]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fold-const.c
Put the CL into the right dir.
[thirdparty/gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
86
87 /* Nonzero if we are folding constants inside an initializer; zero
88 otherwise. */
89 int folding_initializer = 0;
90
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code {
95 COMPCODE_FALSE = 0,
96 COMPCODE_LT = 1,
97 COMPCODE_EQ = 2,
98 COMPCODE_LE = 3,
99 COMPCODE_GT = 4,
100 COMPCODE_LTGT = 5,
101 COMPCODE_GE = 6,
102 COMPCODE_ORD = 7,
103 COMPCODE_UNORD = 8,
104 COMPCODE_UNLT = 9,
105 COMPCODE_UNEQ = 10,
106 COMPCODE_UNLE = 11,
107 COMPCODE_UNGT = 12,
108 COMPCODE_NE = 13,
109 COMPCODE_UNGE = 14,
110 COMPCODE_TRUE = 15
111 };
112
113 static bool negate_expr_p (tree);
114 static tree negate_expr (tree);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static bool twoval_comparison_p (tree, tree *, tree *);
119 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
120 static tree optimize_bit_field_compare (location_t, enum tree_code,
121 tree, tree, tree);
122 static bool simple_operand_p (const_tree);
123 static bool simple_operand_p_2 (tree);
124 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
125 static tree range_predecessor (tree);
126 static tree range_successor (tree);
127 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
128 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
129 static tree unextend (tree, int, int, tree);
130 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
131 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
132 static tree fold_binary_op_with_conditional_arg (location_t,
133 enum tree_code, tree,
134 tree, tree,
135 tree, tree, int);
136 static tree fold_negate_const (tree, tree);
137 static tree fold_not_const (const_tree, tree);
138 static tree fold_relational_const (enum tree_code, tree, tree, tree);
139 static tree fold_convert_const (enum tree_code, tree, tree);
140 static tree fold_view_convert_expr (tree, tree);
141 static tree fold_negate_expr (location_t, tree);
142
143
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
146
147 static location_t
148 expr_location_or (tree t, location_t loc)
149 {
150 location_t tloc = EXPR_LOCATION (t);
151 return tloc == UNKNOWN_LOCATION ? loc : tloc;
152 }
153
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
156
157 static inline tree
158 protected_set_expr_location_unshare (tree x, location_t loc)
159 {
160 if (CAN_HAVE_LOCATION_P (x)
161 && EXPR_LOCATION (x) != loc
162 && !(TREE_CODE (x) == SAVE_EXPR
163 || TREE_CODE (x) == TARGET_EXPR
164 || TREE_CODE (x) == BIND_EXPR))
165 {
166 x = copy_node (x);
167 SET_EXPR_LOCATION (x, loc);
168 }
169 return x;
170 }
171 \f
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
174 NULL_TREE. */
175
176 tree
177 div_if_zero_remainder (const_tree arg1, const_tree arg2)
178 {
179 widest_int quo;
180
181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
182 SIGNED, &quo))
183 return wide_int_to_tree (TREE_TYPE (arg1), quo);
184
185 return NULL_TREE;
186 }
187 \f
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
195 used. */
196
197 static int fold_deferring_overflow_warnings;
198
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
203
204 static const char* fold_deferred_overflow_warning;
205
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
208
209 static enum warn_strict_overflow_code fold_deferred_overflow_code;
210
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
213
214 void
215 fold_defer_overflow_warnings (void)
216 {
217 ++fold_deferring_overflow_warnings;
218 }
219
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
227 deferred code. */
228
229 void
230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
231 {
232 const char *warnmsg;
233 location_t locus;
234
235 gcc_assert (fold_deferring_overflow_warnings > 0);
236 --fold_deferring_overflow_warnings;
237 if (fold_deferring_overflow_warnings > 0)
238 {
239 if (fold_deferred_overflow_warning != NULL
240 && code != 0
241 && code < (int) fold_deferred_overflow_code)
242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
243 return;
244 }
245
246 warnmsg = fold_deferred_overflow_warning;
247 fold_deferred_overflow_warning = NULL;
248
249 if (!issue || warnmsg == NULL)
250 return;
251
252 if (gimple_no_warning_p (stmt))
253 return;
254
255 /* Use the smallest code level when deciding to issue the
256 warning. */
257 if (code == 0 || code > (int) fold_deferred_overflow_code)
258 code = fold_deferred_overflow_code;
259
260 if (!issue_strict_overflow_warning (code))
261 return;
262
263 if (stmt == NULL)
264 locus = input_location;
265 else
266 locus = gimple_location (stmt);
267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
268 }
269
270 /* Stop deferring overflow warnings, ignoring any deferred
271 warnings. */
272
273 void
274 fold_undefer_and_ignore_overflow_warnings (void)
275 {
276 fold_undefer_overflow_warnings (false, NULL, 0);
277 }
278
279 /* Whether we are deferring overflow warnings. */
280
281 bool
282 fold_deferring_overflow_warnings_p (void)
283 {
284 return fold_deferring_overflow_warnings > 0;
285 }
286
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
289
290 void
291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
292 {
293 if (fold_deferring_overflow_warnings > 0)
294 {
295 if (fold_deferred_overflow_warning == NULL
296 || wc < fold_deferred_overflow_code)
297 {
298 fold_deferred_overflow_warning = gmsgid;
299 fold_deferred_overflow_code = wc;
300 }
301 }
302 else if (issue_strict_overflow_warning (wc))
303 warning (OPT_Wstrict_overflow, gmsgid);
304 }
305 \f
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
308
309 bool
310 negate_mathfn_p (combined_fn fn)
311 {
312 switch (fn)
313 {
314 CASE_CFN_ASIN:
315 CASE_CFN_ASINH:
316 CASE_CFN_ATAN:
317 CASE_CFN_ATANH:
318 CASE_CFN_CASIN:
319 CASE_CFN_CASINH:
320 CASE_CFN_CATAN:
321 CASE_CFN_CATANH:
322 CASE_CFN_CBRT:
323 CASE_CFN_CPROJ:
324 CASE_CFN_CSIN:
325 CASE_CFN_CSINH:
326 CASE_CFN_CTAN:
327 CASE_CFN_CTANH:
328 CASE_CFN_ERF:
329 CASE_CFN_LLROUND:
330 CASE_CFN_LROUND:
331 CASE_CFN_ROUND:
332 CASE_CFN_SIN:
333 CASE_CFN_SINH:
334 CASE_CFN_TAN:
335 CASE_CFN_TANH:
336 CASE_CFN_TRUNC:
337 return true;
338
339 CASE_CFN_LLRINT:
340 CASE_CFN_LRINT:
341 CASE_CFN_NEARBYINT:
342 CASE_CFN_RINT:
343 return !flag_rounding_math;
344
345 default:
346 break;
347 }
348 return false;
349 }
350
351 /* Check whether we may negate an integer constant T without causing
352 overflow. */
353
354 bool
355 may_negate_without_overflow_p (const_tree t)
356 {
357 tree type;
358
359 gcc_assert (TREE_CODE (t) == INTEGER_CST);
360
361 type = TREE_TYPE (t);
362 if (TYPE_UNSIGNED (type))
363 return false;
364
365 return !wi::only_sign_bit_p (wi::to_wide (t));
366 }
367
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
370
371 static bool
372 negate_expr_p (tree t)
373 {
374 tree type;
375
376 if (t == 0)
377 return false;
378
379 type = TREE_TYPE (t);
380
381 STRIP_SIGN_NOPS (t);
382 switch (TREE_CODE (t))
383 {
384 case INTEGER_CST:
385 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
386 return true;
387
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t);
390 case BIT_NOT_EXPR:
391 return (INTEGRAL_TYPE_P (type)
392 && TYPE_OVERFLOW_WRAPS (type));
393
394 case FIXED_CST:
395 return true;
396
397 case NEGATE_EXPR:
398 return !TYPE_OVERFLOW_SANITIZED (type);
399
400 case REAL_CST:
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
404
405 case COMPLEX_CST:
406 return negate_expr_p (TREE_REALPART (t))
407 && negate_expr_p (TREE_IMAGPART (t));
408
409 case VECTOR_CST:
410 {
411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
412 return true;
413
414 /* Steps don't prevent negation. */
415 unsigned int count = vector_cst_encoded_nelts (t);
416 for (unsigned int i = 0; i < count; ++i)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i)))
418 return false;
419
420 return true;
421 }
422
423 case COMPLEX_EXPR:
424 return negate_expr_p (TREE_OPERAND (t, 0))
425 && negate_expr_p (TREE_OPERAND (t, 1));
426
427 case CONJ_EXPR:
428 return negate_expr_p (TREE_OPERAND (t, 0));
429
430 case PLUS_EXPR:
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
432 || HONOR_SIGNED_ZEROS (element_mode (type))
433 || (ANY_INTEGRAL_TYPE_P (type)
434 && ! TYPE_OVERFLOW_WRAPS (type)))
435 return false;
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t, 1)))
438 return true;
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t, 0));
441
442 case MINUS_EXPR:
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
445 && !HONOR_SIGNED_ZEROS (element_mode (type))
446 && (! ANY_INTEGRAL_TYPE_P (type)
447 || TYPE_OVERFLOW_WRAPS (type));
448
449 case MULT_EXPR:
450 if (TYPE_UNSIGNED (type))
451 break;
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
457 && (wi::popcount
458 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
460 && (wi::popcount
461 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
462 break;
463
464 /* Fall through. */
465
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
471
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 if (TYPE_UNSIGNED (type))
476 break;
477 /* In general we can't negate A in A / B, because if A is INT_MIN and
478 B is not 1 we change the sign of the result. */
479 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
480 && negate_expr_p (TREE_OPERAND (t, 0)))
481 return true;
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
487 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t, 1))))
489 return negate_expr_p (TREE_OPERAND (t, 1));
490 break;
491
492 case NOP_EXPR:
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type) == REAL_TYPE)
495 {
496 tree tem = strip_float_extensions (t);
497 if (tem != t)
498 return negate_expr_p (tem);
499 }
500 break;
501
502 case CALL_EXPR:
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t)))
505 return negate_expr_p (CALL_EXPR_ARG (t, 0));
506 break;
507
508 case RSHIFT_EXPR:
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
511 {
512 tree op1 = TREE_OPERAND (t, 1);
513 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
514 return true;
515 }
516 break;
517
518 default:
519 break;
520 }
521 return false;
522 }
523
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
527 returned. */
528
529 static tree
530 fold_negate_expr_1 (location_t loc, tree t)
531 {
532 tree type = TREE_TYPE (t);
533 tree tem;
534
535 switch (TREE_CODE (t))
536 {
537 /* Convert - (~A) to A + 1. */
538 case BIT_NOT_EXPR:
539 if (INTEGRAL_TYPE_P (type))
540 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
541 build_one_cst (type));
542 break;
543
544 case INTEGER_CST:
545 tem = fold_negate_const (t, type);
546 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
547 || (ANY_INTEGRAL_TYPE_P (type)
548 && !TYPE_OVERFLOW_TRAPS (type)
549 && TYPE_OVERFLOW_WRAPS (type))
550 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
551 return tem;
552 break;
553
554 case POLY_INT_CST:
555 case REAL_CST:
556 case FIXED_CST:
557 tem = fold_negate_const (t, type);
558 return tem;
559
560 case COMPLEX_CST:
561 {
562 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
563 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
564 if (rpart && ipart)
565 return build_complex (type, rpart, ipart);
566 }
567 break;
568
569 case VECTOR_CST:
570 {
571 tree_vector_builder elts;
572 elts.new_unary_operation (type, t, true);
573 unsigned int count = elts.encoded_nelts ();
574 for (unsigned int i = 0; i < count; ++i)
575 {
576 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
577 if (elt == NULL_TREE)
578 return NULL_TREE;
579 elts.quick_push (elt);
580 }
581
582 return elts.build ();
583 }
584
585 case COMPLEX_EXPR:
586 if (negate_expr_p (t))
587 return fold_build2_loc (loc, COMPLEX_EXPR, type,
588 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
589 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
590 break;
591
592 case CONJ_EXPR:
593 if (negate_expr_p (t))
594 return fold_build1_loc (loc, CONJ_EXPR, type,
595 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
596 break;
597
598 case NEGATE_EXPR:
599 if (!TYPE_OVERFLOW_SANITIZED (type))
600 return TREE_OPERAND (t, 0);
601 break;
602
603 case PLUS_EXPR:
604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
605 && !HONOR_SIGNED_ZEROS (element_mode (type)))
606 {
607 /* -(A + B) -> (-B) - A. */
608 if (negate_expr_p (TREE_OPERAND (t, 1)))
609 {
610 tem = negate_expr (TREE_OPERAND (t, 1));
611 return fold_build2_loc (loc, MINUS_EXPR, type,
612 tem, TREE_OPERAND (t, 0));
613 }
614
615 /* -(A + B) -> (-A) - B. */
616 if (negate_expr_p (TREE_OPERAND (t, 0)))
617 {
618 tem = negate_expr (TREE_OPERAND (t, 0));
619 return fold_build2_loc (loc, MINUS_EXPR, type,
620 tem, TREE_OPERAND (t, 1));
621 }
622 }
623 break;
624
625 case MINUS_EXPR:
626 /* - (A - B) -> B - A */
627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
628 && !HONOR_SIGNED_ZEROS (element_mode (type)))
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
631 break;
632
633 case MULT_EXPR:
634 if (TYPE_UNSIGNED (type))
635 break;
636
637 /* Fall through. */
638
639 case RDIV_EXPR:
640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
641 {
642 tem = TREE_OPERAND (t, 1);
643 if (negate_expr_p (tem))
644 return fold_build2_loc (loc, TREE_CODE (t), type,
645 TREE_OPERAND (t, 0), negate_expr (tem));
646 tem = TREE_OPERAND (t, 0);
647 if (negate_expr_p (tem))
648 return fold_build2_loc (loc, TREE_CODE (t), type,
649 negate_expr (tem), TREE_OPERAND (t, 1));
650 }
651 break;
652
653 case TRUNC_DIV_EXPR:
654 case ROUND_DIV_EXPR:
655 case EXACT_DIV_EXPR:
656 if (TYPE_UNSIGNED (type))
657 break;
658 /* In general we can't negate A in A / B, because if A is INT_MIN and
659 B is not 1 we change the sign of the result. */
660 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
661 && negate_expr_p (TREE_OPERAND (t, 0)))
662 return fold_build2_loc (loc, TREE_CODE (t), type,
663 negate_expr (TREE_OPERAND (t, 0)),
664 TREE_OPERAND (t, 1));
665 /* In general we can't negate B in A / B, because if A is INT_MIN and
666 B is 1, we may turn this into INT_MIN / -1 which is undefined
667 and actually traps on some architectures. */
668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
670 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
671 && ! integer_onep (TREE_OPERAND (t, 1))))
672 && negate_expr_p (TREE_OPERAND (t, 1)))
673 return fold_build2_loc (loc, TREE_CODE (t), type,
674 TREE_OPERAND (t, 0),
675 negate_expr (TREE_OPERAND (t, 1)));
676 break;
677
678 case NOP_EXPR:
679 /* Convert -((double)float) into (double)(-float). */
680 if (TREE_CODE (type) == REAL_TYPE)
681 {
682 tem = strip_float_extensions (t);
683 if (tem != t && negate_expr_p (tem))
684 return fold_convert_loc (loc, type, negate_expr (tem));
685 }
686 break;
687
688 case CALL_EXPR:
689 /* Negate -f(x) as f(-x). */
690 if (negate_mathfn_p (get_call_combined_fn (t))
691 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
692 {
693 tree fndecl, arg;
694
695 fndecl = get_callee_fndecl (t);
696 arg = negate_expr (CALL_EXPR_ARG (t, 0));
697 return build_call_expr_loc (loc, fndecl, 1, arg);
698 }
699 break;
700
701 case RSHIFT_EXPR:
702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
703 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
704 {
705 tree op1 = TREE_OPERAND (t, 1);
706 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
707 {
708 tree ntype = TYPE_UNSIGNED (type)
709 ? signed_type_for (type)
710 : unsigned_type_for (type);
711 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
712 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
713 return fold_convert_loc (loc, type, temp);
714 }
715 }
716 break;
717
718 default:
719 break;
720 }
721
722 return NULL_TREE;
723 }
724
725 /* A wrapper for fold_negate_expr_1. */
726
727 static tree
728 fold_negate_expr (location_t loc, tree t)
729 {
730 tree type = TREE_TYPE (t);
731 STRIP_SIGN_NOPS (t);
732 tree tem = fold_negate_expr_1 (loc, t);
733 if (tem == NULL_TREE)
734 return NULL_TREE;
735 return fold_convert_loc (loc, type, tem);
736 }
737
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
740 return NULL_TREE. */
741
742 static tree
743 negate_expr (tree t)
744 {
745 tree type, tem;
746 location_t loc;
747
748 if (t == NULL_TREE)
749 return NULL_TREE;
750
751 loc = EXPR_LOCATION (t);
752 type = TREE_TYPE (t);
753 STRIP_SIGN_NOPS (t);
754
755 tem = fold_negate_expr (loc, t);
756 if (!tem)
757 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
758 return fold_convert_loc (loc, type, tem);
759 }
760 \f
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
768
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
772
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead. If a variable part is of pointer
775 type, it is negated after converting to TYPE. This prevents us from
776 generating illegal MINUS pointer expression. LOC is the location of
777 the converted variable part.
778
779 If IN is itself a literal or constant, return it as appropriate.
780
781 Note that we do not guarantee that any of the three values will be the
782 same type as IN, but they will have the same signedness and mode. */
783
784 static tree
785 split_tree (tree in, tree type, enum tree_code code,
786 tree *minus_varp, tree *conp, tree *minus_conp,
787 tree *litp, tree *minus_litp, int negate_p)
788 {
789 tree var = 0;
790 *minus_varp = 0;
791 *conp = 0;
792 *minus_conp = 0;
793 *litp = 0;
794 *minus_litp = 0;
795
796 /* Strip any conversions that don't change the machine mode or signedness. */
797 STRIP_SIGN_NOPS (in);
798
799 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
800 || TREE_CODE (in) == FIXED_CST)
801 *litp = in;
802 else if (TREE_CODE (in) == code
803 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
805 /* We can associate addition and subtraction together (even
806 though the C standard doesn't say so) for integers because
807 the value is not affected. For reals, the value might be
808 affected, so we can't. */
809 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
810 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
811 || (code == MINUS_EXPR
812 && (TREE_CODE (in) == PLUS_EXPR
813 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
814 {
815 tree op0 = TREE_OPERAND (in, 0);
816 tree op1 = TREE_OPERAND (in, 1);
817 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
818 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
819
820 /* First see if either of the operands is a literal, then a constant. */
821 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
822 || TREE_CODE (op0) == FIXED_CST)
823 *litp = op0, op0 = 0;
824 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
825 || TREE_CODE (op1) == FIXED_CST)
826 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
827
828 if (op0 != 0 && TREE_CONSTANT (op0))
829 *conp = op0, op0 = 0;
830 else if (op1 != 0 && TREE_CONSTANT (op1))
831 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
832
833 /* If we haven't dealt with either operand, this is not a case we can
834 decompose. Otherwise, VAR is either of the ones remaining, if any. */
835 if (op0 != 0 && op1 != 0)
836 var = in;
837 else if (op0 != 0)
838 var = op0;
839 else
840 var = op1, neg_var_p = neg1_p;
841
842 /* Now do any needed negations. */
843 if (neg_litp_p)
844 *minus_litp = *litp, *litp = 0;
845 if (neg_conp_p && *conp)
846 *minus_conp = *conp, *conp = 0;
847 if (neg_var_p && var)
848 *minus_varp = var, var = 0;
849 }
850 else if (TREE_CONSTANT (in))
851 *conp = in;
852 else if (TREE_CODE (in) == BIT_NOT_EXPR
853 && code == PLUS_EXPR)
854 {
855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *litp = build_minus_one_cst (type);
858 *minus_varp = TREE_OPERAND (in, 0);
859 }
860 else
861 var = in;
862
863 if (negate_p)
864 {
865 if (*litp)
866 *minus_litp = *litp, *litp = 0;
867 else if (*minus_litp)
868 *litp = *minus_litp, *minus_litp = 0;
869 if (*conp)
870 *minus_conp = *conp, *conp = 0;
871 else if (*minus_conp)
872 *conp = *minus_conp, *minus_conp = 0;
873 if (var)
874 *minus_varp = var, var = 0;
875 else if (*minus_varp)
876 var = *minus_varp, *minus_varp = 0;
877 }
878
879 if (*litp
880 && TREE_OVERFLOW_P (*litp))
881 *litp = drop_tree_overflow (*litp);
882 if (*minus_litp
883 && TREE_OVERFLOW_P (*minus_litp))
884 *minus_litp = drop_tree_overflow (*minus_litp);
885
886 return var;
887 }
888
889 /* Re-associate trees split by the above function. T1 and T2 are
890 either expressions to associate or null. Return the new
891 expression, if any. LOC is the location of the new expression. If
892 we build an operation, do it in TYPE and with CODE. */
893
894 static tree
895 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
896 {
897 if (t1 == 0)
898 {
899 gcc_assert (t2 == 0 || code != MINUS_EXPR);
900 return t2;
901 }
902 else if (t2 == 0)
903 return t1;
904
905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
906 try to fold this since we will have infinite recursion. But do
907 deal with any NEGATE_EXPRs. */
908 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
909 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
910 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
911 {
912 if (code == PLUS_EXPR)
913 {
914 if (TREE_CODE (t1) == NEGATE_EXPR)
915 return build2_loc (loc, MINUS_EXPR, type,
916 fold_convert_loc (loc, type, t2),
917 fold_convert_loc (loc, type,
918 TREE_OPERAND (t1, 0)));
919 else if (TREE_CODE (t2) == NEGATE_EXPR)
920 return build2_loc (loc, MINUS_EXPR, type,
921 fold_convert_loc (loc, type, t1),
922 fold_convert_loc (loc, type,
923 TREE_OPERAND (t2, 0)));
924 else if (integer_zerop (t2))
925 return fold_convert_loc (loc, type, t1);
926 }
927 else if (code == MINUS_EXPR)
928 {
929 if (integer_zerop (t2))
930 return fold_convert_loc (loc, type, t1);
931 }
932
933 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
934 fold_convert_loc (loc, type, t2));
935 }
936
937 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
938 fold_convert_loc (loc, type, t2));
939 }
940 \f
941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
942 for use in int_const_binop, size_binop and size_diffop. */
943
944 static bool
945 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
946 {
947 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
948 return false;
949 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
950 return false;
951
952 switch (code)
953 {
954 case LSHIFT_EXPR:
955 case RSHIFT_EXPR:
956 case LROTATE_EXPR:
957 case RROTATE_EXPR:
958 return true;
959
960 default:
961 break;
962 }
963
964 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
965 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
966 && TYPE_MODE (type1) == TYPE_MODE (type2);
967 }
968
969 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
970 a new constant in RES. Return FALSE if we don't know how to
971 evaluate CODE at compile-time. */
972
973 bool
974 wide_int_binop (wide_int &res,
975 enum tree_code code, const wide_int &arg1, const wide_int &arg2,
976 signop sign, wi::overflow_type *overflow)
977 {
978 wide_int tmp;
979 *overflow = wi::OVF_NONE;
980 switch (code)
981 {
982 case BIT_IOR_EXPR:
983 res = wi::bit_or (arg1, arg2);
984 break;
985
986 case BIT_XOR_EXPR:
987 res = wi::bit_xor (arg1, arg2);
988 break;
989
990 case BIT_AND_EXPR:
991 res = wi::bit_and (arg1, arg2);
992 break;
993
994 case RSHIFT_EXPR:
995 case LSHIFT_EXPR:
996 if (wi::neg_p (arg2))
997 {
998 tmp = -arg2;
999 if (code == RSHIFT_EXPR)
1000 code = LSHIFT_EXPR;
1001 else
1002 code = RSHIFT_EXPR;
1003 }
1004 else
1005 tmp = arg2;
1006
1007 if (code == RSHIFT_EXPR)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res = wi::rshift (arg1, tmp, sign);
1012 else
1013 res = wi::lshift (arg1, tmp);
1014 break;
1015
1016 case RROTATE_EXPR:
1017 case LROTATE_EXPR:
1018 if (wi::neg_p (arg2))
1019 {
1020 tmp = -arg2;
1021 if (code == RROTATE_EXPR)
1022 code = LROTATE_EXPR;
1023 else
1024 code = RROTATE_EXPR;
1025 }
1026 else
1027 tmp = arg2;
1028
1029 if (code == RROTATE_EXPR)
1030 res = wi::rrotate (arg1, tmp);
1031 else
1032 res = wi::lrotate (arg1, tmp);
1033 break;
1034
1035 case PLUS_EXPR:
1036 res = wi::add (arg1, arg2, sign, overflow);
1037 break;
1038
1039 case MINUS_EXPR:
1040 res = wi::sub (arg1, arg2, sign, overflow);
1041 break;
1042
1043 case MULT_EXPR:
1044 res = wi::mul (arg1, arg2, sign, overflow);
1045 break;
1046
1047 case MULT_HIGHPART_EXPR:
1048 res = wi::mul_high (arg1, arg2, sign);
1049 break;
1050
1051 case TRUNC_DIV_EXPR:
1052 case EXACT_DIV_EXPR:
1053 if (arg2 == 0)
1054 return false;
1055 res = wi::div_trunc (arg1, arg2, sign, overflow);
1056 break;
1057
1058 case FLOOR_DIV_EXPR:
1059 if (arg2 == 0)
1060 return false;
1061 res = wi::div_floor (arg1, arg2, sign, overflow);
1062 break;
1063
1064 case CEIL_DIV_EXPR:
1065 if (arg2 == 0)
1066 return false;
1067 res = wi::div_ceil (arg1, arg2, sign, overflow);
1068 break;
1069
1070 case ROUND_DIV_EXPR:
1071 if (arg2 == 0)
1072 return false;
1073 res = wi::div_round (arg1, arg2, sign, overflow);
1074 break;
1075
1076 case TRUNC_MOD_EXPR:
1077 if (arg2 == 0)
1078 return false;
1079 res = wi::mod_trunc (arg1, arg2, sign, overflow);
1080 break;
1081
1082 case FLOOR_MOD_EXPR:
1083 if (arg2 == 0)
1084 return false;
1085 res = wi::mod_floor (arg1, arg2, sign, overflow);
1086 break;
1087
1088 case CEIL_MOD_EXPR:
1089 if (arg2 == 0)
1090 return false;
1091 res = wi::mod_ceil (arg1, arg2, sign, overflow);
1092 break;
1093
1094 case ROUND_MOD_EXPR:
1095 if (arg2 == 0)
1096 return false;
1097 res = wi::mod_round (arg1, arg2, sign, overflow);
1098 break;
1099
1100 case MIN_EXPR:
1101 res = wi::min (arg1, arg2, sign);
1102 break;
1103
1104 case MAX_EXPR:
1105 res = wi::max (arg1, arg2, sign);
1106 break;
1107
1108 default:
1109 return false;
1110 }
1111 return true;
1112 }
1113
1114 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1115 produce a new constant in RES. Return FALSE if we don't know how
1116 to evaluate CODE at compile-time. */
1117
1118 static bool
1119 poly_int_binop (poly_wide_int &res, enum tree_code code,
1120 const_tree arg1, const_tree arg2,
1121 signop sign, wi::overflow_type *overflow)
1122 {
1123 gcc_assert (NUM_POLY_INT_COEFFS != 1);
1124 gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2));
1125 switch (code)
1126 {
1127 case PLUS_EXPR:
1128 res = wi::add (wi::to_poly_wide (arg1),
1129 wi::to_poly_wide (arg2), sign, overflow);
1130 break;
1131
1132 case MINUS_EXPR:
1133 res = wi::sub (wi::to_poly_wide (arg1),
1134 wi::to_poly_wide (arg2), sign, overflow);
1135 break;
1136
1137 case MULT_EXPR:
1138 if (TREE_CODE (arg2) == INTEGER_CST)
1139 res = wi::mul (wi::to_poly_wide (arg1),
1140 wi::to_wide (arg2), sign, overflow);
1141 else if (TREE_CODE (arg1) == INTEGER_CST)
1142 res = wi::mul (wi::to_poly_wide (arg2),
1143 wi::to_wide (arg1), sign, overflow);
1144 else
1145 return NULL_TREE;
1146 break;
1147
1148 case LSHIFT_EXPR:
1149 if (TREE_CODE (arg2) == INTEGER_CST)
1150 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2);
1151 else
1152 return false;
1153 break;
1154
1155 case BIT_IOR_EXPR:
1156 if (TREE_CODE (arg2) != INTEGER_CST
1157 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2),
1158 &res))
1159 return false;
1160 break;
1161
1162 default:
1163 return false;
1164 }
1165 return true;
1166 }
1167
1168 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1169 produce a new constant. Return NULL_TREE if we don't know how to
1170 evaluate CODE at compile-time. */
1171
1172 tree
1173 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2,
1174 int overflowable)
1175 {
1176 poly_wide_int poly_res;
1177 tree type = TREE_TYPE (arg1);
1178 signop sign = TYPE_SIGN (type);
1179 wi::overflow_type overflow = wi::OVF_NONE;
1180
1181 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1182 {
1183 wide_int warg1 = wi::to_wide (arg1), res;
1184 wide_int warg2 = wi::to_wide (arg2, TYPE_PRECISION (type));
1185 if (!wide_int_binop (res, code, warg1, warg2, sign, &overflow))
1186 return NULL_TREE;
1187 poly_res = res;
1188 }
1189 else if (!poly_int_tree_p (arg1)
1190 || !poly_int_tree_p (arg2)
1191 || !poly_int_binop (poly_res, code, arg1, arg2, sign, &overflow))
1192 return NULL_TREE;
1193 return force_fit_type (type, poly_res, overflowable,
1194 (((sign == SIGNED || overflowable == -1)
1195 && overflow)
1196 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)));
1197 }
1198
1199 /* Return true if binary operation OP distributes over addition in operand
1200 OPNO, with the other operand being held constant. OPNO counts from 1. */
1201
1202 static bool
1203 distributes_over_addition_p (tree_code op, int opno)
1204 {
1205 switch (op)
1206 {
1207 case PLUS_EXPR:
1208 case MINUS_EXPR:
1209 case MULT_EXPR:
1210 return true;
1211
1212 case LSHIFT_EXPR:
1213 return opno == 1;
1214
1215 default:
1216 return false;
1217 }
1218 }
1219
1220 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1221 constant. We assume ARG1 and ARG2 have the same data type, or at least
1222 are the same kind of constant and the same machine mode. Return zero if
1223 combining the constants is not allowed in the current operating mode. */
1224
1225 static tree
1226 const_binop (enum tree_code code, tree arg1, tree arg2)
1227 {
1228 /* Sanity check for the recursive cases. */
1229 if (!arg1 || !arg2)
1230 return NULL_TREE;
1231
1232 STRIP_NOPS (arg1);
1233 STRIP_NOPS (arg2);
1234
1235 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1236 {
1237 if (code == POINTER_PLUS_EXPR)
1238 return int_const_binop (PLUS_EXPR,
1239 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1240
1241 return int_const_binop (code, arg1, arg2);
1242 }
1243
1244 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1245 {
1246 machine_mode mode;
1247 REAL_VALUE_TYPE d1;
1248 REAL_VALUE_TYPE d2;
1249 REAL_VALUE_TYPE value;
1250 REAL_VALUE_TYPE result;
1251 bool inexact;
1252 tree t, type;
1253
1254 /* The following codes are handled by real_arithmetic. */
1255 switch (code)
1256 {
1257 case PLUS_EXPR:
1258 case MINUS_EXPR:
1259 case MULT_EXPR:
1260 case RDIV_EXPR:
1261 case MIN_EXPR:
1262 case MAX_EXPR:
1263 break;
1264
1265 default:
1266 return NULL_TREE;
1267 }
1268
1269 d1 = TREE_REAL_CST (arg1);
1270 d2 = TREE_REAL_CST (arg2);
1271
1272 type = TREE_TYPE (arg1);
1273 mode = TYPE_MODE (type);
1274
1275 /* Don't perform operation if we honor signaling NaNs and
1276 either operand is a signaling NaN. */
1277 if (HONOR_SNANS (mode)
1278 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1279 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1280 return NULL_TREE;
1281
1282 /* Don't perform operation if it would raise a division
1283 by zero exception. */
1284 if (code == RDIV_EXPR
1285 && real_equal (&d2, &dconst0)
1286 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1287 return NULL_TREE;
1288
1289 /* If either operand is a NaN, just return it. Otherwise, set up
1290 for floating-point trap; we return an overflow. */
1291 if (REAL_VALUE_ISNAN (d1))
1292 {
1293 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1294 is off. */
1295 d1.signalling = 0;
1296 t = build_real (type, d1);
1297 return t;
1298 }
1299 else if (REAL_VALUE_ISNAN (d2))
1300 {
1301 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1302 is off. */
1303 d2.signalling = 0;
1304 t = build_real (type, d2);
1305 return t;
1306 }
1307
1308 inexact = real_arithmetic (&value, code, &d1, &d2);
1309 real_convert (&result, mode, &value);
1310
1311 /* Don't constant fold this floating point operation if
1312 the result has overflowed and flag_trapping_math. */
1313 if (flag_trapping_math
1314 && MODE_HAS_INFINITIES (mode)
1315 && REAL_VALUE_ISINF (result)
1316 && !REAL_VALUE_ISINF (d1)
1317 && !REAL_VALUE_ISINF (d2))
1318 return NULL_TREE;
1319
1320 /* Don't constant fold this floating point operation if the
1321 result may dependent upon the run-time rounding mode and
1322 flag_rounding_math is set, or if GCC's software emulation
1323 is unable to accurately represent the result. */
1324 if ((flag_rounding_math
1325 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1326 && (inexact || !real_identical (&result, &value)))
1327 return NULL_TREE;
1328
1329 t = build_real (type, result);
1330
1331 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1332 return t;
1333 }
1334
1335 if (TREE_CODE (arg1) == FIXED_CST)
1336 {
1337 FIXED_VALUE_TYPE f1;
1338 FIXED_VALUE_TYPE f2;
1339 FIXED_VALUE_TYPE result;
1340 tree t, type;
1341 int sat_p;
1342 bool overflow_p;
1343
1344 /* The following codes are handled by fixed_arithmetic. */
1345 switch (code)
1346 {
1347 case PLUS_EXPR:
1348 case MINUS_EXPR:
1349 case MULT_EXPR:
1350 case TRUNC_DIV_EXPR:
1351 if (TREE_CODE (arg2) != FIXED_CST)
1352 return NULL_TREE;
1353 f2 = TREE_FIXED_CST (arg2);
1354 break;
1355
1356 case LSHIFT_EXPR:
1357 case RSHIFT_EXPR:
1358 {
1359 if (TREE_CODE (arg2) != INTEGER_CST)
1360 return NULL_TREE;
1361 wi::tree_to_wide_ref w2 = wi::to_wide (arg2);
1362 f2.data.high = w2.elt (1);
1363 f2.data.low = w2.ulow ();
1364 f2.mode = SImode;
1365 }
1366 break;
1367
1368 default:
1369 return NULL_TREE;
1370 }
1371
1372 f1 = TREE_FIXED_CST (arg1);
1373 type = TREE_TYPE (arg1);
1374 sat_p = TYPE_SATURATING (type);
1375 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1376 t = build_fixed (type, result);
1377 /* Propagate overflow flags. */
1378 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1379 TREE_OVERFLOW (t) = 1;
1380 return t;
1381 }
1382
1383 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1384 {
1385 tree type = TREE_TYPE (arg1);
1386 tree r1 = TREE_REALPART (arg1);
1387 tree i1 = TREE_IMAGPART (arg1);
1388 tree r2 = TREE_REALPART (arg2);
1389 tree i2 = TREE_IMAGPART (arg2);
1390 tree real, imag;
1391
1392 switch (code)
1393 {
1394 case PLUS_EXPR:
1395 case MINUS_EXPR:
1396 real = const_binop (code, r1, r2);
1397 imag = const_binop (code, i1, i2);
1398 break;
1399
1400 case MULT_EXPR:
1401 if (COMPLEX_FLOAT_TYPE_P (type))
1402 return do_mpc_arg2 (arg1, arg2, type,
1403 /* do_nonfinite= */ folding_initializer,
1404 mpc_mul);
1405
1406 real = const_binop (MINUS_EXPR,
1407 const_binop (MULT_EXPR, r1, r2),
1408 const_binop (MULT_EXPR, i1, i2));
1409 imag = const_binop (PLUS_EXPR,
1410 const_binop (MULT_EXPR, r1, i2),
1411 const_binop (MULT_EXPR, i1, r2));
1412 break;
1413
1414 case RDIV_EXPR:
1415 if (COMPLEX_FLOAT_TYPE_P (type))
1416 return do_mpc_arg2 (arg1, arg2, type,
1417 /* do_nonfinite= */ folding_initializer,
1418 mpc_div);
1419 /* Fallthru. */
1420 case TRUNC_DIV_EXPR:
1421 case CEIL_DIV_EXPR:
1422 case FLOOR_DIV_EXPR:
1423 case ROUND_DIV_EXPR:
1424 if (flag_complex_method == 0)
1425 {
1426 /* Keep this algorithm in sync with
1427 tree-complex.c:expand_complex_div_straight().
1428
1429 Expand complex division to scalars, straightforward algorithm.
1430 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1431 t = br*br + bi*bi
1432 */
1433 tree magsquared
1434 = const_binop (PLUS_EXPR,
1435 const_binop (MULT_EXPR, r2, r2),
1436 const_binop (MULT_EXPR, i2, i2));
1437 tree t1
1438 = const_binop (PLUS_EXPR,
1439 const_binop (MULT_EXPR, r1, r2),
1440 const_binop (MULT_EXPR, i1, i2));
1441 tree t2
1442 = const_binop (MINUS_EXPR,
1443 const_binop (MULT_EXPR, i1, r2),
1444 const_binop (MULT_EXPR, r1, i2));
1445
1446 real = const_binop (code, t1, magsquared);
1447 imag = const_binop (code, t2, magsquared);
1448 }
1449 else
1450 {
1451 /* Keep this algorithm in sync with
1452 tree-complex.c:expand_complex_div_wide().
1453
1454 Expand complex division to scalars, modified algorithm to minimize
1455 overflow with wide input ranges. */
1456 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1457 fold_abs_const (r2, TREE_TYPE (type)),
1458 fold_abs_const (i2, TREE_TYPE (type)));
1459
1460 if (integer_nonzerop (compare))
1461 {
1462 /* In the TRUE branch, we compute
1463 ratio = br/bi;
1464 div = (br * ratio) + bi;
1465 tr = (ar * ratio) + ai;
1466 ti = (ai * ratio) - ar;
1467 tr = tr / div;
1468 ti = ti / div; */
1469 tree ratio = const_binop (code, r2, i2);
1470 tree div = const_binop (PLUS_EXPR, i2,
1471 const_binop (MULT_EXPR, r2, ratio));
1472 real = const_binop (MULT_EXPR, r1, ratio);
1473 real = const_binop (PLUS_EXPR, real, i1);
1474 real = const_binop (code, real, div);
1475
1476 imag = const_binop (MULT_EXPR, i1, ratio);
1477 imag = const_binop (MINUS_EXPR, imag, r1);
1478 imag = const_binop (code, imag, div);
1479 }
1480 else
1481 {
1482 /* In the FALSE branch, we compute
1483 ratio = d/c;
1484 divisor = (d * ratio) + c;
1485 tr = (b * ratio) + a;
1486 ti = b - (a * ratio);
1487 tr = tr / div;
1488 ti = ti / div; */
1489 tree ratio = const_binop (code, i2, r2);
1490 tree div = const_binop (PLUS_EXPR, r2,
1491 const_binop (MULT_EXPR, i2, ratio));
1492
1493 real = const_binop (MULT_EXPR, i1, ratio);
1494 real = const_binop (PLUS_EXPR, real, r1);
1495 real = const_binop (code, real, div);
1496
1497 imag = const_binop (MULT_EXPR, r1, ratio);
1498 imag = const_binop (MINUS_EXPR, i1, imag);
1499 imag = const_binop (code, imag, div);
1500 }
1501 }
1502 break;
1503
1504 default:
1505 return NULL_TREE;
1506 }
1507
1508 if (real && imag)
1509 return build_complex (type, real, imag);
1510 }
1511
1512 if (TREE_CODE (arg1) == VECTOR_CST
1513 && TREE_CODE (arg2) == VECTOR_CST
1514 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)),
1515 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2))))
1516 {
1517 tree type = TREE_TYPE (arg1);
1518 bool step_ok_p;
1519 if (VECTOR_CST_STEPPED_P (arg1)
1520 && VECTOR_CST_STEPPED_P (arg2))
1521 /* We can operate directly on the encoding if:
1522
1523 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1524 implies
1525 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1526
1527 Addition and subtraction are the supported operators
1528 for which this is true. */
1529 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR);
1530 else if (VECTOR_CST_STEPPED_P (arg1))
1531 /* We can operate directly on stepped encodings if:
1532
1533 a3 - a2 == a2 - a1
1534 implies:
1535 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1536
1537 which is true if (x -> x op c) distributes over addition. */
1538 step_ok_p = distributes_over_addition_p (code, 1);
1539 else
1540 /* Similarly in reverse. */
1541 step_ok_p = distributes_over_addition_p (code, 2);
1542 tree_vector_builder elts;
1543 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p))
1544 return NULL_TREE;
1545 unsigned int count = elts.encoded_nelts ();
1546 for (unsigned int i = 0; i < count; ++i)
1547 {
1548 tree elem1 = VECTOR_CST_ELT (arg1, i);
1549 tree elem2 = VECTOR_CST_ELT (arg2, i);
1550
1551 tree elt = const_binop (code, elem1, elem2);
1552
1553 /* It is possible that const_binop cannot handle the given
1554 code and return NULL_TREE */
1555 if (elt == NULL_TREE)
1556 return NULL_TREE;
1557 elts.quick_push (elt);
1558 }
1559
1560 return elts.build ();
1561 }
1562
1563 /* Shifts allow a scalar offset for a vector. */
1564 if (TREE_CODE (arg1) == VECTOR_CST
1565 && TREE_CODE (arg2) == INTEGER_CST)
1566 {
1567 tree type = TREE_TYPE (arg1);
1568 bool step_ok_p = distributes_over_addition_p (code, 1);
1569 tree_vector_builder elts;
1570 if (!elts.new_unary_operation (type, arg1, step_ok_p))
1571 return NULL_TREE;
1572 unsigned int count = elts.encoded_nelts ();
1573 for (unsigned int i = 0; i < count; ++i)
1574 {
1575 tree elem1 = VECTOR_CST_ELT (arg1, i);
1576
1577 tree elt = const_binop (code, elem1, arg2);
1578
1579 /* It is possible that const_binop cannot handle the given
1580 code and return NULL_TREE. */
1581 if (elt == NULL_TREE)
1582 return NULL_TREE;
1583 elts.quick_push (elt);
1584 }
1585
1586 return elts.build ();
1587 }
1588 return NULL_TREE;
1589 }
1590
1591 /* Overload that adds a TYPE parameter to be able to dispatch
1592 to fold_relational_const. */
1593
1594 tree
1595 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1596 {
1597 if (TREE_CODE_CLASS (code) == tcc_comparison)
1598 return fold_relational_const (code, type, arg1, arg2);
1599
1600 /* ??? Until we make the const_binop worker take the type of the
1601 result as argument put those cases that need it here. */
1602 switch (code)
1603 {
1604 case VEC_SERIES_EXPR:
1605 if (CONSTANT_CLASS_P (arg1)
1606 && CONSTANT_CLASS_P (arg2))
1607 return build_vec_series (type, arg1, arg2);
1608 return NULL_TREE;
1609
1610 case COMPLEX_EXPR:
1611 if ((TREE_CODE (arg1) == REAL_CST
1612 && TREE_CODE (arg2) == REAL_CST)
1613 || (TREE_CODE (arg1) == INTEGER_CST
1614 && TREE_CODE (arg2) == INTEGER_CST))
1615 return build_complex (type, arg1, arg2);
1616 return NULL_TREE;
1617
1618 case POINTER_DIFF_EXPR:
1619 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1620 {
1621 poly_offset_int res = (wi::to_poly_offset (arg1)
1622 - wi::to_poly_offset (arg2));
1623 return force_fit_type (type, res, 1,
1624 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1625 }
1626 return NULL_TREE;
1627
1628 case VEC_PACK_TRUNC_EXPR:
1629 case VEC_PACK_FIX_TRUNC_EXPR:
1630 case VEC_PACK_FLOAT_EXPR:
1631 {
1632 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i;
1633
1634 if (TREE_CODE (arg1) != VECTOR_CST
1635 || TREE_CODE (arg2) != VECTOR_CST)
1636 return NULL_TREE;
1637
1638 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1639 return NULL_TREE;
1640
1641 out_nelts = in_nelts * 2;
1642 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1643 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1644
1645 tree_vector_builder elts (type, out_nelts, 1);
1646 for (i = 0; i < out_nelts; i++)
1647 {
1648 tree elt = (i < in_nelts
1649 ? VECTOR_CST_ELT (arg1, i)
1650 : VECTOR_CST_ELT (arg2, i - in_nelts));
1651 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1652 ? NOP_EXPR
1653 : code == VEC_PACK_FLOAT_EXPR
1654 ? FLOAT_EXPR : FIX_TRUNC_EXPR,
1655 TREE_TYPE (type), elt);
1656 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1657 return NULL_TREE;
1658 elts.quick_push (elt);
1659 }
1660
1661 return elts.build ();
1662 }
1663
1664 case VEC_WIDEN_MULT_LO_EXPR:
1665 case VEC_WIDEN_MULT_HI_EXPR:
1666 case VEC_WIDEN_MULT_EVEN_EXPR:
1667 case VEC_WIDEN_MULT_ODD_EXPR:
1668 {
1669 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale;
1670
1671 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1672 return NULL_TREE;
1673
1674 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1675 return NULL_TREE;
1676 out_nelts = in_nelts / 2;
1677 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1678 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1679
1680 if (code == VEC_WIDEN_MULT_LO_EXPR)
1681 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1682 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1683 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1684 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1685 scale = 1, ofs = 0;
1686 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1687 scale = 1, ofs = 1;
1688
1689 tree_vector_builder elts (type, out_nelts, 1);
1690 for (out = 0; out < out_nelts; out++)
1691 {
1692 unsigned int in = (out << scale) + ofs;
1693 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1694 VECTOR_CST_ELT (arg1, in));
1695 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1696 VECTOR_CST_ELT (arg2, in));
1697
1698 if (t1 == NULL_TREE || t2 == NULL_TREE)
1699 return NULL_TREE;
1700 tree elt = const_binop (MULT_EXPR, t1, t2);
1701 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1702 return NULL_TREE;
1703 elts.quick_push (elt);
1704 }
1705
1706 return elts.build ();
1707 }
1708
1709 default:;
1710 }
1711
1712 if (TREE_CODE_CLASS (code) != tcc_binary)
1713 return NULL_TREE;
1714
1715 /* Make sure type and arg0 have the same saturating flag. */
1716 gcc_checking_assert (TYPE_SATURATING (type)
1717 == TYPE_SATURATING (TREE_TYPE (arg1)));
1718
1719 return const_binop (code, arg1, arg2);
1720 }
1721
1722 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1723 Return zero if computing the constants is not possible. */
1724
1725 tree
1726 const_unop (enum tree_code code, tree type, tree arg0)
1727 {
1728 /* Don't perform the operation, other than NEGATE and ABS, if
1729 flag_signaling_nans is on and the operand is a signaling NaN. */
1730 if (TREE_CODE (arg0) == REAL_CST
1731 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1732 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1733 && code != NEGATE_EXPR
1734 && code != ABS_EXPR
1735 && code != ABSU_EXPR)
1736 return NULL_TREE;
1737
1738 switch (code)
1739 {
1740 CASE_CONVERT:
1741 case FLOAT_EXPR:
1742 case FIX_TRUNC_EXPR:
1743 case FIXED_CONVERT_EXPR:
1744 return fold_convert_const (code, type, arg0);
1745
1746 case ADDR_SPACE_CONVERT_EXPR:
1747 /* If the source address is 0, and the source address space
1748 cannot have a valid object at 0, fold to dest type null. */
1749 if (integer_zerop (arg0)
1750 && !(targetm.addr_space.zero_address_valid
1751 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1752 return fold_convert_const (code, type, arg0);
1753 break;
1754
1755 case VIEW_CONVERT_EXPR:
1756 return fold_view_convert_expr (type, arg0);
1757
1758 case NEGATE_EXPR:
1759 {
1760 /* Can't call fold_negate_const directly here as that doesn't
1761 handle all cases and we might not be able to negate some
1762 constants. */
1763 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1764 if (tem && CONSTANT_CLASS_P (tem))
1765 return tem;
1766 break;
1767 }
1768
1769 case ABS_EXPR:
1770 case ABSU_EXPR:
1771 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1772 return fold_abs_const (arg0, type);
1773 break;
1774
1775 case CONJ_EXPR:
1776 if (TREE_CODE (arg0) == COMPLEX_CST)
1777 {
1778 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1779 TREE_TYPE (type));
1780 return build_complex (type, TREE_REALPART (arg0), ipart);
1781 }
1782 break;
1783
1784 case BIT_NOT_EXPR:
1785 if (TREE_CODE (arg0) == INTEGER_CST)
1786 return fold_not_const (arg0, type);
1787 else if (POLY_INT_CST_P (arg0))
1788 return wide_int_to_tree (type, -poly_int_cst_value (arg0));
1789 /* Perform BIT_NOT_EXPR on each element individually. */
1790 else if (TREE_CODE (arg0) == VECTOR_CST)
1791 {
1792 tree elem;
1793
1794 /* This can cope with stepped encodings because ~x == -1 - x. */
1795 tree_vector_builder elements;
1796 elements.new_unary_operation (type, arg0, true);
1797 unsigned int i, count = elements.encoded_nelts ();
1798 for (i = 0; i < count; ++i)
1799 {
1800 elem = VECTOR_CST_ELT (arg0, i);
1801 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1802 if (elem == NULL_TREE)
1803 break;
1804 elements.quick_push (elem);
1805 }
1806 if (i == count)
1807 return elements.build ();
1808 }
1809 break;
1810
1811 case TRUTH_NOT_EXPR:
1812 if (TREE_CODE (arg0) == INTEGER_CST)
1813 return constant_boolean_node (integer_zerop (arg0), type);
1814 break;
1815
1816 case REALPART_EXPR:
1817 if (TREE_CODE (arg0) == COMPLEX_CST)
1818 return fold_convert (type, TREE_REALPART (arg0));
1819 break;
1820
1821 case IMAGPART_EXPR:
1822 if (TREE_CODE (arg0) == COMPLEX_CST)
1823 return fold_convert (type, TREE_IMAGPART (arg0));
1824 break;
1825
1826 case VEC_UNPACK_LO_EXPR:
1827 case VEC_UNPACK_HI_EXPR:
1828 case VEC_UNPACK_FLOAT_LO_EXPR:
1829 case VEC_UNPACK_FLOAT_HI_EXPR:
1830 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
1831 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
1832 {
1833 unsigned HOST_WIDE_INT out_nelts, in_nelts, i;
1834 enum tree_code subcode;
1835
1836 if (TREE_CODE (arg0) != VECTOR_CST)
1837 return NULL_TREE;
1838
1839 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts))
1840 return NULL_TREE;
1841 out_nelts = in_nelts / 2;
1842 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1843
1844 unsigned int offset = 0;
1845 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1846 || code == VEC_UNPACK_FLOAT_LO_EXPR
1847 || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR))
1848 offset = out_nelts;
1849
1850 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1851 subcode = NOP_EXPR;
1852 else if (code == VEC_UNPACK_FLOAT_LO_EXPR
1853 || code == VEC_UNPACK_FLOAT_HI_EXPR)
1854 subcode = FLOAT_EXPR;
1855 else
1856 subcode = FIX_TRUNC_EXPR;
1857
1858 tree_vector_builder elts (type, out_nelts, 1);
1859 for (i = 0; i < out_nelts; i++)
1860 {
1861 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1862 VECTOR_CST_ELT (arg0, i + offset));
1863 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1864 return NULL_TREE;
1865 elts.quick_push (elt);
1866 }
1867
1868 return elts.build ();
1869 }
1870
1871 case VEC_DUPLICATE_EXPR:
1872 if (CONSTANT_CLASS_P (arg0))
1873 return build_vector_from_val (type, arg0);
1874 return NULL_TREE;
1875
1876 default:
1877 break;
1878 }
1879
1880 return NULL_TREE;
1881 }
1882
1883 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1884 indicates which particular sizetype to create. */
1885
1886 tree
1887 size_int_kind (poly_int64 number, enum size_type_kind kind)
1888 {
1889 return build_int_cst (sizetype_tab[(int) kind], number);
1890 }
1891 \f
1892 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1893 is a tree code. The type of the result is taken from the operands.
1894 Both must be equivalent integer types, ala int_binop_types_match_p.
1895 If the operands are constant, so is the result. */
1896
1897 tree
1898 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1899 {
1900 tree type = TREE_TYPE (arg0);
1901
1902 if (arg0 == error_mark_node || arg1 == error_mark_node)
1903 return error_mark_node;
1904
1905 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1906 TREE_TYPE (arg1)));
1907
1908 /* Handle the special case of two poly_int constants faster. */
1909 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1))
1910 {
1911 /* And some specific cases even faster than that. */
1912 if (code == PLUS_EXPR)
1913 {
1914 if (integer_zerop (arg0)
1915 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1916 return arg1;
1917 if (integer_zerop (arg1)
1918 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1919 return arg0;
1920 }
1921 else if (code == MINUS_EXPR)
1922 {
1923 if (integer_zerop (arg1)
1924 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1925 return arg0;
1926 }
1927 else if (code == MULT_EXPR)
1928 {
1929 if (integer_onep (arg0)
1930 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1931 return arg1;
1932 }
1933
1934 /* Handle general case of two integer constants. For sizetype
1935 constant calculations we always want to know about overflow,
1936 even in the unsigned case. */
1937 tree res = int_const_binop (code, arg0, arg1, -1);
1938 if (res != NULL_TREE)
1939 return res;
1940 }
1941
1942 return fold_build2_loc (loc, code, type, arg0, arg1);
1943 }
1944
1945 /* Given two values, either both of sizetype or both of bitsizetype,
1946 compute the difference between the two values. Return the value
1947 in signed type corresponding to the type of the operands. */
1948
1949 tree
1950 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1951 {
1952 tree type = TREE_TYPE (arg0);
1953 tree ctype;
1954
1955 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1956 TREE_TYPE (arg1)));
1957
1958 /* If the type is already signed, just do the simple thing. */
1959 if (!TYPE_UNSIGNED (type))
1960 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1961
1962 if (type == sizetype)
1963 ctype = ssizetype;
1964 else if (type == bitsizetype)
1965 ctype = sbitsizetype;
1966 else
1967 ctype = signed_type_for (type);
1968
1969 /* If either operand is not a constant, do the conversions to the signed
1970 type and subtract. The hardware will do the right thing with any
1971 overflow in the subtraction. */
1972 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1973 return size_binop_loc (loc, MINUS_EXPR,
1974 fold_convert_loc (loc, ctype, arg0),
1975 fold_convert_loc (loc, ctype, arg1));
1976
1977 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1978 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1979 overflow) and negate (which can't either). Special-case a result
1980 of zero while we're here. */
1981 if (tree_int_cst_equal (arg0, arg1))
1982 return build_int_cst (ctype, 0);
1983 else if (tree_int_cst_lt (arg1, arg0))
1984 return fold_convert_loc (loc, ctype,
1985 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1986 else
1987 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1988 fold_convert_loc (loc, ctype,
1989 size_binop_loc (loc,
1990 MINUS_EXPR,
1991 arg1, arg0)));
1992 }
1993 \f
1994 /* A subroutine of fold_convert_const handling conversions of an
1995 INTEGER_CST to another integer type. */
1996
1997 static tree
1998 fold_convert_const_int_from_int (tree type, const_tree arg1)
1999 {
2000 /* Given an integer constant, make new constant with new type,
2001 appropriately sign-extended or truncated. Use widest_int
2002 so that any extension is done according ARG1's type. */
2003 return force_fit_type (type, wi::to_widest (arg1),
2004 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2005 TREE_OVERFLOW (arg1));
2006 }
2007
2008 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2009 to an integer type. */
2010
2011 static tree
2012 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2013 {
2014 bool overflow = false;
2015 tree t;
2016
2017 /* The following code implements the floating point to integer
2018 conversion rules required by the Java Language Specification,
2019 that IEEE NaNs are mapped to zero and values that overflow
2020 the target precision saturate, i.e. values greater than
2021 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2022 are mapped to INT_MIN. These semantics are allowed by the
2023 C and C++ standards that simply state that the behavior of
2024 FP-to-integer conversion is unspecified upon overflow. */
2025
2026 wide_int val;
2027 REAL_VALUE_TYPE r;
2028 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2029
2030 switch (code)
2031 {
2032 case FIX_TRUNC_EXPR:
2033 real_trunc (&r, VOIDmode, &x);
2034 break;
2035
2036 default:
2037 gcc_unreachable ();
2038 }
2039
2040 /* If R is NaN, return zero and show we have an overflow. */
2041 if (REAL_VALUE_ISNAN (r))
2042 {
2043 overflow = true;
2044 val = wi::zero (TYPE_PRECISION (type));
2045 }
2046
2047 /* See if R is less than the lower bound or greater than the
2048 upper bound. */
2049
2050 if (! overflow)
2051 {
2052 tree lt = TYPE_MIN_VALUE (type);
2053 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2054 if (real_less (&r, &l))
2055 {
2056 overflow = true;
2057 val = wi::to_wide (lt);
2058 }
2059 }
2060
2061 if (! overflow)
2062 {
2063 tree ut = TYPE_MAX_VALUE (type);
2064 if (ut)
2065 {
2066 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2067 if (real_less (&u, &r))
2068 {
2069 overflow = true;
2070 val = wi::to_wide (ut);
2071 }
2072 }
2073 }
2074
2075 if (! overflow)
2076 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
2077
2078 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
2079 return t;
2080 }
2081
2082 /* A subroutine of fold_convert_const handling conversions of a
2083 FIXED_CST to an integer type. */
2084
2085 static tree
2086 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2087 {
2088 tree t;
2089 double_int temp, temp_trunc;
2090 scalar_mode mode;
2091
2092 /* Right shift FIXED_CST to temp by fbit. */
2093 temp = TREE_FIXED_CST (arg1).data;
2094 mode = TREE_FIXED_CST (arg1).mode;
2095 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
2096 {
2097 temp = temp.rshift (GET_MODE_FBIT (mode),
2098 HOST_BITS_PER_DOUBLE_INT,
2099 SIGNED_FIXED_POINT_MODE_P (mode));
2100
2101 /* Left shift temp to temp_trunc by fbit. */
2102 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
2103 HOST_BITS_PER_DOUBLE_INT,
2104 SIGNED_FIXED_POINT_MODE_P (mode));
2105 }
2106 else
2107 {
2108 temp = double_int_zero;
2109 temp_trunc = double_int_zero;
2110 }
2111
2112 /* If FIXED_CST is negative, we need to round the value toward 0.
