729 would not count it. */
2730 REG_LIVE_LENGTH (i) += 1;
2731 }
2732
2733 /* If this is a hard reg, record this function uses the reg. */
2734 if (regno_first < FIRST_PSEUDO_REGISTER)
2735 {
2736 for (i = regno_first; i <= regno_last; i++)
2737 regs_ever_live[i] = 1;
2738 }
2739 else
2740 {
2741 /* Keep track of which basic blocks each reg appears in. */
2742 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2743 REG_BASIC_BLOCK (regno_first) = blocknum;
2744 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2745 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2746 }
2747 }
2748
2749 if (! some_was_dead)
2750 {
2751 if (flags & PROP_LOG_LINKS)
2752 {
2753 /* Make a logical link from the next following insn
2754 that uses this register, back to this insn.
2755 The following insns have already been processed.
2756
2757 We don't build a LOG_LINK for hard registers containing
2758 in ASM_OPERANDs. If these registers get replaced,
2759 we might wind up changing the semantics of the insn,
2760 even if reload can make what appear to be valid
2761 assignments later. */
2762 if (y && (BLOCK_NUM (y) == blocknum)
2763 && (regno_first >= FIRST_PSEUDO_REGISTER
2764 || asm_noperands (PATTERN (y)) < 0))
2765 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2766 }
2767 }
2768 else if (not_dead)
2769 ;
2770 else if (! some_was_live)
2771 {
2772 if (flags & PROP_REG_INFO)
2773 REG_N_DEATHS (regno_first) += 1;
2774
2775 if (flags & PROP_DEATH_NOTES)
2776 {
2777 /* Note that dead stores have already been deleted
2778 when possible. If we get here, we have found a
2779 dead store that cannot be eliminated (because the
2780 same insn does something useful). Indicate this
2781 by marking the reg being set as dying here. */
2782 REG_NOTES (insn)
2783 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2784 }
2785 }
2786 else
2787 {
2788 if (flags & PROP_DEATH_NOTES)
2789 {
2790 /* This is a case where we have a multi-word hard register
2791 and some, but not all, of the words of the register are
2792 needed in subsequent insns. Write REG_UNUSED notes
2793 for those parts that were not needed. This case should
2794 be rare. */
2795
2796 for (i = regno_first; i <= regno_last; ++i)
2797 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2798 REG_NOTES (insn)
2799 = alloc_EXPR_LIST (REG_UNUSED,
2800 regno_reg_rtx[i],
2801 REG_NOTES (insn));
2802 }
2803 }
2804 }
2805
2806 /* Mark the register as being dead. */
2807 if (some_was_live
2808 /* The stack pointer is never dead. Well, not strictly true,
2809 but it's very difficult to tell from here. Hopefully
2810 combine_stack_adjustments will fix up the most egregious
2811 errors. */
2812 && regno_first != STACK_POINTER_REGNUM)
2813 {
2814 for (i = regno_first; i <= regno_last; ++i)
2815 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2816 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2817 }
2818 }
2819 else if (GET_CODE (reg) == REG)
2820 {
2821 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2822 pbi->reg_next_use[regno_first] = 0;
2823 }
2824
2825 /* If this is the last pass and this is a SCRATCH, show it will be dying
2826 here and count it. */
2827 else if (GET_CODE (reg) == SCRATCH)
2828 {
2829 if (flags & PROP_DEATH_NOTES)
2830 REG_NOTES (insn)
2831 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2832 }
2833 }
2834 \f
2835 #ifdef HAVE_conditional_execution
2836 /* Mark REGNO conditionally dead.
2837 Return true if the register is now unconditionally dead. */
2838
2839 static int
2840 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2841 {
2842 /* If this is a store to a predicate register, the value of the
2843 predicate is changing, we don't know that the predicate as seen
2844 before is the same as that seen after. Flush all dependent
2845 conditions from reg_cond_dead. This will make all such
2846 conditionally live registers unconditionally live. */
2847 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2848 flush_reg_cond_reg (pbi, regno);
2849
2850 /* If this is an unconditional store, remove any conditional
2851 life that may have existed. */
2852 if (cond == NULL_RTX)
2853 splay_tree_remove (pbi->reg_cond_dead, regno);
2854 else
2855 {
2856 splay_tree_node node;
2857 struct reg_cond_life_info *rcli;
2858 rtx ncond;
2859
2860 /* Otherwise this is a conditional set. Record that fact.
2861 It may have been conditionally used, or there may be a
2862 subsequent set with a complimentary condition. */
2863
2864 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2865 if (node == NULL)
2866 {
2867 /* The register was unconditionally live previously.
2868 Record the current condition as the condition under
2869 which it is dead. */
2870 rcli = xmalloc (sizeof (*rcli));
2871 rcli->condition = cond;
2872 rcli->stores = cond;
2873 rcli->orig_condition = const0_rtx;
2874 splay_tree_insert (pbi->reg_cond_dead, regno,
2875 (splay_tree_value) rcli);
2876
2877 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2878
2879 /* Not unconditionally dead. */
2880 return 0;
2881 }
2882 else
2883 {
2884 /* The register was conditionally live previously.
