]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fold-const.c
[62/77] Big machine_mode to scalar_int_mode replacement
[thirdparty/gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
84
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
88
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
109 };
110
111 static bool negate_expr_p (tree);
112 static tree negate_expr (tree);
113 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
114 static enum comparison_code comparison_to_compcode (enum tree_code);
115 static enum tree_code compcode_to_comparison (enum comparison_code);
116 static int twoval_comparison_p (tree, tree *, tree *, int *);
117 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
118 static tree optimize_bit_field_compare (location_t, enum tree_code,
119 tree, tree, tree);
120 static int simple_operand_p (const_tree);
121 static bool simple_operand_p_2 (tree);
122 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
123 static tree range_predecessor (tree);
124 static tree range_successor (tree);
125 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
126 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
127 static tree unextend (tree, int, int, tree);
128 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
129 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
130 static tree fold_binary_op_with_conditional_arg (location_t,
131 enum tree_code, tree,
132 tree, tree,
133 tree, tree, int);
134 static tree fold_negate_const (tree, tree);
135 static tree fold_not_const (const_tree, tree);
136 static tree fold_relational_const (enum tree_code, tree, tree, tree);
137 static tree fold_convert_const (enum tree_code, tree, tree);
138 static tree fold_view_convert_expr (tree, tree);
139 static bool vec_cst_ctor_to_array (tree, tree *);
140 static tree fold_negate_expr (location_t, tree);
141
142
143 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
144 Otherwise, return LOC. */
145
146 static location_t
147 expr_location_or (tree t, location_t loc)
148 {
149 location_t tloc = EXPR_LOCATION (t);
150 return tloc == UNKNOWN_LOCATION ? loc : tloc;
151 }
152
153 /* Similar to protected_set_expr_location, but never modify x in place,
154 if location can and needs to be set, unshare it. */
155
156 static inline tree
157 protected_set_expr_location_unshare (tree x, location_t loc)
158 {
159 if (CAN_HAVE_LOCATION_P (x)
160 && EXPR_LOCATION (x) != loc
161 && !(TREE_CODE (x) == SAVE_EXPR
162 || TREE_CODE (x) == TARGET_EXPR
163 || TREE_CODE (x) == BIND_EXPR))
164 {
165 x = copy_node (x);
166 SET_EXPR_LOCATION (x, loc);
167 }
168 return x;
169 }
170 \f
171 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
172 division and returns the quotient. Otherwise returns
173 NULL_TREE. */
174
175 tree
176 div_if_zero_remainder (const_tree arg1, const_tree arg2)
177 {
178 widest_int quo;
179
180 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
181 SIGNED, &quo))
182 return wide_int_to_tree (TREE_TYPE (arg1), quo);
183
184 return NULL_TREE;
185 }
186 \f
187 /* This is nonzero if we should defer warnings about undefined
188 overflow. This facility exists because these warnings are a
189 special case. The code to estimate loop iterations does not want
190 to issue any warnings, since it works with expressions which do not
191 occur in user code. Various bits of cleanup code call fold(), but
192 only use the result if it has certain characteristics (e.g., is a
193 constant); that code only wants to issue a warning if the result is
194 used. */
195
196 static int fold_deferring_overflow_warnings;
197
198 /* If a warning about undefined overflow is deferred, this is the
199 warning. Note that this may cause us to turn two warnings into
200 one, but that is fine since it is sufficient to only give one
201 warning per expression. */
202
203 static const char* fold_deferred_overflow_warning;
204
205 /* If a warning about undefined overflow is deferred, this is the
206 level at which the warning should be emitted. */
207
208 static enum warn_strict_overflow_code fold_deferred_overflow_code;
209
210 /* Start deferring overflow warnings. We could use a stack here to
211 permit nested calls, but at present it is not necessary. */
212
213 void
214 fold_defer_overflow_warnings (void)
215 {
216 ++fold_deferring_overflow_warnings;
217 }
218
219 /* Stop deferring overflow warnings. If there is a pending warning,
220 and ISSUE is true, then issue the warning if appropriate. STMT is
221 the statement with which the warning should be associated (used for
222 location information); STMT may be NULL. CODE is the level of the
223 warning--a warn_strict_overflow_code value. This function will use
224 the smaller of CODE and the deferred code when deciding whether to
225 issue the warning. CODE may be zero to mean to always use the
226 deferred code. */
227
228 void
229 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
230 {
231 const char *warnmsg;
232 location_t locus;
233
234 gcc_assert (fold_deferring_overflow_warnings > 0);
235 --fold_deferring_overflow_warnings;
236 if (fold_deferring_overflow_warnings > 0)
237 {
238 if (fold_deferred_overflow_warning != NULL
239 && code != 0
240 && code < (int) fold_deferred_overflow_code)
241 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
242 return;
243 }
244
245 warnmsg = fold_deferred_overflow_warning;
246 fold_deferred_overflow_warning = NULL;
247
248 if (!issue || warnmsg == NULL)
249 return;
250
251 if (gimple_no_warning_p (stmt))
252 return;
253
254 /* Use the smallest code level when deciding to issue the
255 warning. */
256 if (code == 0 || code > (int) fold_deferred_overflow_code)
257 code = fold_deferred_overflow_code;
258
259 if (!issue_strict_overflow_warning (code))
260 return;
261
262 if (stmt == NULL)
263 locus = input_location;
264 else
265 locus = gimple_location (stmt);
266 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
267 }
268
269 /* Stop deferring overflow warnings, ignoring any deferred
270 warnings. */
271
272 void
273 fold_undefer_and_ignore_overflow_warnings (void)
274 {
275 fold_undefer_overflow_warnings (false, NULL, 0);
276 }
277
278 /* Whether we are deferring overflow warnings. */
279
280 bool
281 fold_deferring_overflow_warnings_p (void)
282 {
283 return fold_deferring_overflow_warnings > 0;
284 }
285
286 /* This is called when we fold something based on the fact that signed
287 overflow is undefined. */
288
289 void
290 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
291 {
292 if (fold_deferring_overflow_warnings > 0)
293 {
294 if (fold_deferred_overflow_warning == NULL
295 || wc < fold_deferred_overflow_code)
296 {
297 fold_deferred_overflow_warning = gmsgid;
298 fold_deferred_overflow_code = wc;
299 }
300 }
301 else if (issue_strict_overflow_warning (wc))
302 warning (OPT_Wstrict_overflow, gmsgid);
303 }
304 \f
305 /* Return true if the built-in mathematical function specified by CODE
306 is odd, i.e. -f(x) == f(-x). */
307
308 bool
309 negate_mathfn_p (combined_fn fn)
310 {
311 switch (fn)
312 {
313 CASE_CFN_ASIN:
314 CASE_CFN_ASINH:
315 CASE_CFN_ATAN:
316 CASE_CFN_ATANH:
317 CASE_CFN_CASIN:
318 CASE_CFN_CASINH:
319 CASE_CFN_CATAN:
320 CASE_CFN_CATANH:
321 CASE_CFN_CBRT:
322 CASE_CFN_CPROJ:
323 CASE_CFN_CSIN:
324 CASE_CFN_CSINH:
325 CASE_CFN_CTAN:
326 CASE_CFN_CTANH:
327 CASE_CFN_ERF:
328 CASE_CFN_LLROUND:
329 CASE_CFN_LROUND:
330 CASE_CFN_ROUND:
331 CASE_CFN_SIN:
332 CASE_CFN_SINH:
333 CASE_CFN_TAN:
334 CASE_CFN_TANH:
335 CASE_CFN_TRUNC:
336 return true;
337
338 CASE_CFN_LLRINT:
339 CASE_CFN_LRINT:
340 CASE_CFN_NEARBYINT:
341 CASE_CFN_RINT:
342 return !flag_rounding_math;
343
344 default:
345 break;
346 }
347 return false;
348 }
349
350 /* Check whether we may negate an integer constant T without causing
351 overflow. */
352
353 bool
354 may_negate_without_overflow_p (const_tree t)
355 {
356 tree type;
357
358 gcc_assert (TREE_CODE (t) == INTEGER_CST);
359
360 type = TREE_TYPE (t);
361 if (TYPE_UNSIGNED (type))
362 return false;
363
364 return !wi::only_sign_bit_p (t);
365 }
366
367 /* Determine whether an expression T can be cheaply negated using
368 the function negate_expr without introducing undefined overflow. */
369
370 static bool
371 negate_expr_p (tree t)
372 {
373 tree type;
374
375 if (t == 0)
376 return false;
377
378 type = TREE_TYPE (t);
379
380 STRIP_SIGN_NOPS (t);
381 switch (TREE_CODE (t))
382 {
383 case INTEGER_CST:
384 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
385 return true;
386
387 /* Check that -CST will not overflow type. */
388 return may_negate_without_overflow_p (t);
389 case BIT_NOT_EXPR:
390 return (INTEGRAL_TYPE_P (type)
391 && TYPE_OVERFLOW_WRAPS (type));
392
393 case FIXED_CST:
394 return true;
395
396 case NEGATE_EXPR:
397 return !TYPE_OVERFLOW_SANITIZED (type);
398
399 case REAL_CST:
400 /* We want to canonicalize to positive real constants. Pretend
401 that only negative ones can be easily negated. */
402 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
403
404 case COMPLEX_CST:
405 return negate_expr_p (TREE_REALPART (t))
406 && negate_expr_p (TREE_IMAGPART (t));
407
408 case VECTOR_CST:
409 {
410 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
411 return true;
412
413 int count = TYPE_VECTOR_SUBPARTS (type), i;
414
415 for (i = 0; i < count; i++)
416 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
417 return false;
418
419 return true;
420 }
421
422 case COMPLEX_EXPR:
423 return negate_expr_p (TREE_OPERAND (t, 0))
424 && negate_expr_p (TREE_OPERAND (t, 1));
425
426 case CONJ_EXPR:
427 return negate_expr_p (TREE_OPERAND (t, 0));
428
429 case PLUS_EXPR:
430 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
431 || HONOR_SIGNED_ZEROS (element_mode (type))
432 || (INTEGRAL_TYPE_P (type)
433 && ! TYPE_OVERFLOW_WRAPS (type)))
434 return false;
435 /* -(A + B) -> (-B) - A. */
436 if (negate_expr_p (TREE_OPERAND (t, 1)))
437 return true;
438 /* -(A + B) -> (-A) - B. */
439 return negate_expr_p (TREE_OPERAND (t, 0));
440
441 case MINUS_EXPR:
442 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
443 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
444 && !HONOR_SIGNED_ZEROS (element_mode (type))
445 && (! INTEGRAL_TYPE_P (type)
446 || TYPE_OVERFLOW_WRAPS (type));
447
448 case MULT_EXPR:
449 if (TYPE_UNSIGNED (type))
450 break;
451 /* INT_MIN/n * n doesn't overflow while negating one operand it does
452 if n is a (negative) power of two. */
453 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
454 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
455 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
456 && wi::popcount (wi::abs (TREE_OPERAND (t, 0))) != 1)
457 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
458 && wi::popcount (wi::abs (TREE_OPERAND (t, 1))) != 1)))
459 break;
460
461 /* Fall through. */
462
463 case RDIV_EXPR:
464 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
465 return negate_expr_p (TREE_OPERAND (t, 1))
466 || negate_expr_p (TREE_OPERAND (t, 0));
467 break;
468
469 case TRUNC_DIV_EXPR:
470 case ROUND_DIV_EXPR:
471 case EXACT_DIV_EXPR:
472 if (TYPE_UNSIGNED (type))
473 break;
474 if (negate_expr_p (TREE_OPERAND (t, 0)))
475 return true;
476 /* In general we can't negate B in A / B, because if A is INT_MIN and
477 B is 1, we may turn this into INT_MIN / -1 which is undefined
478 and actually traps on some architectures. */
479 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
480 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
481 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
482 && ! integer_onep (TREE_OPERAND (t, 1))))
483 return negate_expr_p (TREE_OPERAND (t, 1));
484 break;
485
486 case NOP_EXPR:
487 /* Negate -((double)float) as (double)(-float). */
488 if (TREE_CODE (type) == REAL_TYPE)
489 {
490 tree tem = strip_float_extensions (t);
491 if (tem != t)
492 return negate_expr_p (tem);
493 }
494 break;
495
496 case CALL_EXPR:
497 /* Negate -f(x) as f(-x). */
498 if (negate_mathfn_p (get_call_combined_fn (t)))
499 return negate_expr_p (CALL_EXPR_ARG (t, 0));
500 break;
501
502 case RSHIFT_EXPR:
503 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
504 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
505 {
506 tree op1 = TREE_OPERAND (t, 1);
507 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
508 return true;
509 }
510 break;
511
512 default:
513 break;
514 }
515 return false;
516 }
517
518 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
519 simplification is possible.
