]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/flow.c
2005-07-05 Paolo Bonzini <bonzini@gnu.org>
[thirdparty/gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143 #include "tree-pass.h"
144
145 #ifndef HAVE_epilogue
146 #define HAVE_epilogue 0
147 #endif
148 #ifndef HAVE_prologue
149 #define HAVE_prologue 0
150 #endif
151 #ifndef HAVE_sibcall_epilogue
152 #define HAVE_sibcall_epilogue 0
153 #endif
154
155 #ifndef EPILOGUE_USES
156 #define EPILOGUE_USES(REGNO) 0
157 #endif
158 #ifndef EH_USES
159 #define EH_USES(REGNO) 0
160 #endif
161
162 #ifdef HAVE_conditional_execution
163 #ifndef REVERSE_CONDEXEC_PREDICATES_P
164 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
165 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
166 #endif
167 #endif
168
169 /* This is the maximum number of times we process any given block if the
170 latest loop depth count is smaller than this number. Only used for the
171 failure strategy to avoid infinite loops in calculate_global_regs_live. */
172 #define MAX_LIVENESS_ROUNDS 20
173
174 /* Nonzero if the second flow pass has completed. */
175 int flow2_completed;
176
177 /* Maximum register number used in this function, plus one. */
178
179 int max_regno;
180
181 /* Indexed by n, giving various register information */
182
183 varray_type reg_n_info;
184
185 /* Regset of regs live when calls to `setjmp'-like functions happen. */
186 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187
188 static regset regs_live_at_setjmp;
189
190 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
191 that have to go in the same hard reg.
192 The first two regs in the list are a pair, and the next two
193 are another pair, etc. */
194 rtx regs_may_share;
195
196 /* Set of registers that may be eliminable. These are handled specially
197 in updating regs_ever_live. */
198
199 static HARD_REG_SET elim_reg_set;
200
201 /* Holds information for tracking conditional register life information. */
202 struct reg_cond_life_info
203 {
204 /* A boolean expression of conditions under which a register is dead. */
205 rtx condition;
206 /* Conditions under which a register is dead at the basic block end. */
207 rtx orig_condition;
208
209 /* A boolean expression of conditions under which a register has been
210 stored into. */
211 rtx stores;
212
213 /* ??? Could store mask of bytes that are dead, so that we could finally
214 track lifetimes of multi-word registers accessed via subregs. */
215 };
216
217 /* For use in communicating between propagate_block and its subroutines.
218 Holds all information needed to compute life and def-use information. */
219
220 struct propagate_block_info
221 {
222 /* The basic block we're considering. */
223 basic_block bb;
224
225 /* Bit N is set if register N is conditionally or unconditionally live. */
226 regset reg_live;
227
228 /* Bit N is set if register N is set this insn. */
229 regset new_set;
230
231 /* Element N is the next insn that uses (hard or pseudo) register N
232 within the current basic block; or zero, if there is no such insn. */
233 rtx *reg_next_use;
234
235 /* Contains a list of all the MEMs we are tracking for dead store
236 elimination. */
237 rtx mem_set_list;
238
239 /* If non-null, record the set of registers set unconditionally in the
240 basic block. */
241 regset local_set;
242
243 /* If non-null, record the set of registers set conditionally in the
244 basic block. */
245 regset cond_local_set;
246
247 #ifdef HAVE_conditional_execution
248 /* Indexed by register number, holds a reg_cond_life_info for each
249 register that is not unconditionally live or dead. */
250 splay_tree reg_cond_dead;
251
252 /* Bit N is set if register N is in an expression in reg_cond_dead. */
253 regset reg_cond_reg;
254 #endif
255
256 /* The length of mem_set_list. */
257 int mem_set_list_len;
258
259 /* Nonzero if the value of CC0 is live. */
260 int cc0_live;
261
262 /* Flags controlling the set of information propagate_block collects. */
263 int flags;
264 /* Index of instruction being processed. */
265 int insn_num;
266 };
267
268 /* Number of dead insns removed. */
269 static int ndead;
270
271 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
272 where given register died. When the register is marked alive, we use the
273 information to compute amount of instructions life range cross.
274 (remember, we are walking backward). This can be computed as current
275 pbi->insn_num - reg_deaths[regno].
276 At the end of processing each basic block, the remaining live registers
277 are inspected and live ranges are increased same way so liverange of global
278 registers are computed correctly.
279
280 The array is maintained clear for dead registers, so it can be safely reused
281 for next basic block without expensive memset of the whole array after
282 reseting pbi->insn_num to 0. */
283
284 static int *reg_deaths;
285
286 /* Maximum length of pbi->mem_set_list before we start dropping
287 new elements on the floor. */
288 #define MAX_MEM_SET_LIST_LEN 100
289
290 /* Forward declarations */
291 static int verify_wide_reg_1 (rtx *, void *);
292 static void verify_wide_reg (int, basic_block);
293 static void verify_local_live_at_start (regset, basic_block);
294 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
295 static void notice_stack_pointer_modification (void);
296 static void mark_reg (rtx, void *);
297 static void mark_regs_live_at_end (regset);
298 static void calculate_global_regs_live (sbitmap, sbitmap, int);
299 static void propagate_block_delete_insn (rtx);
300 static rtx propagate_block_delete_libcall (rtx, rtx);
301 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
302 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
304 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
305 rtx, rtx, int);
306 static int find_regno_partial (rtx *, void *);
307
308 #ifdef HAVE_conditional_execution
309 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
310 static void free_reg_cond_life_info (splay_tree_value);
311 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
312 static void flush_reg_cond_reg (struct propagate_block_info *, int);
313 static rtx elim_reg_cond (rtx, unsigned int);
314 static rtx ior_reg_cond (rtx, rtx, int);
315 static rtx not_reg_cond (rtx);
316 static rtx and_reg_cond (rtx, rtx, int);
317 #endif
318 #ifdef AUTO_INC_DEC
319 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
320 rtx, rtx);
321 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
322 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
323 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
324 #endif
325 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
326 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
327 void debug_flow_info (void);
328 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
329 static int invalidate_mems_from_autoinc (rtx *, void *);
330 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
331 static void clear_log_links (sbitmap);
332 static int count_or_remove_death_notes_bb (basic_block, int);
333 static void allocate_bb_life_data (void);
334 \f
335 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
336 note associated with the BLOCK. */
337
338 rtx
339 first_insn_after_basic_block_note (basic_block block)
340 {
341 rtx insn;
342
343 /* Get the first instruction in the block. */
344 insn = BB_HEAD (block);
345
346 if (insn == NULL_RTX)
347 return NULL_RTX;
348 if (LABEL_P (insn))
349 insn = NEXT_INSN (insn);
350 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
351
352 return NEXT_INSN (insn);
353 }
354 \f
355 /* Perform data flow analysis for the whole control flow graph.
356 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
357
358 void
359 life_analysis (FILE *file, int flags)
360 {
361 #ifdef ELIMINABLE_REGS
362 int i;
363 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
364 #endif
365
366 /* Record which registers will be eliminated. We use this in
367 mark_used_regs. */
368
369 CLEAR_HARD_REG_SET (elim_reg_set);
370
371 #ifdef ELIMINABLE_REGS
372 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
373 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
374 #else
375 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
376 #endif
377
378
379 #ifdef CANNOT_CHANGE_MODE_CLASS
380 if (flags & PROP_REG_INFO)
381 init_subregs_of_mode ();
382 #endif
383
384 if (! optimize)
385 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
386
387 /* The post-reload life analysis have (on a global basis) the same
388 registers live as was computed by reload itself. elimination
389 Otherwise offsets and such may be incorrect.
390
391 Reload will make some registers as live even though they do not
392 appear in the rtl.
393
394 We don't want to create new auto-incs after reload, since they
395 are unlikely to be useful and can cause problems with shared
396 stack slots. */
397 if (reload_completed)
398 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
399
400 /* We want alias analysis information for local dead store elimination. */
401 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
402 init_alias_analysis ();
403
404 /* Always remove no-op moves. Do this before other processing so
405 that we don't have to keep re-scanning them. */
406 delete_noop_moves ();
407
408 /* Some targets can emit simpler epilogues if they know that sp was
409 not ever modified during the function. After reload, of course,
410 we've already emitted the epilogue so there's no sense searching. */
411 if (! reload_completed)
412 notice_stack_pointer_modification ();
413
414 /* Allocate and zero out data structures that will record the
415 data from lifetime analysis. */
416 allocate_reg_life_data ();
417 allocate_bb_life_data ();
418
419 /* Find the set of registers live on function exit. */
420 mark_regs_live_at_end (EXIT_BLOCK_PTR->il.rtl->global_live_at_start);
421
422 /* "Update" life info from zero. It'd be nice to begin the
423 relaxation with just the exit and noreturn blocks, but that set
424 is not immediately handy. */
425
426 if (flags & PROP_REG_INFO)
427 {
428 memset (regs_ever_live, 0, sizeof (regs_ever_live));
429 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
430 }
431 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
432 if (reg_deaths)
433 {
434 free (reg_deaths);
435 reg_deaths = NULL;
436 }
437
438 /* Clean up. */
439 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
440 end_alias_analysis ();
441
442 if (file)
443 dump_flow_info (file);
444
445 /* Removing dead insns should have made jumptables really dead. */
446 delete_dead_jumptables ();
447 }
448
449 /* A subroutine of verify_wide_reg, called through for_each_rtx.
450 Search for REGNO. If found, return 2 if it is not wider than
451 word_mode. */
452
453 static int
454 verify_wide_reg_1 (rtx *px, void *pregno)
455 {
456 rtx x = *px;
457 unsigned int regno = *(int *) pregno;
458
459 if (REG_P (x) && REGNO (x) == regno)
460 {
461 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
462 return 2;
463 return 1;
464 }
465 return 0;
466 }
467
468 /* A subroutine of verify_local_live_at_start. Search through insns
469 of BB looking for register REGNO. */
470
471 static void
472 verify_wide_reg (int regno, basic_block bb)
473 {
474 rtx head = BB_HEAD (bb), end = BB_END (bb);
475
476 while (1)
477 {
478 if (INSN_P (head))
479 {
480 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
481 if (r == 1)
482 return;
483 if (r == 2)
484 break;
485 }
486 if (head == end)
487 break;
488 head = NEXT_INSN (head);
489 }
490 if (dump_file)
491 {
492 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
493 dump_bb (bb, dump_file, 0);
494 }
495 fatal_error ("internal consistency failure");
496 }
497
498 /* A subroutine of update_life_info. Verify that there are no untoward
499 changes in live_at_start during a local update. */
500
501 static void
502 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
503 {
504 if (reload_completed)
505 {
506 /* After reload, there are no pseudos, nor subregs of multi-word
507 registers. The regsets should exactly match. */
508 if (! REG_SET_EQUAL_P (new_live_at_start,
509 bb->il.rtl->global_live_at_start))
510 {
511 if (dump_file)
512 {
513 fprintf (dump_file,
514 "live_at_start mismatch in bb %d, aborting\nNew:\n",
515 bb->index);
516 debug_bitmap_file (dump_file, new_live_at_start);
517 fputs ("Old:\n", dump_file);
518 dump_bb (bb, dump_file, 0);
519 }
520 fatal_error ("internal consistency failure");
521 }
522 }
523 else
524 {
525 unsigned i;
526 reg_set_iterator rsi;
527
528 /* Find the set of changed registers. */
529 XOR_REG_SET (new_live_at_start, bb->il.rtl->global_live_at_start);
530
531 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
532 {
533 /* No registers should die. */
534 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, i))
535 {
536 if (dump_file)
537 {
538 fprintf (dump_file,
539 "Register %d died unexpectedly.\n", i);
540 dump_bb (bb, dump_file, 0);
541 }
542 fatal_error ("internal consistency failure");
543 }
544 /* Verify that the now-live register is wider than word_mode. */
545 verify_wide_reg (i, bb);
546 }
547 }
548 }
549
550 /* Updates life information starting with the basic blocks set in BLOCKS.
551 If BLOCKS is null, consider it to be the universal set.
552
553 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
554 we are only expecting local modifications to basic blocks. If we find
555 extra registers live at the beginning of a block, then we either killed
556 useful data, or we have a broken split that wants data not provided.
557 If we find registers removed from live_at_start, that means we have
558 a broken peephole that is killing a register it shouldn't.
559
560 ??? This is not true in one situation -- when a pre-reload splitter
561 generates subregs of a multi-word pseudo, current life analysis will
562 lose the kill. So we _can_ have a pseudo go live. How irritating.
563
564 It is also not true when a peephole decides that it doesn't need one
565 or more of the inputs.
566
567 Including PROP_REG_INFO does not properly refresh regs_ever_live
568 unless the caller resets it to zero. */
569
570 int
571 update_life_info (sbitmap blocks, enum update_life_extent extent,
572 int prop_flags)
573 {
574 regset tmp;
575 unsigned i;
576 int stabilized_prop_flags = prop_flags;
577 basic_block bb;
578
579 tmp = ALLOC_REG_SET (&reg_obstack);
580 ndead = 0;
581
582 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
583 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
584
585 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
586 ? TV_LIFE_UPDATE : TV_LIFE);
587
588 /* Changes to the CFG are only allowed when
589 doing a global update for the entire CFG. */
590 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
591 || (extent != UPDATE_LIFE_LOCAL && !blocks));
592
593 /* For a global update, we go through the relaxation process again. */
594 if (extent != UPDATE_LIFE_LOCAL)
595 {
596 for ( ; ; )
597 {
598 int changed = 0;
599
600 calculate_global_regs_live (blocks, blocks,
601 prop_flags & (PROP_SCAN_DEAD_CODE
602 | PROP_SCAN_DEAD_STORES
603 | PROP_ALLOW_CFG_CHANGES));
604
605 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
606 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
607 break;
608
609 /* Removing dead code may allow the CFG to be simplified which
610 in turn may allow for further dead code detection / removal. */
611 FOR_EACH_BB_REVERSE (bb)
612 {
613 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
614 changed |= propagate_block (bb, tmp, NULL, NULL,
615 prop_flags & (PROP_SCAN_DEAD_CODE
616 | PROP_SCAN_DEAD_STORES
617 | PROP_KILL_DEAD_CODE));
618 }
619
620 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
621 subsequent propagate_block calls, since removing or acting as
622 removing dead code can affect global register liveness, which
623 is supposed to be finalized for this call after this loop. */
624 stabilized_prop_flags
625 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
626 | PROP_KILL_DEAD_CODE);
627
628 if (! changed)
629 break;
630
631 /* We repeat regardless of what cleanup_cfg says. If there were
632 instructions deleted above, that might have been only a
633 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
634 Further improvement may be possible. */
635 cleanup_cfg (CLEANUP_EXPENSIVE);
636
637 /* Zap the life information from the last round. If we don't
638 do this, we can wind up with registers that no longer appear
639 in the code being marked live at entry. */
640 FOR_EACH_BB (bb)
641 {
642 CLEAR_REG_SET (bb->il.rtl->global_live_at_start);
643 CLEAR_REG_SET (bb->il.rtl->global_live_at_end);
644 }
645 }
646
647 /* If asked, remove notes from the blocks we'll update. */
648 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
649 count_or_remove_death_notes (blocks, 1);
650 }
651
652 /* Clear log links in case we are asked to (re)compute them. */
653 if (prop_flags & PROP_LOG_LINKS)
654 clear_log_links (blocks);
655
656 if (blocks)
657 {
658 sbitmap_iterator sbi;
659
660 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
661 {
662 bb = BASIC_BLOCK (i);
663
664 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
665 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
666
667 if (extent == UPDATE_LIFE_LOCAL)
668 verify_local_live_at_start (tmp, bb);
669 };
670 }
671 else
672 {
673 FOR_EACH_BB_REVERSE (bb)
674 {
675 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
676
677 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
678
679 if (extent == UPDATE_LIFE_LOCAL)
680 verify_local_live_at_start (tmp, bb);
681 }
682 }
683
684 FREE_REG_SET (tmp);
685
686 if (prop_flags & PROP_REG_INFO)
687 {
688 reg_set_iterator rsi;
689
690 /* The only pseudos that are live at the beginning of the function
691 are those that were not set anywhere in the function. local-alloc
692 doesn't know how to handle these correctly, so mark them as not
693 local to any one basic block. */
694 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
695 FIRST_PSEUDO_REGISTER, i, rsi)
696 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
697
698 /* We have a problem with any pseudoreg that lives across the setjmp.
699 ANSI says that if a user variable does not change in value between
700 the setjmp and the longjmp, then the longjmp preserves it. This
701 includes longjmp from a place where the pseudo appears dead.
702 (In principle, the value still exists if it is in scope.)
703 If the pseudo goes in a hard reg, some other value may occupy
704 that hard reg where this pseudo is dead, thus clobbering the pseudo.