2885 Add the new condition to the old. */
2886 rcli = (struct reg_cond_life_info *) node->value;
2887 ncond = rcli->condition;
2888 ncond = ior_reg_cond (ncond, cond, 1);
2889 if (rcli->stores == const0_rtx)
2890 rcli->stores = cond;
2891 else if (rcli->stores != const1_rtx)
2892 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2893
2894 /* If the register is now unconditionally dead, remove the entry
2895 in the splay_tree. A register is unconditionally dead if the
2896 dead condition ncond is true. A register is also unconditionally
2897 dead if the sum of all conditional stores is an unconditional
2898 store (stores is true), and the dead condition is identically the
2899 same as the original dead condition initialized at the end of
2900 the block. This is a pointer compare, not an rtx_equal_p
2901 compare. */
2902 if (ncond == const1_rtx
2903 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2904 splay_tree_remove (pbi->reg_cond_dead, regno);
2905 else
2906 {
2907 rcli->condition = ncond;
2908
2909 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2910
2911 /* Not unconditionally dead. */
2912 return 0;
2913 }
2914 }
2915 }
2916
2917 return 1;
2918 }
2919
2920 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2921
2922 static void
2923 free_reg_cond_life_info (splay_tree_value value)
2924 {
2925 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2926 free (rcli);
2927 }
2928
2929 /* Helper function for flush_reg_cond_reg. */
2930
2931 static int
2932 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2933 {
2934 struct reg_cond_life_info *rcli;
2935 int *xdata = (int *) data;
2936 unsigned int regno = xdata[0];
2937
2938 /* Don't need to search if last flushed value was farther on in
2939 the in-order traversal. */
2940 if (xdata[1] >= (int) node->key)
2941 return 0;
2942
2943 /* Splice out portions of the expression that refer to regno. */
2944 rcli = (struct reg_cond_life_info *) node->value;
2945 rcli->condition = elim_reg_cond (rcli->condition, regno);
2946 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2947 rcli->stores = elim_reg_cond (rcli->stores, regno);
2948
2949 /* If the entire condition is now false, signal the node to be removed. */
2950 if (rcli->condition == const0_rtx)
2951 {
2952 xdata[1] = node->key;
2953 return -1;
2954 }
2955 else if (rcli->condition == const1_rtx)
2956 abort ();
2957
2958 return 0;
2959 }
2960
2961 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2962
2963 static void
2964 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2965 {
2966 int pair[2];
2967
2968 pair[0] = regno;
2969 pair[1] = -1;
2970 while (splay_tree_foreach (pbi->reg_cond_dead,
2971 flush_reg_cond_reg_1, pair) == -1)
2972 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2973
2974 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2975 }
2976
2977 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2978 For ior/and, the ADD flag determines whether we want to add the new
2979 condition X to the old one unconditionally. If it is zero, we will
2980 only return a new expression if X allows us to simplify part of
2981 OLD, otherwise we return NULL to the caller.
2982 If ADD is nonzero, we will return a new condition in all cases. The
2983 toplevel caller of one of these functions should always pass 1 for
2984 ADD. */
2985
2986 static rtx
2987 ior_reg_cond (rtx old, rtx x, int add)
2988 {
2989 rtx op0, op1;
2990
2991 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2992 {
2993 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2994 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2995 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2996 return const1_rtx;
2997 if (GET_CODE (x) == GET_CODE (old)
2998 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2999 return old;
3000 if (! add)
3001 return NULL;
3002 return gen_rtx_IOR (0, old, x);
3003 }
3004
3005 switch (GET_CODE (old))
3006 {
3007 case IOR:
3008 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3009 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3010 if (op0 != NULL || op1 != NULL)
3011 {
3012 if (op0 == const0_rtx)
3013 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3014 if (op1 == const0_rtx)
3015 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3016 if (op0 == const1_rtx || op1 == const1_rtx)
3017 return const1_rtx;
3018 if (op0 == NULL)
3019 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3020 else if (rtx_equal_p (x, op0))
3021 /* (x | A) | x ~ (x | A). */
3022 return old;
3023 if (op1 == NULL)
3024 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3025 else if (rtx_equal_p (x, op1))
3026 /* (A | x) | x ~ (A | x). */
3027 return old;
3028 return gen_rtx_IOR (0, op0, op1);
3029 }
3030 if (! add)
3031 return NULL;
3032 return gen_rtx_IOR (0, old, x);
3033
3034 case AND:
3035 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3036 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3037 if (op0 != NULL || op1 != NULL)
3038 {
3039 if (op0 == const1_rtx)
3040 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3041 if (op1 == const1_rtx)
3042 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3043 if (op0 == const0_rtx || op1 == const0_rtx)
3044 return const0_rtx;
3045 if (op0 == NULL)
3046 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3047 else if (rtx_equal_p (x, op0))
3048 /* (x & A) | x ~ x. */
3049 return op0;
3050 if (op1 == NULL)
3051 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3052 else if (rtx_equal_p (x, op1))
3053 /* (A & x) | x ~ x. */
3054 return op1;
3055 return gen_rtx_AND (0, op0, op1);
3056 }
3057 if (! add)
3058 return NULL;
3059 return gen_rtx_IOR (0, old, x);
3060
3061 case NOT:
3062 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3063 if (op0 != NULL)
3064 return not_reg_cond (op0);
3065 if (! add)
3066 return NULL;
3067 return gen_rtx_IOR (0, old, x);
3068
3069 default:
3070 abort ();
3071 }
3072 }
3073
3074 static rtx
3075 not_reg_cond (rtx x)
3076 {
3077 enum rtx_code x_code;
3078
3079 if (x == const0_rtx)
3080 return const1_rtx;
3081 else if (x == const1_rtx)
3082 return const0_rtx;
3083 x_code = GET_CODE (x);
3084 if (x_code == NOT)
3085 return XEXP (x, 0);
3086 if (GET_RTX_CLASS (x_code) == '<'
3087 && GET_CODE (XEXP (x, 0)) == REG)