520 If negate_expr_p would return true for T, NULL_TREE will never be
521 returned. */
522
523 static tree
524 fold_negate_expr_1 (location_t loc, tree t)
525 {
526 tree type = TREE_TYPE (t);
527 tree tem;
528
529 switch (TREE_CODE (t))
530 {
531 /* Convert - (~A) to A + 1. */
532 case BIT_NOT_EXPR:
533 if (INTEGRAL_TYPE_P (type))
534 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
535 build_one_cst (type));
536 break;
537
538 case INTEGER_CST:
539 tem = fold_negate_const (t, type);
540 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
541 || (ANY_INTEGRAL_TYPE_P (type)
542 && !TYPE_OVERFLOW_TRAPS (type)
543 && TYPE_OVERFLOW_WRAPS (type))
544 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
545 return tem;
546 break;
547
548 case REAL_CST:
549 tem = fold_negate_const (t, type);
550 return tem;
551
552 case FIXED_CST:
553 tem = fold_negate_const (t, type);
554 return tem;
555
556 case COMPLEX_CST:
557 {
558 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
559 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
560 if (rpart && ipart)
561 return build_complex (type, rpart, ipart);
562 }
563 break;
564
565 case VECTOR_CST:
566 {
567 int count = TYPE_VECTOR_SUBPARTS (type), i;
568 tree *elts = XALLOCAVEC (tree, count);
569
570 for (i = 0; i < count; i++)
571 {
572 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
573 if (elts[i] == NULL_TREE)
574 return NULL_TREE;
575 }
576
577 return build_vector (type, elts);
578 }
579
580 case COMPLEX_EXPR:
581 if (negate_expr_p (t))
582 return fold_build2_loc (loc, COMPLEX_EXPR, type,
583 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
584 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
585 break;
586
587 case CONJ_EXPR:
588 if (negate_expr_p (t))
589 return fold_build1_loc (loc, CONJ_EXPR, type,
590 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
591 break;
592
593 case NEGATE_EXPR:
594 if (!TYPE_OVERFLOW_SANITIZED (type))
595 return TREE_OPERAND (t, 0);
596 break;
597
598 case PLUS_EXPR:
599 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
600 && !HONOR_SIGNED_ZEROS (element_mode (type)))
601 {
602 /* -(A + B) -> (-B) - A. */
603 if (negate_expr_p (TREE_OPERAND (t, 1)))
604 {
605 tem = negate_expr (TREE_OPERAND (t, 1));
606 return fold_build2_loc (loc, MINUS_EXPR, type,
607 tem, TREE_OPERAND (t, 0));
608 }
609
610 /* -(A + B) -> (-A) - B. */
611 if (negate_expr_p (TREE_OPERAND (t, 0)))
612 {
613 tem = negate_expr (TREE_OPERAND (t, 0));
614 return fold_build2_loc (loc, MINUS_EXPR, type,
615 tem, TREE_OPERAND (t, 1));
616 }
617 }
618 break;
619
620 case MINUS_EXPR:
621 /* - (A - B) -> B - A */
622 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
623 && !HONOR_SIGNED_ZEROS (element_mode (type)))
624 return fold_build2_loc (loc, MINUS_EXPR, type,
625 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
626 break;
627
628 case MULT_EXPR:
629 if (TYPE_UNSIGNED (type))
630 break;
631
632 /* Fall through. */
633
634 case RDIV_EXPR:
635 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
636 {
637 tem = TREE_OPERAND (t, 1);
638 if (negate_expr_p (tem))
639 return fold_build2_loc (loc, TREE_CODE (t), type,
640 TREE_OPERAND (t, 0), negate_expr (tem));
641 tem = TREE_OPERAND (t, 0);
642 if (negate_expr_p (tem))
643 return fold_build2_loc (loc, TREE_CODE (t), type,
644 negate_expr (tem), TREE_OPERAND (t, 1));
645 }
646 break;
647
648 case TRUNC_DIV_EXPR:
649 case ROUND_DIV_EXPR:
650 case EXACT_DIV_EXPR:
651 if (TYPE_UNSIGNED (type))
652 break;
653 if (negate_expr_p (TREE_OPERAND (t, 0)))
654 return fold_build2_loc (loc, TREE_CODE (t), type,
655 negate_expr (TREE_OPERAND (t, 0)),
656 TREE_OPERAND (t, 1));
657 /* In general we can't negate B in A / B, because if A is INT_MIN and
658 B is 1, we may turn this into INT_MIN / -1 which is undefined
659 and actually traps on some architectures. */
660 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
661 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
662 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
663 && ! integer_onep (TREE_OPERAND (t, 1))))
664 && negate_expr_p (TREE_OPERAND (t, 1)))
665 return fold_build2_loc (loc, TREE_CODE (t), type,
666 TREE_OPERAND (t, 0),
667 negate_expr (TREE_OPERAND (t, 1)));
668 break;
669
670 case NOP_EXPR:
671 /* Convert -((double)float) into (double)(-float). */
672 if (TREE_CODE (type) == REAL_TYPE)
673 {
674 tem = strip_float_extensions (t);
675 if (tem != t && negate_expr_p (tem))
676 return fold_convert_loc (loc, type, negate_expr (tem));
677 }
678 break;
679
680 case CALL_EXPR:
681 /* Negate -f(x) as f(-x). */
682 if (negate_mathfn_p (get_call_combined_fn (t))
683 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
684 {
685 tree fndecl, arg;
686
687 fndecl = get_callee_fndecl (t);
688 arg = negate_expr (CALL_EXPR_ARG (t, 0));
689 return build_call_expr_loc (loc, fndecl, 1, arg);
690 }
691 break;
692
693 case RSHIFT_EXPR:
694 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
695 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
696 {
697 tree op1 = TREE_OPERAND (t, 1);
698 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
699 {
700 tree ntype = TYPE_UNSIGNED (type)
701 ? signed_type_for (type)
702 : unsigned_type_for (type);
703 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
704 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
705 return fold_convert_loc (loc, type, temp);
706 }
707 }
708 break;
709
710 default:
711 break;
712 }
713
714 return NULL_TREE;
715 }
716
717 /* A wrapper for fold_negate_expr_1. */
718
719 static tree
720 fold_negate_expr (location_t loc, tree t)
721 {
722 tree type = TREE_TYPE (t);
723 STRIP_SIGN_NOPS (t);
724 tree tem = fold_negate_expr_1 (loc, t);
725 if (tem == NULL_TREE)
726 return NULL_TREE;
727 return fold_convert_loc (loc, type, tem);
728 }
729
730 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
731 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
732 return NULL_TREE. */
733
734 static tree
735 negate_expr (tree t)
736 {
737 tree type, tem;
738 location_t loc;
739
740 if (t == NULL_TREE)
741 return NULL_TREE;
742
743 loc = EXPR_LOCATION (t);
744 type = TREE_TYPE (t);
745 STRIP_SIGN_NOPS (t);
746
747 tem = fold_negate_expr (loc, t);
748 if (!tem)
749 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
750 return fold_convert_loc (loc, type, tem);
751 }
752 \f
753 /* Split a tree IN into a constant, literal and variable parts that could be
754 combined with CODE to make IN. "constant" means an expression with
755 TREE_CONSTANT but that isn't an actual constant. CODE must be a
756 commutative arithmetic operation. Store the constant part into *CONP,
757 the literal in *LITP and return the variable part. If a part isn't
758 present, set it to null. If the tree does not decompose in this way,
759 return the entire tree as the variable part and the other parts as null.
760
761 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
762 case, we negate an operand that was subtracted. Except if it is a
763 literal for which we use *MINUS_LITP instead.
764
765 If NEGATE_P is true, we are negating all of IN, again except a literal
766 for which we use *MINUS_LITP instead. If a variable part is of pointer
767 type, it is negated after converting to TYPE. This prevents us from
768 generating illegal MINUS pointer expression. LOC is the location of
769 the converted variable part.
770
771 If IN is itself a literal or constant, return it as appropriate.
772
773 Note that we do not guarantee that any of the three values will be the
774 same type as IN, but they will have the same signedness and mode. */
775
776 static tree
777 split_tree (tree in, tree type, enum tree_code code,
778 tree *minus_varp, tree *conp, tree *minus_conp,
779 tree *litp, tree *minus_litp, int negate_p)
780 {
781 tree var = 0;
782 *minus_varp = 0;
783 *conp = 0;
784 *minus_conp = 0;
785 *litp = 0;
786 *minus_litp = 0;
787
788 /* Strip any conversions that don't change the machine mode or signedness. */
789 STRIP_SIGN_NOPS (in);
790
791 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
792 || TREE_CODE (in) == FIXED_CST)
793 *litp = in;
794 else if (TREE_CODE (in) == code
795 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
796 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
797 /* We can associate addition and subtraction together (even
798 though the C standard doesn't say so) for integers because
799 the value is not affected. For reals, the value might be
800 affected, so we can't. */
801 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
802 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
803 || (code == MINUS_EXPR
804 && (TREE_CODE (in) == PLUS_EXPR
805 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
806 {
807 tree op0 = TREE_OPERAND (in, 0);
808 tree op1 = TREE_OPERAND (in, 1);
809 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
810 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
811
812 /* First see if either of the operands is a literal, then a constant. */
813 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
814 || TREE_CODE (op0) == FIXED_CST)
815 *litp = op0, op0 = 0;
816 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
817 || TREE_CODE (op1) == FIXED_CST)
818 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
819
820 if (op0 != 0 && TREE_CONSTANT (op0))
821 *conp = op0, op0 = 0;
822 else if (op1 != 0 && TREE_CONSTANT (op1))
823 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
824
825 /* If we haven't dealt with either operand, this is not a case we can
826 decompose. Otherwise, VAR is either of the ones remaining, if any. */
827 if (op0 != 0 && op1 != 0)
828 var = in;
829 else if (op0 != 0)
830 var = op0;
831 else
832 var = op1, neg_var_p = neg1_p;
833
834 /* Now do any needed negations. */
835 if (neg_litp_p)
836 *minus_litp = *litp, *litp = 0;
837 if (neg_conp_p && *conp)
838 *minus_conp = *conp, *conp = 0;
839 if (neg_var_p && var)
840 *minus_varp = var, var = 0;
841 }
842 else if (TREE_CONSTANT (in))
843 *conp = in;
844 else if (TREE_CODE (in) == BIT_NOT_EXPR
845 && code == PLUS_EXPR)
846 {
847 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
848 when IN is constant. */
849 *litp = build_minus_one_cst (type);
850 *minus_varp = TREE_OPERAND (in, 0);
851 }
852 else
853 var = in;
854
855 if (negate_p)
856 {
857 if (*litp)
858 *minus_litp = *litp, *litp = 0;
859 else if (*minus_litp)
860 *litp = *minus_litp, *minus_litp = 0;
861 if (*conp)
862 *minus_conp = *conp, *conp = 0;
863 else if (*minus_conp)
864 *conp = *minus_conp, *minus_conp = 0;
865 if (var)
866 *minus_varp = var, var = 0;
867 else if (*minus_varp)
868 var = *minus_varp, *minus_varp = 0;
869 }
870
871 if (*litp
872 && TREE_OVERFLOW_P (*litp))
873 *litp = drop_tree_overflow (*litp);
874 if (*minus_litp
875 && TREE_OVERFLOW_P (*minus_litp))
876 *minus_litp = drop_tree_overflow (*minus_litp);
877
878 return var;
879 }
880
881 /* Re-associate trees split by the above function. T1 and T2 are
882 either expressions to associate or null. Return the new
883 expression, if any. LOC is the location of the new expression. If
884 we build an operation, do it in TYPE and with CODE. */
885
886 static tree
887 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
888 {
889 if (t1 == 0)
890 {
891 gcc_assert (t2 == 0 || code != MINUS_EXPR);
892 return t2;
893 }
894 else if (t2 == 0)
895 return t1;
896
897 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
898 try to fold this since we will have infinite recursion. But do
899 deal with any NEGATE_EXPRs. */
900 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
901 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
902 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
903 {
904 if (code == PLUS_EXPR)
905 {
906 if (TREE_CODE (t1) == NEGATE_EXPR)
907 return build2_loc (loc, MINUS_EXPR, type,
908 fold_convert_loc (loc, type, t2),
909 fold_convert_loc (loc, type,
910 TREE_OPERAND (t1, 0)));
911 else if (TREE_CODE (t2) == NEGATE_EXPR)
912 return build2_loc (loc, MINUS_EXPR, type,
913 fold_convert_loc (loc, type, t1),
914 fold_convert_loc (loc, type,
915 TREE_OPERAND (t2, 0)));
916 else if (integer_zerop (t2))
917 return fold_convert_loc (loc, type, t1);
918 }
919 else if (code == MINUS_EXPR)
920 {
921 if (integer_zerop (t2))
922 return fold_convert_loc (loc, type, t1);
923 }
924
925 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
926 fold_convert_loc (loc, type, t2));
927 }
928
929 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
930 fold_convert_loc (loc, type, t2));
931 }
932 \f
933 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
934 for use in int_const_binop, size_binop and size_diffop. */
935
936 static bool
937 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
938 {
939 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
940 return false;
941 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
942 return false;
943
944 switch (code)
945 {
946 case LSHIFT_EXPR:
947 case RSHIFT_EXPR:
948 case LROTATE_EXPR:
949 case RROTATE_EXPR:
950 return true;
951
952 default:
953 break;
954 }
955
956 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
957 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
958 && TYPE_MODE (type1) == TYPE_MODE (type2);
959 }
960
961
962 /* Combine two integer constants ARG1 and ARG2 under operation CODE
963 to produce a new constant. Return NULL_TREE if we don't know how
964 to evaluate CODE at compile-time. */
965
966 static tree
967 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
968 int overflowable)
969 {
970 wide_int res;
971 tree t;
972 tree type = TREE_TYPE (arg1);
973 signop sign = TYPE_SIGN (type);
974 bool overflow = false;
975
976 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
977
978 switch (code)
979 {
980 case BIT_IOR_EXPR:
981 res = wi::bit_or (arg1, arg2);
982 break;
983
984 case BIT_XOR_EXPR:
985 res = wi::bit_xor (arg1, arg2);
986 break;
987
988 case BIT_AND_EXPR:
989 res = wi::bit_and (arg1, arg2);
990 break;
991
992 case RSHIFT_EXPR:
993 case LSHIFT_EXPR:
994 if (wi::neg_p (arg2))
995 {
996 arg2 = -arg2;
997 if (code == RSHIFT_EXPR)
998 code = LSHIFT_EXPR;
999 else
1000 code = RSHIFT_EXPR;
1001 }
1002
1003 if (code == RSHIFT_EXPR)
1004 /* It's unclear from the C standard whether shifts can overflow.