2113 By checking if the fractional bits are not zero to add 1 to temp. */
2114 if (SIGNED_FIXED_POINT_MODE_P (mode)
2115 && temp_trunc.is_negative ()
2116 && TREE_FIXED_CST (arg1).data != temp_trunc)
2117 temp += double_int_one;
2118
2119 /* Given a fixed-point constant, make new constant with new type,
2120 appropriately sign-extended or truncated. */
2121 t = force_fit_type (type, temp, -1,
2122 (temp.is_negative ()
2123 && (TYPE_UNSIGNED (type)
2124 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2125 | TREE_OVERFLOW (arg1));
2126
2127 return t;
2128 }
2129
2130 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2131 to another floating point type. */
2132
2133 static tree
2134 fold_convert_const_real_from_real (tree type, const_tree arg1)
2135 {
2136 REAL_VALUE_TYPE value;
2137 tree t;
2138
2139 /* Don't perform the operation if flag_signaling_nans is on
2140 and the operand is a signaling NaN. */
2141 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2142 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2143 return NULL_TREE;
2144
2145 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2146 t = build_real (type, value);
2147
2148 /* If converting an infinity or NAN to a representation that doesn't
2149 have one, set the overflow bit so that we can produce some kind of
2150 error message at the appropriate point if necessary. It's not the
2151 most user-friendly message, but it's better than nothing. */
2152 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2153 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2154 TREE_OVERFLOW (t) = 1;
2155 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2156 && !MODE_HAS_NANS (TYPE_MODE (type)))
2157 TREE_OVERFLOW (t) = 1;
2158 /* Regular overflow, conversion produced an infinity in a mode that
2159 can't represent them. */
2160 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2161 && REAL_VALUE_ISINF (value)
2162 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2163 TREE_OVERFLOW (t) = 1;
2164 else
2165 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2166 return t;
2167 }
2168
2169 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2170 to a floating point type. */
2171
2172 static tree
2173 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2174 {
2175 REAL_VALUE_TYPE value;
2176 tree t;
2177
2178 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2179 &TREE_FIXED_CST (arg1));
2180 t = build_real (type, value);
2181
2182 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2183 return t;
2184 }
2185
2186 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2187 to another fixed-point type. */
2188
2189 static tree
2190 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2191 {
2192 FIXED_VALUE_TYPE value;
2193 tree t;
2194 bool overflow_p;
2195
2196 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2197 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2198 t = build_fixed (type, value);
2199
2200 /* Propagate overflow flags. */
2201 if (overflow_p | TREE_OVERFLOW (arg1))
2202 TREE_OVERFLOW (t) = 1;
2203 return t;
2204 }
2205
2206 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2207 to a fixed-point type. */
2208
2209 static tree
2210 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2211 {
2212 FIXED_VALUE_TYPE value;
2213 tree t;
2214 bool overflow_p;
2215 double_int di;
2216
2217 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2218
2219 di.low = TREE_INT_CST_ELT (arg1, 0);
2220 if (TREE_INT_CST_NUNITS (arg1) == 1)
2221 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2222 else
2223 di.high = TREE_INT_CST_ELT (arg1, 1);
2224
2225 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2226 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2227 TYPE_SATURATING (type));
2228 t = build_fixed (type, value);
2229
2230 /* Propagate overflow flags. */
2231 if (overflow_p | TREE_OVERFLOW (arg1))
2232 TREE_OVERFLOW (t) = 1;
2233 return t;
2234 }
2235
2236 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2237 to a fixed-point type. */
2238
2239 static tree
2240 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2241 {
2242 FIXED_VALUE_TYPE value;
2243 tree t;
2244 bool overflow_p;
2245
2246 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2247 &TREE_REAL_CST (arg1),
2248 TYPE_SATURATING (type));
2249 t = build_fixed (type, value);
2250
2251 /* Propagate overflow flags. */
2252 if (overflow_p | TREE_OVERFLOW (arg1))
2253 TREE_OVERFLOW (t) = 1;
2254 return t;
2255 }
2256
2257 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2258 type TYPE. If no simplification can be done return NULL_TREE. */
2259
2260 static tree
2261 fold_convert_const (enum tree_code code, tree type, tree arg1)
2262 {
2263 tree arg_type = TREE_TYPE (arg1);
2264 if (arg_type == type)
2265 return arg1;
2266
2267 /* We can't widen types, since the runtime value could overflow the
2268 original type before being extended to the new type. */
2269 if (POLY_INT_CST_P (arg1)
2270 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2271 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type))
2272 return build_poly_int_cst (type,
2273 poly_wide_int::from (poly_int_cst_value (arg1),
2274 TYPE_PRECISION (type),
2275 TYPE_SIGN (arg_type)));
2276
2277 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2278 || TREE_CODE (type) == OFFSET_TYPE)
2279 {
2280 if (TREE_CODE (arg1) == INTEGER_CST)
2281 return fold_convert_const_int_from_int (type, arg1);
2282 else if (TREE_CODE (arg1) == REAL_CST)
2283 return fold_convert_const_int_from_real (code, type, arg1);
2284 else if (TREE_CODE (arg1) == FIXED_CST)
2285 return fold_convert_const_int_from_fixed (type, arg1);
2286 }
2287 else if (TREE_CODE (type) == REAL_TYPE)
2288 {
2289 if (TREE_CODE (arg1) == INTEGER_CST)
2290 return build_real_from_int_cst (type, arg1);
2291 else if (TREE_CODE (arg1) == REAL_CST)
2292 return fold_convert_const_real_from_real (type, arg1);
2293 else if (TREE_CODE (arg1) == FIXED_CST)
2294 return fold_convert_const_real_from_fixed (type, arg1);
2295 }
2296 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2297 {
2298 if (TREE_CODE (arg1) == FIXED_CST)
2299 return fold_convert_const_fixed_from_fixed (type, arg1);
2300 else if (TREE_CODE (arg1) == INTEGER_CST)
2301 return fold_convert_const_fixed_from_int (type, arg1);
2302 else if (TREE_CODE (arg1) == REAL_CST)
2303 return fold_convert_const_fixed_from_real (type, arg1);
2304 }
2305 else if (TREE_CODE (type) == VECTOR_TYPE)
2306 {
2307 if (TREE_CODE (arg1) == VECTOR_CST
2308 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1)))
2309 {
2310 tree elttype = TREE_TYPE (type);
2311 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1));
2312 /* We can't handle steps directly when extending, since the
2313 values need to wrap at the original precision first. */
2314 bool step_ok_p
2315 = (INTEGRAL_TYPE_P (elttype)
2316 && INTEGRAL_TYPE_P (arg1_elttype)
2317 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype));
2318 tree_vector_builder v;
2319 if (!v.new_unary_operation (type, arg1, step_ok_p))
2320 return NULL_TREE;
2321 unsigned int len = v.encoded_nelts ();
2322 for (unsigned int i = 0; i < len; ++i)
2323 {
2324 tree elt = VECTOR_CST_ELT (arg1, i);
2325 tree cvt = fold_convert_const (code, elttype, elt);
2326 if (cvt == NULL_TREE)
2327 return NULL_TREE;
2328 v.quick_push (cvt);
2329 }
2330 return v.build ();
2331 }
2332 }
2333 return NULL_TREE;
2334 }
2335
2336 /* Construct a vector of zero elements of vector type TYPE. */
2337
2338 static tree
2339 build_zero_vector (tree type)
2340 {
2341 tree t;
2342
2343 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2344 return build_vector_from_val (type, t);
2345 }
2346
2347 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2348
2349 bool
2350 fold_convertible_p (const_tree type, const_tree arg)
2351 {
2352 tree orig = TREE_TYPE (arg);
2353
2354 if (type == orig)
2355 return true;
2356
2357 if (TREE_CODE (arg) == ERROR_MARK
2358 || TREE_CODE (type) == ERROR_MARK
2359 || TREE_CODE (orig) == ERROR_MARK)
2360 return false;
2361
2362 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2363 return true;
2364
2365 switch (TREE_CODE (type))
2366 {
2367 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2368 case POINTER_TYPE: case REFERENCE_TYPE:
2369 case OFFSET_TYPE:
2370 return (INTEGRAL_TYPE_P (orig)
2371 || (POINTER_TYPE_P (orig)
2372 && TYPE_PRECISION (type) <= TYPE_PRECISION (orig))
2373 || TREE_CODE (orig) == OFFSET_TYPE);
2374
2375 case REAL_TYPE:
2376 case FIXED_POINT_TYPE:
2377 case VECTOR_TYPE:
2378 case VOID_TYPE:
2379 return TREE_CODE (type) == TREE_CODE (orig);
2380
2381 default:
2382 return false;
2383 }
2384 }
2385
2386 /* Convert expression ARG to type TYPE. Used by the middle-end for
2387 simple conversions in preference to calling the front-end's convert. */
2388
2389 tree
2390 fold_convert_loc (location_t loc, tree type, tree arg)
2391 {
2392 tree orig = TREE_TYPE (arg);
2393 tree tem;
2394
2395 if (type == orig)
2396 return arg;
2397
2398 if (TREE_CODE (arg) == ERROR_MARK
2399 || TREE_CODE (type) == ERROR_MARK
2400 || TREE_CODE (orig) == ERROR_MARK)
2401 return error_mark_node;
2402
2403 switch (TREE_CODE (type))
2404 {
2405 case POINTER_TYPE:
2406 case REFERENCE_TYPE:
2407 /* Handle conversions between pointers to different address spaces. */
2408 if (POINTER_TYPE_P (orig)
2409 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2410 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2411 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2412 /* fall through */
2413
2414 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2415 case OFFSET_TYPE:
2416 if (TREE_CODE (arg) == INTEGER_CST)
2417 {
2418 tem = fold_convert_const (NOP_EXPR, type, arg);
2419 if (tem != NULL_TREE)
2420 return tem;
2421 }
2422 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2423 || TREE_CODE (orig) == OFFSET_TYPE)
2424 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2425 if (TREE_CODE (orig) == COMPLEX_TYPE)
2426 return fold_convert_loc (loc, type,
2427 fold_build1_loc (loc, REALPART_EXPR,
2428 TREE_TYPE (orig), arg));
2429 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2430 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2431 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2432
2433 case REAL_TYPE:
2434 if (TREE_CODE (arg) == INTEGER_CST)
2435 {
2436 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2437 if (tem != NULL_TREE)
2438 return tem;
2439 }
2440 else if (TREE_CODE (arg) == REAL_CST)
2441 {
2442 tem = fold_convert_const (NOP_EXPR, type, arg);
2443 if (tem != NULL_TREE)
2444 return tem;
2445 }
2446 else if (TREE_CODE (arg) == FIXED_CST)
2447 {
2448 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2449 if (tem != NULL_TREE)
2450 return tem;
2451 }
2452
2453 switch (TREE_CODE (orig))
2454 {
2455 case INTEGER_TYPE:
2456 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2457 case POINTER_TYPE: case REFERENCE_TYPE:
2458 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2459
2460 case REAL_TYPE:
2461 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2462
2463 case FIXED_POINT_TYPE:
2464 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2465
2466 case COMPLEX_TYPE:
2467 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2468 return fold_convert_loc (loc, type, tem);
2469
2470 default:
2471 gcc_unreachable ();
2472 }
2473
2474 case FIXED_POINT_TYPE:
2475 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2476 || TREE_CODE (arg) == REAL_CST)
2477 {
2478 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2479 if (tem != NULL_TREE)
2480 goto fold_convert_exit;
2481 }
2482
2483 switch (TREE_CODE (orig))
2484 {
2485 case FIXED_POINT_TYPE:
2486 case INTEGER_TYPE:
2487 case ENUMERAL_TYPE:
2488 case BOOLEAN_TYPE:
2489 case REAL_TYPE:
2490 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2491
2492 case COMPLEX_TYPE:
2493 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2494 return fold_convert_loc (loc, type, tem);
2495
2496 default:
2497 gcc_unreachable ();
2498 }
2499
2500 case COMPLEX_TYPE:
2501 switch (TREE_CODE (orig))
2502 {
2503 case INTEGER_TYPE:
2504 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2505 case POINTER_TYPE: case REFERENCE_TYPE:
2506 case REAL_TYPE:
2507 case FIXED_POINT_TYPE:
2508 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2509 fold_convert_loc (loc, TREE_TYPE (type), arg),
2510 fold_convert_loc (loc, TREE_TYPE (type),
2511 integer_zero_node));
2512 case COMPLEX_TYPE:
2513 {
2514 tree rpart, ipart;
2515
2516 if (TREE_CODE (arg) == COMPLEX_EXPR)
2517 {
2518 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2519 TREE_OPERAND (arg, 0));
2520 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2521 TREE_OPERAND (arg, 1));
2522 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2523 }
2524
2525 arg = save_expr (arg);
2526 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2527 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2528 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2529 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2530 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2531 }
2532
2533 default:
2534 gcc_unreachable ();
2535 }
2536
2537 case VECTOR_TYPE:
2538 if (integer_zerop (arg))
2539 return build_zero_vector (type);
2540 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2541 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2542 || TREE_CODE (orig) == VECTOR_TYPE);
2543 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2544
2545 case VOID_TYPE:
2546 tem = fold_ignored_result (arg);
2547 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2548
2549 default:
2550 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2551 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2552 gcc_unreachable ();
2553 }
2554 fold_convert_exit:
2555 protected_set_expr_location_unshare (tem, loc);
2556 return tem;
2557 }
2558 \f
2559 /* Return false if expr can be assumed not to be an lvalue, true
2560 otherwise. */
2561
2562 static bool
2563 maybe_lvalue_p (const_tree x)
2564 {
2565 /* We only need to wrap lvalue tree codes. */
2566 switch (TREE_CODE (x))
2567 {
2568 case VAR_DECL:
2569 case PARM_DECL:
2570 case RESULT_DECL:
2571 case LABEL_DECL:
2572 case FUNCTION_DECL:
2573 case SSA_NAME:
2574
2575 case COMPONENT_REF:
2576 case MEM_REF:
2577 case INDIRECT_REF:
2578 case ARRAY_REF:
2579 case ARRAY_RANGE_REF:
2580 case BIT_FIELD_REF:
2581 case OBJ_TYPE_REF:
2582
2583 case REALPART_EXPR:
2584 case IMAGPART_EXPR:
2585 case PREINCREMENT_EXPR:
2586 case PREDECREMENT_EXPR:
2587 case SAVE_EXPR:
2588 case TRY_CATCH_EXPR:
2589 case WITH_CLEANUP_EXPR:
2590 case COMPOUND_EXPR:
2591 case MODIFY_EXPR:
2592 case TARGET_EXPR:
2593 case COND_EXPR:
2594 case BIND_EXPR:
2595 break;
2596
2597 default:
2598 /* Assume the worst for front-end tree codes. */
2599 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2600 break;
2601 return false;
2602 }
2603
2604 return true;
2605 }
2606
2607 /* Return an expr equal to X but certainly not valid as an lvalue. */
2608
2609 tree
2610 non_lvalue_loc (location_t loc, tree x)
2611 {
2612 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2613 us. */
2614 if (in_gimple_form)
2615 return x;
2616
2617 if (! maybe_lvalue_p (x))
2618 return x;
2619 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2620 }
2621
2622 /* When pedantic, return an expr equal to X but certainly not valid as a
2623 pedantic lvalue. Otherwise, return X. */
2624
2625 static tree
2626 pedantic_non_lvalue_loc (location_t loc, tree x)
2627 {
2628 return protected_set_expr_location_unshare (x, loc);
2629 }
2630 \f
2631 /* Given a tree comparison code, return the code that is the logical inverse.
2632 It is generally not safe to do this for floating-point comparisons, except
2633 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2634 ERROR_MARK in this case. */
2635
2636 enum tree_code
2637 invert_tree_comparison (enum tree_code code, bool honor_nans)
2638 {
2639 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2640 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2641 return ERROR_MARK;
2642
2643 switch (code)
2644 {
2645 case EQ_EXPR:
2646 return NE_EXPR;
2647 case NE_EXPR:
2648 return EQ_EXPR;
2649 case GT_EXPR:
2650 return honor_nans ? UNLE_EXPR : LE_EXPR;
2651 case GE_EXPR:
2652 return honor_nans ? UNLT_EXPR : LT_EXPR;
2653 case LT_EXPR:
2654 return honor_nans ? UNGE_EXPR : GE_EXPR;
2655 case LE_EXPR:
2656 return honor_nans ? UNGT_EXPR : GT_EXPR;
2657 case LTGT_EXPR:
2658 return UNEQ_EXPR;
2659 case UNEQ_EXPR:
2660 return LTGT_EXPR;
2661 case UNGT_EXPR:
2662 return LE_EXPR;
2663 case UNGE_EXPR:
2664 return LT_EXPR;
2665 case UNLT_EXPR:
2666 return GE_EXPR;
2667 case UNLE_EXPR:
2668 return GT_EXPR;
2669 case ORDERED_EXPR:
2670 return UNORDERED_EXPR;
2671 case UNORDERED_EXPR:
2672 return ORDERED_EXPR;
2673 default:
2674 gcc_unreachable ();
2675 }
2676 }
2677
2678 /* Similar, but return the comparison that results if the operands are
2679 swapped. This is safe for floating-point. */
2680
2681 enum tree_code
2682 swap_tree_comparison (enum tree_code code)
2683 {
2684 switch (code)
2685 {
2686 case EQ_EXPR:
2687 case NE_EXPR:
2688 case ORDERED_EXPR:
2689 case UNORDERED_EXPR:
2690 case LTGT_EXPR:
2691 case UNEQ_EXPR:
2692 return code;
2693 case GT_EXPR:
2694 return LT_EXPR;
2695 case GE_EXPR:
2696 return LE_EXPR;
2697 case LT_EXPR:
2698 return GT_EXPR;
2699 case LE_EXPR:
2700 return GE_EXPR;
2701 case UNGT_EXPR:
2702 return UNLT_EXPR;
2703 case UNGE_EXPR:
2704 return UNLE_EXPR;
2705 case UNLT_EXPR:
2706 return UNGT_EXPR;
2707 case UNLE_EXPR:
2708 return UNGE_EXPR;
2709 default:
2710 gcc_unreachable ();
2711 }
2712 }
2713
2714
2715 /* Convert a comparison tree code from an enum tree_code representation
2716 into a compcode bit-based encoding. This function is the inverse of
2717 compcode_to_comparison. */
2718
2719 static enum comparison_code
2720 comparison_to_compcode (enum tree_code code)
2721 {
2722 switch (code)
2723 {
2724 case LT_EXPR:
2725 return COMPCODE_LT;
2726 case EQ_EXPR:
2727 return COMPCODE_EQ;
2728 case LE_EXPR:
2729 return COMPCODE_LE;
2730 case GT_EXPR:
2731 return COMPCODE_GT;
2732 case NE_EXPR:
2733 return COMPCODE_NE;
2734 case GE_EXPR:
2735 return COMPCODE_GE;
2736 case ORDERED_EXPR:
2737 return COMPCODE_ORD;
2738 case UNORDERED_EXPR:
2739 return COMPCODE_UNORD;
2740 case UNLT_EXPR:
2741 return COMPCODE_UNLT;
2742 case UNEQ_EXPR:
2743 return COMPCODE_UNEQ;
2744 case UNLE_EXPR:
2745 return COMPCODE_UNLE;
2746 case UNGT_EXPR:
2747 return COMPCODE_UNGT;
2748 case LTGT_EXPR:
2749 return COMPCODE_LTGT;
2750 case UNGE_EXPR:
2751 return COMPCODE_UNGE;
2752 default:
2753 gcc_unreachable ();
2754 }
2755 }
2756
2757 /* Convert a compcode bit-based encoding of a comparison operator back
2758 to GCC's enum tree_code representation. This function is the
2759 inverse of comparison_to_compcode. */
2760
2761 static enum tree_code
2762 compcode_to_comparison (enum comparison_code code)
2763 {
2764 switch (code)
2765 {
2766 case COMPCODE_LT:
2767 return LT_EXPR;
2768 case COMPCODE_EQ:
2769 return EQ_EXPR;
2770 case COMPCODE_LE:
2771 return LE_EXPR;
2772 case COMPCODE_GT:
2773 return GT_EXPR;
2774 case COMPCODE_NE:
2775 return NE_EXPR;
2776 case COMPCODE_GE:
2777 return GE_EXPR;
2778 case COMPCODE_ORD:
2779 return ORDERED_EXPR;
2780 case COMPCODE_UNORD:
2781 return UNORDERED_EXPR;
2782 case COMPCODE_UNLT:
2783 return UNLT_EXPR;
2784 case COMPCODE_UNEQ:
2785 return UNEQ_EXPR;
2786 case COMPCODE_UNLE:
2787 return UNLE_EXPR;
2788 case COMPCODE_UNGT:
2789 return UNGT_EXPR;
2790 case COMPCODE_LTGT:
2791 return LTGT_EXPR;
2792 case COMPCODE_UNGE:
2793 return UNGE_EXPR;
2794 default:
2795 gcc_unreachable ();
2796 }
2797 }
2798
2799 /* Return true if COND1 tests the opposite condition of COND2. */
2800
2801 bool
2802 inverse_conditions_p (const_tree cond1, const_tree cond2)
2803 {
2804 return (COMPARISON_CLASS_P (cond1)
2805 && COMPARISON_CLASS_P (cond2)
2806 && (invert_tree_comparison
2807 (TREE_CODE (cond1),
2808 HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2))
2809 && operand_equal_p (TREE_OPERAND (cond1, 0),
2810 TREE_OPERAND (cond2, 0), 0)
2811 && operand_equal_p (TREE_OPERAND (cond1, 1),
2812 TREE_OPERAND (cond2, 1), 0));
2813 }
2814
2815 /* Return a tree for the comparison which is the combination of
2816 doing the AND or OR (depending on CODE) of the two operations LCODE
2817 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2818 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2819 if this makes the transformation invalid. */
2820
2821 tree
2822 combine_comparisons (location_t loc,
2823 enum tree_code code, enum tree_code lcode,
2824 enum tree_code rcode, tree truth_type,
2825 tree ll_arg, tree lr_arg)
2826 {
2827 bool honor_nans = HONOR_NANS (ll_arg);
2828 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2829 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2830 int compcode;
2831
2832 switch (code)
2833 {
2834 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2835 compcode = lcompcode & rcompcode;
2836 break;
2837
2838 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2839 compcode = lcompcode | rcompcode;
2840 break;
2841
2842 default:
2843 return NULL_TREE;
2844 }
2845
2846 if (!honor_nans)
2847 {
2848 /* Eliminate unordered comparisons, as well as LTGT and ORD
2849 which are not used unless the mode has NaNs. */
2850 compcode &= ~COMPCODE_UNORD;
2851 if (compcode == COMPCODE_LTGT)
2852 compcode = COMPCODE_NE;
2853 else if (compcode == COMPCODE_ORD)
2854 compcode = COMPCODE_TRUE;
2855 }
2856 else if (flag_trapping_math)
2857 {
2858 /* Check that the original operation and the optimized ones will trap
2859 under the same condition. */
2860 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2861 && (lcompcode != COMPCODE_EQ)
2862 && (lcompcode != COMPCODE_ORD);
2863 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2864 && (rcompcode != COMPCODE_EQ)
2865 && (rcompcode != COMPCODE_ORD);
2866 bool trap = (compcode & COMPCODE_UNORD) == 0
2867 && (compcode != COMPCODE_EQ)
2868 && (compcode != COMPCODE_ORD);
2869
2870 /* In a short-circuited boolean expression the LHS might be
2871 such that the RHS, if evaluated, will never trap. For
2872 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2873 if neither x nor y is NaN. (This is a mixed blessing: for
2874 example, the expression above will never trap, hence
2875 optimizing it to x < y would be invalid). */
2876 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2877 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2878 rtrap = false;
2879
2880 /* If the comparison was short-circuited, and only the RHS
2881 trapped, we may now generate a spurious trap. */
2882 if (rtrap && !ltrap
2883 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2884 return NULL_TREE;
2885
2886 /* If we changed the conditions that cause a trap, we lose. */
2887 if ((ltrap || rtrap) != trap)
2888 return NULL_TREE;
2889 }
2890
2891 if (compcode == COMPCODE_TRUE)
2892 return constant_boolean_node (true, truth_type);
2893 else if (compcode == COMPCODE_FALSE)
2894 return constant_boolean_node (false, truth_type);
2895 else
2896 {
2897 enum tree_code tcode;
2898
2899 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2900 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2901 }
2902 }
2903 \f
2904 /* Return nonzero if two operands (typically of the same tree node)
2905 are necessarily equal. FLAGS modifies behavior as follows:
2906
2907 If OEP_ONLY_CONST is set, only return nonzero for constants.
2908 This function tests whether the operands are indistinguishable;
2909 it does not test whether they are equal using C's == operation.
2910 The distinction is important for IEEE floating point, because
2911 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2912 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2913
2914 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2915 even though it may hold multiple values during a function.
2916 This is because a GCC tree node guarantees that nothing else is
2917 executed between the evaluation of its "operands" (which may often
2918 be evaluated in arbitrary order). Hence if the operands themselves
2919 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2920 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2921 unset means assuming isochronic (or instantaneous) tree equivalence.
2922 Unless comparing arbitrary expression trees, such as from different
2923 statements, this flag can usually be left unset.
2924
2925 If OEP_PURE_SAME is set, then pure functions with identical arguments
2926 are considered the same. It is used when the caller has other ways
2927 to ensure that global memory is unchanged in between.
2928
2929 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2930 not values of expressions.
2931
2932 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2933 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2934
2935 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2936 any operand with side effect. This is unnecesarily conservative in the
2937 case we know that arg0 and arg1 are in disjoint code paths (such as in
2938 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2939 addresses with TREE_CONSTANT flag set so we know that &var == &var
2940 even if var is volatile. */
2941
2942 bool
2943 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2944 {
2945 /* When checking, verify at the outermost operand_equal_p call that
2946 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2947 hash value. */
2948 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2949 {
2950 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2951 {
2952 if (arg0 != arg1)
2953 {
2954 inchash::hash hstate0 (0), hstate1 (0);
2955 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2956 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2957 hashval_t h0 = hstate0.end ();
2958 hashval_t h1 = hstate1.end ();
2959 gcc_assert (h0 == h1);
2960 }
2961 return true;
2962 }
2963 else
2964 return false;
2965 }
2966
2967 STRIP_ANY_LOCATION_WRAPPER (arg0);
2968 STRIP_ANY_LOCATION_WRAPPER (arg1);
2969
2970 /* If either is ERROR_MARK, they aren't equal. */
2971 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2972 || TREE_TYPE (arg0) == error_mark_node
2973 || TREE_TYPE (arg1) == error_mark_node)
2974 return false;
2975
2976 /* Similar, if either does not have a type (like a template id),
2977 they aren't equal. */
2978 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2979 return false;
2980
2981 /* We cannot consider pointers to different address space equal. */
2982 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2983 && POINTER_TYPE_P (TREE_TYPE (arg1))
2984 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2985 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2986 return false;
2987
2988 /* Check equality of integer constants before bailing out due to
2989 precision differences. */
2990 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2991 {
2992 /* Address of INTEGER_CST is not defined; check that we did not forget
2993 to drop the OEP_ADDRESS_OF flags. */
2994 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2995 return tree_int_cst_equal (arg0, arg1);
2996 }
2997
2998 if (!(flags & OEP_ADDRESS_OF))
2999 {
3000 /* If both types don't have the same signedness, then we can't consider
3001 them equal. We must check this before the STRIP_NOPS calls
3002 because they may change the signedness of the arguments. As pointers
3003 strictly don't have a signedness, require either two pointers or
3004 two non-pointers as well. */
3005 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3006 || POINTER_TYPE_P (TREE_TYPE (arg0))
3007 != POINTER_TYPE_P (TREE_TYPE (arg1)))
3008 return false;
3009
3010 /* If both types don't have the same precision, then it is not safe
3011 to strip NOPs. */
3012 if (element_precision (TREE_TYPE (arg0))
3013 != element_precision (TREE_TYPE (arg1)))
3014 return false;
3015
3016 STRIP_NOPS (arg0);
3017 STRIP_NOPS (arg1);
3018 }
3019 #if 0
3020 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3021 sanity check once the issue is solved. */
3022 else
3023 /* Addresses of conversions and SSA_NAMEs (and many other things)
3024 are not defined. Check that we did not forget to drop the
3025 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3026 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
3027 && TREE_CODE (arg0) != SSA_NAME);
3028 #endif
3029
3030 /* In case both args are comparisons but with different comparison
3031 code, try to swap the comparison operands of one arg to produce
3032 a match and compare that variant. */
3033 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3034 && COMPARISON_CLASS_P (arg0)
3035 && COMPARISON_CLASS_P (arg1))
3036 {
3037 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3038
3039 if (TREE_CODE (arg0) == swap_code)
3040 return operand_equal_p (TREE_OPERAND (arg0, 0),
3041 TREE_OPERAND (arg1, 1), flags)
3042 && operand_equal_p (TREE_OPERAND (arg0, 1),
3043 TREE_OPERAND (arg1, 0), flags);
3044 }
3045
3046 if (TREE_CODE (arg0) != TREE_CODE (arg1))
3047 {
3048 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3049 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
3050 ;
3051 else if (flags & OEP_ADDRESS_OF)
3052 {
3053 /* If we are interested in comparing addresses ignore
3054 MEM_REF wrappings of the base that can appear just for
3055 TBAA reasons. */
3056 if (TREE_CODE (arg0) == MEM_REF
3057 && DECL_P (arg1)
3058 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
3059 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
3060 && integer_zerop (TREE_OPERAND (arg0, 1)))
3061 return true;
3062 else if (TREE_CODE (arg1) == MEM_REF
3063 && DECL_P (arg0)
3064 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
3065 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
3066 && integer_zerop (TREE_OPERAND (arg1, 1)))
3067 return true;
3068 return false;
3069 }
3070 else
3071 return false;
3072 }
3073
3074 /* When not checking adddresses, this is needed for conversions and for
3075 COMPONENT_REF. Might as well play it safe and always test this. */
3076 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3077 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3078 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
3079 && !(flags & OEP_ADDRESS_OF)))
3080 return false;
3081
3082 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3083 We don't care about side effects in that case because the SAVE_EXPR
3084 takes care of that for us. In all other cases, two expressions are
3085 equal if they have no side effects. If we have two identical
3086 expressions with side effects that should be treated the same due
3087 to the only side effects being identical SAVE_EXPR's, that will
3088 be detected in the recursive calls below.
3089 If we are taking an invariant address of two identical objects
3090 they are necessarily equal as well. */
3091 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3092 && (TREE_CODE (arg0) == SAVE_EXPR
3093 || (flags & OEP_MATCH_SIDE_EFFECTS)
3094 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3095 return true;
3096
3097 /* Next handle constant cases, those for which we can return 1 even
3098 if ONLY_CONST is set. */
3099 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3100 switch (TREE_CODE (arg0))
3101 {
3102 case INTEGER_CST:
3103 return tree_int_cst_equal (arg0, arg1);
3104
3105 case FIXED_CST:
3106 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3107 TREE_FIXED_CST (arg1));
3108
3109 case REAL_CST:
3110 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
3111 return true;
3112
3113
3114 if (!HONOR_SIGNED_ZEROS (arg0))
3115 {
3116 /* If we do not distinguish between signed and unsigned zero,
3117 consider them equal. */
3118 if (real_zerop (arg0) && real_zerop (arg1))
3119 return true;
3120 }
3121 return false;
3122
3123 case VECTOR_CST:
3124 {
3125 if (VECTOR_CST_LOG2_NPATTERNS (arg0)
3126 != VECTOR_CST_LOG2_NPATTERNS (arg1))
3127 return false;
3128
3129 if (VECTOR_CST_NELTS_PER_PATTERN (arg0)
3130 != VECTOR_CST_NELTS_PER_PATTERN (arg1))
3131 return false;
3132
3133 unsigned int count = vector_cst_encoded_nelts (arg0);
3134 for (unsigned int i = 0; i < count; ++i)
3135 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i),
3136 VECTOR_CST_ENCODED_ELT (arg1, i), flags))
3137 return false;
3138 return true;
3139 }
3140
3141 case COMPLEX_CST:
3142 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3143 flags)
3144 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3145 flags));
3146
3147 case STRING_CST:
3148 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3149 && ! memcmp (TREE_STRING_POINTER (arg0),
3150 TREE_STRING_POINTER (arg1),
3151 TREE_STRING_LENGTH (arg0)));
3152
3153 case ADDR_EXPR:
3154 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3155 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3156 flags | OEP_ADDRESS_OF
3157 | OEP_MATCH_SIDE_EFFECTS);
3158 case CONSTRUCTOR:
3159 /* In GIMPLE empty constructors are allowed in initializers of
3160 aggregates. */
3161 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
3162 default:
3163 break;
3164 }
3165
3166 if (flags & OEP_ONLY_CONST)
3167 return false;
3168
3169 /* Define macros to test an operand from arg0 and arg1 for equality and a
3170 variant that allows null and views null as being different from any
3171 non-null value. In the latter case, if either is null, the both
3172 must be; otherwise, do the normal comparison. */
3173 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3174 TREE_OPERAND (arg1, N), flags)
3175
3176 #define OP_SAME_WITH_NULL(N) \
3177 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3178 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3179
3180 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3181 {
3182 case tcc_unary:
3183 /* Two conversions are equal only if signedness and modes match. */
3184 switch (TREE_CODE (arg0))
3185 {
3186 CASE_CONVERT:
3187 case FIX_TRUNC_EXPR:
3188 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3189 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3190 return false;
3191 break;
3192 default:
3193 break;
3194 }
3195
3196 return OP_SAME (0);
3197
3198
3199 case tcc_comparison:
3200 case tcc_binary:
3201 if (OP_SAME (0) && OP_SAME (1))
3202 return true;
3203
3204 /* For commutative ops, allow the other order. */
3205 return (commutative_tree_code (TREE_CODE (arg0))
3206 && operand_equal_p (TREE_OPERAND (arg0, 0),
3207 TREE_OPERAND (arg1, 1), flags)
3208 && operand_equal_p (TREE_OPERAND (arg0, 1),
3209 TREE_OPERAND (arg1, 0), flags));
3210
3211 case tcc_reference:
3212 /* If either of the pointer (or reference) expressions we are
3213 dereferencing contain a side effect, these cannot be equal,
3214 but their addresses can be. */
3215 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3216 && (TREE_SIDE_EFFECTS (arg0)
3217 || TREE_SIDE_EFFECTS (arg1)))
3218 return false;
3219
3220 switch (TREE_CODE (arg0))
3221 {
3222 case INDIRECT_REF:
3223 if (!(flags & OEP_ADDRESS_OF))
3224 {
3225 if (TYPE_ALIGN (TREE_TYPE (arg0))
3226 != TYPE_ALIGN (TREE_TYPE (arg1)))
3227 return false;
3228 /* Verify that the access types are compatible. */
3229 if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0))
3230 != TYPE_MAIN_VARIANT (TREE_TYPE (arg1)))
3231 return false;
3232 }
3233 flags &= ~OEP_ADDRESS_OF;
3234 return OP_SAME (0);
3235
3236 case IMAGPART_EXPR:
3237 /* Require the same offset. */
3238 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3239 TYPE_SIZE (TREE_TYPE (arg1)),
3240 flags & ~OEP_ADDRESS_OF))
3241 return false;
3242
3243 /* Fallthru. */
3244 case REALPART_EXPR:
3245 case VIEW_CONVERT_EXPR:
3246 return OP_SAME (0);
3247
3248 case TARGET_MEM_REF:
3249 case MEM_REF:
3250 if (!(flags & OEP_ADDRESS_OF))
3251 {
3252 /* Require equal access sizes */
3253 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3254 && (!TYPE_SIZE (TREE_TYPE (arg0))
3255 || !TYPE_SIZE (TREE_TYPE (arg1))
3256 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3257 TYPE_SIZE (TREE_TYPE (arg1)),
3258 flags)))
3259 return false;
3260 /* Verify that access happens in similar types. */
3261 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3262 return false;
3263 /* Verify that accesses are TBAA compatible. */
3264 if (!alias_ptr_types_compatible_p
3265 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3266 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3267 || (MR_DEPENDENCE_CLIQUE (arg0)
3268 != MR_DEPENDENCE_CLIQUE (arg1))
3269 || (MR_DEPENDENCE_BASE (arg0)
3270 != MR_DEPENDENCE_BASE (arg1)))
3271 return false;
3272 /* Verify that alignment is compatible. */
3273 if (TYPE_ALIGN (TREE_TYPE (arg0))
3274 != TYPE_ALIGN (TREE_TYPE (arg1)))
3275 return false;
3276 }
3277 flags &= ~OEP_ADDRESS_OF;
3278 return (OP_SAME (0) && OP_SAME (1)
3279 /* TARGET_MEM_REF require equal extra operands. */
3280 && (TREE_CODE (arg0) != TARGET_MEM_REF
3281 || (OP_SAME_WITH_NULL (2)
3282 && OP_SAME_WITH_NULL (3)
3283 && OP_SAME_WITH_NULL (4))));
3284
3285 case ARRAY_REF:
3286 case ARRAY_RANGE_REF:
3287 if (!OP_SAME (0))
3288 return false;
3289 flags &= ~OEP_ADDRESS_OF;
3290 /* Compare the array index by value if it is constant first as we
3291 may have different types but same value here. */
3292 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3293 TREE_OPERAND (arg1, 1))
3294 || OP_SAME (1))
3295 && OP_SAME_WITH_NULL (2)
3296 && OP_SAME_WITH_NULL (3)
3297 /* Compare low bound and element size as with OEP_ADDRESS_OF
3298 we have to account for the offset of the ref. */
3299 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3300 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3301 || (operand_equal_p (array_ref_low_bound
3302 (CONST_CAST_TREE (arg0)),
3303 array_ref_low_bound
3304 (CONST_CAST_TREE (arg1)), flags)
3305 && operand_equal_p (array_ref_element_size
3306 (CONST_CAST_TREE (arg0)),
3307 array_ref_element_size
3308 (CONST_CAST_TREE (arg1)),
3309 flags))));
3310
3311 case COMPONENT_REF:
3312 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3313 may be NULL when we're called to compare MEM_EXPRs. */
3314 if (!OP_SAME_WITH_NULL (0)
3315 || !OP_SAME (1))
3316 return false;
3317 flags &= ~OEP_ADDRESS_OF;
3318 return OP_SAME_WITH_NULL (2);
3319
3320 case BIT_FIELD_REF:
3321 if (!OP_SAME (0))
3322 return false;
3323 flags &= ~OEP_ADDRESS_OF;
3324 return OP_SAME (1) && OP_SAME (2);
3325
3326 default:
3327 return false;
3328 }
3329
3330 case tcc_expression:
3331 switch (TREE_CODE (arg0))
3332 {
3333 case ADDR_EXPR:
3334 /* Be sure we pass right ADDRESS_OF flag. */
3335 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3336 return operand_equal_p (TREE_OPERAND (arg0, 0),
3337 TREE_OPERAND (arg1, 0),
3338 flags | OEP_ADDRESS_OF);
3339
3340 case TRUTH_NOT_EXPR:
3341 return OP_SAME (0);
3342
3343 case TRUTH_ANDIF_EXPR:
3344 case TRUTH_ORIF_EXPR:
3345 return OP_SAME (0) && OP_SAME (1);
3346
3347 case WIDEN_MULT_PLUS_EXPR:
3348 case WIDEN_MULT_MINUS_EXPR:
3349 if (!OP_SAME (2))
3350 return false;
3351 /* The multiplcation operands are commutative. */
3352 /* FALLTHRU */
3353
3354 case TRUTH_AND_EXPR:
3355 case TRUTH_OR_EXPR:
3356 case TRUTH_XOR_EXPR:
3357 if (OP_SAME (0) && OP_SAME (1))
3358 return true;
3359
3360 /* Otherwise take into account this is a commutative operation. */
3361 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3362 TREE_OPERAND (arg1, 1), flags)
3363 && operand_equal_p (TREE_OPERAND (arg0, 1),
3364 TREE_OPERAND (arg1, 0), flags));
3365
3366 case COND_EXPR:
3367 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3368 return false;
3369 flags &= ~OEP_ADDRESS_OF;
3370 return OP_SAME (0);
3371
3372 case BIT_INSERT_EXPR:
3373 /* BIT_INSERT_EXPR has an implict operand as the type precision
3374 of op1. Need to check to make sure they are the same. */
3375 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3376 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3377 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3378 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3379 return false;
3380 /* FALLTHRU */
3381
3382 case VEC_COND_EXPR:
3383 case DOT_PROD_EXPR:
3384 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3385
3386 case MODIFY_EXPR:
3387 case INIT_EXPR:
3388 case COMPOUND_EXPR:
3389 case PREDECREMENT_EXPR:
3390 case PREINCREMENT_EXPR:
3391 case POSTDECREMENT_EXPR:
3392 case POSTINCREMENT_EXPR:
3393 if (flags & OEP_LEXICOGRAPHIC)
3394 return OP_SAME (0) && OP_SAME (1);
3395 return false;
3396
3397 case CLEANUP_POINT_EXPR:
3398 case EXPR_STMT:
3399 case SAVE_EXPR:
3400 if (flags & OEP_LEXICOGRAPHIC)
3401 return OP_SAME (0);
3402 return false;
3403
3404 default:
3405 return false;
3406 }
3407
3408 case tcc_vl_exp:
3409 switch (TREE_CODE (arg0))
3410 {
3411 case CALL_EXPR:
3412 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3413 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3414 /* If not both CALL_EXPRs are either internal or normal function
3415 functions, then they are not equal. */
3416 return false;
3417 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3418 {
3419 /* If the CALL_EXPRs call different internal functions, then they
3420 are not equal. */
3421 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3422 return false;
3423 }
3424 else
3425 {
3426 /* If the CALL_EXPRs call different functions, then they are not
3427 equal. */
3428 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3429 flags))
3430 return false;
3431 }
3432
3433 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3434 {
3435 unsigned int cef = call_expr_flags (arg0);
3436 if (flags & OEP_PURE_SAME)
3437 cef &= ECF_CONST | ECF_PURE;
3438 else
3439 cef &= ECF_CONST;
3440 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3441 return false;
3442 }
3443
3444 /* Now see if all the arguments are the same. */
3445 {
3446 const_call_expr_arg_iterator iter0, iter1;
3447 const_tree a0, a1;
3448 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3449 a1 = first_const_call_expr_arg (arg1, &iter1);
3450 a0 && a1;
3451 a0 = next_const_call_expr_arg (&iter0),
3452 a1 = next_const_call_expr_arg (&iter1))
3453 if (! operand_equal_p (a0, a1, flags))
3454 return false;
3455
3456 /* If we get here and both argument lists are exhausted
3457 then the CALL_EXPRs are equal. */
3458 return ! (a0 || a1);
3459 }
3460 default:
3461 return false;
3462 }
3463
3464 case tcc_declaration:
3465 /* Consider __builtin_sqrt equal to sqrt. */
3466 return (TREE_CODE (arg0) == FUNCTION_DECL
3467 && fndecl_built_in_p (arg0) && fndecl_built_in_p (arg1)
3468 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3469 && (DECL_UNCHECKED_FUNCTION_CODE (arg0)
3470 == DECL_UNCHECKED_FUNCTION_CODE (arg1)));
3471
3472 case tcc_exceptional:
3473 if (TREE_CODE (arg0) == CONSTRUCTOR)
3474 {
3475 /* In GIMPLE constructors are used only to build vectors from
3476 elements. Individual elements in the constructor must be
3477 indexed in increasing order and form an initial sequence.
3478
3479 We make no effort to compare constructors in generic.
3480 (see sem_variable::equals in ipa-icf which can do so for
3481 constants). */
3482 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3483 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3484 return false;
3485
3486 /* Be sure that vectors constructed have the same representation.
3487 We only tested element precision and modes to match.
3488 Vectors may be BLKmode and thus also check that the number of
3489 parts match. */
3490 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
3491 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))))
3492 return false;
3493
3494 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3495 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3496 unsigned int len = vec_safe_length (v0);
3497
3498 if (len != vec_safe_length (v1))
3499 return false;
3500
3501 for (unsigned int i = 0; i < len; i++)
3502 {
3503 constructor_elt *c0 = &(*v0)[i];
3504 constructor_elt *c1 = &(*v1)[i];
3505
3506 if (!operand_equal_p (c0->value, c1->value, flags)
3507 /* In GIMPLE the indexes can be either NULL or matching i.
3508 Double check this so we won't get false
3509 positives for GENERIC. */
3510 || (c0->index
3511 && (TREE_CODE (c0->index) != INTEGER_CST
3512 || compare_tree_int (c0->index, i)))
3513 || (c1->index
3514 && (TREE_CODE (c1->index) != INTEGER_CST
3515 || compare_tree_int (c1->index, i))))
3516 return false;
3517 }
3518 return true;
3519 }
3520 else if (TREE_CODE (arg0) == STATEMENT_LIST
3521 && (flags & OEP_LEXICOGRAPHIC))
3522 {
3523 /* Compare the STATEMENT_LISTs. */
3524 tree_stmt_iterator tsi1, tsi2;
3525 tree body1 = CONST_CAST_TREE (arg0);
3526 tree body2 = CONST_CAST_TREE (arg1);
3527 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3528 tsi_next (&tsi1), tsi_next (&tsi2))
3529 {
3530 /* The lists don't have the same number of statements. */
3531 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3532 return false;
3533 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3534 return true;
3535 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3536 flags & (OEP_LEXICOGRAPHIC
3537 | OEP_NO_HASH_CHECK)))
3538 return false;
3539 }
3540 }
3541 return false;
3542
3543 case tcc_statement:
3544 switch (TREE_CODE (arg0))
3545 {
3546 case RETURN_EXPR:
3547 if (flags & OEP_LEXICOGRAPHIC)
3548 return OP_SAME_WITH_NULL (0);
3549 return false;
3550 case DEBUG_BEGIN_STMT:
3551 if (flags & OEP_LEXICOGRAPHIC)
3552 return true;
3553 return false;
3554 default:
3555 return false;
3556 }
3557
3558 default:
3559 return false;
3560 }
3561
3562 #undef OP_SAME
3563 #undef OP_SAME_WITH_NULL
3564 }
3565 \f
3566 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3567 with a different signedness or a narrower precision. */
3568
3569 static bool
3570 operand_equal_for_comparison_p (tree arg0, tree arg1)
3571 {
3572 if (operand_equal_p (arg0, arg1, 0))
3573 return true;
3574
3575 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3576 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3577 return false;
3578
3579 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3580 and see if the inner values are the same. This removes any
3581 signedness comparison, which doesn't matter here. */
3582 tree op0 = arg0;
3583 tree op1 = arg1;
3584 STRIP_NOPS (op0);
3585 STRIP_NOPS (op1);
3586 if (operand_equal_p (op0, op1, 0))
3587 return true;
3588
3589 /* Discard a single widening conversion from ARG1 and see if the inner
3590 value is the same as ARG0. */
3591 if (CONVERT_EXPR_P (arg1)
3592 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3593 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3594 < TYPE_PRECISION (TREE_TYPE (arg1))
3595 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
3596 return true;
3597
3598 return false;
3599 }
3600 \f
3601 /* See if ARG is an expression that is either a comparison or is performing
3602 arithmetic on comparisons. The comparisons must only be comparing
3603 two different values, which will be stored in *CVAL1 and *CVAL2; if
3604 they are nonzero it means that some operands have already been found.
3605 No variables may be used anywhere else in the expression except in the
3606 comparisons.
3607
3608 If this is true, return 1. Otherwise, return zero. */
3609
3610 static bool
3611 twoval_comparison_p (tree arg, tree *cval1, tree *cval2)
3612 {
3613 enum tree_code code = TREE_CODE (arg);
3614 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3615
3616 /* We can handle some of the tcc_expression cases here. */
3617 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3618 tclass = tcc_unary;
3619 else if (tclass == tcc_expression
3620 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3621 || code == COMPOUND_EXPR))
3622 tclass = tcc_binary;
3623
3624 switch (tclass)
3625 {
3626 case tcc_unary:
3627 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2);
3628
3629 case tcc_binary:
3630 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3631 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2));
3632
3633 case tcc_constant:
3634 return true;
3635
3636 case tcc_expression:
3637 if (code == COND_EXPR)
3638 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3639 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)
3640 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2));
3641 return false;
3642
3643 case tcc_comparison:
3644 /* First see if we can handle the first operand, then the second. For
3645 the second operand, we know *CVAL1 can't be zero. It must be that
3646 one side of the comparison is each of the values; test for the
3647 case where this isn't true by failing if the two operands
3648 are the same. */
3649
3650 if (operand_equal_p (TREE_OPERAND (arg, 0),
3651 TREE_OPERAND (arg, 1), 0))
3652 return false;
3653
3654 if (*cval1 == 0)
3655 *cval1 = TREE_OPERAND (arg, 0);
3656 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3657 ;
3658 else if (*cval2 == 0)
3659 *cval2 = TREE_OPERAND (arg, 0);
3660 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3661 ;
3662 else
3663 return false;
3664
3665 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3666 ;
3667 else if (*cval2 == 0)
3668 *cval2 = TREE_OPERAND (arg, 1);
3669 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3670 ;
3671 else
3672 return false;
3673
3674 return true;
3675
3676 default:
3677 return false;
3678 }
3679 }
3680 \f
3681 /* ARG is a tree that is known to contain just arithmetic operations and
3682 comparisons. Evaluate the operations in the tree substituting NEW0 for
3683 any occurrence of OLD0 as an operand of a comparison and likewise for
3684 NEW1 and OLD1. */
3685
3686 static tree
3687 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3688 tree old1, tree new1)
3689 {
3690 tree type = TREE_TYPE (arg);
3691 enum tree_code code = TREE_CODE (arg);
3692 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3693
3694 /* We can handle some of the tcc_expression cases here. */
3695 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3696 tclass = tcc_unary;
3697 else if (tclass == tcc_expression
3698 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3699 tclass = tcc_binary;
3700
3701 switch (tclass)
3702 {
3703 case tcc_unary:
3704 return fold_build1_loc (loc, code, type,
3705 eval_subst (loc, TREE_OPERAND (arg, 0),
3706 old0, new0, old1, new1));
3707
3708 case tcc_binary:
3709 return fold_build2_loc (loc, code, type,
3710 eval_subst (loc, TREE_OPERAND (arg, 0),
3711 old0, new0, old1, new1),
3712 eval_subst (loc, TREE_OPERAND (arg, 1),
3713 old0, new0, old1, new1));
3714
3715 case tcc_expression:
3716 switch (code)
3717 {
3718 case SAVE_EXPR:
3719 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3720 old1, new1);
3721
3722 case COMPOUND_EXPR:
3723 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3724 old1, new1);
3725
3726 case COND_EXPR:
3727 return fold_build3_loc (loc, code, type,
3728 eval_subst (loc, TREE_OPERAND (arg, 0),
3729 old0, new0, old1, new1),
3730 eval_subst (loc, TREE_OPERAND (arg, 1),
3731 old0, new0, old1, new1),
3732 eval_subst (loc, TREE_OPERAND (arg, 2),
3733 old0, new0, old1, new1));
3734 default:
3735 break;
3736 }
3737 /* Fall through - ??? */
3738
3739 case tcc_comparison:
3740 {
3741 tree arg0 = TREE_OPERAND (arg, 0);
3742 tree arg1 = TREE_OPERAND (arg, 1);
3743
3744 /* We need to check both for exact equality and tree equality. The
3745 former will be true if the operand has a side-effect. In that
3746 case, we know the operand occurred exactly once. */
3747
3748 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3749 arg0 = new0;
3750 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3751 arg0 = new1;
3752
3753 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3754 arg1 = new0;
3755 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3756 arg1 = new1;
3757
3758 return fold_build2_loc (loc, code, type, arg0, arg1);
3759 }
3760
3761 default:
3762 return arg;
3763 }
3764 }
3765 \f
3766 /* Return a tree for the case when the result of an expression is RESULT
3767 converted to TYPE and OMITTED was previously an operand of the expression
3768 but is now not needed (e.g., we folded OMITTED * 0).
3769
3770 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3771 the conversion of RESULT to TYPE. */
3772
3773 tree
3774 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3775 {
3776 tree t = fold_convert_loc (loc, type, result);
3777
3778 /* If the resulting operand is an empty statement, just return the omitted
3779 statement casted to void. */
3780 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3781 return build1_loc (loc, NOP_EXPR, void_type_node,
3782 fold_ignored_result (omitted));
3783
3784 if (TREE_SIDE_EFFECTS (omitted))
3785 return build2_loc (loc, COMPOUND_EXPR, type,
3786 fold_ignored_result (omitted), t);
3787
3788 return non_lvalue_loc (loc, t);
3789 }
3790
3791 /* Return a tree for the case when the result of an expression is RESULT
3792 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3793 of the expression but are now not needed.
3794
3795 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3796 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3797 evaluated before OMITTED2. Otherwise, if neither has side effects,
3798 just do the conversion of RESULT to TYPE. */
3799
3800 tree
3801 omit_two_operands_loc (location_t loc, tree type, tree result,
3802 tree omitted1, tree omitted2)
3803 {
3804 tree t = fold_convert_loc (loc, type, result);
3805
3806 if (TREE_SIDE_EFFECTS (omitted2))
3807 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3808 if (TREE_SIDE_EFFECTS (omitted1))
3809 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3810
3811 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3812 }
3813
3814 \f
3815 /* Return a simplified tree node for the truth-negation of ARG. This
3816 never alters ARG itself. We assume that ARG is an operation that
3817 returns a truth value (0 or 1).