3088 {
3089 if (XEXP (x, 1) != const0_rtx)
3090 abort ();
3091
3092 return gen_rtx_fmt_ee (reverse_condition (x_code),
3093 VOIDmode, XEXP (x, 0), const0_rtx);
3094 }
3095 return gen_rtx_NOT (0, x);
3096 }
3097
3098 static rtx
3099 and_reg_cond (rtx old, rtx x, int add)
3100 {
3101 rtx op0, op1;
3102
3103 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3104 {
3105 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3106 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3107 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3108 return const0_rtx;
3109 if (GET_CODE (x) == GET_CODE (old)
3110 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3111 return old;
3112 if (! add)
3113 return NULL;
3114 return gen_rtx_AND (0, old, x);
3115 }
3116
3117 switch (GET_CODE (old))
3118 {
3119 case IOR:
3120 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3121 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3122 if (op0 != NULL || op1 != NULL)
3123 {
3124 if (op0 == const0_rtx)
3125 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3126 if (op1 == const0_rtx)
3127 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3128 if (op0 == const1_rtx || op1 == const1_rtx)
3129 return const1_rtx;
3130 if (op0 == NULL)
3131 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3132 else if (rtx_equal_p (x, op0))
3133 /* (x | A) & x ~ x. */
3134 return op0;
3135 if (op1 == NULL)
3136 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3137 else if (rtx_equal_p (x, op1))
3138 /* (A | x) & x ~ x. */
3139 return op1;
3140 return gen_rtx_IOR (0, op0, op1);
3141 }
3142 if (! add)
3143 return NULL;
3144 return gen_rtx_AND (0, old, x);
3145
3146 case AND:
3147 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3148 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3149 if (op0 != NULL || op1 != NULL)
3150 {
3151 if (op0 == const1_rtx)
3152 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3153 if (op1 == const1_rtx)
3154 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3155 if (op0 == const0_rtx || op1 == const0_rtx)
3156 return const0_rtx;
3157 if (op0 == NULL)
3158 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3159 else if (rtx_equal_p (x, op0))
3160 /* (x & A) & x ~ (x & A). */
3161 return old;
3162 if (op1 == NULL)
3163 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3164 else if (rtx_equal_p (x, op1))
3165 /* (A & x) & x ~ (A & x). */
3166 return old;
3167 return gen_rtx_AND (0, op0, op1);
3168 }
3169 if (! add)
3170 return NULL;
3171 return gen_rtx_AND (0, old, x);
3172
3173 case NOT:
3174 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3175 if (op0 != NULL)
3176 return not_reg_cond (op0);
3177 if (! add)
3178 return NULL;
3179 return gen_rtx_AND (0, old, x);
3180
3181 default:
3182 abort ();
3183 }
3184 }
3185
3186 /* Given a condition X, remove references to reg REGNO and return the
3187 new condition. The removal will be done so that all conditions
3188 involving REGNO are considered to evaluate to false. This function
3189 is used when the value of REGNO changes. */
3190
3191 static rtx
3192 elim_reg_cond (rtx x, unsigned int regno)
3193 {
3194 rtx op0, op1;
3195
3196 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3197 {
3198 if (REGNO (XEXP (x, 0)) == regno)
3199 return const0_rtx;
3200 return x;
3201 }
3202
3203 switch (GET_CODE (x))
3204 {
3205 case AND:
3206 op0 = elim_reg_cond (XEXP (x, 0), regno);
3207 op1 = elim_reg_cond (XEXP (x, 1), regno);
3208 if (op0 == const0_rtx || op1 == const0_rtx)
3209 return const0_rtx;
3210 if (op0 == const1_rtx)
3211 return op1;
3212 if (op1 == const1_rtx)
3213 return op0;
3214 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3215 return x;
3216 return gen_rtx_AND (0, op0, op1);
3217
3218 case IOR:
3219 op0 = elim_reg_cond (XEXP (x, 0), regno);
3220 op1 = elim_reg_cond (XEXP (x, 1), regno);
3221 if (op0 == const1_rtx || op1 == const1_rtx)
3222 return const1_rtx;
3223 if (op0 == const0_rtx)
3224 return op1;
3225 if (op1 == const0_rtx)
3226 return op0;
3227 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3228 return x;
3229 return gen_rtx_IOR (0, op0, op1);
3230
3231 case NOT:
3232 op0 = elim_reg_cond (XEXP (x, 0), regno);
3233 if (op0 == const0_rtx)
3234 return const1_rtx;
3235 if (op0 == const1_rtx)
3236 return const0_rtx;
3237 if (op0 != XEXP (x, 0))
3238 return not_reg_cond (op0);
3239 return x;
3240
3241 default:
3242 abort ();
3243 }
3244 }
3245 #endif /* HAVE_conditional_execution */
3246 \f
3247 #ifdef AUTO_INC_DEC
3248
3249 /* Try to substitute the auto-inc expression INC as the address inside
3250 MEM which occurs in INSN. Currently, the address of MEM is an expression
3251 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3252 that has a single set whose source is a PLUS of INCR_REG and something
3253 else. */
3254
3255 static void
3256 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3257 rtx mem, rtx incr, rtx incr_reg)
3258 {
3259 int regno = REGNO (incr_reg);
3260 rtx set = single_set (incr);
3261 rtx q = SET_DEST (set);
3262 rtx y = SET_SRC (set);
3263 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3264
3265 /* Make sure this reg appears only once in this insn. */
3266 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3267 return;
3268
3269 if (dead_or_set_p (incr, incr_reg)
3270 /* Mustn't autoinc an eliminable register. */
3271 && (regno >= FIRST_PSEUDO_REGISTER
3272 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3273 {
3274 /* This is the simple case. Try to make the auto-inc. If
3275 we can't, we are done. Otherwise, we will do any
3276 needed updates below. */
3277 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3278 return;
3279 }
3280 else if (GET_CODE (q) == REG
3281 /* PREV_INSN used here to check the semi-open interval
3282 [insn,incr). */
3283 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3284 /* We must also check for sets of q as q may be
3285 a call clobbered hard register and there may
3286 be a call between PREV_INSN (insn) and incr. */
3287 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3288 {
3289 /* We have *p followed sometime later by q = p+size.
3290 Both p and q must be live afterward,
3291 and q is not used between INSN and its assignment.
