]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/flow.c
Merge from gcc-2.8
[thirdparty/gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the data flow analysis pass of the compiler.
23 It computes data flow information
24 which tells combine_instructions which insns to consider combining
25 and controls register allocation.
26
27 Additional data flow information that is too bulky to record
28 is generated during the analysis, and is used at that time to
29 create autoincrement and autodecrement addressing.
30
31 The first step is dividing the function into basic blocks.
32 find_basic_blocks does this. Then life_analysis determines
33 where each register is live and where it is dead.
34
35 ** find_basic_blocks **
36
37 find_basic_blocks divides the current function's rtl
38 into basic blocks. It records the beginnings and ends of the
39 basic blocks in the vectors basic_block_head and basic_block_end,
40 and the number of blocks in n_basic_blocks.
41
42 find_basic_blocks also finds any unreachable loops
43 and deletes them.
44
45 ** life_analysis **
46
47 life_analysis is called immediately after find_basic_blocks.
48 It uses the basic block information to determine where each
49 hard or pseudo register is live.
50
51 ** live-register info **
52
53 The information about where each register is live is in two parts:
54 the REG_NOTES of insns, and the vector basic_block_live_at_start.
55
56 basic_block_live_at_start has an element for each basic block,
57 and the element is a bit-vector with a bit for each hard or pseudo
58 register. The bit is 1 if the register is live at the beginning
59 of the basic block.
60
61 Two types of elements can be added to an insn's REG_NOTES.
62 A REG_DEAD note is added to an insn's REG_NOTES for any register
63 that meets both of two conditions: The value in the register is not
64 needed in subsequent insns and the insn does not replace the value in
65 the register (in the case of multi-word hard registers, the value in
66 each register must be replaced by the insn to avoid a REG_DEAD note).
67
68 In the vast majority of cases, an object in a REG_DEAD note will be
69 used somewhere in the insn. The (rare) exception to this is if an
70 insn uses a multi-word hard register and only some of the registers are
71 needed in subsequent insns. In that case, REG_DEAD notes will be
72 provided for those hard registers that are not subsequently needed.
73 Partial REG_DEAD notes of this type do not occur when an insn sets
74 only some of the hard registers used in such a multi-word operand;
75 omitting REG_DEAD notes for objects stored in an insn is optional and
76 the desire to do so does not justify the complexity of the partial
77 REG_DEAD notes.
78
79 REG_UNUSED notes are added for each register that is set by the insn
80 but is unused subsequently (if every register set by the insn is unused
81 and the insn does not reference memory or have some other side-effect,
82 the insn is deleted instead). If only part of a multi-word hard
83 register is used in a subsequent insn, REG_UNUSED notes are made for
84 the parts that will not be used.
85
86 To determine which registers are live after any insn, one can
87 start from the beginning of the basic block and scan insns, noting
88 which registers are set by each insn and which die there.
89
90 ** Other actions of life_analysis **
91
92 life_analysis sets up the LOG_LINKS fields of insns because the
93 information needed to do so is readily available.
94
95 life_analysis deletes insns whose only effect is to store a value
96 that is never used.
97
98 life_analysis notices cases where a reference to a register as
99 a memory address can be combined with a preceding or following
100 incrementation or decrementation of the register. The separate
101 instruction to increment or decrement is deleted and the address
102 is changed to a POST_INC or similar rtx.
103
104 Each time an incrementing or decrementing address is created,
105 a REG_INC element is added to the insn's REG_NOTES list.
106
107 life_analysis fills in certain vectors containing information about
108 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
109 reg_n_calls_crosses and reg_basic_block. */
110 \f
111 #include "config.h"
112 #include <stdio.h>
113 #include "rtl.h"
114 #include "basic-block.h"
115 #include "insn-config.h"
116 #include "regs.h"
117 #include "hard-reg-set.h"
118 #include "flags.h"
119 #include "output.h"
120 #include "except.h"
121
122 #include "obstack.h"
123 #define obstack_chunk_alloc xmalloc
124 #define obstack_chunk_free free
125
126 /* The contents of the current function definition are allocated
127 in this obstack, and all are freed at the end of the function.
128 For top-level functions, this is temporary_obstack.
129 Separate obstacks are made for nested functions. */
130
131 extern struct obstack *function_obstack;
132
133 /* List of labels that must never be deleted. */
134 extern rtx forced_labels;
135
136 /* Get the basic block number of an insn.
137 This info should not be expected to remain available
138 after the end of life_analysis. */
139
140 /* This is the limit of the allocated space in the following two arrays. */
141
142 static int max_uid_for_flow;
143
144 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
145
146 /* This is where the BLOCK_NUM values are really stored.
147 This is set up by find_basic_blocks and used there and in life_analysis,
148 and then freed. */
149
150 static int *uid_block_number;
151
152 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
153
154 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
155 static char *uid_volatile;
156
157 /* Number of basic blocks in the current function. */
158
159 int n_basic_blocks;
160
161 /* Maximum register number used in this function, plus one. */
162
163 int max_regno;
164
165 /* Maximum number of SCRATCH rtx's used in any basic block of this
166 function. */
167
168 int max_scratch;
169
170 /* Number of SCRATCH rtx's in the current block. */
171
172 static int num_scratch;
173
174 /* Indexed by n, giving various register information */
175
176 reg_info *reg_n_info;
177
178 /* Element N is the next insn that uses (hard or pseudo) register number N
179 within the current basic block; or zero, if there is no such insn.
180 This is valid only during the final backward scan in propagate_block. */
181
182 static rtx *reg_next_use;
183
184 /* Size of a regset for the current function,
185 in (1) bytes and (2) elements. */
186
187 int regset_bytes;
188 int regset_size;
189
190 /* Element N is first insn in basic block N.
191 This info lasts until we finish compiling the function. */
192
193 rtx *basic_block_head;
194
195 /* Element N is last insn in basic block N.
196 This info lasts until we finish compiling the function. */
197
198 rtx *basic_block_end;
199
200 /* Element N is a regset describing the registers live
201 at the start of basic block N.
202 This info lasts until we finish compiling the function. */
203
204 regset *basic_block_live_at_start;
205
206 /* Regset of regs live when calls to `setjmp'-like functions happen. */
207
208 regset regs_live_at_setjmp;
209
210 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
211 that have to go in the same hard reg.
212 The first two regs in the list are a pair, and the next two
213 are another pair, etc. */
214 rtx regs_may_share;
215
216 /* Element N is nonzero if control can drop into basic block N
217 from the preceding basic block. Freed after life_analysis. */
218
219 static char *basic_block_drops_in;
220
221 /* Element N is depth within loops of the last insn in basic block number N.
222 Freed after life_analysis. */
223
224 static short *basic_block_loop_depth;
225
226 /* Element N nonzero if basic block N can actually be reached.
227 Vector exists only during find_basic_blocks. */
228
229 static char *block_live_static;
230
231 /* Depth within loops of basic block being scanned for lifetime analysis,
232 plus one. This is the weight attached to references to registers. */
233
234 static int loop_depth;
235
236 /* During propagate_block, this is non-zero if the value of CC0 is live. */
237
238 static int cc0_live;
239
240 /* During propagate_block, this contains the last MEM stored into. It
241 is used to eliminate consecutive stores to the same location. */
242
243 static rtx last_mem_set;
244
245 /* Set of registers that may be eliminable. These are handled specially
246 in updating regs_ever_live. */
247
248 static HARD_REG_SET elim_reg_set;
249
250 /* Forward declarations */
251 static void find_basic_blocks PROTO((rtx, rtx));
252 static void mark_label_ref PROTO((rtx, rtx, int));
253 static void life_analysis PROTO((rtx, int));
254 void allocate_for_life_analysis PROTO((void));
255 void init_regset_vector PROTO((regset *, int, struct obstack *));
256 void free_regset_vector PROTO((regset *, int));
257 static void propagate_block PROTO((regset, rtx, rtx, int,
258 regset, int));
259 static rtx flow_delete_insn PROTO((rtx));
260 static int insn_dead_p PROTO((rtx, regset, int));
261 static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
262 static void mark_set_regs PROTO((regset, regset, rtx,
263 rtx, regset));
264 static void mark_set_1 PROTO((regset, regset, rtx,
265 rtx, regset));
266 static void find_auto_inc PROTO((regset, rtx, rtx));
267 static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
268 static int try_pre_increment_1 PROTO((rtx));
269 static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
270 void dump_flow_info PROTO((FILE *));
271 \f
272 /* Find basic blocks of the current function and perform data flow analysis.
273 F is the first insn of the function and NREGS the number of register numbers
274 in use. */
275
276 void
277 flow_analysis (f, nregs, file)
278 rtx f;
279 int nregs;
280 FILE *file;
281 {
282 register rtx insn;
283 register int i;
284 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
285
286 #ifdef ELIMINABLE_REGS
287 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
288 #endif
289
290 /* Record which registers will be eliminated. We use this in
291 mark_used_regs. */
292
293 CLEAR_HARD_REG_SET (elim_reg_set);
294
295 #ifdef ELIMINABLE_REGS
296 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
297 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
298 #else
299 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
300 #endif
301
302 /* Count the basic blocks. Also find maximum insn uid value used. */
303
304 {
305 register RTX_CODE prev_code = JUMP_INSN;
306 register RTX_CODE code;
307
308 max_uid_for_flow = 0;
309
310 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
311 {
312 code = GET_CODE (insn);
313 if (INSN_UID (insn) > max_uid_for_flow)
314 max_uid_for_flow = INSN_UID (insn);
315 if (code == CODE_LABEL
316 || (GET_RTX_CLASS (code) == 'i'
317 && (prev_code == JUMP_INSN
318 || (prev_code == CALL_INSN
319 && nonlocal_label_list != 0)
320 || prev_code == BARRIER)))
321 i++;
322
323 if (code == CALL_INSN && find_reg_note (insn, REG_RETVAL, NULL_RTX))
324 code = INSN;
325
326 if (code != NOTE)
327 prev_code = code;
328 }
329 }
330
331 #ifdef AUTO_INC_DEC
332 /* Leave space for insns we make in some cases for auto-inc. These cases
333 are rare, so we don't need too much space. */
334 max_uid_for_flow += max_uid_for_flow / 10;
335 #endif
336
337 /* Allocate some tables that last till end of compiling this function
338 and some needed only in find_basic_blocks and life_analysis. */
339
340 n_basic_blocks = i;
341 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
342 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
343 basic_block_drops_in = (char *) alloca (n_basic_blocks);
344 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
345 uid_block_number
346 = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
347 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
348 bzero (uid_volatile, max_uid_for_flow + 1);
349
350 find_basic_blocks (f, nonlocal_label_list);
351 life_analysis (f, nregs);
352 if (file)
353 dump_flow_info (file);
354
355 basic_block_drops_in = 0;
356 uid_block_number = 0;
357 basic_block_loop_depth = 0;
358 }
359 \f
360 /* Find all basic blocks of the function whose first insn is F.
361 Store the correct data in the tables that describe the basic blocks,
362 set up the chains of references for each CODE_LABEL, and
363 delete any entire basic blocks that cannot be reached.