705 Conclusion: such a pseudo must not go in a hard reg. */
706 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
707 FIRST_PSEUDO_REGISTER, i, rsi)
708 {
709 if (regno_reg_rtx[i] != 0)
710 {
711 REG_LIVE_LENGTH (i) = -1;
712 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
713 }
714 }
715 }
716 if (reg_deaths)
717 {
718 free (reg_deaths);
719 reg_deaths = NULL;
720 }
721 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
722 ? TV_LIFE_UPDATE : TV_LIFE);
723 if (ndead && dump_file)
724 fprintf (dump_file, "deleted %i dead insns\n", ndead);
725 return ndead;
726 }
727
728 /* Update life information in all blocks where BB_DIRTY is set. */
729
730 int
731 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
732 {
733 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
734 int n = 0;
735 basic_block bb;
736 int retval = 0;
737
738 sbitmap_zero (update_life_blocks);
739 FOR_EACH_BB (bb)
740 {
741 if (bb->flags & BB_DIRTY)
742 {
743 SET_BIT (update_life_blocks, bb->index);
744 n++;
745 }
746 }
747
748 if (n)
749 retval = update_life_info (update_life_blocks, extent, prop_flags);
750
751 sbitmap_free (update_life_blocks);
752 return retval;
753 }
754
755 /* Free the variables allocated by find_basic_blocks. */
756
757 void
758 free_basic_block_vars (void)
759 {
760 if (basic_block_info)
761 {
762 clear_edges ();
763 basic_block_info = NULL;
764 }
765 n_basic_blocks = 0;
766 last_basic_block = 0;
767 n_edges = 0;
768
769 label_to_block_map = NULL;
770
771 ENTRY_BLOCK_PTR->aux = NULL;
772 ENTRY_BLOCK_PTR->il.rtl->global_live_at_end = NULL;
773 EXIT_BLOCK_PTR->aux = NULL;
774 EXIT_BLOCK_PTR->il.rtl->global_live_at_start = NULL;
775 }
776
777 /* Delete any insns that copy a register to itself. */
778
779 int
780 delete_noop_moves (void)
781 {
782 rtx insn, next;
783 basic_block bb;
784 int nnoops = 0;
785
786 FOR_EACH_BB (bb)
787 {
788 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
789 {
790 next = NEXT_INSN (insn);
791 if (INSN_P (insn) && noop_move_p (insn))
792 {
793 rtx note;
794
795 /* If we're about to remove the first insn of a libcall
796 then move the libcall note to the next real insn and
797 update the retval note. */
798 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
799 && XEXP (note, 0) != insn)
800 {
801 rtx new_libcall_insn = next_real_insn (insn);
802 rtx retval_note = find_reg_note (XEXP (note, 0),
803 REG_RETVAL, NULL_RTX);
804 REG_NOTES (new_libcall_insn)
805 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
806 REG_NOTES (new_libcall_insn));
807 XEXP (retval_note, 0) = new_libcall_insn;
808 }
809
810 delete_insn_and_edges (insn);
811 nnoops++;
812 }
813 }
814 }
815 if (nnoops && dump_file)
816 fprintf (dump_file, "deleted %i noop moves", nnoops);
817 return nnoops;
818 }
819
820 /* Delete any jump tables never referenced. We can't delete them at the
821 time of removing tablejump insn as they are referenced by the preceding
822 insns computing the destination, so we delay deleting and garbagecollect
823 them once life information is computed. */
824 void
825 delete_dead_jumptables (void)
826 {
827 basic_block bb;
828
829 /* A dead jump table does not belong to any basic block. Scan insns
830 between two adjacent basic blocks. */
831 FOR_EACH_BB (bb)
832 {
833 rtx insn, next;
834
835 for (insn = NEXT_INSN (BB_END (bb));
836 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
837 insn = next)
838 {
839 next = NEXT_INSN (insn);
840 if (LABEL_P (insn)
841 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
842 && JUMP_P (next)
843 && (GET_CODE (PATTERN (next)) == ADDR_VEC
844 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
845 {
846 rtx label = insn, jump = next;
847
848 if (dump_file)
849 fprintf (dump_file, "Dead jumptable %i removed\n",
850 INSN_UID (insn));
851
852 next = NEXT_INSN (next);
853 delete_insn (jump);
854 delete_insn (label);
855 }
856 }
857 }
858 }
859
860 /* Determine if the stack pointer is constant over the life of the function.
861 Only useful before prologues have been emitted. */
862
863 static void
864 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
865 void *data ATTRIBUTE_UNUSED)
866 {
867 if (x == stack_pointer_rtx
868 /* The stack pointer is only modified indirectly as the result
869 of a push until later in flow. See the comments in rtl.texi
870 regarding Embedded Side-Effects on Addresses. */
871 || (MEM_P (x)
872 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
873 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
874 current_function_sp_is_unchanging = 0;
875 }
876
877 static void
878 notice_stack_pointer_modification (void)
879 {
880 basic_block bb;
881 rtx insn;
882
883 /* Assume that the stack pointer is unchanging if alloca hasn't
884 been used. */
885 current_function_sp_is_unchanging = !current_function_calls_alloca;
886 if (! current_function_sp_is_unchanging)
887 return;
888
889 FOR_EACH_BB (bb)
890 FOR_BB_INSNS (bb, insn)
891 {
892 if (INSN_P (insn))
893 {
894 /* Check if insn modifies the stack pointer. */
895 note_stores (PATTERN (insn),
896 notice_stack_pointer_modification_1,
897 NULL);
898 if (! current_function_sp_is_unchanging)
899 return;
900 }
901 }
902 }
903
904 /* Mark a register in SET. Hard registers in large modes get all
905 of their component registers set as well. */
906
907 static void
908 mark_reg (rtx reg, void *xset)
909 {
910 regset set = (regset) xset;
911 int regno = REGNO (reg);
912
913 gcc_assert (GET_MODE (reg) != BLKmode);
914
915 SET_REGNO_REG_SET (set, regno);
916 if (regno < FIRST_PSEUDO_REGISTER)
917 {
918 int n = hard_regno_nregs[regno][GET_MODE (reg)];
919 while (--n > 0)
920 SET_REGNO_REG_SET (set, regno + n);
921 }
922 }
923
924 /* Mark those regs which are needed at the end of the function as live
925 at the end of the last basic block. */
926
927 static void
928 mark_regs_live_at_end (regset set)
929 {
930 unsigned int i;
931
932 /* If exiting needs the right stack value, consider the stack pointer
933 live at the end of the function. */
934 if ((HAVE_epilogue && epilogue_completed)
935 || ! EXIT_IGNORE_STACK
936 || (! FRAME_POINTER_REQUIRED
937 && ! current_function_calls_alloca
938 && flag_omit_frame_pointer)
939 || current_function_sp_is_unchanging)
940 {
941 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
942 }
943
944 /* Mark the frame pointer if needed at the end of the function. If
945 we end up eliminating it, it will be removed from the live list
946 of each basic block by reload. */
947
948 if (! reload_completed || frame_pointer_needed)
949 {
950 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
951 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
952 /* If they are different, also mark the hard frame pointer as live. */
953 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
954 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
955 #endif
956 }
957
958 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
959 /* Many architectures have a GP register even without flag_pic.
960 Assume the pic register is not in use, or will be handled by
961 other means, if it is not fixed. */
962 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
963 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
964 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
965 #endif
966
967 /* Mark all global registers, and all registers used by the epilogue
968 as being live at the end of the function since they may be
969 referenced by our caller. */
970 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
971 if (global_regs[i] || EPILOGUE_USES (i))
972 SET_REGNO_REG_SET (set, i);
973
974 if (HAVE_epilogue && epilogue_completed)
975 {
976 /* Mark all call-saved registers that we actually used. */
977 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
978 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
979 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
980 SET_REGNO_REG_SET (set, i);
981 }
982
983 #ifdef EH_RETURN_DATA_REGNO
984 /* Mark the registers that will contain data for the handler. */
985 if (reload_completed && current_function_calls_eh_return)
986 for (i = 0; ; ++i)
987 {
988 unsigned regno = EH_RETURN_DATA_REGNO(i);
989 if (regno == INVALID_REGNUM)
990 break;
991 SET_REGNO_REG_SET (set, regno);
992 }
993 #endif
994 #ifdef EH_RETURN_STACKADJ_RTX
995 if ((! HAVE_epilogue || ! epilogue_completed)
996 && current_function_calls_eh_return)
997 {
998 rtx tmp = EH_RETURN_STACKADJ_RTX;
999 if (tmp && REG_P (tmp))
1000 mark_reg (tmp, set);
1001 }
1002 #endif
1003 #ifdef EH_RETURN_HANDLER_RTX
1004 if ((! HAVE_epilogue || ! epilogue_completed)
1005 && current_function_calls_eh_return)
1006 {
1007 rtx tmp = EH_RETURN_HANDLER_RTX;
1008 if (tmp && REG_P (tmp))
1009 mark_reg (tmp, set);
1010 }
1011 #endif
1012
1013 /* Mark function return value. */
1014 diddle_return_value (mark_reg, set);
1015 }
1016
1017 /* Propagate global life info around the graph of basic blocks. Begin
1018 considering blocks with their corresponding bit set in BLOCKS_IN.
1019 If BLOCKS_IN is null, consider it the universal set.
1020
1021 BLOCKS_OUT is set for every block that was changed. */
1022
1023 static void
1024 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1025 {
1026 basic_block *queue, *qhead, *qtail, *qend, bb;
1027 regset tmp, new_live_at_end, invalidated_by_call;
1028 regset registers_made_dead;
1029 bool failure_strategy_required = false;
1030 int *block_accesses;
1031
1032 /* The registers that are modified within this in block. */
1033 regset *local_sets;
1034
1035 /* The registers that are conditionally modified within this block.
1036 In other words, regs that are set only as part of a COND_EXEC. */
1037 regset *cond_local_sets;
1038
1039 unsigned int i;
1040
1041 /* Some passes used to forget clear aux field of basic block causing
1042 sick behavior here. */
1043 #ifdef ENABLE_CHECKING
1044 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1045 gcc_assert (!bb->aux);
1046 #endif
1047
1048 tmp = ALLOC_REG_SET (&reg_obstack);
1049 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1050 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1051 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1052
1053 /* Inconveniently, this is only readily available in hard reg set form. */
1054 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1055 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1056 SET_REGNO_REG_SET (invalidated_by_call, i);
1057
1058 /* Allocate space for the sets of local properties. */
1059 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1060 sizeof (regset));
1061 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1062 sizeof (regset));
1063
1064 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1065 because the `head == tail' style test for an empty queue doesn't
1066 work with a full queue. */
1067 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1068 qtail = queue;
1069 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1070
1071 /* Queue the blocks set in the initial mask. Do this in reverse block
1072 number order so that we are more likely for the first round to do
1073 useful work. We use AUX non-null to flag that the block is queued. */
1074 if (blocks_in)
1075 {
1076 FOR_EACH_BB (bb)
1077 if (TEST_BIT (blocks_in, bb->index))
1078 {
1079 *--qhead = bb;
1080 bb->aux = bb;
1081 }
1082 }
1083 else
1084 {
1085 FOR_EACH_BB (bb)
1086 {
1087 *--qhead = bb;
1088 bb->aux = bb;
1089 }
1090 }
1091
1092 block_accesses = xcalloc (last_basic_block, sizeof (int));
1093
1094 /* We clean aux when we remove the initially-enqueued bbs, but we
1095 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1096 unconditionally. */
1097 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1098
1099 if (blocks_out)
1100 sbitmap_zero (blocks_out);
1101
1102 /* We work through the queue until there are no more blocks. What
1103 is live at the end of this block is precisely the union of what
1104 is live at the beginning of all its successors. So, we set its
1105 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1106 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1107 this block by walking through the instructions in this block in
1108 reverse order and updating as we go. If that changed
1109 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1110 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1111
1112 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1113 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1114 must either be live at the end of the block, or used within the
1115 block. In the latter case, it will certainly never disappear
1116 from GLOBAL_LIVE_AT_START. In the former case, the register
1117 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1118 for one of the successor blocks. By induction, that cannot
1119 occur.
1120
1121 ??? This reasoning doesn't work if we start from non-empty initial
1122 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1123 1) Updating may not terminate (endless oscillation).
1124 2) Even if it does (and it usually does), the resulting information
1125 may be inaccurate. Consider for example the following case:
1126
1127 a = ...;
1128 while (...) {...} -- 'a' not mentioned at all
1129 ... = a;
1130
1131 If the use of 'a' is deleted between two calculations of liveness
1132 information and the initial sets are not cleared, the information
1133 about a's liveness will get stuck inside the loop and the set will
1134 appear not to be dead.
1135
1136 We do not attempt to solve 2) -- the information is conservatively
1137 correct (i.e. we never claim that something live is dead) and the
1138 amount of optimization opportunities missed due to this problem is
1139 not significant.
1140
1141 1) is more serious. In order to fix it, we monitor the number of times
1142 each block is processed. Once one of the blocks has been processed more
1143 times than the maximum number of rounds, we use the following strategy:
1144 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1145 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1146 add the blocks with changed sets into the queue. Thus we are guaranteed
1147 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1148 in which case the original reasoning above is valid), but in general we
1149 only fix up a few offending registers.
1150
1151 The maximum number of rounds for computing liveness is the largest of
1152 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1153
1154 while (qhead != qtail)
1155 {
1156 int rescan, changed;
1157 basic_block bb;
1158 edge e;
1159 edge_iterator ei;
1160
1161 bb = *qhead++;
1162 if (qhead == qend)
1163 qhead = queue;
1164 bb->aux = NULL;
1165
1166 /* Should we start using the failure strategy? */
1167 if (bb != ENTRY_BLOCK_PTR)
1168 {
1169 int max_liveness_rounds =
1170 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1171
1172 block_accesses[bb->index]++;
1173 if (block_accesses[bb->index] > max_liveness_rounds)
1174 failure_strategy_required = true;
1175 }
1176
1177 /* Begin by propagating live_at_start from the successor blocks. */
1178 CLEAR_REG_SET (new_live_at_end);
1179
1180 if (EDGE_COUNT (bb->succs) > 0)
1181 FOR_EACH_EDGE (e, ei, bb->succs)
1182 {
1183 basic_block sb = e->dest;
1184
1185 /* Call-clobbered registers die across exception and
1186 call edges. */
1187 /* ??? Abnormal call edges ignored for the moment, as this gets
1188 confused by sibling call edges, which crashes reg-stack. */
1189 if (e->flags & EDGE_EH)
1190 bitmap_ior_and_compl_into (new_live_at_end,
1191 sb->il.rtl->global_live_at_start,
1192 invalidated_by_call);
1193 else
1194 IOR_REG_SET (new_live_at_end, sb->il.rtl->global_live_at_start);
1195
1196 /* If a target saves one register in another (instead of on
1197 the stack) the save register will need to be live for EH. */
1198 if (e->flags & EDGE_EH)
1199 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1200 if (EH_USES (i))
1201 SET_REGNO_REG_SET (new_live_at_end, i);
1202 }
1203 else
1204 {
1205 /* This might be a noreturn function that throws. And
1206 even if it isn't, getting the unwind info right helps
1207 debugging. */
1208 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1209 if (EH_USES (i))
1210 SET_REGNO_REG_SET (new_live_at_end, i);
1211 }
1212
1213 /* The all-important stack pointer must always be live. */
1214 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1215
1216 /* Before reload, there are a few registers that must be forced
1217 live everywhere -- which might not already be the case for
1218 blocks within infinite loops. */
1219 if (! reload_completed)
1220 {
1221 /* Any reference to any pseudo before reload is a potential
1222 reference of the frame pointer. */
1223 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1224
1225 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1226 /* Pseudos with argument area equivalences may require
1227 reloading via the argument pointer. */
1228 if (fixed_regs[ARG_POINTER_REGNUM])
1229 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1230 #endif
1231
1232 /* Any constant, or pseudo with constant equivalences, may
1233 require reloading from memory using the pic register. */
1234 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1235 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1236 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1237 }
1238
1239 if (bb == ENTRY_BLOCK_PTR)
1240 {
1241 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1242 continue;
1243 }
1244
1245 /* On our first pass through this block, we'll go ahead and continue.
1246 Recognize first pass by checking if local_set is NULL for this
1247 basic block. On subsequent passes, we get to skip out early if
1248 live_at_end wouldn't have changed. */
1249
1250 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1251 {
1252 local_sets[bb->index - (INVALID_BLOCK + 1)]
1253 = ALLOC_REG_SET (&reg_obstack);
1254 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1255 = ALLOC_REG_SET (&reg_obstack);
1256 rescan = 1;
1257 }
1258 else
1259 {
1260 /* If any bits were removed from live_at_end, we'll have to
1261 rescan the block. This wouldn't be necessary if we had
1262 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1263 local_live is really dependent on live_at_end. */
1264 rescan = bitmap_intersect_compl_p (bb->il.rtl->global_live_at_end,
1265 new_live_at_end);
1266
1267 if (!rescan)
1268 {
1269 regset cond_local_set;
1270
1271 /* If any of the registers in the new live_at_end set are
1272 conditionally set in this basic block, we must rescan.