3292 Change it to q = p, ...*q..., q = q+size.
3293 Then fall into the usual case. */
3294 rtx insns, temp;
3295
3296 start_sequence ();
3297 emit_move_insn (q, incr_reg);
3298 insns = get_insns ();
3299 end_sequence ();
3300
3301 /* If we can't make the auto-inc, or can't make the
3302 replacement into Y, exit. There's no point in making
3303 the change below if we can't do the auto-inc and doing
3304 so is not correct in the pre-inc case. */
3305
3306 XEXP (inc, 0) = q;
3307 validate_change (insn, &XEXP (mem, 0), inc, 1);
3308 validate_change (incr, &XEXP (y, opnum), q, 1);
3309 if (! apply_change_group ())
3310 return;
3311
3312 /* We now know we'll be doing this change, so emit the
3313 new insn(s) and do the updates. */
3314 emit_insn_before (insns, insn);
3315
3316 if (pbi->bb->head == insn)
3317 pbi->bb->head = insns;
3318
3319 /* INCR will become a NOTE and INSN won't contain a
3320 use of INCR_REG. If a use of INCR_REG was just placed in
3321 the insn before INSN, make that the next use.
3322 Otherwise, invalidate it. */
3323 if (GET_CODE (PREV_INSN (insn)) == INSN
3324 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3325 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3326 pbi->reg_next_use[regno] = PREV_INSN (insn);
3327 else
3328 pbi->reg_next_use[regno] = 0;
3329
3330 incr_reg = q;
3331 regno = REGNO (q);
3332
3333 /* REGNO is now used in INCR which is below INSN, but
3334 it previously wasn't live here. If we don't mark
3335 it as live, we'll put a REG_DEAD note for it
3336 on this insn, which is incorrect. */
3337 SET_REGNO_REG_SET (pbi->reg_live, regno);
3338
3339 /* If there are any calls between INSN and INCR, show
3340 that REGNO now crosses them. */
3341 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3342 if (GET_CODE (temp) == CALL_INSN)
3343 REG_N_CALLS_CROSSED (regno)++;
3344
3345 /* Invalidate alias info for Q since we just changed its value. */
3346 clear_reg_alias_info (q);
3347 }
3348 else
3349 return;
3350
3351 /* If we haven't returned, it means we were able to make the
3352 auto-inc, so update the status. First, record that this insn
3353 has an implicit side effect. */
3354
3355 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3356
3357 /* Modify the old increment-insn to simply copy
3358 the already-incremented value of our register. */
3359 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3360 abort ();
3361
3362 /* If that makes it a no-op (copying the register into itself) delete
3363 it so it won't appear to be a "use" and a "set" of this
3364 register. */
3365 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3366 {
3367 /* If the original source was dead, it's dead now. */
3368 rtx note;
3369
3370 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3371 {
3372 remove_note (incr, note);
3373 if (XEXP (note, 0) != incr_reg)
3374 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3375 }
3376
3377 PUT_CODE (incr, NOTE);
3378 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3379 NOTE_SOURCE_FILE (incr) = 0;
3380 }
3381
3382 if (regno >= FIRST_PSEUDO_REGISTER)
3383 {
3384 /* Count an extra reference to the reg. When a reg is
3385 incremented, spilling it is worse, so we want to make
3386 that less likely. */
3387 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3388
3389 /* Count the increment as a setting of the register,
3390 even though it isn't a SET in rtl. */
3391 REG_N_SETS (regno)++;
3392 }
3393 }
3394
3395 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3396 reference. */
3397
3398 static void
3399 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3400 {
3401 rtx addr = XEXP (x, 0);
3402 HOST_WIDE_INT offset = 0;
3403 rtx set, y, incr, inc_val;
3404 int regno;
3405 int size = GET_MODE_SIZE (GET_MODE (x));
3406
3407 if (GET_CODE (insn) == JUMP_INSN)
3408 return;
3409
3410 /* Here we detect use of an index register which might be good for
3411 postincrement, postdecrement, preincrement, or predecrement. */
3412
3413 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3414 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3415
3416 if (GET_CODE (addr) != REG)
3417 return;
3418
3419 regno = REGNO (addr);
3420
3421 /* Is the next use an increment that might make auto-increment? */
3422 incr = pbi->reg_next_use[regno];
3423 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3424 return;
3425 set = single_set (incr);
3426 if (set == 0 || GET_CODE (set) != SET)
3427 return;
3428 y = SET_SRC (set);
3429
3430 if (GET_CODE (y) != PLUS)
3431 return;
3432
3433 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3434 inc_val = XEXP (y, 1);
3435 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3436 inc_val = XEXP (y, 0);
3437 else
3438 return;
3439
3440 if (GET_CODE (inc_val) == CONST_INT)
3441 {
3442 if (HAVE_POST_INCREMENT
3443 && (INTVAL (inc_val) == size && offset == 0))
3444 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3445 incr, addr);
3446 else if (HAVE_POST_DECREMENT
3447 && (INTVAL (inc_val) == -size && offset == 0))
3448 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3449 incr, addr);
3450 else if (HAVE_PRE_INCREMENT
3451 && (INTVAL (inc_val) == size && offset == size))
3452 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3453 incr, addr);
3454 else if (HAVE_PRE_DECREMENT
3455 && (INTVAL (inc_val) == -size && offset == -size))
3456 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3457 incr, addr);
3458 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3459 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3460 gen_rtx_PLUS (Pmode,
3461 addr,
3462 inc_val)),
3463 insn, x, incr, addr);
3464 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3465 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3466 gen_rtx_PLUS (Pmode,
3467 addr,
3468 inc_val)),
3469 insn, x, incr, addr);
3470 }
3471 else if (GET_CODE (inc_val) == REG
3472 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3473 NEXT_INSN (incr)))
3474
3475 {
3476 if (HAVE_POST_MODIFY_REG && offset == 0)
3477 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3478 gen_rtx_PLUS (Pmode,
3479 addr,
3480 inc_val)),
3481 insn, x, incr, addr);
3482 }
3483 }
3484
3485 #endif /* AUTO_INC_DEC */
3486 \f
3487 static void
3488 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3489 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3490 {
3491 unsigned int regno_first, regno_last, i;
3492 int some_was_live, some_was_dead, some_not_set;
3493
3494 regno_last = regno_first = REGNO (reg);
3495 if (regno_first < FIRST_PSEUDO_REGISTER)
3496 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3497
3498 /* Find out if any of this register is live after this instruction. */
3499 some_was_live = some_was_dead = 0;
3500 for (i = regno_first; i <= regno_last; ++i)
3501 {
3502 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3503 some_was_live |= needed_regno;
3504 some_was_dead |= ! needed_regno;
3505 }
3506
3507 /* Find out if any of the register was set this insn. */
3508 some_not_set = 0;
3509 for (i = regno_first; i <= regno_last; ++i)
3510 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3511
3512 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3513 {
3514 /* Record where each reg is used, so when the reg is set we know
3515 the next insn that uses it. */
3516 pbi->reg_next_use[regno_first] = insn;
3517 }
3518
3519 if (pbi->flags & PROP_REG_INFO)
3520 {
3521 if (regno_first < FIRST_PSEUDO_REGISTER)
3522 {
3523 /* If this is a register we are going to try to eliminate,
3524 don't mark it live here. If we are successful in
3525 eliminating it, it need not be live unless it is used for
3526 pseudos, in which case it will have been set live when it
3527 was allocated to the pseudos. If the register will not
3528 be eliminated, reload will set it live at that point.