364
365 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
366
367 static void
368 find_basic_blocks (f, nonlocal_label_list)
369 rtx f, nonlocal_label_list;
370 {
371 register rtx insn;
372 register int i;
373 register char *block_live = (char *) alloca (n_basic_blocks);
374 register char *block_marked = (char *) alloca (n_basic_blocks);
375 /* An array of CODE_LABELs, indexed by UID for the start of the active
376 EH handler for each insn in F. */
377 rtx *active_eh_handler;
378 /* List of label_refs to all labels whose addresses are taken
379 and used as data. */
380 rtx label_value_list;
381 rtx x, note, eh_note;
382 enum rtx_code prev_code, code;
383 int depth, pass;
384
385 pass = 1;
386 active_eh_handler = (rtx *) alloca ((max_uid_for_flow + 1) * sizeof (rtx));
387 restart:
388
389 label_value_list = 0;
390 block_live_static = block_live;
391 bzero (block_live, n_basic_blocks);
392 bzero (block_marked, n_basic_blocks);
393 bzero (active_eh_handler, (max_uid_for_flow + 1) * sizeof (rtx));
394
395 /* Initialize with just block 0 reachable and no blocks marked. */
396 if (n_basic_blocks > 0)
397 block_live[0] = 1;
398
399 /* Initialize the ref chain of each label to 0. Record where all the
400 blocks start and end and their depth in loops. For each insn, record
401 the block it is in. Also mark as reachable any blocks headed by labels
402 that must not be deleted. */
403
404 for (eh_note = NULL_RTX, insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
405 insn; insn = NEXT_INSN (insn))
406 {
407 code = GET_CODE (insn);
408 if (code == NOTE)
409 {
410 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
411 depth++;
412 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
413 depth--;
414 }
415
416 /* A basic block starts at label, or after something that can jump. */
417 else if (code == CODE_LABEL
418 || (GET_RTX_CLASS (code) == 'i'
419 && (prev_code == JUMP_INSN
420 || (prev_code == CALL_INSN
421 && nonlocal_label_list != 0
422 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
423 || prev_code == BARRIER)))
424 {
425 basic_block_head[++i] = insn;
426 basic_block_end[i] = insn;
427 basic_block_loop_depth[i] = depth;
428
429 if (code == CODE_LABEL)
430 {
431 LABEL_REFS (insn) = insn;
432 /* Any label that cannot be deleted
433 is considered to start a reachable block. */
434 if (LABEL_PRESERVE_P (insn))
435 block_live[i] = 1;
436 }
437 }
438
439 else if (GET_RTX_CLASS (code) == 'i')
440 {
441 basic_block_end[i] = insn;
442 basic_block_loop_depth[i] = depth;
443 }
444
445 if (GET_RTX_CLASS (code) == 'i')
446 {
447 /* Make a list of all labels referred to other than by jumps. */
448 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
449 if (REG_NOTE_KIND (note) == REG_LABEL)
450 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
451 label_value_list);
452 }
453
454 /* Keep a lifo list of the currently active exception handlers. */
455 if (GET_CODE (insn) == NOTE)
456 {
457 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
458 {
459 for (x = exception_handler_labels; x; x = XEXP (x, 1))
460 if (CODE_LABEL_NUMBER (XEXP (x, 0)) == NOTE_BLOCK_NUMBER (insn))
461 {
462 eh_note = gen_rtx (EXPR_LIST, VOIDmode,
463 XEXP (x, 0), eh_note);
464 break;
465 }
466 if (x == NULL_RTX)
467 abort ();
468 }
469 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
470 eh_note = XEXP (eh_note, 1);
471 }
472 /* If we encounter a CALL_INSN, note which exception handler it
473 might pass control to.
474
475 If doing asynchronous exceptions, record the active EH handler
476 for every insn, since most insns can throw. */
477 else if (eh_note
478 && (asynchronous_exceptions
479 || (GET_CODE (insn) == CALL_INSN
480 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))))
481 active_eh_handler[INSN_UID (insn)] = XEXP (eh_note, 0);
482
483 BLOCK_NUM (insn) = i;
484
485 if (code != NOTE)
486 prev_code = code;
487 }
488
489 /* During the second pass, `n_basic_blocks' is only an upper bound.
490 Only perform the sanity check for the first pass, and on the second
491 pass ensure `n_basic_blocks' is set to the correct value. */
492 if (pass == 1 && i + 1 != n_basic_blocks)
493 abort ();
494 n_basic_blocks = i + 1;
495
496 /* Record which basic blocks control can drop in to. */
497
498 for (i = 0; i < n_basic_blocks; i++)
499 {
500 for (insn = PREV_INSN (basic_block_head[i]);
501 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
502 ;
503
504 basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
505 }
506
507 /* Now find which basic blocks can actually be reached
508 and put all jump insns' LABEL_REFS onto the ref-chains
509 of their target labels. */
510
511 if (n_basic_blocks > 0)
512 {
513 int something_marked = 1;
514 int deleted;
515
516 /* Pass over all blocks, marking each block that is reachable
517 and has not yet been marked.
518 Keep doing this until, in one pass, no blocks have been marked.
519 Then blocks_live and blocks_marked are identical and correct.
520 In addition, all jumps actually reachable have been marked. */
521
522 while (something_marked)
523 {
524 something_marked = 0;
525 for (i = 0; i < n_basic_blocks; i++)
526 if (block_live[i] && !block_marked[i])
527 {
528 block_marked[i] = 1;
529 something_marked = 1;
530 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
531 block_live[i + 1] = 1;
532 insn = basic_block_end[i];
533 if (GET_CODE (insn) == JUMP_INSN)
534 mark_label_ref (PATTERN (insn), insn, 0);
535
536 /* If we have any forced labels, mark them as potentially
537 reachable from this block. */
538 for (x = forced_labels; x; x = XEXP (x, 1))
539 if (! LABEL_REF_NONLOCAL_P (x))
540 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
541 insn, 0);
542
543 /* Now scan the insns for this block, we may need to make
544 edges for some of them to various non-obvious locations
545 (exception handlers, nonlocal labels, etc). */
546 for (insn = basic_block_head[i];
547 insn != NEXT_INSN (basic_block_end[i]);
548 insn = NEXT_INSN (insn))
549 {
550 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
551 {
552
553 /* References to labels in non-jumping insns have
554 REG_LABEL notes attached to them.
555
556 This can happen for computed gotos; we don't care
557 about them here since the values are also on the
558 label_value_list and will be marked live if we find
559 a live computed goto.
560
561 This can also happen when we take the address of
562 a label to pass as an argument to __throw. Note
563 throw only uses the value to determine what handler
564 should be called -- ie the label is not used as
565 a jump target, it just marks regions in the code.
566
567 In theory we should be able to ignore the REG_LABEL
568 notes, but we have to make sure that the label and
569 associated insns aren't marked dead, so we make
570 the block in question live and create an edge from
571 this insn to the label. This is not strictly
572 correct, but it is close enough for now. */
573 for (note = REG_NOTES (insn);
574 note;
575 note = XEXP (note, 1))
576 {
577 if (REG_NOTE_KIND (note) == REG_LABEL)
578 {
579 x = XEXP (note, 0);
580 block_live[BLOCK_NUM (x)] = 1;
581 mark_label_ref (gen_rtx (LABEL_REF,
582 VOIDmode, x),
583 insn, 0);
584 }
585 }
586
587 /* If this is a computed jump, then mark it as
588 reaching everything on the label_value_list
589 and forced_labels list. */
590 if (computed_jump_p (insn))
591 {
592 for (x = label_value_list; x; x = XEXP (x, 1))
593 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode,
594 XEXP (x, 0)),
595 insn, 0);
596
597 for (x = forced_labels; x; x = XEXP (x, 1))
598 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode,
599 XEXP (x, 0)),
600 insn, 0);
601 }
602
603 /* If this is a CALL_INSN, then mark it as reaching
604 the active EH handler for this CALL_INSN. If
605 we're handling asynchronous exceptions mark every
606 insn as reaching the active EH handler.
607
608 Also mark the CALL_INSN as reaching any nonlocal
609 goto sites. */
610 else if (asynchronous_exceptions
611 || (GET_CODE (insn) == CALL_INSN
612 && ! find_reg_note (insn, REG_RETVAL,
613 NULL_RTX)))
614 {
615 if (active_eh_handler[INSN_UID (insn)])
616 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode,
617 active_eh_handler[INSN_UID (insn)]),
618 insn, 0);
619
620 if (!asynchronous_exceptions)
621 {
622 for (x = nonlocal_label_list;
623 x;
624 x = XEXP (x, 1))
625 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode,
626 XEXP (x, 0)),
627 insn, 0);
628 }
629 /* ??? This could be made smarter:
630 in some cases it's possible to tell that
631 certain calls will not do a nonlocal goto.
632
633 For example, if the nested functions that
634 do the nonlocal gotos do not have their
635 addresses taken, then only calls to those
636 functions or to other nested functions that
637 use them could possibly do nonlocal gotos. */
638 }
639 }
640 }
641 }
642 }
643
644 /* This should never happen. If it does that means we've computed an
645 incorrect flow graph, which can lead to aborts/crashes later in the
646 compiler or incorrect code generation.
647
648 We used to try and continue here, but that's just asking for trouble
649 later during the compile or at runtime. It's easier to debug the
650 problem here than later! */
651 for (i = 1; i < n_basic_blocks; i++)
652 if (block_live[i] && ! basic_block_drops_in[i]
653 && GET_CODE (basic_block_head[i]) == CODE_LABEL
654 && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
655 abort ();
656
657 /* Now delete the code for any basic blocks that can't be reached.
658 They can occur because jump_optimize does not recognize
659 unreachable loops as unreachable. */
660
661 deleted = 0;
662 for (i = 0; i < n_basic_blocks; i++)
663 if (!block_live[i])
664 {
665 deleted++;
666
667 /* Delete the insns in a (non-live) block. We physically delete
668 every non-note insn except the start and end (so
669 basic_block_head/end needn't be updated), we turn the latter
670 into NOTE_INSN_DELETED notes.
671 We use to "delete" the insns by turning them into notes, but
672 we may be deleting lots of insns that subsequent passes would
673 otherwise have to process. Secondly, lots of deleted blocks in
674 a row can really slow down propagate_block since it will
675 otherwise process insn-turned-notes multiple times when it
676 looks for loop begin/end notes. */
677 if (basic_block_head[i] != basic_block_end[i])
678 {
679 /* It would be quicker to delete all of these with a single
680 unchaining, rather than one at a time, but we need to keep
681 the NOTE's. */
682 insn = NEXT_INSN (basic_block_head[i]);
683 while (insn != basic_block_end[i])
684 {
685 if (GET_CODE (insn) == BARRIER)
686 abort ();
687 else if (GET_CODE (insn) != NOTE)
688 insn = flow_delete_insn (insn);
689 else
690 insn = NEXT_INSN (insn);
691 }
692 }
693 insn = basic_block_head[i];
694 if (GET_CODE (insn) != NOTE)
695 {
696 /* Turn the head into a deleted insn note. */
697 if (GET_CODE (insn) == BARRIER)
698 abort ();
699
700 /* If the head of this block is a CODE_LABEL, then it might
701 be the label for an exception handler which can't be
702 reached.
703
704 We need to remove the label from the exception_handler_label
705 list and remove the associated NOTE_EH_REGION_BEG and
706 NOTE_EH_REGION_END notes. */
707 if (GET_CODE (insn) == CODE_LABEL)
708 {
709 rtx x, *prev = &exception_handler_labels;
710
711 for (x = exception_handler_labels; x; x = XEXP (x, 1))
712 {
713 if (XEXP (x, 0) == insn)
714 {
715 /* Found a match, splice this label out of the
716 EH label list. */
717 *prev = XEXP (x, 1);
718 XEXP (x, 1) = NULL_RTX;
719 XEXP (x, 0) = NULL_RTX;
720
721 /* Now we have to find the EH_BEG and EH_END notes
722 associated with this label and remove them. */
723
724 for (x = get_insns (); x; x = NEXT_INSN (x))
725 {
726 if (GET_CODE (x) == NOTE
727 && ((NOTE_LINE_NUMBER (x)
728 == NOTE_INSN_EH_REGION_BEG)
729 || (NOTE_LINE_NUMBER (x)
730 == NOTE_INSN_EH_REGION_END))
731 && (NOTE_BLOCK_NUMBER (x)
732 == CODE_LABEL_NUMBER (insn)))
733 {
734 NOTE_LINE_NUMBER (x) = NOTE_INSN_DELETED;
735 NOTE_SOURCE_FILE (x) = 0;
736 }
737 }
738 break;
739 }
740 prev = &XEXP (x, 1);
741 }
742 }
743
744 PUT_CODE (insn, NOTE);
745 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
746 NOTE_SOURCE_FILE (insn) = 0;
747 }
748 insn = basic_block_end[i];
749 if (GET_CODE (insn) != NOTE)
750 {
751 /* Turn the tail into a deleted insn note. */
752 if (GET_CODE (insn) == BARRIER)
753 abort ();
754 PUT_CODE (insn, NOTE);
755 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
756 NOTE_SOURCE_FILE (insn) = 0;
757 }
758 /* BARRIERs are between basic blocks, not part of one.