1273 This is because conditional lifetimes at the end of the
1274 block do not just take the live_at_end set into
1275 account, but also the liveness at the start of each
1276 successor block. We can miss changes in those sets if
1277 we only compare the new live_at_end against the
1278 previous one. */
1279 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1280 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1281 }
1282
1283 if (!rescan)
1284 {
1285 regset local_set;
1286
1287 /* Find the set of changed bits. Take this opportunity
1288 to notice that this set is empty and early out. */
1289 bitmap_xor (tmp, bb->il.rtl->global_live_at_end, new_live_at_end);
1290 if (bitmap_empty_p (tmp))
1291 continue;
1292
1293 /* If any of the changed bits overlap with local_sets[bb],
1294 we'll have to rescan the block. */
1295 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1296 rescan = bitmap_intersect_p (tmp, local_set);
1297 }
1298 }
1299
1300 /* Let our caller know that BB changed enough to require its
1301 death notes updated. */
1302 if (blocks_out)
1303 SET_BIT (blocks_out, bb->index);
1304
1305 if (! rescan)
1306 {
1307 /* Add to live_at_start the set of all registers in
1308 new_live_at_end that aren't in the old live_at_end. */
1309
1310 changed = bitmap_ior_and_compl_into (bb->il.rtl->global_live_at_start,
1311 new_live_at_end,
1312 bb->il.rtl->global_live_at_end);
1313 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1314 if (! changed)
1315 continue;
1316 }
1317 else
1318 {
1319 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1320
1321 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1322 into live_at_start. */
1323 propagate_block (bb, new_live_at_end,
1324 local_sets[bb->index - (INVALID_BLOCK + 1)],
1325 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1326 flags);
1327
1328 /* If live_at start didn't change, no need to go farther. */
1329 if (REG_SET_EQUAL_P (bb->il.rtl->global_live_at_start,
1330 new_live_at_end))
1331 continue;
1332
1333 if (failure_strategy_required)
1334 {
1335 /* Get the list of registers that were removed from the
1336 bb->global_live_at_start set. */
1337 bitmap_and_compl (tmp, bb->il.rtl->global_live_at_start,
1338 new_live_at_end);
1339 if (!bitmap_empty_p (tmp))
1340 {
1341 bool pbb_changed;
1342 basic_block pbb;
1343
1344 /* It should not happen that one of registers we have
1345 removed last time is disappears again before any other
1346 register does. */
1347 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1348 gcc_assert (pbb_changed);
1349
1350 /* Now remove the registers from all sets. */
1351 FOR_EACH_BB (pbb)
1352 {
1353 pbb_changed = false;
1354
1355 pbb_changed
1356 |= bitmap_and_compl_into
1357 (pbb->il.rtl->global_live_at_start,
1358 registers_made_dead);
1359 pbb_changed
1360 |= bitmap_and_compl_into
1361 (pbb->il.rtl->global_live_at_end,
1362 registers_made_dead);
1363 if (!pbb_changed)
1364 continue;
1365
1366 /* Note the (possible) change. */
1367 if (blocks_out)
1368 SET_BIT (blocks_out, pbb->index);
1369
1370 /* Makes sure to really rescan the block. */
1371 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1372 {
1373 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1374 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1375 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1376 }
1377
1378 /* Add it to the queue. */
1379 if (pbb->aux == NULL)
1380 {
1381 *qtail++ = pbb;
1382 if (qtail == qend)
1383 qtail = queue;
1384 pbb->aux = pbb;
1385 }
1386 }
1387 continue;
1388 }
1389 } /* end of failure_strategy_required */
1390
1391 COPY_REG_SET (bb->il.rtl->global_live_at_start, new_live_at_end);
1392 }
1393
1394 /* Queue all predecessors of BB so that we may re-examine
1395 their live_at_end. */
1396 FOR_EACH_EDGE (e, ei, bb->preds)
1397 {
1398 basic_block pb = e->src;
1399 if (pb->aux == NULL)
1400 {
1401 *qtail++ = pb;
1402 if (qtail == qend)
1403 qtail = queue;
1404 pb->aux = pb;
1405 }
1406 }
1407 }
1408
1409 FREE_REG_SET (tmp);
1410 FREE_REG_SET (new_live_at_end);
1411 FREE_REG_SET (invalidated_by_call);
1412 FREE_REG_SET (registers_made_dead);
1413
1414 if (blocks_out)
1415 {
1416 sbitmap_iterator sbi;
1417
1418 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i, sbi)
1419 {
1420 basic_block bb = BASIC_BLOCK (i);
1421 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1422 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1423 };
1424 }
1425 else
1426 {
1427 FOR_EACH_BB (bb)
1428 {
1429 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1430 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1431 }
1432 }
1433
1434 free (block_accesses);
1435 free (queue);
1436 free (cond_local_sets);
1437 free (local_sets);
1438 }
1439
1440 \f
1441 /* This structure is used to pass parameters to and from the
1442 the function find_regno_partial(). It is used to pass in the
1443 register number we are looking, as well as to return any rtx
1444 we find. */
1445
1446 typedef struct {
1447 unsigned regno_to_find;
1448 rtx retval;
1449 } find_regno_partial_param;
1450
1451
1452 /* Find the rtx for the reg numbers specified in 'data' if it is
1453 part of an expression which only uses part of the register. Return
1454 it in the structure passed in. */
1455 static int
1456 find_regno_partial (rtx *ptr, void *data)
1457 {
1458 find_regno_partial_param *param = (find_regno_partial_param *)data;
1459 unsigned reg = param->regno_to_find;
1460 param->retval = NULL_RTX;
1461
1462 if (*ptr == NULL_RTX)
1463 return 0;
1464
1465 switch (GET_CODE (*ptr))
1466 {
1467 case ZERO_EXTRACT:
1468 case SIGN_EXTRACT:
1469 case STRICT_LOW_PART:
1470 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1471 {
1472 param->retval = XEXP (*ptr, 0);
1473 return 1;
1474 }
1475 break;
1476
1477 case SUBREG:
1478 if (REG_P (SUBREG_REG (*ptr))
1479 && REGNO (SUBREG_REG (*ptr)) == reg)
1480 {
1481 param->retval = SUBREG_REG (*ptr);
1482 return 1;
1483 }
1484 break;
1485
1486 default:
1487 break;
1488 }
1489
1490 return 0;
1491 }
1492
1493 /* Process all immediate successors of the entry block looking for pseudo
1494 registers which are live on entry. Find all of those whose first
1495 instance is a partial register reference of some kind, and initialize
1496 them to 0 after the entry block. This will prevent bit sets within
1497 registers whose value is unknown, and may contain some kind of sticky
1498 bits we don't want. */
1499
1500 int
1501 initialize_uninitialized_subregs (void)
1502 {
1503 rtx insn;
1504 edge e;
1505 unsigned reg, did_something = 0;
1506 find_regno_partial_param param;
1507 edge_iterator ei;
1508
1509 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1510 {
1511 basic_block bb = e->dest;
1512 regset map = bb->il.rtl->global_live_at_start;
1513 reg_set_iterator rsi;
1514
1515 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1516 {
1517 int uid = REGNO_FIRST_UID (reg);
1518 rtx i;
1519
1520 /* Find an insn which mentions the register we are looking for.
1521 Its preferable to have an instance of the register's rtl since
1522 there may be various flags set which we need to duplicate.
1523 If we can't find it, its probably an automatic whose initial
1524 value doesn't matter, or hopefully something we don't care about. */
1525 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1526 ;
1527 if (i != NULL_RTX)
1528 {
1529 /* Found the insn, now get the REG rtx, if we can. */
1530 param.regno_to_find = reg;
1531 for_each_rtx (&i, find_regno_partial, &param);
1532 if (param.retval != NULL_RTX)
1533 {
1534 start_sequence ();
1535 emit_move_insn (param.retval,
1536 CONST0_RTX (GET_MODE (param.retval)));
1537 insn = get_insns ();
1538 end_sequence ();
1539 insert_insn_on_edge (insn, e);
1540 did_something = 1;
1541 }
1542 }
1543 }
1544 }
1545
1546 if (did_something)
1547 commit_edge_insertions ();
1548 return did_something;
1549 }
1550
1551 \f
1552 /* Subroutines of life analysis. */
1553
1554 /* Allocate the permanent data structures that represent the results
1555 of life analysis. */
1556
1557 static void
1558 allocate_bb_life_data (void)
1559 {
1560 basic_block bb;
1561
1562 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1563 {
1564 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1565 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1566 }
1567
1568 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1569 }
1570
1571 void
1572 allocate_reg_life_data (void)
1573 {
1574 int i;
1575
1576 max_regno = max_reg_num ();
1577 gcc_assert (!reg_deaths);
1578 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1579
1580 /* Recalculate the register space, in case it has grown. Old style
1581 vector oriented regsets would set regset_{size,bytes} here also. */
1582 allocate_reg_info (max_regno, FALSE, FALSE);
1583
1584 /* Reset all the data we'll collect in propagate_block and its
1585 subroutines. */
1586 for (i = 0; i < max_regno; i++)
1587 {
1588 REG_N_SETS (i) = 0;
1589 REG_N_REFS (i) = 0;
1590 REG_N_DEATHS (i) = 0;
1591 REG_N_CALLS_CROSSED (i) = 0;
1592 REG_LIVE_LENGTH (i) = 0;
1593 REG_FREQ (i) = 0;
1594 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1595 }
1596 }
1597
1598 /* Delete dead instructions for propagate_block. */
1599
1600 static void
1601 propagate_block_delete_insn (rtx insn)
1602 {
1603 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1604
1605 /* If the insn referred to a label, and that label was attached to
1606 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1607 pretty much mandatory to delete it, because the ADDR_VEC may be
1608 referencing labels that no longer exist.
1609
1610 INSN may reference a deleted label, particularly when a jump
1611 table has been optimized into a direct jump. There's no
1612 real good way to fix up the reference to the deleted label
1613 when the label is deleted, so we just allow it here. */
1614
1615 if (inote && LABEL_P (inote))
1616 {
1617 rtx label = XEXP (inote, 0);
1618 rtx next;
1619
1620 /* The label may be forced if it has been put in the constant
1621 pool. If that is the only use we must discard the table
1622 jump following it, but not the label itself. */
1623 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1624 && (next = next_nonnote_insn (label)) != NULL
1625 && JUMP_P (next)
1626 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1627 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1628 {
1629 rtx pat = PATTERN (next);
1630 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1631 int len = XVECLEN (pat, diff_vec_p);
1632 int i;
1633
1634 for (i = 0; i < len; i++)
1635 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1636
1637 delete_insn_and_edges (next);
1638 ndead++;
1639 }
1640 }
1641
1642 delete_insn_and_edges (insn);
1643 ndead++;
1644 }
1645
1646 /* Delete dead libcalls for propagate_block. Return the insn
1647 before the libcall. */
1648
1649 static rtx
1650 propagate_block_delete_libcall (rtx insn, rtx note)
1651 {
1652 rtx first = XEXP (note, 0);
1653 rtx before = PREV_INSN (first);
1654
1655 delete_insn_chain_and_edges (first, insn);
1656 ndead++;
1657 return before;
1658 }
1659
1660 /* Update the life-status of regs for one insn. Return the previous insn. */
1661
1662 rtx
1663 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1664 {
1665 rtx prev = PREV_INSN (insn);
1666 int flags = pbi->flags;
1667 int insn_is_dead = 0;
1668 int libcall_is_dead = 0;
1669 rtx note;
1670 unsigned i;
1671
1672 if (! INSN_P (insn))
1673 return prev;
1674
1675 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1676 if (flags & PROP_SCAN_DEAD_CODE)
1677 {
1678 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1679 libcall_is_dead = (insn_is_dead && note != 0
1680 && libcall_dead_p (pbi, note, insn));
1681 }
1682
1683 /* If an instruction consists of just dead store(s) on final pass,
1684 delete it. */
1685 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1686 {
1687 /* If we're trying to delete a prologue or epilogue instruction
1688 that isn't flagged as possibly being dead, something is wrong.
1689 But if we are keeping the stack pointer depressed, we might well
1690 be deleting insns that are used to compute the amount to update
1691 it by, so they are fine. */
1692 if (reload_completed
1693 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1694 && (TYPE_RETURNS_STACK_DEPRESSED
1695 (TREE_TYPE (current_function_decl))))
1696 && (((HAVE_epilogue || HAVE_prologue)
1697 && prologue_epilogue_contains (insn))
1698 || (HAVE_sibcall_epilogue
1699 && sibcall_epilogue_contains (insn)))
1700 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1701 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1702
1703 /* Record sets. Do this even for dead instructions, since they
1704 would have killed the values if they hadn't been deleted. To
1705 be consistent, we also have to emit a clobber when we delete
1706 an insn that clobbers a live register. */
1707 pbi->flags |= PROP_DEAD_INSN;
1708 mark_set_regs (pbi, PATTERN (insn), insn);
1709 pbi->flags &= ~PROP_DEAD_INSN;
1710
1711 /* CC0 is now known to be dead. Either this insn used it,
1712 in which case it doesn't anymore, or clobbered it,
1713 so the next insn can't use it. */
1714 pbi->cc0_live = 0;
1715
1716 if (libcall_is_dead)
1717 prev = propagate_block_delete_libcall (insn, note);
1718 else
1719 {
1720
1721 /* If INSN contains a RETVAL note and is dead, but the libcall
1722 as a whole is not dead, then we want to remove INSN, but
1723 not the whole libcall sequence.
1724
1725 However, we need to also remove the dangling REG_LIBCALL
1726 note so that we do not have mis-matched LIBCALL/RETVAL
1727 notes. In theory we could find a new location for the
1728 REG_RETVAL note, but it hardly seems worth the effort.
1729
1730 NOTE at this point will be the RETVAL note if it exists. */
1731 if (note)
1732 {
1733 rtx libcall_note;
1734
1735 libcall_note
1736 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1737 remove_note (XEXP (note, 0), libcall_note);
1738 }
1739
1740 /* Similarly if INSN contains a LIBCALL note, remove the
1741 dangling REG_RETVAL note. */
1742 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1743 if (note)
1744 {
1745 rtx retval_note;
1746
1747 retval_note
1748 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1749 remove_note (XEXP (note, 0), retval_note);
1750 }
1751
1752 /* Now delete INSN. */
1753 propagate_block_delete_insn (insn);
1754 }
1755
1756 return prev;
1757 }
1758
1759 /* See if this is an increment or decrement that can be merged into
1760 a following memory address. */
1761 #ifdef AUTO_INC_DEC
1762 {
1763 rtx x = single_set (insn);
1764
1765 /* Does this instruction increment or decrement a register? */
1766 if ((flags & PROP_AUTOINC)
1767 && x != 0
1768 && REG_P (SET_DEST (x))
1769 && (GET_CODE (SET_SRC (x)) == PLUS
1770 || GET_CODE (SET_SRC (x)) == MINUS)
1771 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1772 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1773 /* Ok, look for a following memory ref we can combine with.
1774 If one is found, change the memory ref to a PRE_INC
1775 or PRE_DEC, cancel this insn, and return 1.
1776 Return 0 if nothing has been done. */
1777 && try_pre_increment_1 (pbi, insn))
1778 return prev;
1779 }
1780 #endif /* AUTO_INC_DEC */
1781
1782 CLEAR_REG_SET (pbi->new_set);
1783
1784 /* If this is not the final pass, and this insn is copying the value of
1785 a library call and it's dead, don't scan the insns that perform the
1786 library call, so that the call's arguments are not marked live. */
1787 if (libcall_is_dead)
1788 {
1789 /* Record the death of the dest reg. */
1790 mark_set_regs (pbi, PATTERN (insn), insn);
1791
1792 insn = XEXP (note, 0);
1793 return PREV_INSN (insn);
1794 }
1795 else if (GET_CODE (PATTERN (insn)) == SET
1796 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1797 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1798 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1799 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1800 {
1801 /* We have an insn to pop a constant amount off the stack.
1802 (Such insns use PLUS regardless of the direction of the stack,
1803 and any insn to adjust the stack by a constant is always a pop
1804 or part of a push.)