3529
3530 Otherwise, record that this function uses this register. */
3531 /* ??? The PPC backend tries to "eliminate" on the pic
3532 register to itself. This should be fixed. In the mean
3533 time, hack around it. */
3534
3535 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3536 && (regno_first == FRAME_POINTER_REGNUM
3537 || regno_first == ARG_POINTER_REGNUM)))
3538 for (i = regno_first; i <= regno_last; ++i)
3539 regs_ever_live[i] = 1;
3540 }
3541 else
3542 {
3543 /* Keep track of which basic block each reg appears in. */
3544
3545 int blocknum = pbi->bb->index;
3546 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3547 REG_BASIC_BLOCK (regno_first) = blocknum;
3548 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3549 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3550
3551 /* Count (weighted) number of uses of each reg. */
3552 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3553 REG_N_REFS (regno_first)++;
3554 }
3555 }
3556
3557 /* Record and count the insns in which a reg dies. If it is used in
3558 this insn and was dead below the insn then it dies in this insn.
3559 If it was set in this insn, we do not make a REG_DEAD note;
3560 likewise if we already made such a note. */
3561 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3562 && some_was_dead
3563 && some_not_set)
3564 {
3565 /* Check for the case where the register dying partially
3566 overlaps the register set by this insn. */
3567 if (regno_first != regno_last)
3568 for (i = regno_first; i <= regno_last; ++i)
3569 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3570
3571 /* If none of the words in X is needed, make a REG_DEAD note.
3572 Otherwise, we must make partial REG_DEAD notes. */
3573 if (! some_was_live)
3574 {
3575 if ((pbi->flags & PROP_DEATH_NOTES)
3576 && ! find_regno_note (insn, REG_DEAD, regno_first))
3577 REG_NOTES (insn)
3578 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3579
3580 if (pbi->flags & PROP_REG_INFO)
3581 REG_N_DEATHS (regno_first)++;
3582 }
3583 else
3584 {
3585 /* Don't make a REG_DEAD note for a part of a register
3586 that is set in the insn. */
3587 for (i = regno_first; i <= regno_last; ++i)
3588 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3589 && ! dead_or_set_regno_p (insn, i))
3590 REG_NOTES (insn)
3591 = alloc_EXPR_LIST (REG_DEAD,
3592 regno_reg_rtx[i],
3593 REG_NOTES (insn));
3594 }
3595 }
3596
3597 /* Mark the register as being live. */
3598 for (i = regno_first; i <= regno_last; ++i)
3599 {
3600 #ifdef HAVE_conditional_execution
3601 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3602 #endif
3603
3604 SET_REGNO_REG_SET (pbi->reg_live, i);
3605
3606 #ifdef HAVE_conditional_execution
3607 /* If this is a conditional use, record that fact. If it is later
3608 conditionally set, we'll know to kill the register. */
3609 if (cond != NULL_RTX)
3610 {
3611 splay_tree_node node;
3612 struct reg_cond_life_info *rcli;
3613 rtx ncond;
3614
3615 if (this_was_live)
3616 {
3617 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3618 if (node == NULL)
3619 {
3620 /* The register was unconditionally live previously.
3621 No need to do anything. */
3622 }
3623 else
3624 {
3625 /* The register was conditionally live previously.
3626 Subtract the new life cond from the old death cond. */
3627 rcli = (struct reg_cond_life_info *) node->value;
3628 ncond = rcli->condition;
3629 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3630
3631 /* If the register is now unconditionally live,
3632 remove the entry in the splay_tree. */
3633 if (ncond == const0_rtx)
3634 splay_tree_remove (pbi->reg_cond_dead, i);
3635 else
3636 {
3637 rcli->condition = ncond;
3638 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3639 REGNO (XEXP (cond, 0)));
3640 }
3641 }
3642 }
3643 else
3644 {
3645 /* The register was not previously live at all. Record
3646 the condition under which it is still dead. */
3647 rcli = xmalloc (sizeof (*rcli));
3648 rcli->condition = not_reg_cond (cond);
3649 rcli->stores = const0_rtx;
3650 rcli->orig_condition = const0_rtx;
3651 splay_tree_insert (pbi->reg_cond_dead, i,
3652 (splay_tree_value) rcli);
3653
3654 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3655 }
3656 }
3657 else if (this_was_live)
3658 {
3659 /* The register may have been conditionally live previously, but
3660 is now unconditionally live. Remove it from the conditionally
3661 dead list, so that a conditional set won't cause us to think
3662 it dead. */
3663 splay_tree_remove (pbi->reg_cond_dead, i);
3664 }
3665 #endif
3666 }
3667 }
3668
3669 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3670 This is done assuming the registers needed from X are those that
3671 have 1-bits in PBI->REG_LIVE.