3818
3819 FIXME: one would think we would fold the result, but it causes
3820 problems with the dominator optimizer. */
3821
3822 static tree
3823 fold_truth_not_expr (location_t loc, tree arg)
3824 {
3825 tree type = TREE_TYPE (arg);
3826 enum tree_code code = TREE_CODE (arg);
3827 location_t loc1, loc2;
3828
3829 /* If this is a comparison, we can simply invert it, except for
3830 floating-point non-equality comparisons, in which case we just
3831 enclose a TRUTH_NOT_EXPR around what we have. */
3832
3833 if (TREE_CODE_CLASS (code) == tcc_comparison)
3834 {
3835 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3836 if (FLOAT_TYPE_P (op_type)
3837 && flag_trapping_math
3838 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3839 && code != NE_EXPR && code != EQ_EXPR)
3840 return NULL_TREE;
3841
3842 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3843 if (code == ERROR_MARK)
3844 return NULL_TREE;
3845
3846 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3847 TREE_OPERAND (arg, 1));
3848 if (TREE_NO_WARNING (arg))
3849 TREE_NO_WARNING (ret) = 1;
3850 return ret;
3851 }
3852
3853 switch (code)
3854 {
3855 case INTEGER_CST:
3856 return constant_boolean_node (integer_zerop (arg), type);
3857
3858 case TRUTH_AND_EXPR:
3859 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3860 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3861 return build2_loc (loc, TRUTH_OR_EXPR, type,
3862 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3863 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3864
3865 case TRUTH_OR_EXPR:
3866 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3867 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3868 return build2_loc (loc, TRUTH_AND_EXPR, type,
3869 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3870 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3871
3872 case TRUTH_XOR_EXPR:
3873 /* Here we can invert either operand. We invert the first operand
3874 unless the second operand is a TRUTH_NOT_EXPR in which case our
3875 result is the XOR of the first operand with the inside of the
3876 negation of the second operand. */
3877
3878 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3879 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3880 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3881 else
3882 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3883 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3884 TREE_OPERAND (arg, 1));
3885
3886 case TRUTH_ANDIF_EXPR:
3887 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3888 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3889 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3890 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3891 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3892
3893 case TRUTH_ORIF_EXPR:
3894 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3895 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3896 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3897 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3898 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3899
3900 case TRUTH_NOT_EXPR:
3901 return TREE_OPERAND (arg, 0);
3902
3903 case COND_EXPR:
3904 {
3905 tree arg1 = TREE_OPERAND (arg, 1);
3906 tree arg2 = TREE_OPERAND (arg, 2);
3907
3908 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3909 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3910
3911 /* A COND_EXPR may have a throw as one operand, which
3912 then has void type. Just leave void operands
3913 as they are. */
3914 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3915 VOID_TYPE_P (TREE_TYPE (arg1))
3916 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3917 VOID_TYPE_P (TREE_TYPE (arg2))
3918 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3919 }
3920
3921 case COMPOUND_EXPR:
3922 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3923 return build2_loc (loc, COMPOUND_EXPR, type,
3924 TREE_OPERAND (arg, 0),
3925 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3926
3927 case NON_LVALUE_EXPR:
3928 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3929 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3930
3931 CASE_CONVERT:
3932 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3933 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3934
3935 /* fall through */
3936
3937 case FLOAT_EXPR:
3938 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3939 return build1_loc (loc, TREE_CODE (arg), type,
3940 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3941
3942 case BIT_AND_EXPR:
3943 if (!integer_onep (TREE_OPERAND (arg, 1)))
3944 return NULL_TREE;
3945 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3946
3947 case SAVE_EXPR:
3948 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3949
3950 case CLEANUP_POINT_EXPR:
3951 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3952 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3953 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3954
3955 default:
3956 return NULL_TREE;
3957 }
3958 }
3959
3960 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3961 assume that ARG is an operation that returns a truth value (0 or 1
3962 for scalars, 0 or -1 for vectors). Return the folded expression if
3963 folding is successful. Otherwise, return NULL_TREE. */
3964
3965 static tree
3966 fold_invert_truthvalue (location_t loc, tree arg)
3967 {
3968 tree type = TREE_TYPE (arg);
3969 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3970 ? BIT_NOT_EXPR
3971 : TRUTH_NOT_EXPR,
3972 type, arg);
3973 }
3974
3975 /* Return a simplified tree node for the truth-negation of ARG. This
3976 never alters ARG itself. We assume that ARG is an operation that
3977 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3978
3979 tree
3980 invert_truthvalue_loc (location_t loc, tree arg)
3981 {
3982 if (TREE_CODE (arg) == ERROR_MARK)
3983 return arg;
3984
3985 tree type = TREE_TYPE (arg);
3986 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3987 ? BIT_NOT_EXPR
3988 : TRUTH_NOT_EXPR,
3989 type, arg);
3990 }
3991 \f
3992 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3993 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3994 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3995 is the original memory reference used to preserve the alias set of
3996 the access. */
3997
3998 static tree
3999 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
4000 HOST_WIDE_INT bitsize, poly_int64 bitpos,
4001 int unsignedp, int reversep)
4002 {
4003 tree result, bftype;
4004
4005 /* Attempt not to lose the access path if possible. */
4006 if (TREE_CODE (orig_inner) == COMPONENT_REF)
4007 {
4008 tree ninner = TREE_OPERAND (orig_inner, 0);
4009 machine_mode nmode;
4010 poly_int64 nbitsize, nbitpos;
4011 tree noffset;
4012 int nunsignedp, nreversep, nvolatilep = 0;
4013 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
4014 &noffset, &nmode, &nunsignedp,
4015 &nreversep, &nvolatilep);
4016 if (base == inner
4017 && noffset == NULL_TREE
4018 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize)
4019 && !reversep
4020 && !nreversep
4021 && !nvolatilep)
4022 {
4023 inner = ninner;
4024 bitpos -= nbitpos;
4025 }
4026 }
4027
4028 alias_set_type iset = get_alias_set (orig_inner);
4029 if (iset == 0 && get_alias_set (inner) != iset)
4030 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
4031 build_fold_addr_expr (inner),
4032 build_int_cst (ptr_type_node, 0));
4033
4034 if (known_eq (bitpos, 0) && !reversep)
4035 {
4036 tree size = TYPE_SIZE (TREE_TYPE (inner));
4037 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
4038 || POINTER_TYPE_P (TREE_TYPE (inner)))
4039 && tree_fits_shwi_p (size)
4040 && tree_to_shwi (size) == bitsize)
4041 return fold_convert_loc (loc, type, inner);
4042 }
4043
4044 bftype = type;
4045 if (TYPE_PRECISION (bftype) != bitsize
4046 || TYPE_UNSIGNED (bftype) == !unsignedp)
4047 bftype = build_nonstandard_integer_type (bitsize, 0);
4048
4049 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
4050 bitsize_int (bitsize), bitsize_int (bitpos));
4051 REF_REVERSE_STORAGE_ORDER (result) = reversep;
4052
4053 if (bftype != type)
4054 result = fold_convert_loc (loc, type, result);
4055
4056 return result;
4057 }
4058
4059 /* Optimize a bit-field compare.
4060
4061 There are two cases: First is a compare against a constant and the
4062 second is a comparison of two items where the fields are at the same
4063 bit position relative to the start of a chunk (byte, halfword, word)
4064 large enough to contain it. In these cases we can avoid the shift
4065 implicit in bitfield extractions.
4066
4067 For constants, we emit a compare of the shifted constant with the
4068 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4069 compared. For two fields at the same position, we do the ANDs with the
4070 similar mask and compare the result of the ANDs.
4071
4072 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4073 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4074 are the left and right operands of the comparison, respectively.
4075
4076 If the optimization described above can be done, we return the resulting
4077 tree. Otherwise we return zero. */
4078
4079 static tree
4080 optimize_bit_field_compare (location_t loc, enum tree_code code,
4081 tree compare_type, tree lhs, tree rhs)
4082 {
4083 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize;
4084 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize;
4085 tree type = TREE_TYPE (lhs);
4086 tree unsigned_type;
4087 int const_p = TREE_CODE (rhs) == INTEGER_CST;
4088 machine_mode lmode, rmode;
4089 scalar_int_mode nmode;
4090 int lunsignedp, runsignedp;
4091 int lreversep, rreversep;
4092 int lvolatilep = 0, rvolatilep = 0;
4093 tree linner, rinner = NULL_TREE;
4094 tree mask;
4095 tree offset;
4096
4097 /* Get all the information about the extractions being done. If the bit size
4098 is the same as the size of the underlying object, we aren't doing an
4099 extraction at all and so can do nothing. We also don't want to
4100 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4101 then will no longer be able to replace it. */
4102 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode,
4103 &lunsignedp, &lreversep, &lvolatilep);
4104 if (linner == lhs
4105 || !known_size_p (plbitsize)
4106 || !plbitsize.is_constant (&lbitsize)
4107 || !plbitpos.is_constant (&lbitpos)
4108 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode))
4109 || offset != 0
4110 || TREE_CODE (linner) == PLACEHOLDER_EXPR
4111 || lvolatilep)
4112 return 0;
4113
4114 if (const_p)
4115 rreversep = lreversep;
4116 else
4117 {
4118 /* If this is not a constant, we can only do something if bit positions,
4119 sizes, signedness and storage order are the same. */
4120 rinner
4121 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
4122 &runsignedp, &rreversep, &rvolatilep);
4123
4124 if (rinner == rhs
4125 || maybe_ne (lbitpos, rbitpos)
4126 || maybe_ne (lbitsize, rbitsize)
4127 || lunsignedp != runsignedp
4128 || lreversep != rreversep
4129 || offset != 0
4130 || TREE_CODE (rinner) == PLACEHOLDER_EXPR
4131 || rvolatilep)
4132 return 0;
4133 }
4134
4135 /* Honor the C++ memory model and mimic what RTL expansion does. */
4136 poly_uint64 bitstart = 0;
4137 poly_uint64 bitend = 0;
4138 if (TREE_CODE (lhs) == COMPONENT_REF)
4139 {
4140 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset);
4141 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE)
4142 return 0;
4143 }
4144
4145 /* See if we can find a mode to refer to this field. We should be able to,
4146 but fail if we can't. */
4147 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4148 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4149 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4150 TYPE_ALIGN (TREE_TYPE (rinner))),
4151 BITS_PER_WORD, false, &nmode))
4152 return 0;
4153
4154 /* Set signed and unsigned types of the precision of this mode for the
4155 shifts below. */
4156 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4157
4158 /* Compute the bit position and size for the new reference and our offset
4159 within it. If the new reference is the same size as the original, we
4160 won't optimize anything, so return zero. */
4161 nbitsize = GET_MODE_BITSIZE (nmode);
4162 nbitpos = lbitpos & ~ (nbitsize - 1);
4163 lbitpos -= nbitpos;
4164 if (nbitsize == lbitsize)
4165 return 0;
4166
4167 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4168 lbitpos = nbitsize - lbitsize - lbitpos;
4169
4170 /* Make the mask to be used against the extracted field. */
4171 mask = build_int_cst_type (unsigned_type, -1);
4172 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4173 mask = const_binop (RSHIFT_EXPR, mask,
4174 size_int (nbitsize - lbitsize - lbitpos));
4175
4176 if (! const_p)
4177 {
4178 if (nbitpos < 0)
4179 return 0;
4180
4181 /* If not comparing with constant, just rework the comparison
4182 and return. */
4183 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4184 nbitsize, nbitpos, 1, lreversep);
4185 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
4186 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type,
4187 nbitsize, nbitpos, 1, rreversep);
4188 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
4189 return fold_build2_loc (loc, code, compare_type, t1, t2);
4190 }
4191
4192 /* Otherwise, we are handling the constant case. See if the constant is too
4193 big for the field. Warn and return a tree for 0 (false) if so. We do
4194 this not only for its own sake, but to avoid having to test for this
4195 error case below. If we didn't, we might generate wrong code.
4196
4197 For unsigned fields, the constant shifted right by the field length should
4198 be all zero. For signed fields, the high-order bits should agree with
4199 the sign bit. */
4200
4201 if (lunsignedp)
4202 {
4203 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0)
4204 {
4205 warning (0, "comparison is always %d due to width of bit-field",
4206 code == NE_EXPR);
4207 return constant_boolean_node (code == NE_EXPR, compare_type);
4208 }
4209 }
4210 else
4211 {
4212 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1);
4213 if (tem != 0 && tem != -1)
4214 {
4215 warning (0, "comparison is always %d due to width of bit-field",
4216 code == NE_EXPR);
4217 return constant_boolean_node (code == NE_EXPR, compare_type);
4218 }
4219 }
4220
4221 if (nbitpos < 0)
4222 return 0;
4223
4224 /* Single-bit compares should always be against zero. */
4225 if (lbitsize == 1 && ! integer_zerop (rhs))
4226 {
4227 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4228 rhs = build_int_cst (type, 0);
4229 }
4230
4231 /* Make a new bitfield reference, shift the constant over the
4232 appropriate number of bits and mask it with the computed mask
4233 (in case this was a signed field). If we changed it, make a new one. */
4234 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4235 nbitsize, nbitpos, 1, lreversep);
4236
4237 rhs = const_binop (BIT_AND_EXPR,
4238 const_binop (LSHIFT_EXPR,
4239 fold_convert_loc (loc, unsigned_type, rhs),
4240 size_int (lbitpos)),
4241 mask);
4242
4243 lhs = build2_loc (loc, code, compare_type,
4244 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4245 return lhs;
4246 }
4247 \f
4248 /* Subroutine for fold_truth_andor_1: decode a field reference.
4249
4250 If EXP is a comparison reference, we return the innermost reference.
4251
4252 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4253 set to the starting bit number.
4254
4255 If the innermost field can be completely contained in a mode-sized
4256 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4257
4258 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4259 otherwise it is not changed.
4260
4261 *PUNSIGNEDP is set to the signedness of the field.
4262
4263 *PREVERSEP is set to the storage order of the field.
4264
4265 *PMASK is set to the mask used. This is either contained in a
4266 BIT_AND_EXPR or derived from the width of the field.
4267
4268 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4269
4270 Return 0 if this is not a component reference or is one that we can't
4271 do anything with. */
4272
4273 static tree
4274 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4275 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4276 int *punsignedp, int *preversep, int *pvolatilep,
4277 tree *pmask, tree *pand_mask)
4278 {
4279 tree exp = *exp_;
4280 tree outer_type = 0;
4281 tree and_mask = 0;
4282 tree mask, inner, offset;
4283 tree unsigned_type;
4284 unsigned int precision;
4285
4286 /* All the optimizations using this function assume integer fields.
4287 There are problems with FP fields since the type_for_size call
4288 below can fail for, e.g., XFmode. */
4289 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4290 return NULL_TREE;
4291
4292 /* We are interested in the bare arrangement of bits, so strip everything
4293 that doesn't affect the machine mode. However, record the type of the
4294 outermost expression if it may matter below. */
4295 if (CONVERT_EXPR_P (exp)
4296 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4297 outer_type = TREE_TYPE (exp);
4298 STRIP_NOPS (exp);
4299
4300 if (TREE_CODE (exp) == BIT_AND_EXPR)
4301 {
4302 and_mask = TREE_OPERAND (exp, 1);
4303 exp = TREE_OPERAND (exp, 0);
4304 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4305 if (TREE_CODE (and_mask) != INTEGER_CST)
4306 return NULL_TREE;
4307 }
4308
4309 poly_int64 poly_bitsize, poly_bitpos;
4310 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset,
4311 pmode, punsignedp, preversep, pvolatilep);
4312 if ((inner == exp && and_mask == 0)
4313 || !poly_bitsize.is_constant (pbitsize)
4314 || !poly_bitpos.is_constant (pbitpos)
4315 || *pbitsize < 0
4316 || offset != 0
4317 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4318 /* Reject out-of-bound accesses (PR79731). */
4319 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4320 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4321 *pbitpos + *pbitsize) < 0))
4322 return NULL_TREE;
4323
4324 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4325 if (unsigned_type == NULL_TREE)
4326 return NULL_TREE;
4327
4328 *exp_ = exp;
4329
4330 /* If the number of bits in the reference is the same as the bitsize of
4331 the outer type, then the outer type gives the signedness. Otherwise
4332 (in case of a small bitfield) the signedness is unchanged. */
4333 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4334 *punsignedp = TYPE_UNSIGNED (outer_type);
4335
4336 /* Compute the mask to access the bitfield. */
4337 precision = TYPE_PRECISION (unsigned_type);
4338
4339 mask = build_int_cst_type (unsigned_type, -1);
4340
4341 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4342 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4343
4344 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4345 if (and_mask != 0)
4346 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4347 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4348
4349 *pmask = mask;
4350 *pand_mask = and_mask;
4351 return inner;
4352 }
4353
4354 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4355 bit positions and MASK is SIGNED. */
4356
4357 static bool
4358 all_ones_mask_p (const_tree mask, unsigned int size)
4359 {
4360 tree type = TREE_TYPE (mask);
4361 unsigned int precision = TYPE_PRECISION (type);
4362
4363 /* If this function returns true when the type of the mask is
4364 UNSIGNED, then there will be errors. In particular see
4365 gcc.c-torture/execute/990326-1.c. There does not appear to be
4366 any documentation paper trail as to why this is so. But the pre
4367 wide-int worked with that restriction and it has been preserved
4368 here. */
4369 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4370 return false;
4371
4372 return wi::mask (size, false, precision) == wi::to_wide (mask);
4373 }
4374
4375 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4376 represents the sign bit of EXP's type. If EXP represents a sign
4377 or zero extension, also test VAL against the unextended type.
4378 The return value is the (sub)expression whose sign bit is VAL,
4379 or NULL_TREE otherwise. */
4380
4381 tree
4382 sign_bit_p (tree exp, const_tree val)
4383 {
4384 int width;
4385 tree t;
4386
4387 /* Tree EXP must have an integral type. */
4388 t = TREE_TYPE (exp);
4389 if (! INTEGRAL_TYPE_P (t))
4390 return NULL_TREE;
4391
4392 /* Tree VAL must be an integer constant. */
4393 if (TREE_CODE (val) != INTEGER_CST
4394 || TREE_OVERFLOW (val))
4395 return NULL_TREE;
4396
4397 width = TYPE_PRECISION (t);
4398 if (wi::only_sign_bit_p (wi::to_wide (val), width))
4399 return exp;
4400
4401 /* Handle extension from a narrower type. */
4402 if (TREE_CODE (exp) == NOP_EXPR
4403 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4404 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4405
4406 return NULL_TREE;
4407 }
4408
4409 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4410 to be evaluated unconditionally. */
4411
4412 static bool
4413 simple_operand_p (const_tree exp)
4414 {
4415 /* Strip any conversions that don't change the machine mode. */
4416 STRIP_NOPS (exp);
4417
4418 return (CONSTANT_CLASS_P (exp)
4419 || TREE_CODE (exp) == SSA_NAME
4420 || (DECL_P (exp)
4421 && ! TREE_ADDRESSABLE (exp)
4422 && ! TREE_THIS_VOLATILE (exp)
4423 && ! DECL_NONLOCAL (exp)
4424 /* Don't regard global variables as simple. They may be
4425 allocated in ways unknown to the compiler (shared memory,
4426 #pragma weak, etc). */
4427 && ! TREE_PUBLIC (exp)
4428 && ! DECL_EXTERNAL (exp)
4429 /* Weakrefs are not safe to be read, since they can be NULL.
4430 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4431 have DECL_WEAK flag set. */
4432 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4433 /* Loading a static variable is unduly expensive, but global
4434 registers aren't expensive. */
4435 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4436 }
4437
4438 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4439 to be evaluated unconditionally.
4440 I addition to simple_operand_p, we assume that comparisons, conversions,
4441 and logic-not operations are simple, if their operands are simple, too. */
4442
4443 static bool
4444 simple_operand_p_2 (tree exp)
4445 {
4446 enum tree_code code;
4447
4448 if (TREE_SIDE_EFFECTS (exp)
4449 || tree_could_trap_p (exp))
4450 return false;
4451
4452 while (CONVERT_EXPR_P (exp))
4453 exp = TREE_OPERAND (exp, 0);
4454
4455 code = TREE_CODE (exp);
4456
4457 if (TREE_CODE_CLASS (code) == tcc_comparison)
4458 return (simple_operand_p (TREE_OPERAND (exp, 0))
4459 && simple_operand_p (TREE_OPERAND (exp, 1)));
4460
4461 if (code == TRUTH_NOT_EXPR)
4462 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4463
4464 return simple_operand_p (exp);
4465 }
4466
4467 \f
4468 /* The following functions are subroutines to fold_range_test and allow it to
4469 try to change a logical combination of comparisons into a range test.
4470
4471 For example, both
4472 X == 2 || X == 3 || X == 4 || X == 5
4473 and
4474 X >= 2 && X <= 5
4475 are converted to
4476 (unsigned) (X - 2) <= 3
4477
4478 We describe each set of comparisons as being either inside or outside
4479 a range, using a variable named like IN_P, and then describe the
4480 range with a lower and upper bound. If one of the bounds is omitted,
4481 it represents either the highest or lowest value of the type.
4482
4483 In the comments below, we represent a range by two numbers in brackets
4484 preceded by a "+" to designate being inside that range, or a "-" to
4485 designate being outside that range, so the condition can be inverted by
4486 flipping the prefix. An omitted bound is represented by a "-". For
4487 example, "- [-, 10]" means being outside the range starting at the lowest
4488 possible value and ending at 10, in other words, being greater than 10.
4489 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4490 always false.
4491
4492 We set up things so that the missing bounds are handled in a consistent
4493 manner so neither a missing bound nor "true" and "false" need to be
4494 handled using a special case. */
4495
4496 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4497 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4498 and UPPER1_P are nonzero if the respective argument is an upper bound
4499 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4500 must be specified for a comparison. ARG1 will be converted to ARG0's
4501 type if both are specified. */
4502
4503 static tree
4504 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4505 tree arg1, int upper1_p)
4506 {
4507 tree tem;
4508 int result;
4509 int sgn0, sgn1;
4510
4511 /* If neither arg represents infinity, do the normal operation.
4512 Else, if not a comparison, return infinity. Else handle the special
4513 comparison rules. Note that most of the cases below won't occur, but
4514 are handled for consistency. */
4515
4516 if (arg0 != 0 && arg1 != 0)
4517 {
4518 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4519 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4520 STRIP_NOPS (tem);
4521 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4522 }
4523
4524 if (TREE_CODE_CLASS (code) != tcc_comparison)
4525 return 0;
4526
4527 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4528 for neither. In real maths, we cannot assume open ended ranges are
4529 the same. But, this is computer arithmetic, where numbers are finite.
4530 We can therefore make the transformation of any unbounded range with
4531 the value Z, Z being greater than any representable number. This permits
4532 us to treat unbounded ranges as equal. */
4533 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4534 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4535 switch (code)
4536 {
4537 case EQ_EXPR:
4538 result = sgn0 == sgn1;
4539 break;
4540 case NE_EXPR:
4541 result = sgn0 != sgn1;
4542 break;
4543 case LT_EXPR:
4544 result = sgn0 < sgn1;
4545 break;
4546 case LE_EXPR:
4547 result = sgn0 <= sgn1;
4548 break;
4549 case GT_EXPR:
4550 result = sgn0 > sgn1;
4551 break;
4552 case GE_EXPR:
4553 result = sgn0 >= sgn1;
4554 break;
4555 default:
4556 gcc_unreachable ();
4557 }
4558
4559 return constant_boolean_node (result, type);
4560 }
4561 \f
4562 /* Helper routine for make_range. Perform one step for it, return
4563 new expression if the loop should continue or NULL_TREE if it should
4564 stop. */
4565
4566 tree
4567 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4568 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4569 bool *strict_overflow_p)
4570 {
4571 tree arg0_type = TREE_TYPE (arg0);
4572 tree n_low, n_high, low = *p_low, high = *p_high;
4573 int in_p = *p_in_p, n_in_p;
4574
4575 switch (code)
4576 {
4577 case TRUTH_NOT_EXPR:
4578 /* We can only do something if the range is testing for zero. */
4579 if (low == NULL_TREE || high == NULL_TREE
4580 || ! integer_zerop (low) || ! integer_zerop (high))
4581 return NULL_TREE;
4582 *p_in_p = ! in_p;
4583 return arg0;
4584
4585 case EQ_EXPR: case NE_EXPR:
4586 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4587 /* We can only do something if the range is testing for zero
4588 and if the second operand is an integer constant. Note that
4589 saying something is "in" the range we make is done by
4590 complementing IN_P since it will set in the initial case of
4591 being not equal to zero; "out" is leaving it alone. */
4592 if (low == NULL_TREE || high == NULL_TREE
4593 || ! integer_zerop (low) || ! integer_zerop (high)
4594 || TREE_CODE (arg1) != INTEGER_CST)
4595 return NULL_TREE;
4596
4597 switch (code)
4598 {
4599 case NE_EXPR: /* - [c, c] */
4600 low = high = arg1;
4601 break;
4602 case EQ_EXPR: /* + [c, c] */
4603 in_p = ! in_p, low = high = arg1;
4604 break;
4605 case GT_EXPR: /* - [-, c] */
4606 low = 0, high = arg1;
4607 break;
4608 case GE_EXPR: /* + [c, -] */
4609 in_p = ! in_p, low = arg1, high = 0;
4610 break;
4611 case LT_EXPR: /* - [c, -] */
4612 low = arg1, high = 0;
4613 break;
4614 case LE_EXPR: /* + [-, c] */
4615 in_p = ! in_p, low = 0, high = arg1;
4616 break;
4617 default:
4618 gcc_unreachable ();
4619 }
4620
4621 /* If this is an unsigned comparison, we also know that EXP is
4622 greater than or equal to zero. We base the range tests we make
4623 on that fact, so we record it here so we can parse existing
4624 range tests. We test arg0_type since often the return type
4625 of, e.g. EQ_EXPR, is boolean. */
4626 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4627 {
4628 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4629 in_p, low, high, 1,
4630 build_int_cst (arg0_type, 0),
4631 NULL_TREE))
4632 return NULL_TREE;
4633
4634 in_p = n_in_p, low = n_low, high = n_high;
4635
4636 /* If the high bound is missing, but we have a nonzero low
4637 bound, reverse the range so it goes from zero to the low bound
4638 minus 1. */
4639 if (high == 0 && low && ! integer_zerop (low))
4640 {
4641 in_p = ! in_p;
4642 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4643 build_int_cst (TREE_TYPE (low), 1), 0);
4644 low = build_int_cst (arg0_type, 0);
4645 }
4646 }
4647
4648 *p_low = low;
4649 *p_high = high;
4650 *p_in_p = in_p;
4651 return arg0;
4652
4653 case NEGATE_EXPR:
4654 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4655 low and high are non-NULL, then normalize will DTRT. */
4656 if (!TYPE_UNSIGNED (arg0_type)
4657 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4658 {
4659 if (low == NULL_TREE)
4660 low = TYPE_MIN_VALUE (arg0_type);
4661 if (high == NULL_TREE)
4662 high = TYPE_MAX_VALUE (arg0_type);
4663 }
4664
4665 /* (-x) IN [a,b] -> x in [-b, -a] */
4666 n_low = range_binop (MINUS_EXPR, exp_type,
4667 build_int_cst (exp_type, 0),
4668 0, high, 1);
4669 n_high = range_binop (MINUS_EXPR, exp_type,
4670 build_int_cst (exp_type, 0),
4671 0, low, 0);
4672 if (n_high != 0 && TREE_OVERFLOW (n_high))
4673 return NULL_TREE;
4674 goto normalize;
4675
4676 case BIT_NOT_EXPR:
4677 /* ~ X -> -X - 1 */
4678 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4679 build_int_cst (exp_type, 1));
4680
4681 case PLUS_EXPR:
4682 case MINUS_EXPR:
4683 if (TREE_CODE (arg1) != INTEGER_CST)
4684 return NULL_TREE;
4685
4686 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4687 move a constant to the other side. */
4688 if (!TYPE_UNSIGNED (arg0_type)
4689 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4690 return NULL_TREE;
4691
4692 /* If EXP is signed, any overflow in the computation is undefined,
4693 so we don't worry about it so long as our computations on
4694 the bounds don't overflow. For unsigned, overflow is defined
4695 and this is exactly the right thing. */
4696 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4697 arg0_type, low, 0, arg1, 0);
4698 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4699 arg0_type, high, 1, arg1, 0);
4700 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4701 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4702 return NULL_TREE;
4703
4704 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4705 *strict_overflow_p = true;
4706
4707 normalize:
4708 /* Check for an unsigned range which has wrapped around the maximum
4709 value thus making n_high < n_low, and normalize it. */
4710 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4711 {
4712 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4713 build_int_cst (TREE_TYPE (n_high), 1), 0);
4714 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4715 build_int_cst (TREE_TYPE (n_low), 1), 0);
4716
4717 /* If the range is of the form +/- [ x+1, x ], we won't
4718 be able to normalize it. But then, it represents the
4719 whole range or the empty set, so make it
4720 +/- [ -, - ]. */
4721 if (tree_int_cst_equal (n_low, low)
4722 && tree_int_cst_equal (n_high, high))
4723 low = high = 0;
4724 else
4725 in_p = ! in_p;
4726 }
4727 else
4728 low = n_low, high = n_high;
4729
4730 *p_low = low;
4731 *p_high = high;
4732 *p_in_p = in_p;
4733 return arg0;
4734
4735 CASE_CONVERT:
4736 case NON_LVALUE_EXPR:
4737 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4738 return NULL_TREE;
4739
4740 if (! INTEGRAL_TYPE_P (arg0_type)
4741 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4742 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4743 return NULL_TREE;
4744
4745 n_low = low, n_high = high;
4746
4747 if (n_low != 0)
4748 n_low = fold_convert_loc (loc, arg0_type, n_low);
4749
4750 if (n_high != 0)
4751 n_high = fold_convert_loc (loc, arg0_type, n_high);
4752
4753 /* If we're converting arg0 from an unsigned type, to exp,
4754 a signed type, we will be doing the comparison as unsigned.
4755 The tests above have already verified that LOW and HIGH
4756 are both positive.
4757
4758 So we have to ensure that we will handle large unsigned
4759 values the same way that the current signed bounds treat
4760 negative values. */
4761
4762 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4763 {
4764 tree high_positive;
4765 tree equiv_type;
4766 /* For fixed-point modes, we need to pass the saturating flag
4767 as the 2nd parameter. */
4768 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4769 equiv_type
4770 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4771 TYPE_SATURATING (arg0_type));
4772 else
4773 equiv_type
4774 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4775
4776 /* A range without an upper bound is, naturally, unbounded.
4777 Since convert would have cropped a very large value, use
4778 the max value for the destination type. */
4779 high_positive
4780 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4781 : TYPE_MAX_VALUE (arg0_type);
4782
4783 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4784 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4785 fold_convert_loc (loc, arg0_type,
4786 high_positive),
4787 build_int_cst (arg0_type, 1));
4788
4789 /* If the low bound is specified, "and" the range with the
4790 range for which the original unsigned value will be
4791 positive. */
4792 if (low != 0)
4793 {
4794 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4795 1, fold_convert_loc (loc, arg0_type,
4796 integer_zero_node),
4797 high_positive))
4798 return NULL_TREE;
4799
4800 in_p = (n_in_p == in_p);
4801 }
4802 else
4803 {
4804 /* Otherwise, "or" the range with the range of the input
4805 that will be interpreted as negative. */
4806 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4807 1, fold_convert_loc (loc, arg0_type,
4808 integer_zero_node),
4809 high_positive))
4810 return NULL_TREE;
4811
4812 in_p = (in_p != n_in_p);
4813 }
4814 }
4815
4816 *p_low = n_low;
4817 *p_high = n_high;
4818 *p_in_p = in_p;
4819 return arg0;
4820
4821 default:
4822 return NULL_TREE;
4823 }
4824 }
4825
4826 /* Given EXP, a logical expression, set the range it is testing into
4827 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4828 actually being tested. *PLOW and *PHIGH will be made of the same
4829 type as the returned expression. If EXP is not a comparison, we
4830 will most likely not be returning a useful value and range. Set
4831 *STRICT_OVERFLOW_P to true if the return value is only valid
4832 because signed overflow is undefined; otherwise, do not change
4833 *STRICT_OVERFLOW_P. */
4834
4835 tree
4836 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4837 bool *strict_overflow_p)
4838 {
4839 enum tree_code code;
4840 tree arg0, arg1 = NULL_TREE;
4841 tree exp_type, nexp;
4842 int in_p;
4843 tree low, high;
4844 location_t loc = EXPR_LOCATION (exp);
4845
4846 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4847 and see if we can refine the range. Some of the cases below may not
4848 happen, but it doesn't seem worth worrying about this. We "continue"
4849 the outer loop when we've changed something; otherwise we "break"
4850 the switch, which will "break" the while. */
4851
4852 in_p = 0;
4853 low = high = build_int_cst (TREE_TYPE (exp), 0);
4854
4855 while (1)
4856 {
4857 code = TREE_CODE (exp);
4858 exp_type = TREE_TYPE (exp);
4859 arg0 = NULL_TREE;
4860
4861 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4862 {
4863 if (TREE_OPERAND_LENGTH (exp) > 0)
4864 arg0 = TREE_OPERAND (exp, 0);
4865 if (TREE_CODE_CLASS (code) == tcc_binary
4866 || TREE_CODE_CLASS (code) == tcc_comparison
4867 || (TREE_CODE_CLASS (code) == tcc_expression
4868 && TREE_OPERAND_LENGTH (exp) > 1))
4869 arg1 = TREE_OPERAND (exp, 1);
4870 }
4871 if (arg0 == NULL_TREE)
4872 break;
4873
4874 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4875 &high, &in_p, strict_overflow_p);
4876 if (nexp == NULL_TREE)
4877 break;
4878 exp = nexp;
4879 }
4880
4881 /* If EXP is a constant, we can evaluate whether this is true or false. */
4882 if (TREE_CODE (exp) == INTEGER_CST)
4883 {
4884 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4885 exp, 0, low, 0))
4886 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4887 exp, 1, high, 1)));
4888 low = high = 0;
4889 exp = 0;
4890 }
4891
4892 *pin_p = in_p, *plow = low, *phigh = high;
4893 return exp;
4894 }
4895
4896 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4897 a bitwise check i.e. when
4898 LOW == 0xXX...X00...0
4899 HIGH == 0xXX...X11...1
4900 Return corresponding mask in MASK and stem in VALUE. */
4901
4902 static bool
4903 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
4904 tree *value)
4905 {
4906 if (TREE_CODE (low) != INTEGER_CST
4907 || TREE_CODE (high) != INTEGER_CST)
4908 return false;
4909
4910 unsigned prec = TYPE_PRECISION (type);
4911 wide_int lo = wi::to_wide (low, prec);
4912 wide_int hi = wi::to_wide (high, prec);
4913
4914 wide_int end_mask = lo ^ hi;
4915 if ((end_mask & (end_mask + 1)) != 0
4916 || (lo & end_mask) != 0)
4917 return false;
4918
4919 wide_int stem_mask = ~end_mask;
4920 wide_int stem = lo & stem_mask;
4921 if (stem != (hi & stem_mask))
4922 return false;
4923
4924 *mask = wide_int_to_tree (type, stem_mask);
4925 *value = wide_int_to_tree (type, stem);
4926
4927 return true;
4928 }
4929 \f
4930 /* Helper routine for build_range_check and match.pd. Return the type to
4931 perform the check or NULL if it shouldn't be optimized. */
4932
4933 tree
4934 range_check_type (tree etype)
4935 {
4936 /* First make sure that arithmetics in this type is valid, then make sure
4937 that it wraps around. */
4938 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4939 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4940 TYPE_UNSIGNED (etype));
4941
4942 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4943 {
4944 tree utype, minv, maxv;
4945
4946 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4947 for the type in question, as we rely on this here. */
4948 utype = unsigned_type_for (etype);
4949 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4950 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4951 build_int_cst (TREE_TYPE (maxv), 1), 1);
4952 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4953
4954 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4955 minv, 1, maxv, 1)))
4956 etype = utype;
4957 else
4958 return NULL_TREE;
4959 }
4960 return etype;
4961 }
4962
4963 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4964 type, TYPE, return an expression to test if EXP is in (or out of, depending
4965 on IN_P) the range. Return 0 if the test couldn't be created. */
4966
4967 tree
4968 build_range_check (location_t loc, tree type, tree exp, int in_p,
4969 tree low, tree high)
4970 {
4971 tree etype = TREE_TYPE (exp), mask, value;
4972
4973 /* Disable this optimization for function pointer expressions
4974 on targets that require function pointer canonicalization. */
4975 if (targetm.have_canonicalize_funcptr_for_compare ()
4976 && POINTER_TYPE_P (etype)
4977 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype)))
4978 return NULL_TREE;
4979
4980 if (! in_p)
4981 {
4982 value = build_range_check (loc, type, exp, 1, low, high);
4983 if (value != 0)
4984 return invert_truthvalue_loc (loc, value);
4985
4986 return 0;
4987 }
4988
4989 if (low == 0 && high == 0)
4990 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4991
4992 if (low == 0)
4993 return fold_build2_loc (loc, LE_EXPR, type, exp,
4994 fold_convert_loc (loc, etype, high));
4995
4996 if (high == 0)
4997 return fold_build2_loc (loc, GE_EXPR, type, exp,
4998 fold_convert_loc (loc, etype, low));
4999
5000 if (operand_equal_p (low, high, 0))
5001 return fold_build2_loc (loc, EQ_EXPR, type, exp,
5002 fold_convert_loc (loc, etype, low));
5003
5004 if (TREE_CODE (exp) == BIT_AND_EXPR
5005 && maskable_range_p (low, high, etype, &mask, &value))
5006 return fold_build2_loc (loc, EQ_EXPR, type,
5007 fold_build2_loc (loc, BIT_AND_EXPR, etype,
5008 exp, mask),
5009 value);
5010
5011 if (integer_zerop (low))
5012 {
5013 if (! TYPE_UNSIGNED (etype))
5014 {
5015 etype = unsigned_type_for (etype);
5016 high = fold_convert_loc (loc, etype, high);
5017 exp = fold_convert_loc (loc, etype, exp);
5018 }
5019 return build_range_check (loc, type, exp, 1, 0, high);
5020 }
5021
5022 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5023 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
5024 {
5025 int prec = TYPE_PRECISION (etype);
5026
5027 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high))
5028 {
5029 if (TYPE_UNSIGNED (etype))
5030 {
5031 tree signed_etype = signed_type_for (etype);
5032 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
5033 etype
5034 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
5035 else
5036 etype = signed_etype;
5037 exp = fold_convert_loc (loc, etype, exp);
5038 }
5039 return fold_build2_loc (loc, GT_EXPR, type, exp,
5040 build_int_cst (etype, 0));
5041 }
5042 }
5043
5044 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5045 This requires wrap-around arithmetics for the type of the expression. */
5046 etype = range_check_type (etype);
5047 if (etype == NULL_TREE)
5048 return NULL_TREE;
5049
5050 if (POINTER_TYPE_P (etype))
5051 etype = unsigned_type_for (etype);
5052
5053 high = fold_convert_loc (loc, etype, high);
5054 low = fold_convert_loc (loc, etype, low);
5055 exp = fold_convert_loc (loc, etype, exp);
5056
5057 value = const_binop (MINUS_EXPR, high, low);
5058
5059 if (value != 0 && !TREE_OVERFLOW (value))
5060 return build_range_check (loc, type,
5061 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
5062 1, build_int_cst (etype, 0), value);
5063
5064 return 0;
5065 }
5066 \f
5067 /* Return the predecessor of VAL in its type, handling the infinite case. */
5068
5069 static tree
5070 range_predecessor (tree val)
5071 {
5072 tree type = TREE_TYPE (val);
5073
5074 if (INTEGRAL_TYPE_P (type)
5075 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
5076 return 0;
5077 else
5078 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
5079 build_int_cst (TREE_TYPE (val), 1), 0);
5080 }
5081
5082 /* Return the successor of VAL in its type, handling the infinite case. */
5083
5084 static tree
5085 range_successor (tree val)
5086 {
5087 tree type = TREE_TYPE (val);
5088
5089 if (INTEGRAL_TYPE_P (type)
5090 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
5091 return 0;
5092 else
5093 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
5094 build_int_cst (TREE_TYPE (val), 1), 0);
5095 }
5096
5097 /* Given two ranges, see if we can merge them into one. Return 1 if we
5098 can, 0 if we can't. Set the output range into the specified parameters. */
5099
5100 bool
5101 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
5102 tree high0, int in1_p, tree low1, tree high1)
5103 {
5104 int no_overlap;
5105 int subset;
5106 int temp;
5107 tree tem;
5108 int in_p;
5109 tree low, high;
5110 int lowequal = ((low0 == 0 && low1 == 0)
5111 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5112 low0, 0, low1, 0)));
5113 int highequal = ((high0 == 0 && high1 == 0)
5114 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5115 high0, 1, high1, 1)));
5116
5117 /* Make range 0 be the range that starts first, or ends last if they
5118 start at the same value. Swap them if it isn't. */
5119 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
5120 low0, 0, low1, 0))
5121 || (lowequal
5122 && integer_onep (range_binop (GT_EXPR, integer_type_node,
5123 high1, 1, high0, 1))))
5124 {
5125 temp = in0_p, in0_p = in1_p, in1_p = temp;
5126 tem = low0, low0 = low1, low1 = tem;
5127 tem = high0, high0 = high1, high1 = tem;
5128 }
5129
5130 /* If the second range is != high1 where high1 is the type maximum of
5131 the type, try first merging with < high1 range. */
5132 if (low1
5133 && high1
5134 && TREE_CODE (low1) == INTEGER_CST
5135 && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE
5136 || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE
5137 && known_eq (TYPE_PRECISION (TREE_TYPE (low1)),
5138 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1))))))
5139 && operand_equal_p (low1, high1, 0))
5140 {
5141 if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1)))
5142 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5143 !in1_p, NULL_TREE, range_predecessor (low1)))
5144 return true;
5145 /* Similarly for the second range != low1 where low1 is the type minimum
5146 of the type, try first merging with > low1 range. */
5147 if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1)))
5148 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5149 !in1_p, range_successor (low1), NULL_TREE))
5150 return true;
5151 }
5152
5153 /* Now flag two cases, whether the ranges are disjoint or whether the
5154 second range is totally subsumed in the first. Note that the tests
5155 below are simplified by the ones above. */
5156 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
5157 high0, 1, low1, 0));
5158 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
5159 high1, 1, high0, 1));
5160
5161 /* We now have four cases, depending on whether we are including or
5162 excluding the two ranges. */
5163 if (in0_p && in1_p)
5164 {
5165 /* If they don't overlap, the result is false. If the second range
5166 is a subset it is the result. Otherwise, the range is from the start
5167 of the second to the end of the first. */
5168 if (no_overlap)
5169 in_p = 0, low = high = 0;
5170 else if (subset)
5171 in_p = 1, low = low1, high = high1;
5172 else
5173 in_p = 1, low = low1, high = high0;
5174 }
5175
5176 else if (in0_p && ! in1_p)
5177 {
5178 /* If they don't overlap, the result is the first range. If they are
5179 equal, the result is false. If the second range is a subset of the
5180 first, and the ranges begin at the same place, we go from just after
5181 the end of the second range to the end of the first. If the second
5182 range is not a subset of the first, or if it is a subset and both
5183 ranges end at the same place, the range starts at the start of the
5184 first range and ends just before the second range.
5185 Otherwise, we can't describe this as a single range. */
5186 if (no_overlap)
5187 in_p = 1, low = low0, high = high0;
5188 else if (lowequal && highequal)
5189 in_p = 0, low = high = 0;
5190 else if (subset && lowequal)
5191 {
5192 low = range_successor (high1);
5193 high = high0;
5194 in_p = 1;
5195 if (low == 0)
5196 {
5197 /* We are in the weird situation where high0 > high1 but
5198 high1 has no successor. Punt. */
5199 return 0;
5200 }
5201 }
5202 else if (! subset || highequal)
5203 {
5204 low = low0;
5205 high = range_predecessor (low1);
5206 in_p = 1;
5207 if (high == 0)
5208 {
5209 /* low0 < low1 but low1 has no predecessor. Punt. */
5210 return 0;
5211 }
5212 }
5213 else
5214 return 0;
5215 }
5216
5217 else if (! in0_p && in1_p)
5218 {
5219 /* If they don't overlap, the result is the second range. If the second
5220 is a subset of the first, the result is false. Otherwise,
5221 the range starts just after the first range and ends at the
5222 end of the second. */
5223 if (no_overlap)
5224 in_p = 1, low = low1, high = high1;
5225 else if (subset || highequal)
5226 in_p = 0, low = high = 0;
5227 else
5228 {
5229 low = range_successor (high0);
5230 high = high1;
5231 in_p = 1;
5232 if (low == 0)
5233 {
5234 /* high1 > high0 but high0 has no successor. Punt. */
5235 return 0;
5236 }
5237 }
5238 }
5239
5240 else
5241 {
5242 /* The case where we are excluding both ranges. Here the complex case
5243 is if they don't overlap. In that case, the only time we have a
5244 range is if they are adjacent. If the second is a subset of the
5245 first, the result is the first. Otherwise, the range to exclude
5246 starts at the beginning of the first range and ends at the end of the
5247 second. */
5248 if (no_overlap)
5249 {
5250 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5251 range_successor (high0),
5252 1, low1, 0)))
5253 in_p = 0, low = low0, high = high1;
5254 else
5255 {
5256 /* Canonicalize - [min, x] into - [-, x]. */
5257 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5258 switch (TREE_CODE (TREE_TYPE (low0)))
5259 {
5260 case ENUMERAL_TYPE:
5261 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)),
5262 GET_MODE_BITSIZE
5263 (TYPE_MODE (TREE_TYPE (low0)))))
5264 break;
5265 /* FALLTHROUGH */
5266 case INTEGER_TYPE:
5267 if (tree_int_cst_equal (low0,
5268 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5269 low0 = 0;
5270 break;
5271 case POINTER_TYPE:
5272 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5273 && integer_zerop (low0))
5274 low0 = 0;
5275 break;
5276 default:
5277 break;
5278 }
5279
5280 /* Canonicalize - [x, max] into - [x, -]. */
5281 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5282 switch (TREE_CODE (TREE_TYPE (high1)))
5283 {
5284 case ENUMERAL_TYPE:
5285 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)),
5286 GET_MODE_BITSIZE
5287 (TYPE_MODE (TREE_TYPE (high1)))))
5288 break;
5289 /* FALLTHROUGH */
5290 case INTEGER_TYPE:
5291 if (tree_int_cst_equal (high1,
5292 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5293 high1 = 0;
5294 break;
5295 case POINTER_TYPE:
5296 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5297 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5298 high1, 1,
5299 build_int_cst (TREE_TYPE (high1), 1),
5300 1)))
5301 high1 = 0;
5302 break;
5303 default:
5304 break;
5305 }
5306
5307 /* The ranges might be also adjacent between the maximum and
5308 minimum values of the given type. For
5309 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5310 return + [x + 1, y - 1]. */
5311 if (low0 == 0 && high1 == 0)
5312 {
5313 low = range_successor (high0);
5314 high = range_predecessor (low1);
5315 if (low == 0 || high == 0)
5316 return 0;
5317
5318 in_p = 1;
5319 }
5320 else
5321 return 0;
5322 }
5323 }
5324 else if (subset)
5325 in_p = 0, low = low0, high = high0;
5326 else
5327 in_p = 0, low = low0, high = high1;
5328 }
5329
5330 *pin_p = in_p, *plow = low, *phigh = high;
5331 return 1;
5332 }
5333 \f
5334
5335 /* Subroutine of fold, looking inside expressions of the form
5336 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5337 of the COND_EXPR. This function is being used also to optimize
5338 A op B ? C : A, by reversing the comparison first.
5339
5340 Return a folded expression whose code is not a COND_EXPR
5341 anymore, or NULL_TREE if no folding opportunity is found. */
5342
5343 static tree
5344 fold_cond_expr_with_comparison (location_t loc, tree type,
5345 tree arg0, tree arg1, tree arg2)
5346 {
5347 enum tree_code comp_code = TREE_CODE (arg0);
5348 tree arg00 = TREE_OPERAND (arg0, 0);
5349 tree arg01 = TREE_OPERAND (arg0, 1);
5350 tree arg1_type = TREE_TYPE (arg1);
5351 tree tem;
5352
5353 STRIP_NOPS (arg1);
5354 STRIP_NOPS (arg2);
5355
5356 /* If we have A op 0 ? A : -A, consider applying the following
5357 transformations:
5358
5359 A == 0? A : -A same as -A
5360 A != 0? A : -A same as A
5361 A >= 0? A : -A same as abs (A)
5362 A > 0? A : -A same as abs (A)
5363 A <= 0? A : -A same as -abs (A)
5364 A < 0? A : -A same as -abs (A)
5365
5366 None of these transformations work for modes with signed
5367 zeros. If A is +/-0, the first two transformations will
5368 change the sign of the result (from +0 to -0, or vice
5369 versa). The last four will fix the sign of the result,
5370 even though the original expressions could be positive or
5371 negative, depending on the sign of A.
5372
5373 Note that all these transformations are correct if A is
5374 NaN, since the two alternatives (A and -A) are also NaNs. */
5375 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5376 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5377 ? real_zerop (arg01)
5378 : integer_zerop (arg01))
5379 && ((TREE_CODE (arg2) == NEGATE_EXPR
5380 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5381 /* In the case that A is of the form X-Y, '-A' (arg2) may
5382 have already been folded to Y-X, check for that. */
5383 || (TREE_CODE (arg1) == MINUS_EXPR
5384 && TREE_CODE (arg2) == MINUS_EXPR
5385 && operand_equal_p (TREE_OPERAND (arg1, 0),
5386 TREE_OPERAND (arg2, 1), 0)
5387 && operand_equal_p (TREE_OPERAND (arg1, 1),
5388 TREE_OPERAND (arg2, 0), 0))))
5389 switch (comp_code)
5390 {
5391 case EQ_EXPR:
5392 case UNEQ_EXPR:
5393 tem = fold_convert_loc (loc, arg1_type, arg1);
5394 return fold_convert_loc (loc, type, negate_expr (tem));
5395 case NE_EXPR:
5396 case LTGT_EXPR:
5397 return fold_convert_loc (loc, type, arg1);
5398 case UNGE_EXPR:
5399 case UNGT_EXPR:
5400 if (flag_trapping_math)
5401 break;
5402 /* Fall through. */
5403 case GE_EXPR:
5404 case GT_EXPR:
5405 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5406 break;
5407 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5408 return fold_convert_loc (loc, type, tem);
5409 case UNLE_EXPR:
5410 case UNLT_EXPR:
5411 if (flag_trapping_math)
5412 break;
5413 /* FALLTHRU */
5414 case LE_EXPR:
5415 case LT_EXPR:
5416 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5417 break;
5418 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5419 return negate_expr (fold_convert_loc (loc, type, tem));
5420 default:
5421 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5422 break;
5423 }
5424
5425 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5426 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5427 both transformations are correct when A is NaN: A != 0
5428 is then true, and A == 0 is false. */
5429
5430 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5431 && integer_zerop (arg01) && integer_zerop (arg2))
5432 {
5433 if (comp_code == NE_EXPR)
5434 return fold_convert_loc (loc, type, arg1);
5435 else if (comp_code == EQ_EXPR)
5436 return build_zero_cst (type);
5437 }
5438
5439 /* Try some transformations of A op B ? A : B.
5440
5441 A == B? A : B same as B
5442 A != B? A : B same as A
5443 A >= B? A : B same as max (A, B)
5444 A > B? A : B same as max (B, A)
5445 A <= B? A : B same as min (A, B)
5446 A < B? A : B same as min (B, A)
5447
5448 As above, these transformations don't work in the presence
5449 of signed zeros. For example, if A and B are zeros of
5450 opposite sign, the first two transformations will change
5451 the sign of the result. In the last four, the original
5452 expressions give different results for (A=+0, B=-0) and
5453 (A=-0, B=+0), but the transformed expressions do not.
5454
5455 The first two transformations are correct if either A or B
5456 is a NaN. In the first transformation, the condition will
5457 be false, and B will indeed be chosen. In the case of the
5458 second transformation, the condition A != B will be true,
5459 and A will be chosen.
5460
5461 The conversions to max() and min() are not correct if B is
5462 a number and A is not. The conditions in the original
5463 expressions will be false, so all four give B. The min()
5464 and max() versions would give a NaN instead. */
5465 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5466 && operand_equal_for_comparison_p (arg01, arg2)
5467 /* Avoid these transformations if the COND_EXPR may be used
5468 as an lvalue in the C++ front-end. PR c++/19199. */
5469 && (in_gimple_form
5470 || VECTOR_TYPE_P (type)
5471 || (! lang_GNU_CXX ()
5472 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5473 || ! maybe_lvalue_p (arg1)
5474 || ! maybe_lvalue_p (arg2)))
5475 {
5476 tree comp_op0 = arg00;
5477 tree comp_op1 = arg01;
5478 tree comp_type = TREE_TYPE (comp_op0);
5479
5480 switch (comp_code)
5481 {
5482 case EQ_EXPR:
5483 return fold_convert_loc (loc, type, arg2);
5484 case NE_EXPR:
5485 return fold_convert_loc (loc, type, arg1);
5486 case LE_EXPR:
5487 case LT_EXPR:
5488 case UNLE_EXPR:
5489 case UNLT_EXPR:
5490 /* In C++ a ?: expression can be an lvalue, so put the
5491 operand which will be used if they are equal first
5492 so that we can convert this back to the
5493 corresponding COND_EXPR. */
5494 if (!HONOR_NANS (arg1))
5495 {
5496 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5497 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5498 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5499 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5500 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5501 comp_op1, comp_op0);
5502 return fold_convert_loc (loc, type, tem);
5503 }
5504 break;
5505 case GE_EXPR:
5506 case GT_EXPR:
5507 case UNGE_EXPR:
5508 case UNGT_EXPR:
5509 if (!HONOR_NANS (arg1))
5510 {
5511 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5512 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5513 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5514 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5515 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5516 comp_op1, comp_op0);
5517 return fold_convert_loc (loc, type, tem);
5518 }
5519 break;
5520 case UNEQ_EXPR:
5521 if (!HONOR_NANS (arg1))
5522 return fold_convert_loc (loc, type, arg2);
5523 break;
5524 case LTGT_EXPR:
5525 if (!HONOR_NANS (arg1))
5526 return fold_convert_loc (loc, type, arg1);
5527 break;
5528 default:
5529 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5530 break;
5531 }
5532 }
5533
5534 return NULL_TREE;
5535 }
5536
5537
5538 \f
5539 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5540 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5541 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5542 false) >= 2)
5543 #endif
5544
5545 /* EXP is some logical combination of boolean tests. See if we can
5546 merge it into some range test. Return the new tree if so. */
5547
5548 static tree
5549 fold_range_test (location_t loc, enum tree_code code, tree type,
5550 tree op0, tree op1)
5551 {
5552 int or_op = (code == TRUTH_ORIF_EXPR
5553 || code == TRUTH_OR_EXPR);
5554 int in0_p, in1_p, in_p;
5555 tree low0, low1, low, high0, high1, high;
5556 bool strict_overflow_p = false;
5557 tree tem, lhs, rhs;
5558 const char * const warnmsg = G_("assuming signed overflow does not occur "
5559 "when simplifying range test");
5560
5561 if (!INTEGRAL_TYPE_P (type))
5562 return 0;
5563
5564 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5565 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5566
5567 /* If this is an OR operation, invert both sides; we will invert
5568 again at the end. */
5569 if (or_op)
5570 in0_p = ! in0_p, in1_p = ! in1_p;
5571
5572 /* If both expressions are the same, if we can merge the ranges, and we
5573 can build the range test, return it or it inverted. If one of the
5574 ranges is always true or always false, consider it to be the same
5575 expression as the other. */
5576 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5577 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5578 in1_p, low1, high1)
5579 && (tem = (build_range_check (loc, type,
5580 lhs != 0 ? lhs
5581 : rhs != 0 ? rhs : integer_zero_node,
5582 in_p, low, high))) != 0)
5583 {
5584 if (strict_overflow_p)
5585 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5586 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5587 }
5588
5589 /* On machines where the branch cost is expensive, if this is a
5590 short-circuited branch and the underlying object on both sides
5591 is the same, make a non-short-circuit operation. */
5592 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
5593 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT) != -1)
5594 logical_op_non_short_circuit
5595 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT);
5596 if (logical_op_non_short_circuit
5597 && !flag_sanitize_coverage
5598 && lhs != 0 && rhs != 0
5599 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
5600 && operand_equal_p (lhs, rhs, 0))
5601 {
5602 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5603 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5604 which cases we can't do this. */
5605 if (simple_operand_p (lhs))
5606 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5607 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5608 type, op0, op1);
5609
5610 else if (!lang_hooks.decls.global_bindings_p ()
5611 && !CONTAINS_PLACEHOLDER_P (lhs))
5612 {
5613 tree common = save_expr (lhs);
5614
5615 if ((lhs = build_range_check (loc, type, common,
5616 or_op ? ! in0_p : in0_p,
5617 low0, high0)) != 0
5618 && (rhs = build_range_check (loc, type, common,
5619 or_op ? ! in1_p : in1_p,
5620 low1, high1)) != 0)
5621 {
5622 if (strict_overflow_p)
5623 fold_overflow_warning (warnmsg,
5624 WARN_STRICT_OVERFLOW_COMPARISON);
5625 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5626 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5627 type, lhs, rhs);
5628 }
5629 }
5630 }
5631
5632 return 0;
5633 }
5634 \f
5635 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5636 bit value. Arrange things so the extra bits will be set to zero if and
5637 only if C is signed-extended to its full width. If MASK is nonzero,
5638 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5639
5640 static tree
5641 unextend (tree c, int p, int unsignedp, tree mask)
5642 {
5643 tree type = TREE_TYPE (c);
5644 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
5645 tree temp;
5646
5647 if (p == modesize || unsignedp)
5648 return c;
5649
5650 /* We work by getting just the sign bit into the low-order bit, then
5651 into the high-order bit, then sign-extend. We then XOR that value
5652 with C. */
5653 temp = build_int_cst (TREE_TYPE (c),
5654 wi::extract_uhwi (wi::to_wide (c), p - 1, 1));
5655
5656 /* We must use a signed type in order to get an arithmetic right shift.
5657 However, we must also avoid introducing accidental overflows, so that
5658 a subsequent call to integer_zerop will work. Hence we must
5659 do the type conversion here. At this point, the constant is either
5660 zero or one, and the conversion to a signed type can never overflow.