759 Delete a BARRIER if the preceding jump is deleted.
760 We cannot alter a BARRIER into a NOTE
761 because it is too short; but we can really delete
762 it because it is not part of a basic block. */
763 if (NEXT_INSN (insn) != 0
764 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
765 delete_insn (NEXT_INSN (insn));
766
767 /* Each time we delete some basic blocks,
768 see if there is a jump around them that is
769 being turned into a no-op. If so, delete it. */
770
771 if (block_live[i - 1])
772 {
773 register int j;
774 for (j = i + 1; j < n_basic_blocks; j++)
775 if (block_live[j])
776 {
777 rtx label;
778 insn = basic_block_end[i - 1];
779 if (GET_CODE (insn) == JUMP_INSN
780 /* An unconditional jump is the only possibility
781 we must check for, since a conditional one
782 would make these blocks live. */
783 && simplejump_p (insn)
784 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
785 && INSN_UID (label) != 0
786 && BLOCK_NUM (label) == j)
787 {
788 PUT_CODE (insn, NOTE);
789 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
790 NOTE_SOURCE_FILE (insn) = 0;
791 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
792 abort ();
793 delete_insn (NEXT_INSN (insn));
794 }
795 break;
796 }
797 }
798 }
799
800 /* There are pathological cases where one function calling hundreds of
801 nested inline functions can generate lots and lots of unreachable
802 blocks that jump can't delete. Since we don't use sparse matrices
803 a lot of memory will be needed to compile such functions.
804 Implementing sparse matrices is a fair bit of work and it is not
805 clear that they win more than they lose (we don't want to
806 unnecessarily slow down compilation of normal code). By making
807 another pass for the pathological case, we can greatly speed up
808 their compilation without hurting normal code. This works because
809 all the insns in the unreachable blocks have either been deleted or
810 turned into notes.
811 Note that we're talking about reducing memory usage by 10's of
812 megabytes and reducing compilation time by several minutes. */
813 /* ??? The choice of when to make another pass is a bit arbitrary,
814 and was derived from empirical data. */
815 if (pass == 1
816 && deleted > 200)
817 {
818 pass++;
819 n_basic_blocks -= deleted;
820 /* `n_basic_blocks' may not be correct at this point: two previously
821 separate blocks may now be merged. That's ok though as we
822 recalculate it during the second pass. It certainly can't be
823 any larger than the current value. */
824 goto restart;
825 }
826 }
827 }
828 \f
829 /* Subroutines of find_basic_blocks. */
830
831 /* Check expression X for label references;
832 if one is found, add INSN to the label's chain of references.
833
834 CHECKDUP means check for and avoid creating duplicate references
835 from the same insn. Such duplicates do no serious harm but
836 can slow life analysis. CHECKDUP is set only when duplicates
837 are likely. */
838
839 static void
840 mark_label_ref (x, insn, checkdup)
841 rtx x, insn;
842 int checkdup;
843 {
844 register RTX_CODE code;
845 register int i;
846 register char *fmt;
847
848 /* We can be called with NULL when scanning label_value_list. */
849 if (x == 0)
850 return;
851
852 code = GET_CODE (x);
853 if (code == LABEL_REF)
854 {
855 register rtx label = XEXP (x, 0);
856 register rtx y;
857 if (GET_CODE (label) != CODE_LABEL)
858 abort ();
859 /* If the label was never emitted, this insn is junk,
860 but avoid a crash trying to refer to BLOCK_NUM (label).
861 This can happen as a result of a syntax error
862 and a diagnostic has already been printed. */
863 if (INSN_UID (label) == 0)
864 return;
865 CONTAINING_INSN (x) = insn;
866 /* if CHECKDUP is set, check for duplicate ref from same insn
867 and don't insert. */
868 if (checkdup)
869 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
870 if (CONTAINING_INSN (y) == insn)
871 return;
872 LABEL_NEXTREF (x) = LABEL_REFS (label);
873 LABEL_REFS (label) = x;
874 block_live_static[BLOCK_NUM (label)] = 1;
875 return;
876 }
877
878 fmt = GET_RTX_FORMAT (code);
879 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
880 {
881 if (fmt[i] == 'e')
882 mark_label_ref (XEXP (x, i), insn, 0);
883 if (fmt[i] == 'E')
884 {
885 register int j;
886 for (j = 0; j < XVECLEN (x, i); j++)
887 mark_label_ref (XVECEXP (x, i, j), insn, 1);
888 }
889 }
890 }
891
892 /* Delete INSN by patching it out.
893 Return the next insn. */
894
895 static rtx
896 flow_delete_insn (insn)
897 rtx insn;
898 {
899 /* ??? For the moment we assume we don't have to watch for NULLs here
900 since the start/end of basic blocks aren't deleted like this. */
901 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
902 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
903 return NEXT_INSN (insn);
904 }
905 \f
906 /* Determine which registers are live at the start of each
907 basic block of the function whose first insn is F.
908 NREGS is the number of registers used in F.
909 We allocate the vector basic_block_live_at_start
910 and the regsets that it points to, and fill them with the data.
911 regset_size and regset_bytes are also set here. */
912
913 static void
914 life_analysis (f, nregs)
915 rtx f;
916 int nregs;
917 {
918 int first_pass;
919 int changed;
920 /* For each basic block, a bitmask of regs
921 live on exit from the block. */
922 regset *basic_block_live_at_end;
923 /* For each basic block, a bitmask of regs
924 live on entry to a successor-block of this block.
925 If this does not match basic_block_live_at_end,
926 that must be updated, and the block must be rescanned. */
927 regset *basic_block_new_live_at_end;
928 /* For each basic block, a bitmask of regs
929 whose liveness at the end of the basic block
930 can make a difference in which regs are live on entry to the block.
931 These are the regs that are set within the basic block,
932 possibly excluding those that are used after they are set. */
933 regset *basic_block_significant;
934 register int i;
935 rtx insn;
936
937 struct obstack flow_obstack;
938
939 gcc_obstack_init (&flow_obstack);
940
941 max_regno = nregs;
942
943 bzero (regs_ever_live, sizeof regs_ever_live);
944
945 /* Allocate and zero out many data structures
946 that will record the data from lifetime analysis. */
947
948 allocate_for_life_analysis ();
949
950 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
951 bzero ((char *) reg_next_use, nregs * sizeof (rtx));
952
953 /* Set up several regset-vectors used internally within this function.
954 Their meanings are documented above, with their declarations. */
955
956 basic_block_live_at_end
957 = (regset *) alloca (n_basic_blocks * sizeof (regset));
958
959 /* Don't use alloca since that leads to a crash rather than an error message
960 if there isn't enough space.
961 Don't use oballoc since we may need to allocate other things during
962 this function on the temporary obstack. */
963 init_regset_vector (basic_block_live_at_end, n_basic_blocks, &flow_obstack);
964
965 basic_block_new_live_at_end
966 = (regset *) alloca (n_basic_blocks * sizeof (regset));
967 init_regset_vector (basic_block_new_live_at_end, n_basic_blocks,
968 &flow_obstack);
969
970 basic_block_significant
971 = (regset *) alloca (n_basic_blocks * sizeof (regset));
972 init_regset_vector (basic_block_significant, n_basic_blocks, &flow_obstack);
973
974 /* Record which insns refer to any volatile memory
975 or for any reason can't be deleted just because they are dead stores.
976 Also, delete any insns that copy a register to itself. */
977
978 for (insn = f; insn; insn = NEXT_INSN (insn))
979 {
980 enum rtx_code code1 = GET_CODE (insn);
981 if (code1 == CALL_INSN)
982 INSN_VOLATILE (insn) = 1;
983 else if (code1 == INSN || code1 == JUMP_INSN)
984 {
985 /* Delete (in effect) any obvious no-op moves. */
986 if (GET_CODE (PATTERN (insn)) == SET
987 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
988 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
989 && (REGNO (SET_DEST (PATTERN (insn)))
990 == REGNO (SET_SRC (PATTERN (insn))))
991 /* Insns carrying these notes are useful later on. */
992 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
993 {
994 PUT_CODE (insn, NOTE);
995 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
996 NOTE_SOURCE_FILE (insn) = 0;
997 }
998 /* Delete (in effect) any obvious no-op moves. */
999 else if (GET_CODE (PATTERN (insn)) == SET
1000 && GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG
1001 && GET_CODE (SUBREG_REG (SET_DEST (PATTERN (insn)))) == REG
1002 && GET_CODE (SET_SRC (PATTERN (insn))) == SUBREG
1003 && GET_CODE (SUBREG_REG (SET_SRC (PATTERN (insn)))) == REG
1004 && (REGNO (SUBREG_REG (SET_DEST (PATTERN (insn))))
1005 == REGNO (SUBREG_REG (SET_SRC (PATTERN (insn)))))
1006 && SUBREG_WORD (SET_DEST (PATTERN (insn))) ==
1007 SUBREG_WORD (SET_SRC (PATTERN (insn)))
1008 /* Insns carrying these notes are useful later on. */
1009 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1010 {
1011 PUT_CODE (insn, NOTE);
1012 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1013 NOTE_SOURCE_FILE (insn) = 0;
1014 }
1015 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1016 {
1017 /* If nothing but SETs of registers to themselves,
1018 this insn can also be deleted. */
1019 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1020 {
1021 rtx tem = XVECEXP (PATTERN (insn), 0, i);
1022
1023 if (GET_CODE (tem) == USE
1024 || GET_CODE (tem) == CLOBBER)
1025 continue;
1026
1027 if (GET_CODE (tem) != SET
1028 || GET_CODE (SET_DEST (tem)) != REG
1029 || GET_CODE (SET_SRC (tem)) != REG
1030 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
1031 break;
1032 }
1033
1034 if (i == XVECLEN (PATTERN (insn), 0)
1035 /* Insns carrying these notes are useful later on. */
1036 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1037 {
1038 PUT_CODE (insn, NOTE);
1039 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1040 NOTE_SOURCE_FILE (insn) = 0;
1041 }
1042 else
1043 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1044 }
1045 else if (GET_CODE (PATTERN (insn)) != USE)
1046 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1047 /* A SET that makes space on the stack cannot be dead.
1048 (Such SETs occur only for allocating variable-size data,
1049 so they will always have a PLUS or MINUS according to the
1050 direction of stack growth.)
1051 Even if this function never uses this stack pointer value,
1052 signal handlers do! */
1053 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
1054 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1055 #ifdef STACK_GROWS_DOWNWARD
1056 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
1057 #else
1058 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1059 #endif
1060 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
1061 INSN_VOLATILE (insn) = 1;
1062 }
1063 }
1064
1065 if (n_basic_blocks > 0)
1066 #ifdef EXIT_IGNORE_STACK
1067 if (! EXIT_IGNORE_STACK
1068 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
1069 #endif
1070 {
1071 /* If exiting needs the right stack value,
1072 consider the stack pointer live at the end of the function. */
1073 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1074 STACK_POINTER_REGNUM);
1075 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1076 STACK_POINTER_REGNUM);
1077 }
1078
1079 /* Mark the frame pointer is needed at the end of the function. If
1080 we end up eliminating it, it will be removed from the live list
1081 of each basic block by reload. */
1082
1083 if (n_basic_blocks > 0)
1084 {
1085 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1086 FRAME_POINTER_REGNUM);
1087 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1088 FRAME_POINTER_REGNUM);
1089 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1090 /* If they are different, also mark the hard frame pointer as live */
1091 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1],
1092 HARD_FRAME_POINTER_REGNUM);
1093 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1],
1094 HARD_FRAME_POINTER_REGNUM);
1095 #endif
1096 }
1097
1098 /* Mark all global registers and all registers used by the epilogue
1099 as being live at the end of the function since they may be
1100 referenced by our caller. */
1101
1102 if (n_basic_blocks > 0)
1103 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1104 if (global_regs[i]
1105 #ifdef EPILOGUE_USES
1106 || EPILOGUE_USES (i)
1107 #endif
1108 )
1109 {
1110 SET_REGNO_REG_SET (basic_block_live_at_end[n_basic_blocks - 1], i);
1111 SET_REGNO_REG_SET (basic_block_new_live_at_end[n_basic_blocks - 1], i);
1112 }
1113
1114 /* Propagate life info through the basic blocks
1115 around the graph of basic blocks.
1116
1117 This is a relaxation process: each time a new register
1118 is live at the end of the basic block, we must scan the block
1119 to determine which registers are, as a consequence, live at the beginning
1120 of that block. These registers must then be marked live at the ends
1121 of all the blocks that can transfer control to that block.