3672
3673 INSN is the containing instruction. If INSN is dead, this function
3674 is not called. */
3675
3676 static void
3677 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3678 {
3679 RTX_CODE code;
3680 int regno;
3681 int flags = pbi->flags;
3682
3683 retry:
3684 if (!x)
3685 return;
3686 code = GET_CODE (x);
3687 switch (code)
3688 {
3689 case LABEL_REF:
3690 case SYMBOL_REF:
3691 case CONST_INT:
3692 case CONST:
3693 case CONST_DOUBLE:
3694 case CONST_VECTOR:
3695 case PC:
3696 case ADDR_VEC:
3697 case ADDR_DIFF_VEC:
3698 return;
3699
3700 #ifdef HAVE_cc0
3701 case CC0:
3702 pbi->cc0_live = 1;
3703 return;
3704 #endif
3705
3706 case CLOBBER:
3707 /* If we are clobbering a MEM, mark any registers inside the address
3708 as being used. */
3709 if (GET_CODE (XEXP (x, 0)) == MEM)
3710 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3711 return;
3712
3713 case MEM:
3714 /* Don't bother watching stores to mems if this is not the
3715 final pass. We'll not be deleting dead stores this round. */
3716 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3717 {
3718 /* Invalidate the data for the last MEM stored, but only if MEM is
3719 something that can be stored into. */
3720 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3721 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3722 /* Needn't clear the memory set list. */
3723 ;
3724 else
3725 {
3726 rtx temp = pbi->mem_set_list;
3727 rtx prev = NULL_RTX;
3728 rtx next;
3729
3730 while (temp)
3731 {
3732 next = XEXP (temp, 1);
3733 if (anti_dependence (XEXP (temp, 0), x))
3734 {
3735 /* Splice temp out of the list. */
3736 if (prev)
3737 XEXP (prev, 1) = next;
3738 else
3739 pbi->mem_set_list = next;
3740 free_EXPR_LIST_node (temp);
3741 pbi->mem_set_list_len--;
3742 }
3743 else
3744 prev = temp;
3745 temp = next;
3746 }
3747 }
3748
3749 /* If the memory reference had embedded side effects (autoincrement
3750 address modes. Then we may need to kill some entries on the
3751 memory set list. */
3752 if (insn)
3753 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3754 }
3755
3756 #ifdef AUTO_INC_DEC
3757 if (flags & PROP_AUTOINC)
3758 find_auto_inc (pbi, x, insn);
3759 #endif
3760 break;
3761
3762 case SUBREG:
3763 #ifdef CANNOT_CHANGE_MODE_CLASS
3764 if ((flags & PROP_REG_INFO)
3765 && GET_CODE (SUBREG_REG (x)) == REG
3766 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3767 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3768 * MAX_MACHINE_MODE
3769 + GET_MODE (x));
3770 #endif
3771
3772 /* While we're here, optimize this case. */
3773 x = SUBREG_REG (x);
3774 if (GET_CODE (x) != REG)
3775 goto retry;
3776 /* Fall through. */
3777
3778 case REG:
3779 /* See a register other than being set => mark it as needed. */
3780 mark_used_reg (pbi, x, cond, insn);
3781 return;
3782
3783 case SET:
3784 {
3785 rtx testreg = SET_DEST (x);
3786 int mark_dest = 0;
3787
3788 /* If storing into MEM, don't show it as being used. But do
3789 show the address as being used. */
3790 if (GET_CODE (testreg) == MEM)
3791 {
3792 #ifdef AUTO_INC_DEC
3793 if (flags & PROP_AUTOINC)
3794 find_auto_inc (pbi, testreg, insn);
3795 #endif
3796 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3797 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3798 return;
3799 }
3800
3801 /* Storing in STRICT_LOW_PART is like storing in a reg
3802 in that this SET might be dead, so ignore it in TESTREG.
3803 but in some other ways it is like using the reg.
3804
3805 Storing in a SUBREG or a bit field is like storing the entire
3806 register in that if the register's value is not used
3807 then this SET is not needed. */
3808 while (GET_CODE (testreg) == STRICT_LOW_PART
3809 || GET_CODE (testreg) == ZERO_EXTRACT
3810 || GET_CODE (testreg) == SIGN_EXTRACT
3811 || GET_CODE (testreg) == SUBREG)
3812 {
3813 #ifdef CANNOT_CHANGE_MODE_CLASS
3814 if ((flags & PROP_REG_INFO)
3815 && GET_CODE (testreg) == SUBREG
3816 && GET_CODE (SUBREG_REG (testreg)) == REG
3817 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3818 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3819 * MAX_MACHINE_MODE
3820 + GET_MODE (testreg));
3821 #endif
3822
3823 /* Modifying a single register in an alternate mode
3824 does not use any of the old value. But these other
3825 ways of storing in a register do use the old value. */
3826 if (GET_CODE (testreg) == SUBREG
3827 && !((REG_BYTES (SUBREG_REG (testreg))
3828 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3829 > (REG_BYTES (testreg)
3830 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3831 ;
3832 else
3833 mark_dest = 1;
3834
3835 testreg = XEXP (testreg, 0);
3836 }
3837
3838 /* If this is a store into a register or group of registers,
3839 recursively scan the value being stored. */
3840
3841 if ((GET_CODE (testreg) == PARALLEL
3842 && GET_MODE (testreg) == BLKmode)
3843 || (GET_CODE (testreg) == REG
3844 && (regno = REGNO (testreg),
3845 ! (regno == FRAME_POINTER_REGNUM
3846 && (! reload_completed || frame_pointer_needed)))
3847 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3848 && ! (regno == HARD_FRAME_POINTER_REGNUM
3849 && (! reload_completed || frame_pointer_needed))
3850 #endif
3851 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3852 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3853 #endif
3854 ))
3855 {
3856 if (mark_dest)
3857 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3858 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3859 return;
3860 }
3861 }
3862 break;
3863
3864 case ASM_OPERANDS:
3865 case UNSPEC_VOLATILE:
3866 case TRAP_IF:
3867 case ASM_INPUT:
3868 {
3869 /* Traditional and volatile asm instructions must be considered to use
3870 and clobber all hard registers, all pseudo-registers and all of
3871 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3872
3873 Consider for instance a volatile asm that changes the fpu rounding
3874 mode. An insn should not be moved across this even if it only uses
3875 pseudo-regs because it might give an incorrectly rounded result.