5661 We could get an overflow if this conversion is done anywhere else. */
5662 if (TYPE_UNSIGNED (type))
5663 temp = fold_convert (signed_type_for (type), temp);
5664
5665 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5666 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5667 if (mask != 0)
5668 temp = const_binop (BIT_AND_EXPR, temp,
5669 fold_convert (TREE_TYPE (c), mask));
5670 /* If necessary, convert the type back to match the type of C. */
5671 if (TYPE_UNSIGNED (type))
5672 temp = fold_convert (type, temp);
5673
5674 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5675 }
5676 \f
5677 /* For an expression that has the form
5678 (A && B) || ~B
5679 or
5680 (A || B) && ~B,
5681 we can drop one of the inner expressions and simplify to
5682 A || ~B
5683 or
5684 A && ~B
5685 LOC is the location of the resulting expression. OP is the inner
5686 logical operation; the left-hand side in the examples above, while CMPOP
5687 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5688 removing a condition that guards another, as in
5689 (A != NULL && A->...) || A == NULL
5690 which we must not transform. If RHS_ONLY is true, only eliminate the
5691 right-most operand of the inner logical operation. */
5692
5693 static tree
5694 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5695 bool rhs_only)
5696 {
5697 tree type = TREE_TYPE (cmpop);
5698 enum tree_code code = TREE_CODE (cmpop);
5699 enum tree_code truthop_code = TREE_CODE (op);
5700 tree lhs = TREE_OPERAND (op, 0);
5701 tree rhs = TREE_OPERAND (op, 1);
5702 tree orig_lhs = lhs, orig_rhs = rhs;
5703 enum tree_code rhs_code = TREE_CODE (rhs);
5704 enum tree_code lhs_code = TREE_CODE (lhs);
5705 enum tree_code inv_code;
5706
5707 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5708 return NULL_TREE;
5709
5710 if (TREE_CODE_CLASS (code) != tcc_comparison)
5711 return NULL_TREE;
5712
5713 if (rhs_code == truthop_code)
5714 {
5715 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5716 if (newrhs != NULL_TREE)
5717 {
5718 rhs = newrhs;
5719 rhs_code = TREE_CODE (rhs);
5720 }
5721 }
5722 if (lhs_code == truthop_code && !rhs_only)
5723 {
5724 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5725 if (newlhs != NULL_TREE)
5726 {
5727 lhs = newlhs;
5728 lhs_code = TREE_CODE (lhs);
5729 }
5730 }
5731
5732 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5733 if (inv_code == rhs_code
5734 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5735 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5736 return lhs;
5737 if (!rhs_only && inv_code == lhs_code
5738 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5739 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5740 return rhs;
5741 if (rhs != orig_rhs || lhs != orig_lhs)
5742 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5743 lhs, rhs);
5744 return NULL_TREE;
5745 }
5746
5747 /* Find ways of folding logical expressions of LHS and RHS:
5748 Try to merge two comparisons to the same innermost item.
5749 Look for range tests like "ch >= '0' && ch <= '9'".
5750 Look for combinations of simple terms on machines with expensive branches
5751 and evaluate the RHS unconditionally.
5752
5753 For example, if we have p->a == 2 && p->b == 4 and we can make an
5754 object large enough to span both A and B, we can do this with a comparison
5755 against the object ANDed with the a mask.
5756
5757 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5758 operations to do this with one comparison.
5759
5760 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5761 function and the one above.
5762
5763 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5764 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5765
5766 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5767 two operands.
5768
5769 We return the simplified tree or 0 if no optimization is possible. */
5770
5771 static tree
5772 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5773 tree lhs, tree rhs)
5774 {
5775 /* If this is the "or" of two comparisons, we can do something if
5776 the comparisons are NE_EXPR. If this is the "and", we can do something
5777 if the comparisons are EQ_EXPR. I.e.,
5778 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5779
5780 WANTED_CODE is this operation code. For single bit fields, we can
5781 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5782 comparison for one-bit fields. */
5783
5784 enum tree_code wanted_code;
5785 enum tree_code lcode, rcode;
5786 tree ll_arg, lr_arg, rl_arg, rr_arg;
5787 tree ll_inner, lr_inner, rl_inner, rr_inner;
5788 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5789 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5790 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5791 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5792 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5793 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5794 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5795 scalar_int_mode lnmode, rnmode;
5796 tree ll_mask, lr_mask, rl_mask, rr_mask;
5797 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5798 tree l_const, r_const;
5799 tree lntype, rntype, result;
5800 HOST_WIDE_INT first_bit, end_bit;
5801 int volatilep;
5802
5803 /* Start by getting the comparison codes. Fail if anything is volatile.
5804 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5805 it were surrounded with a NE_EXPR. */
5806
5807 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5808 return 0;
5809
5810 lcode = TREE_CODE (lhs);
5811 rcode = TREE_CODE (rhs);
5812
5813 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5814 {
5815 lhs = build2 (NE_EXPR, truth_type, lhs,
5816 build_int_cst (TREE_TYPE (lhs), 0));
5817 lcode = NE_EXPR;
5818 }
5819
5820 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5821 {
5822 rhs = build2 (NE_EXPR, truth_type, rhs,
5823 build_int_cst (TREE_TYPE (rhs), 0));
5824 rcode = NE_EXPR;
5825 }
5826
5827 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5828 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5829 return 0;
5830
5831 ll_arg = TREE_OPERAND (lhs, 0);
5832 lr_arg = TREE_OPERAND (lhs, 1);
5833 rl_arg = TREE_OPERAND (rhs, 0);
5834 rr_arg = TREE_OPERAND (rhs, 1);
5835
5836 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5837 if (simple_operand_p (ll_arg)
5838 && simple_operand_p (lr_arg))
5839 {
5840 if (operand_equal_p (ll_arg, rl_arg, 0)
5841 && operand_equal_p (lr_arg, rr_arg, 0))
5842 {
5843 result = combine_comparisons (loc, code, lcode, rcode,
5844 truth_type, ll_arg, lr_arg);
5845 if (result)
5846 return result;
5847 }
5848 else if (operand_equal_p (ll_arg, rr_arg, 0)
5849 && operand_equal_p (lr_arg, rl_arg, 0))
5850 {
5851 result = combine_comparisons (loc, code, lcode,
5852 swap_tree_comparison (rcode),
5853 truth_type, ll_arg, lr_arg);
5854 if (result)
5855 return result;
5856 }
5857 }
5858
5859 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5860 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5861
5862 /* If the RHS can be evaluated unconditionally and its operands are
5863 simple, it wins to evaluate the RHS unconditionally on machines
5864 with expensive branches. In this case, this isn't a comparison
5865 that can be merged. */
5866
5867 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5868 false) >= 2
5869 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5870 && simple_operand_p (rl_arg)
5871 && simple_operand_p (rr_arg))
5872 {
5873 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5874 if (code == TRUTH_OR_EXPR
5875 && lcode == NE_EXPR && integer_zerop (lr_arg)
5876 && rcode == NE_EXPR && integer_zerop (rr_arg)
5877 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5878 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5879 return build2_loc (loc, NE_EXPR, truth_type,
5880 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5881 ll_arg, rl_arg),
5882 build_int_cst (TREE_TYPE (ll_arg), 0));
5883
5884 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5885 if (code == TRUTH_AND_EXPR
5886 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5887 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5888 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5889 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5890 return build2_loc (loc, EQ_EXPR, truth_type,
5891 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5892 ll_arg, rl_arg),
5893 build_int_cst (TREE_TYPE (ll_arg), 0));
5894 }
5895
5896 /* See if the comparisons can be merged. Then get all the parameters for
5897 each side. */
5898
5899 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5900 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5901 return 0;
5902
5903 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5904 volatilep = 0;
5905 ll_inner = decode_field_reference (loc, &ll_arg,
5906 &ll_bitsize, &ll_bitpos, &ll_mode,
5907 &ll_unsignedp, &ll_reversep, &volatilep,
5908 &ll_mask, &ll_and_mask);
5909 lr_inner = decode_field_reference (loc, &lr_arg,
5910 &lr_bitsize, &lr_bitpos, &lr_mode,
5911 &lr_unsignedp, &lr_reversep, &volatilep,
5912 &lr_mask, &lr_and_mask);
5913 rl_inner = decode_field_reference (loc, &rl_arg,
5914 &rl_bitsize, &rl_bitpos, &rl_mode,
5915 &rl_unsignedp, &rl_reversep, &volatilep,
5916 &rl_mask, &rl_and_mask);
5917 rr_inner = decode_field_reference (loc, &rr_arg,
5918 &rr_bitsize, &rr_bitpos, &rr_mode,
5919 &rr_unsignedp, &rr_reversep, &volatilep,
5920 &rr_mask, &rr_and_mask);
5921
5922 /* It must be true that the inner operation on the lhs of each
5923 comparison must be the same if we are to be able to do anything.
5924 Then see if we have constants. If not, the same must be true for
5925 the rhs's. */
5926 if (volatilep
5927 || ll_reversep != rl_reversep
5928 || ll_inner == 0 || rl_inner == 0
5929 || ! operand_equal_p (ll_inner, rl_inner, 0))
5930 return 0;
5931
5932 if (TREE_CODE (lr_arg) == INTEGER_CST
5933 && TREE_CODE (rr_arg) == INTEGER_CST)
5934 {
5935 l_const = lr_arg, r_const = rr_arg;
5936 lr_reversep = ll_reversep;
5937 }
5938 else if (lr_reversep != rr_reversep
5939 || lr_inner == 0 || rr_inner == 0
5940 || ! operand_equal_p (lr_inner, rr_inner, 0))
5941 return 0;
5942 else
5943 l_const = r_const = 0;
5944
5945 /* If either comparison code is not correct for our logical operation,
5946 fail. However, we can convert a one-bit comparison against zero into
5947 the opposite comparison against that bit being set in the field. */
5948
5949 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5950 if (lcode != wanted_code)
5951 {
5952 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5953 {
5954 /* Make the left operand unsigned, since we are only interested
5955 in the value of one bit. Otherwise we are doing the wrong
5956 thing below. */
5957 ll_unsignedp = 1;
5958 l_const = ll_mask;
5959 }
5960 else
5961 return 0;
5962 }
5963
5964 /* This is analogous to the code for l_const above. */
5965 if (rcode != wanted_code)
5966 {
5967 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5968 {
5969 rl_unsignedp = 1;
5970 r_const = rl_mask;
5971 }
5972 else
5973 return 0;
5974 }
5975
5976 /* See if we can find a mode that contains both fields being compared on
5977 the left. If we can't, fail. Otherwise, update all constants and masks
5978 to be relative to a field of that size. */
5979 first_bit = MIN (ll_bitpos, rl_bitpos);
5980 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5981 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5982 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
5983 volatilep, &lnmode))
5984 return 0;
5985
5986 lnbitsize = GET_MODE_BITSIZE (lnmode);
5987 lnbitpos = first_bit & ~ (lnbitsize - 1);
5988 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5989 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5990
5991 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5992 {
5993 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5994 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5995 }
5996
5997 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5998 size_int (xll_bitpos));
5999 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
6000 size_int (xrl_bitpos));
6001
6002 if (l_const)
6003 {
6004 l_const = fold_convert_loc (loc, lntype, l_const);
6005 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
6006 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
6007 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
6008 fold_build1_loc (loc, BIT_NOT_EXPR,
6009 lntype, ll_mask))))
6010 {
6011 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6012
6013 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6014 }
6015 }
6016 if (r_const)
6017 {
6018 r_const = fold_convert_loc (loc, lntype, r_const);
6019 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
6020 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
6021 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
6022 fold_build1_loc (loc, BIT_NOT_EXPR,
6023 lntype, rl_mask))))
6024 {
6025 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6026
6027 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6028 }
6029 }
6030
6031 /* If the right sides are not constant, do the same for it. Also,
6032 disallow this optimization if a size, signedness or storage order
6033 mismatch occurs between the left and right sides. */
6034 if (l_const == 0)
6035 {
6036 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
6037 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
6038 || ll_reversep != lr_reversep
6039 /* Make sure the two fields on the right
6040 correspond to the left without being swapped. */
6041 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
6042 return 0;
6043
6044 first_bit = MIN (lr_bitpos, rr_bitpos);
6045 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
6046 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6047 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
6048 volatilep, &rnmode))
6049 return 0;
6050
6051 rnbitsize = GET_MODE_BITSIZE (rnmode);
6052 rnbitpos = first_bit & ~ (rnbitsize - 1);
6053 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
6054 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
6055
6056 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6057 {
6058 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
6059 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
6060 }
6061
6062 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6063 rntype, lr_mask),
6064 size_int (xlr_bitpos));
6065 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6066 rntype, rr_mask),
6067 size_int (xrr_bitpos));
6068
6069 /* Make a mask that corresponds to both fields being compared.
6070 Do this for both items being compared. If the operands are the
6071 same size and the bits being compared are in the same position
6072 then we can do this by masking both and comparing the masked
6073 results. */
6074 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6075 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
6076 if (lnbitsize == rnbitsize
6077 && xll_bitpos == xlr_bitpos
6078 && lnbitpos >= 0
6079 && rnbitpos >= 0)
6080 {
6081 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
6082 lntype, lnbitsize, lnbitpos,
6083 ll_unsignedp || rl_unsignedp, ll_reversep);
6084 if (! all_ones_mask_p (ll_mask, lnbitsize))
6085 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
6086
6087 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
6088 rntype, rnbitsize, rnbitpos,
6089 lr_unsignedp || rr_unsignedp, lr_reversep);
6090 if (! all_ones_mask_p (lr_mask, rnbitsize))
6091 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
6092
6093 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6094 }
6095
6096 /* There is still another way we can do something: If both pairs of
6097 fields being compared are adjacent, we may be able to make a wider
6098 field containing them both.
6099
6100 Note that we still must mask the lhs/rhs expressions. Furthermore,
6101 the mask must be shifted to account for the shift done by
6102 make_bit_field_ref. */
6103 if (((ll_bitsize + ll_bitpos == rl_bitpos
6104 && lr_bitsize + lr_bitpos == rr_bitpos)
6105 || (ll_bitpos == rl_bitpos + rl_bitsize
6106 && lr_bitpos == rr_bitpos + rr_bitsize))
6107 && ll_bitpos >= 0
6108 && rl_bitpos >= 0
6109 && lr_bitpos >= 0
6110 && rr_bitpos >= 0)
6111 {
6112 tree type;
6113
6114 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
6115 ll_bitsize + rl_bitsize,
6116 MIN (ll_bitpos, rl_bitpos),
6117 ll_unsignedp, ll_reversep);
6118 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
6119 lr_bitsize + rr_bitsize,
6120 MIN (lr_bitpos, rr_bitpos),
6121 lr_unsignedp, lr_reversep);
6122
6123 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
6124 size_int (MIN (xll_bitpos, xrl_bitpos)));
6125 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
6126 size_int (MIN (xlr_bitpos, xrr_bitpos)));
6127
6128 /* Convert to the smaller type before masking out unwanted bits. */
6129 type = lntype;
6130 if (lntype != rntype)
6131 {
6132 if (lnbitsize > rnbitsize)
6133 {
6134 lhs = fold_convert_loc (loc, rntype, lhs);
6135 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
6136 type = rntype;
6137 }
6138 else if (lnbitsize < rnbitsize)
6139 {
6140 rhs = fold_convert_loc (loc, lntype, rhs);
6141 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
6142 type = lntype;
6143 }
6144 }
6145
6146 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
6147 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
6148
6149 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
6150 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
6151
6152 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6153 }
6154
6155 return 0;
6156 }
6157
6158 /* Handle the case of comparisons with constants. If there is something in
6159 common between the masks, those bits of the constants must be the same.
6160 If not, the condition is always false. Test for this to avoid generating
6161 incorrect code below. */
6162 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
6163 if (! integer_zerop (result)
6164 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
6165 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
6166 {
6167 if (wanted_code == NE_EXPR)
6168 {
6169 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6170 return constant_boolean_node (true, truth_type);
6171 }
6172 else
6173 {
6174 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6175 return constant_boolean_node (false, truth_type);
6176 }
6177 }
6178
6179 if (lnbitpos < 0)
6180 return 0;
6181
6182 /* Construct the expression we will return. First get the component
6183 reference we will make. Unless the mask is all ones the width of
6184 that field, perform the mask operation. Then compare with the
6185 merged constant. */
6186 result = make_bit_field_ref (loc, ll_inner, ll_arg,
6187 lntype, lnbitsize, lnbitpos,
6188 ll_unsignedp || rl_unsignedp, ll_reversep);
6189
6190 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6191 if (! all_ones_mask_p (ll_mask, lnbitsize))
6192 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
6193
6194 return build2_loc (loc, wanted_code, truth_type, result,
6195 const_binop (BIT_IOR_EXPR, l_const, r_const));
6196 }
6197 \f
6198 /* T is an integer expression that is being multiplied, divided, or taken a
6199 modulus (CODE says which and what kind of divide or modulus) by a
6200 constant C. See if we can eliminate that operation by folding it with
6201 other operations already in T. WIDE_TYPE, if non-null, is a type that
6202 should be used for the computation if wider than our type.
6203
6204 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6205 (X * 2) + (Y * 4). We must, however, be assured that either the original
6206 expression would not overflow or that overflow is undefined for the type
6207 in the language in question.
6208
6209 If we return a non-null expression, it is an equivalent form of the
6210 original computation, but need not be in the original type.
6211
6212 We set *STRICT_OVERFLOW_P to true if the return values depends on
6213 signed overflow being undefined. Otherwise we do not change
6214 *STRICT_OVERFLOW_P. */
6215
6216 static tree
6217 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6218 bool *strict_overflow_p)
6219 {
6220 /* To avoid exponential search depth, refuse to allow recursion past
6221 three levels. Beyond that (1) it's highly unlikely that we'll find
6222 something interesting and (2) we've probably processed it before
6223 when we built the inner expression. */
6224
6225 static int depth;
6226 tree ret;
6227
6228 if (depth > 3)
6229 return NULL;
6230
6231 depth++;
6232 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6233 depth--;
6234
6235 return ret;
6236 }
6237
6238 static tree
6239 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6240 bool *strict_overflow_p)
6241 {
6242 tree type = TREE_TYPE (t);
6243 enum tree_code tcode = TREE_CODE (t);
6244 tree ctype = (wide_type != 0
6245 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6246 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6247 ? wide_type : type);
6248 tree t1, t2;
6249 int same_p = tcode == code;
6250 tree op0 = NULL_TREE, op1 = NULL_TREE;
6251 bool sub_strict_overflow_p;
6252
6253 /* Don't deal with constants of zero here; they confuse the code below. */
6254 if (integer_zerop (c))
6255 return NULL_TREE;
6256
6257 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6258 op0 = TREE_OPERAND (t, 0);
6259
6260 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6261 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6262
6263 /* Note that we need not handle conditional operations here since fold
6264 already handles those cases. So just do arithmetic here. */
6265 switch (tcode)
6266 {
6267 case INTEGER_CST:
6268 /* For a constant, we can always simplify if we are a multiply
6269 or (for divide and modulus) if it is a multiple of our constant. */
6270 if (code == MULT_EXPR
6271 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c),
6272 TYPE_SIGN (type)))
6273 {
6274 tree tem = const_binop (code, fold_convert (ctype, t),
6275 fold_convert (ctype, c));
6276 /* If the multiplication overflowed, we lost information on it.
6277 See PR68142 and PR69845. */
6278 if (TREE_OVERFLOW (tem))
6279 return NULL_TREE;
6280 return tem;
6281 }
6282 break;
6283
6284 CASE_CONVERT: case NON_LVALUE_EXPR:
6285 /* If op0 is an expression ... */
6286 if ((COMPARISON_CLASS_P (op0)
6287 || UNARY_CLASS_P (op0)
6288 || BINARY_CLASS_P (op0)
6289 || VL_EXP_CLASS_P (op0)
6290 || EXPRESSION_CLASS_P (op0))
6291 /* ... and has wrapping overflow, and its type is smaller
6292 than ctype, then we cannot pass through as widening. */
6293 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6294 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6295 && (TYPE_PRECISION (ctype)
6296 > TYPE_PRECISION (TREE_TYPE (op0))))
6297 /* ... or this is a truncation (t is narrower than op0),
6298 then we cannot pass through this narrowing. */
6299 || (TYPE_PRECISION (type)
6300 < TYPE_PRECISION (TREE_TYPE (op0)))
6301 /* ... or signedness changes for division or modulus,
6302 then we cannot pass through this conversion. */
6303 || (code != MULT_EXPR
6304 && (TYPE_UNSIGNED (ctype)
6305 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6306 /* ... or has undefined overflow while the converted to
6307 type has not, we cannot do the operation in the inner type
6308 as that would introduce undefined overflow. */
6309 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6310 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6311 && !TYPE_OVERFLOW_UNDEFINED (type))))
6312 break;
6313
6314 /* Pass the constant down and see if we can make a simplification. If
6315 we can, replace this expression with the inner simplification for
6316 possible later conversion to our or some other type. */
6317 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6318 && TREE_CODE (t2) == INTEGER_CST
6319 && !TREE_OVERFLOW (t2)
6320 && (t1 = extract_muldiv (op0, t2, code,
6321 code == MULT_EXPR ? ctype : NULL_TREE,
6322 strict_overflow_p)) != 0)
6323 return t1;
6324 break;
6325
6326 case ABS_EXPR:
6327 /* If widening the type changes it from signed to unsigned, then we
6328 must avoid building ABS_EXPR itself as unsigned. */
6329 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6330 {
6331 tree cstype = (*signed_type_for) (ctype);
6332 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6333 != 0)
6334 {
6335 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6336 return fold_convert (ctype, t1);
6337 }
6338 break;
6339 }
6340 /* If the constant is negative, we cannot simplify this. */
6341 if (tree_int_cst_sgn (c) == -1)
6342 break;
6343 /* FALLTHROUGH */
6344 case NEGATE_EXPR:
6345 /* For division and modulus, type can't be unsigned, as e.g.
6346 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6347 For signed types, even with wrapping overflow, this is fine. */
6348 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6349 break;
6350 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6351 != 0)
6352 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6353 break;
6354
6355 case MIN_EXPR: case MAX_EXPR:
6356 /* If widening the type changes the signedness, then we can't perform
6357 this optimization as that changes the result. */
6358 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6359 break;
6360
6361 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6362 sub_strict_overflow_p = false;
6363 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6364 &sub_strict_overflow_p)) != 0
6365 && (t2 = extract_muldiv (op1, c, code, wide_type,
6366 &sub_strict_overflow_p)) != 0)
6367 {
6368 if (tree_int_cst_sgn (c) < 0)
6369 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6370 if (sub_strict_overflow_p)
6371 *strict_overflow_p = true;
6372 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6373 fold_convert (ctype, t2));
6374 }
6375 break;
6376
6377 case LSHIFT_EXPR: case RSHIFT_EXPR:
6378 /* If the second operand is constant, this is a multiplication
6379 or floor division, by a power of two, so we can treat it that
6380 way unless the multiplier or divisor overflows. Signed
6381 left-shift overflow is implementation-defined rather than
6382 undefined in C90, so do not convert signed left shift into
6383 multiplication. */
6384 if (TREE_CODE (op1) == INTEGER_CST
6385 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6386 /* const_binop may not detect overflow correctly,
6387 so check for it explicitly here. */
6388 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
6389 wi::to_wide (op1))
6390 && (t1 = fold_convert (ctype,
6391 const_binop (LSHIFT_EXPR, size_one_node,
6392 op1))) != 0
6393 && !TREE_OVERFLOW (t1))
6394 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6395 ? MULT_EXPR : FLOOR_DIV_EXPR,
6396 ctype,
6397 fold_convert (ctype, op0),
6398 t1),
6399 c, code, wide_type, strict_overflow_p);
6400 break;
6401
6402 case PLUS_EXPR: case MINUS_EXPR:
6403 /* See if we can eliminate the operation on both sides. If we can, we
6404 can return a new PLUS or MINUS. If we can't, the only remaining
6405 cases where we can do anything are if the second operand is a
6406 constant. */
6407 sub_strict_overflow_p = false;
6408 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6409 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6410 if (t1 != 0 && t2 != 0
6411 && TYPE_OVERFLOW_WRAPS (ctype)
6412 && (code == MULT_EXPR
6413 /* If not multiplication, we can only do this if both operands
6414 are divisible by c. */
6415 || (multiple_of_p (ctype, op0, c)
6416 && multiple_of_p (ctype, op1, c))))
6417 {
6418 if (sub_strict_overflow_p)
6419 *strict_overflow_p = true;
6420 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6421 fold_convert (ctype, t2));
6422 }
6423
6424 /* If this was a subtraction, negate OP1 and set it to be an addition.
6425 This simplifies the logic below. */
6426 if (tcode == MINUS_EXPR)
6427 {
6428 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6429 /* If OP1 was not easily negatable, the constant may be OP0. */
6430 if (TREE_CODE (op0) == INTEGER_CST)
6431 {
6432 std::swap (op0, op1);
6433 std::swap (t1, t2);
6434 }
6435 }
6436
6437 if (TREE_CODE (op1) != INTEGER_CST)
6438 break;
6439
6440 /* If either OP1 or C are negative, this optimization is not safe for
6441 some of the division and remainder types while for others we need
6442 to change the code. */
6443 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6444 {
6445 if (code == CEIL_DIV_EXPR)
6446 code = FLOOR_DIV_EXPR;
6447 else if (code == FLOOR_DIV_EXPR)
6448 code = CEIL_DIV_EXPR;
6449 else if (code != MULT_EXPR
6450 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6451 break;
6452 }
6453
6454 /* If it's a multiply or a division/modulus operation of a multiple
6455 of our constant, do the operation and verify it doesn't overflow. */
6456 if (code == MULT_EXPR
6457 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6458 TYPE_SIGN (type)))
6459 {
6460 op1 = const_binop (code, fold_convert (ctype, op1),
6461 fold_convert (ctype, c));
6462 /* We allow the constant to overflow with wrapping semantics. */
6463 if (op1 == 0
6464 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6465 break;
6466 }
6467 else
6468 break;
6469
6470 /* If we have an unsigned type, we cannot widen the operation since it
6471 will change the result if the original computation overflowed. */
6472 if (TYPE_UNSIGNED (ctype) && ctype != type)
6473 break;
6474
6475 /* The last case is if we are a multiply. In that case, we can
6476 apply the distributive law to commute the multiply and addition
6477 if the multiplication of the constants doesn't overflow
6478 and overflow is defined. With undefined overflow
6479 op0 * c might overflow, while (op0 + orig_op1) * c doesn't.
6480 But fold_plusminus_mult_expr would factor back any power-of-two
6481 value so do not distribute in the first place in this case. */
6482 if (code == MULT_EXPR
6483 && TYPE_OVERFLOW_WRAPS (ctype)
6484 && !(tree_fits_shwi_p (c) && pow2p_hwi (absu_hwi (tree_to_shwi (c)))))
6485 return fold_build2 (tcode, ctype,
6486 fold_build2 (code, ctype,
6487 fold_convert (ctype, op0),
6488 fold_convert (ctype, c)),
6489 op1);
6490
6491 break;
6492
6493 case MULT_EXPR:
6494 /* We have a special case here if we are doing something like
6495 (C * 8) % 4 since we know that's zero. */
6496 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6497 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6498 /* If the multiplication can overflow we cannot optimize this. */
6499 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6500 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6501 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6502 TYPE_SIGN (type)))
6503 {
6504 *strict_overflow_p = true;
6505 return omit_one_operand (type, integer_zero_node, op0);
6506 }
6507
6508 /* ... fall through ... */
6509
6510 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6511 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6512 /* If we can extract our operation from the LHS, do so and return a
6513 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6514 do something only if the second operand is a constant. */
6515 if (same_p
6516 && TYPE_OVERFLOW_WRAPS (ctype)
6517 && (t1 = extract_muldiv (op0, c, code, wide_type,
6518 strict_overflow_p)) != 0)
6519 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6520 fold_convert (ctype, op1));
6521 else if (tcode == MULT_EXPR && code == MULT_EXPR
6522 && TYPE_OVERFLOW_WRAPS (ctype)
6523 && (t1 = extract_muldiv (op1, c, code, wide_type,
6524 strict_overflow_p)) != 0)
6525 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6526 fold_convert (ctype, t1));
6527 else if (TREE_CODE (op1) != INTEGER_CST)
6528 return 0;
6529
6530 /* If these are the same operation types, we can associate them
6531 assuming no overflow. */
6532 if (tcode == code)
6533 {
6534 bool overflow_p = false;
6535 wi::overflow_type overflow_mul;
6536 signop sign = TYPE_SIGN (ctype);
6537 unsigned prec = TYPE_PRECISION (ctype);
6538 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6539 wi::to_wide (c, prec),
6540 sign, &overflow_mul);
6541 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6542 if (overflow_mul
6543 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6544 overflow_p = true;
6545 if (!overflow_p)
6546 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6547 wide_int_to_tree (ctype, mul));
6548 }
6549
6550 /* If these operations "cancel" each other, we have the main
6551 optimizations of this pass, which occur when either constant is a
6552 multiple of the other, in which case we replace this with either an
6553 operation or CODE or TCODE.
6554
6555 If we have an unsigned type, we cannot do this since it will change
6556 the result if the original computation overflowed. */
6557 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6558 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6559 || (tcode == MULT_EXPR
6560 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6561 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6562 && code != MULT_EXPR)))
6563 {
6564 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6565 TYPE_SIGN (type)))
6566 {
6567 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6568 *strict_overflow_p = true;
6569 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6570 fold_convert (ctype,
6571 const_binop (TRUNC_DIV_EXPR,
6572 op1, c)));
6573 }
6574 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1),
6575 TYPE_SIGN (type)))
6576 {
6577 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6578 *strict_overflow_p = true;
6579 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6580 fold_convert (ctype,
6581 const_binop (TRUNC_DIV_EXPR,
6582 c, op1)));
6583 }
6584 }
6585 break;
6586
6587 default:
6588 break;
6589 }
6590
6591 return 0;
6592 }
6593 \f
6594 /* Return a node which has the indicated constant VALUE (either 0 or
6595 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6596 and is of the indicated TYPE. */
6597
6598 tree
6599 constant_boolean_node (bool value, tree type)
6600 {
6601 if (type == integer_type_node)
6602 return value ? integer_one_node : integer_zero_node;
6603 else if (type == boolean_type_node)
6604 return value ? boolean_true_node : boolean_false_node;
6605 else if (TREE_CODE (type) == VECTOR_TYPE)
6606 return build_vector_from_val (type,
6607 build_int_cst (TREE_TYPE (type),
6608 value ? -1 : 0));
6609 else
6610 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6611 }
6612
6613
6614 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6615 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6616 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6617 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6618 COND is the first argument to CODE; otherwise (as in the example
6619 given here), it is the second argument. TYPE is the type of the
6620 original expression. Return NULL_TREE if no simplification is
6621 possible. */
6622
6623 static tree
6624 fold_binary_op_with_conditional_arg (location_t loc,
6625 enum tree_code code,
6626 tree type, tree op0, tree op1,
6627 tree cond, tree arg, int cond_first_p)
6628 {
6629 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6630 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6631 tree test, true_value, false_value;
6632 tree lhs = NULL_TREE;
6633 tree rhs = NULL_TREE;
6634 enum tree_code cond_code = COND_EXPR;
6635
6636 /* Do not move possibly trapping operations into the conditional as this
6637 pessimizes code and causes gimplification issues when applied late. */
6638 if (operation_could_trap_p (code, FLOAT_TYPE_P (type),
6639 ANY_INTEGRAL_TYPE_P (type)
6640 && TYPE_OVERFLOW_TRAPS (type), op1))
6641 return NULL_TREE;
6642
6643 if (TREE_CODE (cond) == COND_EXPR
6644 || TREE_CODE (cond) == VEC_COND_EXPR)
6645 {
6646 test = TREE_OPERAND (cond, 0);
6647 true_value = TREE_OPERAND (cond, 1);
6648 false_value = TREE_OPERAND (cond, 2);
6649 /* If this operand throws an expression, then it does not make
6650 sense to try to perform a logical or arithmetic operation
6651 involving it. */
6652 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6653 lhs = true_value;
6654 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6655 rhs = false_value;
6656 }
6657 else if (!(TREE_CODE (type) != VECTOR_TYPE
6658 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6659 {
6660 tree testtype = TREE_TYPE (cond);
6661 test = cond;
6662 true_value = constant_boolean_node (true, testtype);
6663 false_value = constant_boolean_node (false, testtype);
6664 }
6665 else
6666 /* Detect the case of mixing vector and scalar types - bail out. */
6667 return NULL_TREE;
6668
6669 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6670 cond_code = VEC_COND_EXPR;
6671
6672 /* This transformation is only worthwhile if we don't have to wrap ARG
6673 in a SAVE_EXPR and the operation can be simplified without recursing
6674 on at least one of the branches once its pushed inside the COND_EXPR. */
6675 if (!TREE_CONSTANT (arg)
6676 && (TREE_SIDE_EFFECTS (arg)
6677 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6678 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6679 return NULL_TREE;
6680
6681 arg = fold_convert_loc (loc, arg_type, arg);
6682 if (lhs == 0)
6683 {
6684 true_value = fold_convert_loc (loc, cond_type, true_value);
6685 if (cond_first_p)
6686 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6687 else
6688 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6689 }
6690 if (rhs == 0)
6691 {
6692 false_value = fold_convert_loc (loc, cond_type, false_value);
6693 if (cond_first_p)
6694 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6695 else
6696 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6697 }
6698
6699 /* Check that we have simplified at least one of the branches. */
6700 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6701 return NULL_TREE;
6702
6703 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6704 }
6705
6706 \f
6707 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6708
6709 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6710 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6711 ADDEND is the same as X.
6712
6713 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6714 and finite. The problematic cases are when X is zero, and its mode
6715 has signed zeros. In the case of rounding towards -infinity,
6716 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6717 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6718
6719 bool
6720 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6721 {
6722 if (!real_zerop (addend))
6723 return false;
6724
6725 /* Don't allow the fold with -fsignaling-nans. */
6726 if (HONOR_SNANS (type))
6727 return false;
6728
6729 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6730 if (!HONOR_SIGNED_ZEROS (type))
6731 return true;
6732
6733 /* There is no case that is safe for all rounding modes. */
6734 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
6735 return false;
6736
6737 /* In a vector or complex, we would need to check the sign of all zeros. */
6738 if (TREE_CODE (addend) == VECTOR_CST)
6739 addend = uniform_vector_p (addend);
6740 if (!addend || TREE_CODE (addend) != REAL_CST)
6741 return false;
6742
6743 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6744 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6745 negate = !negate;
6746
6747 /* The mode has signed zeros, and we have to honor their sign.
6748 In this situation, there is only one case we can return true for.
6749 X - 0 is the same as X with default rounding. */
6750 return negate;
6751 }
6752
6753 /* Subroutine of match.pd that optimizes comparisons of a division by
6754 a nonzero integer constant against an integer constant, i.e.
6755 X/C1 op C2.
6756
6757 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6758 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6759
6760 enum tree_code
6761 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
6762 tree *hi, bool *neg_overflow)
6763 {
6764 tree prod, tmp, type = TREE_TYPE (c1);
6765 signop sign = TYPE_SIGN (type);
6766 wi::overflow_type overflow;
6767
6768 /* We have to do this the hard way to detect unsigned overflow.
6769 prod = int_const_binop (MULT_EXPR, c1, c2); */
6770 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow);
6771 prod = force_fit_type (type, val, -1, overflow);
6772 *neg_overflow = false;
6773
6774 if (sign == UNSIGNED)
6775 {
6776 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6777 *lo = prod;
6778
6779 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6780 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow);
6781 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
6782 }
6783 else if (tree_int_cst_sgn (c1) >= 0)
6784 {
6785 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6786 switch (tree_int_cst_sgn (c2))
6787 {
6788 case -1:
6789 *neg_overflow = true;
6790 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
6791 *hi = prod;
6792 break;
6793
6794 case 0:
6795 *lo = fold_negate_const (tmp, type);
6796 *hi = tmp;
6797 break;
6798
6799 case 1:
6800 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
6801 *lo = prod;
6802 break;
6803
6804 default:
6805 gcc_unreachable ();
6806 }
6807 }
6808 else
6809 {
6810 /* A negative divisor reverses the relational operators. */
6811 code = swap_tree_comparison (code);
6812
6813 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
6814 switch (tree_int_cst_sgn (c2))
6815 {
6816 case -1:
6817 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
6818 *lo = prod;
6819 break;
6820
6821 case 0:
6822 *hi = fold_negate_const (tmp, type);
6823 *lo = tmp;
6824 break;
6825
6826 case 1:
6827 *neg_overflow = true;
6828 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
6829 *hi = prod;
6830 break;
6831
6832 default:
6833 gcc_unreachable ();
6834 }
6835 }
6836
6837 if (code != EQ_EXPR && code != NE_EXPR)
6838 return code;
6839
6840 if (TREE_OVERFLOW (*lo)
6841 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
6842 *lo = NULL_TREE;
6843 if (TREE_OVERFLOW (*hi)
6844 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
6845 *hi = NULL_TREE;
6846
6847 return code;
6848 }
6849
6850
6851 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6852 equality/inequality test, then return a simplified form of the test
6853 using a sign testing. Otherwise return NULL. TYPE is the desired
6854 result type. */
6855
6856 static tree
6857 fold_single_bit_test_into_sign_test (location_t loc,
6858 enum tree_code code, tree arg0, tree arg1,
6859 tree result_type)
6860 {
6861 /* If this is testing a single bit, we can optimize the test. */
6862 if ((code == NE_EXPR || code == EQ_EXPR)
6863 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6864 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6865 {
6866 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6867 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6868 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6869
6870 if (arg00 != NULL_TREE
6871 /* This is only a win if casting to a signed type is cheap,
6872 i.e. when arg00's type is not a partial mode. */
6873 && type_has_mode_precision_p (TREE_TYPE (arg00)))
6874 {
6875 tree stype = signed_type_for (TREE_TYPE (arg00));
6876 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6877 result_type,
6878 fold_convert_loc (loc, stype, arg00),
6879 build_int_cst (stype, 0));
6880 }
6881 }
6882
6883 return NULL_TREE;
6884 }
6885
6886 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6887 equality/inequality test, then return a simplified form of
6888 the test using shifts and logical operations. Otherwise return
6889 NULL. TYPE is the desired result type. */
6890
6891 tree
6892 fold_single_bit_test (location_t loc, enum tree_code code,
6893 tree arg0, tree arg1, tree result_type)
6894 {
6895 /* If this is testing a single bit, we can optimize the test. */
6896 if ((code == NE_EXPR || code == EQ_EXPR)
6897 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6898 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6899 {
6900 tree inner = TREE_OPERAND (arg0, 0);
6901 tree type = TREE_TYPE (arg0);
6902 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6903 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
6904 int ops_unsigned;
6905 tree signed_type, unsigned_type, intermediate_type;
6906 tree tem, one;
6907
6908 /* First, see if we can fold the single bit test into a sign-bit
6909 test. */
6910 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6911 result_type);
6912 if (tem)
6913 return tem;
6914
6915 /* Otherwise we have (A & C) != 0 where C is a single bit,
6916 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6917 Similarly for (A & C) == 0. */
6918
6919 /* If INNER is a right shift of a constant and it plus BITNUM does
6920 not overflow, adjust BITNUM and INNER. */
6921 if (TREE_CODE (inner) == RSHIFT_EXPR
6922 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6923 && bitnum < TYPE_PRECISION (type)
6924 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)),
6925 TYPE_PRECISION (type) - bitnum))
6926 {
6927 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6928 inner = TREE_OPERAND (inner, 0);
6929 }
6930
6931 /* If we are going to be able to omit the AND below, we must do our
6932 operations as unsigned. If we must use the AND, we have a choice.
6933 Normally unsigned is faster, but for some machines signed is. */
6934 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6935 && !flag_syntax_only) ? 0 : 1;
6936
6937 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6938 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6939 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6940 inner = fold_convert_loc (loc, intermediate_type, inner);
6941
6942 if (bitnum != 0)
6943 inner = build2 (RSHIFT_EXPR, intermediate_type,
6944 inner, size_int (bitnum));
6945
6946 one = build_int_cst (intermediate_type, 1);
6947
6948 if (code == EQ_EXPR)
6949 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6950
6951 /* Put the AND last so it can combine with more things. */
6952 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6953
6954 /* Make sure to return the proper type. */
6955 inner = fold_convert_loc (loc, result_type, inner);
6956
6957 return inner;
6958 }
6959 return NULL_TREE;
6960 }
6961
6962 /* Test whether it is preferable two swap two operands, ARG0 and
6963 ARG1, for example because ARG0 is an integer constant and ARG1
6964 isn't. */
6965
6966 bool
6967 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6968 {
6969 if (CONSTANT_CLASS_P (arg1))
6970 return 0;
6971 if (CONSTANT_CLASS_P (arg0))
6972 return 1;
6973
6974 STRIP_NOPS (arg0);
6975 STRIP_NOPS (arg1);
6976
6977 if (TREE_CONSTANT (arg1))
6978 return 0;
6979 if (TREE_CONSTANT (arg0))
6980 return 1;
6981
6982 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6983 for commutative and comparison operators. Ensuring a canonical
6984 form allows the optimizers to find additional redundancies without
6985 having to explicitly check for both orderings. */
6986 if (TREE_CODE (arg0) == SSA_NAME
6987 && TREE_CODE (arg1) == SSA_NAME
6988 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6989 return 1;
6990
6991 /* Put SSA_NAMEs last. */
6992 if (TREE_CODE (arg1) == SSA_NAME)
6993 return 0;
6994 if (TREE_CODE (arg0) == SSA_NAME)
6995 return 1;
6996
6997 /* Put variables last. */
6998 if (DECL_P (arg1))
6999 return 0;
7000 if (DECL_P (arg0))
7001 return 1;
7002
7003 return 0;
7004 }
7005
7006
7007 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7008 means A >= Y && A != MAX, but in this case we know that
7009 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7010
7011 static tree
7012 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7013 {
7014 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7015
7016 if (TREE_CODE (bound) == LT_EXPR)
7017 a = TREE_OPERAND (bound, 0);
7018 else if (TREE_CODE (bound) == GT_EXPR)
7019 a = TREE_OPERAND (bound, 1);
7020 else
7021 return NULL_TREE;
7022
7023 typea = TREE_TYPE (a);
7024 if (!INTEGRAL_TYPE_P (typea)
7025 && !POINTER_TYPE_P (typea))
7026 return NULL_TREE;
7027
7028 if (TREE_CODE (ineq) == LT_EXPR)
7029 {
7030 a1 = TREE_OPERAND (ineq, 1);
7031 y = TREE_OPERAND (ineq, 0);
7032 }
7033 else if (TREE_CODE (ineq) == GT_EXPR)
7034 {
7035 a1 = TREE_OPERAND (ineq, 0);
7036 y = TREE_OPERAND (ineq, 1);
7037 }
7038 else
7039 return NULL_TREE;
7040
7041 if (TREE_TYPE (a1) != typea)
7042 return NULL_TREE;
7043
7044 if (POINTER_TYPE_P (typea))
7045 {
7046 /* Convert the pointer types into integer before taking the difference. */
7047 tree ta = fold_convert_loc (loc, ssizetype, a);
7048 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7049 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7050 }
7051 else
7052 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7053
7054 if (!diff || !integer_onep (diff))
7055 return NULL_TREE;
7056
7057 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7058 }
7059
7060 /* Fold a sum or difference of at least one multiplication.
7061 Returns the folded tree or NULL if no simplification could be made. */
7062
7063 static tree
7064 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7065 tree arg0, tree arg1)
7066 {
7067 tree arg00, arg01, arg10, arg11;
7068 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7069
7070 /* (A * C) +- (B * C) -> (A+-B) * C.
7071 (A * C) +- A -> A * (C+-1).
7072 We are most concerned about the case where C is a constant,
7073 but other combinations show up during loop reduction. Since
7074 it is not difficult, try all four possibilities. */
7075
7076 if (TREE_CODE (arg0) == MULT_EXPR)
7077 {
7078 arg00 = TREE_OPERAND (arg0, 0);
7079 arg01 = TREE_OPERAND (arg0, 1);
7080 }
7081 else if (TREE_CODE (arg0) == INTEGER_CST)
7082 {
7083 arg00 = build_one_cst (type);
7084 arg01 = arg0;
7085 }
7086 else
7087 {
7088 /* We cannot generate constant 1 for fract. */
7089 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7090 return NULL_TREE;
7091 arg00 = arg0;
7092 arg01 = build_one_cst (type);
7093 }
7094 if (TREE_CODE (arg1) == MULT_EXPR)
7095 {
7096 arg10 = TREE_OPERAND (arg1, 0);
7097 arg11 = TREE_OPERAND (arg1, 1);
7098 }
7099 else if (TREE_CODE (arg1) == INTEGER_CST)
7100 {
7101 arg10 = build_one_cst (type);
7102 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7103 the purpose of this canonicalization. */
7104 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1)))
7105 && negate_expr_p (arg1)
7106 && code == PLUS_EXPR)
7107 {
7108 arg11 = negate_expr (arg1);
7109 code = MINUS_EXPR;
7110 }
7111 else
7112 arg11 = arg1;
7113 }
7114 else
7115 {
7116 /* We cannot generate constant 1 for fract. */
7117 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7118 return NULL_TREE;
7119 arg10 = arg1;
7120 arg11 = build_one_cst (type);
7121 }
7122 same = NULL_TREE;
7123
7124 /* Prefer factoring a common non-constant. */
7125 if (operand_equal_p (arg00, arg10, 0))
7126 same = arg00, alt0 = arg01, alt1 = arg11;
7127 else if (operand_equal_p (arg01, arg11, 0))
7128 same = arg01, alt0 = arg00, alt1 = arg10;
7129 else if (operand_equal_p (arg00, arg11, 0))
7130 same = arg00, alt0 = arg01, alt1 = arg10;
7131 else if (operand_equal_p (arg01, arg10, 0))
7132 same = arg01, alt0 = arg00, alt1 = arg11;
7133
7134 /* No identical multiplicands; see if we can find a common
7135 power-of-two factor in non-power-of-two multiplies. This
7136 can help in multi-dimensional array access. */
7137 else if (tree_fits_shwi_p (arg01) && tree_fits_shwi_p (arg11))
7138 {
7139 HOST_WIDE_INT int01 = tree_to_shwi (arg01);
7140 HOST_WIDE_INT int11 = tree_to_shwi (arg11);
7141 HOST_WIDE_INT tmp;
7142 bool swap = false;
7143 tree maybe_same;
7144
7145 /* Move min of absolute values to int11. */
7146 if (absu_hwi (int01) < absu_hwi (int11))
7147 {
7148 tmp = int01, int01 = int11, int11 = tmp;
7149 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7150 maybe_same = arg01;
7151 swap = true;
7152 }
7153 else
7154 maybe_same = arg11;
7155
7156 const unsigned HOST_WIDE_INT factor = absu_hwi (int11);
7157 if (factor > 1
7158 && pow2p_hwi (factor)
7159 && (int01 & (factor - 1)) == 0
7160 /* The remainder should not be a constant, otherwise we
7161 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7162 increased the number of multiplications necessary. */
7163 && TREE_CODE (arg10) != INTEGER_CST)
7164 {
7165 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7166 build_int_cst (TREE_TYPE (arg00),
7167 int01 / int11));
7168 alt1 = arg10;
7169 same = maybe_same;
7170 if (swap)
7171 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7172 }
7173 }
7174
7175 if (!same)
7176 return NULL_TREE;
7177
7178 if (! ANY_INTEGRAL_TYPE_P (type)
7179 || TYPE_OVERFLOW_WRAPS (type)
7180 /* We are neither factoring zero nor minus one. */
7181 || TREE_CODE (same) == INTEGER_CST)
7182 return fold_build2_loc (loc, MULT_EXPR, type,
7183 fold_build2_loc (loc, code, type,
7184 fold_convert_loc (loc, type, alt0),
7185 fold_convert_loc (loc, type, alt1)),
7186 fold_convert_loc (loc, type, same));
7187
7188 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7189 same may be minus one and thus the multiplication may overflow. Perform
7190 the sum operation in an unsigned type. */
7191 tree utype = unsigned_type_for (type);
7192 tree tem = fold_build2_loc (loc, code, utype,
7193 fold_convert_loc (loc, utype, alt0),
7194 fold_convert_loc (loc, utype, alt1));
7195 /* If the sum evaluated to a constant that is not -INF the multiplication
7196 cannot overflow. */
7197 if (TREE_CODE (tem) == INTEGER_CST
7198 && (wi::to_wide (tem)
7199 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
7200 return fold_build2_loc (loc, MULT_EXPR, type,
7201 fold_convert (type, tem), same);
7202
7203 /* Do not resort to unsigned multiplication because
7204 we lose the no-overflow property of the expression. */
7205 return NULL_TREE;
7206 }
7207
7208 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7209 specified by EXPR into the buffer PTR of length LEN bytes.
7210 Return the number of bytes placed in the buffer, or zero
7211 upon failure. */
7212
7213 static int
7214 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7215 {
7216 tree type = TREE_TYPE (expr);
7217 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7218 int byte, offset, word, words;
7219 unsigned char value;
7220
7221 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7222 return 0;
7223 if (off == -1)
7224 off = 0;
7225
7226 if (ptr == NULL)
7227 /* Dry run. */
7228 return MIN (len, total_bytes - off);
7229
7230 words = total_bytes / UNITS_PER_WORD;
7231
7232 for (byte = 0; byte < total_bytes; byte++)
7233 {
7234 int bitpos = byte * BITS_PER_UNIT;
7235 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7236 number of bytes. */
7237 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7238
7239 if (total_bytes > UNITS_PER_WORD)
7240 {
7241 word = byte / UNITS_PER_WORD;
7242 if (WORDS_BIG_ENDIAN)
7243 word = (words - 1) - word;
7244 offset = word * UNITS_PER_WORD;
7245 if (BYTES_BIG_ENDIAN)
7246 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7247 else
7248 offset += byte % UNITS_PER_WORD;
7249 }
7250 else
7251 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7252 if (offset >= off && offset - off < len)
7253 ptr[offset - off] = value;
7254 }
7255 return MIN (len, total_bytes - off);
7256 }
7257
7258
7259 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7260 specified by EXPR into the buffer PTR of length LEN bytes.
7261 Return the number of bytes placed in the buffer, or zero
7262 upon failure. */
7263
7264 static int
7265 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7266 {
7267 tree type = TREE_TYPE (expr);
7268 scalar_mode mode = SCALAR_TYPE_MODE (type);
7269 int total_bytes = GET_MODE_SIZE (mode);
7270 FIXED_VALUE_TYPE value;
7271 tree i_value, i_type;
7272
7273 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7274 return 0;
7275
7276 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7277
7278 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7279 return 0;
7280
7281 value = TREE_FIXED_CST (expr);
7282 i_value = double_int_to_tree (i_type, value.data);
7283
7284 return native_encode_int (i_value, ptr, len, off);
7285 }
7286
7287
7288 /* Subroutine of native_encode_expr. Encode the REAL_CST
7289 specified by EXPR into the buffer PTR of length LEN bytes.
7290 Return the number of bytes placed in the buffer, or zero
7291 upon failure. */
7292
7293 static int
7294 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7295 {
7296 tree type = TREE_TYPE (expr);
7297 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7298 int byte, offset, word, words, bitpos;
7299 unsigned char value;
7300
7301 /* There are always 32 bits in each long, no matter the size of
7302 the hosts long. We handle floating point representations with
7303 up to 192 bits. */
7304 long tmp[6];
7305
7306 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7307 return 0;
7308 if (off == -1)
7309 off = 0;
7310
7311 if (ptr == NULL)
7312 /* Dry run. */
7313 return MIN (len, total_bytes - off);
7314
7315 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7316
7317 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7318
7319 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7320 bitpos += BITS_PER_UNIT)
7321 {
7322 byte = (bitpos / BITS_PER_UNIT) & 3;
7323 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7324
7325 if (UNITS_PER_WORD < 4)
7326 {
7327 word = byte / UNITS_PER_WORD;
7328 if (WORDS_BIG_ENDIAN)
7329 word = (words - 1) - word;
7330 offset = word * UNITS_PER_WORD;
7331 if (BYTES_BIG_ENDIAN)
7332 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7333 else
7334 offset += byte % UNITS_PER_WORD;
7335 }
7336 else
7337 {
7338 offset = byte;
7339 if (BYTES_BIG_ENDIAN)
7340 {
7341 /* Reverse bytes within each long, or within the entire float
7342 if it's smaller than a long (for HFmode). */
7343 offset = MIN (3, total_bytes - 1) - offset;
7344 gcc_assert (offset >= 0);
7345 }
7346 }
7347 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7348 if (offset >= off
7349 && offset - off < len)
7350 ptr[offset - off] = value;
7351 }
7352 return MIN (len, total_bytes - off);
7353 }
7354
7355 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7356 specified by EXPR into the buffer PTR of length LEN bytes.
7357 Return the number of bytes placed in the buffer, or zero
7358 upon failure. */
7359
7360 static int
7361 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7362 {
7363 int rsize, isize;
7364 tree part;
7365
7366 part = TREE_REALPART (expr);
7367 rsize = native_encode_expr (part, ptr, len, off);
7368 if (off == -1 && rsize == 0)
7369 return 0;
7370 part = TREE_IMAGPART (expr);
7371 if (off != -1)
7372 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7373 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7374 len - rsize, off);
7375 if (off == -1 && isize != rsize)
7376 return 0;
7377 return rsize + isize;
7378 }
7379
7380
7381 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7382 specified by EXPR into the buffer PTR of length LEN bytes.
7383 Return the number of bytes placed in the buffer, or zero
7384 upon failure. */
7385
7386 static int
7387 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7388 {
7389 unsigned HOST_WIDE_INT i, count;
7390 int size, offset;
7391 tree itype, elem;
7392
7393 offset = 0;
7394 if (!VECTOR_CST_NELTS (expr).is_constant (&count))
7395 return 0;
7396 itype = TREE_TYPE (TREE_TYPE (expr));
7397 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7398 for (i = 0; i < count; i++)
7399 {
7400 if (off >= size)
7401 {
7402 off -= size;
7403 continue;
7404 }
7405 elem = VECTOR_CST_ELT (expr, i);
7406 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
7407 len - offset, off);
7408 if ((off == -1 && res != size) || res == 0)
7409 return 0;
7410 offset += res;
7411 if (offset >= len)
7412 return (off == -1 && i < count - 1) ? 0 : offset;
7413 if (off != -1)
7414 off = 0;
7415 }
7416 return offset;
7417 }
7418
7419
7420 /* Subroutine of native_encode_expr. Encode the STRING_CST
7421 specified by EXPR into the buffer PTR of length LEN bytes.
7422 Return the number of bytes placed in the buffer, or zero
7423 upon failure. */
7424
7425 static int
7426 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7427 {
7428 tree type = TREE_TYPE (expr);
7429
7430 /* Wide-char strings are encoded in target byte-order so native
7431 encoding them is trivial. */
7432 if (BITS_PER_UNIT != CHAR_BIT
7433 || TREE_CODE (type) != ARRAY_TYPE
7434 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7435 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7436 return 0;
7437
7438 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
7439 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7440 return 0;
7441 if (off == -1)
7442 off = 0;
7443 if (ptr == NULL)
7444 /* Dry run. */;
7445 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7446 {
7447 int written = 0;
7448 if (off < TREE_STRING_LENGTH (expr))
7449 {
7450 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7451 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7452 }
7453 memset (ptr + written, 0,
7454 MIN (total_bytes - written, len - written));
7455 }
7456 else
7457 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7458 return MIN (total_bytes - off, len);
7459 }
7460
7461
7462 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7463 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7464 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7465 anything, just do a dry run. If OFF is not -1 then start
7466 the encoding at byte offset OFF and encode at most LEN bytes.