1122 The process continues until it reaches a fixed point. */
1123
1124 first_pass = 1;
1125 changed = 1;
1126 while (changed)
1127 {
1128 changed = 0;
1129 for (i = n_basic_blocks - 1; i >= 0; i--)
1130 {
1131 int consider = first_pass;
1132 int must_rescan = first_pass;
1133 register int j;
1134
1135 if (!first_pass)
1136 {
1137 /* Set CONSIDER if this block needs thinking about at all
1138 (that is, if the regs live now at the end of it
1139 are not the same as were live at the end of it when
1140 we last thought about it).
1141 Set must_rescan if it needs to be thought about
1142 instruction by instruction (that is, if any additional
1143 reg that is live at the end now but was not live there before
1144 is one of the significant regs of this basic block). */
1145
1146 EXECUTE_IF_AND_COMPL_IN_REG_SET
1147 (basic_block_new_live_at_end[i],
1148 basic_block_live_at_end[i], 0, j,
1149 {
1150 consider = 1;
1151 if (REGNO_REG_SET_P (basic_block_significant[i], j))
1152 {
1153 must_rescan = 1;
1154 goto done;
1155 }
1156 });
1157 done:
1158 if (! consider)
1159 continue;
1160 }
1161
1162 /* The live_at_start of this block may be changing,
1163 so another pass will be required after this one. */
1164 changed = 1;
1165
1166 if (! must_rescan)
1167 {
1168 /* No complete rescan needed;
1169 just record those variables newly known live at end
1170 as live at start as well. */
1171 IOR_AND_COMPL_REG_SET (basic_block_live_at_start[i],
1172 basic_block_new_live_at_end[i],
1173 basic_block_live_at_end[i]);
1174
1175 IOR_AND_COMPL_REG_SET (basic_block_live_at_end[i],
1176 basic_block_new_live_at_end[i],
1177 basic_block_live_at_end[i]);
1178 }
1179 else
1180 {
1181 /* Update the basic_block_live_at_start
1182 by propagation backwards through the block. */
1183 COPY_REG_SET (basic_block_live_at_end[i],
1184 basic_block_new_live_at_end[i]);
1185 COPY_REG_SET (basic_block_live_at_start[i],
1186 basic_block_live_at_end[i]);
1187 propagate_block (basic_block_live_at_start[i],
1188 basic_block_head[i], basic_block_end[i], 0,
1189 first_pass ? basic_block_significant[i]
1190 : (regset) 0,
1191 i);
1192 }
1193
1194 {
1195 register rtx jump, head;
1196
1197 /* Update the basic_block_new_live_at_end's of the block
1198 that falls through into this one (if any). */
1199 head = basic_block_head[i];
1200 if (basic_block_drops_in[i])
1201 IOR_REG_SET (basic_block_new_live_at_end[i-1],
1202 basic_block_live_at_start[i]);
1203
1204 /* Update the basic_block_new_live_at_end's of
1205 all the blocks that jump to this one. */
1206 if (GET_CODE (head) == CODE_LABEL)
1207 for (jump = LABEL_REFS (head);
1208 jump != head;
1209 jump = LABEL_NEXTREF (jump))
1210 {
1211 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
1212 IOR_REG_SET (basic_block_new_live_at_end[from_block],
1213 basic_block_live_at_start[i]);
1214 }
1215 }
1216 #ifdef USE_C_ALLOCA
1217 alloca (0);
1218 #endif
1219 }
1220 first_pass = 0;
1221 }
1222
1223 /* The only pseudos that are live at the beginning of the function are
1224 those that were not set anywhere in the function. local-alloc doesn't
1225 know how to handle these correctly, so mark them as not local to any
1226 one basic block. */
1227
1228 if (n_basic_blocks > 0)
1229 EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[0],
1230 FIRST_PSEUDO_REGISTER, i,
1231 {
1232 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
1233 });
1234
1235 /* Now the life information is accurate.
1236 Make one more pass over each basic block
1237 to delete dead stores, create autoincrement addressing
1238 and record how many times each register is used, is set, or dies.
1239
1240 To save time, we operate directly in basic_block_live_at_end[i],
1241 thus destroying it (in fact, converting it into a copy of
1242 basic_block_live_at_start[i]). This is ok now because
1243 basic_block_live_at_end[i] is no longer used past this point. */
1244
1245 max_scratch = 0;
1246
1247 for (i = 0; i < n_basic_blocks; i++)
1248 {
1249 propagate_block (basic_block_live_at_end[i],
1250 basic_block_head[i], basic_block_end[i], 1,
1251 (regset) 0, i);
1252 #ifdef USE_C_ALLOCA
1253 alloca (0);
1254 #endif
1255 }
1256
1257 #if 0
1258 /* Something live during a setjmp should not be put in a register
1259 on certain machines which restore regs from stack frames
1260 rather than from the jmpbuf.
1261 But we don't need to do this for the user's variables, since
1262 ANSI says only volatile variables need this. */
1263 #ifdef LONGJMP_RESTORE_FROM_STACK
1264 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
1265 FIRST_PSEUDO_REGISTER, i,
1266 {
1267 if (regno_reg_rtx[i] != 0
1268 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1269 {
1270 REG_LIVE_LENGTH (i) = -1;
1271 REG_BASIC_BLOCK (i) = -1;
1272 }
1273 });
1274 #endif
1275 #endif
1276
1277 /* We have a problem with any pseudoreg that
1278 lives across the setjmp. ANSI says that if a
1279 user variable does not change in value
1280 between the setjmp and the longjmp, then the longjmp preserves it.
1281 This includes longjmp from a place where the pseudo appears dead.
1282 (In principle, the value still exists if it is in scope.)
1283 If the pseudo goes in a hard reg, some other value may occupy
1284 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1285 Conclusion: such a pseudo must not go in a hard reg. */
1286 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
1287 FIRST_PSEUDO_REGISTER, i,
1288 {
1289 if (regno_reg_rtx[i] != 0)
1290 {
1291 REG_LIVE_LENGTH (i) = -1;
1292 REG_BASIC_BLOCK (i) = -1;
1293 }
1294 });
1295
1296
1297 free_regset_vector (basic_block_live_at_end, n_basic_blocks);
1298 free_regset_vector (basic_block_new_live_at_end, n_basic_blocks);
1299 free_regset_vector (basic_block_significant, n_basic_blocks);
1300 basic_block_live_at_end = (regset *)0;
1301 basic_block_new_live_at_end = (regset *)0;
1302 basic_block_significant = (regset *)0;
1303
1304 obstack_free (&flow_obstack, NULL_PTR);
1305 }
1306 \f
1307 /* Subroutines of life analysis. */
1308
1309 /* Allocate the permanent data structures that represent the results
1310 of life analysis. Not static since used also for stupid life analysis. */
1311
1312 void
1313 allocate_for_life_analysis ()
1314 {
1315 register int i;
1316
1317 /* Recalculate the register space, in case it has grown. Old style
1318 vector oriented regsets would set regset_{size,bytes} here also. */
1319 allocate_reg_info (max_regno, FALSE, FALSE);
1320
1321 /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
1322 information, explicitly reset it here. The allocation should have
1323 already happened on the previous reg_scan pass. Make sure in case
1324 some more registers were allocated. */
1325 for (i = 0; i < max_regno; i++)
1326 REG_N_SETS (i) = 0;
1327
1328 basic_block_live_at_start
1329 = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1330 init_regset_vector (basic_block_live_at_start, n_basic_blocks,
1331 function_obstack);
1332
1333 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
1334 CLEAR_REG_SET (regs_live_at_setjmp);
1335 }
1336
1337 /* Make each element of VECTOR point at a regset. The vector has
1338 NELTS elements, and space is allocated from the ALLOC_OBSTACK
1339 obstack. */
1340
1341 void
1342 init_regset_vector (vector, nelts, alloc_obstack)
1343 regset *vector;
1344 int nelts;
1345 struct obstack *alloc_obstack;
1346 {
1347 register int i;
1348
1349 for (i = 0; i < nelts; i++)
1350 {
1351 vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
1352 CLEAR_REG_SET (vector[i]);
1353 }
1354 }
1355
1356 /* Release any additional space allocated for each element of VECTOR point
1357 other than the regset header itself. The vector has NELTS elements. */
1358
1359 void
1360 free_regset_vector (vector, nelts)
1361 regset *vector;
1362 int nelts;
1363 {
1364 register int i;
1365
1366 for (i = 0; i < nelts; i++)
1367 FREE_REG_SET (vector[i]);
1368 }
1369
1370 /* Compute the registers live at the beginning of a basic block
1371 from those live at the end.
1372
1373 When called, OLD contains those live at the end.
1374 On return, it contains those live at the beginning.
1375 FIRST and LAST are the first and last insns of the basic block.
1376
1377 FINAL is nonzero if we are doing the final pass which is not
1378 for computing the life info (since that has already been done)
1379 but for acting on it. On this pass, we delete dead stores,
1380 set up the logical links and dead-variables lists of instructions,
1381 and merge instructions for autoincrement and autodecrement addresses.
1382
1383 SIGNIFICANT is nonzero only the first time for each basic block.
1384 If it is nonzero, it points to a regset in which we store
1385 a 1 for each register that is set within the block.
1386
1387 BNUM is the number of the basic block. */
1388
1389 static void
1390 propagate_block (old, first, last, final, significant, bnum)
1391 register regset old;
1392 rtx first;
1393 rtx last;
1394 int final;
1395 regset significant;
1396 int bnum;
1397 {
1398 register rtx insn;
1399 rtx prev;
1400 regset live;
1401 regset dead;
1402
1403 /* The following variables are used only if FINAL is nonzero. */
1404 /* This vector gets one element for each reg that has been live
1405 at any point in the basic block that has been scanned so far.
1406 SOMETIMES_MAX says how many elements are in use so far. */
1407 register int *regs_sometimes_live;
1408 int sometimes_max = 0;
1409 /* This regset has 1 for each reg that we have seen live so far.
1410 It and REGS_SOMETIMES_LIVE are updated together. */
1411 regset maxlive;
1412
1413 /* The loop depth may change in the middle of a basic block. Since we
1414 scan from end to beginning, we start with the depth at the end of the
1415 current basic block, and adjust as we pass ends and starts of loops. */
1416 loop_depth = basic_block_loop_depth[bnum];
1417
1418 dead = ALLOCA_REG_SET ();
1419 live = ALLOCA_REG_SET ();
1420
1421 cc0_live = 0;
1422 last_mem_set = 0;
1423
1424 /* Include any notes at the end of the block in the scan.
1425 This is in case the block ends with a call to setjmp. */
1426
1427 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1428 {
1429 /* Look for loop boundaries, we are going forward here. */
1430 last = NEXT_INSN (last);
1431 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1432 loop_depth++;
1433 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1434 loop_depth--;
1435 }
1436
1437 if (final)
1438 {
1439 register int i;
1440
1441 num_scratch = 0;
1442 maxlive = ALLOCA_REG_SET ();
1443 COPY_REG_SET (maxlive, old);
1444 regs_sometimes_live = (int *) alloca (max_regno * sizeof (int));
1445
1446 /* Process the regs live at the end of the block.
1447 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1448 Also mark them as not local to any one basic block. */
1449 EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
1450 {
1451 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
1452 regs_sometimes_live[sometimes_max] = i;
1453 sometimes_max++;
1454 });
1455 }
1456
1457 /* Scan the block an insn at a time from end to beginning. */
1458
1459 for (insn = last; ; insn = prev)
1460 {
1461 prev = PREV_INSN (insn);
1462
1463 if (GET_CODE (insn) == NOTE)
1464 {
1465 /* Look for loop boundaries, remembering that we are going
1466 backwards. */
1467 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1468 loop_depth++;
1469 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1470 loop_depth--;
1471
1472 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1473 Abort now rather than setting register status incorrectly. */
1474 if (loop_depth == 0)
1475 abort ();
1476
1477 /* If this is a call to `setjmp' et al,
1478 warn if any non-volatile datum is live. */
1479
1480 if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1481 IOR_REG_SET (regs_live_at_setjmp, old);
1482 }
1483
1484 /* Update the life-status of regs for this insn.
1485 First DEAD gets which regs are set in this insn
1486 then LIVE gets which regs are used in this insn.