3876
3877 ?!? Unfortunately, marking all hard registers as live causes massive
3878 problems for the register allocator and marking all pseudos as live
3879 creates mountains of uninitialized variable warnings.
3880
3881 So for now, just clear the memory set list and mark any regs
3882 we can find in ASM_OPERANDS as used. */
3883 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3884 {
3885 free_EXPR_LIST_list (&pbi->mem_set_list);
3886 pbi->mem_set_list_len = 0;
3887 }
3888
3889 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3890 We can not just fall through here since then we would be confused
3891 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3892 traditional asms unlike their normal usage. */
3893 if (code == ASM_OPERANDS)
3894 {
3895 int j;
3896
3897 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3898 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3899 }
3900 break;
3901 }
3902
3903 case COND_EXEC:
3904 if (cond != NULL_RTX)
3905 abort ();
3906
3907 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3908
3909 cond = COND_EXEC_TEST (x);
3910 x = COND_EXEC_CODE (x);
3911 goto retry;
3912
3913 case PHI:
3914 /* We _do_not_ want to scan operands of phi nodes. Operands of
3915 a phi function are evaluated only when control reaches this
3916 block along a particular edge. Therefore, regs that appear
3917 as arguments to phi should not be added to the global live at
3918 start. */
3919 return;
3920
3921 default:
3922 break;
3923 }
3924
3925 /* Recursively scan the operands of this expression. */
3926
3927 {
3928 const char * const fmt = GET_RTX_FORMAT (code);
3929 int i;
3930
3931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3932 {
3933 if (fmt[i] == 'e')
3934 {
3935 /* Tail recursive case: save a function call level. */
3936 if (i == 0)
3937 {
3938 x = XEXP (x, 0);
3939 goto retry;
3940 }
3941 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3942 }
3943 else if (fmt[i] == 'E')
3944 {
3945 int j;
3946 for (j = 0; j < XVECLEN (x, i); j++)
3947 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3948 }
3949 }
3950 }
3951 }
3952 \f
3953 #ifdef AUTO_INC_DEC
3954
3955 static int
3956 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3957 {
3958 /* Find the next use of this reg. If in same basic block,
3959 make it do pre-increment or pre-decrement if appropriate. */
3960 rtx x = single_set (insn);
3961 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3962 * INTVAL (XEXP (SET_SRC (x), 1)));
3963 int regno = REGNO (SET_DEST (x));
3964 rtx y = pbi->reg_next_use[regno];
3965 if (y != 0
3966 && SET_DEST (x) != stack_pointer_rtx
3967 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3968 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3969 mode would be better. */
3970 && ! dead_or_set_p (y, SET_DEST (x))
3971 && try_pre_increment (y, SET_DEST (x), amount))
3972 {
3973 /* We have found a suitable auto-increment and already changed
3974 insn Y to do it. So flush this increment instruction. */
3975 propagate_block_delete_insn (insn);
3976
3977 /* Count a reference to this reg for the increment insn we are
3978 deleting. When a reg is incremented, spilling it is worse,
3979 so we want to make that less likely. */
3980 if (regno >= FIRST_PSEUDO_REGISTER)
3981 {
3982 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3983 REG_N_SETS (regno)++;
3984 }
3985
3986 /* Flush any remembered memories depending on the value of
3987 the incremented register. */
3988 invalidate_mems_from_set (pbi, SET_DEST (x));
3989
3990 return 1;
3991 }
3992 return 0;
3993 }
3994
3995 /* Try to change INSN so that it does pre-increment or pre-decrement
3996 addressing on register REG in order to add AMOUNT to REG.
3997 AMOUNT is negative for pre-decrement.
3998 Returns 1 if the change could be made.
3999 This checks all about the validity of the result of modifying INSN. */
4000
4001 static int
4002 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4003 {
4004 rtx use;
4005
4006 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4007 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4008 int pre_ok = 0;
4009 /* Nonzero if we can try to make a post-increment or post-decrement.
4010 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4011 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4012 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4013 int post_ok = 0;
4014
4015 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4016 int do_post = 0;
4017
4018 /* From the sign of increment, see which possibilities are conceivable
4019 on this target machine. */
4020 if (HAVE_PRE_INCREMENT && amount > 0)
4021 pre_ok = 1;
4022 if (HAVE_POST_INCREMENT && amount > 0)
4023 post_ok = 1;
4024
4025 if (HAVE_PRE_DECREMENT && amount < 0)
4026 pre_ok = 1;
4027 if (HAVE_POST_DECREMENT && amount < 0)
4028 post_ok = 1;
4029
4030 if (! (pre_ok || post_ok))
4031 return 0;
4032
4033 /* It is not safe to add a side effect to a jump insn
4034 because if the incremented register is spilled and must be reloaded
4035 there would be no way to store the incremented value back in memory. */
4036
4037 if (GET_CODE (insn) == JUMP_INSN)
4038 return 0;
4039
4040 use = 0;
4041 if (pre_ok)
4042 use = find_use_as_address (PATTERN (insn), reg, 0);
4043 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4044 {
4045 use = find_use_as_address (PATTERN (insn), reg, -amount);
4046 do_post = 1;
4047 }
4048
4049 if (use == 0 || use == (rtx) (size_t) 1)
4050 return 0;
4051
4052 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4053 return 0;
4054
4055 /* See if this combination of instruction and addressing mode exists. */
4056 if (! validate_change (insn, &XEXP (use, 0),
4057 gen_rtx_fmt_e (amount > 0
4058 ? (do_post ? POST_INC : PRE_INC)
4059 : (do_post ? POST_DEC : PRE_DEC),
4060 Pmode, reg), 0))
4061 return 0;
4062
4063 /* Record that this insn now has an implicit side effect on X. */
4064 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4065 return 1;
4066 }
4067
4068 #endif /* AUTO_INC_DEC */
4069 \f
4070 /* Find the place in the rtx X where REG is used as a memory address.