1005 The following code ignores overflow; perhaps a C standard
1006 interpretation ruling is needed. */
1007 res = wi::rshift (arg1, arg2, sign);
1008 else
1009 res = wi::lshift (arg1, arg2);
1010 break;
1011
1012 case RROTATE_EXPR:
1013 case LROTATE_EXPR:
1014 if (wi::neg_p (arg2))
1015 {
1016 arg2 = -arg2;
1017 if (code == RROTATE_EXPR)
1018 code = LROTATE_EXPR;
1019 else
1020 code = RROTATE_EXPR;
1021 }
1022
1023 if (code == RROTATE_EXPR)
1024 res = wi::rrotate (arg1, arg2);
1025 else
1026 res = wi::lrotate (arg1, arg2);
1027 break;
1028
1029 case PLUS_EXPR:
1030 res = wi::add (arg1, arg2, sign, &overflow);
1031 break;
1032
1033 case MINUS_EXPR:
1034 res = wi::sub (arg1, arg2, sign, &overflow);
1035 break;
1036
1037 case MULT_EXPR:
1038 res = wi::mul (arg1, arg2, sign, &overflow);
1039 break;
1040
1041 case MULT_HIGHPART_EXPR:
1042 res = wi::mul_high (arg1, arg2, sign);
1043 break;
1044
1045 case TRUNC_DIV_EXPR:
1046 case EXACT_DIV_EXPR:
1047 if (arg2 == 0)
1048 return NULL_TREE;
1049 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1050 break;
1051
1052 case FLOOR_DIV_EXPR:
1053 if (arg2 == 0)
1054 return NULL_TREE;
1055 res = wi::div_floor (arg1, arg2, sign, &overflow);
1056 break;
1057
1058 case CEIL_DIV_EXPR:
1059 if (arg2 == 0)
1060 return NULL_TREE;
1061 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1062 break;
1063
1064 case ROUND_DIV_EXPR:
1065 if (arg2 == 0)
1066 return NULL_TREE;
1067 res = wi::div_round (arg1, arg2, sign, &overflow);
1068 break;
1069
1070 case TRUNC_MOD_EXPR:
1071 if (arg2 == 0)
1072 return NULL_TREE;
1073 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1074 break;
1075
1076 case FLOOR_MOD_EXPR:
1077 if (arg2 == 0)
1078 return NULL_TREE;
1079 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1080 break;
1081
1082 case CEIL_MOD_EXPR:
1083 if (arg2 == 0)
1084 return NULL_TREE;
1085 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1086 break;
1087
1088 case ROUND_MOD_EXPR:
1089 if (arg2 == 0)
1090 return NULL_TREE;
1091 res = wi::mod_round (arg1, arg2, sign, &overflow);
1092 break;
1093
1094 case MIN_EXPR:
1095 res = wi::min (arg1, arg2, sign);
1096 break;
1097
1098 case MAX_EXPR:
1099 res = wi::max (arg1, arg2, sign);
1100 break;
1101
1102 default:
1103 return NULL_TREE;
1104 }
1105
1106 t = force_fit_type (type, res, overflowable,
1107 (((sign == SIGNED || overflowable == -1)
1108 && overflow)
1109 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1110
1111 return t;
1112 }
1113
1114 tree
1115 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1116 {
1117 return int_const_binop_1 (code, arg1, arg2, 1);
1118 }
1119
1120 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1121 constant. We assume ARG1 and ARG2 have the same data type, or at least
1122 are the same kind of constant and the same machine mode. Return zero if
1123 combining the constants is not allowed in the current operating mode. */
1124
1125 static tree
1126 const_binop (enum tree_code code, tree arg1, tree arg2)
1127 {
1128 /* Sanity check for the recursive cases. */
1129 if (!arg1 || !arg2)
1130 return NULL_TREE;
1131
1132 STRIP_NOPS (arg1);
1133 STRIP_NOPS (arg2);
1134
1135 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1136 {
1137 if (code == POINTER_PLUS_EXPR)
1138 return int_const_binop (PLUS_EXPR,
1139 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1140
1141 return int_const_binop (code, arg1, arg2);
1142 }
1143
1144 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1145 {
1146 machine_mode mode;
1147 REAL_VALUE_TYPE d1;
1148 REAL_VALUE_TYPE d2;
1149 REAL_VALUE_TYPE value;
1150 REAL_VALUE_TYPE result;
1151 bool inexact;
1152 tree t, type;
1153
1154 /* The following codes are handled by real_arithmetic. */
1155 switch (code)
1156 {
1157 case PLUS_EXPR:
1158 case MINUS_EXPR:
1159 case MULT_EXPR:
1160 case RDIV_EXPR:
1161 case MIN_EXPR:
1162 case MAX_EXPR:
1163 break;
1164
1165 default:
1166 return NULL_TREE;
1167 }
1168
1169 d1 = TREE_REAL_CST (arg1);
1170 d2 = TREE_REAL_CST (arg2);
1171
1172 type = TREE_TYPE (arg1);
1173 mode = TYPE_MODE (type);
1174
1175 /* Don't perform operation if we honor signaling NaNs and
1176 either operand is a signaling NaN. */
1177 if (HONOR_SNANS (mode)
1178 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1179 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1180 return NULL_TREE;
1181
1182 /* Don't perform operation if it would raise a division
1183 by zero exception. */
1184 if (code == RDIV_EXPR
1185 && real_equal (&d2, &dconst0)
1186 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1187 return NULL_TREE;
1188
1189 /* If either operand is a NaN, just return it. Otherwise, set up
1190 for floating-point trap; we return an overflow. */
1191 if (REAL_VALUE_ISNAN (d1))
1192 {
1193 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1194 is off. */
1195 d1.signalling = 0;
1196 t = build_real (type, d1);
1197 return t;
1198 }
1199 else if (REAL_VALUE_ISNAN (d2))
1200 {
1201 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1202 is off. */
1203 d2.signalling = 0;
1204 t = build_real (type, d2);
1205 return t;
1206 }
1207
1208 inexact = real_arithmetic (&value, code, &d1, &d2);
1209 real_convert (&result, mode, &value);
1210
1211 /* Don't constant fold this floating point operation if
1212 the result has overflowed and flag_trapping_math. */
1213 if (flag_trapping_math
1214 && MODE_HAS_INFINITIES (mode)
1215 && REAL_VALUE_ISINF (result)
1216 && !REAL_VALUE_ISINF (d1)
1217 && !REAL_VALUE_ISINF (d2))
1218 return NULL_TREE;
1219
1220 /* Don't constant fold this floating point operation if the
1221 result may dependent upon the run-time rounding mode and
1222 flag_rounding_math is set, or if GCC's software emulation
1223 is unable to accurately represent the result. */
1224 if ((flag_rounding_math
1225 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1226 && (inexact || !real_identical (&result, &value)))
1227 return NULL_TREE;
1228
1229 t = build_real (type, result);
1230
1231 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1232 return t;
1233 }
1234
1235 if (TREE_CODE (arg1) == FIXED_CST)
1236 {
1237 FIXED_VALUE_TYPE f1;
1238 FIXED_VALUE_TYPE f2;
1239 FIXED_VALUE_TYPE result;
1240 tree t, type;
1241 int sat_p;
1242 bool overflow_p;
1243
1244 /* The following codes are handled by fixed_arithmetic. */
1245 switch (code)
1246 {
1247 case PLUS_EXPR:
1248 case MINUS_EXPR:
1249 case MULT_EXPR:
1250 case TRUNC_DIV_EXPR:
1251 if (TREE_CODE (arg2) != FIXED_CST)
1252 return NULL_TREE;
1253 f2 = TREE_FIXED_CST (arg2);
1254 break;
1255
1256 case LSHIFT_EXPR:
1257 case RSHIFT_EXPR:
1258 {
1259 if (TREE_CODE (arg2) != INTEGER_CST)
1260 return NULL_TREE;
1261 wide_int w2 = arg2;
1262 f2.data.high = w2.elt (1);
1263 f2.data.low = w2.ulow ();
1264 f2.mode = SImode;
1265 }
1266 break;
1267
1268 default:
1269 return NULL_TREE;
1270 }
1271
1272 f1 = TREE_FIXED_CST (arg1);
1273 type = TREE_TYPE (arg1);
1274 sat_p = TYPE_SATURATING (type);
1275 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1276 t = build_fixed (type, result);
1277 /* Propagate overflow flags. */
1278 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1279 TREE_OVERFLOW (t) = 1;
1280 return t;
1281 }
1282
1283 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1284 {
1285 tree type = TREE_TYPE (arg1);
1286 tree r1 = TREE_REALPART (arg1);
1287 tree i1 = TREE_IMAGPART (arg1);
1288 tree r2 = TREE_REALPART (arg2);
1289 tree i2 = TREE_IMAGPART (arg2);
1290 tree real, imag;
1291
1292 switch (code)
1293 {
1294 case PLUS_EXPR:
1295 case MINUS_EXPR:
1296 real = const_binop (code, r1, r2);
1297 imag = const_binop (code, i1, i2);
1298 break;
1299
1300 case MULT_EXPR:
1301 if (COMPLEX_FLOAT_TYPE_P (type))
1302 return do_mpc_arg2 (arg1, arg2, type,
1303 /* do_nonfinite= */ folding_initializer,
1304 mpc_mul);
1305
1306 real = const_binop (MINUS_EXPR,
1307 const_binop (MULT_EXPR, r1, r2),
1308 const_binop (MULT_EXPR, i1, i2));
1309 imag = const_binop (PLUS_EXPR,
1310 const_binop (MULT_EXPR, r1, i2),
1311 const_binop (MULT_EXPR, i1, r2));
1312 break;
1313
1314 case RDIV_EXPR:
1315 if (COMPLEX_FLOAT_TYPE_P (type))
1316 return do_mpc_arg2 (arg1, arg2, type,
1317 /* do_nonfinite= */ folding_initializer,
1318 mpc_div);
1319 /* Fallthru. */
1320 case TRUNC_DIV_EXPR:
1321 case CEIL_DIV_EXPR:
1322 case FLOOR_DIV_EXPR:
1323 case ROUND_DIV_EXPR:
1324 if (flag_complex_method == 0)
1325 {
1326 /* Keep this algorithm in sync with
1327 tree-complex.c:expand_complex_div_straight().
1328
1329 Expand complex division to scalars, straightforward algorithm.
1330 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1331 t = br*br + bi*bi
1332 */
1333 tree magsquared
1334 = const_binop (PLUS_EXPR,
1335 const_binop (MULT_EXPR, r2, r2),
1336 const_binop (MULT_EXPR, i2, i2));
1337 tree t1
1338 = const_binop (PLUS_EXPR,
1339 const_binop (MULT_EXPR, r1, r2),
1340 const_binop (MULT_EXPR, i1, i2));
1341 tree t2
1342 = const_binop (MINUS_EXPR,
1343 const_binop (MULT_EXPR, i1, r2),
1344 const_binop (MULT_EXPR, r1, i2));
1345
1346 real = const_binop (code, t1, magsquared);
1347 imag = const_binop (code, t2, magsquared);
1348 }
1349 else
1350 {
1351 /* Keep this algorithm in sync with
1352 tree-complex.c:expand_complex_div_wide().
1353
1354 Expand complex division to scalars, modified algorithm to minimize
1355 overflow with wide input ranges. */
1356 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1357 fold_abs_const (r2, TREE_TYPE (type)),
1358 fold_abs_const (i2, TREE_TYPE (type)));
1359
1360 if (integer_nonzerop (compare))
1361 {
1362 /* In the TRUE branch, we compute
1363 ratio = br/bi;
1364 div = (br * ratio) + bi;
1365 tr = (ar * ratio) + ai;
1366 ti = (ai * ratio) - ar;
1367 tr = tr / div;
1368 ti = ti / div; */
1369 tree ratio = const_binop (code, r2, i2);
1370 tree div = const_binop (PLUS_EXPR, i2,
1371 const_binop (MULT_EXPR, r2, ratio));
1372 real = const_binop (MULT_EXPR, r1, ratio);
1373 real = const_binop (PLUS_EXPR, real, i1);
1374 real = const_binop (code, real, div);
1375
1376 imag = const_binop (MULT_EXPR, i1, ratio);
1377 imag = const_binop (MINUS_EXPR, imag, r1);
1378 imag = const_binop (code, imag, div);
1379 }
1380 else
1381 {
1382 /* In the FALSE branch, we compute
1383 ratio = d/c;
1384 divisor = (d * ratio) + c;
1385 tr = (b * ratio) + a;
1386 ti = b - (a * ratio);
1387 tr = tr / div;
1388 ti = ti / div; */
1389 tree ratio = const_binop (code, i2, r2);
1390 tree div = const_binop (PLUS_EXPR, r2,
1391 const_binop (MULT_EXPR, i2, ratio));
1392
1393 real = const_binop (MULT_EXPR, i1, ratio);
1394 real = const_binop (PLUS_EXPR, real, r1);
1395 real = const_binop (code, real, div);
1396
1397 imag = const_binop (MULT_EXPR, r1, ratio);
1398 imag = const_binop (MINUS_EXPR, i1, imag);
1399 imag = const_binop (code, imag, div);
1400 }
1401 }
1402 break;
1403
1404 default:
1405 return NULL_TREE;
1406 }
1407
1408 if (real && imag)
1409 return build_complex (type, real, imag);
1410 }
1411
1412 if (TREE_CODE (arg1) == VECTOR_CST
1413 && TREE_CODE (arg2) == VECTOR_CST)
1414 {
1415 tree type = TREE_TYPE (arg1);
1416 int count = TYPE_VECTOR_SUBPARTS (type), i;
1417 tree *elts = XALLOCAVEC (tree, count);
1418
1419 for (i = 0; i < count; i++)
1420 {
1421 tree elem1 = VECTOR_CST_ELT (arg1, i);
1422 tree elem2 = VECTOR_CST_ELT (arg2, i);
1423
1424 elts[i] = const_binop (code, elem1, elem2);
1425
1426 /* It is possible that const_binop cannot handle the given
1427 code and return NULL_TREE */
1428 if (elts[i] == NULL_TREE)
1429 return NULL_TREE;
1430 }
1431
1432 return build_vector (type, elts);
1433 }
1434
1435 /* Shifts allow a scalar offset for a vector. */
1436 if (TREE_CODE (arg1) == VECTOR_CST
1437 && TREE_CODE (arg2) == INTEGER_CST)
1438 {
1439 tree type = TREE_TYPE (arg1);
1440 int count = TYPE_VECTOR_SUBPARTS (type), i;
1441 tree *elts = XALLOCAVEC (tree, count);
1442
1443 for (i = 0; i < count; i++)
1444 {
1445 tree elem1 = VECTOR_CST_ELT (arg1, i);
1446
1447 elts[i] = const_binop (code, elem1, arg2);
1448
1449 /* It is possible that const_binop cannot handle the given
1450 code and return NULL_TREE. */
1451 if (elts[i] == NULL_TREE)
1452 return NULL_TREE;
1453 }
1454
1455 return build_vector (type, elts);
1456 }
1457 return NULL_TREE;
1458 }
1459
1460 /* Overload that adds a TYPE parameter to be able to dispatch
1461 to fold_relational_const. */
1462
1463 tree
1464 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1465 {
1466 if (TREE_CODE_CLASS (code) == tcc_comparison)
1467 return fold_relational_const (code, type, arg1, arg2);
1468
1469 /* ??? Until we make the const_binop worker take the type of the
1470 result as argument put those cases that need it here. */
1471 switch (code)
1472 {
1473 case COMPLEX_EXPR:
1474 if ((TREE_CODE (arg1) == REAL_CST
1475 && TREE_CODE (arg2) == REAL_CST)
1476 || (TREE_CODE (arg1) == INTEGER_CST
1477 && TREE_CODE (arg2) == INTEGER_CST))
1478 return build_complex (type, arg1, arg2);
1479 return NULL_TREE;
1480
1481 case VEC_PACK_TRUNC_EXPR:
1482 case VEC_PACK_FIX_TRUNC_EXPR:
1483 {
1484 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1485 tree *elts;
1486
1487 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1488 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1489 if (TREE_CODE (arg1) != VECTOR_CST
1490 || TREE_CODE (arg2) != VECTOR_CST)
1491 return NULL_TREE;
1492
1493 elts = XALLOCAVEC (tree, nelts);
1494 if (!vec_cst_ctor_to_array (arg1, elts)
1495 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1496 return NULL_TREE;
1497
1498 for (i = 0; i < nelts; i++)
1499 {
1500 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1501 ? NOP_EXPR : FIX_TRUNC_EXPR,
1502 TREE_TYPE (type), elts[i]);
1503 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1504 return NULL_TREE;
1505 }
1506
1507 return build_vector (type, elts);