1487 Then the regs live before the insn
1488 are those live after, with DEAD regs turned off,
1489 and then LIVE regs turned on. */
1490
1491 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1492 {
1493 register int i;
1494 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1495 int insn_is_dead
1496 = (insn_dead_p (PATTERN (insn), old, 0)
1497 /* Don't delete something that refers to volatile storage! */
1498 && ! INSN_VOLATILE (insn));
1499 int libcall_is_dead
1500 = (insn_is_dead && note != 0
1501 && libcall_dead_p (PATTERN (insn), old, note, insn));
1502
1503 /* If an instruction consists of just dead store(s) on final pass,
1504 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1505 We could really delete it with delete_insn, but that
1506 can cause trouble for first or last insn in a basic block. */
1507 if (final && insn_is_dead)
1508 {
1509 PUT_CODE (insn, NOTE);
1510 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1511 NOTE_SOURCE_FILE (insn) = 0;
1512
1513 /* CC0 is now known to be dead. Either this insn used it,
1514 in which case it doesn't anymore, or clobbered it,
1515 so the next insn can't use it. */
1516 cc0_live = 0;
1517
1518 /* If this insn is copying the return value from a library call,
1519 delete the entire library call. */
1520 if (libcall_is_dead)
1521 {
1522 rtx first = XEXP (note, 0);
1523 rtx p = insn;
1524 while (INSN_DELETED_P (first))
1525 first = NEXT_INSN (first);
1526 while (p != first)
1527 {
1528 p = PREV_INSN (p);
1529 PUT_CODE (p, NOTE);
1530 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1531 NOTE_SOURCE_FILE (p) = 0;
1532 }
1533 }
1534 goto flushed;
1535 }
1536
1537 CLEAR_REG_SET (dead);
1538 CLEAR_REG_SET (live);
1539
1540 /* See if this is an increment or decrement that can be
1541 merged into a following memory address. */
1542 #ifdef AUTO_INC_DEC
1543 {
1544 register rtx x = single_set (insn);
1545
1546 /* Does this instruction increment or decrement a register? */
1547 if (final && x != 0
1548 && GET_CODE (SET_DEST (x)) == REG
1549 && (GET_CODE (SET_SRC (x)) == PLUS
1550 || GET_CODE (SET_SRC (x)) == MINUS)
1551 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1552 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1553 /* Ok, look for a following memory ref we can combine with.
1554 If one is found, change the memory ref to a PRE_INC
1555 or PRE_DEC, cancel this insn, and return 1.
1556 Return 0 if nothing has been done. */
1557 && try_pre_increment_1 (insn))
1558 goto flushed;
1559 }
1560 #endif /* AUTO_INC_DEC */
1561
1562 /* If this is not the final pass, and this insn is copying the
1563 value of a library call and it's dead, don't scan the
1564 insns that perform the library call, so that the call's
1565 arguments are not marked live. */
1566 if (libcall_is_dead)
1567 {
1568 /* Mark the dest reg as `significant'. */
1569 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
1570
1571 insn = XEXP (note, 0);
1572 prev = PREV_INSN (insn);
1573 }
1574 else if (GET_CODE (PATTERN (insn)) == SET
1575 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1576 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1577 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1578 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1579 /* We have an insn to pop a constant amount off the stack.
1580 (Such insns use PLUS regardless of the direction of the stack,
1581 and any insn to adjust the stack by a constant is always a pop.)
1582 These insns, if not dead stores, have no effect on life. */
1583 ;
1584 else
1585 {
1586 /* LIVE gets the regs used in INSN;
1587 DEAD gets those set by it. Dead insns don't make anything
1588 live. */
1589
1590 mark_set_regs (old, dead, PATTERN (insn),
1591 final ? insn : NULL_RTX, significant);
1592
1593 /* If an insn doesn't use CC0, it becomes dead since we
1594 assume that every insn clobbers it. So show it dead here;
1595 mark_used_regs will set it live if it is referenced. */
1596 cc0_live = 0;
1597
1598 if (! insn_is_dead)
1599 mark_used_regs (old, live, PATTERN (insn), final, insn);
1600
1601 /* Sometimes we may have inserted something before INSN (such as
1602 a move) when we make an auto-inc. So ensure we will scan
1603 those insns. */
1604 #ifdef AUTO_INC_DEC
1605 prev = PREV_INSN (insn);
1606 #endif
1607
1608 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1609 {
1610 register int i;
1611
1612 rtx note;
1613
1614 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1615 note;
1616 note = XEXP (note, 1))
1617 if (GET_CODE (XEXP (note, 0)) == USE)
1618 mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
1619 final, insn);
1620
1621 /* Each call clobbers all call-clobbered regs that are not
1622 global or fixed. Note that the function-value reg is a
1623 call-clobbered reg, and mark_set_regs has already had
1624 a chance to handle it. */
1625
1626 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1627 if (call_used_regs[i] && ! global_regs[i]
1628 && ! fixed_regs[i])
1629 SET_REGNO_REG_SET (dead, i);
1630
1631 /* The stack ptr is used (honorarily) by a CALL insn. */
1632 SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
1633
1634 /* Calls may also reference any of the global registers,
1635 so they are made live. */
1636 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1637 if (global_regs[i])
1638 mark_used_regs (old, live,
1639 gen_rtx (REG, reg_raw_mode[i], i),
1640 final, insn);
1641
1642 /* Calls also clobber memory. */
1643 last_mem_set = 0;
1644 }
1645
1646 /* Update OLD for the registers used or set. */
1647 AND_COMPL_REG_SET (old, dead);
1648 IOR_REG_SET (old, live);
1649
1650 if (GET_CODE (insn) == CALL_INSN && final)
1651 {
1652 /* Any regs live at the time of a call instruction
1653 must not go in a register clobbered by calls.
1654 Find all regs now live and record this for them. */
1655
1656 register int *p = regs_sometimes_live;
1657
1658 for (i = 0; i < sometimes_max; i++, p++)
1659 if (REGNO_REG_SET_P (old, *p))
1660 REG_N_CALLS_CROSSED (*p)++;
1661 }
1662 }
1663
1664 /* On final pass, add any additional sometimes-live regs
1665 into MAXLIVE and REGS_SOMETIMES_LIVE.
1666 Also update counts of how many insns each reg is live at. */
1667
1668 if (final)
1669 {
1670 register int regno;
1671 register int *p;
1672
1673 EXECUTE_IF_AND_COMPL_IN_REG_SET
1674 (live, maxlive, 0, regno,
1675 {
1676 regs_sometimes_live[sometimes_max++] = regno;
1677 SET_REGNO_REG_SET (maxlive, regno);
1678 });
1679
1680 p = regs_sometimes_live;
1681 for (i = 0; i < sometimes_max; i++)
1682 {
1683 regno = *p++;
1684 if (REGNO_REG_SET_P (old, regno))
1685 REG_LIVE_LENGTH (regno)++;
1686 }
1687 }
1688 }
1689 flushed: ;
1690 if (insn == first)
1691 break;
1692 }
1693
1694 FREE_REG_SET (dead);
1695 FREE_REG_SET (live);
1696 if (final)
1697 FREE_REG_SET (maxlive);
1698
1699 if (num_scratch > max_scratch)
1700 max_scratch = num_scratch;
1701 }
1702 \f
1703 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1704 (SET expressions whose destinations are registers dead after the insn).
1705 NEEDED is the regset that says which regs are alive after the insn.
1706
1707 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1708
1709 static int
1710 insn_dead_p (x, needed, call_ok)
1711 rtx x;
1712 regset needed;
1713 int call_ok;
1714 {
1715 register RTX_CODE code = GET_CODE (x);
1716 /* If setting something that's a reg or part of one,
1717 see if that register's altered value will be live. */
1718
1719 if (code == SET)
1720 {
1721 register rtx r = SET_DEST (x);
1722 /* A SET that is a subroutine call cannot be dead. */
1723 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1724 return 0;
1725
1726 #ifdef HAVE_cc0
1727 if (GET_CODE (r) == CC0)
1728 return ! cc0_live;
1729 #endif
1730
1731 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1732 && rtx_equal_p (r, last_mem_set))
1733 return 1;
1734
1735 while (GET_CODE (r) == SUBREG
1736 || GET_CODE (r) == STRICT_LOW_PART
1737 || GET_CODE (r) == ZERO_EXTRACT
1738 || GET_CODE (r) == SIGN_EXTRACT)
1739 r = SUBREG_REG (r);
1740
1741 if (GET_CODE (r) == REG)
1742 {
1743 register int regno = REGNO (r);
1744
1745 /* Don't delete insns to set global regs. */
1746 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1747 /* Make sure insns to set frame pointer aren't deleted. */
1748 || regno == FRAME_POINTER_REGNUM
1749 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1750 || regno == HARD_FRAME_POINTER_REGNUM
1751 #endif
1752 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1753 /* Make sure insns to set arg pointer are never deleted
1754 (if the arg pointer isn't fixed, there will be a USE for
1755 it, so we can treat it normally). */
1756 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1757 #endif
1758 || REGNO_REG_SET_P (needed, regno))
1759 return 0;
1760
1761 /* If this is a hard register, verify that subsequent words are
1762 not needed. */
1763 if (regno < FIRST_PSEUDO_REGISTER)
1764 {
1765 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1766
1767 while (--n > 0)
1768 if (REGNO_REG_SET_P (needed, regno+n))
1769 return 0;
1770 }
1771
1772 return 1;
1773 }
1774 }
1775 /* If performing several activities,
1776 insn is dead if each activity is individually dead.
1777 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1778 that's inside a PARALLEL doesn't make the insn worth keeping. */
1779 else if (code == PARALLEL)
1780 {
1781 register int i = XVECLEN (x, 0);
1782 for (i--; i >= 0; i--)
1783 {
1784 rtx elt = XVECEXP (x, 0, i);
1785 if (!insn_dead_p (elt, needed, call_ok)
1786 && GET_CODE (elt) != CLOBBER
1787 && GET_CODE (elt) != USE)
1788 return 0;
1789 }
1790 return 1;
1791 }
1792 /* We do not check CLOBBER or USE here.
1793 An insn consisting of just a CLOBBER or just a USE
1794 should not be deleted. */
1795 return 0;
1796 }
1797
1798 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1799 return 1 if the entire library call is dead.
1800 This is true if X copies a register (hard or pseudo)
1801 and if the hard return reg of the call insn is dead.
1802 (The caller should have tested the destination of X already for death.)
1803
1804 If this insn doesn't just copy a register, then we don't
1805 have an ordinary libcall. In that case, cse could not have
1806 managed to substitute the source for the dest later on,
1807 so we can assume the libcall is dead.
1808
1809 NEEDED is the bit vector of pseudoregs live before this insn.
1810 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1811
1812 static int
1813 libcall_dead_p (x, needed, note, insn)
1814 rtx x;
1815 regset needed;
1816 rtx note;
1817 rtx insn;
1818 {
1819 register RTX_CODE code = GET_CODE (x);
1820
1821 if (code == SET)
1822 {
1823 register rtx r = SET_SRC (x);
1824 if (GET_CODE (r) == REG)
1825 {
1826 rtx call = XEXP (note, 0);
1827 register int i;
1828
1829 /* Find the call insn. */
1830 while (call != insn && GET_CODE (call) != CALL_INSN)
1831 call = NEXT_INSN (call);
1832
1833 /* If there is none, do nothing special,
1834 since ordinary death handling can understand these insns. */
1835 if (call == insn)
1836 return 0;
1837
1838 /* See if the hard reg holding the value is dead.
1839 If this is a PARALLEL, find the call within it. */
1840 call = PATTERN (call);
1841 if (GET_CODE (call) == PARALLEL)
1842 {
1843 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1844 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1845 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1846 break;
1847
1848 /* This may be a library call that is returning a value
1849 via invisible pointer. Do nothing special, since
1850 ordinary death handling can understand these insns. */
1851 if (i < 0)
1852 return 0;
1853
1854 call = XVECEXP (call, 0, i);
1855 }
1856
1857 return insn_dead_p (call, needed, 1);
1858 }
1859 }
1860 return 1;
1861 }
1862
1863 /* Return 1 if register REGNO was used before it was set.
1864 In other words, if it is live at function entry.
1865 Don't count global register variables or variables in registers
1866 that can be used for function arg passing, though. */
1867
1868 int
1869 regno_uninitialized (regno)
1870 int regno;
1871 {
1872 if (n_basic_blocks == 0
1873 || (regno < FIRST_PSEUDO_REGISTER
1874 && (global_regs[regno] || FUNCTION_ARG_REGNO_P (regno))))
1875 return 0;
1876
1877 return REGNO_REG_SET_P (basic_block_live_at_start[0], regno);
1878 }
1879
1880 /* 1 if register REGNO was alive at a place where `setjmp' was called
1881 and was set more than once or is an argument.