4071 Return the MEM rtx that so uses it.
4072 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4073 (plus REG (const_int PLUSCONST)).
4074
4075 If such an address does not appear, return 0.
4076 If REG appears more than once, or is used other than in such an address,
4077 return (rtx) 1. */
4078
4079 rtx
4080 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4081 {
4082 enum rtx_code code = GET_CODE (x);
4083 const char * const fmt = GET_RTX_FORMAT (code);
4084 int i;
4085 rtx value = 0;
4086 rtx tem;
4087
4088 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4089 return x;
4090
4091 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4092 && XEXP (XEXP (x, 0), 0) == reg
4093 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4094 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4095 return x;
4096
4097 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4098 {
4099 /* If REG occurs inside a MEM used in a bit-field reference,
4100 that is unacceptable. */
4101 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4102 return (rtx) (size_t) 1;
4103 }
4104
4105 if (x == reg)
4106 return (rtx) (size_t) 1;
4107
4108 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4109 {
4110 if (fmt[i] == 'e')
4111 {
4112 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4113 if (value == 0)
4114 value = tem;
4115 else if (tem != 0)
4116 return (rtx) (size_t) 1;
4117 }
4118 else if (fmt[i] == 'E')
4119 {
4120 int j;
4121 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4122 {
4123 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4124 if (value == 0)
4125 value = tem;
4126 else if (tem != 0)
4127 return (rtx) (size_t) 1;
4128 }
4129 }
4130 }
4131
4132 return value;
4133 }
4134 \f
4135 /* Write information about registers and basic blocks into FILE.
4136 This is part of making a debugging dump. */
4137
4138 void
4139 dump_regset (regset r, FILE *outf)
4140 {
4141 int i;
4142 if (r == NULL)
4143 {
4144 fputs (" (nil)", outf);
4145 return;
4146 }
4147
4148 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4149 {
4150 fprintf (outf, " %d", i);
4151 if (i < FIRST_PSEUDO_REGISTER)
4152 fprintf (outf, " [%s]",
4153 reg_names[i]);
4154 });
4155 }
4156
4157 /* Print a human-readable representation of R on the standard error
4158 stream. This function is designed to be used from within the
4159 debugger. */
4160
4161 void
4162 debug_regset (regset r)
4163 {
4164 dump_regset (r, stderr);
4165 putc ('\n', stderr);
4166 }
4167
4168 /* Recompute register set/reference counts immediately prior to register
4169 allocation.
4170
4171 This avoids problems with set/reference counts changing to/from values
4172 which have special meanings to the register allocators.
4173
4174 Additionally, the reference counts are the primary component used by the
4175 register allocators to prioritize pseudos for allocation to hard regs.
4176 More accurate reference counts generally lead to better register allocation.
4177
4178 F is the first insn to be scanned.
4179
4180 LOOP_STEP denotes how much loop_depth should be incremented per
4181 loop nesting level in order to increase the ref count more for
4182 references in a loop.
4183
4184 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4185 possibly other information which is used by the register allocators. */
4186
4187 void
4188 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4189 {
4190 allocate_reg_life_data ();
4191 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4192 }
4193
4194 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4195 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4196 of the number of registers that died. */
4197
4198 int
4199 count_or_remove_death_notes (sbitmap blocks, int kill)
4200 {
4201 int count = 0;
4202 basic_block bb;
4203
4204 FOR_EACH_BB_REVERSE (bb)
4205 {
4206 rtx insn;
4207
4208 if (blocks && ! TEST_BIT (blocks, bb->index))
4209 continue;
4210
4211 for (insn = bb->head;; insn = NEXT_INSN (insn))
4212 {
4213 if (INSN_P (insn))
4214 {
4215 rtx *pprev = &REG_NOTES (insn);
4216 rtx link = *pprev;
4217
4218 while (link)
4219 {
4220 switch (REG_NOTE_KIND (link))
4221 {
4222 case REG_DEAD:
4223 if (GET_CODE (XEXP (link, 0)) == REG)
4224 {
4225 rtx reg = XEXP (link, 0);
4226 int n;
4227
4228 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4229 n = 1;
4230 else
4231 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4232 count += n;
4233 }
4234 /* Fall through. */
4235
4236 case REG_UNUSED:
4237 if (kill)
4238 {
4239 rtx next = XEXP (link, 1);
4240 free_EXPR_LIST_node (link);
4241 *pprev = link = next;
4242 break;
4243 }
4244 /* Fall through. */
4245
4246 default:
4247 pprev = &XEXP (link, 1);
4248 link = *pprev;
4249 break;
4250 }
4251 }
4252 }
4253
4254 if (insn == bb->end)
4255 break;
4256 }
4257 }
4258
4259 return count;
4260 }
4261 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4262 if blocks is NULL. */
4263
4264 static void
4265 clear_log_links (sbitmap blocks)
4266 {
4267 rtx insn;
4268 int i;
4269
4270 if (!blocks)
4271 {
4272 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4273 if (INSN_P (insn))
4274 free_INSN_LIST_list (&LOG_LINKS (insn));
4275 }
4276 else
4277 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4278 {
4279 basic_block bb = BASIC_BLOCK (i);
4280
4281 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4282 insn = NEXT_INSN (insn))
4283 if (INSN_P (insn))
4284 free_INSN_LIST_list (&LOG_LINKS (insn));
4285 });
4286 }
4287
4288 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4289 correspond to the hard registers, if any, set in that map. This
4290 could be done far more efficiently by having all sorts of special-cases
4291 with moving single words, but probably isn't worth the trouble. */
4292
4293 void
4294 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4295 {
4296 int i;
4297
4298 EXECUTE_IF_SET_IN_BITMAP
4299 (from, 0, i,
4300 {
4301 if (i >= FIRST_PSEUDO_REGISTER)
4302 return;
4303 SET_HARD_REG_BIT (*to, i);
4304 });
4305 }