1805 These insns, if not dead stores, have no effect on life, though
1806 they do have an effect on the memory stores we are tracking. */
1807 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1808 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1809 concludes that the stack pointer is not modified. */
1810 mark_set_regs (pbi, PATTERN (insn), insn);
1811 }
1812 else
1813 {
1814 /* Any regs live at the time of a call instruction must not go
1815 in a register clobbered by calls. Find all regs now live and
1816 record this for them. */
1817
1818 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1819 {
1820 reg_set_iterator rsi;
1821 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1822 REG_N_CALLS_CROSSED (i)++;
1823 }
1824
1825 /* Record sets. Do this even for dead instructions, since they
1826 would have killed the values if they hadn't been deleted. */
1827 mark_set_regs (pbi, PATTERN (insn), insn);
1828
1829 if (CALL_P (insn))
1830 {
1831 regset live_at_end;
1832 bool sibcall_p;
1833 rtx note, cond;
1834 int i;
1835
1836 cond = NULL_RTX;
1837 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1838 cond = COND_EXEC_TEST (PATTERN (insn));
1839
1840 /* Non-constant calls clobber memory, constant calls do not
1841 clobber memory, though they may clobber outgoing arguments
1842 on the stack. */
1843 if (! CONST_OR_PURE_CALL_P (insn))
1844 {
1845 free_EXPR_LIST_list (&pbi->mem_set_list);
1846 pbi->mem_set_list_len = 0;
1847 }
1848 else
1849 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1850
1851 /* There may be extra registers to be clobbered. */
1852 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1853 note;
1854 note = XEXP (note, 1))
1855 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1856 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1857 cond, insn, pbi->flags);
1858
1859 /* Calls change all call-used and global registers; sibcalls do not
1860 clobber anything that must be preserved at end-of-function,
1861 except for return values. */
1862
1863 sibcall_p = SIBLING_CALL_P (insn);
1864 live_at_end = EXIT_BLOCK_PTR->il.rtl->global_live_at_start;
1865 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1866 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1867 && ! (sibcall_p
1868 && REGNO_REG_SET_P (live_at_end, i)
1869 && ! refers_to_regno_p (i, i+1,
1870 current_function_return_rtx,
1871 (rtx *) 0)))
1872 {
1873 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1874 /* We do not want REG_UNUSED notes for these registers. */
1875 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1876 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1877 }
1878 }
1879
1880 /* If an insn doesn't use CC0, it becomes dead since we assume
1881 that every insn clobbers it. So show it dead here;
1882 mark_used_regs will set it live if it is referenced. */
1883 pbi->cc0_live = 0;
1884
1885 /* Record uses. */
1886 if (! insn_is_dead)
1887 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1888
1889 /* Sometimes we may have inserted something before INSN (such as a move)
1890 when we make an auto-inc. So ensure we will scan those insns. */
1891 #ifdef AUTO_INC_DEC
1892 prev = PREV_INSN (insn);
1893 #endif
1894
1895 if (! insn_is_dead && CALL_P (insn))
1896 {
1897 int i;
1898 rtx note, cond;
1899
1900 cond = NULL_RTX;
1901 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1902 cond = COND_EXEC_TEST (PATTERN (insn));
1903
1904 /* Calls use their arguments, and may clobber memory which
1905 address involves some register. */
1906 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1907 note;
1908 note = XEXP (note, 1))
1909 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1910 of which mark_used_regs knows how to handle. */
1911 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1912
1913 /* The stack ptr is used (honorarily) by a CALL insn. */
1914 if ((flags & PROP_REG_INFO)
1915 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1916 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1917 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1918
1919 /* Calls may also reference any of the global registers,
1920 so they are made live. */
1921 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1922 if (global_regs[i])
1923 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1924 }
1925 }
1926
1927 pbi->insn_num++;
1928
1929 return prev;
1930 }
1931
1932 /* Initialize a propagate_block_info struct for public consumption.
1933 Note that the structure itself is opaque to this file, but that
1934 the user can use the regsets provided here. */
1935
1936 struct propagate_block_info *
1937 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1938 regset cond_local_set, int flags)
1939 {
1940 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1941
1942 pbi->bb = bb;
1943 pbi->reg_live = live;
1944 pbi->mem_set_list = NULL_RTX;
1945 pbi->mem_set_list_len = 0;
1946 pbi->local_set = local_set;
1947 pbi->cond_local_set = cond_local_set;
1948 pbi->cc0_live = 0;
1949 pbi->flags = flags;
1950 pbi->insn_num = 0;
1951
1952 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1953 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1954 else
1955 pbi->reg_next_use = NULL;
1956
1957 pbi->new_set = BITMAP_ALLOC (NULL);
1958
1959 #ifdef HAVE_conditional_execution
1960 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1961 free_reg_cond_life_info);
1962 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1963
1964 /* If this block ends in a conditional branch, for each register
1965 live from one side of the branch and not the other, record the
1966 register as conditionally dead. */
1967 if (JUMP_P (BB_END (bb))
1968 && any_condjump_p (BB_END (bb)))
1969 {
1970 regset diff = ALLOC_REG_SET (&reg_obstack);
1971 basic_block bb_true, bb_false;
1972 unsigned i;
1973
1974 /* Identify the successor blocks. */
1975 bb_true = EDGE_SUCC (bb, 0)->dest;
1976 if (!single_succ_p (bb))
1977 {
1978 bb_false = EDGE_SUCC (bb, 1)->dest;
1979
1980 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1981 {
1982 basic_block t = bb_false;
1983 bb_false = bb_true;
1984 bb_true = t;
1985 }
1986 else
1987 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1988 }
1989 else
1990 {
1991 /* This can happen with a conditional jump to the next insn. */
1992 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1993
1994 /* Simplest way to do nothing. */
1995 bb_false = bb_true;
1996 }
1997
1998 /* Compute which register lead different lives in the successors. */
1999 bitmap_xor (diff, bb_true->il.rtl->global_live_at_start,
2000 bb_false->il.rtl->global_live_at_start);
2001
2002 if (!bitmap_empty_p (diff))
2003 {
2004 /* Extract the condition from the branch. */
2005 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
2006 rtx cond_true = XEXP (set_src, 0);
2007 rtx reg = XEXP (cond_true, 0);
2008 enum rtx_code inv_cond;
2009
2010 if (GET_CODE (reg) == SUBREG)
2011 reg = SUBREG_REG (reg);
2012
2013 /* We can only track conditional lifetimes if the condition is
2014 in the form of a reversible comparison of a register against
2015 zero. If the condition is more complex than that, then it is
2016 safe not to record any information. */
2017 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2018 if (inv_cond != UNKNOWN
2019 && REG_P (reg)
2020 && XEXP (cond_true, 1) == const0_rtx)
2021 {
2022 rtx cond_false
2023 = gen_rtx_fmt_ee (inv_cond,
2024 GET_MODE (cond_true), XEXP (cond_true, 0),
2025 XEXP (cond_true, 1));
2026 reg_set_iterator rsi;
2027
2028 if (GET_CODE (XEXP (set_src, 1)) == PC)
2029 {
2030 rtx t = cond_false;
2031 cond_false = cond_true;
2032 cond_true = t;
2033 }
2034
2035 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2036
2037 /* For each such register, mark it conditionally dead. */
2038 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2039 {
2040 struct reg_cond_life_info *rcli;
2041 rtx cond;
2042
2043 rcli = xmalloc (sizeof (*rcli));
2044
2045 if (REGNO_REG_SET_P (bb_true->il.rtl->global_live_at_start,
2046 i))
2047 cond = cond_false;
2048 else
2049 cond = cond_true;
2050 rcli->condition = cond;
2051 rcli->stores = const0_rtx;
2052 rcli->orig_condition = cond;
2053
2054 splay_tree_insert (pbi->reg_cond_dead, i,
2055 (splay_tree_value) rcli);
2056 }
2057 }
2058 }
2059
2060 FREE_REG_SET (diff);
2061 }
2062 #endif
2063
2064 /* If this block has no successors, any stores to the frame that aren't
2065 used later in the block are dead. So make a pass over the block
2066 recording any such that are made and show them dead at the end. We do
2067 a very conservative and simple job here. */
2068 if (optimize
2069 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2070 && (TYPE_RETURNS_STACK_DEPRESSED
2071 (TREE_TYPE (current_function_decl))))
2072 && (flags & PROP_SCAN_DEAD_STORES)
2073 && (EDGE_COUNT (bb->succs) == 0
2074 || (single_succ_p (bb)
2075 && single_succ (bb) == EXIT_BLOCK_PTR
2076 && ! current_function_calls_eh_return)))
2077 {
2078 rtx insn, set;
2079 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2080 if (NONJUMP_INSN_P (insn)
2081 && (set = single_set (insn))
2082 && MEM_P (SET_DEST (set)))
2083 {
2084 rtx mem = SET_DEST (set);
2085 rtx canon_mem = canon_rtx (mem);
2086
2087 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2088 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2089 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2090 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2091 add_to_mem_set_list (pbi, canon_mem);
2092 }
2093 }
2094
2095 return pbi;
2096 }
2097
2098 /* Release a propagate_block_info struct. */
2099
2100 void
2101 free_propagate_block_info (struct propagate_block_info *pbi)
2102 {
2103 free_EXPR_LIST_list (&pbi->mem_set_list);
2104
2105 BITMAP_FREE (pbi->new_set);
2106
2107 #ifdef HAVE_conditional_execution
2108 splay_tree_delete (pbi->reg_cond_dead);
2109 BITMAP_FREE (pbi->reg_cond_reg);
2110 #endif
2111
2112 if (pbi->flags & PROP_REG_INFO)
2113 {
2114 int num = pbi->insn_num;
2115 unsigned i;
2116 reg_set_iterator rsi;
2117
2118 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2119 {
2120 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2121 reg_deaths[i] = 0;
2122 }
2123 }
2124 if (pbi->reg_next_use)
2125 free (pbi->reg_next_use);
2126
2127 free (pbi);
2128 }
2129
2130 /* Compute the registers live at the beginning of a basic block BB from
2131 those live at the end.
2132
2133 When called, REG_LIVE contains those live at the end. On return, it
2134 contains those live at the beginning.
2135
2136 LOCAL_SET, if non-null, will be set with all registers killed
2137 unconditionally by this basic block.
2138 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2139 killed conditionally by this basic block. If there is any unconditional
2140 set of a register, then the corresponding bit will be set in LOCAL_SET
2141 and cleared in COND_LOCAL_SET.
2142 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2143 case, the resulting set will be equal to the union of the two sets that
2144 would otherwise be computed.
2145
2146 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2147
2148 int
2149 propagate_block (basic_block bb, regset live, regset local_set,
2150 regset cond_local_set, int flags)
2151 {
2152 struct propagate_block_info *pbi;
2153 rtx insn, prev;
2154 int changed;
2155
2156 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2157
2158 if (flags & PROP_REG_INFO)
2159 {
2160 unsigned i;
2161 reg_set_iterator rsi;
2162
2163 /* Process the regs live at the end of the block.
2164 Mark them as not local to any one basic block. */
2165 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2166 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2167 }
2168
2169 /* Scan the block an insn at a time from end to beginning. */
2170
2171 changed = 0;
2172 for (insn = BB_END (bb); ; insn = prev)
2173 {
2174 /* If this is a call to `setjmp' et al, warn if any
2175 non-volatile datum is live. */
2176 if ((flags & PROP_REG_INFO)
2177 && CALL_P (insn)
2178 && find_reg_note (insn, REG_SETJMP, NULL))
2179 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2180
2181 prev = propagate_one_insn (pbi, insn);
2182 if (!prev)
2183 changed |= insn != get_insns ();
2184 else
2185 changed |= NEXT_INSN (prev) != insn;
2186
2187 if (insn == BB_HEAD (bb))
2188 break;
2189 }
2190
2191 free_propagate_block_info (pbi);
2192
2193 return changed;
2194 }
2195 \f
2196 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2197 (SET expressions whose destinations are registers dead after the insn).
2198 NEEDED is the regset that says which regs are alive after the insn.
2199
2200 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2201
2202 If X is the entire body of an insn, NOTES contains the reg notes
2203 pertaining to the insn. */
2204
2205 static int
2206 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2207 rtx notes ATTRIBUTE_UNUSED)
2208 {
2209 enum rtx_code code = GET_CODE (x);
2210
2211 /* Don't eliminate insns that may trap. */
2212 if (flag_non_call_exceptions && may_trap_p (x))
2213 return 0;
2214
2215 #ifdef AUTO_INC_DEC
2216 /* As flow is invoked after combine, we must take existing AUTO_INC
2217 expressions into account. */
2218 for (; notes; notes = XEXP (notes, 1))
2219 {
2220 if (REG_NOTE_KIND (notes) == REG_INC)
2221 {
2222 int regno = REGNO (XEXP (notes, 0));
2223
2224 /* Don't delete insns to set global regs. */
2225 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2226 || REGNO_REG_SET_P (pbi->reg_live, regno))
2227 return 0;
2228 }
2229 }
2230 #endif
2231
2232 /* If setting something that's a reg or part of one,
2233 see if that register's altered value will be live. */
2234
2235 if (code == SET)
2236 {
2237 rtx r = SET_DEST (x);
2238
2239 #ifdef HAVE_cc0
2240 if (GET_CODE (r) == CC0)
2241 return ! pbi->cc0_live;
2242 #endif
2243
2244 /* A SET that is a subroutine call cannot be dead. */
2245 if (GET_CODE (SET_SRC (x)) == CALL)
2246 {
2247 if (! call_ok)
2248 return 0;
2249 }
2250
2251 /* Don't eliminate loads from volatile memory or volatile asms. */
2252 else if (volatile_refs_p (SET_SRC (x)))
2253 return 0;
2254
2255 if (MEM_P (r))
2256 {
2257 rtx temp, canon_r;
2258
2259 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2260 return 0;
2261
2262 canon_r = canon_rtx (r);
2263
2264 /* Walk the set of memory locations we are currently tracking
2265 and see if one is an identical match to this memory location.
2266 If so, this memory write is dead (remember, we're walking
2267 backwards from the end of the block to the start). Since
2268 rtx_equal_p does not check the alias set or flags, we also
2269 must have the potential for them to conflict (anti_dependence). */
2270 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2271 if (anti_dependence (r, XEXP (temp, 0)))
2272 {
2273 rtx mem = XEXP (temp, 0);
2274
2275 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2276 && (GET_MODE_SIZE (GET_MODE (canon_r))
2277 <= GET_MODE_SIZE (GET_MODE (mem))))
2278 return 1;
2279
2280 #ifdef AUTO_INC_DEC
2281 /* Check if memory reference matches an auto increment. Only
2282 post increment/decrement or modify are valid. */
2283 if (GET_MODE (mem) == GET_MODE (r)
2284 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2285 || GET_CODE (XEXP (mem, 0)) == POST_INC
2286 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2287 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2288 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2289 return 1;
2290 #endif
2291 }
2292 }
2293 else
2294 {
2295 while (GET_CODE (r) == SUBREG
2296 || GET_CODE (r) == STRICT_LOW_PART
2297 || GET_CODE (r) == ZERO_EXTRACT)
2298 r = XEXP (r, 0);
2299
2300 if (REG_P (r))
2301 {
2302 int regno = REGNO (r);
2303
2304 /* Obvious. */
2305 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2306 return 0;
2307
2308 /* If this is a hard register, verify that subsequent
2309 words are not needed. */
2310 if (regno < FIRST_PSEUDO_REGISTER)
2311 {
2312 int n = hard_regno_nregs[regno][GET_MODE (r)];
2313
2314 while (--n > 0)
2315 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2316 return 0;
2317 }
2318
2319 /* Don't delete insns to set global regs. */
2320 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2321 return 0;
2322
2323 /* Make sure insns to set the stack pointer aren't deleted. */
2324 if (regno == STACK_POINTER_REGNUM)
2325 return 0;
2326
2327 /* ??? These bits might be redundant with the force live bits
2328 in calculate_global_regs_live. We would delete from
2329 sequential sets; whether this actually affects real code
2330 for anything but the stack pointer I don't know. */
2331 /* Make sure insns to set the frame pointer aren't deleted. */
2332 if (regno == FRAME_POINTER_REGNUM
2333 && (! reload_completed || frame_pointer_needed))
2334 return 0;
2335 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2336 if (regno == HARD_FRAME_POINTER_REGNUM
2337 && (! reload_completed || frame_pointer_needed))
2338 return 0;
2339 #endif
2340
2341 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2342 /* Make sure insns to set arg pointer are never deleted
2343 (if the arg pointer isn't fixed, there will be a USE
2344 for it, so we can treat it normally). */
2345 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2346 return 0;
2347 #endif
2348
2349 /* Otherwise, the set is dead. */
2350 return 1;
2351 }
2352 }
2353 }
2354
2355 /* If performing several activities, insn is dead if each activity
2356 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2357 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2358 worth keeping. */
2359 else if (code == PARALLEL)
2360 {
2361 int i = XVECLEN (x, 0);
2362
2363 for (i--; i >= 0; i--)
2364 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2365 && GET_CODE (XVECEXP (x, 0, i)) != USE
2366 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2367 return 0;
2368
2369 return 1;
2370 }
2371
2372 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2373 is not necessarily true for hard registers until after reload. */
2374 else if (code == CLOBBER)
2375 {
2376 if (REG_P (XEXP (x, 0))
2377 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2378 || reload_completed)
2379 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2380 return 1;
2381 }
2382
2383 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2384 Instances where it is still used are either (1) temporary and the USE
2385 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2386 or (3) hiding bugs elsewhere that are not properly representing data
2387 flow. */
2388
2389 return 0;
2390 }
2391
2392 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2393 return 1 if the entire library call is dead.