1508 }
1509
1510 case VEC_WIDEN_MULT_LO_EXPR:
1511 case VEC_WIDEN_MULT_HI_EXPR:
1512 case VEC_WIDEN_MULT_EVEN_EXPR:
1513 case VEC_WIDEN_MULT_ODD_EXPR:
1514 {
1515 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1516 unsigned int out, ofs, scale;
1517 tree *elts;
1518
1519 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1520 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1521 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1522 return NULL_TREE;
1523
1524 elts = XALLOCAVEC (tree, nelts * 4);
1525 if (!vec_cst_ctor_to_array (arg1, elts)
1526 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1527 return NULL_TREE;
1528
1529 if (code == VEC_WIDEN_MULT_LO_EXPR)
1530 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1531 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1532 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1533 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1534 scale = 1, ofs = 0;
1535 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1536 scale = 1, ofs = 1;
1537
1538 for (out = 0; out < nelts; out++)
1539 {
1540 unsigned int in1 = (out << scale) + ofs;
1541 unsigned int in2 = in1 + nelts * 2;
1542 tree t1, t2;
1543
1544 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1545 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1546
1547 if (t1 == NULL_TREE || t2 == NULL_TREE)
1548 return NULL_TREE;
1549 elts[out] = const_binop (MULT_EXPR, t1, t2);
1550 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1551 return NULL_TREE;
1552 }
1553
1554 return build_vector (type, elts);
1555 }
1556
1557 default:;
1558 }
1559
1560 if (TREE_CODE_CLASS (code) != tcc_binary)
1561 return NULL_TREE;
1562
1563 /* Make sure type and arg0 have the same saturating flag. */
1564 gcc_checking_assert (TYPE_SATURATING (type)
1565 == TYPE_SATURATING (TREE_TYPE (arg1)));
1566
1567 return const_binop (code, arg1, arg2);
1568 }
1569
1570 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1571 Return zero if computing the constants is not possible. */
1572
1573 tree
1574 const_unop (enum tree_code code, tree type, tree arg0)
1575 {
1576 /* Don't perform the operation, other than NEGATE and ABS, if
1577 flag_signaling_nans is on and the operand is a signaling NaN. */
1578 if (TREE_CODE (arg0) == REAL_CST
1579 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1580 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1581 && code != NEGATE_EXPR
1582 && code != ABS_EXPR)
1583 return NULL_TREE;
1584
1585 switch (code)
1586 {
1587 CASE_CONVERT:
1588 case FLOAT_EXPR:
1589 case FIX_TRUNC_EXPR:
1590 case FIXED_CONVERT_EXPR:
1591 return fold_convert_const (code, type, arg0);
1592
1593 case ADDR_SPACE_CONVERT_EXPR:
1594 /* If the source address is 0, and the source address space
1595 cannot have a valid object at 0, fold to dest type null. */
1596 if (integer_zerop (arg0)
1597 && !(targetm.addr_space.zero_address_valid
1598 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1599 return fold_convert_const (code, type, arg0);
1600 break;
1601
1602 case VIEW_CONVERT_EXPR:
1603 return fold_view_convert_expr (type, arg0);
1604
1605 case NEGATE_EXPR:
1606 {
1607 /* Can't call fold_negate_const directly here as that doesn't
1608 handle all cases and we might not be able to negate some
1609 constants. */
1610 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1611 if (tem && CONSTANT_CLASS_P (tem))
1612 return tem;
1613 break;
1614 }
1615
1616 case ABS_EXPR:
1617 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1618 return fold_abs_const (arg0, type);
1619 break;
1620
1621 case CONJ_EXPR:
1622 if (TREE_CODE (arg0) == COMPLEX_CST)
1623 {
1624 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1625 TREE_TYPE (type));
1626 return build_complex (type, TREE_REALPART (arg0), ipart);
1627 }
1628 break;
1629
1630 case BIT_NOT_EXPR:
1631 if (TREE_CODE (arg0) == INTEGER_CST)
1632 return fold_not_const (arg0, type);
1633 /* Perform BIT_NOT_EXPR on each element individually. */
1634 else if (TREE_CODE (arg0) == VECTOR_CST)
1635 {
1636 tree *elements;
1637 tree elem;
1638 unsigned count = VECTOR_CST_NELTS (arg0), i;
1639
1640 elements = XALLOCAVEC (tree, count);
1641 for (i = 0; i < count; i++)
1642 {
1643 elem = VECTOR_CST_ELT (arg0, i);
1644 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1645 if (elem == NULL_TREE)
1646 break;
1647 elements[i] = elem;
1648 }
1649 if (i == count)
1650 return build_vector (type, elements);
1651 }
1652 break;
1653
1654 case TRUTH_NOT_EXPR:
1655 if (TREE_CODE (arg0) == INTEGER_CST)
1656 return constant_boolean_node (integer_zerop (arg0), type);
1657 break;
1658
1659 case REALPART_EXPR:
1660 if (TREE_CODE (arg0) == COMPLEX_CST)
1661 return fold_convert (type, TREE_REALPART (arg0));
1662 break;
1663
1664 case IMAGPART_EXPR:
1665 if (TREE_CODE (arg0) == COMPLEX_CST)
1666 return fold_convert (type, TREE_IMAGPART (arg0));
1667 break;
1668
1669 case VEC_UNPACK_LO_EXPR:
1670 case VEC_UNPACK_HI_EXPR:
1671 case VEC_UNPACK_FLOAT_LO_EXPR:
1672 case VEC_UNPACK_FLOAT_HI_EXPR:
1673 {
1674 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1675 tree *elts;
1676 enum tree_code subcode;
1677
1678 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1679 if (TREE_CODE (arg0) != VECTOR_CST)
1680 return NULL_TREE;
1681
1682 elts = XALLOCAVEC (tree, nelts * 2);
1683 if (!vec_cst_ctor_to_array (arg0, elts))
1684 return NULL_TREE;
1685
1686 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1687 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1688 elts += nelts;
1689
1690 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1691 subcode = NOP_EXPR;
1692 else
1693 subcode = FLOAT_EXPR;
1694
1695 for (i = 0; i < nelts; i++)
1696 {
1697 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1698 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1699 return NULL_TREE;
1700 }
1701
1702 return build_vector (type, elts);
1703 }
1704
1705 case REDUC_MIN_EXPR:
1706 case REDUC_MAX_EXPR:
1707 case REDUC_PLUS_EXPR:
1708 {
1709 unsigned int nelts, i;
1710 tree *elts;
1711 enum tree_code subcode;
1712
1713 if (TREE_CODE (arg0) != VECTOR_CST)
1714 return NULL_TREE;
1715 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1716
1717 elts = XALLOCAVEC (tree, nelts);
1718 if (!vec_cst_ctor_to_array (arg0, elts))
1719 return NULL_TREE;
1720
1721 switch (code)
1722 {
1723 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1724 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1725 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1726 default: gcc_unreachable ();
1727 }
1728
1729 for (i = 1; i < nelts; i++)
1730 {
1731 elts[0] = const_binop (subcode, elts[0], elts[i]);
1732 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1733 return NULL_TREE;
1734 }
1735
1736 return elts[0];
1737 }
1738
1739 default:
1740 break;
1741 }
1742
1743 return NULL_TREE;
1744 }
1745
1746 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1747 indicates which particular sizetype to create. */
1748
1749 tree
1750 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1751 {
1752 return build_int_cst (sizetype_tab[(int) kind], number);
1753 }
1754 \f
1755 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1756 is a tree code. The type of the result is taken from the operands.
1757 Both must be equivalent integer types, ala int_binop_types_match_p.
1758 If the operands are constant, so is the result. */
1759
1760 tree
1761 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1762 {
1763 tree type = TREE_TYPE (arg0);
1764
1765 if (arg0 == error_mark_node || arg1 == error_mark_node)
1766 return error_mark_node;
1767
1768 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1769 TREE_TYPE (arg1)));
1770
1771 /* Handle the special case of two integer constants faster. */
1772 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1773 {
1774 /* And some specific cases even faster than that. */
1775 if (code == PLUS_EXPR)
1776 {
1777 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1778 return arg1;
1779 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1780 return arg0;
1781 }
1782 else if (code == MINUS_EXPR)
1783 {
1784 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1785 return arg0;
1786 }
1787 else if (code == MULT_EXPR)
1788 {
1789 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1790 return arg1;
1791 }
1792
1793 /* Handle general case of two integer constants. For sizetype
1794 constant calculations we always want to know about overflow,
1795 even in the unsigned case. */
1796 return int_const_binop_1 (code, arg0, arg1, -1);
1797 }
1798
1799 return fold_build2_loc (loc, code, type, arg0, arg1);
1800 }
1801
1802 /* Given two values, either both of sizetype or both of bitsizetype,
1803 compute the difference between the two values. Return the value
1804 in signed type corresponding to the type of the operands. */
1805
1806 tree
1807 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1808 {
1809 tree type = TREE_TYPE (arg0);
1810 tree ctype;
1811
1812 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1813 TREE_TYPE (arg1)));
1814
1815 /* If the type is already signed, just do the simple thing. */
1816 if (!TYPE_UNSIGNED (type))
1817 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1818
1819 if (type == sizetype)
1820 ctype = ssizetype;
1821 else if (type == bitsizetype)
1822 ctype = sbitsizetype;
1823 else
1824 ctype = signed_type_for (type);
1825
1826 /* If either operand is not a constant, do the conversions to the signed
1827 type and subtract. The hardware will do the right thing with any
1828 overflow in the subtraction. */
1829 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1830 return size_binop_loc (loc, MINUS_EXPR,
1831 fold_convert_loc (loc, ctype, arg0),
1832 fold_convert_loc (loc, ctype, arg1));
1833
1834 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1835 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1836 overflow) and negate (which can't either). Special-case a result
1837 of zero while we're here. */
1838 if (tree_int_cst_equal (arg0, arg1))
1839 return build_int_cst (ctype, 0);
1840 else if (tree_int_cst_lt (arg1, arg0))
1841 return fold_convert_loc (loc, ctype,
1842 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1843 else
1844 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1845 fold_convert_loc (loc, ctype,
1846 size_binop_loc (loc,
1847 MINUS_EXPR,
1848 arg1, arg0)));
1849 }
1850 \f
1851 /* A subroutine of fold_convert_const handling conversions of an
1852 INTEGER_CST to another integer type. */
1853
1854 static tree
1855 fold_convert_const_int_from_int (tree type, const_tree arg1)
1856 {
1857 /* Given an integer constant, make new constant with new type,
1858 appropriately sign-extended or truncated. Use widest_int
1859 so that any extension is done according ARG1's type. */
1860 return force_fit_type (type, wi::to_widest (arg1),
1861 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1862 TREE_OVERFLOW (arg1));
1863 }
1864
1865 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1866 to an integer type. */
1867
1868 static tree
1869 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1870 {
1871 bool overflow = false;
1872 tree t;
1873
1874 /* The following code implements the floating point to integer
1875 conversion rules required by the Java Language Specification,
1876 that IEEE NaNs are mapped to zero and values that overflow
1877 the target precision saturate, i.e. values greater than
1878 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1879 are mapped to INT_MIN. These semantics are allowed by the
1880 C and C++ standards that simply state that the behavior of
1881 FP-to-integer conversion is unspecified upon overflow. */
1882
1883 wide_int val;
1884 REAL_VALUE_TYPE r;
1885 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1886
1887 switch (code)
1888 {
1889 case FIX_TRUNC_EXPR:
1890 real_trunc (&r, VOIDmode, &x);
1891 break;
1892
1893 default:
1894 gcc_unreachable ();
1895 }
1896
1897 /* If R is NaN, return zero and show we have an overflow. */
1898 if (REAL_VALUE_ISNAN (r))
1899 {
1900 overflow = true;
1901 val = wi::zero (TYPE_PRECISION (type));
1902 }
1903
1904 /* See if R is less than the lower bound or greater than the
1905 upper bound. */
1906
1907 if (! overflow)
1908 {
1909 tree lt = TYPE_MIN_VALUE (type);
1910 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1911 if (real_less (&r, &l))
1912 {
1913 overflow = true;
1914 val = lt;
1915 }
1916 }
1917
1918 if (! overflow)
1919 {
1920 tree ut = TYPE_MAX_VALUE (type);
1921 if (ut)
1922 {
1923 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1924 if (real_less (&u, &r))
1925 {
1926 overflow = true;
1927 val = ut;
1928 }
1929 }
1930 }
1931
1932 if (! overflow)
1933 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1934
1935 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1936 return t;
1937 }
1938
1939 /* A subroutine of fold_convert_const handling conversions of a
1940 FIXED_CST to an integer type. */
1941
1942 static tree
1943 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1944 {
1945 tree t;
1946 double_int temp, temp_trunc;
1947 machine_mode mode;
1948
1949 /* Right shift FIXED_CST to temp by fbit. */
1950 temp = TREE_FIXED_CST (arg1).data;
1951 mode = TREE_FIXED_CST (arg1).mode;
1952 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1953 {
1954 temp = temp.rshift (GET_MODE_FBIT (mode),
1955 HOST_BITS_PER_DOUBLE_INT,
1956 SIGNED_FIXED_POINT_MODE_P (mode));
1957
1958 /* Left shift temp to temp_trunc by fbit. */
1959 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1960 HOST_BITS_PER_DOUBLE_INT,
1961 SIGNED_FIXED_POINT_MODE_P (mode));
1962 }
1963 else
1964 {
1965 temp = double_int_zero;
1966 temp_trunc = double_int_zero;
1967 }
1968
1969 /* If FIXED_CST is negative, we need to round the value toward 0.