1882 Such regs may be clobbered by `longjmp'. */
1883
1884 int
1885 regno_clobbered_at_setjmp (regno)
1886 int regno;
1887 {
1888 if (n_basic_blocks == 0)
1889 return 0;
1890
1891 return ((REG_N_SETS (regno) > 1
1892 || REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
1893 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
1894 }
1895 \f
1896 /* Process the registers that are set within X.
1897 Their bits are set to 1 in the regset DEAD,
1898 because they are dead prior to this insn.
1899
1900 If INSN is nonzero, it is the insn being processed
1901 and the fact that it is nonzero implies this is the FINAL pass
1902 in propagate_block. In this case, various info about register
1903 usage is stored, LOG_LINKS fields of insns are set up. */
1904
1905 static void
1906 mark_set_regs (needed, dead, x, insn, significant)
1907 regset needed;
1908 regset dead;
1909 rtx x;
1910 rtx insn;
1911 regset significant;
1912 {
1913 register RTX_CODE code = GET_CODE (x);
1914
1915 if (code == SET || code == CLOBBER)
1916 mark_set_1 (needed, dead, x, insn, significant);
1917 else if (code == PARALLEL)
1918 {
1919 register int i;
1920 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1921 {
1922 code = GET_CODE (XVECEXP (x, 0, i));
1923 if (code == SET || code == CLOBBER)
1924 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1925 }
1926 }
1927 }
1928
1929 /* Process a single SET rtx, X. */
1930
1931 static void
1932 mark_set_1 (needed, dead, x, insn, significant)
1933 regset needed;
1934 regset dead;
1935 rtx x;
1936 rtx insn;
1937 regset significant;
1938 {
1939 register int regno;
1940 register rtx reg = SET_DEST (x);
1941
1942 /* Modifying just one hardware register of a multi-reg value
1943 or just a byte field of a register
1944 does not mean the value from before this insn is now dead.
1945 But it does mean liveness of that register at the end of the block
1946 is significant.
1947
1948 Within mark_set_1, however, we treat it as if the register is
1949 indeed modified. mark_used_regs will, however, also treat this
1950 register as being used. Thus, we treat these insns as setting a
1951 new value for the register as a function of its old value. This
1952 cases LOG_LINKS to be made appropriately and this will help combine. */
1953
1954 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1955 || GET_CODE (reg) == SIGN_EXTRACT
1956 || GET_CODE (reg) == STRICT_LOW_PART)
1957 reg = XEXP (reg, 0);
1958
1959 /* If we are writing into memory or into a register mentioned in the
1960 address of the last thing stored into memory, show we don't know
1961 what the last store was. If we are writing memory, save the address
1962 unless it is volatile. */
1963 if (GET_CODE (reg) == MEM
1964 || (GET_CODE (reg) == REG
1965 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1966 last_mem_set = 0;
1967
1968 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
1969 /* There are no REG_INC notes for SP, so we can't assume we'll see
1970 everything that invalidates it. To be safe, don't eliminate any
1971 stores though SP; none of them should be redundant anyway. */
1972 && ! reg_mentioned_p (stack_pointer_rtx, reg))
1973 last_mem_set = reg;
1974
1975 if (GET_CODE (reg) == REG
1976 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
1977 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1978 && regno != HARD_FRAME_POINTER_REGNUM
1979 #endif
1980 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1981 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1982 #endif
1983 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1984 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1985 {
1986 int some_needed = REGNO_REG_SET_P (needed, regno);
1987 int some_not_needed = ! some_needed;
1988
1989 /* Mark it as a significant register for this basic block. */
1990 if (significant)
1991 SET_REGNO_REG_SET (significant, regno);
1992
1993 /* Mark it as as dead before this insn. */
1994 SET_REGNO_REG_SET (dead, regno);
1995
1996 /* A hard reg in a wide mode may really be multiple registers.
1997 If so, mark all of them just like the first. */
1998 if (regno < FIRST_PSEUDO_REGISTER)
1999 {
2000 int n;
2001
2002 /* Nothing below is needed for the stack pointer; get out asap.
2003 Eg, log links aren't needed, since combine won't use them. */
2004 if (regno == STACK_POINTER_REGNUM)
2005 return;
2006
2007 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2008 while (--n > 0)
2009 {
2010 int regno_n = regno + n;
2011 int needed_regno = REGNO_REG_SET_P (needed, regno_n);
2012 if (significant)
2013 SET_REGNO_REG_SET (significant, regno_n);
2014
2015 SET_REGNO_REG_SET (dead, regno_n);
2016 some_needed |= needed_regno;
2017 some_not_needed |= ! needed_regno;
2018 }
2019 }
2020 /* Additional data to record if this is the final pass. */
2021 if (insn)
2022 {
2023 register rtx y = reg_next_use[regno];
2024 register int blocknum = BLOCK_NUM (insn);
2025
2026 /* If this is a hard reg, record this function uses the reg. */
2027
2028 if (regno < FIRST_PSEUDO_REGISTER)
2029 {
2030 register int i;
2031 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
2032
2033 for (i = regno; i < endregno; i++)
2034 {
2035 /* The next use is no longer "next", since a store
2036 intervenes. */
2037 reg_next_use[i] = 0;
2038
2039 regs_ever_live[i] = 1;
2040 REG_N_SETS (i)++;
2041 }
2042 }
2043 else
2044 {
2045 /* The next use is no longer "next", since a store
2046 intervenes. */
2047 reg_next_use[regno] = 0;
2048
2049 /* Keep track of which basic blocks each reg appears in. */
2050
2051 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
2052 REG_BASIC_BLOCK (regno) = blocknum;
2053 else if (REG_BASIC_BLOCK (regno) != blocknum)
2054 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
2055
2056 /* Count (weighted) references, stores, etc. This counts a
2057 register twice if it is modified, but that is correct. */
2058 REG_N_SETS (regno)++;
2059
2060 REG_N_REFS (regno) += loop_depth;
2061
2062 /* The insns where a reg is live are normally counted
2063 elsewhere, but we want the count to include the insn
2064 where the reg is set, and the normal counting mechanism
2065 would not count it. */
2066 REG_LIVE_LENGTH (regno)++;
2067 }
2068
2069 if (! some_not_needed)
2070 {
2071 /* Make a logical link from the next following insn
2072 that uses this register, back to this insn.
2073 The following insns have already been processed.
2074
2075 We don't build a LOG_LINK for hard registers containing
2076 in ASM_OPERANDs. If these registers get replaced,
2077 we might wind up changing the semantics of the insn,
2078 even if reload can make what appear to be valid assignments
2079 later. */
2080 if (y && (BLOCK_NUM (y) == blocknum)
2081 && (regno >= FIRST_PSEUDO_REGISTER
2082 || asm_noperands (PATTERN (y)) < 0))
2083 LOG_LINKS (y)
2084 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
2085 }
2086 else if (! some_needed)
2087 {
2088 /* Note that dead stores have already been deleted when possible
2089 If we get here, we have found a dead store that cannot
2090 be eliminated (because the same insn does something useful).
2091 Indicate this by marking the reg being set as dying here. */
2092 REG_NOTES (insn)
2093 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2094 REG_N_DEATHS (REGNO (reg))++;
2095 }
2096 else
2097 {
2098 /* This is a case where we have a multi-word hard register
2099 and some, but not all, of the words of the register are
2100 needed in subsequent insns. Write REG_UNUSED notes
2101 for those parts that were not needed. This case should
2102 be rare. */
2103
2104 int i;
2105
2106 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
2107 i >= 0; i--)
2108 if (!REGNO_REG_SET_P (needed, regno + i))
2109 REG_NOTES (insn)
2110 = gen_rtx (EXPR_LIST, REG_UNUSED,
2111 gen_rtx (REG, reg_raw_mode[regno + i],
2112 regno + i),
2113 REG_NOTES (insn));
2114 }
2115 }
2116 }
2117 else if (GET_CODE (reg) == REG)
2118 reg_next_use[regno] = 0;
2119
2120 /* If this is the last pass and this is a SCRATCH, show it will be dying
2121 here and count it. */
2122 else if (GET_CODE (reg) == SCRATCH && insn != 0)
2123 {
2124 REG_NOTES (insn)
2125 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2126 num_scratch++;
2127 }
2128 }
2129 \f
2130 #ifdef AUTO_INC_DEC
2131
2132 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
2133 reference. */
2134
2135 static void
2136 find_auto_inc (needed, x, insn)
2137 regset needed;
2138 rtx x;
2139 rtx insn;
2140 {
2141 rtx addr = XEXP (x, 0);
2142 HOST_WIDE_INT offset = 0;
2143 rtx set;
2144
2145 /* Here we detect use of an index register which might be good for
2146 postincrement, postdecrement, preincrement, or predecrement. */
2147
2148 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2149 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
2150
2151 if (GET_CODE (addr) == REG)
2152 {
2153 register rtx y;
2154 register int size = GET_MODE_SIZE (GET_MODE (x));
2155 rtx use;
2156 rtx incr;
2157 int regno = REGNO (addr);
2158
2159 /* Is the next use an increment that might make auto-increment? */
2160 if ((incr = reg_next_use[regno]) != 0
2161 && (set = single_set (incr)) != 0
2162 && GET_CODE (set) == SET
2163 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
2164 /* Can't add side effects to jumps; if reg is spilled and
2165 reloaded, there's no way to store back the altered value. */
2166 && GET_CODE (insn) != JUMP_INSN
2167 && (y = SET_SRC (set), GET_CODE (y) == PLUS)
2168 && XEXP (y, 0) == addr
2169 && GET_CODE (XEXP (y, 1)) == CONST_INT
2170 && (0
2171 #ifdef HAVE_POST_INCREMENT
2172 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
2173 #endif
2174 #ifdef HAVE_POST_DECREMENT
2175 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
2176 #endif
2177 #ifdef HAVE_PRE_INCREMENT
2178 || (INTVAL (XEXP (y, 1)) == size && offset == size)
2179 #endif
2180 #ifdef HAVE_PRE_DECREMENT
2181 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
2182 #endif
2183 )
2184 /* Make sure this reg appears only once in this insn. */
2185 && (use = find_use_as_address (PATTERN (insn), addr, offset),
2186 use != 0 && use != (rtx) 1))
2187 {
2188 rtx q = SET_DEST (set);
2189 enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
2190 ? (offset ? PRE_INC : POST_INC)
2191 : (offset ? PRE_DEC : POST_DEC));
2192
2193 if (dead_or_set_p (incr, addr))
2194 {
2195 /* This is the simple case. Try to make the auto-inc. If
2196 we can't, we are done. Otherwise, we will do any
2197 needed updates below. */
2198 if (! validate_change (insn, &XEXP (x, 0),
2199 gen_rtx (inc_code, Pmode, addr),
2200 0))
2201 return;
2202 }
2203 else if (GET_CODE (q) == REG
2204 /* PREV_INSN used here to check the semi-open interval
2205 [insn,incr). */
2206 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
2207 /* We must also check for sets of q as q may be
2208 a call clobbered hard register and there may
2209 be a call between PREV_INSN (insn) and incr. */
2210 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
2211 {
2212 /* We have *p followed sometime later by q = p+size.
2213 Both p and q must be live afterward,
2214 and q is not used between INSN and it's assignment.
2215 Change it to q = p, ...*q..., q = q+size.
2216 Then fall into the usual case. */
2217 rtx insns, temp;
2218
2219 start_sequence ();
2220 emit_move_insn (q, addr);
2221 insns = get_insns ();
2222 end_sequence ();
2223
2224 /* If anything in INSNS have UID's that don't fit within the
2225 extra space we allocate earlier, we can't make this auto-inc.