2394 This is true if INSN copies a register (hard or pseudo)
2395 and if the hard return reg of the call insn is dead.
2396 (The caller should have tested the destination of the SET inside
2397 INSN already for death.)
2398
2399 If this insn doesn't just copy a register, then we don't
2400 have an ordinary libcall. In that case, cse could not have
2401 managed to substitute the source for the dest later on,
2402 so we can assume the libcall is dead.
2403
2404 PBI is the block info giving pseudoregs live before this insn.
2405 NOTE is the REG_RETVAL note of the insn. */
2406
2407 static int
2408 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2409 {
2410 rtx x = single_set (insn);
2411
2412 if (x)
2413 {
2414 rtx r = SET_SRC (x);
2415
2416 if (REG_P (r) || GET_CODE (r) == SUBREG)
2417 {
2418 rtx call = XEXP (note, 0);
2419 rtx call_pat;
2420 int i;
2421
2422 /* Find the call insn. */
2423 while (call != insn && !CALL_P (call))
2424 call = NEXT_INSN (call);
2425
2426 /* If there is none, do nothing special,
2427 since ordinary death handling can understand these insns. */
2428 if (call == insn)
2429 return 0;
2430
2431 /* See if the hard reg holding the value is dead.
2432 If this is a PARALLEL, find the call within it. */
2433 call_pat = PATTERN (call);
2434 if (GET_CODE (call_pat) == PARALLEL)
2435 {
2436 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2437 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2438 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2439 break;
2440
2441 /* This may be a library call that is returning a value
2442 via invisible pointer. Do nothing special, since
2443 ordinary death handling can understand these insns. */
2444 if (i < 0)
2445 return 0;
2446
2447 call_pat = XVECEXP (call_pat, 0, i);
2448 }
2449
2450 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2451 return 0;
2452
2453 while ((insn = PREV_INSN (insn)) != call)
2454 {
2455 if (! INSN_P (insn))
2456 continue;
2457 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2458 return 0;
2459 }
2460 return 1;
2461 }
2462 }
2463 return 0;
2464 }
2465
2466 /* 1 if register REGNO was alive at a place where `setjmp' was called
2467 and was set more than once or is an argument.
2468 Such regs may be clobbered by `longjmp'. */
2469
2470 int
2471 regno_clobbered_at_setjmp (int regno)
2472 {
2473 if (n_basic_blocks == 0)
2474 return 0;
2475
2476 return ((REG_N_SETS (regno) > 1
2477 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2478 regno))
2479 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2480 }
2481 \f
2482 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2483 maximal list size; look for overlaps in mode and select the largest. */
2484 static void
2485 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2486 {
2487 rtx i;
2488
2489 /* We don't know how large a BLKmode store is, so we must not
2490 take them into consideration. */
2491 if (GET_MODE (mem) == BLKmode)
2492 return;
2493
2494 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2495 {
2496 rtx e = XEXP (i, 0);
2497 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2498 {
2499 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2500 {
2501 #ifdef AUTO_INC_DEC
2502 /* If we must store a copy of the mem, we can just modify
2503 the mode of the stored copy. */
2504 if (pbi->flags & PROP_AUTOINC)
2505 PUT_MODE (e, GET_MODE (mem));
2506 else
2507 #endif
2508 XEXP (i, 0) = mem;
2509 }
2510 return;
2511 }
2512 }
2513
2514 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2515 {
2516 #ifdef AUTO_INC_DEC
2517 /* Store a copy of mem, otherwise the address may be
2518 scrogged by find_auto_inc. */
2519 if (pbi->flags & PROP_AUTOINC)
2520 mem = shallow_copy_rtx (mem);
2521 #endif
2522 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2523 pbi->mem_set_list_len++;
2524 }
2525 }
2526
2527 /* INSN references memory, possibly using autoincrement addressing modes.
2528 Find any entries on the mem_set_list that need to be invalidated due
2529 to an address change. */
2530
2531 static int
2532 invalidate_mems_from_autoinc (rtx *px, void *data)
2533 {
2534 rtx x = *px;
2535 struct propagate_block_info *pbi = data;
2536
2537 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2538 {
2539 invalidate_mems_from_set (pbi, XEXP (x, 0));
2540 return -1;
2541 }
2542
2543 return 0;
2544 }
2545
2546 /* EXP is a REG or MEM. Remove any dependent entries from
2547 pbi->mem_set_list. */
2548
2549 static void
2550 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2551 {
2552 rtx temp = pbi->mem_set_list;
2553 rtx prev = NULL_RTX;
2554 rtx next;
2555
2556 while (temp)
2557 {
2558 next = XEXP (temp, 1);
2559 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2560 /* When we get an EXP that is a mem here, we want to check if EXP
2561 overlaps the *address* of any of the mems in the list (i.e. not
2562 whether the mems actually overlap; that's done elsewhere). */
2563 || (MEM_P (exp)
2564 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2565 {
2566 /* Splice this entry out of the list. */
2567 if (prev)
2568 XEXP (prev, 1) = next;
2569 else
2570 pbi->mem_set_list = next;
2571 free_EXPR_LIST_node (temp);
2572 pbi->mem_set_list_len--;
2573 }
2574 else
2575 prev = temp;
2576 temp = next;
2577 }
2578 }
2579
2580 /* Process the registers that are set within X. Their bits are set to
2581 1 in the regset DEAD, because they are dead prior to this insn.
2582
2583 If INSN is nonzero, it is the insn being processed.
2584
2585 FLAGS is the set of operations to perform. */
2586
2587 static void
2588 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2589 {
2590 rtx cond = NULL_RTX;
2591 rtx link;
2592 enum rtx_code code;
2593 int flags = pbi->flags;
2594
2595 if (insn)
2596 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2597 {
2598 if (REG_NOTE_KIND (link) == REG_INC)
2599 mark_set_1 (pbi, SET, XEXP (link, 0),
2600 (GET_CODE (x) == COND_EXEC
2601 ? COND_EXEC_TEST (x) : NULL_RTX),
2602 insn, flags);
2603 }
2604 retry:
2605 switch (code = GET_CODE (x))
2606 {
2607 case SET:
2608 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2609 flags |= PROP_ASM_SCAN;
2610 /* Fall through */
2611 case CLOBBER:
2612 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2613 return;
2614
2615 case COND_EXEC:
2616 cond = COND_EXEC_TEST (x);
2617 x = COND_EXEC_CODE (x);
2618 goto retry;
2619
2620 case PARALLEL:
2621 {
2622 int i;
2623
2624 /* We must scan forwards. If we have an asm, we need to set
2625 the PROP_ASM_SCAN flag before scanning the clobbers. */
2626 for (i = 0; i < XVECLEN (x, 0); i++)
2627 {
2628 rtx sub = XVECEXP (x, 0, i);
2629 switch (code = GET_CODE (sub))
2630 {
2631 case COND_EXEC:
2632 gcc_assert (!cond);
2633
2634 cond = COND_EXEC_TEST (sub);
2635 sub = COND_EXEC_CODE (sub);
2636 if (GET_CODE (sub) == SET)
2637 goto mark_set;
2638 if (GET_CODE (sub) == CLOBBER)
2639 goto mark_clob;
2640 break;
2641
2642 case SET:
2643 mark_set:
2644 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2645 flags |= PROP_ASM_SCAN;
2646 /* Fall through */
2647 case CLOBBER:
2648 mark_clob:
2649 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2650 break;
2651
2652 case ASM_OPERANDS:
2653 flags |= PROP_ASM_SCAN;
2654 break;
2655
2656 default:
2657 break;
2658 }
2659 }
2660 break;
2661 }
2662
2663 default:
2664 break;
2665 }
2666 }
2667
2668 /* Process a single set, which appears in INSN. REG (which may not
2669 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2670 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2671 If the set is conditional (because it appear in a COND_EXEC), COND
2672 will be the condition. */
2673
2674 static void
2675 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2676 {
2677 int regno_first = -1, regno_last = -1;
2678 unsigned long not_dead = 0;
2679 int i;
2680
2681 /* Modifying just one hardware register of a multi-reg value or just a
2682 byte field of a register does not mean the value from before this insn
2683 is now dead. Of course, if it was dead after it's unused now. */
2684
2685 switch (GET_CODE (reg))
2686 {
2687 case PARALLEL:
2688 /* Some targets place small structures in registers for return values of
2689 functions. We have to detect this case specially here to get correct
2690 flow information. */
2691 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2692 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2693 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2694 flags);
2695 return;
2696
2697 case SIGN_EXTRACT:
2698 /* SIGN_EXTRACT cannot be an lvalue. */
2699 gcc_unreachable ();
2700
2701 case ZERO_EXTRACT:
2702 case STRICT_LOW_PART:
2703 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2704 do
2705 reg = XEXP (reg, 0);
2706 while (GET_CODE (reg) == SUBREG
2707 || GET_CODE (reg) == ZERO_EXTRACT
2708 || GET_CODE (reg) == STRICT_LOW_PART);
2709 if (MEM_P (reg))
2710 break;
2711 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2712 /* Fall through. */
2713
2714 case REG:
2715 regno_last = regno_first = REGNO (reg);
2716 if (regno_first < FIRST_PSEUDO_REGISTER)
2717 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2718 break;
2719
2720 case SUBREG:
2721 if (REG_P (SUBREG_REG (reg)))
2722 {
2723 enum machine_mode outer_mode = GET_MODE (reg);
2724 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2725
2726 /* Identify the range of registers affected. This is moderately
2727 tricky for hard registers. See alter_subreg. */
2728
2729 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2730 if (regno_first < FIRST_PSEUDO_REGISTER)
2731 {
2732 regno_first += subreg_regno_offset (regno_first, inner_mode,
2733 SUBREG_BYTE (reg),
2734 outer_mode);
2735 regno_last = (regno_first
2736 + hard_regno_nregs[regno_first][outer_mode] - 1);
2737
2738 /* Since we've just adjusted the register number ranges, make
2739 sure REG matches. Otherwise some_was_live will be clear
2740 when it shouldn't have been, and we'll create incorrect
2741 REG_UNUSED notes. */
2742 reg = gen_rtx_REG (outer_mode, regno_first);
2743 }
2744 else
2745 {
2746 /* If the number of words in the subreg is less than the number
2747 of words in the full register, we have a well-defined partial
2748 set. Otherwise the high bits are undefined.
2749
2750 This is only really applicable to pseudos, since we just took
2751 care of multi-word hard registers. */
2752 if (((GET_MODE_SIZE (outer_mode)
2753 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2754 < ((GET_MODE_SIZE (inner_mode)
2755 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2756 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2757 regno_first);
2758
2759 reg = SUBREG_REG (reg);
2760 }
2761 }
2762 else
2763 reg = SUBREG_REG (reg);
2764 break;
2765
2766 default:
2767 break;
2768 }
2769
2770 /* If this set is a MEM, then it kills any aliased writes and any
2771 other MEMs which use it.
2772 If this set is a REG, then it kills any MEMs which use the reg. */
2773 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2774 {
2775 if (REG_P (reg) || MEM_P (reg))
2776 invalidate_mems_from_set (pbi, reg);
2777
2778 /* If the memory reference had embedded side effects (autoincrement
2779 address modes) then we may need to kill some entries on the
2780 memory set list. */
2781 if (insn && MEM_P (reg))
2782 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2783
2784 if (MEM_P (reg) && ! side_effects_p (reg)
2785 /* ??? With more effort we could track conditional memory life. */
2786 && ! cond)
2787 add_to_mem_set_list (pbi, canon_rtx (reg));
2788 }
2789
2790 if (REG_P (reg)
2791 && ! (regno_first == FRAME_POINTER_REGNUM
2792 && (! reload_completed || frame_pointer_needed))
2793 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2794 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2795 && (! reload_completed || frame_pointer_needed))
2796 #endif
2797 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2798 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2799 #endif
2800 )
2801 {
2802 int some_was_live = 0, some_was_dead = 0;
2803
2804 for (i = regno_first; i <= regno_last; ++i)
2805 {
2806 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2807 if (pbi->local_set)
2808 {
2809 /* Order of the set operation matters here since both
2810 sets may be the same. */
2811 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2812 if (cond != NULL_RTX
2813 && ! REGNO_REG_SET_P (pbi->local_set, i))
2814 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2815 else
2816 SET_REGNO_REG_SET (pbi->local_set, i);
2817 }
2818 if (code != CLOBBER)
2819 SET_REGNO_REG_SET (pbi->new_set, i);
2820
2821 some_was_live |= needed_regno;
2822 some_was_dead |= ! needed_regno;
2823 }
2824
2825 #ifdef HAVE_conditional_execution
2826 /* Consider conditional death in deciding that the register needs
2827 a death note. */
2828 if (some_was_live && ! not_dead
2829 /* The stack pointer is never dead. Well, not strictly true,
2830 but it's very difficult to tell from here. Hopefully
2831 combine_stack_adjustments will fix up the most egregious
2832 errors. */
2833 && regno_first != STACK_POINTER_REGNUM)
2834 {
2835 for (i = regno_first; i <= regno_last; ++i)
2836 if (! mark_regno_cond_dead (pbi, i, cond))
2837 not_dead |= ((unsigned long) 1) << (i - regno_first);
2838 }
2839 #endif
2840
2841 /* Additional data to record if this is the final pass. */
2842 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2843 | PROP_DEATH_NOTES | PROP_AUTOINC))
2844 {
2845 rtx y;
2846 int blocknum = pbi->bb->index;
2847
2848 y = NULL_RTX;
2849 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2850 {
2851 y = pbi->reg_next_use[regno_first];
2852
2853 /* The next use is no longer next, since a store intervenes. */
2854 for (i = regno_first; i <= regno_last; ++i)
2855 pbi->reg_next_use[i] = 0;
2856 }
2857
2858 if (flags & PROP_REG_INFO)
2859 {
2860 for (i = regno_first; i <= regno_last; ++i)
2861 {
2862 /* Count (weighted) references, stores, etc. This counts a
2863 register twice if it is modified, but that is correct. */
2864 REG_N_SETS (i) += 1;
2865 REG_N_REFS (i) += 1;
2866 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2867
2868 /* The insns where a reg is live are normally counted
2869 elsewhere, but we want the count to include the insn
2870 where the reg is set, and the normal counting mechanism
2871 would not count it. */
2872 REG_LIVE_LENGTH (i) += 1;
2873 }
2874
2875 /* If this is a hard reg, record this function uses the reg. */
2876 if (regno_first < FIRST_PSEUDO_REGISTER)
2877 {
2878 for (i = regno_first; i <= regno_last; i++)
2879 regs_ever_live[i] = 1;
2880 if (flags & PROP_ASM_SCAN)
2881 for (i = regno_first; i <= regno_last; i++)
2882 regs_asm_clobbered[i] = 1;
2883 }
2884 else
2885 {
2886 /* Keep track of which basic blocks each reg appears in. */
2887 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2888 REG_BASIC_BLOCK (regno_first) = blocknum;
2889 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2890 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2891 }
2892 }
2893
2894 if (! some_was_dead)
2895 {
2896 if (flags & PROP_LOG_LINKS)
2897 {
2898 /* Make a logical link from the next following insn
2899 that uses this register, back to this insn.
2900 The following insns have already been processed.
2901
2902 We don't build a LOG_LINK for hard registers containing
2903 in ASM_OPERANDs. If these registers get replaced,
2904 we might wind up changing the semantics of the insn,
2905 even if reload can make what appear to be valid
2906 assignments later.