1970 By checking if the fractional bits are not zero to add 1 to temp. */
1971 if (SIGNED_FIXED_POINT_MODE_P (mode)
1972 && temp_trunc.is_negative ()
1973 && TREE_FIXED_CST (arg1).data != temp_trunc)
1974 temp += double_int_one;
1975
1976 /* Given a fixed-point constant, make new constant with new type,
1977 appropriately sign-extended or truncated. */
1978 t = force_fit_type (type, temp, -1,
1979 (temp.is_negative ()
1980 && (TYPE_UNSIGNED (type)
1981 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1982 | TREE_OVERFLOW (arg1));
1983
1984 return t;
1985 }
1986
1987 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1988 to another floating point type. */
1989
1990 static tree
1991 fold_convert_const_real_from_real (tree type, const_tree arg1)
1992 {
1993 REAL_VALUE_TYPE value;
1994 tree t;
1995
1996 /* Don't perform the operation if flag_signaling_nans is on
1997 and the operand is a signaling NaN. */
1998 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1999 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2000 return NULL_TREE;
2001
2002 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2003 t = build_real (type, value);
2004
2005 /* If converting an infinity or NAN to a representation that doesn't
2006 have one, set the overflow bit so that we can produce some kind of
2007 error message at the appropriate point if necessary. It's not the
2008 most user-friendly message, but it's better than nothing. */
2009 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2010 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2011 TREE_OVERFLOW (t) = 1;
2012 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2013 && !MODE_HAS_NANS (TYPE_MODE (type)))
2014 TREE_OVERFLOW (t) = 1;
2015 /* Regular overflow, conversion produced an infinity in a mode that
2016 can't represent them. */
2017 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2018 && REAL_VALUE_ISINF (value)
2019 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2020 TREE_OVERFLOW (t) = 1;
2021 else
2022 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2023 return t;
2024 }
2025
2026 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2027 to a floating point type. */
2028
2029 static tree
2030 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2031 {
2032 REAL_VALUE_TYPE value;
2033 tree t;
2034
2035 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2036 &TREE_FIXED_CST (arg1));
2037 t = build_real (type, value);
2038
2039 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2040 return t;
2041 }
2042
2043 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2044 to another fixed-point type. */
2045
2046 static tree
2047 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2048 {
2049 FIXED_VALUE_TYPE value;
2050 tree t;
2051 bool overflow_p;
2052
2053 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2054 TYPE_SATURATING (type));
2055 t = build_fixed (type, value);
2056
2057 /* Propagate overflow flags. */
2058 if (overflow_p | TREE_OVERFLOW (arg1))
2059 TREE_OVERFLOW (t) = 1;
2060 return t;
2061 }
2062
2063 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2064 to a fixed-point type. */
2065
2066 static tree
2067 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2068 {
2069 FIXED_VALUE_TYPE value;
2070 tree t;
2071 bool overflow_p;
2072 double_int di;
2073
2074 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2075
2076 di.low = TREE_INT_CST_ELT (arg1, 0);
2077 if (TREE_INT_CST_NUNITS (arg1) == 1)
2078 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2079 else
2080 di.high = TREE_INT_CST_ELT (arg1, 1);
2081
2082 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2083 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2084 TYPE_SATURATING (type));
2085 t = build_fixed (type, value);
2086
2087 /* Propagate overflow flags. */
2088 if (overflow_p | TREE_OVERFLOW (arg1))
2089 TREE_OVERFLOW (t) = 1;
2090 return t;
2091 }
2092
2093 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2094 to a fixed-point type. */
2095
2096 static tree
2097 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2098 {
2099 FIXED_VALUE_TYPE value;
2100 tree t;
2101 bool overflow_p;
2102
2103 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2104 &TREE_REAL_CST (arg1),
2105 TYPE_SATURATING (type));
2106 t = build_fixed (type, value);
2107
2108 /* Propagate overflow flags. */
2109 if (overflow_p | TREE_OVERFLOW (arg1))
2110 TREE_OVERFLOW (t) = 1;
2111 return t;
2112 }
2113
2114 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2115 type TYPE. If no simplification can be done return NULL_TREE. */
2116
2117 static tree
2118 fold_convert_const (enum tree_code code, tree type, tree arg1)
2119 {
2120 if (TREE_TYPE (arg1) == type)
2121 return arg1;
2122
2123 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2124 || TREE_CODE (type) == OFFSET_TYPE)
2125 {
2126 if (TREE_CODE (arg1) == INTEGER_CST)
2127 return fold_convert_const_int_from_int (type, arg1);
2128 else if (TREE_CODE (arg1) == REAL_CST)
2129 return fold_convert_const_int_from_real (code, type, arg1);
2130 else if (TREE_CODE (arg1) == FIXED_CST)
2131 return fold_convert_const_int_from_fixed (type, arg1);
2132 }
2133 else if (TREE_CODE (type) == REAL_TYPE)
2134 {
2135 if (TREE_CODE (arg1) == INTEGER_CST)
2136 return build_real_from_int_cst (type, arg1);
2137 else if (TREE_CODE (arg1) == REAL_CST)
2138 return fold_convert_const_real_from_real (type, arg1);
2139 else if (TREE_CODE (arg1) == FIXED_CST)
2140 return fold_convert_const_real_from_fixed (type, arg1);
2141 }
2142 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2143 {
2144 if (TREE_CODE (arg1) == FIXED_CST)
2145 return fold_convert_const_fixed_from_fixed (type, arg1);
2146 else if (TREE_CODE (arg1) == INTEGER_CST)
2147 return fold_convert_const_fixed_from_int (type, arg1);
2148 else if (TREE_CODE (arg1) == REAL_CST)
2149 return fold_convert_const_fixed_from_real (type, arg1);
2150 }
2151 else if (TREE_CODE (type) == VECTOR_TYPE)
2152 {
2153 if (TREE_CODE (arg1) == VECTOR_CST
2154 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2155 {
2156 int len = TYPE_VECTOR_SUBPARTS (type);
2157 tree elttype = TREE_TYPE (type);
2158 tree *v = XALLOCAVEC (tree, len);
2159 for (int i = 0; i < len; ++i)
2160 {
2161 tree elt = VECTOR_CST_ELT (arg1, i);
2162 tree cvt = fold_convert_const (code, elttype, elt);
2163 if (cvt == NULL_TREE)
2164 return NULL_TREE;
2165 v[i] = cvt;
2166 }
2167 return build_vector (type, v);
2168 }
2169 }
2170 return NULL_TREE;
2171 }
2172
2173 /* Construct a vector of zero elements of vector type TYPE. */
2174
2175 static tree
2176 build_zero_vector (tree type)
2177 {
2178 tree t;
2179
2180 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2181 return build_vector_from_val (type, t);
2182 }
2183
2184 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2185
2186 bool
2187 fold_convertible_p (const_tree type, const_tree arg)
2188 {
2189 tree orig = TREE_TYPE (arg);
2190
2191 if (type == orig)
2192 return true;
2193
2194 if (TREE_CODE (arg) == ERROR_MARK
2195 || TREE_CODE (type) == ERROR_MARK
2196 || TREE_CODE (orig) == ERROR_MARK)
2197 return false;
2198
2199 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2200 return true;
2201
2202 switch (TREE_CODE (type))
2203 {
2204 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2205 case POINTER_TYPE: case REFERENCE_TYPE:
2206 case OFFSET_TYPE:
2207 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2208 || TREE_CODE (orig) == OFFSET_TYPE);
2209
2210 case REAL_TYPE:
2211 case FIXED_POINT_TYPE:
2212 case VECTOR_TYPE:
2213 case VOID_TYPE:
2214 return TREE_CODE (type) == TREE_CODE (orig);
2215
2216 default:
2217 return false;
2218 }
2219 }
2220
2221 /* Convert expression ARG to type TYPE. Used by the middle-end for
2222 simple conversions in preference to calling the front-end's convert. */
2223
2224 tree
2225 fold_convert_loc (location_t loc, tree type, tree arg)
2226 {
2227 tree orig = TREE_TYPE (arg);
2228 tree tem;
2229
2230 if (type == orig)
2231 return arg;
2232
2233 if (TREE_CODE (arg) == ERROR_MARK
2234 || TREE_CODE (type) == ERROR_MARK
2235 || TREE_CODE (orig) == ERROR_MARK)
2236 return error_mark_node;
2237
2238 switch (TREE_CODE (type))
2239 {
2240 case POINTER_TYPE:
2241 case REFERENCE_TYPE:
2242 /* Handle conversions between pointers to different address spaces. */
2243 if (POINTER_TYPE_P (orig)
2244 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2245 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2246 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2247 /* fall through */
2248
2249 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2250 case OFFSET_TYPE:
2251 if (TREE_CODE (arg) == INTEGER_CST)
2252 {
2253 tem = fold_convert_const (NOP_EXPR, type, arg);
2254 if (tem != NULL_TREE)
2255 return tem;
2256 }
2257 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2258 || TREE_CODE (orig) == OFFSET_TYPE)
2259 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2260 if (TREE_CODE (orig) == COMPLEX_TYPE)
2261 return fold_convert_loc (loc, type,
2262 fold_build1_loc (loc, REALPART_EXPR,
2263 TREE_TYPE (orig), arg));
2264 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2265 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2266 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2267
2268 case REAL_TYPE:
2269 if (TREE_CODE (arg) == INTEGER_CST)
2270 {
2271 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2272 if (tem != NULL_TREE)
2273 return tem;
2274 }
2275 else if (TREE_CODE (arg) == REAL_CST)
2276 {
2277 tem = fold_convert_const (NOP_EXPR, type, arg);
2278 if (tem != NULL_TREE)
2279 return tem;
2280 }
2281 else if (TREE_CODE (arg) == FIXED_CST)
2282 {
2283 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2284 if (tem != NULL_TREE)
2285 return tem;
2286 }
2287
2288 switch (TREE_CODE (orig))
2289 {
2290 case INTEGER_TYPE:
2291 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2292 case POINTER_TYPE: case REFERENCE_TYPE:
2293 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2294
2295 case REAL_TYPE:
2296 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2297
2298 case FIXED_POINT_TYPE:
2299 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2300
2301 case COMPLEX_TYPE:
2302 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2303 return fold_convert_loc (loc, type, tem);
2304
2305 default:
2306 gcc_unreachable ();
2307 }
2308
2309 case FIXED_POINT_TYPE:
2310 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2311 || TREE_CODE (arg) == REAL_CST)
2312 {
2313 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2314 if (tem != NULL_TREE)
2315 goto fold_convert_exit;
2316 }
2317
2318 switch (TREE_CODE (orig))
2319 {
2320 case FIXED_POINT_TYPE:
2321 case INTEGER_TYPE:
2322 case ENUMERAL_TYPE:
2323 case BOOLEAN_TYPE:
2324 case REAL_TYPE:
2325 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2326
2327 case COMPLEX_TYPE:
2328 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2329 return fold_convert_loc (loc, type, tem);
2330
2331 default:
2332 gcc_unreachable ();
2333 }
2334
2335 case COMPLEX_TYPE:
2336 switch (TREE_CODE (orig))
2337 {
2338 case INTEGER_TYPE:
2339 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2340 case POINTER_TYPE: case REFERENCE_TYPE:
2341 case REAL_TYPE:
2342 case FIXED_POINT_TYPE:
2343 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2344 fold_convert_loc (loc, TREE_TYPE (type), arg),
2345 fold_convert_loc (loc, TREE_TYPE (type),
2346 integer_zero_node));
2347 case COMPLEX_TYPE:
2348 {
2349 tree rpart, ipart;
2350
2351 if (TREE_CODE (arg) == COMPLEX_EXPR)
2352 {
2353 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2354 TREE_OPERAND (arg, 0));
2355 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2356 TREE_OPERAND (arg, 1));
2357 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2358 }
2359
2360 arg = save_expr (arg);
2361 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2362 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2363 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2364 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2365 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2366 }
2367
2368 default:
2369 gcc_unreachable ();
2370 }
2371
2372 case VECTOR_TYPE:
2373 if (integer_zerop (arg))
2374 return build_zero_vector (type);
2375 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2376 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2377 || TREE_CODE (orig) == VECTOR_TYPE);
2378 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2379
2380 case VOID_TYPE:
2381 tem = fold_ignored_result (arg);
2382 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2383
2384 default:
2385 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2386 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2387 gcc_unreachable ();
2388 }
2389 fold_convert_exit:
2390 protected_set_expr_location_unshare (tem, loc);
2391 return tem;
2392 }
2393 \f
2394 /* Return false if expr can be assumed not to be an lvalue, true
2395 otherwise. */
2396
2397 static bool
2398 maybe_lvalue_p (const_tree x)
2399 {
2400 /* We only need to wrap lvalue tree codes. */
2401 switch (TREE_CODE (x))
2402 {
2403 case VAR_DECL:
2404 case PARM_DECL:
2405 case RESULT_DECL:
2406 case LABEL_DECL:
2407 case FUNCTION_DECL:
2408 case SSA_NAME:
2409
2410 case COMPONENT_REF:
2411 case MEM_REF:
2412 case INDIRECT_REF:
2413 case ARRAY_REF:
2414 case ARRAY_RANGE_REF:
2415 case BIT_FIELD_REF:
2416 case OBJ_TYPE_REF:
2417
2418 case REALPART_EXPR:
2419 case IMAGPART_EXPR:
2420 case PREINCREMENT_EXPR:
2421 case PREDECREMENT_EXPR:
2422 case SAVE_EXPR:
2423 case TRY_CATCH_EXPR:
2424 case WITH_CLEANUP_EXPR:
2425 case COMPOUND_EXPR:
2426 case MODIFY_EXPR:
2427 case TARGET_EXPR:
2428 case COND_EXPR:
2429 case BIND_EXPR:
2430 break;
2431
2432 default:
2433 /* Assume the worst for front-end tree codes. */
2434 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2435 break;
2436 return false;
2437 }
2438
2439 return true;
2440 }
2441
2442 /* Return an expr equal to X but certainly not valid as an lvalue. */
2443
2444 tree
2445 non_lvalue_loc (location_t loc, tree x)
2446 {
2447 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2448 us. */
2449 if (in_gimple_form)
2450 return x;
2451
2452 if (! maybe_lvalue_p (x))
2453 return x;
2454 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2455 }
2456
2457 /* When pedantic, return an expr equal to X but certainly not valid as a
2458 pedantic lvalue. Otherwise, return X. */
2459
2460 static tree
2461 pedantic_non_lvalue_loc (location_t loc, tree x)
2462 {
2463 return protected_set_expr_location_unshare (x, loc);
2464 }
2465 \f
2466 /* Given a tree comparison code, return the code that is the logical inverse.