2226 This should never happen. */
2227 for (temp = insns; temp; temp = NEXT_INSN (temp))
2228 {
2229 if (INSN_UID (temp) > max_uid_for_flow)
2230 return;
2231 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2232 }
2233
2234 /* If we can't make the auto-inc, or can't make the
2235 replacement into Y, exit. There's no point in making
2236 the change below if we can't do the auto-inc and doing
2237 so is not correct in the pre-inc case. */
2238
2239 validate_change (insn, &XEXP (x, 0),
2240 gen_rtx (inc_code, Pmode, q),
2241 1);
2242 validate_change (incr, &XEXP (y, 0), q, 1);
2243 if (! apply_change_group ())
2244 return;
2245
2246 /* We now know we'll be doing this change, so emit the
2247 new insn(s) and do the updates. */
2248 emit_insns_before (insns, insn);
2249
2250 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2251 basic_block_head[BLOCK_NUM (insn)] = insns;
2252
2253 /* INCR will become a NOTE and INSN won't contain a
2254 use of ADDR. If a use of ADDR was just placed in
2255 the insn before INSN, make that the next use.
2256 Otherwise, invalidate it. */
2257 if (GET_CODE (PREV_INSN (insn)) == INSN
2258 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2259 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2260 reg_next_use[regno] = PREV_INSN (insn);
2261 else
2262 reg_next_use[regno] = 0;
2263
2264 addr = q;
2265 regno = REGNO (q);
2266
2267 /* REGNO is now used in INCR which is below INSN, but
2268 it previously wasn't live here. If we don't mark
2269 it as needed, we'll put a REG_DEAD note for it
2270 on this insn, which is incorrect. */
2271 SET_REGNO_REG_SET (needed, regno);
2272
2273 /* If there are any calls between INSN and INCR, show
2274 that REGNO now crosses them. */
2275 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2276 if (GET_CODE (temp) == CALL_INSN)
2277 REG_N_CALLS_CROSSED (regno)++;
2278 }
2279 else
2280 return;
2281
2282 /* If we haven't returned, it means we were able to make the
2283 auto-inc, so update the status. First, record that this insn
2284 has an implicit side effect. */
2285
2286 REG_NOTES (insn)
2287 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2288
2289 /* Modify the old increment-insn to simply copy
2290 the already-incremented value of our register. */
2291 if (! validate_change (incr, &SET_SRC (set), addr, 0))
2292 abort ();
2293
2294 /* If that makes it a no-op (copying the register into itself) delete
2295 it so it won't appear to be a "use" and a "set" of this
2296 register. */
2297 if (SET_DEST (set) == addr)
2298 {
2299 PUT_CODE (incr, NOTE);
2300 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2301 NOTE_SOURCE_FILE (incr) = 0;
2302 }
2303
2304 if (regno >= FIRST_PSEUDO_REGISTER)
2305 {
2306 /* Count an extra reference to the reg. When a reg is
2307 incremented, spilling it is worse, so we want to make
2308 that less likely. */
2309 REG_N_REFS (regno) += loop_depth;
2310
2311 /* Count the increment as a setting of the register,
2312 even though it isn't a SET in rtl. */
2313 REG_N_SETS (regno)++;
2314 }
2315 }
2316 }
2317 }
2318 #endif /* AUTO_INC_DEC */
2319 \f
2320 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2321 This is done assuming the registers needed from X
2322 are those that have 1-bits in NEEDED.
2323
2324 On the final pass, FINAL is 1. This means try for autoincrement
2325 and count the uses and deaths of each pseudo-reg.
2326
2327 INSN is the containing instruction. If INSN is dead, this function is not
2328 called. */
2329
2330 static void
2331 mark_used_regs (needed, live, x, final, insn)
2332 regset needed;
2333 regset live;
2334 rtx x;
2335 int final;
2336 rtx insn;
2337 {
2338 register RTX_CODE code;
2339 register int regno;
2340 int i;
2341
2342 retry:
2343 code = GET_CODE (x);
2344 switch (code)
2345 {
2346 case LABEL_REF:
2347 case SYMBOL_REF:
2348 case CONST_INT:
2349 case CONST:
2350 case CONST_DOUBLE:
2351 case PC:
2352 case ADDR_VEC:
2353 case ADDR_DIFF_VEC:
2354 case ASM_INPUT:
2355 return;
2356
2357 #ifdef HAVE_cc0
2358 case CC0:
2359 cc0_live = 1;
2360 return;
2361 #endif
2362
2363 case CLOBBER:
2364 /* If we are clobbering a MEM, mark any registers inside the address
2365 as being used. */
2366 if (GET_CODE (XEXP (x, 0)) == MEM)
2367 mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
2368 return;
2369
2370 case MEM:
2371 /* Invalidate the data for the last MEM stored, but only if MEM is
2372 something that can be stored into. */
2373 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2374 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
2375 ; /* needn't clear last_mem_set */
2376 else
2377 last_mem_set = 0;
2378
2379 #ifdef AUTO_INC_DEC
2380 if (final)
2381 find_auto_inc (needed, x, insn);
2382 #endif
2383 break;
2384
2385 case SUBREG:
2386 if (GET_CODE (SUBREG_REG (x)) == REG
2387 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
2388 && (GET_MODE_SIZE (GET_MODE (x))
2389 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2390 REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;
2391
2392 /* While we're here, optimize this case. */
2393 x = SUBREG_REG (x);
2394
2395 /* In case the SUBREG is not of a register, don't optimize */
2396 if (GET_CODE (x) != REG)
2397 {
2398 mark_used_regs (needed, live, x, final, insn);
2399 return;
2400 }
2401
2402 /* ... fall through ... */
2403
2404 case REG:
2405 /* See a register other than being set
2406 => mark it as needed. */
2407
2408 regno = REGNO (x);
2409 {
2410 int some_needed = REGNO_REG_SET_P (needed, regno);
2411 int some_not_needed = ! some_needed;
2412
2413 SET_REGNO_REG_SET (live, regno);
2414
2415 /* A hard reg in a wide mode may really be multiple registers.
2416 If so, mark all of them just like the first. */
2417 if (regno < FIRST_PSEUDO_REGISTER)
2418 {
2419 int n;
2420
2421 /* For stack ptr or fixed arg pointer,
2422 nothing below can be necessary, so waste no more time. */
2423 if (regno == STACK_POINTER_REGNUM
2424 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2425 || regno == HARD_FRAME_POINTER_REGNUM
2426 #endif
2427 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2428 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2429 #endif
2430 || regno == FRAME_POINTER_REGNUM)
2431 {
2432 /* If this is a register we are going to try to eliminate,
2433 don't mark it live here. If we are successful in
2434 eliminating it, it need not be live unless it is used for
2435 pseudos, in which case it will have been set live when
2436 it was allocated to the pseudos. If the register will not
2437 be eliminated, reload will set it live at that point. */
2438
2439 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2440 regs_ever_live[regno] = 1;
2441 return;
2442 }
2443 /* No death notes for global register variables;
2444 their values are live after this function exits. */
2445 if (global_regs[regno])
2446 {
2447 if (final)
2448 reg_next_use[regno] = insn;
2449 return;
2450 }
2451
2452 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2453 while (--n > 0)
2454 {
2455 int regno_n = regno + n;
2456 int needed_regno = REGNO_REG_SET_P (needed, regno_n);
2457
2458 SET_REGNO_REG_SET (live, regno_n);
2459 some_needed |= needed_regno;
2460 some_not_needed |= ! needed_regno;
2461 }
2462 }
2463 if (final)
2464 {
2465 /* Record where each reg is used, so when the reg
2466 is set we know the next insn that uses it. */
2467
2468 reg_next_use[regno] = insn;
2469
2470 if (regno < FIRST_PSEUDO_REGISTER)
2471 {
2472 /* If a hard reg is being used,
2473 record that this function does use it. */
2474
2475 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2476 if (i == 0)
2477 i = 1;
2478 do
2479 regs_ever_live[regno + --i] = 1;
2480 while (i > 0);
2481 }
2482 else
2483 {
2484 /* Keep track of which basic block each reg appears in. */
2485
2486 register int blocknum = BLOCK_NUM (insn);
2487
2488 if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
2489 REG_BASIC_BLOCK (regno) = blocknum;
2490 else if (REG_BASIC_BLOCK (regno) != blocknum)
2491 REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;
2492
2493 /* Count (weighted) number of uses of each reg. */
2494
2495 REG_N_REFS (regno) += loop_depth;
2496 }
2497
2498 /* Record and count the insns in which a reg dies.
2499 If it is used in this insn and was dead below the insn
2500 then it dies in this insn. If it was set in this insn,
2501 we do not make a REG_DEAD note; likewise if we already
2502 made such a note. */
2503
2504 if (some_not_needed
2505 && ! dead_or_set_p (insn, x)
2506 #if 0
2507 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2508 #endif
2509 )
2510 {
2511 /* Check for the case where the register dying partially
2512 overlaps the register set by this insn. */
2513 if (regno < FIRST_PSEUDO_REGISTER
2514 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2515 {
2516 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2517 while (--n >= 0)
2518 some_needed |= dead_or_set_regno_p (insn, regno + n);
2519 }
2520
2521 /* If none of the words in X is needed, make a REG_DEAD
2522 note. Otherwise, we must make partial REG_DEAD notes. */
2523 if (! some_needed)
2524 {
2525 REG_NOTES (insn)
2526 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2527 REG_N_DEATHS (regno)++;
2528 }
2529 else
2530 {
2531 int i;
2532
2533 /* Don't make a REG_DEAD note for a part of a register
2534 that is set in the insn. */
2535
2536 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2537 i >= 0; i--)
2538 if (!REGNO_REG_SET_P (needed, regno + i)
2539 && ! dead_or_set_regno_p (insn, regno + i))
2540 REG_NOTES (insn)
2541 = gen_rtx (EXPR_LIST, REG_DEAD,
2542 gen_rtx (REG, reg_raw_mode[regno + i],
2543 regno + i),
2544 REG_NOTES (insn));
2545 }
2546 }
2547 }
2548 }
2549 return;
2550
2551 case SET:
2552 {
2553 register rtx testreg = SET_DEST (x);
2554 int mark_dest = 0;
2555
2556 /* If storing into MEM, don't show it as being used. But do
2557 show the address as being used. */
2558 if (GET_CODE (testreg) == MEM)
2559 {
2560 #ifdef AUTO_INC_DEC
2561 if (final)
2562 find_auto_inc (needed, testreg, insn);
2563 #endif
2564 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2565 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2566 return;
2567 }
2568
2569 /* Storing in STRICT_LOW_PART is like storing in a reg
2570 in that this SET might be dead, so ignore it in TESTREG.
2571 but in some other ways it is like using the reg.
2572
2573 Storing in a SUBREG or a bit field is like storing the entire
2574 register in that if the register's value is not used
2575 then this SET is not needed. */
2576 while (GET_CODE (testreg) == STRICT_LOW_PART
2577 || GET_CODE (testreg) == ZERO_EXTRACT
2578 || GET_CODE (testreg) == SIGN_EXTRACT
2579 || GET_CODE (testreg) == SUBREG)
2580 {
2581 if (GET_CODE (testreg) == SUBREG
2582 && GET_CODE (SUBREG_REG (testreg)) == REG
2583 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
2584 && (GET_MODE_SIZE (GET_MODE (testreg))
2585 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
2586 REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;
2587
2588 /* Modifying a single register in an alternate mode
2589 does not use any of the old value. But these other
2590 ways of storing in a register do use the old value. */
2591 if (GET_CODE (testreg) == SUBREG
2592 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2593 ;
2594 else
2595 mark_dest = 1;
2596
2597 testreg = XEXP (testreg, 0);
2598 }
2599
2600 /* If this is a store into a register,
2601 recursively scan the value being stored. */
2602
2603 if (GET_CODE (testreg) == REG
2604 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2605 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2606 && regno != HARD_FRAME_POINTER_REGNUM
2607 #endif
2608 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2609 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2610 #endif
2611 )
2612 /* We used to exclude global_regs here, but that seems wrong.