7467 Return the number of bytes placed in the buffer, or zero upon failure. */
7468
7469 int
7470 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7471 {
7472 /* We don't support starting at negative offset and -1 is special. */
7473 if (off < -1)
7474 return 0;
7475
7476 switch (TREE_CODE (expr))
7477 {
7478 case INTEGER_CST:
7479 return native_encode_int (expr, ptr, len, off);
7480
7481 case REAL_CST:
7482 return native_encode_real (expr, ptr, len, off);
7483
7484 case FIXED_CST:
7485 return native_encode_fixed (expr, ptr, len, off);
7486
7487 case COMPLEX_CST:
7488 return native_encode_complex (expr, ptr, len, off);
7489
7490 case VECTOR_CST:
7491 return native_encode_vector (expr, ptr, len, off);
7492
7493 case STRING_CST:
7494 return native_encode_string (expr, ptr, len, off);
7495
7496 default:
7497 return 0;
7498 }
7499 }
7500
7501
7502 /* Subroutine of native_interpret_expr. Interpret the contents of
7503 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7504 If the buffer cannot be interpreted, return NULL_TREE. */
7505
7506 static tree
7507 native_interpret_int (tree type, const unsigned char *ptr, int len)
7508 {
7509 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7510
7511 if (total_bytes > len
7512 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7513 return NULL_TREE;
7514
7515 wide_int result = wi::from_buffer (ptr, total_bytes);
7516
7517 return wide_int_to_tree (type, result);
7518 }
7519
7520
7521 /* Subroutine of native_interpret_expr. Interpret the contents of
7522 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7523 If the buffer cannot be interpreted, return NULL_TREE. */
7524
7525 static tree
7526 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7527 {
7528 scalar_mode mode = SCALAR_TYPE_MODE (type);
7529 int total_bytes = GET_MODE_SIZE (mode);
7530 double_int result;
7531 FIXED_VALUE_TYPE fixed_value;
7532
7533 if (total_bytes > len
7534 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7535 return NULL_TREE;
7536
7537 result = double_int::from_buffer (ptr, total_bytes);
7538 fixed_value = fixed_from_double_int (result, mode);
7539
7540 return build_fixed (type, fixed_value);
7541 }
7542
7543
7544 /* Subroutine of native_interpret_expr. Interpret the contents of
7545 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7546 If the buffer cannot be interpreted, return NULL_TREE. */
7547
7548 static tree
7549 native_interpret_real (tree type, const unsigned char *ptr, int len)
7550 {
7551 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7552 int total_bytes = GET_MODE_SIZE (mode);
7553 unsigned char value;
7554 /* There are always 32 bits in each long, no matter the size of
7555 the hosts long. We handle floating point representations with
7556 up to 192 bits. */
7557 REAL_VALUE_TYPE r;
7558 long tmp[6];
7559
7560 if (total_bytes > len || total_bytes > 24)
7561 return NULL_TREE;
7562 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7563
7564 memset (tmp, 0, sizeof (tmp));
7565 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7566 bitpos += BITS_PER_UNIT)
7567 {
7568 /* Both OFFSET and BYTE index within a long;
7569 bitpos indexes the whole float. */
7570 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7571 if (UNITS_PER_WORD < 4)
7572 {
7573 int word = byte / UNITS_PER_WORD;
7574 if (WORDS_BIG_ENDIAN)
7575 word = (words - 1) - word;
7576 offset = word * UNITS_PER_WORD;
7577 if (BYTES_BIG_ENDIAN)
7578 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7579 else
7580 offset += byte % UNITS_PER_WORD;
7581 }
7582 else
7583 {
7584 offset = byte;
7585 if (BYTES_BIG_ENDIAN)
7586 {
7587 /* Reverse bytes within each long, or within the entire float
7588 if it's smaller than a long (for HFmode). */
7589 offset = MIN (3, total_bytes - 1) - offset;
7590 gcc_assert (offset >= 0);
7591 }
7592 }
7593 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7594
7595 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7596 }
7597
7598 real_from_target (&r, tmp, mode);
7599 return build_real (type, r);
7600 }
7601
7602
7603 /* Subroutine of native_interpret_expr. Interpret the contents of
7604 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7605 If the buffer cannot be interpreted, return NULL_TREE. */
7606
7607 static tree
7608 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7609 {
7610 tree etype, rpart, ipart;
7611 int size;
7612
7613 etype = TREE_TYPE (type);
7614 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7615 if (size * 2 > len)
7616 return NULL_TREE;
7617 rpart = native_interpret_expr (etype, ptr, size);
7618 if (!rpart)
7619 return NULL_TREE;
7620 ipart = native_interpret_expr (etype, ptr+size, size);
7621 if (!ipart)
7622 return NULL_TREE;
7623 return build_complex (type, rpart, ipart);
7624 }
7625
7626
7627 /* Subroutine of native_interpret_expr. Interpret the contents of
7628 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7629 If the buffer cannot be interpreted, return NULL_TREE. */
7630
7631 static tree
7632 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len)
7633 {
7634 tree etype, elem;
7635 unsigned int i, size;
7636 unsigned HOST_WIDE_INT count;
7637
7638 etype = TREE_TYPE (type);
7639 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7640 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count)
7641 || size * count > len)
7642 return NULL_TREE;
7643
7644 tree_vector_builder elements (type, count, 1);
7645 for (i = 0; i < count; ++i)
7646 {
7647 elem = native_interpret_expr (etype, ptr+(i*size), size);
7648 if (!elem)
7649 return NULL_TREE;
7650 elements.quick_push (elem);
7651 }
7652 return elements.build ();
7653 }
7654
7655
7656 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7657 the buffer PTR of length LEN as a constant of type TYPE. For
7658 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7659 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7660 return NULL_TREE. */
7661
7662 tree
7663 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7664 {
7665 switch (TREE_CODE (type))
7666 {
7667 case INTEGER_TYPE:
7668 case ENUMERAL_TYPE:
7669 case BOOLEAN_TYPE:
7670 case POINTER_TYPE:
7671 case REFERENCE_TYPE:
7672 return native_interpret_int (type, ptr, len);
7673
7674 case REAL_TYPE:
7675 return native_interpret_real (type, ptr, len);
7676
7677 case FIXED_POINT_TYPE:
7678 return native_interpret_fixed (type, ptr, len);
7679
7680 case COMPLEX_TYPE:
7681 return native_interpret_complex (type, ptr, len);
7682
7683 case VECTOR_TYPE:
7684 return native_interpret_vector (type, ptr, len);
7685
7686 default:
7687 return NULL_TREE;
7688 }
7689 }
7690
7691 /* Returns true if we can interpret the contents of a native encoding
7692 as TYPE. */
7693
7694 static bool
7695 can_native_interpret_type_p (tree type)
7696 {
7697 switch (TREE_CODE (type))
7698 {
7699 case INTEGER_TYPE:
7700 case ENUMERAL_TYPE:
7701 case BOOLEAN_TYPE:
7702 case POINTER_TYPE:
7703 case REFERENCE_TYPE:
7704 case FIXED_POINT_TYPE:
7705 case REAL_TYPE:
7706 case COMPLEX_TYPE:
7707 case VECTOR_TYPE:
7708 return true;
7709 default:
7710 return false;
7711 }
7712 }
7713
7714
7715 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7716 TYPE at compile-time. If we're unable to perform the conversion
7717 return NULL_TREE. */
7718
7719 static tree
7720 fold_view_convert_expr (tree type, tree expr)
7721 {
7722 /* We support up to 512-bit values (for V8DFmode). */
7723 unsigned char buffer[64];
7724 int len;
7725
7726 /* Check that the host and target are sane. */
7727 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7728 return NULL_TREE;
7729
7730 len = native_encode_expr (expr, buffer, sizeof (buffer));
7731 if (len == 0)
7732 return NULL_TREE;
7733
7734 return native_interpret_expr (type, buffer, len);
7735 }
7736
7737 /* Build an expression for the address of T. Folds away INDIRECT_REF
7738 to avoid confusing the gimplify process. */
7739
7740 tree
7741 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7742 {
7743 /* The size of the object is not relevant when talking about its address. */
7744 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7745 t = TREE_OPERAND (t, 0);
7746
7747 if (TREE_CODE (t) == INDIRECT_REF)
7748 {
7749 t = TREE_OPERAND (t, 0);
7750
7751 if (TREE_TYPE (t) != ptrtype)
7752 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7753 }
7754 else if (TREE_CODE (t) == MEM_REF
7755 && integer_zerop (TREE_OPERAND (t, 1)))
7756 return TREE_OPERAND (t, 0);
7757 else if (TREE_CODE (t) == MEM_REF
7758 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7759 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7760 TREE_OPERAND (t, 0),
7761 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7762 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7763 {
7764 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7765
7766 if (TREE_TYPE (t) != ptrtype)
7767 t = fold_convert_loc (loc, ptrtype, t);
7768 }
7769 else
7770 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7771
7772 return t;
7773 }
7774
7775 /* Build an expression for the address of T. */
7776
7777 tree
7778 build_fold_addr_expr_loc (location_t loc, tree t)
7779 {
7780 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7781
7782 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7783 }
7784
7785 /* Fold a unary expression of code CODE and type TYPE with operand
7786 OP0. Return the folded expression if folding is successful.
7787 Otherwise, return NULL_TREE. */
7788
7789 tree
7790 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7791 {
7792 tree tem;
7793 tree arg0;
7794 enum tree_code_class kind = TREE_CODE_CLASS (code);
7795
7796 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7797 && TREE_CODE_LENGTH (code) == 1);
7798
7799 arg0 = op0;
7800 if (arg0)
7801 {
7802 if (CONVERT_EXPR_CODE_P (code)
7803 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7804 {
7805 /* Don't use STRIP_NOPS, because signedness of argument type
7806 matters. */
7807 STRIP_SIGN_NOPS (arg0);
7808 }
7809 else
7810 {
7811 /* Strip any conversions that don't change the mode. This
7812 is safe for every expression, except for a comparison
7813 expression because its signedness is derived from its
7814 operands.
7815
7816 Note that this is done as an internal manipulation within
7817 the constant folder, in order to find the simplest
7818 representation of the arguments so that their form can be
7819 studied. In any cases, the appropriate type conversions
7820 should be put back in the tree that will get out of the
7821 constant folder. */
7822 STRIP_NOPS (arg0);
7823 }
7824
7825 if (CONSTANT_CLASS_P (arg0))
7826 {
7827 tree tem = const_unop (code, type, arg0);
7828 if (tem)
7829 {
7830 if (TREE_TYPE (tem) != type)
7831 tem = fold_convert_loc (loc, type, tem);
7832 return tem;
7833 }
7834 }
7835 }
7836
7837 tem = generic_simplify (loc, code, type, op0);
7838 if (tem)
7839 return tem;
7840
7841 if (TREE_CODE_CLASS (code) == tcc_unary)
7842 {
7843 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7844 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7845 fold_build1_loc (loc, code, type,
7846 fold_convert_loc (loc, TREE_TYPE (op0),
7847 TREE_OPERAND (arg0, 1))));
7848 else if (TREE_CODE (arg0) == COND_EXPR)
7849 {
7850 tree arg01 = TREE_OPERAND (arg0, 1);
7851 tree arg02 = TREE_OPERAND (arg0, 2);
7852 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7853 arg01 = fold_build1_loc (loc, code, type,
7854 fold_convert_loc (loc,
7855 TREE_TYPE (op0), arg01));
7856 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7857 arg02 = fold_build1_loc (loc, code, type,
7858 fold_convert_loc (loc,
7859 TREE_TYPE (op0), arg02));
7860 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7861 arg01, arg02);
7862
7863 /* If this was a conversion, and all we did was to move into
7864 inside the COND_EXPR, bring it back out. But leave it if
7865 it is a conversion from integer to integer and the
7866 result precision is no wider than a word since such a
7867 conversion is cheap and may be optimized away by combine,
7868 while it couldn't if it were outside the COND_EXPR. Then return
7869 so we don't get into an infinite recursion loop taking the
7870 conversion out and then back in. */
7871
7872 if ((CONVERT_EXPR_CODE_P (code)
7873 || code == NON_LVALUE_EXPR)
7874 && TREE_CODE (tem) == COND_EXPR
7875 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7876 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7877 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7878 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7879 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7880 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7881 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7882 && (INTEGRAL_TYPE_P
7883 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7884 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7885 || flag_syntax_only))
7886 tem = build1_loc (loc, code, type,
7887 build3 (COND_EXPR,
7888 TREE_TYPE (TREE_OPERAND
7889 (TREE_OPERAND (tem, 1), 0)),
7890 TREE_OPERAND (tem, 0),
7891 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7892 TREE_OPERAND (TREE_OPERAND (tem, 2),
7893 0)));
7894 return tem;
7895 }
7896 }
7897
7898 switch (code)
7899 {
7900 case NON_LVALUE_EXPR:
7901 if (!maybe_lvalue_p (op0))
7902 return fold_convert_loc (loc, type, op0);
7903 return NULL_TREE;
7904
7905 CASE_CONVERT:
7906 case FLOAT_EXPR:
7907 case FIX_TRUNC_EXPR:
7908 if (COMPARISON_CLASS_P (op0))
7909 {
7910 /* If we have (type) (a CMP b) and type is an integral type, return
7911 new expression involving the new type. Canonicalize
7912 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7913 non-integral type.
7914 Do not fold the result as that would not simplify further, also
7915 folding again results in recursions. */
7916 if (TREE_CODE (type) == BOOLEAN_TYPE)
7917 return build2_loc (loc, TREE_CODE (op0), type,
7918 TREE_OPERAND (op0, 0),
7919 TREE_OPERAND (op0, 1));
7920 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7921 && TREE_CODE (type) != VECTOR_TYPE)
7922 return build3_loc (loc, COND_EXPR, type, op0,
7923 constant_boolean_node (true, type),
7924 constant_boolean_node (false, type));
7925 }
7926
7927 /* Handle (T *)&A.B.C for A being of type T and B and C
7928 living at offset zero. This occurs frequently in
7929 C++ upcasting and then accessing the base. */
7930 if (TREE_CODE (op0) == ADDR_EXPR
7931 && POINTER_TYPE_P (type)
7932 && handled_component_p (TREE_OPERAND (op0, 0)))
7933 {
7934 poly_int64 bitsize, bitpos;
7935 tree offset;
7936 machine_mode mode;
7937 int unsignedp, reversep, volatilep;
7938 tree base
7939 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7940 &offset, &mode, &unsignedp, &reversep,
7941 &volatilep);
7942 /* If the reference was to a (constant) zero offset, we can use
7943 the address of the base if it has the same base type
7944 as the result type and the pointer type is unqualified. */
7945 if (!offset
7946 && known_eq (bitpos, 0)
7947 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7948 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7949 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7950 return fold_convert_loc (loc, type,
7951 build_fold_addr_expr_loc (loc, base));
7952 }
7953
7954 if (TREE_CODE (op0) == MODIFY_EXPR
7955 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7956 /* Detect assigning a bitfield. */
7957 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7958 && DECL_BIT_FIELD
7959 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7960 {
7961 /* Don't leave an assignment inside a conversion
7962 unless assigning a bitfield. */
7963 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7964 /* First do the assignment, then return converted constant. */
7965 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7966 TREE_NO_WARNING (tem) = 1;
7967 TREE_USED (tem) = 1;
7968 return tem;
7969 }
7970
7971 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7972 constants (if x has signed type, the sign bit cannot be set
7973 in c). This folds extension into the BIT_AND_EXPR.
7974 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7975 very likely don't have maximal range for their precision and this
7976 transformation effectively doesn't preserve non-maximal ranges. */
7977 if (TREE_CODE (type) == INTEGER_TYPE
7978 && TREE_CODE (op0) == BIT_AND_EXPR
7979 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7980 {
7981 tree and_expr = op0;
7982 tree and0 = TREE_OPERAND (and_expr, 0);
7983 tree and1 = TREE_OPERAND (and_expr, 1);
7984 int change = 0;
7985
7986 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7987 || (TYPE_PRECISION (type)
7988 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7989 change = 1;
7990 else if (TYPE_PRECISION (TREE_TYPE (and1))
7991 <= HOST_BITS_PER_WIDE_INT
7992 && tree_fits_uhwi_p (and1))
7993 {
7994 unsigned HOST_WIDE_INT cst;
7995
7996 cst = tree_to_uhwi (and1);
7997 cst &= HOST_WIDE_INT_M1U
7998 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7999 change = (cst == 0);
8000 if (change
8001 && !flag_syntax_only
8002 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
8003 == ZERO_EXTEND))
8004 {
8005 tree uns = unsigned_type_for (TREE_TYPE (and0));
8006 and0 = fold_convert_loc (loc, uns, and0);
8007 and1 = fold_convert_loc (loc, uns, and1);
8008 }
8009 }
8010 if (change)
8011 {
8012 tem = force_fit_type (type, wi::to_widest (and1), 0,
8013 TREE_OVERFLOW (and1));
8014 return fold_build2_loc (loc, BIT_AND_EXPR, type,
8015 fold_convert_loc (loc, type, and0), tem);
8016 }
8017 }
8018
8019 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
8020 cast (T1)X will fold away. We assume that this happens when X itself
8021 is a cast. */
8022 if (POINTER_TYPE_P (type)
8023 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8024 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
8025 {
8026 tree arg00 = TREE_OPERAND (arg0, 0);
8027 tree arg01 = TREE_OPERAND (arg0, 1);
8028
8029 return fold_build_pointer_plus_loc
8030 (loc, fold_convert_loc (loc, type, arg00), arg01);
8031 }
8032
8033 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8034 of the same precision, and X is an integer type not narrower than
8035 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8036 if (INTEGRAL_TYPE_P (type)
8037 && TREE_CODE (op0) == BIT_NOT_EXPR
8038 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8039 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8040 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8041 {
8042 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8043 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8044 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8045 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8046 fold_convert_loc (loc, type, tem));
8047 }
8048
8049 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8050 type of X and Y (integer types only). */
8051 if (INTEGRAL_TYPE_P (type)
8052 && TREE_CODE (op0) == MULT_EXPR
8053 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8054 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8055 {
8056 /* Be careful not to introduce new overflows. */
8057 tree mult_type;
8058 if (TYPE_OVERFLOW_WRAPS (type))
8059 mult_type = type;
8060 else
8061 mult_type = unsigned_type_for (type);
8062
8063 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8064 {
8065 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8066 fold_convert_loc (loc, mult_type,
8067 TREE_OPERAND (op0, 0)),
8068 fold_convert_loc (loc, mult_type,
8069 TREE_OPERAND (op0, 1)));
8070 return fold_convert_loc (loc, type, tem);
8071 }
8072 }
8073
8074 return NULL_TREE;
8075
8076 case VIEW_CONVERT_EXPR:
8077 if (TREE_CODE (op0) == MEM_REF)
8078 {
8079 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
8080 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
8081 tem = fold_build2_loc (loc, MEM_REF, type,
8082 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8083 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
8084 return tem;
8085 }
8086
8087 return NULL_TREE;
8088
8089 case NEGATE_EXPR:
8090 tem = fold_negate_expr (loc, arg0);
8091 if (tem)
8092 return fold_convert_loc (loc, type, tem);
8093 return NULL_TREE;
8094
8095 case ABS_EXPR:
8096 /* Convert fabs((double)float) into (double)fabsf(float). */
8097 if (TREE_CODE (arg0) == NOP_EXPR
8098 && TREE_CODE (type) == REAL_TYPE)
8099 {
8100 tree targ0 = strip_float_extensions (arg0);
8101 if (targ0 != arg0)
8102 return fold_convert_loc (loc, type,
8103 fold_build1_loc (loc, ABS_EXPR,
8104 TREE_TYPE (targ0),
8105 targ0));
8106 }
8107 return NULL_TREE;
8108
8109 case BIT_NOT_EXPR:
8110 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8111 if (TREE_CODE (arg0) == BIT_XOR_EXPR
8112 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8113 fold_convert_loc (loc, type,
8114 TREE_OPERAND (arg0, 0)))))
8115 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8116 fold_convert_loc (loc, type,
8117 TREE_OPERAND (arg0, 1)));
8118 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8119 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8120 fold_convert_loc (loc, type,
8121 TREE_OPERAND (arg0, 1)))))
8122 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8123 fold_convert_loc (loc, type,
8124 TREE_OPERAND (arg0, 0)), tem);
8125
8126 return NULL_TREE;
8127
8128 case TRUTH_NOT_EXPR:
8129 /* Note that the operand of this must be an int
8130 and its values must be 0 or 1.
8131 ("true" is a fixed value perhaps depending on the language,
8132 but we don't handle values other than 1 correctly yet.) */
8133 tem = fold_truth_not_expr (loc, arg0);
8134 if (!tem)
8135 return NULL_TREE;
8136 return fold_convert_loc (loc, type, tem);
8137
8138 case INDIRECT_REF:
8139 /* Fold *&X to X if X is an lvalue. */
8140 if (TREE_CODE (op0) == ADDR_EXPR)
8141 {
8142 tree op00 = TREE_OPERAND (op0, 0);
8143 if ((VAR_P (op00)
8144 || TREE_CODE (op00) == PARM_DECL
8145 || TREE_CODE (op00) == RESULT_DECL)
8146 && !TREE_READONLY (op00))
8147 return op00;
8148 }
8149 return NULL_TREE;
8150
8151 default:
8152 return NULL_TREE;
8153 } /* switch (code) */
8154 }
8155
8156
8157 /* If the operation was a conversion do _not_ mark a resulting constant
8158 with TREE_OVERFLOW if the original constant was not. These conversions
8159 have implementation defined behavior and retaining the TREE_OVERFLOW
8160 flag here would confuse later passes such as VRP. */
8161 tree
8162 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8163 tree type, tree op0)
8164 {
8165 tree res = fold_unary_loc (loc, code, type, op0);
8166 if (res
8167 && TREE_CODE (res) == INTEGER_CST
8168 && TREE_CODE (op0) == INTEGER_CST
8169 && CONVERT_EXPR_CODE_P (code))
8170 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8171
8172 return res;
8173 }
8174
8175 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8176 operands OP0 and OP1. LOC is the location of the resulting expression.
8177 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8178 Return the folded expression if folding is successful. Otherwise,
8179 return NULL_TREE. */
8180 static tree
8181 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8182 tree arg0, tree arg1, tree op0, tree op1)
8183 {
8184 tree tem;
8185
8186 /* We only do these simplifications if we are optimizing. */
8187 if (!optimize)
8188 return NULL_TREE;
8189
8190 /* Check for things like (A || B) && (A || C). We can convert this
8191 to A || (B && C). Note that either operator can be any of the four
8192 truth and/or operations and the transformation will still be
8193 valid. Also note that we only care about order for the
8194 ANDIF and ORIF operators. If B contains side effects, this
8195 might change the truth-value of A. */
8196 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8197 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8198 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8199 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8200 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8201 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8202 {
8203 tree a00 = TREE_OPERAND (arg0, 0);
8204 tree a01 = TREE_OPERAND (arg0, 1);
8205 tree a10 = TREE_OPERAND (arg1, 0);
8206 tree a11 = TREE_OPERAND (arg1, 1);
8207 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8208 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8209 && (code == TRUTH_AND_EXPR
8210 || code == TRUTH_OR_EXPR));
8211
8212 if (operand_equal_p (a00, a10, 0))
8213 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8214 fold_build2_loc (loc, code, type, a01, a11));
8215 else if (commutative && operand_equal_p (a00, a11, 0))
8216 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8217 fold_build2_loc (loc, code, type, a01, a10));
8218 else if (commutative && operand_equal_p (a01, a10, 0))
8219 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8220 fold_build2_loc (loc, code, type, a00, a11));
8221
8222 /* This case if tricky because we must either have commutative
8223 operators or else A10 must not have side-effects. */
8224
8225 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8226 && operand_equal_p (a01, a11, 0))
8227 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8228 fold_build2_loc (loc, code, type, a00, a10),
8229 a01);
8230 }
8231
8232 /* See if we can build a range comparison. */
8233 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0)
8234 return tem;
8235
8236 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8237 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8238 {
8239 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8240 if (tem)
8241 return fold_build2_loc (loc, code, type, tem, arg1);
8242 }
8243
8244 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8245 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8246 {
8247 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8248 if (tem)
8249 return fold_build2_loc (loc, code, type, arg0, tem);
8250 }
8251
8252 /* Check for the possibility of merging component references. If our
8253 lhs is another similar operation, try to merge its rhs with our
8254 rhs. Then try to merge our lhs and rhs. */
8255 if (TREE_CODE (arg0) == code
8256 && (tem = fold_truth_andor_1 (loc, code, type,
8257 TREE_OPERAND (arg0, 1), arg1)) != 0)
8258 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8259
8260 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8261 return tem;
8262
8263 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
8264 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT) != -1)
8265 logical_op_non_short_circuit
8266 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT);
8267 if (logical_op_non_short_circuit
8268 && !flag_sanitize_coverage
8269 && (code == TRUTH_AND_EXPR
8270 || code == TRUTH_ANDIF_EXPR
8271 || code == TRUTH_OR_EXPR
8272 || code == TRUTH_ORIF_EXPR))
8273 {
8274 enum tree_code ncode, icode;
8275
8276 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8277 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8278 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8279
8280 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8281 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8282 We don't want to pack more than two leafs to a non-IF AND/OR
8283 expression.
8284 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8285 equal to IF-CODE, then we don't want to add right-hand operand.
8286 If the inner right-hand side of left-hand operand has
8287 side-effects, or isn't simple, then we can't add to it,
8288 as otherwise we might destroy if-sequence. */
8289 if (TREE_CODE (arg0) == icode
8290 && simple_operand_p_2 (arg1)
8291 /* Needed for sequence points to handle trappings, and
8292 side-effects. */
8293 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8294 {
8295 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8296 arg1);
8297 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8298 tem);
8299 }
8300 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8301 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8302 else if (TREE_CODE (arg1) == icode
8303 && simple_operand_p_2 (arg0)
8304 /* Needed for sequence points to handle trappings, and
8305 side-effects. */
8306 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8307 {
8308 tem = fold_build2_loc (loc, ncode, type,
8309 arg0, TREE_OPERAND (arg1, 0));
8310 return fold_build2_loc (loc, icode, type, tem,
8311 TREE_OPERAND (arg1, 1));
8312 }
8313 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8314 into (A OR B).
8315 For sequence point consistancy, we need to check for trapping,
8316 and side-effects. */
8317 else if (code == icode && simple_operand_p_2 (arg0)
8318 && simple_operand_p_2 (arg1))
8319 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8320 }
8321
8322 return NULL_TREE;
8323 }
8324
8325 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8326 by changing CODE to reduce the magnitude of constants involved in
8327 ARG0 of the comparison.
8328 Returns a canonicalized comparison tree if a simplification was
8329 possible, otherwise returns NULL_TREE.
8330 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8331 valid if signed overflow is undefined. */
8332
8333 static tree
8334 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8335 tree arg0, tree arg1,
8336 bool *strict_overflow_p)
8337 {
8338 enum tree_code code0 = TREE_CODE (arg0);
8339 tree t, cst0 = NULL_TREE;
8340 int sgn0;
8341
8342 /* Match A +- CST code arg1. We can change this only if overflow
8343 is undefined. */
8344 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8345 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8346 /* In principle pointers also have undefined overflow behavior,
8347 but that causes problems elsewhere. */
8348 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8349 && (code0 == MINUS_EXPR
8350 || code0 == PLUS_EXPR)
8351 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8352 return NULL_TREE;
8353
8354 /* Identify the constant in arg0 and its sign. */
8355 cst0 = TREE_OPERAND (arg0, 1);
8356 sgn0 = tree_int_cst_sgn (cst0);
8357
8358 /* Overflowed constants and zero will cause problems. */
8359 if (integer_zerop (cst0)
8360 || TREE_OVERFLOW (cst0))
8361 return NULL_TREE;
8362
8363 /* See if we can reduce the magnitude of the constant in
8364 arg0 by changing the comparison code. */
8365 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8366 if (code == LT_EXPR
8367 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8368 code = LE_EXPR;
8369 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8370 else if (code == GT_EXPR
8371 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8372 code = GE_EXPR;
8373 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8374 else if (code == LE_EXPR
8375 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8376 code = LT_EXPR;
8377 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8378 else if (code == GE_EXPR
8379 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8380 code = GT_EXPR;
8381 else
8382 return NULL_TREE;
8383 *strict_overflow_p = true;
8384
8385 /* Now build the constant reduced in magnitude. But not if that
8386 would produce one outside of its types range. */
8387 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8388 && ((sgn0 == 1
8389 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8390 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8391 || (sgn0 == -1
8392 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8393 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8394 return NULL_TREE;
8395
8396 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8397 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8398 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8399 t = fold_convert (TREE_TYPE (arg1), t);
8400
8401 return fold_build2_loc (loc, code, type, t, arg1);
8402 }
8403
8404 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8405 overflow further. Try to decrease the magnitude of constants involved
8406 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8407 and put sole constants at the second argument position.
8408 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8409
8410 static tree
8411 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8412 tree arg0, tree arg1)
8413 {
8414 tree t;
8415 bool strict_overflow_p;
8416 const char * const warnmsg = G_("assuming signed overflow does not occur "
8417 "when reducing constant in comparison");
8418
8419 /* Try canonicalization by simplifying arg0. */
8420 strict_overflow_p = false;
8421 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8422 &strict_overflow_p);
8423 if (t)
8424 {
8425 if (strict_overflow_p)
8426 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8427 return t;
8428 }
8429
8430 /* Try canonicalization by simplifying arg1 using the swapped
8431 comparison. */
8432 code = swap_tree_comparison (code);
8433 strict_overflow_p = false;
8434 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8435 &strict_overflow_p);
8436 if (t && strict_overflow_p)
8437 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8438 return t;
8439 }
8440
8441 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8442 space. This is used to avoid issuing overflow warnings for
8443 expressions like &p->x which cannot wrap. */
8444
8445 static bool
8446 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos)
8447 {
8448 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8449 return true;
8450
8451 if (maybe_lt (bitpos, 0))
8452 return true;
8453
8454 poly_wide_int wi_offset;
8455 int precision = TYPE_PRECISION (TREE_TYPE (base));
8456 if (offset == NULL_TREE)
8457 wi_offset = wi::zero (precision);
8458 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset))
8459 return true;
8460 else
8461 wi_offset = wi::to_poly_wide (offset);
8462
8463 wi::overflow_type overflow;
8464 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos),
8465 precision);
8466 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8467 if (overflow)
8468 return true;
8469
8470 poly_uint64 total_hwi, size;
8471 if (!total.to_uhwi (&total_hwi)
8472 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))),
8473 &size)
8474 || known_eq (size, 0U))
8475 return true;
8476
8477 if (known_le (total_hwi, size))
8478 return false;
8479
8480 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8481 array. */
8482 if (TREE_CODE (base) == ADDR_EXPR
8483 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))),
8484 &size)
8485 && maybe_ne (size, 0U)
8486 && known_le (total_hwi, size))
8487 return false;
8488
8489 return true;
8490 }
8491
8492 /* Return a positive integer when the symbol DECL is known to have
8493 a nonzero address, zero when it's known not to (e.g., it's a weak
8494 symbol), and a negative integer when the symbol is not yet in the
8495 symbol table and so whether or not its address is zero is unknown.
8496 For function local objects always return positive integer. */
8497 static int
8498 maybe_nonzero_address (tree decl)
8499 {
8500 if (DECL_P (decl) && decl_in_symtab_p (decl))
8501 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8502 return symbol->nonzero_address ();
8503
8504 /* Function local objects are never NULL. */
8505 if (DECL_P (decl)
8506 && (DECL_CONTEXT (decl)
8507 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8508 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8509 return 1;
8510
8511 return -1;
8512 }
8513
8514 /* Subroutine of fold_binary. This routine performs all of the
8515 transformations that are common to the equality/inequality
8516 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8517 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8518 fold_binary should call fold_binary. Fold a comparison with
8519 tree code CODE and type TYPE with operands OP0 and OP1. Return
8520 the folded comparison or NULL_TREE. */
8521
8522 static tree
8523 fold_comparison (location_t loc, enum tree_code code, tree type,
8524 tree op0, tree op1)
8525 {
8526 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8527 tree arg0, arg1, tem;
8528
8529 arg0 = op0;
8530 arg1 = op1;
8531
8532 STRIP_SIGN_NOPS (arg0);
8533 STRIP_SIGN_NOPS (arg1);
8534
8535 /* For comparisons of pointers we can decompose it to a compile time
8536 comparison of the base objects and the offsets into the object.
8537 This requires at least one operand being an ADDR_EXPR or a
8538 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8539 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8540 && (TREE_CODE (arg0) == ADDR_EXPR
8541 || TREE_CODE (arg1) == ADDR_EXPR
8542 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8543 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8544 {
8545 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8546 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0;
8547 machine_mode mode;
8548 int volatilep, reversep, unsignedp;
8549 bool indirect_base0 = false, indirect_base1 = false;
8550
8551 /* Get base and offset for the access. Strip ADDR_EXPR for
8552 get_inner_reference, but put it back by stripping INDIRECT_REF
8553 off the base object if possible. indirect_baseN will be true
8554 if baseN is not an address but refers to the object itself. */
8555 base0 = arg0;
8556 if (TREE_CODE (arg0) == ADDR_EXPR)
8557 {
8558 base0
8559 = get_inner_reference (TREE_OPERAND (arg0, 0),
8560 &bitsize, &bitpos0, &offset0, &mode,
8561 &unsignedp, &reversep, &volatilep);
8562 if (TREE_CODE (base0) == INDIRECT_REF)
8563 base0 = TREE_OPERAND (base0, 0);
8564 else
8565 indirect_base0 = true;
8566 }
8567 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8568 {
8569 base0 = TREE_OPERAND (arg0, 0);
8570 STRIP_SIGN_NOPS (base0);
8571 if (TREE_CODE (base0) == ADDR_EXPR)
8572 {
8573 base0
8574 = get_inner_reference (TREE_OPERAND (base0, 0),
8575 &bitsize, &bitpos0, &offset0, &mode,
8576 &unsignedp, &reversep, &volatilep);
8577 if (TREE_CODE (base0) == INDIRECT_REF)
8578 base0 = TREE_OPERAND (base0, 0);
8579 else
8580 indirect_base0 = true;
8581 }
8582 if (offset0 == NULL_TREE || integer_zerop (offset0))
8583 offset0 = TREE_OPERAND (arg0, 1);
8584 else
8585 offset0 = size_binop (PLUS_EXPR, offset0,
8586 TREE_OPERAND (arg0, 1));
8587 if (poly_int_tree_p (offset0))
8588 {
8589 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0),
8590 TYPE_PRECISION (sizetype));
8591 tem <<= LOG2_BITS_PER_UNIT;
8592 tem += bitpos0;
8593 if (tem.to_shwi (&bitpos0))
8594 offset0 = NULL_TREE;
8595 }
8596 }
8597
8598 base1 = arg1;
8599 if (TREE_CODE (arg1) == ADDR_EXPR)
8600 {
8601 base1
8602 = get_inner_reference (TREE_OPERAND (arg1, 0),
8603 &bitsize, &bitpos1, &offset1, &mode,
8604 &unsignedp, &reversep, &volatilep);
8605 if (TREE_CODE (base1) == INDIRECT_REF)
8606 base1 = TREE_OPERAND (base1, 0);
8607 else
8608 indirect_base1 = true;
8609 }
8610 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8611 {
8612 base1 = TREE_OPERAND (arg1, 0);
8613 STRIP_SIGN_NOPS (base1);
8614 if (TREE_CODE (base1) == ADDR_EXPR)
8615 {
8616 base1
8617 = get_inner_reference (TREE_OPERAND (base1, 0),
8618 &bitsize, &bitpos1, &offset1, &mode,
8619 &unsignedp, &reversep, &volatilep);
8620 if (TREE_CODE (base1) == INDIRECT_REF)
8621 base1 = TREE_OPERAND (base1, 0);
8622 else
8623 indirect_base1 = true;
8624 }
8625 if (offset1 == NULL_TREE || integer_zerop (offset1))
8626 offset1 = TREE_OPERAND (arg1, 1);
8627 else
8628 offset1 = size_binop (PLUS_EXPR, offset1,
8629 TREE_OPERAND (arg1, 1));
8630 if (poly_int_tree_p (offset1))
8631 {
8632 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1),
8633 TYPE_PRECISION (sizetype));
8634 tem <<= LOG2_BITS_PER_UNIT;
8635 tem += bitpos1;
8636 if (tem.to_shwi (&bitpos1))
8637 offset1 = NULL_TREE;
8638 }
8639 }
8640
8641 /* If we have equivalent bases we might be able to simplify. */
8642 if (indirect_base0 == indirect_base1
8643 && operand_equal_p (base0, base1,
8644 indirect_base0 ? OEP_ADDRESS_OF : 0))
8645 {
8646 /* We can fold this expression to a constant if the non-constant
8647 offset parts are equal. */
8648 if ((offset0 == offset1
8649 || (offset0 && offset1
8650 && operand_equal_p (offset0, offset1, 0)))
8651 && (equality_code
8652 || (indirect_base0
8653 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8654 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8655 {
8656 if (!equality_code
8657 && maybe_ne (bitpos0, bitpos1)
8658 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8659 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8660 fold_overflow_warning (("assuming pointer wraparound does not "
8661 "occur when comparing P +- C1 with "
8662 "P +- C2"),
8663 WARN_STRICT_OVERFLOW_CONDITIONAL);
8664
8665 switch (code)
8666 {
8667 case EQ_EXPR:
8668 if (known_eq (bitpos0, bitpos1))
8669 return constant_boolean_node (true, type);
8670 if (known_ne (bitpos0, bitpos1))
8671 return constant_boolean_node (false, type);
8672 break;
8673 case NE_EXPR:
8674 if (known_ne (bitpos0, bitpos1))
8675 return constant_boolean_node (true, type);
8676 if (known_eq (bitpos0, bitpos1))
8677 return constant_boolean_node (false, type);
8678 break;
8679 case LT_EXPR:
8680 if (known_lt (bitpos0, bitpos1))
8681 return constant_boolean_node (true, type);
8682 if (known_ge (bitpos0, bitpos1))
8683 return constant_boolean_node (false, type);
8684 break;
8685 case LE_EXPR:
8686 if (known_le (bitpos0, bitpos1))
8687 return constant_boolean_node (true, type);
8688 if (known_gt (bitpos0, bitpos1))
8689 return constant_boolean_node (false, type);
8690 break;
8691 case GE_EXPR:
8692 if (known_ge (bitpos0, bitpos1))
8693 return constant_boolean_node (true, type);
8694 if (known_lt (bitpos0, bitpos1))
8695 return constant_boolean_node (false, type);
8696 break;
8697 case GT_EXPR:
8698 if (known_gt (bitpos0, bitpos1))
8699 return constant_boolean_node (true, type);
8700 if (known_le (bitpos0, bitpos1))
8701 return constant_boolean_node (false, type);
8702 break;
8703 default:;
8704 }
8705 }
8706 /* We can simplify the comparison to a comparison of the variable
8707 offset parts if the constant offset parts are equal.
8708 Be careful to use signed sizetype here because otherwise we
8709 mess with array offsets in the wrong way. This is possible
8710 because pointer arithmetic is restricted to retain within an
8711 object and overflow on pointer differences is undefined as of
8712 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8713 else if (known_eq (bitpos0, bitpos1)
8714 && (equality_code
8715 || (indirect_base0
8716 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8717 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8718 {
8719 /* By converting to signed sizetype we cover middle-end pointer
8720 arithmetic which operates on unsigned pointer types of size
8721 type size and ARRAY_REF offsets which are properly sign or
8722 zero extended from their type in case it is narrower than
8723 sizetype. */
8724 if (offset0 == NULL_TREE)
8725 offset0 = build_int_cst (ssizetype, 0);
8726 else
8727 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8728 if (offset1 == NULL_TREE)
8729 offset1 = build_int_cst (ssizetype, 0);
8730 else
8731 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8732
8733 if (!equality_code
8734 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8735 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8736 fold_overflow_warning (("assuming pointer wraparound does not "
8737 "occur when comparing P +- C1 with "
8738 "P +- C2"),
8739 WARN_STRICT_OVERFLOW_COMPARISON);
8740
8741 return fold_build2_loc (loc, code, type, offset0, offset1);
8742 }
8743 }
8744 /* For equal offsets we can simplify to a comparison of the
8745 base addresses. */
8746 else if (known_eq (bitpos0, bitpos1)
8747 && (indirect_base0
8748 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8749 && (indirect_base1
8750 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8751 && ((offset0 == offset1)
8752 || (offset0 && offset1
8753 && operand_equal_p (offset0, offset1, 0))))
8754 {
8755 if (indirect_base0)
8756 base0 = build_fold_addr_expr_loc (loc, base0);
8757 if (indirect_base1)
8758 base1 = build_fold_addr_expr_loc (loc, base1);
8759 return fold_build2_loc (loc, code, type, base0, base1);
8760 }
8761 /* Comparison between an ordinary (non-weak) symbol and a null
8762 pointer can be eliminated since such symbols must have a non
8763 null address. In C, relational expressions between pointers
8764 to objects and null pointers are undefined. The results
8765 below follow the C++ rules with the additional property that
8766 every object pointer compares greater than a null pointer.
8767 */
8768 else if (((DECL_P (base0)
8769 && maybe_nonzero_address (base0) > 0
8770 /* Avoid folding references to struct members at offset 0 to
8771 prevent tests like '&ptr->firstmember == 0' from getting
8772 eliminated. When ptr is null, although the -> expression
8773 is strictly speaking invalid, GCC retains it as a matter
8774 of QoI. See PR c/44555. */
8775 && (offset0 == NULL_TREE && known_ne (bitpos0, 0)))
8776 || CONSTANT_CLASS_P (base0))
8777 && indirect_base0
8778 /* The caller guarantees that when one of the arguments is
8779 constant (i.e., null in this case) it is second. */
8780 && integer_zerop (arg1))
8781 {
8782 switch (code)
8783 {
8784 case EQ_EXPR:
8785 case LE_EXPR:
8786 case LT_EXPR:
8787 return constant_boolean_node (false, type);
8788 case GE_EXPR:
8789 case GT_EXPR:
8790 case NE_EXPR:
8791 return constant_boolean_node (true, type);
8792 default:
8793 gcc_unreachable ();
8794 }
8795 }
8796 }
8797
8798 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8799 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8800 the resulting offset is smaller in absolute value than the
8801 original one and has the same sign. */
8802 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8803 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8804 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8805 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8806 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8807 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8808 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8809 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8810 {
8811 tree const1 = TREE_OPERAND (arg0, 1);
8812 tree const2 = TREE_OPERAND (arg1, 1);
8813 tree variable1 = TREE_OPERAND (arg0, 0);
8814 tree variable2 = TREE_OPERAND (arg1, 0);
8815 tree cst;
8816 const char * const warnmsg = G_("assuming signed overflow does not "
8817 "occur when combining constants around "
8818 "a comparison");
8819
8820 /* Put the constant on the side where it doesn't overflow and is
8821 of lower absolute value and of same sign than before. */
8822 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8823 ? MINUS_EXPR : PLUS_EXPR,
8824 const2, const1);
8825 if (!TREE_OVERFLOW (cst)
8826 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8827 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8828 {
8829 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8830 return fold_build2_loc (loc, code, type,
8831 variable1,
8832 fold_build2_loc (loc, TREE_CODE (arg1),
8833 TREE_TYPE (arg1),
8834 variable2, cst));
8835 }
8836
8837 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8838 ? MINUS_EXPR : PLUS_EXPR,
8839 const1, const2);
8840 if (!TREE_OVERFLOW (cst)
8841 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8842 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8843 {
8844 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8845 return fold_build2_loc (loc, code, type,
8846 fold_build2_loc (loc, TREE_CODE (arg0),
8847 TREE_TYPE (arg0),
8848 variable1, cst),
8849 variable2);
8850 }
8851 }
8852
8853 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8854 if (tem)
8855 return tem;
8856
8857 /* If we are comparing an expression that just has comparisons
8858 of two integer values, arithmetic expressions of those comparisons,
8859 and constants, we can simplify it. There are only three cases
8860 to check: the two values can either be equal, the first can be
8861 greater, or the second can be greater. Fold the expression for
8862 those three values. Since each value must be 0 or 1, we have
8863 eight possibilities, each of which corresponds to the constant 0
8864 or 1 or one of the six possible comparisons.
8865
8866 This handles common cases like (a > b) == 0 but also handles
8867 expressions like ((x > y) - (y > x)) > 0, which supposedly
8868 occur in macroized code. */
8869
8870 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8871 {
8872 tree cval1 = 0, cval2 = 0;
8873
8874 if (twoval_comparison_p (arg0, &cval1, &cval2)
8875 /* Don't handle degenerate cases here; they should already
8876 have been handled anyway. */
8877 && cval1 != 0 && cval2 != 0
8878 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8879 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8880 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8881 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8882 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8883 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8884 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8885 {
8886 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8887 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8888
8889 /* We can't just pass T to eval_subst in case cval1 or cval2
8890 was the same as ARG1. */
8891
8892 tree high_result
8893 = fold_build2_loc (loc, code, type,
8894 eval_subst (loc, arg0, cval1, maxval,
8895 cval2, minval),
8896 arg1);
8897 tree equal_result
8898 = fold_build2_loc (loc, code, type,
8899 eval_subst (loc, arg0, cval1, maxval,
8900 cval2, maxval),
8901 arg1);
8902 tree low_result
8903 = fold_build2_loc (loc, code, type,
8904 eval_subst (loc, arg0, cval1, minval,
8905 cval2, maxval),
8906 arg1);
8907
8908 /* All three of these results should be 0 or 1. Confirm they are.
8909 Then use those values to select the proper code to use. */
8910
8911 if (TREE_CODE (high_result) == INTEGER_CST
8912 && TREE_CODE (equal_result) == INTEGER_CST
8913 && TREE_CODE (low_result) == INTEGER_CST)
8914 {
8915 /* Make a 3-bit mask with the high-order bit being the
8916 value for `>', the next for '=', and the low for '<'. */
8917 switch ((integer_onep (high_result) * 4)
8918 + (integer_onep (equal_result) * 2)
8919 + integer_onep (low_result))
8920 {
8921 case 0:
8922 /* Always false. */
8923 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8924 case 1:
8925 code = LT_EXPR;
8926 break;
8927 case 2:
8928 code = EQ_EXPR;
8929 break;
8930 case 3:
8931 code = LE_EXPR;
8932 break;
8933 case 4:
8934 code = GT_EXPR;
8935 break;
8936 case 5:
8937 code = NE_EXPR;
8938 break;
8939 case 6:
8940 code = GE_EXPR;
8941 break;
8942 case 7:
8943 /* Always true. */
8944 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8945 }
8946
8947 return fold_build2_loc (loc, code, type, cval1, cval2);
8948 }
8949 }
8950 }
8951
8952 return NULL_TREE;
8953 }
8954
8955
8956 /* Subroutine of fold_binary. Optimize complex multiplications of the
8957 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8958 argument EXPR represents the expression "z" of type TYPE. */
8959
8960 static tree
8961 fold_mult_zconjz (location_t loc, tree type, tree expr)
8962 {
8963 tree itype = TREE_TYPE (type);
8964 tree rpart, ipart, tem;
8965
8966 if (TREE_CODE (expr) == COMPLEX_EXPR)
8967 {
8968 rpart = TREE_OPERAND (expr, 0);
8969 ipart = TREE_OPERAND (expr, 1);
8970 }
8971 else if (TREE_CODE (expr) == COMPLEX_CST)
8972 {
8973 rpart = TREE_REALPART (expr);
8974 ipart = TREE_IMAGPART (expr);
8975 }
8976 else
8977 {
8978 expr = save_expr (expr);
8979 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8980 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8981 }
8982
8983 rpart = save_expr (rpart);
8984 ipart = save_expr (ipart);
8985 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8986 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8987 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8988 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8989 build_zero_cst (itype));
8990 }
8991
8992
8993 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8994 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8995 true if successful. */
8996
8997 static bool
8998 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
8999 {
9000 unsigned HOST_WIDE_INT i, nunits;
9001
9002 if (TREE_CODE (arg) == VECTOR_CST
9003 && VECTOR_CST_NELTS (arg).is_constant (&nunits))
9004 {
9005 for (i = 0; i < nunits; ++i)
9006 elts[i] = VECTOR_CST_ELT (arg, i);
9007 }
9008 else if (TREE_CODE (arg) == CONSTRUCTOR)
9009 {
9010 constructor_elt *elt;
9011
9012 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9013 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9014 return false;
9015 else
9016 elts[i] = elt->value;
9017 }
9018 else
9019 return false;
9020 for (; i < nelts; i++)
9021 elts[i]
9022 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9023 return true;
9024 }
9025
9026 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9027 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9028 NULL_TREE otherwise. */
9029
9030 tree
9031 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
9032 {
9033 unsigned int i;
9034 unsigned HOST_WIDE_INT nelts;
9035 bool need_ctor = false;
9036
9037 if (!sel.length ().is_constant (&nelts))
9038 return NULL_TREE;
9039 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts)
9040 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts)
9041 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts));
9042 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9043 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9044 return NULL_TREE;
9045
9046 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
9047 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
9048 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
9049 return NULL_TREE;
9050
9051 tree_vector_builder out_elts (type, nelts, 1);
9052 for (i = 0; i < nelts; i++)
9053 {
9054 HOST_WIDE_INT index;
9055 if (!sel[i].is_constant (&index))
9056 return NULL_TREE;
9057 if (!CONSTANT_CLASS_P (in_elts[index]))
9058 need_ctor = true;
9059 out_elts.quick_push (unshare_expr (in_elts[index]));
9060 }
9061
9062 if (need_ctor)
9063 {
9064 vec<constructor_elt, va_gc> *v;
9065 vec_alloc (v, nelts);
9066 for (i = 0; i < nelts; i++)
9067 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
9068 return build_constructor (type, v);
9069 }
9070 else
9071 return out_elts.build ();
9072 }
9073
9074 /* Try to fold a pointer difference of type TYPE two address expressions of
9075 array references AREF0 and AREF1 using location LOC. Return a
9076 simplified expression for the difference or NULL_TREE. */
9077
9078 static tree
9079 fold_addr_of_array_ref_difference (location_t loc, tree type,
9080 tree aref0, tree aref1,
9081 bool use_pointer_diff)
9082 {
9083 tree base0 = TREE_OPERAND (aref0, 0);
9084 tree base1 = TREE_OPERAND (aref1, 0);
9085 tree base_offset = build_int_cst (type, 0);
9086
9087 /* If the bases are array references as well, recurse. If the bases
9088 are pointer indirections compute the difference of the pointers.
9089 If the bases are equal, we are set. */
9090 if ((TREE_CODE (base0) == ARRAY_REF
9091 && TREE_CODE (base1) == ARRAY_REF
9092 && (base_offset
9093 = fold_addr_of_array_ref_difference (loc, type, base0, base1,
9094 use_pointer_diff)))
9095 || (INDIRECT_REF_P (base0)
9096 && INDIRECT_REF_P (base1)
9097 && (base_offset
9098 = use_pointer_diff
9099 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
9100 TREE_OPERAND (base0, 0),
9101 TREE_OPERAND (base1, 0))
9102 : fold_binary_loc (loc, MINUS_EXPR, type,
9103 fold_convert (type,
9104 TREE_OPERAND (base0, 0)),
9105 fold_convert (type,
9106 TREE_OPERAND (base1, 0)))))
9107 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
9108 {
9109 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9110 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9111 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9112 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
9113 return fold_build2_loc (loc, PLUS_EXPR, type,
9114 base_offset,
9115 fold_build2_loc (loc, MULT_EXPR, type,
9116 diff, esz));
9117 }
9118 return NULL_TREE;
9119 }
9120
9121 /* If the real or vector real constant CST of type TYPE has an exact
9122 inverse, return it, else return NULL. */
9123
9124 tree
9125 exact_inverse (tree type, tree cst)
9126 {
9127 REAL_VALUE_TYPE r;
9128 tree unit_type;
9129 machine_mode mode;
9130
9131 switch (TREE_CODE (cst))
9132 {
9133 case REAL_CST:
9134 r = TREE_REAL_CST (cst);
9135
9136 if (exact_real_inverse (TYPE_MODE (type), &r))
9137 return build_real (type, r);
9138
9139 return NULL_TREE;
9140
9141 case VECTOR_CST:
9142 {
9143 unit_type = TREE_TYPE (type);
9144 mode = TYPE_MODE (unit_type);
9145
9146 tree_vector_builder elts;
9147 if (!elts.new_unary_operation (type, cst, false))
9148 return NULL_TREE;
9149 unsigned int count = elts.encoded_nelts ();
9150 for (unsigned int i = 0; i < count; ++i)
9151 {
9152 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9153 if (!exact_real_inverse (mode, &r))
9154 return NULL_TREE;
9155 elts.quick_push (build_real (unit_type, r));
9156 }
9157
9158 return elts.build ();
9159 }
9160
9161 default:
9162 return NULL_TREE;
9163 }
9164 }
9165
9166 /* Mask out the tz least significant bits of X of type TYPE where
9167 tz is the number of trailing zeroes in Y. */
9168 static wide_int
9169 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9170 {
9171 int tz = wi::ctz (y);
9172 if (tz > 0)
9173 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9174 return x;
9175 }
9176
9177 /* Return true when T is an address and is known to be nonzero.
9178 For floating point we further ensure that T is not denormal.
9179 Similar logic is present in nonzero_address in rtlanal.h.
9180
9181 If the return value is based on the assumption that signed overflow
9182 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9183 change *STRICT_OVERFLOW_P. */
9184
9185 static bool
9186 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9187 {
9188 tree type = TREE_TYPE (t);
9189 enum tree_code code;
9190
9191 /* Doing something useful for floating point would need more work. */
9192 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9193 return false;
9194
9195 code = TREE_CODE (t);
9196 switch (TREE_CODE_CLASS (code))
9197 {
9198 case tcc_unary:
9199 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9200 strict_overflow_p);
9201 case tcc_binary:
9202 case tcc_comparison:
9203 return tree_binary_nonzero_warnv_p (code, type,
9204 TREE_OPERAND (t, 0),
9205 TREE_OPERAND (t, 1),
9206 strict_overflow_p);
9207 case tcc_constant:
9208 case tcc_declaration:
9209 case tcc_reference:
9210 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9211
9212 default:
9213 break;
9214 }
9215
9216 switch (code)
9217 {
9218 case TRUTH_NOT_EXPR:
9219 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9220 strict_overflow_p);
9221
9222 case TRUTH_AND_EXPR:
9223 case TRUTH_OR_EXPR:
9224 case TRUTH_XOR_EXPR:
9225 return tree_binary_nonzero_warnv_p (code, type,
9226 TREE_OPERAND (t, 0),
9227 TREE_OPERAND (t, 1),
9228 strict_overflow_p);
9229
9230 case COND_EXPR:
9231 case CONSTRUCTOR:
9232 case OBJ_TYPE_REF:
9233 case ASSERT_EXPR:
9234 case ADDR_EXPR:
9235 case WITH_SIZE_EXPR:
9236 case SSA_NAME:
9237 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9238
9239 case COMPOUND_EXPR:
9240 case MODIFY_EXPR:
9241 case BIND_EXPR:
9242 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9243 strict_overflow_p);
9244
9245 case SAVE_EXPR:
9246 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9247 strict_overflow_p);
9248
9249 case CALL_EXPR:
9250 {
9251 tree fndecl = get_callee_fndecl (t);
9252 if (!fndecl) return false;
9253 if (flag_delete_null_pointer_checks && !flag_check_new
9254 && DECL_IS_OPERATOR_NEW_P (fndecl)
9255 && !TREE_NOTHROW (fndecl))
9256 return true;
9257 if (flag_delete_null_pointer_checks
9258 && lookup_attribute ("returns_nonnull",
9259 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9260 return true;
9261 return alloca_call_p (t);
9262 }
9263
9264 default:
9265 break;
9266 }
9267 return false;
9268 }
9269
9270 /* Return true when T is an address and is known to be nonzero.
9271 Handle warnings about undefined signed overflow. */
9272
9273 bool
9274 tree_expr_nonzero_p (tree t)
9275 {
9276 bool ret, strict_overflow_p;
9277
9278 strict_overflow_p = false;
9279 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9280 if (strict_overflow_p)
9281 fold_overflow_warning (("assuming signed overflow does not occur when "
9282 "determining that expression is always "
9283 "non-zero"),
9284 WARN_STRICT_OVERFLOW_MISC);
9285 return ret;
9286 }
9287
9288 /* Return true if T is known not to be equal to an integer W. */
9289
9290 bool
9291 expr_not_equal_to (tree t, const wide_int &w)
9292 {
9293 wide_int min, max, nz;
9294 value_range_kind rtype;
9295 switch (TREE_CODE (t))
9296 {
9297 case INTEGER_CST:
9298 return wi::to_wide (t) != w;
9299
9300 case SSA_NAME:
9301 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9302 return false;
9303 rtype = get_range_info (t, &min, &max);
9304 if (rtype == VR_RANGE)
9305 {
9306 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9307 return true;
9308 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9309 return true;
9310 }
9311 else if (rtype == VR_ANTI_RANGE
9312 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9313 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9314 return true;
9315 /* If T has some known zero bits and W has any of those bits set,
9316 then T is known not to be equal to W. */
9317 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9318 TYPE_PRECISION (TREE_TYPE (t))), 0))
9319 return true;
9320 return false;
9321
9322 default:
9323 return false;
9324 }
9325 }
9326
9327 /* Fold a binary expression of code CODE and type TYPE with operands
9328 OP0 and OP1. LOC is the location of the resulting expression.
9329 Return the folded expression if folding is successful. Otherwise,
9330 return NULL_TREE. */
9331
9332 tree
9333 fold_binary_loc (location_t loc, enum tree_code code, tree type,
9334 tree op0, tree op1)
9335 {
9336 enum tree_code_class kind = TREE_CODE_CLASS (code);
9337 tree arg0, arg1, tem;
9338 tree t1 = NULL_TREE;
9339 bool strict_overflow_p;
9340 unsigned int prec;
9341
9342 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9343 && TREE_CODE_LENGTH (code) == 2
9344 && op0 != NULL_TREE
9345 && op1 != NULL_TREE);
9346
9347 arg0 = op0;
9348 arg1 = op1;
9349
9350 /* Strip any conversions that don't change the mode. This is
9351 safe for every expression, except for a comparison expression
9352 because its signedness is derived from its operands. So, in
9353 the latter case, only strip conversions that don't change the
9354 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9355 preserved.
9356
9357 Note that this is done as an internal manipulation within the
9358 constant folder, in order to find the simplest representation
9359 of the arguments so that their form can be studied. In any
9360 cases, the appropriate type conversions should be put back in
9361 the tree that will get out of the constant folder. */
9362
9363 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9364 {
9365 STRIP_SIGN_NOPS (arg0);
9366 STRIP_SIGN_NOPS (arg1);
9367 }
9368 else
9369 {
9370 STRIP_NOPS (arg0);
9371 STRIP_NOPS (arg1);
9372 }
9373
9374 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9375 constant but we can't do arithmetic on them. */
9376 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9377 {
9378 tem = const_binop (code, type, arg0, arg1);
9379 if (tem != NULL_TREE)
9380 {
9381 if (TREE_TYPE (tem) != type)
9382 tem = fold_convert_loc (loc, type, tem);
9383 return tem;
9384 }
9385 }
9386
9387 /* If this is a commutative operation, and ARG0 is a constant, move it
9388 to ARG1 to reduce the number of tests below. */
9389 if (commutative_tree_code (code)
9390 && tree_swap_operands_p (arg0, arg1))
9391 return fold_build2_loc (loc, code, type, op1, op0);
9392
9393 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9394 to ARG1 to reduce the number of tests below. */
9395 if (kind == tcc_comparison
9396 && tree_swap_operands_p (arg0, arg1))
9397 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9398
9399 tem = generic_simplify (loc, code, type, op0, op1);
9400 if (tem)
9401 return tem;
9402
9403 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9404
9405 First check for cases where an arithmetic operation is applied to a
9406 compound, conditional, or comparison operation. Push the arithmetic
9407 operation inside the compound or conditional to see if any folding
9408 can then be done. Convert comparison to conditional for this purpose.