2467 It is generally not safe to do this for floating-point comparisons, except
2468 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2469 ERROR_MARK in this case. */
2470
2471 enum tree_code
2472 invert_tree_comparison (enum tree_code code, bool honor_nans)
2473 {
2474 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2475 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2476 return ERROR_MARK;
2477
2478 switch (code)
2479 {
2480 case EQ_EXPR:
2481 return NE_EXPR;
2482 case NE_EXPR:
2483 return EQ_EXPR;
2484 case GT_EXPR:
2485 return honor_nans ? UNLE_EXPR : LE_EXPR;
2486 case GE_EXPR:
2487 return honor_nans ? UNLT_EXPR : LT_EXPR;
2488 case LT_EXPR:
2489 return honor_nans ? UNGE_EXPR : GE_EXPR;
2490 case LE_EXPR:
2491 return honor_nans ? UNGT_EXPR : GT_EXPR;
2492 case LTGT_EXPR:
2493 return UNEQ_EXPR;
2494 case UNEQ_EXPR:
2495 return LTGT_EXPR;
2496 case UNGT_EXPR:
2497 return LE_EXPR;
2498 case UNGE_EXPR:
2499 return LT_EXPR;
2500 case UNLT_EXPR:
2501 return GE_EXPR;
2502 case UNLE_EXPR:
2503 return GT_EXPR;
2504 case ORDERED_EXPR:
2505 return UNORDERED_EXPR;
2506 case UNORDERED_EXPR:
2507 return ORDERED_EXPR;
2508 default:
2509 gcc_unreachable ();
2510 }
2511 }
2512
2513 /* Similar, but return the comparison that results if the operands are
2514 swapped. This is safe for floating-point. */
2515
2516 enum tree_code
2517 swap_tree_comparison (enum tree_code code)
2518 {
2519 switch (code)
2520 {
2521 case EQ_EXPR:
2522 case NE_EXPR:
2523 case ORDERED_EXPR:
2524 case UNORDERED_EXPR:
2525 case LTGT_EXPR:
2526 case UNEQ_EXPR:
2527 return code;
2528 case GT_EXPR:
2529 return LT_EXPR;
2530 case GE_EXPR:
2531 return LE_EXPR;
2532 case LT_EXPR:
2533 return GT_EXPR;
2534 case LE_EXPR:
2535 return GE_EXPR;
2536 case UNGT_EXPR:
2537 return UNLT_EXPR;
2538 case UNGE_EXPR:
2539 return UNLE_EXPR;
2540 case UNLT_EXPR:
2541 return UNGT_EXPR;
2542 case UNLE_EXPR:
2543 return UNGE_EXPR;
2544 default:
2545 gcc_unreachable ();
2546 }
2547 }
2548
2549
2550 /* Convert a comparison tree code from an enum tree_code representation
2551 into a compcode bit-based encoding. This function is the inverse of
2552 compcode_to_comparison. */
2553
2554 static enum comparison_code
2555 comparison_to_compcode (enum tree_code code)
2556 {
2557 switch (code)
2558 {
2559 case LT_EXPR:
2560 return COMPCODE_LT;
2561 case EQ_EXPR:
2562 return COMPCODE_EQ;
2563 case LE_EXPR:
2564 return COMPCODE_LE;
2565 case GT_EXPR:
2566 return COMPCODE_GT;
2567 case NE_EXPR:
2568 return COMPCODE_NE;
2569 case GE_EXPR:
2570 return COMPCODE_GE;
2571 case ORDERED_EXPR:
2572 return COMPCODE_ORD;
2573 case UNORDERED_EXPR:
2574 return COMPCODE_UNORD;
2575 case UNLT_EXPR:
2576 return COMPCODE_UNLT;
2577 case UNEQ_EXPR:
2578 return COMPCODE_UNEQ;
2579 case UNLE_EXPR:
2580 return COMPCODE_UNLE;
2581 case UNGT_EXPR:
2582 return COMPCODE_UNGT;
2583 case LTGT_EXPR:
2584 return COMPCODE_LTGT;
2585 case UNGE_EXPR:
2586 return COMPCODE_UNGE;
2587 default:
2588 gcc_unreachable ();
2589 }
2590 }
2591
2592 /* Convert a compcode bit-based encoding of a comparison operator back
2593 to GCC's enum tree_code representation. This function is the
2594 inverse of comparison_to_compcode. */
2595
2596 static enum tree_code
2597 compcode_to_comparison (enum comparison_code code)
2598 {
2599 switch (code)
2600 {
2601 case COMPCODE_LT:
2602 return LT_EXPR;
2603 case COMPCODE_EQ:
2604 return EQ_EXPR;
2605 case COMPCODE_LE:
2606 return LE_EXPR;
2607 case COMPCODE_GT:
2608 return GT_EXPR;
2609 case COMPCODE_NE:
2610 return NE_EXPR;
2611 case COMPCODE_GE:
2612 return GE_EXPR;
2613 case COMPCODE_ORD:
2614 return ORDERED_EXPR;
2615 case COMPCODE_UNORD:
2616 return UNORDERED_EXPR;
2617 case COMPCODE_UNLT:
2618 return UNLT_EXPR;
2619 case COMPCODE_UNEQ:
2620 return UNEQ_EXPR;
2621 case COMPCODE_UNLE:
2622 return UNLE_EXPR;
2623 case COMPCODE_UNGT:
2624 return UNGT_EXPR;
2625 case COMPCODE_LTGT:
2626 return LTGT_EXPR;
2627 case COMPCODE_UNGE:
2628 return UNGE_EXPR;
2629 default:
2630 gcc_unreachable ();
2631 }
2632 }
2633
2634 /* Return a tree for the comparison which is the combination of
2635 doing the AND or OR (depending on CODE) of the two operations LCODE
2636 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2637 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2638 if this makes the transformation invalid. */
2639
2640 tree
2641 combine_comparisons (location_t loc,
2642 enum tree_code code, enum tree_code lcode,
2643 enum tree_code rcode, tree truth_type,
2644 tree ll_arg, tree lr_arg)
2645 {
2646 bool honor_nans = HONOR_NANS (ll_arg);
2647 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2648 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2649 int compcode;
2650
2651 switch (code)
2652 {
2653 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2654 compcode = lcompcode & rcompcode;
2655 break;
2656
2657 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2658 compcode = lcompcode | rcompcode;
2659 break;
2660
2661 default:
2662 return NULL_TREE;
2663 }
2664
2665 if (!honor_nans)
2666 {
2667 /* Eliminate unordered comparisons, as well as LTGT and ORD
2668 which are not used unless the mode has NaNs. */
2669 compcode &= ~COMPCODE_UNORD;
2670 if (compcode == COMPCODE_LTGT)
2671 compcode = COMPCODE_NE;
2672 else if (compcode == COMPCODE_ORD)
2673 compcode = COMPCODE_TRUE;
2674 }
2675 else if (flag_trapping_math)
2676 {
2677 /* Check that the original operation and the optimized ones will trap
2678 under the same condition. */
2679 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2680 && (lcompcode != COMPCODE_EQ)
2681 && (lcompcode != COMPCODE_ORD);
2682 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2683 && (rcompcode != COMPCODE_EQ)
2684 && (rcompcode != COMPCODE_ORD);
2685 bool trap = (compcode & COMPCODE_UNORD) == 0
2686 && (compcode != COMPCODE_EQ)
2687 && (compcode != COMPCODE_ORD);
2688
2689 /* In a short-circuited boolean expression the LHS might be
2690 such that the RHS, if evaluated, will never trap. For
2691 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2692 if neither x nor y is NaN. (This is a mixed blessing: for
2693 example, the expression above will never trap, hence
2694 optimizing it to x < y would be invalid). */
2695 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2696 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2697 rtrap = false;
2698
2699 /* If the comparison was short-circuited, and only the RHS
2700 trapped, we may now generate a spurious trap. */
2701 if (rtrap && !ltrap
2702 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2703 return NULL_TREE;
2704
2705 /* If we changed the conditions that cause a trap, we lose. */
2706 if ((ltrap || rtrap) != trap)
2707 return NULL_TREE;
2708 }
2709
2710 if (compcode == COMPCODE_TRUE)
2711 return constant_boolean_node (true, truth_type);
2712 else if (compcode == COMPCODE_FALSE)
2713 return constant_boolean_node (false, truth_type);
2714 else
2715 {
2716 enum tree_code tcode;
2717
2718 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2719 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2720 }
2721 }
2722 \f
2723 /* Return nonzero if two operands (typically of the same tree node)
2724 are necessarily equal. FLAGS modifies behavior as follows:
2725
2726 If OEP_ONLY_CONST is set, only return nonzero for constants.
2727 This function tests whether the operands are indistinguishable;
2728 it does not test whether they are equal using C's == operation.
2729 The distinction is important for IEEE floating point, because
2730 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2731 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2732
2733 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2734 even though it may hold multiple values during a function.
2735 This is because a GCC tree node guarantees that nothing else is
2736 executed between the evaluation of its "operands" (which may often
2737 be evaluated in arbitrary order). Hence if the operands themselves
2738 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2739 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2740 unset means assuming isochronic (or instantaneous) tree equivalence.
2741 Unless comparing arbitrary expression trees, such as from different
2742 statements, this flag can usually be left unset.
2743
2744 If OEP_PURE_SAME is set, then pure functions with identical arguments
2745 are considered the same. It is used when the caller has other ways
2746 to ensure that global memory is unchanged in between.
2747
2748 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2749 not values of expressions.
2750
2751 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2752 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2753
2754 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2755 any operand with side effect. This is unnecesarily conservative in the
2756 case we know that arg0 and arg1 are in disjoint code paths (such as in
2757 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2758 addresses with TREE_CONSTANT flag set so we know that &var == &var
2759 even if var is volatile. */
2760
2761 int
2762 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2763 {
2764 /* When checking, verify at the outermost operand_equal_p call that
2765 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2766 hash value. */
2767 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2768 {
2769 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2770 {
2771 if (arg0 != arg1)
2772 {
2773 inchash::hash hstate0 (0), hstate1 (0);
2774 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2775 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2776 hashval_t h0 = hstate0.end ();
2777 hashval_t h1 = hstate1.end ();
2778 gcc_assert (h0 == h1);
2779 }
2780 return 1;
2781 }
2782 else
2783 return 0;
2784 }
2785
2786 /* If either is ERROR_MARK, they aren't equal. */
2787 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2788 || TREE_TYPE (arg0) == error_mark_node
2789 || TREE_TYPE (arg1) == error_mark_node)
2790 return 0;
2791
2792 /* Similar, if either does not have a type (like a released SSA name),
2793 they aren't equal. */
2794 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2795 return 0;
2796
2797 /* We cannot consider pointers to different address space equal. */
2798 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2799 && POINTER_TYPE_P (TREE_TYPE (arg1))
2800 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2801 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2802 return 0;
2803
2804 /* Check equality of integer constants before bailing out due to
2805 precision differences. */
2806 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2807 {
2808 /* Address of INTEGER_CST is not defined; check that we did not forget
2809 to drop the OEP_ADDRESS_OF flags. */
2810 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2811 return tree_int_cst_equal (arg0, arg1);
2812 }
2813
2814 if (!(flags & OEP_ADDRESS_OF))
2815 {
2816 /* If both types don't have the same signedness, then we can't consider
2817 them equal. We must check this before the STRIP_NOPS calls
2818 because they may change the signedness of the arguments. As pointers
2819 strictly don't have a signedness, require either two pointers or
2820 two non-pointers as well. */
2821 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2822 || POINTER_TYPE_P (TREE_TYPE (arg0))
2823 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2824 return 0;
2825
2826 /* If both types don't have the same precision, then it is not safe
2827 to strip NOPs. */
2828 if (element_precision (TREE_TYPE (arg0))
2829 != element_precision (TREE_TYPE (arg1)))
2830 return 0;
2831
2832 STRIP_NOPS (arg0);
2833 STRIP_NOPS (arg1);
2834 }
2835 #if 0
2836 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2837 sanity check once the issue is solved. */
2838 else
2839 /* Addresses of conversions and SSA_NAMEs (and many other things)
2840 are not defined. Check that we did not forget to drop the
2841 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2842 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2843 && TREE_CODE (arg0) != SSA_NAME);
2844 #endif
2845
2846 /* In case both args are comparisons but with different comparison
2847 code, try to swap the comparison operands of one arg to produce
2848 a match and compare that variant. */
2849 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2850 && COMPARISON_CLASS_P (arg0)
2851 && COMPARISON_CLASS_P (arg1))
2852 {
2853 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2854
2855 if (TREE_CODE (arg0) == swap_code)
2856 return operand_equal_p (TREE_OPERAND (arg0, 0),
2857 TREE_OPERAND (arg1, 1), flags)
2858 && operand_equal_p (TREE_OPERAND (arg0, 1),
2859 TREE_OPERAND (arg1, 0), flags);
2860 }
2861
2862 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2863 {
2864 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2865 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2866 ;
2867 else if (flags & OEP_ADDRESS_OF)
2868 {
2869 /* If we are interested in comparing addresses ignore
2870 MEM_REF wrappings of the base that can appear just for
2871 TBAA reasons. */
2872 if (TREE_CODE (arg0) == MEM_REF
2873 && DECL_P (arg1)
2874 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2875 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2876 && integer_zerop (TREE_OPERAND (arg0, 1)))
2877 return 1;
2878 else if (TREE_CODE (arg1) == MEM_REF
2879 && DECL_P (arg0)
2880 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2881 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2882 && integer_zerop (TREE_OPERAND (arg1, 1)))
2883 return 1;
2884 return 0;
2885 }
2886 else
2887 return 0;
2888 }
2889
2890 /* When not checking adddresses, this is needed for conversions and for
2891 COMPONENT_REF. Might as well play it safe and always test this. */
2892 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2893 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2894 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2895 && !(flags & OEP_ADDRESS_OF)))
2896 return 0;
2897
2898 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2899 We don't care about side effects in that case because the SAVE_EXPR
2900 takes care of that for us. In all other cases, two expressions are
2901 equal if they have no side effects. If we have two identical
2902 expressions with side effects that should be treated the same due
2903 to the only side effects being identical SAVE_EXPR's, that will
2904 be detected in the recursive calls below.
2905 If we are taking an invariant address of two identical objects
2906 they are necessarily equal as well. */
2907 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2908 && (TREE_CODE (arg0) == SAVE_EXPR
2909 || (flags & OEP_MATCH_SIDE_EFFECTS)
2910 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2911 return 1;
2912
2913 /* Next handle constant cases, those for which we can return 1 even
2914 if ONLY_CONST is set. */
2915 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2916 switch (TREE_CODE (arg0))
2917 {
2918 case INTEGER_CST:
2919 return tree_int_cst_equal (arg0, arg1);
2920
2921 case FIXED_CST:
2922 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2923 TREE_FIXED_CST (arg1));
2924
2925 case REAL_CST:
2926 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2927 return 1;
2928
2929
2930 if (!HONOR_SIGNED_ZEROS (arg0))
2931 {
2932 /* If we do not distinguish between signed and unsigned zero,
2933 consider them equal. */
2934 if (real_zerop (arg0) && real_zerop (arg1))
2935 return 1;
2936 }
2937 return 0;
2938
2939 case VECTOR_CST:
2940 {
2941 unsigned i;
2942
2943 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2944 return 0;
2945
2946 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2947 {
2948 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2949 VECTOR_CST_ELT (arg1, i), flags))
2950 return 0;
2951 }
2952 return 1;
2953 }
2954
2955 case COMPLEX_CST:
2956 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2957 flags)
2958 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2959 flags));
2960
2961 case STRING_CST:
2962 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2963 && ! memcmp (TREE_STRING_POINTER (arg0),
2964 TREE_STRING_POINTER (arg1),
2965 TREE_STRING_LENGTH (arg0)));
2966
2967 case ADDR_EXPR:
2968 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2969 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2970 flags | OEP_ADDRESS_OF
2971 | OEP_MATCH_SIDE_EFFECTS);
2972 case CONSTRUCTOR:
2973 /* In GIMPLE empty constructors are allowed in initializers of
2974 aggregates. */
2975 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2976 default:
2977 break;
2978 }
2979
2980 if (flags & OEP_ONLY_CONST)
2981 return 0;
2982
2983 /* Define macros to test an operand from arg0 and arg1 for equality and a
2984 variant that allows null and views null as being different from any
2985 non-null value. In the latter case, if either is null, the both
2986 must be; otherwise, do the normal comparison. */
2987 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2988 TREE_OPERAND (arg1, N), flags)
2989
2990 #define OP_SAME_WITH_NULL(N) \
2991 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2992 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2993
2994 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2995 {
2996 case tcc_unary:
2997 /* Two conversions are equal only if signedness and modes match. */
2998 switch (TREE_CODE (arg0))
2999 {
3000 CASE_CONVERT:
3001 case FIX_TRUNC_EXPR:
3002 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3003 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3004 return 0;