2613 Storing in them is like storing in mem. */
2614 {
2615 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2616 if (mark_dest)
2617 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2618 return;
2619 }
2620 }
2621 break;
2622
2623 case RETURN:
2624 /* If exiting needs the right stack value, consider this insn as
2625 using the stack pointer. In any event, consider it as using
2626 all global registers and all registers used by return. */
2627
2628 #ifdef EXIT_IGNORE_STACK
2629 if (! EXIT_IGNORE_STACK
2630 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2631 #endif
2632 SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);
2633
2634 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2635 if (global_regs[i]
2636 #ifdef EPILOGUE_USES
2637 || EPILOGUE_USES (i)
2638 #endif
2639 )
2640 SET_REGNO_REG_SET (live, i);
2641 break;
2642
2643 default:
2644 break;
2645 }
2646
2647 /* Recursively scan the operands of this expression. */
2648
2649 {
2650 register char *fmt = GET_RTX_FORMAT (code);
2651 register int i;
2652
2653 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2654 {
2655 if (fmt[i] == 'e')
2656 {
2657 /* Tail recursive case: save a function call level. */
2658 if (i == 0)
2659 {
2660 x = XEXP (x, 0);
2661 goto retry;
2662 }
2663 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2664 }
2665 else if (fmt[i] == 'E')
2666 {
2667 register int j;
2668 for (j = 0; j < XVECLEN (x, i); j++)
2669 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2670 }
2671 }
2672 }
2673 }
2674 \f
2675 #ifdef AUTO_INC_DEC
2676
2677 static int
2678 try_pre_increment_1 (insn)
2679 rtx insn;
2680 {
2681 /* Find the next use of this reg. If in same basic block,
2682 make it do pre-increment or pre-decrement if appropriate. */
2683 rtx x = single_set (insn);
2684 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2685 * INTVAL (XEXP (SET_SRC (x), 1)));
2686 int regno = REGNO (SET_DEST (x));
2687 rtx y = reg_next_use[regno];
2688 if (y != 0
2689 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2690 /* Don't do this if the reg dies, or gets set in y; a standard addressing
2691 mode would be better. */
2692 && ! dead_or_set_p (y, SET_DEST (x))
2693 && try_pre_increment (y, SET_DEST (x), amount))
2694 {
2695 /* We have found a suitable auto-increment
2696 and already changed insn Y to do it.
2697 So flush this increment-instruction. */
2698 PUT_CODE (insn, NOTE);
2699 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2700 NOTE_SOURCE_FILE (insn) = 0;
2701 /* Count a reference to this reg for the increment
2702 insn we are deleting. When a reg is incremented.
2703 spilling it is worse, so we want to make that
2704 less likely. */
2705 if (regno >= FIRST_PSEUDO_REGISTER)
2706 {
2707 REG_N_REFS (regno) += loop_depth;
2708 REG_N_SETS (regno)++;
2709 }
2710 return 1;
2711 }
2712 return 0;
2713 }
2714
2715 /* Try to change INSN so that it does pre-increment or pre-decrement
2716 addressing on register REG in order to add AMOUNT to REG.
2717 AMOUNT is negative for pre-decrement.
2718 Returns 1 if the change could be made.
2719 This checks all about the validity of the result of modifying INSN. */
2720
2721 static int
2722 try_pre_increment (insn, reg, amount)
2723 rtx insn, reg;
2724 HOST_WIDE_INT amount;
2725 {
2726 register rtx use;
2727
2728 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2729 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2730 int pre_ok = 0;
2731 /* Nonzero if we can try to make a post-increment or post-decrement.
2732 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2733 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2734 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2735 int post_ok = 0;
2736
2737 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2738 int do_post = 0;
2739
2740 /* From the sign of increment, see which possibilities are conceivable
2741 on this target machine. */
2742 #ifdef HAVE_PRE_INCREMENT
2743 if (amount > 0)
2744 pre_ok = 1;
2745 #endif
2746 #ifdef HAVE_POST_INCREMENT
2747 if (amount > 0)
2748 post_ok = 1;
2749 #endif
2750
2751 #ifdef HAVE_PRE_DECREMENT
2752 if (amount < 0)
2753 pre_ok = 1;
2754 #endif
2755 #ifdef HAVE_POST_DECREMENT
2756 if (amount < 0)
2757 post_ok = 1;
2758 #endif
2759
2760 if (! (pre_ok || post_ok))
2761 return 0;
2762
2763 /* It is not safe to add a side effect to a jump insn
2764 because if the incremented register is spilled and must be reloaded
2765 there would be no way to store the incremented value back in memory. */
2766
2767 if (GET_CODE (insn) == JUMP_INSN)
2768 return 0;
2769
2770 use = 0;
2771 if (pre_ok)
2772 use = find_use_as_address (PATTERN (insn), reg, 0);
2773 if (post_ok && (use == 0 || use == (rtx) 1))
2774 {
2775 use = find_use_as_address (PATTERN (insn), reg, -amount);
2776 do_post = 1;
2777 }
2778
2779 if (use == 0 || use == (rtx) 1)
2780 return 0;
2781
2782 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2783 return 0;
2784
2785 /* See if this combination of instruction and addressing mode exists. */
2786 if (! validate_change (insn, &XEXP (use, 0),
2787 gen_rtx (amount > 0
2788 ? (do_post ? POST_INC : PRE_INC)
2789 : (do_post ? POST_DEC : PRE_DEC),
2790 Pmode, reg), 0))
2791 return 0;
2792
2793 /* Record that this insn now has an implicit side effect on X. */
2794 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2795 return 1;
2796 }
2797
2798 #endif /* AUTO_INC_DEC */
2799 \f
2800 /* Find the place in the rtx X where REG is used as a memory address.
2801 Return the MEM rtx that so uses it.
2802 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2803 (plus REG (const_int PLUSCONST)).
2804
2805 If such an address does not appear, return 0.
2806 If REG appears more than once, or is used other than in such an address,
2807 return (rtx)1. */
2808
2809 rtx
2810 find_use_as_address (x, reg, plusconst)
2811 register rtx x;
2812 rtx reg;
2813 HOST_WIDE_INT plusconst;
2814 {
2815 enum rtx_code code = GET_CODE (x);
2816 char *fmt = GET_RTX_FORMAT (code);
2817 register int i;
2818 register rtx value = 0;
2819 register rtx tem;
2820
2821 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2822 return x;
2823
2824 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2825 && XEXP (XEXP (x, 0), 0) == reg
2826 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2827 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2828 return x;
2829
2830 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2831 {
2832 /* If REG occurs inside a MEM used in a bit-field reference,
2833 that is unacceptable. */
2834 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2835 return (rtx) (HOST_WIDE_INT) 1;
2836 }
2837
2838 if (x == reg)
2839 return (rtx) (HOST_WIDE_INT) 1;
2840
2841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2842 {
2843 if (fmt[i] == 'e')
2844 {
2845 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2846 if (value == 0)
2847 value = tem;
2848 else if (tem != 0)
2849 return (rtx) (HOST_WIDE_INT) 1;
2850 }
2851 if (fmt[i] == 'E')
2852 {
2853 register int j;
2854 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2855 {
2856 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2857 if (value == 0)
2858 value = tem;
2859 else if (tem != 0)
2860 return (rtx) (HOST_WIDE_INT) 1;
2861 }
2862 }
2863 }
2864
2865 return value;
2866 }
2867 \f
2868 /* Write information about registers and basic blocks into FILE.
2869 This is part of making a debugging dump. */
2870
2871 void
2872 dump_flow_info (file)
2873 FILE *file;
2874 {
2875 register int i;
2876 static char *reg_class_names[] = REG_CLASS_NAMES;
2877
2878 fprintf (file, "%d registers.\n", max_regno);
2879
2880 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2881 if (REG_N_REFS (i))
2882 {
2883 enum reg_class class, altclass;
2884 fprintf (file, "\nRegister %d used %d times across %d insns",
2885 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
2886 if (REG_BASIC_BLOCK (i) >= 0)
2887 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
2888 if (REG_N_DEATHS (i) != 1)
2889 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
2890 if (REG_N_CALLS_CROSSED (i) == 1)
2891 fprintf (file, "; crosses 1 call");
2892 else if (REG_N_CALLS_CROSSED (i))
2893 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
2894 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2895 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2896 class = reg_preferred_class (i);
2897 altclass = reg_alternate_class (i);
2898 if (class != GENERAL_REGS || altclass != ALL_REGS)
2899 {
2900 if (altclass == ALL_REGS || class == ALL_REGS)
2901 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2902 else if (altclass == NO_REGS)
2903 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2904 else
2905 fprintf (file, "; pref %s, else %s",
2906 reg_class_names[(int) class],
2907 reg_class_names[(int) altclass]);
2908 }
2909 if (REGNO_POINTER_FLAG (i))
2910 fprintf (file, "; pointer");
2911 fprintf (file, ".\n");
2912 }
2913 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2914 for (i = 0; i < n_basic_blocks; i++)
2915 {
2916 register rtx head, jump;
2917 register int regno;
2918 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2919 i,
2920 INSN_UID (basic_block_head[i]),
2921 INSN_UID (basic_block_end[i]));
2922 /* The control flow graph's storage is freed
2923 now when flow_analysis returns.
2924 Don't try to print it if it is gone. */
2925 if (basic_block_drops_in)
2926 {
2927 fprintf (file, "Reached from blocks: ");
2928 head = basic_block_head[i];
2929 if (GET_CODE (head) == CODE_LABEL)
2930 for (jump = LABEL_REFS (head);
2931 jump != head;
2932 jump = LABEL_NEXTREF (jump))
2933 {
2934 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2935 fprintf (file, " %d", from_block);
2936 }
2937 if (basic_block_drops_in[i])
2938 fprintf (file, " previous");
2939 }
2940 fprintf (file, "\nRegisters live at start:");
2941 for (regno = 0; regno < max_regno; regno++)
2942 if (REGNO_REG_SET_P (basic_block_live_at_start[i], regno))
2943 fprintf (file, " %d", regno);
2944 fprintf (file, "\n");
2945 }
2946 fprintf (file, "\n");
2947 }
2948
2949 \f
2950 /* Like print_rtl, but also print out live information for the start of each
2951 basic block. */
2952
2953 void
2954 print_rtl_with_bb (outf, rtx_first)
2955 FILE *outf;
2956 rtx rtx_first;
2957 {
2958 register rtx tmp_rtx;
2959
2960 if (rtx_first == 0)
2961 fprintf (outf, "(nil)\n");
2962
2963 else
2964 {
2965 int i, bb;
2966 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2967 int max_uid = get_max_uid ();
2968 int *start = (int *) alloca (max_uid * sizeof (int));
2969 int *end = (int *) alloca (max_uid * sizeof (int));
2970 char *in_bb_p = (char *) alloca (max_uid * sizeof (enum bb_state));
2971
2972 for (i = 0; i < max_uid; i++)
2973 {
2974 start[i] = end[i] = -1;
2975 in_bb_p[i] = NOT_IN_BB;
2976 }
2977
2978 for (i = n_basic_blocks-1; i >= 0; i--)
2979 {
2980 rtx x;
2981 start[INSN_UID (basic_block_head[i])] = i;
2982 end[INSN_UID (basic_block_end[i])] = i;
2983 for (x = basic_block_head[i]; x != NULL_RTX; x = NEXT_INSN (x))
2984 {
2985 in_bb_p[ INSN_UID(x)]
2986 = (in_bb_p[ INSN_UID(x)] == NOT_IN_BB)
2987 ? IN_ONE_BB : IN_MULTIPLE_BB;
2988 if (x == basic_block_end[i])
2989 break;
2990 }
2991 }
2992
2993 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2994 {
2995 if ((bb = start[INSN_UID (tmp_rtx)]) >= 0)
2996 {
2997 fprintf (outf, ";; Start of basic block %d, registers live:",
2998 bb);
2999
3000 EXECUTE_IF_SET_IN_REG_SET (basic_block_live_at_start[bb], 0, i,
3001 {
3002 fprintf (outf, " %d", i);
3003 if (i < FIRST_PSEUDO_REGISTER)
3004 fprintf (outf, " [%s]",
3005 reg_names[i]);
3006 });
3007 putc ('\n', outf);
3008 }
3009
3010 if (in_bb_p[ INSN_UID(tmp_rtx)] == NOT_IN_BB
3011 && GET_CODE (tmp_rtx) != NOTE
3012 && GET_CODE (tmp_rtx) != BARRIER)
3013 fprintf (outf, ";; Insn is not within a basic block\n");
3014 else if (in_bb_p[ INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB)
3015 fprintf (outf, ";; Insn is in multiple basic blocks\n");
3016
3017 print_rtl_single (outf, tmp_rtx);
3018
3019 if ((bb = end[INSN_UID (tmp_rtx)]) >= 0)
3020 fprintf (outf, ";; End of basic block %d\n", bb);
3021
3022 putc ('\n', outf);
3023 }
3024 }
3025 }