9409 The also optimizes non-constant cases that used to be done in
9410 expand_expr.
9411
9412 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9413 one of the operands is a comparison and the other is a comparison, a
9414 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9415 code below would make the expression more complex. Change it to a
9416 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9417 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9418
9419 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9420 || code == EQ_EXPR || code == NE_EXPR)
9421 && !VECTOR_TYPE_P (TREE_TYPE (arg0))
9422 && ((truth_value_p (TREE_CODE (arg0))
9423 && (truth_value_p (TREE_CODE (arg1))
9424 || (TREE_CODE (arg1) == BIT_AND_EXPR
9425 && integer_onep (TREE_OPERAND (arg1, 1)))))
9426 || (truth_value_p (TREE_CODE (arg1))
9427 && (truth_value_p (TREE_CODE (arg0))
9428 || (TREE_CODE (arg0) == BIT_AND_EXPR
9429 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9430 {
9431 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9432 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9433 : TRUTH_XOR_EXPR,
9434 boolean_type_node,
9435 fold_convert_loc (loc, boolean_type_node, arg0),
9436 fold_convert_loc (loc, boolean_type_node, arg1));
9437
9438 if (code == EQ_EXPR)
9439 tem = invert_truthvalue_loc (loc, tem);
9440
9441 return fold_convert_loc (loc, type, tem);
9442 }
9443
9444 if (TREE_CODE_CLASS (code) == tcc_binary
9445 || TREE_CODE_CLASS (code) == tcc_comparison)
9446 {
9447 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9448 {
9449 tem = fold_build2_loc (loc, code, type,
9450 fold_convert_loc (loc, TREE_TYPE (op0),
9451 TREE_OPERAND (arg0, 1)), op1);
9452 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9453 tem);
9454 }
9455 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9456 {
9457 tem = fold_build2_loc (loc, code, type, op0,
9458 fold_convert_loc (loc, TREE_TYPE (op1),
9459 TREE_OPERAND (arg1, 1)));
9460 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9461 tem);
9462 }
9463
9464 if (TREE_CODE (arg0) == COND_EXPR
9465 || TREE_CODE (arg0) == VEC_COND_EXPR
9466 || COMPARISON_CLASS_P (arg0))
9467 {
9468 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9469 arg0, arg1,
9470 /*cond_first_p=*/1);
9471 if (tem != NULL_TREE)
9472 return tem;
9473 }
9474
9475 if (TREE_CODE (arg1) == COND_EXPR
9476 || TREE_CODE (arg1) == VEC_COND_EXPR
9477 || COMPARISON_CLASS_P (arg1))
9478 {
9479 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9480 arg1, arg0,
9481 /*cond_first_p=*/0);
9482 if (tem != NULL_TREE)
9483 return tem;
9484 }
9485 }
9486
9487 switch (code)
9488 {
9489 case MEM_REF:
9490 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9491 if (TREE_CODE (arg0) == ADDR_EXPR
9492 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9493 {
9494 tree iref = TREE_OPERAND (arg0, 0);
9495 return fold_build2 (MEM_REF, type,
9496 TREE_OPERAND (iref, 0),
9497 int_const_binop (PLUS_EXPR, arg1,
9498 TREE_OPERAND (iref, 1)));
9499 }
9500
9501 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9502 if (TREE_CODE (arg0) == ADDR_EXPR
9503 && handled_component_p (TREE_OPERAND (arg0, 0)))
9504 {
9505 tree base;
9506 poly_int64 coffset;
9507 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9508 &coffset);
9509 if (!base)
9510 return NULL_TREE;
9511 return fold_build2 (MEM_REF, type,
9512 build_fold_addr_expr (base),
9513 int_const_binop (PLUS_EXPR, arg1,
9514 size_int (coffset)));
9515 }
9516
9517 return NULL_TREE;
9518
9519 case POINTER_PLUS_EXPR:
9520 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9521 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9522 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9523 return fold_convert_loc (loc, type,
9524 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9525 fold_convert_loc (loc, sizetype,
9526 arg1),
9527 fold_convert_loc (loc, sizetype,
9528 arg0)));
9529
9530 return NULL_TREE;
9531
9532 case PLUS_EXPR:
9533 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9534 {
9535 /* X + (X / CST) * -CST is X % CST. */
9536 if (TREE_CODE (arg1) == MULT_EXPR
9537 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9538 && operand_equal_p (arg0,
9539 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9540 {
9541 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9542 tree cst1 = TREE_OPERAND (arg1, 1);
9543 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9544 cst1, cst0);
9545 if (sum && integer_zerop (sum))
9546 return fold_convert_loc (loc, type,
9547 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9548 TREE_TYPE (arg0), arg0,
9549 cst0));
9550 }
9551 }
9552
9553 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9554 one. Make sure the type is not saturating and has the signedness of
9555 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9556 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9557 if ((TREE_CODE (arg0) == MULT_EXPR
9558 || TREE_CODE (arg1) == MULT_EXPR)
9559 && !TYPE_SATURATING (type)
9560 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9561 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9562 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9563 {
9564 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9565 if (tem)
9566 return tem;
9567 }
9568
9569 if (! FLOAT_TYPE_P (type))
9570 {
9571 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9572 (plus (plus (mult) (mult)) (foo)) so that we can
9573 take advantage of the factoring cases below. */
9574 if (ANY_INTEGRAL_TYPE_P (type)
9575 && TYPE_OVERFLOW_WRAPS (type)
9576 && (((TREE_CODE (arg0) == PLUS_EXPR
9577 || TREE_CODE (arg0) == MINUS_EXPR)
9578 && TREE_CODE (arg1) == MULT_EXPR)
9579 || ((TREE_CODE (arg1) == PLUS_EXPR
9580 || TREE_CODE (arg1) == MINUS_EXPR)
9581 && TREE_CODE (arg0) == MULT_EXPR)))
9582 {
9583 tree parg0, parg1, parg, marg;
9584 enum tree_code pcode;
9585
9586 if (TREE_CODE (arg1) == MULT_EXPR)
9587 parg = arg0, marg = arg1;
9588 else
9589 parg = arg1, marg = arg0;
9590 pcode = TREE_CODE (parg);
9591 parg0 = TREE_OPERAND (parg, 0);
9592 parg1 = TREE_OPERAND (parg, 1);
9593 STRIP_NOPS (parg0);
9594 STRIP_NOPS (parg1);
9595
9596 if (TREE_CODE (parg0) == MULT_EXPR
9597 && TREE_CODE (parg1) != MULT_EXPR)
9598 return fold_build2_loc (loc, pcode, type,
9599 fold_build2_loc (loc, PLUS_EXPR, type,
9600 fold_convert_loc (loc, type,
9601 parg0),
9602 fold_convert_loc (loc, type,
9603 marg)),
9604 fold_convert_loc (loc, type, parg1));
9605 if (TREE_CODE (parg0) != MULT_EXPR
9606 && TREE_CODE (parg1) == MULT_EXPR)
9607 return
9608 fold_build2_loc (loc, PLUS_EXPR, type,
9609 fold_convert_loc (loc, type, parg0),
9610 fold_build2_loc (loc, pcode, type,
9611 fold_convert_loc (loc, type, marg),
9612 fold_convert_loc (loc, type,
9613 parg1)));
9614 }
9615 }
9616 else
9617 {
9618 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9619 to __complex__ ( x, y ). This is not the same for SNaNs or
9620 if signed zeros are involved. */
9621 if (!HONOR_SNANS (element_mode (arg0))
9622 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9623 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9624 {
9625 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9626 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9627 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9628 bool arg0rz = false, arg0iz = false;
9629 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9630 || (arg0i && (arg0iz = real_zerop (arg0i))))
9631 {
9632 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9633 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9634 if (arg0rz && arg1i && real_zerop (arg1i))
9635 {
9636 tree rp = arg1r ? arg1r
9637 : build1 (REALPART_EXPR, rtype, arg1);
9638 tree ip = arg0i ? arg0i
9639 : build1 (IMAGPART_EXPR, rtype, arg0);
9640 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9641 }
9642 else if (arg0iz && arg1r && real_zerop (arg1r))
9643 {
9644 tree rp = arg0r ? arg0r
9645 : build1 (REALPART_EXPR, rtype, arg0);
9646 tree ip = arg1i ? arg1i
9647 : build1 (IMAGPART_EXPR, rtype, arg1);
9648 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9649 }
9650 }
9651 }
9652
9653 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9654 We associate floats only if the user has specified
9655 -fassociative-math. */
9656 if (flag_associative_math
9657 && TREE_CODE (arg1) == PLUS_EXPR
9658 && TREE_CODE (arg0) != MULT_EXPR)
9659 {
9660 tree tree10 = TREE_OPERAND (arg1, 0);
9661 tree tree11 = TREE_OPERAND (arg1, 1);
9662 if (TREE_CODE (tree11) == MULT_EXPR
9663 && TREE_CODE (tree10) == MULT_EXPR)
9664 {
9665 tree tree0;
9666 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9667 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9668 }
9669 }
9670 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9671 We associate floats only if the user has specified
9672 -fassociative-math. */
9673 if (flag_associative_math
9674 && TREE_CODE (arg0) == PLUS_EXPR
9675 && TREE_CODE (arg1) != MULT_EXPR)
9676 {
9677 tree tree00 = TREE_OPERAND (arg0, 0);
9678 tree tree01 = TREE_OPERAND (arg0, 1);
9679 if (TREE_CODE (tree01) == MULT_EXPR
9680 && TREE_CODE (tree00) == MULT_EXPR)
9681 {
9682 tree tree0;
9683 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9684 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9685 }
9686 }
9687 }
9688
9689 bit_rotate:
9690 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9691 is a rotate of A by C1 bits. */
9692 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9693 is a rotate of A by B bits.
9694 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9695 though in this case CODE must be | and not + or ^, otherwise
9696 it doesn't return A when B is 0. */
9697 {
9698 enum tree_code code0, code1;
9699 tree rtype;
9700 code0 = TREE_CODE (arg0);
9701 code1 = TREE_CODE (arg1);
9702 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9703 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9704 && operand_equal_p (TREE_OPERAND (arg0, 0),
9705 TREE_OPERAND (arg1, 0), 0)
9706 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9707 TYPE_UNSIGNED (rtype))
9708 /* Only create rotates in complete modes. Other cases are not
9709 expanded properly. */
9710 && (element_precision (rtype)
9711 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9712 {
9713 tree tree01, tree11;
9714 tree orig_tree01, orig_tree11;
9715 enum tree_code code01, code11;
9716
9717 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
9718 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
9719 STRIP_NOPS (tree01);
9720 STRIP_NOPS (tree11);
9721 code01 = TREE_CODE (tree01);
9722 code11 = TREE_CODE (tree11);
9723 if (code11 != MINUS_EXPR
9724 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
9725 {
9726 std::swap (code0, code1);
9727 std::swap (code01, code11);
9728 std::swap (tree01, tree11);
9729 std::swap (orig_tree01, orig_tree11);
9730 }
9731 if (code01 == INTEGER_CST
9732 && code11 == INTEGER_CST
9733 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9734 == element_precision (rtype)))
9735 {
9736 tem = build2_loc (loc, LROTATE_EXPR,
9737 rtype, TREE_OPERAND (arg0, 0),
9738 code0 == LSHIFT_EXPR
9739 ? orig_tree01 : orig_tree11);
9740 return fold_convert_loc (loc, type, tem);
9741 }
9742 else if (code11 == MINUS_EXPR)
9743 {
9744 tree tree110, tree111;
9745 tree110 = TREE_OPERAND (tree11, 0);
9746 tree111 = TREE_OPERAND (tree11, 1);
9747 STRIP_NOPS (tree110);
9748 STRIP_NOPS (tree111);
9749 if (TREE_CODE (tree110) == INTEGER_CST
9750 && compare_tree_int (tree110,
9751 element_precision (rtype)) == 0
9752 && operand_equal_p (tree01, tree111, 0))
9753 {
9754 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9755 ? LROTATE_EXPR : RROTATE_EXPR),
9756 rtype, TREE_OPERAND (arg0, 0),
9757 orig_tree01);
9758 return fold_convert_loc (loc, type, tem);
9759 }
9760 }
9761 else if (code == BIT_IOR_EXPR
9762 && code11 == BIT_AND_EXPR
9763 && pow2p_hwi (element_precision (rtype)))
9764 {
9765 tree tree110, tree111;
9766 tree110 = TREE_OPERAND (tree11, 0);
9767 tree111 = TREE_OPERAND (tree11, 1);
9768 STRIP_NOPS (tree110);
9769 STRIP_NOPS (tree111);
9770 if (TREE_CODE (tree110) == NEGATE_EXPR
9771 && TREE_CODE (tree111) == INTEGER_CST
9772 && compare_tree_int (tree111,
9773 element_precision (rtype) - 1) == 0
9774 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0))
9775 {
9776 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9777 ? LROTATE_EXPR : RROTATE_EXPR),
9778 rtype, TREE_OPERAND (arg0, 0),
9779 orig_tree01);
9780 return fold_convert_loc (loc, type, tem);
9781 }
9782 }
9783 }
9784 }
9785
9786 associate:
9787 /* In most languages, can't associate operations on floats through
9788 parentheses. Rather than remember where the parentheses were, we
9789 don't associate floats at all, unless the user has specified
9790 -fassociative-math.
9791 And, we need to make sure type is not saturating. */
9792
9793 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9794 && !TYPE_SATURATING (type))
9795 {
9796 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
9797 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
9798 tree atype = type;
9799 bool ok = true;
9800
9801 /* Split both trees into variables, constants, and literals. Then
9802 associate each group together, the constants with literals,
9803 then the result with variables. This increases the chances of
9804 literals being recombined later and of generating relocatable
9805 expressions for the sum of a constant and literal. */
9806 var0 = split_tree (arg0, type, code,
9807 &minus_var0, &con0, &minus_con0,
9808 &lit0, &minus_lit0, 0);
9809 var1 = split_tree (arg1, type, code,
9810 &minus_var1, &con1, &minus_con1,
9811 &lit1, &minus_lit1, code == MINUS_EXPR);
9812
9813 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9814 if (code == MINUS_EXPR)
9815 code = PLUS_EXPR;
9816
9817 /* With undefined overflow prefer doing association in a type
9818 which wraps on overflow, if that is one of the operand types. */
9819 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
9820 && !TYPE_OVERFLOW_WRAPS (type))
9821 {
9822 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9823 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9824 atype = TREE_TYPE (arg0);
9825 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9826 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9827 atype = TREE_TYPE (arg1);
9828 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9829 }
9830
9831 /* With undefined overflow we can only associate constants with one
9832 variable, and constants whose association doesn't overflow. */
9833 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype))
9834 && !TYPE_OVERFLOW_WRAPS (atype))
9835 {
9836 if ((var0 && var1) || (minus_var0 && minus_var1))
9837 {
9838 /* ??? If split_tree would handle NEGATE_EXPR we could
9839 simply reject these cases and the allowed cases would
9840 be the var0/minus_var1 ones. */
9841 tree tmp0 = var0 ? var0 : minus_var0;
9842 tree tmp1 = var1 ? var1 : minus_var1;
9843 bool one_neg = false;
9844
9845 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9846 {
9847 tmp0 = TREE_OPERAND (tmp0, 0);
9848 one_neg = !one_neg;
9849 }
9850 if (CONVERT_EXPR_P (tmp0)
9851 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9852 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9853 <= TYPE_PRECISION (atype)))
9854 tmp0 = TREE_OPERAND (tmp0, 0);
9855 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9856 {
9857 tmp1 = TREE_OPERAND (tmp1, 0);
9858 one_neg = !one_neg;
9859 }
9860 if (CONVERT_EXPR_P (tmp1)
9861 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9862 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9863 <= TYPE_PRECISION (atype)))
9864 tmp1 = TREE_OPERAND (tmp1, 0);
9865 /* The only case we can still associate with two variables
9866 is if they cancel out. */
9867 if (!one_neg
9868 || !operand_equal_p (tmp0, tmp1, 0))
9869 ok = false;
9870 }
9871 else if ((var0 && minus_var1
9872 && ! operand_equal_p (var0, minus_var1, 0))
9873 || (minus_var0 && var1
9874 && ! operand_equal_p (minus_var0, var1, 0)))
9875 ok = false;
9876 }
9877
9878 /* Only do something if we found more than two objects. Otherwise,
9879 nothing has changed and we risk infinite recursion. */
9880 if (ok
9881 && ((var0 != 0) + (var1 != 0)
9882 + (minus_var0 != 0) + (minus_var1 != 0)
9883 + (con0 != 0) + (con1 != 0)
9884 + (minus_con0 != 0) + (minus_con1 != 0)
9885 + (lit0 != 0) + (lit1 != 0)
9886 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2)
9887 {
9888 var0 = associate_trees (loc, var0, var1, code, atype);
9889 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
9890 code, atype);
9891 con0 = associate_trees (loc, con0, con1, code, atype);
9892 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
9893 code, atype);
9894 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9895 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9896 code, atype);
9897
9898 if (minus_var0 && var0)
9899 {
9900 var0 = associate_trees (loc, var0, minus_var0,
9901 MINUS_EXPR, atype);
9902 minus_var0 = 0;
9903 }
9904 if (minus_con0 && con0)
9905 {
9906 con0 = associate_trees (loc, con0, minus_con0,
9907 MINUS_EXPR, atype);
9908 minus_con0 = 0;
9909 }
9910
9911 /* Preserve the MINUS_EXPR if the negative part of the literal is
9912 greater than the positive part. Otherwise, the multiplicative
9913 folding code (i.e extract_muldiv) may be fooled in case
9914 unsigned constants are subtracted, like in the following
9915 example: ((X*2 + 4) - 8U)/2. */
9916 if (minus_lit0 && lit0)
9917 {
9918 if (TREE_CODE (lit0) == INTEGER_CST
9919 && TREE_CODE (minus_lit0) == INTEGER_CST
9920 && tree_int_cst_lt (lit0, minus_lit0)
9921 /* But avoid ending up with only negated parts. */
9922 && (var0 || con0))
9923 {
9924 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9925 MINUS_EXPR, atype);
9926 lit0 = 0;
9927 }
9928 else
9929 {
9930 lit0 = associate_trees (loc, lit0, minus_lit0,
9931 MINUS_EXPR, atype);
9932 minus_lit0 = 0;
9933 }
9934 }
9935
9936 /* Don't introduce overflows through reassociation. */
9937 if ((lit0 && TREE_OVERFLOW_P (lit0))
9938 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
9939 return NULL_TREE;
9940
9941 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9942 con0 = associate_trees (loc, con0, lit0, code, atype);
9943 lit0 = 0;
9944 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
9945 code, atype);
9946 minus_lit0 = 0;
9947
9948 /* Eliminate minus_con0. */
9949 if (minus_con0)
9950 {
9951 if (con0)
9952 con0 = associate_trees (loc, con0, minus_con0,
9953 MINUS_EXPR, atype);
9954 else if (var0)
9955 var0 = associate_trees (loc, var0, minus_con0,
9956 MINUS_EXPR, atype);
9957 else
9958 gcc_unreachable ();
9959 minus_con0 = 0;
9960 }
9961
9962 /* Eliminate minus_var0. */
9963 if (minus_var0)
9964 {
9965 if (con0)
9966 con0 = associate_trees (loc, con0, minus_var0,
9967 MINUS_EXPR, atype);
9968 else
9969 gcc_unreachable ();
9970 minus_var0 = 0;
9971 }
9972
9973 return
9974 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9975 code, atype));
9976 }
9977 }
9978
9979 return NULL_TREE;
9980
9981 case POINTER_DIFF_EXPR:
9982 case MINUS_EXPR:
9983 /* Fold &a[i] - &a[j] to i-j. */
9984 if (TREE_CODE (arg0) == ADDR_EXPR
9985 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9986 && TREE_CODE (arg1) == ADDR_EXPR
9987 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9988 {
9989 tree tem = fold_addr_of_array_ref_difference (loc, type,
9990 TREE_OPERAND (arg0, 0),
9991 TREE_OPERAND (arg1, 0),
9992 code
9993 == POINTER_DIFF_EXPR);
9994 if (tem)
9995 return tem;
9996 }
9997
9998 /* Further transformations are not for pointers. */
9999 if (code == POINTER_DIFF_EXPR)
10000 return NULL_TREE;
10001
10002 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10003 if (TREE_CODE (arg0) == NEGATE_EXPR
10004 && negate_expr_p (op1)
10005 /* If arg0 is e.g. unsigned int and type is int, then this could
10006 introduce UB, because if A is INT_MIN at runtime, the original
10007 expression can be well defined while the latter is not.
10008 See PR83269. */
10009 && !(ANY_INTEGRAL_TYPE_P (type)
10010 && TYPE_OVERFLOW_UNDEFINED (type)
10011 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10012 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10013 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1),
10014 fold_convert_loc (loc, type,
10015 TREE_OPERAND (arg0, 0)));
10016
10017 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10018 __complex__ ( x, -y ). This is not the same for SNaNs or if
10019 signed zeros are involved. */
10020 if (!HONOR_SNANS (element_mode (arg0))
10021 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10022 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10023 {
10024 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10025 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10026 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10027 bool arg0rz = false, arg0iz = false;
10028 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10029 || (arg0i && (arg0iz = real_zerop (arg0i))))
10030 {
10031 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10032 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10033 if (arg0rz && arg1i && real_zerop (arg1i))
10034 {
10035 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10036 arg1r ? arg1r
10037 : build1 (REALPART_EXPR, rtype, arg1));
10038 tree ip = arg0i ? arg0i
10039 : build1 (IMAGPART_EXPR, rtype, arg0);
10040 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10041 }
10042 else if (arg0iz && arg1r && real_zerop (arg1r))
10043 {
10044 tree rp = arg0r ? arg0r
10045 : build1 (REALPART_EXPR, rtype, arg0);
10046 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10047 arg1i ? arg1i
10048 : build1 (IMAGPART_EXPR, rtype, arg1));
10049 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10050 }
10051 }
10052 }
10053
10054 /* A - B -> A + (-B) if B is easily negatable. */
10055 if (negate_expr_p (op1)
10056 && ! TYPE_OVERFLOW_SANITIZED (type)
10057 && ((FLOAT_TYPE_P (type)
10058 /* Avoid this transformation if B is a positive REAL_CST. */
10059 && (TREE_CODE (op1) != REAL_CST
10060 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
10061 || INTEGRAL_TYPE_P (type)))
10062 return fold_build2_loc (loc, PLUS_EXPR, type,
10063 fold_convert_loc (loc, type, arg0),
10064 negate_expr (op1));
10065
10066 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10067 one. Make sure the type is not saturating and has the signedness of
10068 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10069 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10070 if ((TREE_CODE (arg0) == MULT_EXPR
10071 || TREE_CODE (arg1) == MULT_EXPR)
10072 && !TYPE_SATURATING (type)
10073 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10074 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10075 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10076 {
10077 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10078 if (tem)
10079 return tem;
10080 }
10081
10082 goto associate;
10083
10084 case MULT_EXPR:
10085 if (! FLOAT_TYPE_P (type))
10086 {
10087 /* Transform x * -C into -x * C if x is easily negatable. */
10088 if (TREE_CODE (op1) == INTEGER_CST
10089 && tree_int_cst_sgn (op1) == -1
10090 && negate_expr_p (op0)
10091 && negate_expr_p (op1)
10092 && (tem = negate_expr (op1)) != op1
10093 && ! TREE_OVERFLOW (tem))
10094 return fold_build2_loc (loc, MULT_EXPR, type,
10095 fold_convert_loc (loc, type,
10096 negate_expr (op0)), tem);
10097
10098 strict_overflow_p = false;
10099 if (TREE_CODE (arg1) == INTEGER_CST
10100 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10101 &strict_overflow_p)) != 0)
10102 {
10103 if (strict_overflow_p)
10104 fold_overflow_warning (("assuming signed overflow does not "
10105 "occur when simplifying "
10106 "multiplication"),
10107 WARN_STRICT_OVERFLOW_MISC);
10108 return fold_convert_loc (loc, type, tem);
10109 }
10110
10111 /* Optimize z * conj(z) for integer complex numbers. */
10112 if (TREE_CODE (arg0) == CONJ_EXPR
10113 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10114 return fold_mult_zconjz (loc, type, arg1);
10115 if (TREE_CODE (arg1) == CONJ_EXPR
10116 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10117 return fold_mult_zconjz (loc, type, arg0);
10118 }
10119 else
10120 {
10121 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10122 This is not the same for NaNs or if signed zeros are
10123 involved. */
10124 if (!HONOR_NANS (arg0)
10125 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10126 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10127 && TREE_CODE (arg1) == COMPLEX_CST
10128 && real_zerop (TREE_REALPART (arg1)))
10129 {
10130 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10131 if (real_onep (TREE_IMAGPART (arg1)))
10132 return
10133 fold_build2_loc (loc, COMPLEX_EXPR, type,
10134 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10135 rtype, arg0)),
10136 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10137 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10138 return
10139 fold_build2_loc (loc, COMPLEX_EXPR, type,
10140 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10141 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10142 rtype, arg0)));
10143 }
10144
10145 /* Optimize z * conj(z) for floating point complex numbers.
10146 Guarded by flag_unsafe_math_optimizations as non-finite
10147 imaginary components don't produce scalar results. */
10148 if (flag_unsafe_math_optimizations
10149 && TREE_CODE (arg0) == CONJ_EXPR
10150 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10151 return fold_mult_zconjz (loc, type, arg1);
10152 if (flag_unsafe_math_optimizations
10153 && TREE_CODE (arg1) == CONJ_EXPR
10154 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10155 return fold_mult_zconjz (loc, type, arg0);
10156 }
10157 goto associate;
10158
10159 case BIT_IOR_EXPR:
10160 /* Canonicalize (X & C1) | C2. */
10161 if (TREE_CODE (arg0) == BIT_AND_EXPR
10162 && TREE_CODE (arg1) == INTEGER_CST
10163 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10164 {
10165 int width = TYPE_PRECISION (type), w;
10166 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
10167 wide_int c2 = wi::to_wide (arg1);
10168
10169 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10170 if ((c1 & c2) == c1)
10171 return omit_one_operand_loc (loc, type, arg1,
10172 TREE_OPERAND (arg0, 0));
10173
10174 wide_int msk = wi::mask (width, false,
10175 TYPE_PRECISION (TREE_TYPE (arg1)));
10176
10177 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10178 if (wi::bit_and_not (msk, c1 | c2) == 0)
10179 {
10180 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10181 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10182 }
10183
10184 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10185 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10186 mode which allows further optimizations. */
10187 c1 &= msk;
10188 c2 &= msk;
10189 wide_int c3 = wi::bit_and_not (c1, c2);
10190 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10191 {
10192 wide_int mask = wi::mask (w, false,
10193 TYPE_PRECISION (type));
10194 if (((c1 | c2) & mask) == mask
10195 && wi::bit_and_not (c1, mask) == 0)
10196 {
10197 c3 = mask;
10198 break;
10199 }
10200 }
10201
10202 if (c3 != c1)
10203 {
10204 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10205 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
10206 wide_int_to_tree (type, c3));
10207 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10208 }
10209 }
10210
10211 /* See if this can be simplified into a rotate first. If that
10212 is unsuccessful continue in the association code. */
10213 goto bit_rotate;
10214
10215 case BIT_XOR_EXPR:
10216 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10217 if (TREE_CODE (arg0) == BIT_AND_EXPR
10218 && INTEGRAL_TYPE_P (type)
10219 && integer_onep (TREE_OPERAND (arg0, 1))
10220 && integer_onep (arg1))
10221 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10222 build_zero_cst (TREE_TYPE (arg0)));
10223
10224 /* See if this can be simplified into a rotate first. If that
10225 is unsuccessful continue in the association code. */
10226 goto bit_rotate;
10227
10228 case BIT_AND_EXPR:
10229 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10230 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10231 && INTEGRAL_TYPE_P (type)
10232 && integer_onep (TREE_OPERAND (arg0, 1))
10233 && integer_onep (arg1))
10234 {
10235 tree tem2;
10236 tem = TREE_OPERAND (arg0, 0);
10237 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10238 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10239 tem, tem2);
10240 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10241 build_zero_cst (TREE_TYPE (tem)));
10242 }
10243 /* Fold ~X & 1 as (X & 1) == 0. */
10244 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10245 && INTEGRAL_TYPE_P (type)
10246 && integer_onep (arg1))
10247 {
10248 tree tem2;
10249 tem = TREE_OPERAND (arg0, 0);
10250 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10251 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10252 tem, tem2);
10253 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10254 build_zero_cst (TREE_TYPE (tem)));
10255 }
10256 /* Fold !X & 1 as X == 0. */
10257 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10258 && integer_onep (arg1))
10259 {
10260 tem = TREE_OPERAND (arg0, 0);
10261 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10262 build_zero_cst (TREE_TYPE (tem)));
10263 }
10264
10265 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10266 multiple of 1 << CST. */
10267 if (TREE_CODE (arg1) == INTEGER_CST)
10268 {
10269 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
10270 wide_int ncst1 = -cst1;
10271 if ((cst1 & ncst1) == ncst1
10272 && multiple_of_p (type, arg0,
10273 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10274 return fold_convert_loc (loc, type, arg0);
10275 }
10276
10277 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10278 bits from CST2. */
10279 if (TREE_CODE (arg1) == INTEGER_CST
10280 && TREE_CODE (arg0) == MULT_EXPR
10281 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10282 {
10283 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1);
10284 wide_int masked
10285 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1)));
10286
10287 if (masked == 0)
10288 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10289 arg0, arg1);
10290 else if (masked != warg1)
10291 {
10292 /* Avoid the transform if arg1 is a mask of some
10293 mode which allows further optimizations. */
10294 int pop = wi::popcount (warg1);
10295 if (!(pop >= BITS_PER_UNIT
10296 && pow2p_hwi (pop)
10297 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10298 return fold_build2_loc (loc, code, type, op0,
10299 wide_int_to_tree (type, masked));
10300 }
10301 }
10302
10303 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10304 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10305 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10306 {
10307 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10308
10309 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED);
10310 if (mask == -1)
10311 return
10312 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10313 }
10314
10315 goto associate;
10316
10317 case RDIV_EXPR:
10318 /* Don't touch a floating-point divide by zero unless the mode
10319 of the constant can represent infinity. */
10320 if (TREE_CODE (arg1) == REAL_CST
10321 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10322 && real_zerop (arg1))
10323 return NULL_TREE;
10324
10325 /* (-A) / (-B) -> A / B */
10326 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10327 return fold_build2_loc (loc, RDIV_EXPR, type,
10328 TREE_OPERAND (arg0, 0),
10329 negate_expr (arg1));
10330 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10331 return fold_build2_loc (loc, RDIV_EXPR, type,
10332 negate_expr (arg0),
10333 TREE_OPERAND (arg1, 0));
10334 return NULL_TREE;
10335
10336 case TRUNC_DIV_EXPR:
10337 /* Fall through */
10338
10339 case FLOOR_DIV_EXPR:
10340 /* Simplify A / (B << N) where A and B are positive and B is
10341 a power of 2, to A >> (N + log2(B)). */
10342 strict_overflow_p = false;
10343 if (TREE_CODE (arg1) == LSHIFT_EXPR
10344 && (TYPE_UNSIGNED (type)
10345 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10346 {
10347 tree sval = TREE_OPERAND (arg1, 0);
10348 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10349 {
10350 tree sh_cnt = TREE_OPERAND (arg1, 1);
10351 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10352 wi::exact_log2 (wi::to_wide (sval)));
10353
10354 if (strict_overflow_p)
10355 fold_overflow_warning (("assuming signed overflow does not "
10356 "occur when simplifying A / (B << N)"),
10357 WARN_STRICT_OVERFLOW_MISC);
10358
10359 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10360 sh_cnt, pow2);
10361 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10362 fold_convert_loc (loc, type, arg0), sh_cnt);
10363 }
10364 }
10365
10366 /* Fall through */
10367
10368 case ROUND_DIV_EXPR:
10369 case CEIL_DIV_EXPR:
10370 case EXACT_DIV_EXPR:
10371 if (integer_zerop (arg1))
10372 return NULL_TREE;
10373
10374 /* Convert -A / -B to A / B when the type is signed and overflow is
10375 undefined. */
10376 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10377 && TREE_CODE (op0) == NEGATE_EXPR
10378 && negate_expr_p (op1))
10379 {
10380 if (INTEGRAL_TYPE_P (type))
10381 fold_overflow_warning (("assuming signed overflow does not occur "
10382 "when distributing negation across "
10383 "division"),
10384 WARN_STRICT_OVERFLOW_MISC);
10385 return fold_build2_loc (loc, code, type,
10386 fold_convert_loc (loc, type,
10387 TREE_OPERAND (arg0, 0)),
10388 negate_expr (op1));
10389 }
10390 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10391 && TREE_CODE (arg1) == NEGATE_EXPR
10392 && negate_expr_p (op0))
10393 {
10394 if (INTEGRAL_TYPE_P (type))
10395 fold_overflow_warning (("assuming signed overflow does not occur "
10396 "when distributing negation across "
10397 "division"),
10398 WARN_STRICT_OVERFLOW_MISC);
10399 return fold_build2_loc (loc, code, type,
10400 negate_expr (op0),
10401 fold_convert_loc (loc, type,
10402 TREE_OPERAND (arg1, 0)));
10403 }
10404
10405 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10406 operation, EXACT_DIV_EXPR.
10407
10408 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10409 At one time others generated faster code, it's not clear if they do
10410 after the last round to changes to the DIV code in expmed.c. */
10411 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10412 && multiple_of_p (type, arg0, arg1))
10413 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10414 fold_convert (type, arg0),
10415 fold_convert (type, arg1));
10416
10417 strict_overflow_p = false;
10418 if (TREE_CODE (arg1) == INTEGER_CST
10419 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10420 &strict_overflow_p)) != 0)
10421 {
10422 if (strict_overflow_p)
10423 fold_overflow_warning (("assuming signed overflow does not occur "
10424 "when simplifying division"),
10425 WARN_STRICT_OVERFLOW_MISC);
10426 return fold_convert_loc (loc, type, tem);
10427 }
10428
10429 return NULL_TREE;
10430
10431 case CEIL_MOD_EXPR:
10432 case FLOOR_MOD_EXPR:
10433 case ROUND_MOD_EXPR:
10434 case TRUNC_MOD_EXPR:
10435 strict_overflow_p = false;
10436 if (TREE_CODE (arg1) == INTEGER_CST
10437 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10438 &strict_overflow_p)) != 0)
10439 {
10440 if (strict_overflow_p)
10441 fold_overflow_warning (("assuming signed overflow does not occur "
10442 "when simplifying modulus"),
10443 WARN_STRICT_OVERFLOW_MISC);
10444 return fold_convert_loc (loc, type, tem);
10445 }
10446
10447 return NULL_TREE;
10448
10449 case LROTATE_EXPR:
10450 case RROTATE_EXPR:
10451 case RSHIFT_EXPR:
10452 case LSHIFT_EXPR:
10453 /* Since negative shift count is not well-defined,
10454 don't try to compute it in the compiler. */
10455 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10456 return NULL_TREE;
10457
10458 prec = element_precision (type);
10459
10460 /* If we have a rotate of a bit operation with the rotate count and
10461 the second operand of the bit operation both constant,
10462 permute the two operations. */
10463 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10464 && (TREE_CODE (arg0) == BIT_AND_EXPR
10465 || TREE_CODE (arg0) == BIT_IOR_EXPR
10466 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10467 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10468 {
10469 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10470 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10471 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10472 fold_build2_loc (loc, code, type,
10473 arg00, arg1),
10474 fold_build2_loc (loc, code, type,
10475 arg01, arg1));
10476 }
10477
10478 /* Two consecutive rotates adding up to the some integer
10479 multiple of the precision of the type can be ignored. */
10480 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10481 && TREE_CODE (arg0) == RROTATE_EXPR
10482 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10483 && wi::umod_trunc (wi::to_wide (arg1)
10484 + wi::to_wide (TREE_OPERAND (arg0, 1)),
10485 prec) == 0)
10486 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10487
10488 return NULL_TREE;
10489
10490 case MIN_EXPR:
10491 case MAX_EXPR:
10492 goto associate;
10493
10494 case TRUTH_ANDIF_EXPR:
10495 /* Note that the operands of this must be ints
10496 and their values must be 0 or 1.
10497 ("true" is a fixed value perhaps depending on the language.) */
10498 /* If first arg is constant zero, return it. */
10499 if (integer_zerop (arg0))
10500 return fold_convert_loc (loc, type, arg0);
10501 /* FALLTHRU */
10502 case TRUTH_AND_EXPR:
10503 /* If either arg is constant true, drop it. */
10504 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10505 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10506 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10507 /* Preserve sequence points. */
10508 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10509 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10510 /* If second arg is constant zero, result is zero, but first arg
10511 must be evaluated. */
10512 if (integer_zerop (arg1))
10513 return omit_one_operand_loc (loc, type, arg1, arg0);
10514 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10515 case will be handled here. */
10516 if (integer_zerop (arg0))
10517 return omit_one_operand_loc (loc, type, arg0, arg1);
10518
10519 /* !X && X is always false. */
10520 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10521 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10522 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10523 /* X && !X is always false. */
10524 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10525 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10526 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10527
10528 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10529 means A >= Y && A != MAX, but in this case we know that
10530 A < X <= MAX. */
10531
10532 if (!TREE_SIDE_EFFECTS (arg0)
10533 && !TREE_SIDE_EFFECTS (arg1))
10534 {
10535 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10536 if (tem && !operand_equal_p (tem, arg0, 0))
10537 return fold_build2_loc (loc, code, type, tem, arg1);
10538
10539 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10540 if (tem && !operand_equal_p (tem, arg1, 0))
10541 return fold_build2_loc (loc, code, type, arg0, tem);
10542 }
10543
10544 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10545 != NULL_TREE)
10546 return tem;
10547
10548 return NULL_TREE;
10549
10550 case TRUTH_ORIF_EXPR:
10551 /* Note that the operands of this must be ints
10552 and their values must be 0 or true.
10553 ("true" is a fixed value perhaps depending on the language.) */
10554 /* If first arg is constant true, return it. */
10555 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10556 return fold_convert_loc (loc, type, arg0);
10557 /* FALLTHRU */
10558 case TRUTH_OR_EXPR:
10559 /* If either arg is constant zero, drop it. */
10560 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10561 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10562 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10563 /* Preserve sequence points. */
10564 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10565 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10566 /* If second arg is constant true, result is true, but we must
10567 evaluate first arg. */
10568 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10569 return omit_one_operand_loc (loc, type, arg1, arg0);
10570 /* Likewise for first arg, but note this only occurs here for
10571 TRUTH_OR_EXPR. */
10572 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10573 return omit_one_operand_loc (loc, type, arg0, arg1);
10574
10575 /* !X || X is always true. */
10576 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10577 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10578 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10579 /* X || !X is always true. */
10580 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10581 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10582 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10583
10584 /* (X && !Y) || (!X && Y) is X ^ Y */
10585 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10586 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10587 {
10588 tree a0, a1, l0, l1, n0, n1;
10589
10590 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10591 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10592
10593 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10594 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10595
10596 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10597 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10598
10599 if ((operand_equal_p (n0, a0, 0)
10600 && operand_equal_p (n1, a1, 0))
10601 || (operand_equal_p (n0, a1, 0)
10602 && operand_equal_p (n1, a0, 0)))
10603 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10604 }
10605
10606 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10607 != NULL_TREE)
10608 return tem;
10609
10610 return NULL_TREE;
10611
10612 case TRUTH_XOR_EXPR:
10613 /* If the second arg is constant zero, drop it. */
10614 if (integer_zerop (arg1))
10615 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10616 /* If the second arg is constant true, this is a logical inversion. */
10617 if (integer_onep (arg1))
10618 {
10619 tem = invert_truthvalue_loc (loc, arg0);
10620 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10621 }
10622 /* Identical arguments cancel to zero. */
10623 if (operand_equal_p (arg0, arg1, 0))
10624 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10625
10626 /* !X ^ X is always true. */
10627 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10628 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10629 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10630
10631 /* X ^ !X is always true. */
10632 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10633 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10634 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10635
10636 return NULL_TREE;
10637
10638 case EQ_EXPR:
10639 case NE_EXPR:
10640 STRIP_NOPS (arg0);
10641 STRIP_NOPS (arg1);
10642
10643 tem = fold_comparison (loc, code, type, op0, op1);
10644 if (tem != NULL_TREE)
10645 return tem;
10646
10647 /* bool_var != 1 becomes !bool_var. */
10648 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10649 && code == NE_EXPR)
10650 return fold_convert_loc (loc, type,
10651 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10652 TREE_TYPE (arg0), arg0));
10653
10654 /* bool_var == 0 becomes !bool_var. */
10655 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10656 && code == EQ_EXPR)
10657 return fold_convert_loc (loc, type,
10658 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10659 TREE_TYPE (arg0), arg0));
10660
10661 /* !exp != 0 becomes !exp */
10662 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10663 && code == NE_EXPR)
10664 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10665
10666 /* If this is an EQ or NE comparison with zero and ARG0 is
10667 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10668 two operations, but the latter can be done in one less insn
10669 on machines that have only two-operand insns or on which a
10670 constant cannot be the first operand. */
10671 if (TREE_CODE (arg0) == BIT_AND_EXPR
10672 && integer_zerop (arg1))
10673 {
10674 tree arg00 = TREE_OPERAND (arg0, 0);
10675 tree arg01 = TREE_OPERAND (arg0, 1);
10676 if (TREE_CODE (arg00) == LSHIFT_EXPR
10677 && integer_onep (TREE_OPERAND (arg00, 0)))
10678 {
10679 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10680 arg01, TREE_OPERAND (arg00, 1));
10681 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10682 build_int_cst (TREE_TYPE (arg0), 1));
10683 return fold_build2_loc (loc, code, type,
10684 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10685 arg1);
10686 }
10687 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10688 && integer_onep (TREE_OPERAND (arg01, 0)))
10689 {
10690 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10691 arg00, TREE_OPERAND (arg01, 1));
10692 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10693 build_int_cst (TREE_TYPE (arg0), 1));
10694 return fold_build2_loc (loc, code, type,
10695 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10696 arg1);
10697 }
10698 }
10699
10700 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10701 C1 is a valid shift constant, and C2 is a power of two, i.e.
10702 a single bit. */
10703 if (TREE_CODE (arg0) == BIT_AND_EXPR
10704 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10705 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10706 == INTEGER_CST
10707 && integer_pow2p (TREE_OPERAND (arg0, 1))
10708 && integer_zerop (arg1))
10709 {
10710 tree itype = TREE_TYPE (arg0);
10711 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10712 prec = TYPE_PRECISION (itype);
10713
10714 /* Check for a valid shift count. */
10715 if (wi::ltu_p (wi::to_wide (arg001), prec))
10716 {
10717 tree arg01 = TREE_OPERAND (arg0, 1);
10718 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10719 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10720 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10721 can be rewritten as (X & (C2 << C1)) != 0. */
10722 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10723 {
10724 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10725 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10726 return fold_build2_loc (loc, code, type, tem,
10727 fold_convert_loc (loc, itype, arg1));
10728 }
10729 /* Otherwise, for signed (arithmetic) shifts,
10730 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10731 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10732 else if (!TYPE_UNSIGNED (itype))
10733 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10734 arg000, build_int_cst (itype, 0));
10735 /* Otherwise, of unsigned (logical) shifts,
10736 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10737 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10738 else
10739 return omit_one_operand_loc (loc, type,
10740 code == EQ_EXPR ? integer_one_node
10741 : integer_zero_node,
10742 arg000);
10743 }
10744 }
10745
10746 /* If this is a comparison of a field, we may be able to simplify it. */
10747 if ((TREE_CODE (arg0) == COMPONENT_REF
10748 || TREE_CODE (arg0) == BIT_FIELD_REF)
10749 /* Handle the constant case even without -O
10750 to make sure the warnings are given. */
10751 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10752 {
10753 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10754 if (t1)
10755 return t1;
10756 }
10757
10758 /* Optimize comparisons of strlen vs zero to a compare of the
10759 first character of the string vs zero. To wit,
10760 strlen(ptr) == 0 => *ptr == 0
10761 strlen(ptr) != 0 => *ptr != 0
10762 Other cases should reduce to one of these two (or a constant)
10763 due to the return value of strlen being unsigned. */
10764 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1))
10765 {
10766 tree fndecl = get_callee_fndecl (arg0);
10767
10768 if (fndecl
10769 && fndecl_built_in_p (fndecl, BUILT_IN_STRLEN)
10770 && call_expr_nargs (arg0) == 1
10771 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0)))
10772 == POINTER_TYPE))
10773 {
10774 tree ptrtype
10775 = build_pointer_type (build_qualified_type (char_type_node,
10776 TYPE_QUAL_CONST));
10777 tree ptr = fold_convert_loc (loc, ptrtype,
10778 CALL_EXPR_ARG (arg0, 0));
10779 tree iref = build_fold_indirect_ref_loc (loc, ptr);
10780 return fold_build2_loc (loc, code, type, iref,
10781 build_int_cst (TREE_TYPE (iref), 0));
10782 }
10783 }
10784
10785 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10786 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10787 if (TREE_CODE (arg0) == RSHIFT_EXPR
10788 && integer_zerop (arg1)
10789 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10790 {
10791 tree arg00 = TREE_OPERAND (arg0, 0);
10792 tree arg01 = TREE_OPERAND (arg0, 1);
10793 tree itype = TREE_TYPE (arg00);
10794 if (wi::to_wide (arg01) == element_precision (itype) - 1)
10795 {
10796 if (TYPE_UNSIGNED (itype))
10797 {
10798 itype = signed_type_for (itype);
10799 arg00 = fold_convert_loc (loc, itype, arg00);
10800 }
10801 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10802 type, arg00, build_zero_cst (itype));
10803 }
10804 }
10805
10806 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10807 (X & C) == 0 when C is a single bit. */
10808 if (TREE_CODE (arg0) == BIT_AND_EXPR
10809 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10810 && integer_zerop (arg1)
10811 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10812 {
10813 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10814 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10815 TREE_OPERAND (arg0, 1));
10816 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10817 type, tem,
10818 fold_convert_loc (loc, TREE_TYPE (arg0),
10819 arg1));
10820 }
10821
10822 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10823 constant C is a power of two, i.e. a single bit. */
10824 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10825 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10826 && integer_zerop (arg1)
10827 && integer_pow2p (TREE_OPERAND (arg0, 1))
10828 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10829 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10830 {
10831 tree arg00 = TREE_OPERAND (arg0, 0);
10832 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10833 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10834 }
10835
10836 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10837 when is C is a power of two, i.e. a single bit. */
10838 if (TREE_CODE (arg0) == BIT_AND_EXPR
10839 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10840 && integer_zerop (arg1)
10841 && integer_pow2p (TREE_OPERAND (arg0, 1))
10842 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10843 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10844 {
10845 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10846 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10847 arg000, TREE_OPERAND (arg0, 1));
10848 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10849 tem, build_int_cst (TREE_TYPE (tem), 0));
10850 }
10851
10852 if (integer_zerop (arg1)
10853 && tree_expr_nonzero_p (arg0))
10854 {
10855 tree res = constant_boolean_node (code==NE_EXPR, type);
10856 return omit_one_operand_loc (loc, type, res, arg0);
10857 }
10858
10859 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10860 if (TREE_CODE (arg0) == BIT_AND_EXPR
10861 && TREE_CODE (arg1) == BIT_AND_EXPR)
10862 {
10863 tree arg00 = TREE_OPERAND (arg0, 0);
10864 tree arg01 = TREE_OPERAND (arg0, 1);
10865 tree arg10 = TREE_OPERAND (arg1, 0);
10866 tree arg11 = TREE_OPERAND (arg1, 1);
10867 tree itype = TREE_TYPE (arg0);
10868
10869 if (operand_equal_p (arg01, arg11, 0))
10870 {
10871 tem = fold_convert_loc (loc, itype, arg10);
10872 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10873 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10874 return fold_build2_loc (loc, code, type, tem,
10875 build_zero_cst (itype));
10876 }
10877 if (operand_equal_p (arg01, arg10, 0))
10878 {
10879 tem = fold_convert_loc (loc, itype, arg11);
10880 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10881 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10882 return fold_build2_loc (loc, code, type, tem,
10883 build_zero_cst (itype));
10884 }
10885 if (operand_equal_p (arg00, arg11, 0))
10886 {
10887 tem = fold_convert_loc (loc, itype, arg10);
10888 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10889 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10890 return fold_build2_loc (loc, code, type, tem,
10891 build_zero_cst (itype));
10892 }
10893 if (operand_equal_p (arg00, arg10, 0))
10894 {
10895 tem = fold_convert_loc (loc, itype, arg11);
10896 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10897 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10898 return fold_build2_loc (loc, code, type, tem,
10899 build_zero_cst (itype));
10900 }
10901 }
10902
10903 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10904 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10905 {
10906 tree arg00 = TREE_OPERAND (arg0, 0);
10907 tree arg01 = TREE_OPERAND (arg0, 1);
10908 tree arg10 = TREE_OPERAND (arg1, 0);
10909 tree arg11 = TREE_OPERAND (arg1, 1);
10910 tree itype = TREE_TYPE (arg0);
10911
10912 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10913 operand_equal_p guarantees no side-effects so we don't need
10914 to use omit_one_operand on Z. */
10915 if (operand_equal_p (arg01, arg11, 0))
10916 return fold_build2_loc (loc, code, type, arg00,
10917 fold_convert_loc (loc, TREE_TYPE (arg00),
10918 arg10));
10919 if (operand_equal_p (arg01, arg10, 0))
10920 return fold_build2_loc (loc, code, type, arg00,
10921 fold_convert_loc (loc, TREE_TYPE (arg00),
10922 arg11));
10923 if (operand_equal_p (arg00, arg11, 0))
10924 return fold_build2_loc (loc, code, type, arg01,
10925 fold_convert_loc (loc, TREE_TYPE (arg01),
10926 arg10));
10927 if (operand_equal_p (arg00, arg10, 0))
10928 return fold_build2_loc (loc, code, type, arg01,
10929 fold_convert_loc (loc, TREE_TYPE (arg01),
10930 arg11));
10931
10932 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10933 if (TREE_CODE (arg01) == INTEGER_CST
10934 && TREE_CODE (arg11) == INTEGER_CST)
10935 {
10936 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10937 fold_convert_loc (loc, itype, arg11));
10938 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10939 return fold_build2_loc (loc, code, type, tem,
10940 fold_convert_loc (loc, itype, arg10));
10941 }
10942 }
10943
10944 /* Attempt to simplify equality/inequality comparisons of complex
10945 values. Only lower the comparison if the result is known or
10946 can be simplified to a single scalar comparison. */
10947 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10948 || TREE_CODE (arg0) == COMPLEX_CST)
10949 && (TREE_CODE (arg1) == COMPLEX_EXPR
10950 || TREE_CODE (arg1) == COMPLEX_CST))
10951 {
10952 tree real0, imag0, real1, imag1;
10953 tree rcond, icond;
10954
10955 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10956 {
10957 real0 = TREE_OPERAND (arg0, 0);
10958 imag0 = TREE_OPERAND (arg0, 1);
10959 }
10960 else
10961 {
10962 real0 = TREE_REALPART (arg0);
10963 imag0 = TREE_IMAGPART (arg0);
10964 }
10965
10966 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10967 {
10968 real1 = TREE_OPERAND (arg1, 0);
10969 imag1 = TREE_OPERAND (arg1, 1);
10970 }
10971 else
10972 {
10973 real1 = TREE_REALPART (arg1);
10974 imag1 = TREE_IMAGPART (arg1);
10975 }
10976
10977 rcond = fold_binary_loc (loc, code, type, real0, real1);
10978 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10979 {
10980 if (integer_zerop (rcond))
10981 {
10982 if (code == EQ_EXPR)
10983 return omit_two_operands_loc (loc, type, boolean_false_node,
10984 imag0, imag1);
10985 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10986 }
10987 else
10988 {
10989 if (code == NE_EXPR)
10990 return omit_two_operands_loc (loc, type, boolean_true_node,
10991 imag0, imag1);
10992 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10993 }
10994 }
10995
10996 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10997 if (icond && TREE_CODE (icond) == INTEGER_CST)
10998 {
10999 if (integer_zerop (icond))
11000 {
11001 if (code == EQ_EXPR)
11002 return omit_two_operands_loc (loc, type, boolean_false_node,
11003 real0, real1);
11004 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11005 }
11006 else
11007 {
11008 if (code == NE_EXPR)
11009 return omit_two_operands_loc (loc, type, boolean_true_node,
11010 real0, real1);
11011 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11012 }
11013 }
11014 }
11015
11016 return NULL_TREE;
11017
11018 case LT_EXPR:
11019 case GT_EXPR:
11020 case LE_EXPR:
11021 case GE_EXPR:
11022 tem = fold_comparison (loc, code, type, op0, op1);
11023 if (tem != NULL_TREE)
11024 return tem;
11025
11026 /* Transform comparisons of the form X +- C CMP X. */
11027 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11028 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11029 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11030 && !HONOR_SNANS (arg0))
11031 {
11032 tree arg01 = TREE_OPERAND (arg0, 1);
11033 enum tree_code code0 = TREE_CODE (arg0);
11034 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11035
11036 /* (X - c) > X becomes false. */
11037 if (code == GT_EXPR
11038 && ((code0 == MINUS_EXPR && is_positive >= 0)
11039 || (code0 == PLUS_EXPR && is_positive <= 0)))
11040 return constant_boolean_node (0, type);
11041
11042 /* Likewise (X + c) < X becomes false. */
11043 if (code == LT_EXPR
11044 && ((code0 == PLUS_EXPR && is_positive >= 0)
11045 || (code0 == MINUS_EXPR && is_positive <= 0)))
11046 return constant_boolean_node (0, type);
11047
11048 /* Convert (X - c) <= X to true. */
11049 if (!HONOR_NANS (arg1)
11050 && code == LE_EXPR
11051 && ((code0 == MINUS_EXPR && is_positive >= 0)
11052 || (code0 == PLUS_EXPR && is_positive <= 0)))
11053 return constant_boolean_node (1, type);
11054
11055 /* Convert (X + c) >= X to true. */
11056 if (!HONOR_NANS (arg1)
11057 && code == GE_EXPR
11058 && ((code0 == PLUS_EXPR && is_positive >= 0)
11059 || (code0 == MINUS_EXPR && is_positive <= 0)))
11060 return constant_boolean_node (1, type);
11061 }
11062
11063 /* If we are comparing an ABS_EXPR with a constant, we can
11064 convert all the cases into explicit comparisons, but they may
11065 well not be faster than doing the ABS and one comparison.
11066 But ABS (X) <= C is a range comparison, which becomes a subtraction
11067 and a comparison, and is probably faster. */
11068 if (code == LE_EXPR
11069 && TREE_CODE (arg1) == INTEGER_CST
11070 && TREE_CODE (arg0) == ABS_EXPR
11071 && ! TREE_SIDE_EFFECTS (arg0)
11072 && (tem = negate_expr (arg1)) != 0
11073 && TREE_CODE (tem) == INTEGER_CST
11074 && !TREE_OVERFLOW (tem))
11075 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11076 build2 (GE_EXPR, type,
11077 TREE_OPERAND (arg0, 0), tem),
11078 build2 (LE_EXPR, type,
11079 TREE_OPERAND (arg0, 0), arg1));
11080
11081 /* Convert ABS_EXPR<x> >= 0 to true. */
11082 strict_overflow_p = false;
11083 if (code == GE_EXPR
11084 && (integer_zerop (arg1)
11085 || (! HONOR_NANS (arg0)
11086 && real_zerop (arg1)))
11087 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11088 {
11089 if (strict_overflow_p)
11090 fold_overflow_warning (("assuming signed overflow does not occur "
11091 "when simplifying comparison of "
11092 "absolute value and zero"),
11093 WARN_STRICT_OVERFLOW_CONDITIONAL);
11094 return omit_one_operand_loc (loc, type,
11095 constant_boolean_node (true, type),
11096 arg0);
11097 }
11098
11099 /* Convert ABS_EXPR<x> < 0 to false. */
11100 strict_overflow_p = false;
11101 if (code == LT_EXPR
11102 && (integer_zerop (arg1) || real_zerop (arg1))
11103 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11104 {
11105 if (strict_overflow_p)
11106 fold_overflow_warning (("assuming signed overflow does not occur "
11107 "when simplifying comparison of "
11108 "absolute value and zero"),
11109 WARN_STRICT_OVERFLOW_CONDITIONAL);
11110 return omit_one_operand_loc (loc, type,
11111 constant_boolean_node (false, type),
11112 arg0);
11113 }
11114
11115 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11116 and similarly for >= into !=. */
11117 if ((code == LT_EXPR || code == GE_EXPR)
11118 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11119 && TREE_CODE (arg1) == LSHIFT_EXPR
11120 && integer_onep (TREE_OPERAND (arg1, 0)))
11121 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11122 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11123 TREE_OPERAND (arg1, 1)),
11124 build_zero_cst (TREE_TYPE (arg0)));
11125
11126 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11127 otherwise Y might be >= # of bits in X's type and thus e.g.