2907
2908 We don't build a LOG_LINK for global registers to
2909 or from a function call. We don't want to let
2910 combine think that it knows what is going on with
2911 global registers. */
2912 if (y && (BLOCK_NUM (y) == blocknum)
2913 && (regno_first >= FIRST_PSEUDO_REGISTER
2914 || (asm_noperands (PATTERN (y)) < 0
2915 && ! ((CALL_P (insn)
2916 || CALL_P (y))
2917 && global_regs[regno_first]))))
2918 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2919 }
2920 }
2921 else if (not_dead)
2922 ;
2923 else if (! some_was_live)
2924 {
2925 if (flags & PROP_REG_INFO)
2926 REG_N_DEATHS (regno_first) += 1;
2927
2928 if (flags & PROP_DEATH_NOTES)
2929 {
2930 /* Note that dead stores have already been deleted
2931 when possible. If we get here, we have found a
2932 dead store that cannot be eliminated (because the
2933 same insn does something useful). Indicate this
2934 by marking the reg being set as dying here. */
2935 REG_NOTES (insn)
2936 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2937 }
2938 }
2939 else
2940 {
2941 if (flags & PROP_DEATH_NOTES)
2942 {
2943 /* This is a case where we have a multi-word hard register
2944 and some, but not all, of the words of the register are
2945 needed in subsequent insns. Write REG_UNUSED notes
2946 for those parts that were not needed. This case should
2947 be rare. */
2948
2949 for (i = regno_first; i <= regno_last; ++i)
2950 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2951 REG_NOTES (insn)
2952 = alloc_EXPR_LIST (REG_UNUSED,
2953 regno_reg_rtx[i],
2954 REG_NOTES (insn));
2955 }
2956 }
2957 }
2958
2959 /* Mark the register as being dead. */
2960 if (some_was_live
2961 /* The stack pointer is never dead. Well, not strictly true,
2962 but it's very difficult to tell from here. Hopefully
2963 combine_stack_adjustments will fix up the most egregious
2964 errors. */
2965 && regno_first != STACK_POINTER_REGNUM)
2966 {
2967 for (i = regno_first; i <= regno_last; ++i)
2968 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2969 {
2970 if ((pbi->flags & PROP_REG_INFO)
2971 && REGNO_REG_SET_P (pbi->reg_live, i))
2972 {
2973 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2974 reg_deaths[i] = 0;
2975 }
2976 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2977 }
2978 if (flags & PROP_DEAD_INSN)
2979 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, reg), insn);
2980 }
2981 }
2982 else if (REG_P (reg))
2983 {
2984 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2985 pbi->reg_next_use[regno_first] = 0;
2986
2987 if ((flags & PROP_REG_INFO) != 0
2988 && (flags & PROP_ASM_SCAN) != 0
2989 && regno_first < FIRST_PSEUDO_REGISTER)
2990 {
2991 for (i = regno_first; i <= regno_last; i++)
2992 regs_asm_clobbered[i] = 1;
2993 }
2994 }
2995
2996 /* If this is the last pass and this is a SCRATCH, show it will be dying
2997 here and count it. */
2998 else if (GET_CODE (reg) == SCRATCH)
2999 {
3000 if (flags & PROP_DEATH_NOTES)
3001 REG_NOTES (insn)
3002 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
3003 }
3004 }
3005 \f
3006 #ifdef HAVE_conditional_execution
3007 /* Mark REGNO conditionally dead.
3008 Return true if the register is now unconditionally dead. */
3009
3010 static int
3011 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
3012 {
3013 /* If this is a store to a predicate register, the value of the
3014 predicate is changing, we don't know that the predicate as seen
3015 before is the same as that seen after. Flush all dependent
3016 conditions from reg_cond_dead. This will make all such
3017 conditionally live registers unconditionally live. */
3018 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3019 flush_reg_cond_reg (pbi, regno);
3020
3021 /* If this is an unconditional store, remove any conditional
3022 life that may have existed. */
3023 if (cond == NULL_RTX)
3024 splay_tree_remove (pbi->reg_cond_dead, regno);
3025 else
3026 {
3027 splay_tree_node node;
3028 struct reg_cond_life_info *rcli;
3029 rtx ncond;
3030
3031 /* Otherwise this is a conditional set. Record that fact.
3032 It may have been conditionally used, or there may be a
3033 subsequent set with a complementary condition. */
3034
3035 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3036 if (node == NULL)
3037 {
3038 /* The register was unconditionally live previously.
3039 Record the current condition as the condition under
3040 which it is dead. */
3041 rcli = xmalloc (sizeof (*rcli));
3042 rcli->condition = cond;
3043 rcli->stores = cond;
3044 rcli->orig_condition = const0_rtx;
3045 splay_tree_insert (pbi->reg_cond_dead, regno,
3046 (splay_tree_value) rcli);
3047
3048 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3049
3050 /* Not unconditionally dead. */
3051 return 0;
3052 }
3053 else
3054 {
3055 /* The register was conditionally live previously.
3056 Add the new condition to the old. */
3057 rcli = (struct reg_cond_life_info *) node->value;
3058 ncond = rcli->condition;
3059 ncond = ior_reg_cond (ncond, cond, 1);
3060 if (rcli->stores == const0_rtx)
3061 rcli->stores = cond;
3062 else if (rcli->stores != const1_rtx)
3063 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3064
3065 /* If the register is now unconditionally dead, remove the entry
3066 in the splay_tree. A register is unconditionally dead if the
3067 dead condition ncond is true. A register is also unconditionally
3068 dead if the sum of all conditional stores is an unconditional
3069 store (stores is true), and the dead condition is identically the
3070 same as the original dead condition initialized at the end of
3071 the block. This is a pointer compare, not an rtx_equal_p
3072 compare. */
3073 if (ncond == const1_rtx
3074 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3075 splay_tree_remove (pbi->reg_cond_dead, regno);
3076 else
3077 {
3078 rcli->condition = ncond;
3079
3080 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3081
3082 /* Not unconditionally dead. */
3083 return 0;
3084 }
3085 }
3086 }
3087
3088 return 1;
3089 }
3090
3091 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3092
3093 static void
3094 free_reg_cond_life_info (splay_tree_value value)
3095 {
3096 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3097 free (rcli);
3098 }
3099
3100 /* Helper function for flush_reg_cond_reg. */
3101
3102 static int
3103 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3104 {
3105 struct reg_cond_life_info *rcli;
3106 int *xdata = (int *) data;
3107 unsigned int regno = xdata[0];
3108
3109 /* Don't need to search if last flushed value was farther on in
3110 the in-order traversal. */
3111 if (xdata[1] >= (int) node->key)
3112 return 0;
3113
3114 /* Splice out portions of the expression that refer to regno. */
3115 rcli = (struct reg_cond_life_info *) node->value;
3116 rcli->condition = elim_reg_cond (rcli->condition, regno);
3117 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3118 rcli->stores = elim_reg_cond (rcli->stores, regno);
3119
3120 /* If the entire condition is now false, signal the node to be removed. */
3121 if (rcli->condition == const0_rtx)
3122 {
3123 xdata[1] = node->key;
3124 return -1;
3125 }
3126 else
3127 gcc_assert (rcli->condition != const1_rtx);
3128
3129 return 0;
3130 }
3131
3132 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3133
3134 static void
3135 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3136 {
3137 int pair[2];
3138
3139 pair[0] = regno;
3140 pair[1] = -1;
3141 while (splay_tree_foreach (pbi->reg_cond_dead,
3142 flush_reg_cond_reg_1, pair) == -1)
3143 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3144
3145 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3146 }
3147
3148 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3149 For ior/and, the ADD flag determines whether we want to add the new
3150 condition X to the old one unconditionally. If it is zero, we will
3151 only return a new expression if X allows us to simplify part of
3152 OLD, otherwise we return NULL to the caller.
3153 If ADD is nonzero, we will return a new condition in all cases. The
3154 toplevel caller of one of these functions should always pass 1 for
3155 ADD. */
3156
3157 static rtx
3158 ior_reg_cond (rtx old, rtx x, int add)
3159 {
3160 rtx op0, op1;
3161
3162 if (COMPARISON_P (old))
3163 {
3164 if (COMPARISON_P (x)
3165 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3166 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3167 return const1_rtx;
3168 if (GET_CODE (x) == GET_CODE (old)
3169 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3170 return old;
3171 if (! add)
3172 return NULL;
3173 return gen_rtx_IOR (0, old, x);
3174 }
3175
3176 switch (GET_CODE (old))
3177 {
3178 case IOR:
3179 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3180 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3181 if (op0 != NULL || op1 != NULL)
3182 {
3183 if (op0 == const0_rtx)
3184 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3185 if (op1 == const0_rtx)
3186 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3187 if (op0 == const1_rtx || op1 == const1_rtx)
3188 return const1_rtx;
3189 if (op0 == NULL)
3190 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3191 else if (rtx_equal_p (x, op0))
3192 /* (x | A) | x ~ (x | A). */
3193 return old;
3194 if (op1 == NULL)
3195 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3196 else if (rtx_equal_p (x, op1))
3197 /* (A | x) | x ~ (A | x). */
3198 return old;
3199 return gen_rtx_IOR (0, op0, op1);
3200 }
3201 if (! add)
3202 return NULL;
3203 return gen_rtx_IOR (0, old, x);
3204
3205 case AND:
3206 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3207 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3208 if (op0 != NULL || op1 != NULL)
3209 {
3210 if (op0 == const1_rtx)
3211 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3212 if (op1 == const1_rtx)
3213 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3214 if (op0 == const0_rtx || op1 == const0_rtx)
3215 return const0_rtx;
3216 if (op0 == NULL)
3217 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3218 else if (rtx_equal_p (x, op0))
3219 /* (x & A) | x ~ x. */
3220 return op0;
3221 if (op1 == NULL)
3222 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3223 else if (rtx_equal_p (x, op1))
3224 /* (A & x) | x ~ x. */
3225 return op1;
3226 return gen_rtx_AND (0, op0, op1);
3227 }
3228 if (! add)
3229 return NULL;
3230 return gen_rtx_IOR (0, old, x);
3231
3232 case NOT:
3233 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3234 if (op0 != NULL)
3235 return not_reg_cond (op0);
3236 if (! add)
3237 return NULL;
3238 return gen_rtx_IOR (0, old, x);
3239
3240 default:
3241 gcc_unreachable ();
3242 }
3243 }
3244
3245 static rtx
3246 not_reg_cond (rtx x)
3247 {
3248 if (x == const0_rtx)
3249 return const1_rtx;
3250 else if (x == const1_rtx)
3251 return const0_rtx;
3252 if (GET_CODE (x) == NOT)
3253 return XEXP (x, 0);
3254 if (COMPARISON_P (x)
3255 && REG_P (XEXP (x, 0)))
3256 {
3257 gcc_assert (XEXP (x, 1) == const0_rtx);
3258
3259 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3260 VOIDmode, XEXP (x, 0), const0_rtx);
3261 }
3262 return gen_rtx_NOT (0, x);
3263 }
3264
3265 static rtx
3266 and_reg_cond (rtx old, rtx x, int add)
3267 {
3268 rtx op0, op1;
3269
3270 if (COMPARISON_P (old))
3271 {
3272 if (COMPARISON_P (x)
3273 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3274 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3275 return const0_rtx;
3276 if (GET_CODE (x) == GET_CODE (old)
3277 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3278 return old;
3279 if (! add)
3280 return NULL;
3281 return gen_rtx_AND (0, old, x);
3282 }
3283
3284 switch (GET_CODE (old))
3285 {
3286 case IOR:
3287 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3288 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3289 if (op0 != NULL || op1 != NULL)
3290 {
3291 if (op0 == const0_rtx)
3292 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3293 if (op1 == const0_rtx)
3294 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3295 if (op0 == const1_rtx || op1 == const1_rtx)
3296 return const1_rtx;
3297 if (op0 == NULL)
3298 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3299 else if (rtx_equal_p (x, op0))
3300 /* (x | A) & x ~ x. */
3301 return op0;
3302 if (op1 == NULL)
3303 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3304 else if (rtx_equal_p (x, op1))
3305 /* (A | x) & x ~ x. */
3306 return op1;
3307 return gen_rtx_IOR (0, op0, op1);
3308 }
3309 if (! add)
3310 return NULL;
3311 return gen_rtx_AND (0, old, x);
3312
3313 case AND:
3314 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3315 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3316 if (op0 != NULL || op1 != NULL)
3317 {
3318 if (op0 == const1_rtx)
3319 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3320 if (op1 == const1_rtx)
3321 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3322 if (op0 == const0_rtx || op1 == const0_rtx)
3323 return const0_rtx;
3324 if (op0 == NULL)
3325 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3326 else if (rtx_equal_p (x, op0))
3327 /* (x & A) & x ~ (x & A). */
3328 return old;
3329 if (op1 == NULL)
3330 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3331 else if (rtx_equal_p (x, op1))
3332 /* (A & x) & x ~ (A & x). */
3333 return old;
3334 return gen_rtx_AND (0, op0, op1);
3335 }
3336 if (! add)
3337 return NULL;
3338 return gen_rtx_AND (0, old, x);
3339
3340 case NOT:
3341 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3342 if (op0 != NULL)
3343 return not_reg_cond (op0);
3344 if (! add)
3345 return NULL;
3346 return gen_rtx_AND (0, old, x);
3347
3348 default:
3349 gcc_unreachable ();
3350 }
3351 }
3352
3353 /* Given a condition X, remove references to reg REGNO and return the
3354 new condition. The removal will be done so that all conditions
3355 involving REGNO are considered to evaluate to false. This function
3356 is used when the value of REGNO changes. */
3357
3358 static rtx
3359 elim_reg_cond (rtx x, unsigned int regno)
3360 {
3361 rtx op0, op1;
3362
3363 if (COMPARISON_P (x))
3364 {
3365 if (REGNO (XEXP (x, 0)) == regno)
3366 return const0_rtx;
3367 return x;
3368 }
3369
3370 switch (GET_CODE (x))
3371 {
3372 case AND:
3373 op0 = elim_reg_cond (XEXP (x, 0), regno);
3374 op1 = elim_reg_cond (XEXP (x, 1), regno);
3375 if (op0 == const0_rtx || op1 == const0_rtx)
3376 return const0_rtx;
3377 if (op0 == const1_rtx)
3378 return op1;
3379 if (op1 == const1_rtx)
3380 return op0;
3381 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3382 return x;
3383 return gen_rtx_AND (0, op0, op1);
3384
3385 case IOR:
3386 op0 = elim_reg_cond (XEXP (x, 0), regno);
3387 op1 = elim_reg_cond (XEXP (x, 1), regno);
3388 if (op0 == const1_rtx || op1 == const1_rtx)
3389 return const1_rtx;
3390 if (op0 == const0_rtx)
3391 return op1;
3392 if (op1 == const0_rtx)
3393 return op0;
3394 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3395 return x;
3396 return gen_rtx_IOR (0, op0, op1);
3397
3398 case NOT:
3399 op0 = elim_reg_cond (XEXP (x, 0), regno);
3400 if (op0 == const0_rtx)
3401 return const1_rtx;
3402 if (op0 == const1_rtx)
3403 return const0_rtx;
3404 if (op0 != XEXP (x, 0))
3405 return not_reg_cond (op0);
3406 return x;
3407
3408 default:
3409 gcc_unreachable ();
3410 }
3411 }
3412 #endif /* HAVE_conditional_execution */
3413 \f
3414 #ifdef AUTO_INC_DEC
3415
3416 /* Try to substitute the auto-inc expression INC as the address inside
3417 MEM which occurs in INSN. Currently, the address of MEM is an expression
3418 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3419 that has a single set whose source is a PLUS of INCR_REG and something
3420 else. */
3421
3422 static void
3423 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3424 rtx mem, rtx incr, rtx incr_reg)
3425 {
3426 int regno = REGNO (incr_reg);
3427 rtx set = single_set (incr);
3428 rtx q = SET_DEST (set);
3429 rtx y = SET_SRC (set);
3430 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3431 int changed;
3432
3433 /* Make sure this reg appears only once in this insn. */
3434 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3435 return;
3436
3437 if (dead_or_set_p (incr, incr_reg)
3438 /* Mustn't autoinc an eliminable register. */
3439 && (regno >= FIRST_PSEUDO_REGISTER
3440 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3441 {
3442 /* This is the simple case. Try to make the auto-inc. If
3443 we can't, we are done. Otherwise, we will do any
3444 needed updates below. */
3445 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3446 return;
3447 }
3448 else if (REG_P (q)
3449 /* PREV_INSN used here to check the semi-open interval
3450 [insn,incr). */
3451 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3452 /* We must also check for sets of q as q may be
3453 a call clobbered hard register and there may
3454 be a call between PREV_INSN (insn) and incr. */
3455 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3456 {
3457 /* We have *p followed sometime later by q = p+size.
3458 Both p and q must be live afterward,
3459 and q is not used between INSN and its assignment.
3460 Change it to q = p, ...*q..., q = q+size.
3461 Then fall into the usual case. */
3462 rtx insns, temp;
3463
3464 start_sequence ();
3465 emit_move_insn (q, incr_reg);
3466 insns = get_insns ();
3467 end_sequence ();
3468
3469 /* If we can't make the auto-inc, or can't make the
3470 replacement into Y, exit. There's no point in making
3471 the change below if we can't do the auto-inc and doing
3472 so is not correct in the pre-inc case. */
3473
3474 XEXP (inc, 0) = q;
3475 validate_change (insn, &XEXP (mem, 0), inc, 1);
3476 validate_change (incr, &XEXP (y, opnum), q, 1);
3477 if (! apply_change_group ())
3478 return;
3479
3480 /* We now know we'll be doing this change, so emit the
3481 new insn(s) and do the updates. */
3482 emit_insn_before (insns, insn);
3483
3484 if (BB_HEAD (pbi->bb) == insn)
3485 BB_HEAD (pbi->bb) = insns;
3486
3487 /* INCR will become a NOTE and INSN won't contain a
3488 use of INCR_REG. If a use of INCR_REG was just placed in
3489 the insn before INSN, make that the next use.