3005 break;
3006 default:
3007 break;
3008 }
3009
3010 return OP_SAME (0);
3011
3012
3013 case tcc_comparison:
3014 case tcc_binary:
3015 if (OP_SAME (0) && OP_SAME (1))
3016 return 1;
3017
3018 /* For commutative ops, allow the other order. */
3019 return (commutative_tree_code (TREE_CODE (arg0))
3020 && operand_equal_p (TREE_OPERAND (arg0, 0),
3021 TREE_OPERAND (arg1, 1), flags)
3022 && operand_equal_p (TREE_OPERAND (arg0, 1),
3023 TREE_OPERAND (arg1, 0), flags));
3024
3025 case tcc_reference:
3026 /* If either of the pointer (or reference) expressions we are
3027 dereferencing contain a side effect, these cannot be equal,
3028 but their addresses can be. */
3029 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3030 && (TREE_SIDE_EFFECTS (arg0)
3031 || TREE_SIDE_EFFECTS (arg1)))
3032 return 0;
3033
3034 switch (TREE_CODE (arg0))
3035 {
3036 case INDIRECT_REF:
3037 if (!(flags & OEP_ADDRESS_OF)
3038 && (TYPE_ALIGN (TREE_TYPE (arg0))
3039 != TYPE_ALIGN (TREE_TYPE (arg1))))
3040 return 0;
3041 flags &= ~OEP_ADDRESS_OF;
3042 return OP_SAME (0);
3043
3044 case IMAGPART_EXPR:
3045 /* Require the same offset. */
3046 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3047 TYPE_SIZE (TREE_TYPE (arg1)),
3048 flags & ~OEP_ADDRESS_OF))
3049 return 0;
3050
3051 /* Fallthru. */
3052 case REALPART_EXPR:
3053 case VIEW_CONVERT_EXPR:
3054 return OP_SAME (0);
3055
3056 case TARGET_MEM_REF:
3057 case MEM_REF:
3058 if (!(flags & OEP_ADDRESS_OF))
3059 {
3060 /* Require equal access sizes */
3061 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3062 && (!TYPE_SIZE (TREE_TYPE (arg0))
3063 || !TYPE_SIZE (TREE_TYPE (arg1))
3064 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3065 TYPE_SIZE (TREE_TYPE (arg1)),
3066 flags)))
3067 return 0;
3068 /* Verify that access happens in similar types. */
3069 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3070 return 0;
3071 /* Verify that accesses are TBAA compatible. */
3072 if (!alias_ptr_types_compatible_p
3073 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3074 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3075 || (MR_DEPENDENCE_CLIQUE (arg0)
3076 != MR_DEPENDENCE_CLIQUE (arg1))
3077 || (MR_DEPENDENCE_BASE (arg0)
3078 != MR_DEPENDENCE_BASE (arg1)))
3079 return 0;
3080 /* Verify that alignment is compatible. */
3081 if (TYPE_ALIGN (TREE_TYPE (arg0))
3082 != TYPE_ALIGN (TREE_TYPE (arg1)))
3083 return 0;
3084 }
3085 flags &= ~OEP_ADDRESS_OF;
3086 return (OP_SAME (0) && OP_SAME (1)
3087 /* TARGET_MEM_REF require equal extra operands. */
3088 && (TREE_CODE (arg0) != TARGET_MEM_REF
3089 || (OP_SAME_WITH_NULL (2)
3090 && OP_SAME_WITH_NULL (3)
3091 && OP_SAME_WITH_NULL (4))));
3092
3093 case ARRAY_REF:
3094 case ARRAY_RANGE_REF:
3095 if (!OP_SAME (0))
3096 return 0;
3097 flags &= ~OEP_ADDRESS_OF;
3098 /* Compare the array index by value if it is constant first as we
3099 may have different types but same value here. */
3100 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3101 TREE_OPERAND (arg1, 1))
3102 || OP_SAME (1))
3103 && OP_SAME_WITH_NULL (2)
3104 && OP_SAME_WITH_NULL (3)
3105 /* Compare low bound and element size as with OEP_ADDRESS_OF
3106 we have to account for the offset of the ref. */
3107 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3108 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3109 || (operand_equal_p (array_ref_low_bound
3110 (CONST_CAST_TREE (arg0)),
3111 array_ref_low_bound
3112 (CONST_CAST_TREE (arg1)), flags)
3113 && operand_equal_p (array_ref_element_size
3114 (CONST_CAST_TREE (arg0)),
3115 array_ref_element_size
3116 (CONST_CAST_TREE (arg1)),
3117 flags))));
3118
3119 case COMPONENT_REF:
3120 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3121 may be NULL when we're called to compare MEM_EXPRs. */
3122 if (!OP_SAME_WITH_NULL (0)
3123 || !OP_SAME (1))
3124 return 0;
3125 flags &= ~OEP_ADDRESS_OF;
3126 return OP_SAME_WITH_NULL (2);
3127
3128 case BIT_FIELD_REF:
3129 if (!OP_SAME (0))
3130 return 0;
3131 flags &= ~OEP_ADDRESS_OF;
3132 return OP_SAME (1) && OP_SAME (2);
3133
3134 default:
3135 return 0;
3136 }
3137
3138 case tcc_expression:
3139 switch (TREE_CODE (arg0))
3140 {
3141 case ADDR_EXPR:
3142 /* Be sure we pass right ADDRESS_OF flag. */
3143 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3144 return operand_equal_p (TREE_OPERAND (arg0, 0),
3145 TREE_OPERAND (arg1, 0),
3146 flags | OEP_ADDRESS_OF);
3147
3148 case TRUTH_NOT_EXPR:
3149 return OP_SAME (0);
3150
3151 case TRUTH_ANDIF_EXPR:
3152 case TRUTH_ORIF_EXPR:
3153 return OP_SAME (0) && OP_SAME (1);
3154
3155 case FMA_EXPR:
3156 case WIDEN_MULT_PLUS_EXPR:
3157 case WIDEN_MULT_MINUS_EXPR:
3158 if (!OP_SAME (2))
3159 return 0;
3160 /* The multiplcation operands are commutative. */
3161 /* FALLTHRU */
3162
3163 case TRUTH_AND_EXPR:
3164 case TRUTH_OR_EXPR:
3165 case TRUTH_XOR_EXPR:
3166 if (OP_SAME (0) && OP_SAME (1))
3167 return 1;
3168
3169 /* Otherwise take into account this is a commutative operation. */
3170 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3171 TREE_OPERAND (arg1, 1), flags)
3172 && operand_equal_p (TREE_OPERAND (arg0, 1),
3173 TREE_OPERAND (arg1, 0), flags));
3174
3175 case COND_EXPR:
3176 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3177 return 0;
3178 flags &= ~OEP_ADDRESS_OF;
3179 return OP_SAME (0);
3180
3181 case BIT_INSERT_EXPR:
3182 /* BIT_INSERT_EXPR has an implict operand as the type precision
3183 of op1. Need to check to make sure they are the same. */
3184 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3185 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3186 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3187 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3188 return false;
3189 /* FALLTHRU */
3190
3191 case VEC_COND_EXPR:
3192 case DOT_PROD_EXPR:
3193 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3194
3195 case MODIFY_EXPR:
3196 case INIT_EXPR:
3197 case COMPOUND_EXPR:
3198 case PREDECREMENT_EXPR:
3199 case PREINCREMENT_EXPR:
3200 case POSTDECREMENT_EXPR:
3201 case POSTINCREMENT_EXPR:
3202 if (flags & OEP_LEXICOGRAPHIC)
3203 return OP_SAME (0) && OP_SAME (1);
3204 return 0;
3205
3206 case CLEANUP_POINT_EXPR:
3207 case EXPR_STMT:
3208 if (flags & OEP_LEXICOGRAPHIC)
3209 return OP_SAME (0);
3210 return 0;
3211
3212 default:
3213 return 0;
3214 }
3215
3216 case tcc_vl_exp:
3217 switch (TREE_CODE (arg0))
3218 {
3219 case CALL_EXPR:
3220 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3221 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3222 /* If not both CALL_EXPRs are either internal or normal function
3223 functions, then they are not equal. */
3224 return 0;
3225 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3226 {
3227 /* If the CALL_EXPRs call different internal functions, then they
3228 are not equal. */
3229 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3230 return 0;
3231 }
3232 else
3233 {
3234 /* If the CALL_EXPRs call different functions, then they are not
3235 equal. */
3236 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3237 flags))
3238 return 0;
3239 }
3240
3241 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3242 {
3243 unsigned int cef = call_expr_flags (arg0);
3244 if (flags & OEP_PURE_SAME)
3245 cef &= ECF_CONST | ECF_PURE;
3246 else
3247 cef &= ECF_CONST;
3248 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3249 return 0;
3250 }
3251
3252 /* Now see if all the arguments are the same. */
3253 {
3254 const_call_expr_arg_iterator iter0, iter1;
3255 const_tree a0, a1;
3256 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3257 a1 = first_const_call_expr_arg (arg1, &iter1);
3258 a0 && a1;
3259 a0 = next_const_call_expr_arg (&iter0),
3260 a1 = next_const_call_expr_arg (&iter1))
3261 if (! operand_equal_p (a0, a1, flags))
3262 return 0;
3263
3264 /* If we get here and both argument lists are exhausted
3265 then the CALL_EXPRs are equal. */
3266 return ! (a0 || a1);
3267 }
3268 default:
3269 return 0;
3270 }
3271
3272 case tcc_declaration:
3273 /* Consider __builtin_sqrt equal to sqrt. */
3274 return (TREE_CODE (arg0) == FUNCTION_DECL
3275 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3276 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3277 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3278
3279 case tcc_exceptional:
3280 if (TREE_CODE (arg0) == CONSTRUCTOR)
3281 {
3282 /* In GIMPLE constructors are used only to build vectors from
3283 elements. Individual elements in the constructor must be
3284 indexed in increasing order and form an initial sequence.
3285
3286 We make no effort to compare constructors in generic.
3287 (see sem_variable::equals in ipa-icf which can do so for
3288 constants). */
3289 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3290 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3291 return 0;
3292
3293 /* Be sure that vectors constructed have the same representation.
3294 We only tested element precision and modes to match.
3295 Vectors may be BLKmode and thus also check that the number of
3296 parts match. */
3297 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3298 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3299 return 0;
3300
3301 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3302 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3303 unsigned int len = vec_safe_length (v0);
3304
3305 if (len != vec_safe_length (v1))
3306 return 0;
3307
3308 for (unsigned int i = 0; i < len; i++)
3309 {
3310 constructor_elt *c0 = &(*v0)[i];
3311 constructor_elt *c1 = &(*v1)[i];
3312
3313 if (!operand_equal_p (c0->value, c1->value, flags)
3314 /* In GIMPLE the indexes can be either NULL or matching i.
3315 Double check this so we won't get false
3316 positives for GENERIC. */
3317 || (c0->index
3318 && (TREE_CODE (c0->index) != INTEGER_CST
3319 || !compare_tree_int (c0->index, i)))
3320 || (c1->index
3321 && (TREE_CODE (c1->index) != INTEGER_CST
3322 || !compare_tree_int (c1->index, i))))
3323 return 0;
3324 }
3325 return 1;
3326 }
3327 else if (TREE_CODE (arg0) == STATEMENT_LIST
3328 && (flags & OEP_LEXICOGRAPHIC))
3329 {
3330 /* Compare the STATEMENT_LISTs. */
3331 tree_stmt_iterator tsi1, tsi2;
3332 tree body1 = CONST_CAST_TREE (arg0);
3333 tree body2 = CONST_CAST_TREE (arg1);
3334 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3335 tsi_next (&tsi1), tsi_next (&tsi2))
3336 {
3337 /* The lists don't have the same number of statements. */
3338 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3339 return 0;
3340 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3341 return 1;
3342 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3343 OEP_LEXICOGRAPHIC))
3344 return 0;
3345 }
3346 }
3347 return 0;
3348
3349 case tcc_statement:
3350 switch (TREE_CODE (arg0))
3351 {
3352 case RETURN_EXPR:
3353 if (flags & OEP_LEXICOGRAPHIC)
3354 return OP_SAME_WITH_NULL (0);
3355 return 0;
3356 default:
3357 return 0;
3358 }
3359
3360 default:
3361 return 0;
3362 }
3363
3364 #undef OP_SAME
3365 #undef OP_SAME_WITH_NULL
3366 }
3367 \f
3368 /* Similar to operand_equal_p, but strip nops first. */
3369
3370 static bool
3371 operand_equal_for_comparison_p (tree arg0, tree arg1)
3372 {
3373 if (operand_equal_p (arg0, arg1, 0))
3374 return true;
3375
3376 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3377 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3378 return false;
3379
3380 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3381 and see if the inner values are the same. This removes any
3382 signedness comparison, which doesn't matter here. */
3383 STRIP_NOPS (arg0);
3384 STRIP_NOPS (arg1);
3385 if (operand_equal_p (arg0, arg1, 0))
3386 return true;
3387
3388 return false;
3389 }
3390 \f
3391 /* See if ARG is an expression that is either a comparison or is performing
3392 arithmetic on comparisons. The comparisons must only be comparing
3393 two different values, which will be stored in *CVAL1 and *CVAL2; if
3394 they are nonzero it means that some operands have already been found.
3395 No variables may be used anywhere else in the expression except in the
3396 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3397 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3398
3399 If this is true, return 1. Otherwise, return zero. */
3400
3401 static int
3402 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3403 {
3404 enum tree_code code = TREE_CODE (arg);
3405 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3406
3407 /* We can handle some of the tcc_expression cases here. */
3408 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3409 tclass = tcc_unary;
3410 else if (tclass == tcc_expression
3411 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3412 || code == COMPOUND_EXPR))
3413 tclass = tcc_binary;
3414
3415 else if (tclass == tcc_expression && code == SAVE_EXPR
3416 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3417 {
3418 /* If we've already found a CVAL1 or CVAL2, this expression is
3419 two complex to handle. */
3420 if (*cval1 || *cval2)
3421 return 0;
3422
3423 tclass = tcc_unary;
3424 *save_p = 1;
3425 }
3426
3427 switch (tclass)
3428 {
3429 case tcc_unary:
3430 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3431
3432 case tcc_binary:
3433 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3434 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3435 cval1, cval2, save_p));
3436
3437 case tcc_constant:
3438 return 1;
3439
3440 case tcc_expression:
3441 if (code == COND_EXPR)
3442 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3443 cval1, cval2, save_p)
3444 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3445 cval1, cval2, save_p)
3446 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3447 cval1, cval2, save_p));
3448 return 0;
3449
3450 case tcc_comparison:
3451 /* First see if we can handle the first operand, then the second. For
3452 the second operand, we know *CVAL1 can't be zero. It must be that
3453 one side of the comparison is each of the values; test for the
3454 case where this isn't true by failing if the two operands
3455 are the same. */
3456
3457 if (operand_equal_p (TREE_OPERAND (arg, 0),
3458 TREE_OPERAND (arg, 1), 0))
3459 return 0;
3460
3461 if (*cval1 == 0)
3462 *cval1 = TREE_OPERAND (arg, 0);
3463 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3464 ;
3465 else if (*cval2 == 0)
3466 *cval2 = TREE_OPERAND (arg, 0);
3467 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3468 ;
3469 else
3470 return 0;
3471
3472 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3473 ;
3474 else if (*cval2 == 0)
3475 *cval2 = TREE_OPERAND (arg, 1);
3476 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3477 ;
3478 else
3479 return 0;
3480
3481 return 1;
3482
3483 default:
3484 return 0;
3485 }
3486 }
3487 \f
3488 /* ARG is a tree that is known to contain just arithmetic operations and
3489 comparisons. Evaluate the operations in the tree substituting NEW0 for
3490 any occurrence of OLD0 as an operand of a comparison and likewise for
3491 NEW1 and OLD1. */
3492
3493 static tree
3494 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3495 tree old1, tree new1)
3496 {
3497 tree type = TREE_TYPE (arg);
3498 enum tree_code code = TREE_CODE (arg);
3499 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3500
3501 /* We can handle some of the tcc_expression cases here. */
3502 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3503 tclass = tcc_unary;
3504 else if (tclass == tcc_expression
3505 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3506 tclass = tcc_binary;
3507
3508 switch (tclass)
3509 {
3510 case tcc_unary:
3511 return fold_build1_loc (loc, code, type,
3512 eval_subst (loc, TREE_OPERAND (arg, 0),
3513 old0, new0, old1, new1));
3514
3515 case tcc_binary:
3516 return fold_build2_loc (loc, code, type,
3517 eval_subst (loc, TREE_OPERAND (arg, 0),
3518 old0, new0, old1, new1),
3519 eval_subst (loc, TREE_OPERAND (arg, 1),
3520 old0, new0, old1, new1));
3521
3522 case tcc_expression:
3523 switch (code)
3524 {
3525 case SAVE_EXPR:
3526 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3527 old1, new1);
3528
3529 case COMPOUND_EXPR:
3530 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3531 old1, new1);
3532
3533 case COND_EXPR:
3534 return fold_build3_loc (loc, code, type,
3535 eval_subst (loc, TREE_OPERAND (arg, 0),
3536 old0, new0, old1, new1),
3537 eval_subst (loc, TREE_OPERAND (arg, 1),
3538 old0, new0, old1, new1),
3539 eval_subst (loc, TREE_OPERAND (arg, 2),
3540 old0, new0, old1, new1));
3541 default:
3542 break;
3543 }
3544 /* Fall through - ??? */
3545
3546 case tcc_comparison:
3547 {
3548 tree arg0 = TREE_OPERAND (arg, 0);
3549 tree arg1 = TREE_OPERAND (arg, 1);
3550
3551 /* We need to check both for exact equality and tree equality. The
3552 former will be true if the operand has a side-effect. In that
3553 case, we know the operand occurred exactly once. */
3554
3555 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3556 arg0 = new0;
3557 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3558 arg0 = new1;
3559
3560 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3561 arg1 = new0;
3562 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3563 arg1 = new1;
3564
3565 return fold_build2_loc (loc, code, type, arg0, arg1);
3566 }
3567
3568 default:
3569 return arg;
3570 }
3571 }
3572 \f
3573 /* Return a tree for the case when the result of an expression is RESULT
3574 converted to TYPE and OMITTED was previously an operand of the expression
3575 but is now not needed (e.g., we folded OMITTED * 0).