11128 (unsigned char) (1 << Y) for Y 15 might be 0.
11129 If the cast is widening, then 1 << Y should have unsigned type,
11130 otherwise if Y is number of bits in the signed shift type minus 1,
11131 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11132 31 might be 0xffffffff80000000. */
11133 if ((code == LT_EXPR || code == GE_EXPR)
11134 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11135 && CONVERT_EXPR_P (arg1)
11136 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11137 && (element_precision (TREE_TYPE (arg1))
11138 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11139 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11140 || (element_precision (TREE_TYPE (arg1))
11141 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11142 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11143 {
11144 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11145 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11146 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11147 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11148 build_zero_cst (TREE_TYPE (arg0)));
11149 }
11150
11151 return NULL_TREE;
11152
11153 case UNORDERED_EXPR:
11154 case ORDERED_EXPR:
11155 case UNLT_EXPR:
11156 case UNLE_EXPR:
11157 case UNGT_EXPR:
11158 case UNGE_EXPR:
11159 case UNEQ_EXPR:
11160 case LTGT_EXPR:
11161 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11162 {
11163 tree targ0 = strip_float_extensions (arg0);
11164 tree targ1 = strip_float_extensions (arg1);
11165 tree newtype = TREE_TYPE (targ0);
11166
11167 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11168 newtype = TREE_TYPE (targ1);
11169
11170 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11171 return fold_build2_loc (loc, code, type,
11172 fold_convert_loc (loc, newtype, targ0),
11173 fold_convert_loc (loc, newtype, targ1));
11174 }
11175
11176 return NULL_TREE;
11177
11178 case COMPOUND_EXPR:
11179 /* When pedantic, a compound expression can be neither an lvalue
11180 nor an integer constant expression. */
11181 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11182 return NULL_TREE;
11183 /* Don't let (0, 0) be null pointer constant. */
11184 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11185 : fold_convert_loc (loc, type, arg1);
11186 return pedantic_non_lvalue_loc (loc, tem);
11187
11188 case ASSERT_EXPR:
11189 /* An ASSERT_EXPR should never be passed to fold_binary. */
11190 gcc_unreachable ();
11191
11192 default:
11193 return NULL_TREE;
11194 } /* switch (code) */
11195 }
11196
11197 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11198 ((A & N) + B) & M -> (A + B) & M
11199 Similarly if (N & M) == 0,
11200 ((A | N) + B) & M -> (A + B) & M
11201 and for - instead of + (or unary - instead of +)
11202 and/or ^ instead of |.
11203 If B is constant and (B & M) == 0, fold into A & M.
11204
11205 This function is a helper for match.pd patterns. Return non-NULL
11206 type in which the simplified operation should be performed only
11207 if any optimization is possible.
11208
11209 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11210 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11211 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11212 +/-. */
11213 tree
11214 fold_bit_and_mask (tree type, tree arg1, enum tree_code code,
11215 tree arg00, enum tree_code code00, tree arg000, tree arg001,
11216 tree arg01, enum tree_code code01, tree arg010, tree arg011,
11217 tree *pmop)
11218 {
11219 gcc_assert (TREE_CODE (arg1) == INTEGER_CST);
11220 gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR);
11221 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
11222 if (~cst1 == 0
11223 || (cst1 & (cst1 + 1)) != 0
11224 || !INTEGRAL_TYPE_P (type)
11225 || (!TYPE_OVERFLOW_WRAPS (type)
11226 && TREE_CODE (type) != INTEGER_TYPE)
11227 || (wi::max_value (type) & cst1) != cst1)
11228 return NULL_TREE;
11229
11230 enum tree_code codes[2] = { code00, code01 };
11231 tree arg0xx[4] = { arg000, arg001, arg010, arg011 };
11232 int which = 0;
11233 wide_int cst0;
11234
11235 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11236 arg1 (M) is == (1LL << cst) - 1.
11237 Store C into PMOP[0] and D into PMOP[1]. */
11238 pmop[0] = arg00;
11239 pmop[1] = arg01;
11240 which = code != NEGATE_EXPR;
11241
11242 for (; which >= 0; which--)
11243 switch (codes[which])
11244 {
11245 case BIT_AND_EXPR:
11246 case BIT_IOR_EXPR:
11247 case BIT_XOR_EXPR:
11248 gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST);
11249 cst0 = wi::to_wide (arg0xx[2 * which + 1]) & cst1;
11250 if (codes[which] == BIT_AND_EXPR)
11251 {
11252 if (cst0 != cst1)
11253 break;
11254 }
11255 else if (cst0 != 0)
11256 break;
11257 /* If C or D is of the form (A & N) where
11258 (N & M) == M, or of the form (A | N) or
11259 (A ^ N) where (N & M) == 0, replace it with A. */
11260 pmop[which] = arg0xx[2 * which];
11261 break;
11262 case ERROR_MARK:
11263 if (TREE_CODE (pmop[which]) != INTEGER_CST)
11264 break;
11265 /* If C or D is a N where (N & M) == 0, it can be
11266 omitted (replaced with 0). */
11267 if ((code == PLUS_EXPR
11268 || (code == MINUS_EXPR && which == 0))
11269 && (cst1 & wi::to_wide (pmop[which])) == 0)
11270 pmop[which] = build_int_cst (type, 0);
11271 /* Similarly, with C - N where (-N & M) == 0. */
11272 if (code == MINUS_EXPR
11273 && which == 1
11274 && (cst1 & -wi::to_wide (pmop[which])) == 0)
11275 pmop[which] = build_int_cst (type, 0);
11276 break;
11277 default:
11278 gcc_unreachable ();
11279 }
11280
11281 /* Only build anything new if we optimized one or both arguments above. */
11282 if (pmop[0] == arg00 && pmop[1] == arg01)
11283 return NULL_TREE;
11284
11285 if (TYPE_OVERFLOW_WRAPS (type))
11286 return type;
11287 else
11288 return unsigned_type_for (type);
11289 }
11290
11291 /* Used by contains_label_[p1]. */
11292
11293 struct contains_label_data
11294 {
11295 hash_set<tree> *pset;
11296 bool inside_switch_p;
11297 };
11298
11299 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11300 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11301 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11302
11303 static tree
11304 contains_label_1 (tree *tp, int *walk_subtrees, void *data)
11305 {
11306 contains_label_data *d = (contains_label_data *) data;
11307 switch (TREE_CODE (*tp))
11308 {
11309 case LABEL_EXPR:
11310 return *tp;
11311
11312 case CASE_LABEL_EXPR:
11313 if (!d->inside_switch_p)
11314 return *tp;
11315 return NULL_TREE;
11316
11317 case SWITCH_EXPR:
11318 if (!d->inside_switch_p)
11319 {
11320 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset))
11321 return *tp;
11322 d->inside_switch_p = true;
11323 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset))
11324 return *tp;
11325 d->inside_switch_p = false;
11326 *walk_subtrees = 0;
11327 }
11328 return NULL_TREE;
11329
11330 case GOTO_EXPR:
11331 *walk_subtrees = 0;
11332 return NULL_TREE;
11333
11334 default:
11335 return NULL_TREE;
11336 }
11337 }
11338
11339 /* Return whether the sub-tree ST contains a label which is accessible from
11340 outside the sub-tree. */
11341
11342 static bool
11343 contains_label_p (tree st)
11344 {
11345 hash_set<tree> pset;
11346 contains_label_data data = { &pset, false };
11347 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE;
11348 }
11349
11350 /* Fold a ternary expression of code CODE and type TYPE with operands
11351 OP0, OP1, and OP2. Return the folded expression if folding is
11352 successful. Otherwise, return NULL_TREE. */
11353
11354 tree
11355 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11356 tree op0, tree op1, tree op2)
11357 {
11358 tree tem;
11359 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11360 enum tree_code_class kind = TREE_CODE_CLASS (code);
11361
11362 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11363 && TREE_CODE_LENGTH (code) == 3);
11364
11365 /* If this is a commutative operation, and OP0 is a constant, move it
11366 to OP1 to reduce the number of tests below. */
11367 if (commutative_ternary_tree_code (code)
11368 && tree_swap_operands_p (op0, op1))
11369 return fold_build3_loc (loc, code, type, op1, op0, op2);
11370
11371 tem = generic_simplify (loc, code, type, op0, op1, op2);
11372 if (tem)
11373 return tem;
11374
11375 /* Strip any conversions that don't change the mode. This is safe
11376 for every expression, except for a comparison expression because
11377 its signedness is derived from its operands. So, in the latter
11378 case, only strip conversions that don't change the signedness.
11379
11380 Note that this is done as an internal manipulation within the
11381 constant folder, in order to find the simplest representation of
11382 the arguments so that their form can be studied. In any cases,
11383 the appropriate type conversions should be put back in the tree
11384 that will get out of the constant folder. */
11385 if (op0)
11386 {
11387 arg0 = op0;
11388 STRIP_NOPS (arg0);
11389 }
11390
11391 if (op1)
11392 {
11393 arg1 = op1;
11394 STRIP_NOPS (arg1);
11395 }
11396
11397 if (op2)
11398 {
11399 arg2 = op2;
11400 STRIP_NOPS (arg2);
11401 }
11402
11403 switch (code)
11404 {
11405 case COMPONENT_REF:
11406 if (TREE_CODE (arg0) == CONSTRUCTOR
11407 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11408 {
11409 unsigned HOST_WIDE_INT idx;
11410 tree field, value;
11411 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11412 if (field == arg1)
11413 return value;
11414 }
11415 return NULL_TREE;
11416
11417 case COND_EXPR:
11418 case VEC_COND_EXPR:
11419 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11420 so all simple results must be passed through pedantic_non_lvalue. */
11421 if (TREE_CODE (arg0) == INTEGER_CST)
11422 {
11423 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11424 tem = integer_zerop (arg0) ? op2 : op1;
11425 /* Only optimize constant conditions when the selected branch
11426 has the same type as the COND_EXPR. This avoids optimizing
11427 away "c ? x : throw", where the throw has a void type.
11428 Avoid throwing away that operand which contains label. */
11429 if ((!TREE_SIDE_EFFECTS (unused_op)
11430 || !contains_label_p (unused_op))
11431 && (! VOID_TYPE_P (TREE_TYPE (tem))
11432 || VOID_TYPE_P (type)))
11433 return pedantic_non_lvalue_loc (loc, tem);
11434 return NULL_TREE;
11435 }
11436 else if (TREE_CODE (arg0) == VECTOR_CST)
11437 {
11438 unsigned HOST_WIDE_INT nelts;
11439 if ((TREE_CODE (arg1) == VECTOR_CST
11440 || TREE_CODE (arg1) == CONSTRUCTOR)
11441 && (TREE_CODE (arg2) == VECTOR_CST
11442 || TREE_CODE (arg2) == CONSTRUCTOR)
11443 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
11444 {
11445 vec_perm_builder sel (nelts, nelts, 1);
11446 for (unsigned int i = 0; i < nelts; i++)
11447 {
11448 tree val = VECTOR_CST_ELT (arg0, i);
11449 if (integer_all_onesp (val))
11450 sel.quick_push (i);
11451 else if (integer_zerop (val))
11452 sel.quick_push (nelts + i);
11453 else /* Currently unreachable. */
11454 return NULL_TREE;
11455 }
11456 vec_perm_indices indices (sel, 2, nelts);
11457 tree t = fold_vec_perm (type, arg1, arg2, indices);
11458 if (t != NULL_TREE)
11459 return t;
11460 }
11461 }
11462
11463 /* If we have A op B ? A : C, we may be able to convert this to a
11464 simpler expression, depending on the operation and the values
11465 of B and C. Signed zeros prevent all of these transformations,
11466 for reasons given above each one.
11467
11468 Also try swapping the arguments and inverting the conditional. */
11469 if (COMPARISON_CLASS_P (arg0)
11470 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1)
11471 && !HONOR_SIGNED_ZEROS (element_mode (op1)))
11472 {
11473 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11474 if (tem)
11475 return tem;
11476 }
11477
11478 if (COMPARISON_CLASS_P (arg0)
11479 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11480 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11481 {
11482 location_t loc0 = expr_location_or (arg0, loc);
11483 tem = fold_invert_truthvalue (loc0, arg0);
11484 if (tem && COMPARISON_CLASS_P (tem))
11485 {
11486 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11487 if (tem)
11488 return tem;
11489 }
11490 }
11491
11492 /* If the second operand is simpler than the third, swap them
11493 since that produces better jump optimization results. */
11494 if (truth_value_p (TREE_CODE (arg0))
11495 && tree_swap_operands_p (op1, op2))
11496 {
11497 location_t loc0 = expr_location_or (arg0, loc);
11498 /* See if this can be inverted. If it can't, possibly because
11499 it was a floating-point inequality comparison, don't do
11500 anything. */
11501 tem = fold_invert_truthvalue (loc0, arg0);
11502 if (tem)
11503 return fold_build3_loc (loc, code, type, tem, op2, op1);
11504 }
11505
11506 /* Convert A ? 1 : 0 to simply A. */
11507 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11508 : (integer_onep (op1)
11509 && !VECTOR_TYPE_P (type)))
11510 && integer_zerop (op2)
11511 /* If we try to convert OP0 to our type, the
11512 call to fold will try to move the conversion inside
11513 a COND, which will recurse. In that case, the COND_EXPR
11514 is probably the best choice, so leave it alone. */
11515 && type == TREE_TYPE (arg0))
11516 return pedantic_non_lvalue_loc (loc, arg0);
11517
11518 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11519 over COND_EXPR in cases such as floating point comparisons. */
11520 if (integer_zerop (op1)
11521 && code == COND_EXPR
11522 && integer_onep (op2)
11523 && !VECTOR_TYPE_P (type)
11524 && truth_value_p (TREE_CODE (arg0)))
11525 return pedantic_non_lvalue_loc (loc,
11526 fold_convert_loc (loc, type,
11527 invert_truthvalue_loc (loc,
11528 arg0)));
11529
11530 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11531 if (TREE_CODE (arg0) == LT_EXPR
11532 && integer_zerop (TREE_OPERAND (arg0, 1))
11533 && integer_zerop (op2)
11534 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11535 {
11536 /* sign_bit_p looks through both zero and sign extensions,
11537 but for this optimization only sign extensions are
11538 usable. */
11539 tree tem2 = TREE_OPERAND (arg0, 0);
11540 while (tem != tem2)
11541 {
11542 if (TREE_CODE (tem2) != NOP_EXPR
11543 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11544 {
11545 tem = NULL_TREE;
11546 break;
11547 }
11548 tem2 = TREE_OPERAND (tem2, 0);
11549 }
11550 /* sign_bit_p only checks ARG1 bits within A's precision.
11551 If <sign bit of A> has wider type than A, bits outside
11552 of A's precision in <sign bit of A> need to be checked.
11553 If they are all 0, this optimization needs to be done
11554 in unsigned A's type, if they are all 1 in signed A's type,
11555 otherwise this can't be done. */
11556 if (tem
11557 && TYPE_PRECISION (TREE_TYPE (tem))
11558 < TYPE_PRECISION (TREE_TYPE (arg1))
11559 && TYPE_PRECISION (TREE_TYPE (tem))
11560 < TYPE_PRECISION (type))
11561 {
11562 int inner_width, outer_width;
11563 tree tem_type;
11564
11565 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11566 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11567 if (outer_width > TYPE_PRECISION (type))
11568 outer_width = TYPE_PRECISION (type);
11569
11570 wide_int mask = wi::shifted_mask
11571 (inner_width, outer_width - inner_width, false,
11572 TYPE_PRECISION (TREE_TYPE (arg1)));
11573
11574 wide_int common = mask & wi::to_wide (arg1);
11575 if (common == mask)
11576 {
11577 tem_type = signed_type_for (TREE_TYPE (tem));
11578 tem = fold_convert_loc (loc, tem_type, tem);
11579 }
11580 else if (common == 0)
11581 {
11582 tem_type = unsigned_type_for (TREE_TYPE (tem));
11583 tem = fold_convert_loc (loc, tem_type, tem);
11584 }
11585 else
11586 tem = NULL;
11587 }
11588
11589 if (tem)
11590 return
11591 fold_convert_loc (loc, type,
11592 fold_build2_loc (loc, BIT_AND_EXPR,
11593 TREE_TYPE (tem), tem,
11594 fold_convert_loc (loc,
11595 TREE_TYPE (tem),
11596 arg1)));
11597 }
11598
11599 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11600 already handled above. */
11601 if (TREE_CODE (arg0) == BIT_AND_EXPR
11602 && integer_onep (TREE_OPERAND (arg0, 1))
11603 && integer_zerop (op2)
11604 && integer_pow2p (arg1))
11605 {
11606 tree tem = TREE_OPERAND (arg0, 0);
11607 STRIP_NOPS (tem);
11608 if (TREE_CODE (tem) == RSHIFT_EXPR
11609 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11610 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11611 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11612 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11613 fold_convert_loc (loc, type,
11614 TREE_OPERAND (tem, 0)),
11615 op1);
11616 }
11617
11618 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11619 is probably obsolete because the first operand should be a
11620 truth value (that's why we have the two cases above), but let's
11621 leave it in until we can confirm this for all front-ends. */
11622 if (integer_zerop (op2)
11623 && TREE_CODE (arg0) == NE_EXPR
11624 && integer_zerop (TREE_OPERAND (arg0, 1))
11625 && integer_pow2p (arg1)
11626 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11627 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11628 arg1, OEP_ONLY_CONST)
11629 /* operand_equal_p compares just value, not precision, so e.g.
11630 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
11631 second operand 32-bit -128, which is not a power of two (or vice
11632 versa. */
11633 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)))
11634 return pedantic_non_lvalue_loc (loc,
11635 fold_convert_loc (loc, type,
11636 TREE_OPERAND (arg0,
11637 0)));
11638
11639 /* Disable the transformations below for vectors, since
11640 fold_binary_op_with_conditional_arg may undo them immediately,
11641 yielding an infinite loop. */
11642 if (code == VEC_COND_EXPR)
11643 return NULL_TREE;
11644
11645 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11646 if (integer_zerop (op2)
11647 && truth_value_p (TREE_CODE (arg0))
11648 && truth_value_p (TREE_CODE (arg1))
11649 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11650 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11651 : TRUTH_ANDIF_EXPR,
11652 type, fold_convert_loc (loc, type, arg0), op1);
11653
11654 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11655 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11656 && truth_value_p (TREE_CODE (arg0))
11657 && truth_value_p (TREE_CODE (arg1))
11658 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11659 {
11660 location_t loc0 = expr_location_or (arg0, loc);
11661 /* Only perform transformation if ARG0 is easily inverted. */
11662 tem = fold_invert_truthvalue (loc0, arg0);
11663 if (tem)
11664 return fold_build2_loc (loc, code == VEC_COND_EXPR
11665 ? BIT_IOR_EXPR
11666 : TRUTH_ORIF_EXPR,
11667 type, fold_convert_loc (loc, type, tem),
11668 op1);
11669 }
11670
11671 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11672 if (integer_zerop (arg1)
11673 && truth_value_p (TREE_CODE (arg0))
11674 && truth_value_p (TREE_CODE (op2))
11675 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11676 {
11677 location_t loc0 = expr_location_or (arg0, loc);
11678 /* Only perform transformation if ARG0 is easily inverted. */
11679 tem = fold_invert_truthvalue (loc0, arg0);
11680 if (tem)
11681 return fold_build2_loc (loc, code == VEC_COND_EXPR
11682 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11683 type, fold_convert_loc (loc, type, tem),
11684 op2);
11685 }
11686
11687 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11688 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11689 && truth_value_p (TREE_CODE (arg0))
11690 && truth_value_p (TREE_CODE (op2))
11691 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11692 return fold_build2_loc (loc, code == VEC_COND_EXPR
11693 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11694 type, fold_convert_loc (loc, type, arg0), op2);
11695
11696 return NULL_TREE;
11697
11698 case CALL_EXPR:
11699 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11700 of fold_ternary on them. */
11701 gcc_unreachable ();
11702
11703 case BIT_FIELD_REF:
11704 if (TREE_CODE (arg0) == VECTOR_CST
11705 && (type == TREE_TYPE (TREE_TYPE (arg0))
11706 || (VECTOR_TYPE_P (type)
11707 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0))))
11708 && tree_fits_uhwi_p (op1)
11709 && tree_fits_uhwi_p (op2))
11710 {
11711 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11712 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11713 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11714 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11715
11716 if (n != 0
11717 && (idx % width) == 0
11718 && (n % width) == 0
11719 && known_le ((idx + n) / width,
11720 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))))
11721 {
11722 idx = idx / width;
11723 n = n / width;
11724
11725 if (TREE_CODE (arg0) == VECTOR_CST)
11726 {
11727 if (n == 1)
11728 {
11729 tem = VECTOR_CST_ELT (arg0, idx);
11730 if (VECTOR_TYPE_P (type))
11731 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem);
11732 return tem;
11733 }
11734
11735 tree_vector_builder vals (type, n, 1);
11736 for (unsigned i = 0; i < n; ++i)
11737 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
11738 return vals.build ();
11739 }
11740 }
11741 }
11742
11743 /* On constants we can use native encode/interpret to constant
11744 fold (nearly) all BIT_FIELD_REFs. */
11745 if (CONSTANT_CLASS_P (arg0)
11746 && can_native_interpret_type_p (type)
11747 && BITS_PER_UNIT == 8
11748 && tree_fits_uhwi_p (op1)
11749 && tree_fits_uhwi_p (op2))
11750 {
11751 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11752 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11753 /* Limit us to a reasonable amount of work. To relax the
11754 other limitations we need bit-shifting of the buffer
11755 and rounding up the size. */
11756 if (bitpos % BITS_PER_UNIT == 0
11757 && bitsize % BITS_PER_UNIT == 0
11758 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11759 {
11760 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11761 unsigned HOST_WIDE_INT len
11762 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11763 bitpos / BITS_PER_UNIT);
11764 if (len > 0
11765 && len * BITS_PER_UNIT >= bitsize)
11766 {
11767 tree v = native_interpret_expr (type, b,
11768 bitsize / BITS_PER_UNIT);
11769 if (v)
11770 return v;
11771 }
11772 }
11773 }
11774
11775 return NULL_TREE;
11776
11777 case VEC_PERM_EXPR:
11778 /* Perform constant folding of BIT_INSERT_EXPR. */
11779 if (TREE_CODE (arg2) == VECTOR_CST
11780 && TREE_CODE (op0) == VECTOR_CST
11781 && TREE_CODE (op1) == VECTOR_CST)
11782 {
11783 /* Build a vector of integers from the tree mask. */
11784 vec_perm_builder builder;
11785 if (!tree_to_vec_perm_builder (&builder, arg2))
11786 return NULL_TREE;
11787
11788 /* Create a vec_perm_indices for the integer vector. */
11789 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
11790 bool single_arg = (op0 == op1);
11791 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
11792 return fold_vec_perm (type, op0, op1, sel);
11793 }
11794 return NULL_TREE;
11795
11796 case BIT_INSERT_EXPR:
11797 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11798 if (TREE_CODE (arg0) == INTEGER_CST
11799 && TREE_CODE (arg1) == INTEGER_CST)
11800 {
11801 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11802 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11803 wide_int tem = (wi::to_wide (arg0)
11804 & wi::shifted_mask (bitpos, bitsize, true,
11805 TYPE_PRECISION (type)));
11806 wide_int tem2
11807 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11808 bitsize), bitpos);
11809 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11810 }
11811 else if (TREE_CODE (arg0) == VECTOR_CST
11812 && CONSTANT_CLASS_P (arg1)
11813 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11814 TREE_TYPE (arg1)))
11815 {
11816 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11817 unsigned HOST_WIDE_INT elsize
11818 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11819 if (bitpos % elsize == 0)
11820 {
11821 unsigned k = bitpos / elsize;
11822 unsigned HOST_WIDE_INT nelts;
11823 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11824 return arg0;
11825 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts))
11826 {
11827 tree_vector_builder elts (type, nelts, 1);
11828 elts.quick_grow (nelts);
11829 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i)
11830 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
11831 return elts.build ();
11832 }
11833 }
11834 }
11835 return NULL_TREE;
11836
11837 default:
11838 return NULL_TREE;
11839 } /* switch (code) */
11840 }
11841
11842 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11843 of an array (or vector). *CTOR_IDX if non-NULL is updated with the
11844 constructor element index of the value returned. If the element is
11845 not found NULL_TREE is returned and *CTOR_IDX is updated to
11846 the index of the element after the ACCESS_INDEX position (which
11847 may be outside of the CTOR array). */
11848
11849 tree
11850 get_array_ctor_element_at_index (tree ctor, offset_int access_index,
11851 unsigned *ctor_idx)
11852 {
11853 tree index_type = NULL_TREE;
11854 signop index_sgn = UNSIGNED;
11855 offset_int low_bound = 0;
11856
11857 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11858 {
11859 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11860 if (domain_type && TYPE_MIN_VALUE (domain_type))
11861 {
11862 /* Static constructors for variably sized objects makes no sense. */
11863 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11864 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11865 /* ??? When it is obvious that the range is signed, treat it so. */
11866 if (TYPE_UNSIGNED (index_type)
11867 && TYPE_MAX_VALUE (domain_type)
11868 && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type),
11869 TYPE_MIN_VALUE (domain_type)))
11870 {
11871 index_sgn = SIGNED;
11872 low_bound
11873 = offset_int::from (wi::to_wide (TYPE_MIN_VALUE (domain_type)),
11874 SIGNED);
11875 }
11876 else
11877 {
11878 index_sgn = TYPE_SIGN (index_type);
11879 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11880 }
11881 }
11882 }
11883
11884 if (index_type)
11885 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11886 index_sgn);
11887
11888 offset_int index = low_bound;
11889 if (index_type)
11890 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
11891
11892 offset_int max_index = index;
11893 unsigned cnt;
11894 tree cfield, cval;
11895 bool first_p = true;
11896
11897 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11898 {
11899 /* Array constructor might explicitly set index, or specify a range,
11900 or leave index NULL meaning that it is next index after previous
11901 one. */
11902 if (cfield)
11903 {
11904 if (TREE_CODE (cfield) == INTEGER_CST)
11905 max_index = index
11906 = offset_int::from (wi::to_wide (cfield), index_sgn);
11907 else
11908 {
11909 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11910 index = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 0)),
11911 index_sgn);
11912 max_index
11913 = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 1)),
11914 index_sgn);
11915 gcc_checking_assert (wi::le_p (index, max_index, index_sgn));
11916 }
11917 }
11918 else if (!first_p)
11919 {
11920 index = max_index + 1;
11921 if (index_type)
11922 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
11923 gcc_checking_assert (wi::gt_p (index, max_index, index_sgn));
11924 max_index = index;
11925 }
11926 else
11927 first_p = false;
11928
11929 /* Do we have match? */
11930 if (wi::cmp (access_index, index, index_sgn) >= 0)
11931 {
11932 if (wi::cmp (access_index, max_index, index_sgn) <= 0)
11933 {
11934 if (ctor_idx)
11935 *ctor_idx = cnt;
11936 return cval;
11937 }
11938 }
11939 else if (in_gimple_form)
11940 /* We're past the element we search for. Note during parsing
11941 the elements might not be sorted.
11942 ??? We should use a binary search and a flag on the
11943 CONSTRUCTOR as to whether elements are sorted in declaration
11944 order. */
11945 break;
11946 }
11947 if (ctor_idx)
11948 *ctor_idx = cnt;
11949 return NULL_TREE;
11950 }
11951
11952 /* Perform constant folding and related simplification of EXPR.
11953 The related simplifications include x*1 => x, x*0 => 0, etc.,
11954 and application of the associative law.
11955 NOP_EXPR conversions may be removed freely (as long as we
11956 are careful not to change the type of the overall expression).
11957 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11958 but we can constant-fold them if they have constant operands. */
11959
11960 #ifdef ENABLE_FOLD_CHECKING
11961 # define fold(x) fold_1 (x)
11962 static tree fold_1 (tree);
11963 static
11964 #endif
11965 tree
11966 fold (tree expr)
11967 {
11968 const tree t = expr;
11969 enum tree_code code = TREE_CODE (t);
11970 enum tree_code_class kind = TREE_CODE_CLASS (code);
11971 tree tem;
11972 location_t loc = EXPR_LOCATION (expr);
11973
11974 /* Return right away if a constant. */
11975 if (kind == tcc_constant)
11976 return t;
11977
11978 /* CALL_EXPR-like objects with variable numbers of operands are
11979 treated specially. */
11980 if (kind == tcc_vl_exp)
11981 {
11982 if (code == CALL_EXPR)
11983 {
11984 tem = fold_call_expr (loc, expr, false);
11985 return tem ? tem : expr;
11986 }
11987 return expr;
11988 }
11989
11990 if (IS_EXPR_CODE_CLASS (kind))
11991 {
11992 tree type = TREE_TYPE (t);
11993 tree op0, op1, op2;
11994
11995 switch (TREE_CODE_LENGTH (code))
11996 {
11997 case 1:
11998 op0 = TREE_OPERAND (t, 0);
11999 tem = fold_unary_loc (loc, code, type, op0);
12000 return tem ? tem : expr;
12001 case 2:
12002 op0 = TREE_OPERAND (t, 0);
12003 op1 = TREE_OPERAND (t, 1);
12004 tem = fold_binary_loc (loc, code, type, op0, op1);
12005 return tem ? tem : expr;
12006 case 3:
12007 op0 = TREE_OPERAND (t, 0);
12008 op1 = TREE_OPERAND (t, 1);
12009 op2 = TREE_OPERAND (t, 2);
12010 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12011 return tem ? tem : expr;
12012 default:
12013 break;
12014 }
12015 }
12016
12017 switch (code)
12018 {
12019 case ARRAY_REF:
12020 {
12021 tree op0 = TREE_OPERAND (t, 0);
12022 tree op1 = TREE_OPERAND (t, 1);
12023
12024 if (TREE_CODE (op1) == INTEGER_CST
12025 && TREE_CODE (op0) == CONSTRUCTOR
12026 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12027 {
12028 tree val = get_array_ctor_element_at_index (op0,
12029 wi::to_offset (op1));
12030 if (val)
12031 return val;
12032 }
12033
12034 return t;
12035 }
12036
12037 /* Return a VECTOR_CST if possible. */
12038 case CONSTRUCTOR:
12039 {
12040 tree type = TREE_TYPE (t);
12041 if (TREE_CODE (type) != VECTOR_TYPE)
12042 return t;
12043
12044 unsigned i;
12045 tree val;
12046 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
12047 if (! CONSTANT_CLASS_P (val))
12048 return t;
12049
12050 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
12051 }
12052
12053 case CONST_DECL:
12054 return fold (DECL_INITIAL (t));
12055
12056 default:
12057 return t;
12058 } /* switch (code) */
12059 }
12060
12061 #ifdef ENABLE_FOLD_CHECKING
12062 #undef fold
12063
12064 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12065 hash_table<nofree_ptr_hash<const tree_node> > *);
12066 static void fold_check_failed (const_tree, const_tree);
12067 void print_fold_checksum (const_tree);
12068
12069 /* When --enable-checking=fold, compute a digest of expr before
12070 and after actual fold call to see if fold did not accidentally
12071 change original expr. */
12072
12073 tree
12074 fold (tree expr)
12075 {
12076 tree ret;
12077 struct md5_ctx ctx;
12078 unsigned char checksum_before[16], checksum_after[16];
12079 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12080
12081 md5_init_ctx (&ctx);
12082 fold_checksum_tree (expr, &ctx, &ht);
12083 md5_finish_ctx (&ctx, checksum_before);
12084 ht.empty ();
12085
12086 ret = fold_1 (expr);
12087
12088 md5_init_ctx (&ctx);
12089 fold_checksum_tree (expr, &ctx, &ht);
12090 md5_finish_ctx (&ctx, checksum_after);
12091
12092 if (memcmp (checksum_before, checksum_after, 16))
12093 fold_check_failed (expr, ret);
12094
12095 return ret;
12096 }
12097
12098 void
12099 print_fold_checksum (const_tree expr)
12100 {
12101 struct md5_ctx ctx;
12102 unsigned char checksum[16], cnt;
12103 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12104
12105 md5_init_ctx (&ctx);
12106 fold_checksum_tree (expr, &ctx, &ht);
12107 md5_finish_ctx (&ctx, checksum);
12108 for (cnt = 0; cnt < 16; ++cnt)
12109 fprintf (stderr, "%02x", checksum[cnt]);
12110 putc ('\n', stderr);
12111 }
12112
12113 static void
12114 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12115 {
12116 internal_error ("fold check: original tree changed by fold");
12117 }
12118
12119 static void
12120 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12121 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12122 {
12123 const tree_node **slot;
12124 enum tree_code code;
12125 union tree_node *buf;
12126 int i, len;
12127
12128 recursive_label:
12129 if (expr == NULL)
12130 return;
12131 slot = ht->find_slot (expr, INSERT);
12132 if (*slot != NULL)
12133 return;
12134 *slot = expr;
12135 code = TREE_CODE (expr);
12136 if (TREE_CODE_CLASS (code) == tcc_declaration
12137 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12138 {
12139 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12140 size_t sz = tree_size (expr);
12141 buf = XALLOCAVAR (union tree_node, sz);
12142 memcpy ((char *) buf, expr, sz);
12143 SET_DECL_ASSEMBLER_NAME ((tree) buf, NULL);
12144 buf->decl_with_vis.symtab_node = NULL;
12145 buf->base.nowarning_flag = 0;
12146 expr = (tree) buf;
12147 }
12148 else if (TREE_CODE_CLASS (code) == tcc_type
12149 && (TYPE_POINTER_TO (expr)
12150 || TYPE_REFERENCE_TO (expr)
12151 || TYPE_CACHED_VALUES_P (expr)
12152 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12153 || TYPE_NEXT_VARIANT (expr)
12154 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12155 {
12156 /* Allow these fields to be modified. */
12157 tree tmp;
12158 size_t sz = tree_size (expr);
12159 buf = XALLOCAVAR (union tree_node, sz);
12160 memcpy ((char *) buf, expr, sz);
12161 expr = tmp = (tree) buf;
12162 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12163 TYPE_POINTER_TO (tmp) = NULL;
12164 TYPE_REFERENCE_TO (tmp) = NULL;
12165 TYPE_NEXT_VARIANT (tmp) = NULL;
12166 TYPE_ALIAS_SET (tmp) = -1;
12167 if (TYPE_CACHED_VALUES_P (tmp))
12168 {
12169 TYPE_CACHED_VALUES_P (tmp) = 0;
12170 TYPE_CACHED_VALUES (tmp) = NULL;
12171 }
12172 }
12173 else if (TREE_NO_WARNING (expr) && (DECL_P (expr) || EXPR_P (expr)))
12174 {
12175 /* Allow TREE_NO_WARNING to be set. Perhaps we shouldn't allow that
12176 and change builtins.c etc. instead - see PR89543. */
12177 size_t sz = tree_size (expr);
12178 buf = XALLOCAVAR (union tree_node, sz);
12179 memcpy ((char *) buf, expr, sz);
12180 buf->base.nowarning_flag = 0;
12181 expr = (tree) buf;
12182 }
12183 md5_process_bytes (expr, tree_size (expr), ctx);
12184 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12185 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12186 if (TREE_CODE_CLASS (code) != tcc_type
12187 && TREE_CODE_CLASS (code) != tcc_declaration
12188 && code != TREE_LIST
12189 && code != SSA_NAME
12190 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12191 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12192 switch (TREE_CODE_CLASS (code))
12193 {
12194 case tcc_constant:
12195 switch (code)
12196 {
12197 case STRING_CST:
12198 md5_process_bytes (TREE_STRING_POINTER (expr),
12199 TREE_STRING_LENGTH (expr), ctx);
12200 break;
12201 case COMPLEX_CST:
12202 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12203 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12204 break;
12205 case VECTOR_CST:
12206 len = vector_cst_encoded_nelts (expr);
12207 for (i = 0; i < len; ++i)
12208 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht);
12209 break;
12210 default:
12211 break;
12212 }
12213 break;
12214 case tcc_exceptional:
12215 switch (code)
12216 {
12217 case TREE_LIST:
12218 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12219 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12220 expr = TREE_CHAIN (expr);
12221 goto recursive_label;
12222 break;
12223 case TREE_VEC:
12224 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12225 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12226 break;
12227 default:
12228 break;
12229 }
12230 break;
12231 case tcc_expression:
12232 case tcc_reference:
12233 case tcc_comparison:
12234 case tcc_unary:
12235 case tcc_binary:
12236 case tcc_statement:
12237 case tcc_vl_exp:
12238 len = TREE_OPERAND_LENGTH (expr);
12239 for (i = 0; i < len; ++i)
12240 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12241 break;
12242 case tcc_declaration:
12243 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12244 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12245 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12246 {
12247 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12248 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12249 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12250 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12251 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12252 }
12253
12254 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12255 {
12256 if (TREE_CODE (expr) == FUNCTION_DECL)
12257 {
12258 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12259 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12260 }
12261 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12262 }
12263 break;
12264 case tcc_type:
12265 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12266 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12267 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12268 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12269 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12270 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12271 if (INTEGRAL_TYPE_P (expr)
12272 || SCALAR_FLOAT_TYPE_P (expr))
12273 {
12274 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12275 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12276 }
12277 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12278 if (TREE_CODE (expr) == RECORD_TYPE
12279 || TREE_CODE (expr) == UNION_TYPE
12280 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12281 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12282 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12283 break;
12284 default:
12285 break;
12286 }
12287 }
12288
12289 /* Helper function for outputting the checksum of a tree T. When
12290 debugging with gdb, you can "define mynext" to be "next" followed
12291 by "call debug_fold_checksum (op0)", then just trace down till the
12292 outputs differ. */
12293
12294 DEBUG_FUNCTION void
12295 debug_fold_checksum (const_tree t)
12296 {
12297 int i;
12298 unsigned char checksum[16];
12299 struct md5_ctx ctx;
12300 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12301
12302 md5_init_ctx (&ctx);
12303 fold_checksum_tree (t, &ctx, &ht);
12304 md5_finish_ctx (&ctx, checksum);
12305 ht.empty ();
12306
12307 for (i = 0; i < 16; i++)
12308 fprintf (stderr, "%d ", checksum[i]);
12309
12310 fprintf (stderr, "\n");
12311 }
12312
12313 #endif
12314
12315 /* Fold a unary tree expression with code CODE of type TYPE with an
12316 operand OP0. LOC is the location of the resulting expression.
12317 Return a folded expression if successful. Otherwise, return a tree
12318 expression with code CODE of type TYPE with an operand OP0. */
12319
12320 tree
12321 fold_build1_loc (location_t loc,
12322 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12323 {
12324 tree tem;
12325 #ifdef ENABLE_FOLD_CHECKING
12326 unsigned char checksum_before[16], checksum_after[16];
12327 struct md5_ctx ctx;
12328 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12329
12330 md5_init_ctx (&ctx);
12331 fold_checksum_tree (op0, &ctx, &ht);
12332 md5_finish_ctx (&ctx, checksum_before);
12333 ht.empty ();
12334 #endif
12335
12336 tem = fold_unary_loc (loc, code, type, op0);
12337 if (!tem)
12338 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12339
12340 #ifdef ENABLE_FOLD_CHECKING
12341 md5_init_ctx (&ctx);
12342 fold_checksum_tree (op0, &ctx, &ht);
12343 md5_finish_ctx (&ctx, checksum_after);
12344
12345 if (memcmp (checksum_before, checksum_after, 16))
12346 fold_check_failed (op0, tem);
12347 #endif
12348 return tem;
12349 }
12350
12351 /* Fold a binary tree expression with code CODE of type TYPE with
12352 operands OP0 and OP1. LOC is the location of the resulting
12353 expression. Return a folded expression if successful. Otherwise,
12354 return a tree expression with code CODE of type TYPE with operands
12355 OP0 and OP1. */
12356
12357 tree
12358 fold_build2_loc (location_t loc,
12359 enum tree_code code, tree type, tree op0, tree op1
12360 MEM_STAT_DECL)
12361 {
12362 tree tem;
12363 #ifdef ENABLE_FOLD_CHECKING
12364 unsigned char checksum_before_op0[16],
12365 checksum_before_op1[16],
12366 checksum_after_op0[16],
12367 checksum_after_op1[16];
12368 struct md5_ctx ctx;
12369 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12370
12371 md5_init_ctx (&ctx);
12372 fold_checksum_tree (op0, &ctx, &ht);
12373 md5_finish_ctx (&ctx, checksum_before_op0);
12374 ht.empty ();
12375
12376 md5_init_ctx (&ctx);
12377 fold_checksum_tree (op1, &ctx, &ht);
12378 md5_finish_ctx (&ctx, checksum_before_op1);
12379 ht.empty ();
12380 #endif
12381
12382 tem = fold_binary_loc (loc, code, type, op0, op1);
12383 if (!tem)
12384 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12385
12386 #ifdef ENABLE_FOLD_CHECKING
12387 md5_init_ctx (&ctx);
12388 fold_checksum_tree (op0, &ctx, &ht);
12389 md5_finish_ctx (&ctx, checksum_after_op0);
12390 ht.empty ();
12391
12392 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12393 fold_check_failed (op0, tem);
12394
12395 md5_init_ctx (&ctx);
12396 fold_checksum_tree (op1, &ctx, &ht);
12397 md5_finish_ctx (&ctx, checksum_after_op1);
12398
12399 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12400 fold_check_failed (op1, tem);
12401 #endif
12402 return tem;
12403 }
12404
12405 /* Fold a ternary tree expression with code CODE of type TYPE with
12406 operands OP0, OP1, and OP2. Return a folded expression if
12407 successful. Otherwise, return a tree expression with code CODE of
12408 type TYPE with operands OP0, OP1, and OP2. */
12409
12410 tree
12411 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12412 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12413 {
12414 tree tem;
12415 #ifdef ENABLE_FOLD_CHECKING
12416 unsigned char checksum_before_op0[16],
12417 checksum_before_op1[16],
12418 checksum_before_op2[16],
12419 checksum_after_op0[16],
12420 checksum_after_op1[16],
12421 checksum_after_op2[16];
12422 struct md5_ctx ctx;
12423 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12424
12425 md5_init_ctx (&ctx);
12426 fold_checksum_tree (op0, &ctx, &ht);
12427 md5_finish_ctx (&ctx, checksum_before_op0);
12428 ht.empty ();
12429
12430 md5_init_ctx (&ctx);
12431 fold_checksum_tree (op1, &ctx, &ht);
12432 md5_finish_ctx (&ctx, checksum_before_op1);
12433 ht.empty ();
12434
12435 md5_init_ctx (&ctx);
12436 fold_checksum_tree (op2, &ctx, &ht);
12437 md5_finish_ctx (&ctx, checksum_before_op2);
12438 ht.empty ();
12439 #endif
12440
12441 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12442 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12443 if (!tem)
12444 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12445
12446 #ifdef ENABLE_FOLD_CHECKING
12447 md5_init_ctx (&ctx);
12448 fold_checksum_tree (op0, &ctx, &ht);
12449 md5_finish_ctx (&ctx, checksum_after_op0);
12450 ht.empty ();
12451
12452 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12453 fold_check_failed (op0, tem);
12454
12455 md5_init_ctx (&ctx);
12456 fold_checksum_tree (op1, &ctx, &ht);
12457 md5_finish_ctx (&ctx, checksum_after_op1);
12458 ht.empty ();
12459
12460 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12461 fold_check_failed (op1, tem);
12462
12463 md5_init_ctx (&ctx);
12464 fold_checksum_tree (op2, &ctx, &ht);
12465 md5_finish_ctx (&ctx, checksum_after_op2);
12466
12467 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12468 fold_check_failed (op2, tem);
12469 #endif
12470 return tem;
12471 }
12472
12473 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12474 arguments in ARGARRAY, and a null static chain.
12475 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12476 of type TYPE from the given operands as constructed by build_call_array. */
12477
12478 tree
12479 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12480 int nargs, tree *argarray)
12481 {
12482 tree tem;
12483 #ifdef ENABLE_FOLD_CHECKING
12484 unsigned char checksum_before_fn[16],
12485 checksum_before_arglist[16],
12486 checksum_after_fn[16],
12487 checksum_after_arglist[16];
12488 struct md5_ctx ctx;
12489 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12490 int i;
12491
12492 md5_init_ctx (&ctx);
12493 fold_checksum_tree (fn, &ctx, &ht);
12494 md5_finish_ctx (&ctx, checksum_before_fn);
12495 ht.empty ();
12496
12497 md5_init_ctx (&ctx);
12498 for (i = 0; i < nargs; i++)
12499 fold_checksum_tree (argarray[i], &ctx, &ht);
12500 md5_finish_ctx (&ctx, checksum_before_arglist);
12501 ht.empty ();
12502 #endif
12503
12504 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12505 if (!tem)
12506 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12507
12508 #ifdef ENABLE_FOLD_CHECKING
12509 md5_init_ctx (&ctx);
12510 fold_checksum_tree (fn, &ctx, &ht);
12511 md5_finish_ctx (&ctx, checksum_after_fn);
12512 ht.empty ();
12513
12514 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12515 fold_check_failed (fn, tem);
12516
12517 md5_init_ctx (&ctx);
12518 for (i = 0; i < nargs; i++)
12519 fold_checksum_tree (argarray[i], &ctx, &ht);
12520 md5_finish_ctx (&ctx, checksum_after_arglist);
12521
12522 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12523 fold_check_failed (NULL_TREE, tem);
12524 #endif
12525 return tem;
12526 }
12527
12528 /* Perform constant folding and related simplification of initializer
12529 expression EXPR. These behave identically to "fold_buildN" but ignore
12530 potential run-time traps and exceptions that fold must preserve. */
12531
12532 #define START_FOLD_INIT \
12533 int saved_signaling_nans = flag_signaling_nans;\
12534 int saved_trapping_math = flag_trapping_math;\
12535 int saved_rounding_math = flag_rounding_math;\
12536 int saved_trapv = flag_trapv;\
12537 int saved_folding_initializer = folding_initializer;\
12538 flag_signaling_nans = 0;\
12539 flag_trapping_math = 0;\
12540 flag_rounding_math = 0;\
12541 flag_trapv = 0;\
12542 folding_initializer = 1;
12543
12544 #define END_FOLD_INIT \
12545 flag_signaling_nans = saved_signaling_nans;\
12546 flag_trapping_math = saved_trapping_math;\
12547 flag_rounding_math = saved_rounding_math;\
12548 flag_trapv = saved_trapv;\
12549 folding_initializer = saved_folding_initializer;
12550
12551 tree
12552 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12553 tree type, tree op)
12554 {
12555 tree result;
12556 START_FOLD_INIT;
12557
12558 result = fold_build1_loc (loc, code, type, op);
12559
12560 END_FOLD_INIT;
12561 return result;
12562 }
12563
12564 tree
12565 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12566 tree type, tree op0, tree op1)
12567 {
12568 tree result;
12569 START_FOLD_INIT;
12570
12571 result = fold_build2_loc (loc, code, type, op0, op1);
12572
12573 END_FOLD_INIT;
12574 return result;
12575 }
12576
12577 tree
12578 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12579 int nargs, tree *argarray)
12580 {
12581 tree result;
12582 START_FOLD_INIT;
12583
12584 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12585
12586 END_FOLD_INIT;
12587 return result;
12588 }
12589
12590 #undef START_FOLD_INIT
12591 #undef END_FOLD_INIT
12592
12593 /* Determine if first argument is a multiple of second argument. Return 0 if
12594 it is not, or we cannot easily determined it to be.
12595
12596 An example of the sort of thing we care about (at this point; this routine
12597 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12598 fold cases do now) is discovering that
12599
12600 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12601
12602 is a multiple of
12603
12604 SAVE_EXPR (J * 8)
12605
12606 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12607
12608 This code also handles discovering that
12609
12610 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12611
12612 is a multiple of 8 so we don't have to worry about dealing with a
12613 possible remainder.
12614
12615 Note that we *look* inside a SAVE_EXPR only to determine how it was
12616 calculated; it is not safe for fold to do much of anything else with the
12617 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12618 at run time. For example, the latter example above *cannot* be implemented
12619 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12620 evaluation time of the original SAVE_EXPR is not necessarily the same at
12621 the time the new expression is evaluated. The only optimization of this
12622 sort that would be valid is changing
12623
12624 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12625
12626 divided by 8 to
12627
12628 SAVE_EXPR (I) * SAVE_EXPR (J)
12629
12630 (where the same SAVE_EXPR (J) is used in the original and the
12631 transformed version). */
12632
12633 int
12634 multiple_of_p (tree type, const_tree top, const_tree bottom)
12635 {
12636 gimple *stmt;
12637 tree t1, op1, op2;
12638
12639 if (operand_equal_p (top, bottom, 0))
12640 return 1;
12641
12642 if (TREE_CODE (type) != INTEGER_TYPE)
12643 return 0;
12644
12645 switch (TREE_CODE (top))
12646 {
12647 case BIT_AND_EXPR:
12648 /* Bitwise and provides a power of two multiple. If the mask is
12649 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12650 if (!integer_pow2p (bottom))
12651 return 0;
12652 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12653 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12654
12655 case MULT_EXPR:
12656 if (TREE_CODE (bottom) == INTEGER_CST)
12657 {
12658 op1 = TREE_OPERAND (top, 0);
12659 op2 = TREE_OPERAND (top, 1);
12660 if (TREE_CODE (op1) == INTEGER_CST)
12661 std::swap (op1, op2);
12662 if (TREE_CODE (op2) == INTEGER_CST)
12663 {
12664 if (multiple_of_p (type, op2, bottom))
12665 return 1;
12666 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12667 if (multiple_of_p (type, bottom, op2))
12668 {
12669 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom),
12670 wi::to_widest (op2));
12671 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom)))
12672 {
12673 op2 = wide_int_to_tree (TREE_TYPE (bottom), w);
12674 return multiple_of_p (type, op1, op2);
12675 }
12676 }
12677 return multiple_of_p (type, op1, bottom);
12678 }
12679 }
12680 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12681 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12682
12683 case MINUS_EXPR:
12684 /* It is impossible to prove if op0 - op1 is multiple of bottom
12685 precisely, so be conservative here checking if both op0 and op1
12686 are multiple of bottom. Note we check the second operand first
12687 since it's usually simpler. */
12688 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12689 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12690
12691 case PLUS_EXPR:
12692 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12693 as op0 - 3 if the expression has unsigned type. For example,
12694 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12695 op1 = TREE_OPERAND (top, 1);
12696 if (TYPE_UNSIGNED (type)
12697 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12698 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12699 return (multiple_of_p (type, op1, bottom)
12700 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12701
12702 case LSHIFT_EXPR:
12703 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12704 {
12705 op1 = TREE_OPERAND (top, 1);
12706 /* const_binop may not detect overflow correctly,
12707 so check for it explicitly here. */
12708 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
12709 wi::to_wide (op1))
12710 && (t1 = fold_convert (type,
12711 const_binop (LSHIFT_EXPR, size_one_node,
12712 op1))) != 0
12713 && !TREE_OVERFLOW (t1))
12714 return multiple_of_p (type, t1, bottom);
12715 }
12716 return 0;
12717
12718 case NOP_EXPR:
12719 /* Can't handle conversions from non-integral or wider integral type. */
12720 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12721 || (TYPE_PRECISION (type)
12722 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12723 return 0;
12724
12725 /* fall through */
12726
12727 case SAVE_EXPR:
12728 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12729
12730 case COND_EXPR:
12731 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12732 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12733
12734 case INTEGER_CST:
12735 if (TREE_CODE (bottom) != INTEGER_CST
12736 || integer_zerop (bottom)
12737 || (TYPE_UNSIGNED (type)
12738 && (tree_int_cst_sgn (top) < 0
12739 || tree_int_cst_sgn (bottom) < 0)))
12740 return 0;
12741 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12742 SIGNED);
12743
12744 case SSA_NAME:
12745 if (TREE_CODE (bottom) == INTEGER_CST
12746 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12747 && gimple_code (stmt) == GIMPLE_ASSIGN)
12748 {
12749 enum tree_code code = gimple_assign_rhs_code (stmt);
12750
12751 /* Check for special cases to see if top is defined as multiple
12752 of bottom:
12753
12754 top = (X & ~(bottom - 1) ; bottom is power of 2
12755
12756 or
12757
12758 Y = X % bottom
12759 top = X - Y. */
12760 if (code == BIT_AND_EXPR
12761 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12762 && TREE_CODE (op2) == INTEGER_CST
12763 && integer_pow2p (bottom)
12764 && wi::multiple_of_p (wi::to_widest (op2),
12765 wi::to_widest (bottom), UNSIGNED))
12766 return 1;
12767
12768 op1 = gimple_assign_rhs1 (stmt);
12769 if (code == MINUS_EXPR
12770 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12771 && TREE_CODE (op2) == SSA_NAME
12772 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12773 && gimple_code (stmt) == GIMPLE_ASSIGN
12774 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12775 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12776 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12777 return 1;
12778 }
12779
12780 /* fall through */
12781
12782 default:
12783 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom))
12784 return multiple_p (wi::to_poly_widest (top),
12785 wi::to_poly_widest (bottom));
12786
12787 return 0;
12788 }
12789 }
12790
12791 #define tree_expr_nonnegative_warnv_p(X, Y) \
12792 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12793
12794 #define RECURSE(X) \
12795 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12796
12797 /* Return true if CODE or TYPE is known to be non-negative. */
12798
12799 static bool
12800 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12801 {
12802 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12803 && truth_value_p (code))
12804 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12805 have a signed:1 type (where the value is -1 and 0). */
12806 return true;
12807 return false;
12808 }
12809
12810 /* Return true if (CODE OP0) is known to be non-negative. If the return
12811 value is based on the assumption that signed overflow is undefined,
12812 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12813 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12814
12815 bool
12816 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12817 bool *strict_overflow_p, int depth)
12818 {
12819 if (TYPE_UNSIGNED (type))
12820 return true;
12821
12822 switch (code)
12823 {
12824 case ABS_EXPR:
12825 /* We can't return 1 if flag_wrapv is set because
12826 ABS_EXPR<INT_MIN> = INT_MIN. */
12827 if (!ANY_INTEGRAL_TYPE_P (type))
12828 return true;
12829 if (TYPE_OVERFLOW_UNDEFINED (type))
12830 {
12831 *strict_overflow_p = true;
12832 return true;
12833 }
12834 break;
12835
12836 case NON_LVALUE_EXPR:
12837 case FLOAT_EXPR:
12838 case FIX_TRUNC_EXPR:
12839 return RECURSE (op0);
12840
12841 CASE_CONVERT:
12842 {
12843 tree inner_type = TREE_TYPE (op0);
12844 tree outer_type = type;
12845
12846 if (TREE_CODE (outer_type) == REAL_TYPE)
12847 {
12848 if (TREE_CODE (inner_type) == REAL_TYPE)
12849 return RECURSE (op0);
12850 if (INTEGRAL_TYPE_P (inner_type))
12851 {
12852 if (TYPE_UNSIGNED (inner_type))
12853 return true;
12854 return RECURSE (op0);
12855 }
12856 }
12857 else if (INTEGRAL_TYPE_P (outer_type))
12858 {
12859 if (TREE_CODE (inner_type) == REAL_TYPE)
12860 return RECURSE (op0);
12861 if (INTEGRAL_TYPE_P (inner_type))
12862 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12863 && TYPE_UNSIGNED (inner_type);
12864 }
12865 }
12866 break;
12867
12868 default:
12869 return tree_simple_nonnegative_warnv_p (code, type);
12870 }
12871
12872 /* We don't know sign of `t', so be conservative and return false. */
12873 return false;
12874 }
12875
12876 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12877 value is based on the assumption that signed overflow is undefined,
12878 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12879 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12880
12881 bool
12882 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12883 tree op1, bool *strict_overflow_p,
12884 int depth)
12885 {
12886 if (TYPE_UNSIGNED (type))
12887 return true;
12888
12889 switch (code)
12890 {
12891 case POINTER_PLUS_EXPR:
12892 case PLUS_EXPR:
12893 if (FLOAT_TYPE_P (type))
12894 return RECURSE (op0) && RECURSE (op1);
12895
12896 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12897 both unsigned and at least 2 bits shorter than the result. */
12898 if (TREE_CODE (type) == INTEGER_TYPE
12899 && TREE_CODE (op0) == NOP_EXPR
12900 && TREE_CODE (op1) == NOP_EXPR)
12901 {
12902 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12903 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12904 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12905 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12906 {
12907 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12908 TYPE_PRECISION (inner2)) + 1;
12909 return prec < TYPE_PRECISION (type);
12910 }
12911 }
12912 break;
12913
12914 case MULT_EXPR:
12915 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12916 {
12917 /* x * x is always non-negative for floating point x
12918 or without overflow. */
12919 if (operand_equal_p (op0, op1, 0)
12920 || (RECURSE (op0) && RECURSE (op1)))
12921 {
12922 if (ANY_INTEGRAL_TYPE_P (type)
12923 && TYPE_OVERFLOW_UNDEFINED (type))
12924 *strict_overflow_p = true;
12925 return true;
12926 }
12927 }
12928
12929 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12930 both unsigned and their total bits is shorter than the result. */
12931 if (TREE_CODE (type) == INTEGER_TYPE
12932 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12933 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12934 {
12935 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12936 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12937 : TREE_TYPE (op0);
12938 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12939 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12940 : TREE_TYPE (op1);
12941
12942 bool unsigned0 = TYPE_UNSIGNED (inner0);
12943 bool unsigned1 = TYPE_UNSIGNED (inner1);
12944
12945 if (TREE_CODE (op0) == INTEGER_CST)
12946 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12947
12948 if (TREE_CODE (op1) == INTEGER_CST)
12949 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12950
12951 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12952 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12953 {
12954 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12955 ? tree_int_cst_min_precision (op0, UNSIGNED)
12956 : TYPE_PRECISION (inner0);
12957
12958 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12959 ? tree_int_cst_min_precision (op1, UNSIGNED)
12960 : TYPE_PRECISION (inner1);
12961
12962 return precision0 + precision1 < TYPE_PRECISION (type);
12963 }
12964 }
12965 return false;
12966
12967 case BIT_AND_EXPR:
12968 case MAX_EXPR:
12969 return RECURSE (op0) || RECURSE (op1);
12970
12971 case BIT_IOR_EXPR:
12972 case BIT_XOR_EXPR:
12973 case MIN_EXPR:
12974 case RDIV_EXPR:
12975 case TRUNC_DIV_EXPR:
12976 case CEIL_DIV_EXPR:
12977 case FLOOR_DIV_EXPR:
12978 case ROUND_DIV_EXPR:
12979 return RECURSE (op0) && RECURSE (op1);
12980
12981 case TRUNC_MOD_EXPR:
12982 return RECURSE (op0);
12983
12984 case FLOOR_MOD_EXPR:
12985 return RECURSE (op1);
12986
12987 case CEIL_MOD_EXPR:
12988 case ROUND_MOD_EXPR:
12989 default:
12990 return tree_simple_nonnegative_warnv_p (code, type);
12991 }
12992
12993 /* We don't know sign of `t', so be conservative and return false. */
12994 return false;
12995 }
12996
12997 /* Return true if T is known to be non-negative. If the return
12998 value is based on the assumption that signed overflow is undefined,
12999 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13000 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13001
13002 bool
13003 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13004 {
13005 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13006 return true;
13007
13008 switch (TREE_CODE (t))
13009 {
13010 case INTEGER_CST:
13011 return tree_int_cst_sgn (t) >= 0;
13012
13013 case REAL_CST:
13014 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13015
13016 case FIXED_CST:
13017 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13018
13019 case COND_EXPR:
13020 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13021
13022 case SSA_NAME:
13023 /* Limit the depth of recursion to avoid quadratic behavior.