3490 Otherwise, invalidate it. */
3491 if (NONJUMP_INSN_P (PREV_INSN (insn))
3492 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3493 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3494 pbi->reg_next_use[regno] = PREV_INSN (insn);
3495 else
3496 pbi->reg_next_use[regno] = 0;
3497
3498 incr_reg = q;
3499 regno = REGNO (q);
3500
3501 if ((pbi->flags & PROP_REG_INFO)
3502 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3503 reg_deaths[regno] = pbi->insn_num;
3504
3505 /* REGNO is now used in INCR which is below INSN, but
3506 it previously wasn't live here. If we don't mark
3507 it as live, we'll put a REG_DEAD note for it
3508 on this insn, which is incorrect. */
3509 SET_REGNO_REG_SET (pbi->reg_live, regno);
3510
3511 /* If there are any calls between INSN and INCR, show
3512 that REGNO now crosses them. */
3513 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3514 if (CALL_P (temp))
3515 REG_N_CALLS_CROSSED (regno)++;
3516
3517 /* Invalidate alias info for Q since we just changed its value. */
3518 clear_reg_alias_info (q);
3519 }
3520 else
3521 return;
3522
3523 /* If we haven't returned, it means we were able to make the
3524 auto-inc, so update the status. First, record that this insn
3525 has an implicit side effect. */
3526
3527 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3528
3529 /* Modify the old increment-insn to simply copy
3530 the already-incremented value of our register. */
3531 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3532 gcc_assert (changed);
3533
3534 /* If that makes it a no-op (copying the register into itself) delete
3535 it so it won't appear to be a "use" and a "set" of this
3536 register. */
3537 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3538 {
3539 /* If the original source was dead, it's dead now. */
3540 rtx note;
3541
3542 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3543 {
3544 remove_note (incr, note);
3545 if (XEXP (note, 0) != incr_reg)
3546 {
3547 unsigned int regno = REGNO (XEXP (note, 0));
3548
3549 if ((pbi->flags & PROP_REG_INFO)
3550 && REGNO_REG_SET_P (pbi->reg_live, regno))
3551 {
3552 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3553 reg_deaths[regno] = 0;
3554 }
3555 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3556 }
3557 }
3558
3559 SET_INSN_DELETED (incr);
3560 }
3561
3562 if (regno >= FIRST_PSEUDO_REGISTER)
3563 {
3564 /* Count an extra reference to the reg. When a reg is
3565 incremented, spilling it is worse, so we want to make
3566 that less likely. */
3567 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3568
3569 /* Count the increment as a setting of the register,
3570 even though it isn't a SET in rtl. */
3571 REG_N_SETS (regno)++;
3572 }
3573 }
3574
3575 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3576 reference. */
3577
3578 static void
3579 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3580 {
3581 rtx addr = XEXP (x, 0);
3582 HOST_WIDE_INT offset = 0;
3583 rtx set, y, incr, inc_val;
3584 int regno;
3585 int size = GET_MODE_SIZE (GET_MODE (x));
3586
3587 if (JUMP_P (insn))
3588 return;
3589
3590 /* Here we detect use of an index register which might be good for
3591 postincrement, postdecrement, preincrement, or predecrement. */
3592
3593 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3594 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3595
3596 if (!REG_P (addr))
3597 return;
3598
3599 regno = REGNO (addr);
3600
3601 /* Is the next use an increment that might make auto-increment? */
3602 incr = pbi->reg_next_use[regno];
3603 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3604 return;
3605 set = single_set (incr);
3606 if (set == 0 || GET_CODE (set) != SET)
3607 return;
3608 y = SET_SRC (set);
3609
3610 if (GET_CODE (y) != PLUS)
3611 return;
3612
3613 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3614 inc_val = XEXP (y, 1);
3615 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3616 inc_val = XEXP (y, 0);
3617 else
3618 return;
3619
3620 if (GET_CODE (inc_val) == CONST_INT)
3621 {
3622 if (HAVE_POST_INCREMENT
3623 && (INTVAL (inc_val) == size && offset == 0))
3624 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3625 incr, addr);
3626 else if (HAVE_POST_DECREMENT
3627 && (INTVAL (inc_val) == -size && offset == 0))
3628 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3629 incr, addr);
3630 else if (HAVE_PRE_INCREMENT
3631 && (INTVAL (inc_val) == size && offset == size))
3632 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3633 incr, addr);
3634 else if (HAVE_PRE_DECREMENT
3635 && (INTVAL (inc_val) == -size && offset == -size))
3636 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3637 incr, addr);
3638 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3639 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3640 gen_rtx_PLUS (Pmode,
3641 addr,
3642 inc_val)),
3643 insn, x, incr, addr);
3644 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3645 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3646 gen_rtx_PLUS (Pmode,
3647 addr,
3648 inc_val)),
3649 insn, x, incr, addr);
3650 }
3651 else if (REG_P (inc_val)
3652 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3653 NEXT_INSN (incr)))
3654
3655 {
3656 if (HAVE_POST_MODIFY_REG && offset == 0)
3657 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3658 gen_rtx_PLUS (Pmode,
3659 addr,
3660 inc_val)),
3661 insn, x, incr, addr);
3662 }
3663 }
3664
3665 #endif /* AUTO_INC_DEC */
3666 \f
3667 static void
3668 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3669 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3670 {
3671 unsigned int regno_first, regno_last, i;
3672 int some_was_live, some_was_dead, some_not_set;
3673
3674 regno_last = regno_first = REGNO (reg);
3675 if (regno_first < FIRST_PSEUDO_REGISTER)
3676 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3677
3678 /* Find out if any of this register is live after this instruction. */
3679 some_was_live = some_was_dead = 0;
3680 for (i = regno_first; i <= regno_last; ++i)
3681 {
3682 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3683 some_was_live |= needed_regno;
3684 some_was_dead |= ! needed_regno;
3685 }
3686
3687 /* Find out if any of the register was set this insn. */
3688 some_not_set = 0;
3689 for (i = regno_first; i <= regno_last; ++i)
3690 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3691
3692 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3693 {
3694 /* Record where each reg is used, so when the reg is set we know
3695 the next insn that uses it. */
3696 pbi->reg_next_use[regno_first] = insn;
3697 }
3698
3699 if (pbi->flags & PROP_REG_INFO)
3700 {
3701 if (regno_first < FIRST_PSEUDO_REGISTER)
3702 {
3703 /* If this is a register we are going to try to eliminate,
3704 don't mark it live here. If we are successful in
3705 eliminating it, it need not be live unless it is used for
3706 pseudos, in which case it will have been set live when it
3707 was allocated to the pseudos. If the register will not
3708 be eliminated, reload will set it live at that point.
3709
3710 Otherwise, record that this function uses this register. */
3711 /* ??? The PPC backend tries to "eliminate" on the pic
3712 register to itself. This should be fixed. In the mean
3713 time, hack around it. */
3714
3715 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3716 && (regno_first == FRAME_POINTER_REGNUM
3717 || regno_first == ARG_POINTER_REGNUM)))
3718 for (i = regno_first; i <= regno_last; ++i)
3719 regs_ever_live[i] = 1;
3720 }
3721 else
3722 {
3723 /* Keep track of which basic block each reg appears in. */
3724
3725 int blocknum = pbi->bb->index;
3726 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3727 REG_BASIC_BLOCK (regno_first) = blocknum;
3728 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3729 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3730
3731 /* Count (weighted) number of uses of each reg. */
3732 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3733 REG_N_REFS (regno_first)++;
3734 }
3735 for (i = regno_first; i <= regno_last; ++i)
3736 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3737 {
3738 gcc_assert (!reg_deaths[i]);
3739 reg_deaths[i] = pbi->insn_num;
3740 }
3741 }
3742
3743 /* Record and count the insns in which a reg dies. If it is used in
3744 this insn and was dead below the insn then it dies in this insn.
3745 If it was set in this insn, we do not make a REG_DEAD note;
3746 likewise if we already made such a note. */
3747 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3748 && some_was_dead
3749 && some_not_set)
3750 {
3751 /* Check for the case where the register dying partially
3752 overlaps the register set by this insn. */
3753 if (regno_first != regno_last)
3754 for (i = regno_first; i <= regno_last; ++i)
3755 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3756
3757 /* If none of the words in X is needed, make a REG_DEAD note.
3758 Otherwise, we must make partial REG_DEAD notes. */
3759 if (! some_was_live)
3760 {
3761 if ((pbi->flags & PROP_DEATH_NOTES)
3762 && ! find_regno_note (insn, REG_DEAD, regno_first))
3763 REG_NOTES (insn)
3764 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3765
3766 if (pbi->flags & PROP_REG_INFO)
3767 REG_N_DEATHS (regno_first)++;
3768 }
3769 else
3770 {
3771 /* Don't make a REG_DEAD note for a part of a register
3772 that is set in the insn. */
3773 for (i = regno_first; i <= regno_last; ++i)
3774 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3775 && ! dead_or_set_regno_p (insn, i))
3776 REG_NOTES (insn)
3777 = alloc_EXPR_LIST (REG_DEAD,
3778 regno_reg_rtx[i],
3779 REG_NOTES (insn));
3780 }
3781 }
3782
3783 /* Mark the register as being live. */
3784 for (i = regno_first; i <= regno_last; ++i)
3785 {
3786 #ifdef HAVE_conditional_execution
3787 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3788 #endif
3789
3790 SET_REGNO_REG_SET (pbi->reg_live, i);
3791
3792 #ifdef HAVE_conditional_execution
3793 /* If this is a conditional use, record that fact. If it is later
3794 conditionally set, we'll know to kill the register. */
3795 if (cond != NULL_RTX)
3796 {
3797 splay_tree_node node;
3798 struct reg_cond_life_info *rcli;
3799 rtx ncond;
3800
3801 if (this_was_live)
3802 {
3803 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3804 if (node == NULL)
3805 {
3806 /* The register was unconditionally live previously.
3807 No need to do anything. */
3808 }
3809 else
3810 {
3811 /* The register was conditionally live previously.
3812 Subtract the new life cond from the old death cond. */
3813 rcli = (struct reg_cond_life_info *) node->value;
3814 ncond = rcli->condition;
3815 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3816
3817 /* If the register is now unconditionally live,
3818 remove the entry in the splay_tree. */
3819 if (ncond == const0_rtx)
3820 splay_tree_remove (pbi->reg_cond_dead, i);
3821 else
3822 {
3823 rcli->condition = ncond;
3824 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3825 REGNO (XEXP (cond, 0)));
3826 }
3827 }
3828 }
3829 else
3830 {
3831 /* The register was not previously live at all. Record
3832 the condition under which it is still dead. */
3833 rcli = xmalloc (sizeof (*rcli));
3834 rcli->condition = not_reg_cond (cond);
3835 rcli->stores = const0_rtx;
3836 rcli->orig_condition = const0_rtx;
3837 splay_tree_insert (pbi->reg_cond_dead, i,
3838 (splay_tree_value) rcli);
3839
3840 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3841 }
3842 }
3843 else if (this_was_live)
3844 {
3845 /* The register may have been conditionally live previously, but
3846 is now unconditionally live. Remove it from the conditionally
3847 dead list, so that a conditional set won't cause us to think
3848 it dead. */
3849 splay_tree_remove (pbi->reg_cond_dead, i);
3850 }
3851 #endif
3852 }
3853 }
3854
3855 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3856 This is done assuming the registers needed from X are those that
3857 have 1-bits in PBI->REG_LIVE.
3858
3859 INSN is the containing instruction. If INSN is dead, this function
3860 is not called. */
3861
3862 static void
3863 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3864 {
3865 RTX_CODE code;
3866 int regno;
3867 int flags = pbi->flags;
3868
3869 retry:
3870 if (!x)
3871 return;
3872 code = GET_CODE (x);
3873 switch (code)
3874 {
3875 case LABEL_REF:
3876 case SYMBOL_REF:
3877 case CONST_INT:
3878 case CONST:
3879 case CONST_DOUBLE:
3880 case CONST_VECTOR:
3881 case PC:
3882 case ADDR_VEC:
3883 case ADDR_DIFF_VEC:
3884 return;
3885
3886 #ifdef HAVE_cc0
3887 case CC0:
3888 pbi->cc0_live = 1;
3889 return;
3890 #endif
3891
3892 case CLOBBER:
3893 /* If we are clobbering a MEM, mark any registers inside the address
3894 as being used. */
3895 if (MEM_P (XEXP (x, 0)))
3896 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3897 return;
3898
3899 case MEM:
3900 /* Don't bother watching stores to mems if this is not the
3901 final pass. We'll not be deleting dead stores this round. */
3902 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3903 {
3904 /* Invalidate the data for the last MEM stored, but only if MEM is
3905 something that can be stored into. */
3906 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3907 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3908 /* Needn't clear the memory set list. */
3909 ;
3910 else
3911 {
3912 rtx temp = pbi->mem_set_list;
3913 rtx prev = NULL_RTX;
3914 rtx next;
3915
3916 while (temp)
3917 {
3918 next = XEXP (temp, 1);
3919 if (anti_dependence (XEXP (temp, 0), x))
3920 {
3921 /* Splice temp out of the list. */
3922 if (prev)
3923 XEXP (prev, 1) = next;
3924 else
3925 pbi->mem_set_list = next;
3926 free_EXPR_LIST_node (temp);
3927 pbi->mem_set_list_len--;
3928 }
3929 else
3930 prev = temp;
3931 temp = next;
3932 }
3933 }
3934
3935 /* If the memory reference had embedded side effects (autoincrement
3936 address modes. Then we may need to kill some entries on the
3937 memory set list. */
3938 if (insn)
3939 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3940 }
3941
3942 #ifdef AUTO_INC_DEC
3943 if (flags & PROP_AUTOINC)
3944 find_auto_inc (pbi, x, insn);
3945 #endif
3946 break;
3947
3948 case SUBREG:
3949 #ifdef CANNOT_CHANGE_MODE_CLASS
3950 if (flags & PROP_REG_INFO)
3951 record_subregs_of_mode (x);
3952 #endif
3953
3954 /* While we're here, optimize this case. */
3955 x = SUBREG_REG (x);
3956 if (!REG_P (x))
3957 goto retry;
3958 /* Fall through. */
3959
3960 case REG:
3961 /* See a register other than being set => mark it as needed. */
3962 mark_used_reg (pbi, x, cond, insn);
3963 return;
3964
3965 case SET:
3966 {
3967 rtx testreg = SET_DEST (x);
3968 int mark_dest = 0;
3969
3970 /* If storing into MEM, don't show it as being used. But do
3971 show the address as being used. */
3972 if (MEM_P (testreg))
3973 {
3974 #ifdef AUTO_INC_DEC
3975 if (flags & PROP_AUTOINC)
3976 find_auto_inc (pbi, testreg, insn);
3977 #endif
3978 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3979 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3980 return;
3981 }
3982
3983 /* Storing in STRICT_LOW_PART is like storing in a reg
3984 in that this SET might be dead, so ignore it in TESTREG.
3985 but in some other ways it is like using the reg.
3986
3987 Storing in a SUBREG or a bit field is like storing the entire
3988 register in that if the register's value is not used
3989 then this SET is not needed. */
3990 while (GET_CODE (testreg) == STRICT_LOW_PART
3991 || GET_CODE (testreg) == ZERO_EXTRACT
3992 || GET_CODE (testreg) == SUBREG)
3993 {
3994 #ifdef CANNOT_CHANGE_MODE_CLASS
3995 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3996 record_subregs_of_mode (testreg);
3997 #endif
3998
3999 /* Modifying a single register in an alternate mode
4000 does not use any of the old value. But these other
4001 ways of storing in a register do use the old value. */
4002 if (GET_CODE (testreg) == SUBREG
4003 && !((REG_BYTES (SUBREG_REG (testreg))
4004 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
4005 > (REG_BYTES (testreg)
4006 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
4007 ;
4008 else
4009 mark_dest = 1;
4010
4011 testreg = XEXP (testreg, 0);
4012 }
4013
4014 /* If this is a store into a register or group of registers,
4015 recursively scan the value being stored. */
4016
4017 if ((GET_CODE (testreg) == PARALLEL
4018 && GET_MODE (testreg) == BLKmode)
4019 || (REG_P (testreg)
4020 && (regno = REGNO (testreg),
4021 ! (regno == FRAME_POINTER_REGNUM
4022 && (! reload_completed || frame_pointer_needed)))
4023 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4024 && ! (regno == HARD_FRAME_POINTER_REGNUM
4025 && (! reload_completed || frame_pointer_needed))
4026 #endif
4027 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4028 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4029 #endif
4030 ))
4031 {
4032 if (mark_dest)
4033 mark_used_regs (pbi, SET_DEST (x), cond, insn);
4034 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4035 return;
4036 }
4037 }
4038 break;
4039
4040 case ASM_OPERANDS:
4041 case UNSPEC_VOLATILE:
4042 case TRAP_IF:
4043 case ASM_INPUT:
4044 {
4045 /* Traditional and volatile asm instructions must be considered to use
4046 and clobber all hard registers, all pseudo-registers and all of
4047 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4048
4049 Consider for instance a volatile asm that changes the fpu rounding
4050 mode. An insn should not be moved across this even if it only uses
4051 pseudo-regs because it might give an incorrectly rounded result.
4052
4053 ?!? Unfortunately, marking all hard registers as live causes massive
4054 problems for the register allocator and marking all pseudos as live
4055 creates mountains of uninitialized variable warnings.
4056
4057 So for now, just clear the memory set list and mark any regs
4058 we can find in ASM_OPERANDS as used. */
4059 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4060 {
4061 free_EXPR_LIST_list (&pbi->mem_set_list);
4062 pbi->mem_set_list_len = 0;
4063 }
4064
4065 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4066 We can not just fall through here since then we would be confused
4067 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4068 traditional asms unlike their normal usage. */
4069 if (code == ASM_OPERANDS)
4070 {
4071 int j;
4072
4073 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4074 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4075 }
4076 break;
4077 }
4078
4079 case COND_EXEC:
4080 gcc_assert (!cond);
4081
4082 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4083
4084 cond = COND_EXEC_TEST (x);
4085 x = COND_EXEC_CODE (x);
4086 goto retry;
4087
4088 default:
4089 break;
4090 }
4091
4092 /* Recursively scan the operands of this expression. */
4093
4094 {
4095 const char * const fmt = GET_RTX_FORMAT (code);
4096 int i;
4097
4098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4099 {
4100 if (fmt[i] == 'e')
4101 {
4102 /* Tail recursive case: save a function call level. */
4103 if (i == 0)
4104 {
4105 x = XEXP (x, 0);
4106 goto retry;
4107 }
4108 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4109 }
4110 else if (fmt[i] == 'E')
4111 {
4112 int j;
4113 for (j = 0; j < XVECLEN (x, i); j++)
4114 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4115 }
4116 }
4117 }
4118 }
4119 \f
4120 #ifdef AUTO_INC_DEC
4121
4122 static int
4123 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4124 {
4125 /* Find the next use of this reg. If in same basic block,
4126 make it do pre-increment or pre-decrement if appropriate. */
4127 rtx x = single_set (insn);
4128 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4129 * INTVAL (XEXP (SET_SRC (x), 1)));
4130 int regno = REGNO (SET_DEST (x));
4131 rtx y = pbi->reg_next_use[regno];
4132 if (y != 0
4133 && SET_DEST (x) != stack_pointer_rtx
4134 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4135 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4136 mode would be better. */
4137 && ! dead_or_set_p (y, SET_DEST (x))
4138 && try_pre_increment (y, SET_DEST (x), amount))
4139 {
4140 /* We have found a suitable auto-increment and already changed
4141 insn Y to do it. So flush this increment instruction. */
4142 propagate_block_delete_insn (insn);
4143
4144 /* Count a reference to this reg for the increment insn we are
4145 deleting. When a reg is incremented, spilling it is worse,
4146 so we want to make that less likely. */
4147 if (regno >= FIRST_PSEUDO_REGISTER)
4148 {
4149 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4150 REG_N_SETS (regno)++;
4151 }
4152
4153 /* Flush any remembered memories depending on the value of
4154 the incremented register. */
4155 invalidate_mems_from_set (pbi, SET_DEST (x));
4156
4157 return 1;
4158 }
4159 return 0;
4160 }
4161
4162 /* Try to change INSN so that it does pre-increment or pre-decrement
4163 addressing on register REG in order to add AMOUNT to REG.
4164 AMOUNT is negative for pre-decrement.
4165 Returns 1 if the change could be made.
4166 This checks all about the validity of the result of modifying INSN. */
4167
4168 static int
4169 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4170 {
4171 rtx use;
4172
4173 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4174 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4175 int pre_ok = 0;
4176 /* Nonzero if we can try to make a post-increment or post-decrement.
4177 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4178 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4179 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4180 int post_ok = 0;
4181
4182 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4183 int do_post = 0;
4184
4185 /* From the sign of increment, see which possibilities are conceivable
4186 on this target machine. */
4187 if (HAVE_PRE_INCREMENT && amount > 0)
4188 pre_ok = 1;
4189 if (HAVE_POST_INCREMENT && amount > 0)
4190 post_ok = 1;
4191
4192 if (HAVE_PRE_DECREMENT && amount < 0)
4193 pre_ok = 1;
4194 if (HAVE_POST_DECREMENT && amount < 0)
4195 post_ok = 1;
4196
4197 if (! (pre_ok || post_ok))
4198 return 0;
4199
4200 /* It is not safe to add a side effect to a jump insn
4201 because if the incremented register is spilled and must be reloaded
4202 there would be no way to store the incremented value back in memory. */
4203
4204 if (JUMP_P (insn))
4205 return 0;
4206
4207 use = 0;
4208 if (pre_ok)
4209 use = find_use_as_address (PATTERN (insn), reg, 0);
4210 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4211 {
4212 use = find_use_as_address (PATTERN (insn), reg, -amount);
4213 do_post = 1;
4214 }
4215
4216 if (use == 0 || use == (rtx) (size_t) 1)
4217 return 0;
4218
4219 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4220 return 0;
4221
4222 /* See if this combination of instruction and addressing mode exists. */
4223 if (! validate_change (insn, &XEXP (use, 0),
4224 gen_rtx_fmt_e (amount > 0
4225 ? (do_post ? POST_INC : PRE_INC)
4226 : (do_post ? POST_DEC : PRE_DEC),
4227 Pmode, reg), 0))
4228 return 0;
4229
4230 /* Record that this insn now has an implicit side effect on X. */
4231 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4232 return 1;
4233 }
4234
4235 #endif /* AUTO_INC_DEC */
4236 \f
4237 /* Find the place in the rtx X where REG is used as a memory address.
4238 Return the MEM rtx that so uses it.
4239 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4240 (plus REG (const_int PLUSCONST)).
4241
4242 If such an address does not appear, return 0.
4243 If REG appears more than once, or is used other than in such an address,
4244 return (rtx) 1. */
4245
4246 rtx
4247 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4248 {
4249 enum rtx_code code = GET_CODE (x);
4250 const char * const fmt = GET_RTX_FORMAT (code);
4251 int i;
4252 rtx value = 0;
4253 rtx tem;
4254
4255 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4256 return x;
4257
4258 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4259 && XEXP (XEXP (x, 0), 0) == reg
4260 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4261 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4262 return x;
4263
4264 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4265 {
4266 /* If REG occurs inside a MEM used in a bit-field reference,
4267 that is unacceptable. */
4268 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4269 return (rtx) (size_t) 1;
4270 }
4271
4272 if (x == reg)
4273 return (rtx) (size_t) 1;
4274
4275 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4276 {
4277 if (fmt[i] == 'e')
4278 {
4279 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4280 if (value == 0)
4281 value = tem;
4282 else if (tem != 0)
4283 return (rtx) (size_t) 1;
4284 }
4285 else if (fmt[i] == 'E')
4286 {
4287 int j;
4288 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4289 {
4290 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4291 if (value == 0)
4292 value = tem;
4293 else if (tem != 0)
4294 return (rtx) (size_t) 1;
4295 }
4296 }
4297 }
4298
4299 return value;
4300 }
4301 \f
4302 /* Write information about registers and basic blocks into FILE.
4303 This is part of making a debugging dump. */
4304
4305 void
4306 dump_regset (regset r, FILE *outf)
4307 {
4308 unsigned i;
4309 reg_set_iterator rsi;
4310
4311 if (r == NULL)
4312 {
4313 fputs (" (nil)", outf);
4314 return;
4315 }
4316
4317 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4318 {
4319 fprintf (outf, " %d", i);
4320 if (i < FIRST_PSEUDO_REGISTER)
4321 fprintf (outf, " [%s]",
4322 reg_names[i]);
4323 }
4324 }
4325
4326 /* Print a human-readable representation of R on the standard error
4327 stream. This function is designed to be used from within the
4328 debugger. */
4329
4330 void
4331 debug_regset (regset r)
4332 {
4333 dump_regset (r, stderr);
4334 putc ('\n', stderr);
4335 }
4336
4337 /* Recompute register set/reference counts immediately prior to register
4338 allocation.
4339
4340 This avoids problems with set/reference counts changing to/from values
4341 which have special meanings to the register allocators.
4342
4343 Additionally, the reference counts are the primary component used by the
4344 register allocators to prioritize pseudos for allocation to hard regs.
4345 More accurate reference counts generally lead to better register allocation.
4346
4347 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4348 possibly other information which is used by the register allocators. */
4349
4350 void
4351 recompute_reg_usage (void)
4352 {
4353 allocate_reg_life_data ();
4354 /* distribute_notes in combiner fails to convert some of the
4355 REG_UNUSED notes to REG_DEAD notes. This causes CHECK_DEAD_NOTES
4356 in sched1 to die. To solve this update the DEATH_NOTES
4357 here. */
4358 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4359 }
4360
4361 struct tree_opt_pass pass_recompute_reg_usage =
4362 {
4363 NULL, /* name */
4364 NULL, /* gate */
4365 recompute_reg_usage, /* execute */
4366 NULL, /* sub */
4367 NULL, /* next */
4368 0, /* static_pass_number */
4369 0, /* tv_id */
4370 0, /* properties_required */
4371 0, /* properties_provided */
4372 0, /* properties_destroyed */
4373 0, /* todo_flags_start */
4374 0, /* todo_flags_finish */
4375 0 /* letter */
4376 };
4377
4378 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4379 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4380 of the number of registers that died. */
4381
4382 int
4383 count_or_remove_death_notes (sbitmap blocks, int kill)
4384 {
4385 int count = 0;
4386 unsigned int i;
4387 basic_block bb;
4388
4389 /* This used to be a loop over all the blocks with a membership test
4390 inside the loop. That can be amazingly expensive on a large CFG
4391 when only a small number of bits are set in BLOCKs (for example,
4392 the calls from the scheduler typically have very few bits set).
4393
4394 For extra credit, someone should convert BLOCKS to a bitmap rather
4395 than an sbitmap. */
4396 if (blocks)
4397 {
4398 sbitmap_iterator sbi;
4399
4400 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4401 {
4402 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4403 };
4404 }
4405 else
4406 {
4407 FOR_EACH_BB (bb)
4408 {
4409 count += count_or_remove_death_notes_bb (bb, kill);
4410 }
4411 }
4412
4413 return count;
4414 }
4415
4416 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4417 block BB. Returns a count of the number of registers that died. */
4418
4419 static int
4420 count_or_remove_death_notes_bb (basic_block bb, int kill)
4421 {
4422 int count = 0;
4423 rtx insn;
4424
4425 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4426 {
4427 if (INSN_P (insn))
4428 {
4429 rtx *pprev = &REG_NOTES (insn);
4430 rtx link = *pprev;
4431
4432 while (link)
4433 {
4434 switch (REG_NOTE_KIND (link))
4435 {
4436 case REG_DEAD:
4437 if (REG_P (XEXP (link, 0)))
4438 {
4439 rtx reg = XEXP (link, 0);
4440 int n;
4441
4442 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4443 n = 1;
4444 else
4445 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4446 count += n;
4447 }
4448
4449 /* Fall through. */
4450
4451 case REG_UNUSED:
4452 if (kill)
4453 {
4454 rtx next = XEXP (link, 1);
4455 free_EXPR_LIST_node (link);
4456 *pprev = link = next;
4457 break;
4458 }
4459 /* Fall through. */
4460
4461 default:
4462 pprev = &XEXP (link, 1);
4463 link = *pprev;
4464 break;
4465 }
4466 }
4467 }
4468
4469 if (insn == BB_END (bb))
4470 break;
4471 }
4472
4473 return count;
4474 }
4475
4476 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4477 if blocks is NULL. */
4478
4479 static void
4480 clear_log_links (sbitmap blocks)
4481 {
4482 rtx insn;
4483
4484 if (!blocks)
4485 {
4486 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4487 if (INSN_P (insn))
4488 free_INSN_LIST_list (&LOG_LINKS (insn));
4489 }
4490 else
4491 {
4492 unsigned int i;
4493 sbitmap_iterator sbi;
4494
4495 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4496 {
4497 basic_block bb = BASIC_BLOCK (i);
4498
4499 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4500 insn = NEXT_INSN (insn))
4501 if (INSN_P (insn))
4502 free_INSN_LIST_list (&LOG_LINKS (insn));
4503 }
4504 }
4505 }
4506
4507 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4508 correspond to the hard registers, if any, set in that map. This
4509 could be done far more efficiently by having all sorts of special-cases
4510 with moving single words, but probably isn't worth the trouble. */
4511
4512 void
4513 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4514 {
4515 unsigned i;
4516 bitmap_iterator bi;
4517
4518 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4519 {
4520 if (i >= FIRST_PSEUDO_REGISTER)
4521 return;
4522 SET_HARD_REG_BIT (*to, i);
4523 }
4524 }
4525 \f
4526
4527 static bool
4528 gate_remove_death_notes (void)
4529 {
4530 return flag_profile_values;
4531 }
4532
4533 static void
4534 rest_of_handle_remove_death_notes (void)
4535 {
4536 count_or_remove_death_notes (NULL, 1);
4537 }
4538
4539 struct tree_opt_pass pass_remove_death_notes =
4540 {
4541 NULL, /* name */
4542 gate_remove_death_notes, /* gate */
4543 rest_of_handle_remove_death_notes, /* execute */
4544 NULL, /* sub */
4545 NULL, /* next */
4546 0, /* static_pass_number */
4547 0, /* tv_id */
4548 0, /* properties_required */
4549 0, /* properties_provided */
4550 0, /* properties_destroyed */
4551 0, /* todo_flags_start */
4552 0, /* todo_flags_finish */
4553 0 /* letter */
4554 };
4555
4556 /* Perform life analysis. */
4557 static void
4558 rest_of_handle_life (void)
4559 {
4560 regclass_init ();
4561
4562 life_analysis (dump_file, PROP_FINAL);
4563 if (optimize)
4564 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE | CLEANUP_LOG_LINKS
4565 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
4566
4567 if (extra_warnings)
4568 {
4569 setjmp_vars_warning (DECL_INITIAL (current_function_decl));
4570 setjmp_args_warning ();
4571 }
4572
4573 if (optimize)
4574 {
4575 if (initialize_uninitialized_subregs ())
4576 {
4577 /* Insns were inserted, and possibly pseudos created, so
4578 things might look a bit different. */
4579 allocate_reg_life_data ();
4580 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
4581 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
4582 }
4583 }
4584
4585 no_new_pseudos = 1;
4586 }
4587
4588 struct tree_opt_pass pass_life =
4589 {
4590 "life", /* name */
4591 NULL, /* gate */
4592 rest_of_handle_life, /* execute */
4593 NULL, /* sub */
4594 NULL, /* next */
4595 0, /* static_pass_number */
4596 TV_FLOW, /* tv_id */
4597 0, /* properties_required */
4598 0, /* properties_provided */
4599 0, /* properties_destroyed */
4600 TODO_verify_flow, /* todo_flags_start */
4601 TODO_dump_func |
4602 TODO_ggc_collect, /* todo_flags_finish */
4603 'f' /* letter */
4604 };
4605
4606 static void
4607 rest_of_handle_flow2 (void)
4608 {
4609 /* Re-create the death notes which were deleted during reload. */
4610 #ifdef ENABLE_CHECKING
4611 verify_flow_info ();
4612 #endif
4613
4614 /* If optimizing, then go ahead and split insns now. */
4615 #ifndef STACK_REGS
4616 if (optimize > 0)
4617 #endif
4618 split_all_insns (0);
4619
4620 if (flag_branch_target_load_optimize)
4621 branch_target_load_optimize (epilogue_completed);
4622
4623 if (optimize)
4624 cleanup_cfg (CLEANUP_EXPENSIVE);
4625
4626 /* On some machines, the prologue and epilogue code, or parts thereof,
4627 can be represented as RTL. Doing so lets us schedule insns between
4628 it and the rest of the code and also allows delayed branch
4629 scheduling to operate in the epilogue. */
4630 thread_prologue_and_epilogue_insns (get_insns ());
4631 epilogue_completed = 1;
4632 flow2_completed = 1;
4633 }
4634
4635 struct tree_opt_pass pass_flow2 =
4636 {
4637 "flow2", /* name */
4638 NULL, /* gate */
4639 rest_of_handle_flow2, /* execute */
4640 NULL, /* sub */
4641 NULL, /* next */
4642 0, /* static_pass_number */
4643 TV_FLOW2, /* tv_id */
4644 0, /* properties_required */
4645 0, /* properties_provided */
4646 0, /* properties_destroyed */
4647 TODO_verify_flow, /* todo_flags_start */
4648 TODO_dump_func |
4649 TODO_ggc_collect, /* todo_flags_finish */
4650 'w' /* letter */
4651 };
4652