13024 This is expected to catch almost all occurrences in practice.
13025 If this code misses important cases that unbounded recursion
13026 would not, passes that need this information could be revised
13027 to provide it through dataflow propagation. */
13028 return (!name_registered_for_update_p (t)
13029 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13030 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
13031 strict_overflow_p, depth));
13032
13033 default:
13034 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13035 }
13036 }
13037
13038 /* Return true if T is known to be non-negative. If the return
13039 value is based on the assumption that signed overflow is undefined,
13040 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13041 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13042
13043 bool
13044 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
13045 bool *strict_overflow_p, int depth)
13046 {
13047 switch (fn)
13048 {
13049 CASE_CFN_ACOS:
13050 CASE_CFN_ACOSH:
13051 CASE_CFN_CABS:
13052 CASE_CFN_COSH:
13053 CASE_CFN_ERFC:
13054 CASE_CFN_EXP:
13055 CASE_CFN_EXP10:
13056 CASE_CFN_EXP2:
13057 CASE_CFN_FABS:
13058 CASE_CFN_FDIM:
13059 CASE_CFN_HYPOT:
13060 CASE_CFN_POW10:
13061 CASE_CFN_FFS:
13062 CASE_CFN_PARITY:
13063 CASE_CFN_POPCOUNT:
13064 CASE_CFN_CLZ:
13065 CASE_CFN_CLRSB:
13066 case CFN_BUILT_IN_BSWAP32:
13067 case CFN_BUILT_IN_BSWAP64:
13068 /* Always true. */
13069 return true;
13070
13071 CASE_CFN_SQRT:
13072 CASE_CFN_SQRT_FN:
13073 /* sqrt(-0.0) is -0.0. */
13074 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13075 return true;
13076 return RECURSE (arg0);
13077
13078 CASE_CFN_ASINH:
13079 CASE_CFN_ATAN:
13080 CASE_CFN_ATANH:
13081 CASE_CFN_CBRT:
13082 CASE_CFN_CEIL:
13083 CASE_CFN_CEIL_FN:
13084 CASE_CFN_ERF:
13085 CASE_CFN_EXPM1:
13086 CASE_CFN_FLOOR:
13087 CASE_CFN_FLOOR_FN:
13088 CASE_CFN_FMOD:
13089 CASE_CFN_FREXP:
13090 CASE_CFN_ICEIL:
13091 CASE_CFN_IFLOOR:
13092 CASE_CFN_IRINT:
13093 CASE_CFN_IROUND:
13094 CASE_CFN_LCEIL:
13095 CASE_CFN_LDEXP:
13096 CASE_CFN_LFLOOR:
13097 CASE_CFN_LLCEIL:
13098 CASE_CFN_LLFLOOR:
13099 CASE_CFN_LLRINT:
13100 CASE_CFN_LLROUND:
13101 CASE_CFN_LRINT:
13102 CASE_CFN_LROUND:
13103 CASE_CFN_MODF:
13104 CASE_CFN_NEARBYINT:
13105 CASE_CFN_NEARBYINT_FN:
13106 CASE_CFN_RINT:
13107 CASE_CFN_RINT_FN:
13108 CASE_CFN_ROUND:
13109 CASE_CFN_ROUND_FN:
13110 CASE_CFN_SCALB:
13111 CASE_CFN_SCALBLN:
13112 CASE_CFN_SCALBN:
13113 CASE_CFN_SIGNBIT:
13114 CASE_CFN_SIGNIFICAND:
13115 CASE_CFN_SINH:
13116 CASE_CFN_TANH:
13117 CASE_CFN_TRUNC:
13118 CASE_CFN_TRUNC_FN:
13119 /* True if the 1st argument is nonnegative. */
13120 return RECURSE (arg0);
13121
13122 CASE_CFN_FMAX:
13123 CASE_CFN_FMAX_FN:
13124 /* True if the 1st OR 2nd arguments are nonnegative. */
13125 return RECURSE (arg0) || RECURSE (arg1);
13126
13127 CASE_CFN_FMIN:
13128 CASE_CFN_FMIN_FN:
13129 /* True if the 1st AND 2nd arguments are nonnegative. */
13130 return RECURSE (arg0) && RECURSE (arg1);
13131
13132 CASE_CFN_COPYSIGN:
13133 CASE_CFN_COPYSIGN_FN:
13134 /* True if the 2nd argument is nonnegative. */
13135 return RECURSE (arg1);
13136
13137 CASE_CFN_POWI:
13138 /* True if the 1st argument is nonnegative or the second
13139 argument is an even integer. */
13140 if (TREE_CODE (arg1) == INTEGER_CST
13141 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13142 return true;
13143 return RECURSE (arg0);
13144
13145 CASE_CFN_POW:
13146 /* True if the 1st argument is nonnegative or the second
13147 argument is an even integer valued real. */
13148 if (TREE_CODE (arg1) == REAL_CST)
13149 {
13150 REAL_VALUE_TYPE c;
13151 HOST_WIDE_INT n;
13152
13153 c = TREE_REAL_CST (arg1);
13154 n = real_to_integer (&c);
13155 if ((n & 1) == 0)
13156 {
13157 REAL_VALUE_TYPE cint;
13158 real_from_integer (&cint, VOIDmode, n, SIGNED);
13159 if (real_identical (&c, &cint))
13160 return true;
13161 }
13162 }
13163 return RECURSE (arg0);
13164
13165 default:
13166 break;
13167 }
13168 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13169 }
13170
13171 /* Return true if T is known to be non-negative. If the return
13172 value is based on the assumption that signed overflow is undefined,
13173 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13174 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13175
13176 static bool
13177 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13178 {
13179 enum tree_code code = TREE_CODE (t);
13180 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13181 return true;
13182
13183 switch (code)
13184 {
13185 case TARGET_EXPR:
13186 {
13187 tree temp = TARGET_EXPR_SLOT (t);
13188 t = TARGET_EXPR_INITIAL (t);
13189
13190 /* If the initializer is non-void, then it's a normal expression
13191 that will be assigned to the slot. */
13192 if (!VOID_TYPE_P (t))
13193 return RECURSE (t);
13194
13195 /* Otherwise, the initializer sets the slot in some way. One common
13196 way is an assignment statement at the end of the initializer. */
13197 while (1)
13198 {
13199 if (TREE_CODE (t) == BIND_EXPR)
13200 t = expr_last (BIND_EXPR_BODY (t));
13201 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13202 || TREE_CODE (t) == TRY_CATCH_EXPR)
13203 t = expr_last (TREE_OPERAND (t, 0));
13204 else if (TREE_CODE (t) == STATEMENT_LIST)
13205 t = expr_last (t);
13206 else
13207 break;
13208 }
13209 if (TREE_CODE (t) == MODIFY_EXPR
13210 && TREE_OPERAND (t, 0) == temp)
13211 return RECURSE (TREE_OPERAND (t, 1));
13212
13213 return false;
13214 }
13215
13216 case CALL_EXPR:
13217 {
13218 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13219 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13220
13221 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13222 get_call_combined_fn (t),
13223 arg0,
13224 arg1,
13225 strict_overflow_p, depth);
13226 }
13227 case COMPOUND_EXPR:
13228 case MODIFY_EXPR:
13229 return RECURSE (TREE_OPERAND (t, 1));
13230
13231 case BIND_EXPR:
13232 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13233
13234 case SAVE_EXPR:
13235 return RECURSE (TREE_OPERAND (t, 0));
13236
13237 default:
13238 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13239 }
13240 }
13241
13242 #undef RECURSE
13243 #undef tree_expr_nonnegative_warnv_p
13244
13245 /* Return true if T is known to be non-negative. If the return
13246 value is based on the assumption that signed overflow is undefined,
13247 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13248 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13249
13250 bool
13251 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13252 {
13253 enum tree_code code;
13254 if (t == error_mark_node)
13255 return false;
13256
13257 code = TREE_CODE (t);
13258 switch (TREE_CODE_CLASS (code))
13259 {
13260 case tcc_binary:
13261 case tcc_comparison:
13262 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13263 TREE_TYPE (t),
13264 TREE_OPERAND (t, 0),
13265 TREE_OPERAND (t, 1),
13266 strict_overflow_p, depth);
13267
13268 case tcc_unary:
13269 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13270 TREE_TYPE (t),
13271 TREE_OPERAND (t, 0),
13272 strict_overflow_p, depth);
13273
13274 case tcc_constant:
13275 case tcc_declaration:
13276 case tcc_reference:
13277 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13278
13279 default:
13280 break;
13281 }
13282
13283 switch (code)
13284 {
13285 case TRUTH_AND_EXPR:
13286 case TRUTH_OR_EXPR:
13287 case TRUTH_XOR_EXPR:
13288 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13289 TREE_TYPE (t),
13290 TREE_OPERAND (t, 0),
13291 TREE_OPERAND (t, 1),
13292 strict_overflow_p, depth);
13293 case TRUTH_NOT_EXPR:
13294 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13295 TREE_TYPE (t),
13296 TREE_OPERAND (t, 0),
13297 strict_overflow_p, depth);
13298
13299 case COND_EXPR:
13300 case CONSTRUCTOR:
13301 case OBJ_TYPE_REF:
13302 case ASSERT_EXPR:
13303 case ADDR_EXPR:
13304 case WITH_SIZE_EXPR:
13305 case SSA_NAME:
13306 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13307
13308 default:
13309 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13310 }
13311 }
13312
13313 /* Return true if `t' is known to be non-negative. Handle warnings
13314 about undefined signed overflow. */
13315
13316 bool
13317 tree_expr_nonnegative_p (tree t)
13318 {
13319 bool ret, strict_overflow_p;
13320
13321 strict_overflow_p = false;
13322 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13323 if (strict_overflow_p)
13324 fold_overflow_warning (("assuming signed overflow does not occur when "
13325 "determining that expression is always "
13326 "non-negative"),
13327 WARN_STRICT_OVERFLOW_MISC);
13328 return ret;
13329 }
13330
13331
13332 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13333 For floating point we further ensure that T is not denormal.
13334 Similar logic is present in nonzero_address in rtlanal.h.
13335
13336 If the return value is based on the assumption that signed overflow
13337 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13338 change *STRICT_OVERFLOW_P. */
13339
13340 bool
13341 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13342 bool *strict_overflow_p)
13343 {
13344 switch (code)
13345 {
13346 case ABS_EXPR:
13347 return tree_expr_nonzero_warnv_p (op0,
13348 strict_overflow_p);
13349
13350 case NOP_EXPR:
13351 {
13352 tree inner_type = TREE_TYPE (op0);
13353 tree outer_type = type;
13354
13355 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13356 && tree_expr_nonzero_warnv_p (op0,
13357 strict_overflow_p));
13358 }
13359 break;
13360
13361 case NON_LVALUE_EXPR:
13362 return tree_expr_nonzero_warnv_p (op0,
13363 strict_overflow_p);
13364
13365 default:
13366 break;
13367 }
13368
13369 return false;
13370 }
13371
13372 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13373 For floating point we further ensure that T is not denormal.
13374 Similar logic is present in nonzero_address in rtlanal.h.
13375
13376 If the return value is based on the assumption that signed overflow
13377 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13378 change *STRICT_OVERFLOW_P. */
13379
13380 bool
13381 tree_binary_nonzero_warnv_p (enum tree_code code,
13382 tree type,
13383 tree op0,
13384 tree op1, bool *strict_overflow_p)
13385 {
13386 bool sub_strict_overflow_p;
13387 switch (code)
13388 {
13389 case POINTER_PLUS_EXPR:
13390 case PLUS_EXPR:
13391 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13392 {
13393 /* With the presence of negative values it is hard
13394 to say something. */
13395 sub_strict_overflow_p = false;
13396 if (!tree_expr_nonnegative_warnv_p (op0,
13397 &sub_strict_overflow_p)
13398 || !tree_expr_nonnegative_warnv_p (op1,
13399 &sub_strict_overflow_p))
13400 return false;
13401 /* One of operands must be positive and the other non-negative. */
13402 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13403 overflows, on a twos-complement machine the sum of two
13404 nonnegative numbers can never be zero. */
13405 return (tree_expr_nonzero_warnv_p (op0,
13406 strict_overflow_p)
13407 || tree_expr_nonzero_warnv_p (op1,
13408 strict_overflow_p));
13409 }
13410 break;
13411
13412 case MULT_EXPR:
13413 if (TYPE_OVERFLOW_UNDEFINED (type))
13414 {
13415 if (tree_expr_nonzero_warnv_p (op0,
13416 strict_overflow_p)
13417 && tree_expr_nonzero_warnv_p (op1,
13418 strict_overflow_p))
13419 {
13420 *strict_overflow_p = true;
13421 return true;
13422 }
13423 }
13424 break;
13425
13426 case MIN_EXPR:
13427 sub_strict_overflow_p = false;
13428 if (tree_expr_nonzero_warnv_p (op0,
13429 &sub_strict_overflow_p)
13430 && tree_expr_nonzero_warnv_p (op1,
13431 &sub_strict_overflow_p))
13432 {
13433 if (sub_strict_overflow_p)
13434 *strict_overflow_p = true;
13435 }
13436 break;
13437
13438 case MAX_EXPR:
13439 sub_strict_overflow_p = false;
13440 if (tree_expr_nonzero_warnv_p (op0,
13441 &sub_strict_overflow_p))
13442 {
13443 if (sub_strict_overflow_p)
13444 *strict_overflow_p = true;
13445
13446 /* When both operands are nonzero, then MAX must be too. */
13447 if (tree_expr_nonzero_warnv_p (op1,
13448 strict_overflow_p))
13449 return true;
13450
13451 /* MAX where operand 0 is positive is positive. */
13452 return tree_expr_nonnegative_warnv_p (op0,
13453 strict_overflow_p);
13454 }
13455 /* MAX where operand 1 is positive is positive. */
13456 else if (tree_expr_nonzero_warnv_p (op1,
13457 &sub_strict_overflow_p)
13458 && tree_expr_nonnegative_warnv_p (op1,
13459 &sub_strict_overflow_p))
13460 {
13461 if (sub_strict_overflow_p)
13462 *strict_overflow_p = true;
13463 return true;
13464 }
13465 break;
13466
13467 case BIT_IOR_EXPR:
13468 return (tree_expr_nonzero_warnv_p (op1,
13469 strict_overflow_p)
13470 || tree_expr_nonzero_warnv_p (op0,
13471 strict_overflow_p));
13472
13473 default:
13474 break;
13475 }
13476
13477 return false;
13478 }
13479
13480 /* Return true when T is an address and is known to be nonzero.
13481 For floating point we further ensure that T is not denormal.
13482 Similar logic is present in nonzero_address in rtlanal.h.
13483
13484 If the return value is based on the assumption that signed overflow
13485 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13486 change *STRICT_OVERFLOW_P. */
13487
13488 bool
13489 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13490 {
13491 bool sub_strict_overflow_p;
13492 switch (TREE_CODE (t))
13493 {
13494 case INTEGER_CST:
13495 return !integer_zerop (t);
13496
13497 case ADDR_EXPR:
13498 {
13499 tree base = TREE_OPERAND (t, 0);
13500
13501 if (!DECL_P (base))
13502 base = get_base_address (base);
13503
13504 if (base && TREE_CODE (base) == TARGET_EXPR)
13505 base = TARGET_EXPR_SLOT (base);
13506
13507 if (!base)
13508 return false;
13509
13510 /* For objects in symbol table check if we know they are non-zero.
13511 Don't do anything for variables and functions before symtab is built;
13512 it is quite possible that they will be declared weak later. */
13513 int nonzero_addr = maybe_nonzero_address (base);
13514 if (nonzero_addr >= 0)
13515 return nonzero_addr;
13516
13517 /* Constants are never weak. */
13518 if (CONSTANT_CLASS_P (base))
13519 return true;
13520
13521 return false;
13522 }
13523
13524 case COND_EXPR:
13525 sub_strict_overflow_p = false;
13526 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13527 &sub_strict_overflow_p)
13528 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13529 &sub_strict_overflow_p))
13530 {
13531 if (sub_strict_overflow_p)
13532 *strict_overflow_p = true;
13533 return true;
13534 }
13535 break;
13536
13537 case SSA_NAME:
13538 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13539 break;
13540 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13541
13542 default:
13543 break;
13544 }
13545 return false;
13546 }
13547
13548 #define integer_valued_real_p(X) \
13549 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13550
13551 #define RECURSE(X) \
13552 ((integer_valued_real_p) (X, depth + 1))
13553
13554 /* Return true if the floating point result of (CODE OP0) has an
13555 integer value. We also allow +Inf, -Inf and NaN to be considered
13556 integer values. Return false for signaling NaN.
13557
13558 DEPTH is the current nesting depth of the query. */
13559
13560 bool
13561 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13562 {
13563 switch (code)
13564 {
13565 case FLOAT_EXPR:
13566 return true;
13567
13568 case ABS_EXPR:
13569 return RECURSE (op0);
13570
13571 CASE_CONVERT:
13572 {
13573 tree type = TREE_TYPE (op0);
13574 if (TREE_CODE (type) == INTEGER_TYPE)
13575 return true;
13576 if (TREE_CODE (type) == REAL_TYPE)
13577 return RECURSE (op0);
13578 break;
13579 }
13580
13581 default:
13582 break;
13583 }
13584 return false;
13585 }
13586
13587 /* Return true if the floating point result of (CODE OP0 OP1) has an
13588 integer value. We also allow +Inf, -Inf and NaN to be considered
13589 integer values. Return false for signaling NaN.
13590
13591 DEPTH is the current nesting depth of the query. */
13592
13593 bool
13594 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13595 {
13596 switch (code)
13597 {
13598 case PLUS_EXPR:
13599 case MINUS_EXPR:
13600 case MULT_EXPR:
13601 case MIN_EXPR:
13602 case MAX_EXPR:
13603 return RECURSE (op0) && RECURSE (op1);
13604
13605 default:
13606 break;
13607 }
13608 return false;
13609 }
13610
13611 /* Return true if the floating point result of calling FNDECL with arguments
13612 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13613 considered integer values. Return false for signaling NaN. If FNDECL
13614 takes fewer than 2 arguments, the remaining ARGn are null.
13615
13616 DEPTH is the current nesting depth of the query. */
13617
13618 bool
13619 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13620 {
13621 switch (fn)
13622 {
13623 CASE_CFN_CEIL:
13624 CASE_CFN_CEIL_FN:
13625 CASE_CFN_FLOOR:
13626 CASE_CFN_FLOOR_FN:
13627 CASE_CFN_NEARBYINT:
13628 CASE_CFN_NEARBYINT_FN:
13629 CASE_CFN_RINT:
13630 CASE_CFN_RINT_FN:
13631 CASE_CFN_ROUND:
13632 CASE_CFN_ROUND_FN:
13633 CASE_CFN_TRUNC:
13634 CASE_CFN_TRUNC_FN:
13635 return true;
13636
13637 CASE_CFN_FMIN:
13638 CASE_CFN_FMIN_FN:
13639 CASE_CFN_FMAX:
13640 CASE_CFN_FMAX_FN:
13641 return RECURSE (arg0) && RECURSE (arg1);
13642
13643 default:
13644 break;
13645 }
13646 return false;
13647 }
13648
13649 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13650 has an integer value. We also allow +Inf, -Inf and NaN to be
13651 considered integer values. Return false for signaling NaN.
13652
13653 DEPTH is the current nesting depth of the query. */
13654
13655 bool
13656 integer_valued_real_single_p (tree t, int depth)
13657 {
13658 switch (TREE_CODE (t))
13659 {
13660 case REAL_CST:
13661 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13662
13663 case COND_EXPR:
13664 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13665
13666 case SSA_NAME:
13667 /* Limit the depth of recursion to avoid quadratic behavior.
13668 This is expected to catch almost all occurrences in practice.
13669 If this code misses important cases that unbounded recursion
13670 would not, passes that need this information could be revised
13671 to provide it through dataflow propagation. */
13672 return (!name_registered_for_update_p (t)
13673 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13674 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13675 depth));
13676
13677 default:
13678 break;
13679 }
13680 return false;
13681 }
13682
13683 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13684 has an integer value. We also allow +Inf, -Inf and NaN to be
13685 considered integer values. Return false for signaling NaN.
13686
13687 DEPTH is the current nesting depth of the query. */
13688
13689 static bool
13690 integer_valued_real_invalid_p (tree t, int depth)
13691 {
13692 switch (TREE_CODE (t))
13693 {
13694 case COMPOUND_EXPR:
13695 case MODIFY_EXPR:
13696 case BIND_EXPR:
13697 return RECURSE (TREE_OPERAND (t, 1));
13698
13699 case SAVE_EXPR:
13700 return RECURSE (TREE_OPERAND (t, 0));
13701
13702 default:
13703 break;
13704 }
13705 return false;
13706 }
13707
13708 #undef RECURSE
13709 #undef integer_valued_real_p
13710
13711 /* Return true if the floating point expression T has an integer value.
13712 We also allow +Inf, -Inf and NaN to be considered integer values.
13713 Return false for signaling NaN.
13714
13715 DEPTH is the current nesting depth of the query. */
13716
13717 bool
13718 integer_valued_real_p (tree t, int depth)
13719 {
13720 if (t == error_mark_node)
13721 return false;
13722
13723 STRIP_ANY_LOCATION_WRAPPER (t);
13724
13725 tree_code code = TREE_CODE (t);
13726 switch (TREE_CODE_CLASS (code))
13727 {
13728 case tcc_binary:
13729 case tcc_comparison:
13730 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13731 TREE_OPERAND (t, 1), depth);
13732
13733 case tcc_unary:
13734 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13735
13736 case tcc_constant:
13737 case tcc_declaration:
13738 case tcc_reference:
13739 return integer_valued_real_single_p (t, depth);
13740
13741 default:
13742 break;
13743 }
13744
13745 switch (code)
13746 {
13747 case COND_EXPR:
13748 case SSA_NAME:
13749 return integer_valued_real_single_p (t, depth);
13750
13751 case CALL_EXPR:
13752 {
13753 tree arg0 = (call_expr_nargs (t) > 0
13754 ? CALL_EXPR_ARG (t, 0)
13755 : NULL_TREE);
13756 tree arg1 = (call_expr_nargs (t) > 1
13757 ? CALL_EXPR_ARG (t, 1)
13758 : NULL_TREE);
13759 return integer_valued_real_call_p (get_call_combined_fn (t),
13760 arg0, arg1, depth);
13761 }
13762
13763 default:
13764 return integer_valued_real_invalid_p (t, depth);
13765 }
13766 }
13767
13768 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13769 attempt to fold the expression to a constant without modifying TYPE,
13770 OP0 or OP1.
13771
13772 If the expression could be simplified to a constant, then return
13773 the constant. If the expression would not be simplified to a
13774 constant, then return NULL_TREE. */
13775
13776 tree
13777 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13778 {
13779 tree tem = fold_binary (code, type, op0, op1);
13780 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13781 }
13782
13783 /* Given the components of a unary expression CODE, TYPE and OP0,
13784 attempt to fold the expression to a constant without modifying
13785 TYPE or OP0.
13786
13787 If the expression could be simplified to a constant, then return
13788 the constant. If the expression would not be simplified to a
13789 constant, then return NULL_TREE. */
13790
13791 tree
13792 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13793 {
13794 tree tem = fold_unary (code, type, op0);
13795 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13796 }
13797
13798 /* If EXP represents referencing an element in a constant string
13799 (either via pointer arithmetic or array indexing), return the
13800 tree representing the value accessed, otherwise return NULL. */
13801
13802 tree
13803 fold_read_from_constant_string (tree exp)
13804 {
13805 if ((TREE_CODE (exp) == INDIRECT_REF
13806 || TREE_CODE (exp) == ARRAY_REF)
13807 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13808 {
13809 tree exp1 = TREE_OPERAND (exp, 0);
13810 tree index;
13811 tree string;
13812 location_t loc = EXPR_LOCATION (exp);
13813
13814 if (TREE_CODE (exp) == INDIRECT_REF)
13815 string = string_constant (exp1, &index, NULL, NULL);
13816 else
13817 {
13818 tree low_bound = array_ref_low_bound (exp);
13819 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13820
13821 /* Optimize the special-case of a zero lower bound.
13822
13823 We convert the low_bound to sizetype to avoid some problems
13824 with constant folding. (E.g. suppose the lower bound is 1,
13825 and its mode is QI. Without the conversion,l (ARRAY
13826 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13827 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13828 if (! integer_zerop (low_bound))
13829 index = size_diffop_loc (loc, index,
13830 fold_convert_loc (loc, sizetype, low_bound));
13831
13832 string = exp1;
13833 }
13834
13835 scalar_int_mode char_mode;
13836 if (string
13837 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13838 && TREE_CODE (string) == STRING_CST
13839 && TREE_CODE (index) == INTEGER_CST
13840 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13841 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
13842 &char_mode)
13843 && GET_MODE_SIZE (char_mode) == 1)
13844 return build_int_cst_type (TREE_TYPE (exp),
13845 (TREE_STRING_POINTER (string)
13846 [TREE_INT_CST_LOW (index)]));
13847 }
13848 return NULL;
13849 }
13850
13851 /* Folds a read from vector element at IDX of vector ARG. */
13852
13853 tree
13854 fold_read_from_vector (tree arg, poly_uint64 idx)
13855 {
13856 unsigned HOST_WIDE_INT i;
13857 if (known_lt (idx, TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)))
13858 && known_ge (idx, 0u)
13859 && idx.is_constant (&i))
13860 {
13861 if (TREE_CODE (arg) == VECTOR_CST)
13862 return VECTOR_CST_ELT (arg, i);
13863 else if (TREE_CODE (arg) == CONSTRUCTOR)
13864 {
13865 if (i >= CONSTRUCTOR_NELTS (arg))
13866 return build_zero_cst (TREE_TYPE (TREE_TYPE (arg)));
13867 return CONSTRUCTOR_ELT (arg, i)->value;
13868 }
13869 }
13870 return NULL_TREE;
13871 }
13872
13873 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13874 an integer constant, real, or fixed-point constant.
13875
13876 TYPE is the type of the result. */
13877
13878 static tree
13879 fold_negate_const (tree arg0, tree type)
13880 {
13881 tree t = NULL_TREE;
13882
13883 switch (TREE_CODE (arg0))
13884 {
13885 case REAL_CST:
13886 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13887 break;
13888
13889 case FIXED_CST:
13890 {
13891 FIXED_VALUE_TYPE f;
13892 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13893 &(TREE_FIXED_CST (arg0)), NULL,
13894 TYPE_SATURATING (type));
13895 t = build_fixed (type, f);
13896 /* Propagate overflow flags. */
13897 if (overflow_p | TREE_OVERFLOW (arg0))
13898 TREE_OVERFLOW (t) = 1;
13899 break;
13900 }
13901
13902 default:
13903 if (poly_int_tree_p (arg0))
13904 {
13905 wi::overflow_type overflow;
13906 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow);
13907 t = force_fit_type (type, res, 1,
13908 (overflow && ! TYPE_UNSIGNED (type))
13909 || TREE_OVERFLOW (arg0));
13910 break;
13911 }
13912
13913 gcc_unreachable ();
13914 }
13915
13916 return t;
13917 }
13918
13919 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13920 an integer constant or real constant.
13921
13922 TYPE is the type of the result. */
13923
13924 tree
13925 fold_abs_const (tree arg0, tree type)
13926 {
13927 tree t = NULL_TREE;
13928
13929 switch (TREE_CODE (arg0))
13930 {
13931 case INTEGER_CST:
13932 {
13933 /* If the value is unsigned or non-negative, then the absolute value
13934 is the same as the ordinary value. */
13935 wide_int val = wi::to_wide (arg0);
13936 wi::overflow_type overflow = wi::OVF_NONE;
13937 if (!wi::neg_p (val, TYPE_SIGN (TREE_TYPE (arg0))))
13938 ;
13939
13940 /* If the value is negative, then the absolute value is
13941 its negation. */
13942 else
13943 val = wi::neg (val, &overflow);
13944
13945 /* Force to the destination type, set TREE_OVERFLOW for signed
13946 TYPE only. */
13947 t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0));
13948 }
13949 break;
13950
13951 case REAL_CST:
13952 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13953 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13954 else
13955 t = arg0;
13956 break;
13957
13958 default:
13959 gcc_unreachable ();
13960 }
13961
13962 return t;
13963 }
13964
13965 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13966 constant. TYPE is the type of the result. */
13967
13968 static tree
13969 fold_not_const (const_tree arg0, tree type)
13970 {
13971 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13972
13973 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0));
13974 }
13975
13976 /* Given CODE, a relational operator, the target type, TYPE and two
13977 constant operands OP0 and OP1, return the result of the
13978 relational operation. If the result is not a compile time
13979 constant, then return NULL_TREE. */
13980
13981 static tree
13982 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13983 {
13984 int result, invert;
13985
13986 /* From here on, the only cases we handle are when the result is
13987 known to be a constant. */
13988
13989 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13990 {
13991 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13992 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13993
13994 /* Handle the cases where either operand is a NaN. */
13995 if (real_isnan (c0) || real_isnan (c1))
13996 {
13997 switch (code)
13998 {
13999 case EQ_EXPR:
14000 case ORDERED_EXPR:
14001 result = 0;
14002 break;
14003
14004 case NE_EXPR:
14005 case UNORDERED_EXPR:
14006 case UNLT_EXPR:
14007 case UNLE_EXPR:
14008 case UNGT_EXPR:
14009 case UNGE_EXPR:
14010 case UNEQ_EXPR:
14011 result = 1;
14012 break;
14013
14014 case LT_EXPR:
14015 case LE_EXPR:
14016 case GT_EXPR:
14017 case GE_EXPR:
14018 case LTGT_EXPR:
14019 if (flag_trapping_math)
14020 return NULL_TREE;
14021 result = 0;
14022 break;
14023
14024 default:
14025 gcc_unreachable ();
14026 }
14027
14028 return constant_boolean_node (result, type);
14029 }
14030
14031 return constant_boolean_node (real_compare (code, c0, c1), type);
14032 }
14033
14034 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14035 {
14036 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14037 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14038 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14039 }
14040
14041 /* Handle equality/inequality of complex constants. */
14042 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14043 {
14044 tree rcond = fold_relational_const (code, type,
14045 TREE_REALPART (op0),
14046 TREE_REALPART (op1));
14047 tree icond = fold_relational_const (code, type,
14048 TREE_IMAGPART (op0),
14049 TREE_IMAGPART (op1));
14050 if (code == EQ_EXPR)
14051 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14052 else if (code == NE_EXPR)
14053 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14054 else
14055 return NULL_TREE;
14056 }
14057
14058 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14059 {
14060 if (!VECTOR_TYPE_P (type))
14061 {
14062 /* Have vector comparison with scalar boolean result. */
14063 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
14064 && known_eq (VECTOR_CST_NELTS (op0),
14065 VECTOR_CST_NELTS (op1)));
14066 unsigned HOST_WIDE_INT nunits;
14067 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits))
14068 return NULL_TREE;
14069 for (unsigned i = 0; i < nunits; i++)
14070 {
14071 tree elem0 = VECTOR_CST_ELT (op0, i);
14072 tree elem1 = VECTOR_CST_ELT (op1, i);
14073 tree tmp = fold_relational_const (EQ_EXPR, type, elem0, elem1);
14074 if (tmp == NULL_TREE)
14075 return NULL_TREE;
14076 if (integer_zerop (tmp))
14077 return constant_boolean_node (code == NE_EXPR, type);
14078 }
14079 return constant_boolean_node (code == EQ_EXPR, type);
14080 }
14081 tree_vector_builder elts;
14082 if (!elts.new_binary_operation (type, op0, op1, false))
14083 return NULL_TREE;
14084 unsigned int count = elts.encoded_nelts ();
14085 for (unsigned i = 0; i < count; i++)
14086 {
14087 tree elem_type = TREE_TYPE (type);
14088 tree elem0 = VECTOR_CST_ELT (op0, i);
14089 tree elem1 = VECTOR_CST_ELT (op1, i);
14090
14091 tree tem = fold_relational_const (code, elem_type,
14092 elem0, elem1);
14093
14094 if (tem == NULL_TREE)
14095 return NULL_TREE;
14096
14097 elts.quick_push (build_int_cst (elem_type,
14098 integer_zerop (tem) ? 0 : -1));
14099 }
14100
14101 return elts.build ();
14102 }
14103
14104 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14105
14106 To compute GT, swap the arguments and do LT.
14107 To compute GE, do LT and invert the result.
14108 To compute LE, swap the arguments, do LT and invert the result.
14109 To compute NE, do EQ and invert the result.
14110
14111 Therefore, the code below must handle only EQ and LT. */
14112
14113 if (code == LE_EXPR || code == GT_EXPR)
14114 {
14115 std::swap (op0, op1);
14116 code = swap_tree_comparison (code);
14117 }
14118
14119 /* Note that it is safe to invert for real values here because we
14120 have already handled the one case that it matters. */
14121
14122 invert = 0;
14123 if (code == NE_EXPR || code == GE_EXPR)
14124 {
14125 invert = 1;
14126 code = invert_tree_comparison (code, false);
14127 }
14128
14129 /* Compute a result for LT or EQ if args permit;
14130 Otherwise return T. */
14131 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14132 {
14133 if (code == EQ_EXPR)
14134 result = tree_int_cst_equal (op0, op1);
14135 else
14136 result = tree_int_cst_lt (op0, op1);
14137 }
14138 else
14139 return NULL_TREE;
14140
14141 if (invert)
14142 result ^= 1;
14143 return constant_boolean_node (result, type);
14144 }
14145
14146 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14147 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14148 itself. */
14149
14150 tree
14151 fold_build_cleanup_point_expr (tree type, tree expr)
14152 {
14153 /* If the expression does not have side effects then we don't have to wrap
14154 it with a cleanup point expression. */
14155 if (!TREE_SIDE_EFFECTS (expr))
14156 return expr;
14157
14158 /* If the expression is a return, check to see if the expression inside the
14159 return has no side effects or the right hand side of the modify expression
14160 inside the return. If either don't have side effects set we don't need to
14161 wrap the expression in a cleanup point expression. Note we don't check the
14162 left hand side of the modify because it should always be a return decl. */
14163 if (TREE_CODE (expr) == RETURN_EXPR)
14164 {
14165 tree op = TREE_OPERAND (expr, 0);
14166 if (!op || !TREE_SIDE_EFFECTS (op))
14167 return expr;
14168 op = TREE_OPERAND (op, 1);
14169 if (!TREE_SIDE_EFFECTS (op))
14170 return expr;
14171 }
14172
14173 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
14174 }
14175
14176 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14177 of an indirection through OP0, or NULL_TREE if no simplification is
14178 possible. */
14179
14180 tree
14181 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14182 {
14183 tree sub = op0;
14184 tree subtype;
14185 poly_uint64 const_op01;
14186
14187 STRIP_NOPS (sub);
14188 subtype = TREE_TYPE (sub);
14189 if (!POINTER_TYPE_P (subtype)
14190 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
14191 return NULL_TREE;
14192
14193 if (TREE_CODE (sub) == ADDR_EXPR)
14194 {
14195 tree op = TREE_OPERAND (sub, 0);
14196 tree optype = TREE_TYPE (op);
14197
14198 /* *&CONST_DECL -> to the value of the const decl. */
14199 if (TREE_CODE (op) == CONST_DECL)
14200 return DECL_INITIAL (op);
14201 /* *&p => p; make sure to handle *&"str"[cst] here. */
14202 if (type == optype)
14203 {
14204 tree fop = fold_read_from_constant_string (op);
14205 if (fop)
14206 return fop;
14207 else
14208 return op;
14209 }
14210 /* *(foo *)&fooarray => fooarray[0] */
14211 else if (TREE_CODE (optype) == ARRAY_TYPE
14212 && type == TREE_TYPE (optype)
14213 && (!in_gimple_form
14214 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14215 {
14216 tree type_domain = TYPE_DOMAIN (optype);
14217 tree min_val = size_zero_node;
14218 if (type_domain && TYPE_MIN_VALUE (type_domain))
14219 min_val = TYPE_MIN_VALUE (type_domain);
14220 if (in_gimple_form
14221 && TREE_CODE (min_val) != INTEGER_CST)
14222 return NULL_TREE;
14223 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14224 NULL_TREE, NULL_TREE);
14225 }
14226 /* *(foo *)&complexfoo => __real__ complexfoo */
14227 else if (TREE_CODE (optype) == COMPLEX_TYPE
14228 && type == TREE_TYPE (optype))
14229 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14230 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14231 else if (VECTOR_TYPE_P (optype)
14232 && type == TREE_TYPE (optype))
14233 {
14234 tree part_width = TYPE_SIZE (type);
14235 tree index = bitsize_int (0);
14236 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width,
14237 index);
14238 }
14239 }
14240
14241 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14242 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01))
14243 {
14244 tree op00 = TREE_OPERAND (sub, 0);
14245 tree op01 = TREE_OPERAND (sub, 1);
14246
14247 STRIP_NOPS (op00);
14248 if (TREE_CODE (op00) == ADDR_EXPR)
14249 {
14250 tree op00type;
14251 op00 = TREE_OPERAND (op00, 0);
14252 op00type = TREE_TYPE (op00);
14253
14254 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14255 if (VECTOR_TYPE_P (op00type)
14256 && type == TREE_TYPE (op00type)
14257 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14258 but we want to treat offsets with MSB set as negative.
14259 For the code below negative offsets are invalid and
14260 TYPE_SIZE of the element is something unsigned, so
14261 check whether op01 fits into poly_int64, which implies
14262 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14263 then just use poly_uint64 because we want to treat the
14264 value as unsigned. */
14265 && tree_fits_poly_int64_p (op01))
14266 {
14267 tree part_width = TYPE_SIZE (type);
14268 poly_uint64 max_offset
14269 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14270 * TYPE_VECTOR_SUBPARTS (op00type));
14271 if (known_lt (const_op01, max_offset))
14272 {
14273 tree index = bitsize_int (const_op01 * BITS_PER_UNIT);
14274 return fold_build3_loc (loc,
14275 BIT_FIELD_REF, type, op00,
14276 part_width, index);
14277 }
14278 }
14279 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14280 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14281 && type == TREE_TYPE (op00type))
14282 {
14283 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)),
14284 const_op01))
14285 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14286 }
14287 /* ((foo *)&fooarray)[1] => fooarray[1] */
14288 else if (TREE_CODE (op00type) == ARRAY_TYPE
14289 && type == TREE_TYPE (op00type))
14290 {
14291 tree type_domain = TYPE_DOMAIN (op00type);
14292 tree min_val = size_zero_node;
14293 if (type_domain && TYPE_MIN_VALUE (type_domain))
14294 min_val = TYPE_MIN_VALUE (type_domain);
14295 poly_uint64 type_size, index;
14296 if (poly_int_tree_p (min_val)
14297 && poly_int_tree_p (TYPE_SIZE_UNIT (type), &type_size)
14298 && multiple_p (const_op01, type_size, &index))
14299 {
14300 poly_offset_int off = index + wi::to_poly_offset (min_val);
14301 op01 = wide_int_to_tree (sizetype, off);
14302 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14303 NULL_TREE, NULL_TREE);
14304 }
14305 }
14306 }
14307 }
14308
14309 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14310 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14311 && type == TREE_TYPE (TREE_TYPE (subtype))
14312 && (!in_gimple_form
14313 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14314 {
14315 tree type_domain;
14316 tree min_val = size_zero_node;
14317 sub = build_fold_indirect_ref_loc (loc, sub);
14318 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14319 if (type_domain && TYPE_MIN_VALUE (type_domain))
14320 min_val = TYPE_MIN_VALUE (type_domain);
14321 if (in_gimple_form
14322 && TREE_CODE (min_val) != INTEGER_CST)
14323 return NULL_TREE;
14324 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14325 NULL_TREE);
14326 }
14327
14328 return NULL_TREE;
14329 }
14330
14331 /* Builds an expression for an indirection through T, simplifying some
14332 cases. */
14333
14334 tree
14335 build_fold_indirect_ref_loc (location_t loc, tree t)
14336 {
14337 tree type = TREE_TYPE (TREE_TYPE (t));
14338 tree sub = fold_indirect_ref_1 (loc, type, t);
14339
14340 if (sub)
14341 return sub;
14342
14343 return build1_loc (loc, INDIRECT_REF, type, t);
14344 }
14345
14346 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14347
14348 tree
14349 fold_indirect_ref_loc (location_t loc, tree t)
14350 {
14351 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14352
14353 if (sub)
14354 return sub;
14355 else
14356 return t;
14357 }
14358
14359 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14360 whose result is ignored. The type of the returned tree need not be
14361 the same as the original expression. */
14362
14363 tree
14364 fold_ignored_result (tree t)
14365 {
14366 if (!TREE_SIDE_EFFECTS (t))
14367 return integer_zero_node;
14368
14369 for (;;)
14370 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14371 {
14372 case tcc_unary:
14373 t = TREE_OPERAND (t, 0);
14374 break;
14375
14376 case tcc_binary:
14377 case tcc_comparison:
14378 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14379 t = TREE_OPERAND (t, 0);
14380 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14381 t = TREE_OPERAND (t, 1);
14382 else
14383 return t;
14384 break;
14385
14386 case tcc_expression:
14387 switch (TREE_CODE (t))
14388 {
14389 case COMPOUND_EXPR:
14390 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14391 return t;
14392 t = TREE_OPERAND (t, 0);
14393 break;
14394
14395 case COND_EXPR:
14396 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14397 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14398 return t;
14399 t = TREE_OPERAND (t, 0);
14400 break;
14401
14402 default:
14403 return t;
14404 }
14405 break;
14406
14407 default:
14408 return t;
14409 }
14410 }
14411
14412 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14413
14414 tree
14415 round_up_loc (location_t loc, tree value, unsigned int divisor)
14416 {
14417 tree div = NULL_TREE;
14418
14419 if (divisor == 1)
14420 return value;
14421
14422 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14423 have to do anything. Only do this when we are not given a const,
14424 because in that case, this check is more expensive than just
14425 doing it. */
14426 if (TREE_CODE (value) != INTEGER_CST)
14427 {
14428 div = build_int_cst (TREE_TYPE (value), divisor);
14429
14430 if (multiple_of_p (TREE_TYPE (value), value, div))
14431 return value;
14432 }
14433
14434 /* If divisor is a power of two, simplify this to bit manipulation. */
14435 if (pow2_or_zerop (divisor))
14436 {
14437 if (TREE_CODE (value) == INTEGER_CST)
14438 {
14439 wide_int val = wi::to_wide (value);
14440 bool overflow_p;
14441
14442 if ((val & (divisor - 1)) == 0)
14443 return value;
14444
14445 overflow_p = TREE_OVERFLOW (value);
14446 val += divisor - 1;
14447 val &= (int) -divisor;
14448 if (val == 0)
14449 overflow_p = true;
14450
14451 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14452 }
14453 else
14454 {
14455 tree t;
14456
14457 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14458 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14459 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14460 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14461 }
14462 }
14463 else
14464 {
14465 if (!div)
14466 div = build_int_cst (TREE_TYPE (value), divisor);
14467 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14468 value = size_binop_loc (loc, MULT_EXPR, value, div);
14469 }
14470
14471 return value;
14472 }
14473
14474 /* Likewise, but round down. */
14475
14476 tree
14477 round_down_loc (location_t loc, tree value, int divisor)
14478 {
14479 tree div = NULL_TREE;
14480
14481 gcc_assert (divisor > 0);
14482 if (divisor == 1)
14483 return value;
14484
14485 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14486 have to do anything. Only do this when we are not given a const,
14487 because in that case, this check is more expensive than just
14488 doing it. */
14489 if (TREE_CODE (value) != INTEGER_CST)
14490 {
14491 div = build_int_cst (TREE_TYPE (value), divisor);
14492
14493 if (multiple_of_p (TREE_TYPE (value), value, div))
14494 return value;
14495 }
14496
14497 /* If divisor is a power of two, simplify this to bit manipulation. */
14498 if (pow2_or_zerop (divisor))
14499 {
14500 tree t;
14501
14502 t = build_int_cst (TREE_TYPE (value), -divisor);
14503 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14504 }
14505 else
14506 {
14507 if (!div)
14508 div = build_int_cst (TREE_TYPE (value), divisor);
14509 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14510 value = size_binop_loc (loc, MULT_EXPR, value, div);
14511 }
14512
14513 return value;
14514 }
14515
14516 /* Returns the pointer to the base of the object addressed by EXP and
14517 extracts the information about the offset of the access, storing it
14518 to PBITPOS and POFFSET. */
14519
14520 static tree
14521 split_address_to_core_and_offset (tree exp,
14522 poly_int64_pod *pbitpos, tree *poffset)
14523 {
14524 tree core;
14525 machine_mode mode;
14526 int unsignedp, reversep, volatilep;
14527 poly_int64 bitsize;
14528 location_t loc = EXPR_LOCATION (exp);
14529
14530 if (TREE_CODE (exp) == ADDR_EXPR)
14531 {
14532 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14533 poffset, &mode, &unsignedp, &reversep,
14534 &volatilep);
14535 core = build_fold_addr_expr_loc (loc, core);
14536 }
14537 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14538 {
14539 core = TREE_OPERAND (exp, 0);
14540 STRIP_NOPS (core);
14541 *pbitpos = 0;
14542 *poffset = TREE_OPERAND (exp, 1);
14543 if (poly_int_tree_p (*poffset))
14544 {
14545 poly_offset_int tem
14546 = wi::sext (wi::to_poly_offset (*poffset),
14547 TYPE_PRECISION (TREE_TYPE (*poffset)));
14548 tem <<= LOG2_BITS_PER_UNIT;
14549 if (tem.to_shwi (pbitpos))
14550 *poffset = NULL_TREE;
14551 }
14552 }
14553 else
14554 {
14555 core = exp;
14556 *pbitpos = 0;
14557 *poffset = NULL_TREE;
14558 }
14559
14560 return core;
14561 }
14562
14563 /* Returns true if addresses of E1 and E2 differ by a constant, false
14564 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14565
14566 bool
14567 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff)
14568 {
14569 tree core1, core2;
14570 poly_int64 bitpos1, bitpos2;
14571 tree toffset1, toffset2, tdiff, type;
14572
14573 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14574 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14575
14576 poly_int64 bytepos1, bytepos2;
14577 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1)
14578 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2)
14579 || !operand_equal_p (core1, core2, 0))
14580 return false;
14581
14582 if (toffset1 && toffset2)
14583 {
14584 type = TREE_TYPE (toffset1);
14585 if (type != TREE_TYPE (toffset2))
14586 toffset2 = fold_convert (type, toffset2);
14587
14588 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14589 if (!cst_and_fits_in_hwi (tdiff))
14590 return false;
14591
14592 *diff = int_cst_value (tdiff);
14593 }
14594 else if (toffset1 || toffset2)
14595 {
14596 /* If only one of the offsets is non-constant, the difference cannot
14597 be a constant. */
14598 return false;
14599 }
14600 else
14601 *diff = 0;
14602
14603 *diff += bytepos1 - bytepos2;
14604 return true;
14605 }
14606
14607 /* Return OFF converted to a pointer offset type suitable as offset for
14608 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14609 tree
14610 convert_to_ptrofftype_loc (location_t loc, tree off)
14611 {
14612 return fold_convert_loc (loc, sizetype, off);
14613 }
14614
14615 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14616 tree
14617 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14618 {
14619 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14620 ptr, convert_to_ptrofftype_loc (loc, off));
14621 }
14622
14623 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14624 tree
14625 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14626 {
14627 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14628 ptr, size_int (off));
14629 }
14630
14631 /* Return a pointer P to a NUL-terminated string representing the sequence
14632 of constant characters referred to by SRC (or a subsequence of such
14633 characters within it if SRC is a reference to a string plus some
14634 constant offset). If STRLEN is non-null, store the number of bytes
14635 in the string constant including the terminating NUL char. *STRLEN is
14636 typically strlen(P) + 1 in the absence of embedded NUL characters. */
14637
14638 const char *
14639 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen /* = NULL */)
14640 {
14641 tree offset_node;
14642 tree mem_size;
14643
14644 if (strlen)
14645 *strlen = 0;
14646
14647 src = string_constant (src, &offset_node, &mem_size, NULL);
14648 if (src == 0)
14649 return NULL;
14650
14651 unsigned HOST_WIDE_INT offset = 0;
14652 if (offset_node != NULL_TREE)
14653 {
14654 if (!tree_fits_uhwi_p (offset_node))
14655 return NULL;
14656 else
14657 offset = tree_to_uhwi (offset_node);
14658 }
14659
14660 if (!tree_fits_uhwi_p (mem_size))
14661 return NULL;
14662
14663 /* STRING_LENGTH is the size of the string literal, including any
14664 embedded NULs. STRING_SIZE is the size of the array the string
14665 literal is stored in. */
14666 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14667 unsigned HOST_WIDE_INT string_size = tree_to_uhwi (mem_size);
14668
14669 /* Ideally this would turn into a gcc_checking_assert over time. */
14670 if (string_length > string_size)
14671 string_length = string_size;
14672
14673 const char *string = TREE_STRING_POINTER (src);
14674
14675 /* Ideally this would turn into a gcc_checking_assert over time. */
14676 if (string_length > string_size)
14677 string_length = string_size;
14678
14679 if (string_length == 0
14680 || offset >= string_size)
14681 return NULL;
14682
14683 if (strlen)
14684 {
14685 /* Compute and store the length of the substring at OFFSET.
14686 All offsets past the initial length refer to null strings. */
14687 if (offset < string_length)
14688 *strlen = string_length - offset;
14689 else
14690 *strlen = 1;
14691 }
14692 else
14693 {
14694 tree eltype = TREE_TYPE (TREE_TYPE (src));
14695 /* Support only properly NUL-terminated single byte strings. */
14696 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype)) != 1)
14697 return NULL;
14698 if (string[string_length - 1] != '\0')
14699 return NULL;
14700 }
14701
14702 return offset < string_length ? string + offset : "";
14703 }
14704
14705 /* Given a tree T, compute which bits in T may be nonzero. */
14706
14707 wide_int
14708 tree_nonzero_bits (const_tree t)
14709 {
14710 switch (TREE_CODE (t))
14711 {
14712 case INTEGER_CST:
14713 return wi::to_wide (t);
14714 case SSA_NAME:
14715 return get_nonzero_bits (t);
14716 case NON_LVALUE_EXPR:
14717 case SAVE_EXPR:
14718 return tree_nonzero_bits (TREE_OPERAND (t, 0));
14719 case BIT_AND_EXPR:
14720 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14721 tree_nonzero_bits (TREE_OPERAND (t, 1)));
14722 case BIT_IOR_EXPR:
14723 case BIT_XOR_EXPR:
14724 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14725 tree_nonzero_bits (TREE_OPERAND (t, 1)));
14726 case COND_EXPR:
14727 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 1)),
14728 tree_nonzero_bits (TREE_OPERAND (t, 2)));
14729 CASE_CONVERT:
14730 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14731 TYPE_PRECISION (TREE_TYPE (t)),
14732 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0))));
14733 case PLUS_EXPR:
14734 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
14735 {
14736 wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0));
14737 wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1));
14738 if (wi::bit_and (nzbits1, nzbits2) == 0)
14739 return wi::bit_or (nzbits1, nzbits2);
14740 }
14741 break;
14742 case LSHIFT_EXPR:
14743 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
14744 {
14745 tree type = TREE_TYPE (t);
14746 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
14747 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
14748 TYPE_PRECISION (type));
14749 return wi::neg_p (arg1)
14750 ? wi::rshift (nzbits, -arg1, TYPE_SIGN (type))
14751 : wi::lshift (nzbits, arg1);
14752 }
14753 break;
14754 case RSHIFT_EXPR:
14755 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
14756 {
14757 tree type = TREE_TYPE (t);
14758 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
14759 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
14760 TYPE_PRECISION (type));
14761 return wi::neg_p (arg1)
14762 ? wi::lshift (nzbits, -arg1)
14763 : wi::rshift (nzbits, arg1, TYPE_SIGN (type));
14764 }
14765 break;
14766 default:
14767 break;
14768 }
14769
14770 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t)));
14771 }
14772
14773 #if CHECKING_P
14774
14775 namespace selftest {
14776
14777 /* Helper functions for writing tests of folding trees. */
14778
14779 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14780
14781 static void
14782 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14783 tree constant)
14784 {
14785 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14786 }
14787
14788 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14789 wrapping WRAPPED_EXPR. */
14790
14791 static void
14792 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14793 tree wrapped_expr)
14794 {
14795 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14796 ASSERT_NE (wrapped_expr, result);
14797 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14798 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14799 }
14800
14801 /* Verify that various arithmetic binary operations are folded
14802 correctly. */
14803
14804 static void
14805 test_arithmetic_folding ()
14806 {
14807 tree type = integer_type_node;
14808 tree x = create_tmp_var_raw (type, "x");
14809 tree zero = build_zero_cst (type);
14810 tree one = build_int_cst (type, 1);
14811
14812 /* Addition. */
14813 /* 1 <-- (0 + 1) */
14814 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14815 one);
14816 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14817 one);
14818
14819 /* (nonlvalue)x <-- (x + 0) */
14820 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14821 x);
14822
14823 /* Subtraction. */
14824 /* 0 <-- (x - x) */
14825 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14826 zero);
14827 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14828 x);
14829
14830 /* Multiplication. */
14831 /* 0 <-- (x * 0) */
14832 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14833 zero);
14834
14835 /* (nonlvalue)x <-- (x * 1) */
14836 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14837 x);
14838 }
14839
14840 /* Verify that various binary operations on vectors are folded
14841 correctly. */
14842
14843 static void
14844 test_vector_folding ()
14845 {
14846 tree inner_type = integer_type_node;
14847 tree type = build_vector_type (inner_type, 4);
14848 tree zero = build_zero_cst (type);
14849 tree one = build_one_cst (type);
14850 tree index = build_index_vector (type, 0, 1);
14851
14852 /* Verify equality tests that return a scalar boolean result. */
14853 tree res_type = boolean_type_node;
14854 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14855 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14856 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14857 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14858 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, index, one)));
14859 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
14860 index, one)));
14861 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type,
14862 index, index)));
14863 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
14864 index, index)));
14865 }
14866
14867 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14868
14869 static void
14870 test_vec_duplicate_folding ()
14871 {
14872 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype);
14873 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode);
14874 /* This will be 1 if VEC_MODE isn't a vector mode. */
14875 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode);
14876
14877 tree type = build_vector_type (ssizetype, nunits);
14878 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5));
14879 tree dup5_cst = build_vector_from_val (type, ssize_int (5));
14880 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
14881 }
14882
14883 /* Run all of the selftests within this file. */
14884
14885 void
14886 fold_const_c_tests ()
14887 {
14888 test_arithmetic_folding ();
14889 test_vector_folding ();
14890 test_vec_duplicate_folding ();
14891 }
14892
14893 } // namespace selftest
14894
14895 #endif /* CHECKING_P */