3576
3577 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3578 the conversion of RESULT to TYPE. */
3579
3580 tree
3581 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3582 {
3583 tree t = fold_convert_loc (loc, type, result);
3584
3585 /* If the resulting operand is an empty statement, just return the omitted
3586 statement casted to void. */
3587 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3588 return build1_loc (loc, NOP_EXPR, void_type_node,
3589 fold_ignored_result (omitted));
3590
3591 if (TREE_SIDE_EFFECTS (omitted))
3592 return build2_loc (loc, COMPOUND_EXPR, type,
3593 fold_ignored_result (omitted), t);
3594
3595 return non_lvalue_loc (loc, t);
3596 }
3597
3598 /* Return a tree for the case when the result of an expression is RESULT
3599 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3600 of the expression but are now not needed.
3601
3602 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3603 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3604 evaluated before OMITTED2. Otherwise, if neither has side effects,
3605 just do the conversion of RESULT to TYPE. */
3606
3607 tree
3608 omit_two_operands_loc (location_t loc, tree type, tree result,
3609 tree omitted1, tree omitted2)
3610 {
3611 tree t = fold_convert_loc (loc, type, result);
3612
3613 if (TREE_SIDE_EFFECTS (omitted2))
3614 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3615 if (TREE_SIDE_EFFECTS (omitted1))
3616 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3617
3618 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3619 }
3620
3621 \f
3622 /* Return a simplified tree node for the truth-negation of ARG. This
3623 never alters ARG itself. We assume that ARG is an operation that
3624 returns a truth value (0 or 1).
3625
3626 FIXME: one would think we would fold the result, but it causes
3627 problems with the dominator optimizer. */
3628
3629 static tree
3630 fold_truth_not_expr (location_t loc, tree arg)
3631 {
3632 tree type = TREE_TYPE (arg);
3633 enum tree_code code = TREE_CODE (arg);
3634 location_t loc1, loc2;
3635
3636 /* If this is a comparison, we can simply invert it, except for
3637 floating-point non-equality comparisons, in which case we just
3638 enclose a TRUTH_NOT_EXPR around what we have. */
3639
3640 if (TREE_CODE_CLASS (code) == tcc_comparison)
3641 {
3642 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3643 if (FLOAT_TYPE_P (op_type)
3644 && flag_trapping_math
3645 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3646 && code != NE_EXPR && code != EQ_EXPR)
3647 return NULL_TREE;
3648
3649 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3650 if (code == ERROR_MARK)
3651 return NULL_TREE;
3652
3653 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3654 TREE_OPERAND (arg, 1));
3655 if (TREE_NO_WARNING (arg))
3656 TREE_NO_WARNING (ret) = 1;
3657 return ret;
3658 }
3659
3660 switch (code)
3661 {
3662 case INTEGER_CST:
3663 return constant_boolean_node (integer_zerop (arg), type);
3664
3665 case TRUTH_AND_EXPR:
3666 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3667 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3668 return build2_loc (loc, TRUTH_OR_EXPR, type,
3669 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3670 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3671
3672 case TRUTH_OR_EXPR:
3673 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3674 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3675 return build2_loc (loc, TRUTH_AND_EXPR, type,
3676 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3677 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3678
3679 case TRUTH_XOR_EXPR:
3680 /* Here we can invert either operand. We invert the first operand
3681 unless the second operand is a TRUTH_NOT_EXPR in which case our
3682 result is the XOR of the first operand with the inside of the
3683 negation of the second operand. */
3684
3685 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3686 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3687 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3688 else
3689 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3690 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3691 TREE_OPERAND (arg, 1));
3692
3693 case TRUTH_ANDIF_EXPR:
3694 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3695 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3696 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3697 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3698 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3699
3700 case TRUTH_ORIF_EXPR:
3701 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3702 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3703 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3704 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3705 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3706
3707 case TRUTH_NOT_EXPR:
3708 return TREE_OPERAND (arg, 0);
3709
3710 case COND_EXPR:
3711 {
3712 tree arg1 = TREE_OPERAND (arg, 1);
3713 tree arg2 = TREE_OPERAND (arg, 2);
3714
3715 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3716 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3717
3718 /* A COND_EXPR may have a throw as one operand, which
3719 then has void type. Just leave void operands
3720 as they are. */
3721 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3722 VOID_TYPE_P (TREE_TYPE (arg1))
3723 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3724 VOID_TYPE_P (TREE_TYPE (arg2))
3725 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3726 }
3727
3728 case COMPOUND_EXPR:
3729 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3730 return build2_loc (loc, COMPOUND_EXPR, type,
3731 TREE_OPERAND (arg, 0),
3732 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3733
3734 case NON_LVALUE_EXPR:
3735 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3736 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3737
3738 CASE_CONVERT:
3739 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3740 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3741
3742 /* fall through */
3743
3744 case FLOAT_EXPR:
3745 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3746 return build1_loc (loc, TREE_CODE (arg), type,
3747 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3748
3749 case BIT_AND_EXPR:
3750 if (!integer_onep (TREE_OPERAND (arg, 1)))
3751 return NULL_TREE;
3752 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3753
3754 case SAVE_EXPR:
3755 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3756
3757 case CLEANUP_POINT_EXPR:
3758 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3759 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3760 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3761
3762 default:
3763 return NULL_TREE;
3764 }
3765 }
3766
3767 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3768 assume that ARG is an operation that returns a truth value (0 or 1
3769 for scalars, 0 or -1 for vectors). Return the folded expression if
3770 folding is successful. Otherwise, return NULL_TREE. */
3771
3772 static tree
3773 fold_invert_truthvalue (location_t loc, tree arg)
3774 {
3775 tree type = TREE_TYPE (arg);
3776 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3777 ? BIT_NOT_EXPR
3778 : TRUTH_NOT_EXPR,
3779 type, arg);
3780 }
3781
3782 /* Return a simplified tree node for the truth-negation of ARG. This
3783 never alters ARG itself. We assume that ARG is an operation that
3784 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3785
3786 tree
3787 invert_truthvalue_loc (location_t loc, tree arg)
3788 {
3789 if (TREE_CODE (arg) == ERROR_MARK)
3790 return arg;
3791
3792 tree type = TREE_TYPE (arg);
3793 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3794 ? BIT_NOT_EXPR
3795 : TRUTH_NOT_EXPR,
3796 type, arg);
3797 }
3798
3799 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3800 with code CODE. This optimization is unsafe. */
3801 static tree
3802 distribute_real_division (location_t loc, enum tree_code code, tree type,
3803 tree arg0, tree arg1)
3804 {
3805 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3806 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3807
3808 /* (A / C) +- (B / C) -> (A +- B) / C. */
3809 if (mul0 == mul1
3810 && operand_equal_p (TREE_OPERAND (arg0, 1),
3811 TREE_OPERAND (arg1, 1), 0))
3812 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3813 fold_build2_loc (loc, code, type,
3814 TREE_OPERAND (arg0, 0),
3815 TREE_OPERAND (arg1, 0)),
3816 TREE_OPERAND (arg0, 1));
3817
3818 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3819 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3820 TREE_OPERAND (arg1, 0), 0)
3821 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3822 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3823 {
3824 REAL_VALUE_TYPE r0, r1;
3825 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3826 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3827 if (!mul0)
3828 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3829 if (!mul1)
3830 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3831 real_arithmetic (&r0, code, &r0, &r1);
3832 return fold_build2_loc (loc, MULT_EXPR, type,
3833 TREE_OPERAND (arg0, 0),
3834 build_real (type, r0));
3835 }
3836
3837 return NULL_TREE;
3838 }
3839 \f
3840 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3841 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3842 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3843 is the original memory reference used to preserve the alias set of
3844 the access. */
3845
3846 static tree
3847 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3848 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3849 int unsignedp, int reversep)
3850 {
3851 tree result, bftype;
3852
3853 /* Attempt not to lose the access path if possible. */
3854 if (TREE_CODE (orig_inner) == COMPONENT_REF)
3855 {
3856 tree ninner = TREE_OPERAND (orig_inner, 0);
3857 machine_mode nmode;
3858 HOST_WIDE_INT nbitsize, nbitpos;
3859 tree noffset;
3860 int nunsignedp, nreversep, nvolatilep = 0;
3861 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
3862 &noffset, &nmode, &nunsignedp,
3863 &nreversep, &nvolatilep);
3864 if (base == inner
3865 && noffset == NULL_TREE
3866 && nbitsize >= bitsize
3867 && nbitpos <= bitpos
3868 && bitpos + bitsize <= nbitpos + nbitsize
3869 && !reversep
3870 && !nreversep
3871 && !nvolatilep)
3872 {
3873 inner = ninner;
3874 bitpos -= nbitpos;
3875 }
3876 }
3877
3878 alias_set_type iset = get_alias_set (orig_inner);
3879 if (iset == 0 && get_alias_set (inner) != iset)
3880 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3881 build_fold_addr_expr (inner),
3882 build_int_cst (ptr_type_node, 0));
3883
3884 if (bitpos == 0 && !reversep)
3885 {
3886 tree size = TYPE_SIZE (TREE_TYPE (inner));
3887 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3888 || POINTER_TYPE_P (TREE_TYPE (inner)))
3889 && tree_fits_shwi_p (size)
3890 && tree_to_shwi (size) == bitsize)
3891 return fold_convert_loc (loc, type, inner);
3892 }
3893
3894 bftype = type;
3895 if (TYPE_PRECISION (bftype) != bitsize
3896 || TYPE_UNSIGNED (bftype) == !unsignedp)
3897 bftype = build_nonstandard_integer_type (bitsize, 0);
3898
3899 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3900 bitsize_int (bitsize), bitsize_int (bitpos));
3901 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3902
3903 if (bftype != type)
3904 result = fold_convert_loc (loc, type, result);
3905
3906 return result;
3907 }
3908
3909 /* Optimize a bit-field compare.
3910
3911 There are two cases: First is a compare against a constant and the
3912 second is a comparison of two items where the fields are at the same
3913 bit position relative to the start of a chunk (byte, halfword, word)
3914 large enough to contain it. In these cases we can avoid the shift
3915 implicit in bitfield extractions.
3916
3917 For constants, we emit a compare of the shifted constant with the
3918 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3919 compared. For two fields at the same position, we do the ANDs with the
3920 similar mask and compare the result of the ANDs.
3921
3922 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3923 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3924 are the left and right operands of the comparison, respectively.
3925
3926 If the optimization described above can be done, we return the resulting
3927 tree. Otherwise we return zero. */
3928
3929 static tree
3930 optimize_bit_field_compare (location_t loc, enum tree_code code,
3931 tree compare_type, tree lhs, tree rhs)
3932 {
3933 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3934 tree type = TREE_TYPE (lhs);
3935 tree unsigned_type;
3936 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3937 machine_mode lmode, rmode;
3938 scalar_int_mode nmode;
3939 int lunsignedp, runsignedp;
3940 int lreversep, rreversep;
3941 int lvolatilep = 0, rvolatilep = 0;
3942 tree linner, rinner = NULL_TREE;
3943 tree mask;
3944 tree offset;
3945
3946 /* Get all the information about the extractions being done. If the bit size
3947 if the same as the size of the underlying object, we aren't doing an
3948 extraction at all and so can do nothing. We also don't want to
3949 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3950 then will no longer be able to replace it. */
3951 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3952 &lunsignedp, &lreversep, &lvolatilep);
3953 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3954 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3955 return 0;
3956
3957 if (const_p)
3958 rreversep = lreversep;
3959 else
3960 {
3961 /* If this is not a constant, we can only do something if bit positions,
3962 sizes, signedness and storage order are the same. */
3963 rinner
3964 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3965 &runsignedp, &rreversep, &rvolatilep);
3966
3967 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3968 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3969 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3970 return 0;
3971 }
3972
3973 /* Honor the C++ memory model and mimic what RTL expansion does. */
3974 unsigned HOST_WIDE_INT bitstart = 0;
3975 unsigned HOST_WIDE_INT bitend = 0;
3976 if (TREE_CODE (lhs) == COMPONENT_REF)
3977 {
3978 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3979 if (offset != NULL_TREE)
3980 return 0;
3981 }
3982
3983 /* See if we can find a mode to refer to this field. We should be able to,
3984 but fail if we can't. */
3985 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3986 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3987 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3988 TYPE_ALIGN (TREE_TYPE (rinner))),
3989 BITS_PER_WORD, false, &nmode))
3990 return 0;
3991
3992 /* Set signed and unsigned types of the precision of this mode for the
3993 shifts below. */
3994 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3995
3996 /* Compute the bit position and size for the new reference and our offset
3997 within it. If the new reference is the same size as the original, we
3998 won't optimize anything, so return zero. */
3999 nbitsize = GET_MODE_BITSIZE (nmode);
4000 nbitpos = lbitpos & ~ (nbitsize - 1);
4001 lbitpos -= nbitpos;
4002 if (nbitsize == lbitsize)
4003 return 0;
4004
4005 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4006 lbitpos = nbitsize - lbitsize - lbitpos;
4007
4008 /* Make the mask to be used against the extracted field. */
4009 mask = build_int_cst_type (unsigned_type, -1);
4010 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4011 mask = const_binop (RSHIFT_EXPR, mask,
4012 size_int (nbitsize - lbitsize - lbitpos));
4013
4014 if (! const_p)
4015 /* If not comparing with constant, just rework the comparison
4016 and return. */
4017 return fold_build2_loc (loc, code, compare_type,
4018 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4019 make_bit_field_ref (loc, linner, lhs,
4020 unsigned_type,
4021 nbitsize, nbitpos,
4022 1, lreversep),
4023 mask),
4024 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4025 make_bit_field_ref (loc, rinner, rhs,
4026 unsigned_type,
4027 nbitsize, nbitpos,
4028 1, rreversep),
4029 mask));
4030
4031 /* Otherwise, we are handling the constant case. See if the constant is too
4032 big for the field. Warn and return a tree for 0 (false) if so. We do
4033 this not only for its own sake, but to avoid having to test for this
4034 error case below. If we didn't, we might generate wrong code.
4035
4036 For unsigned fields, the constant shifted right by the field length should
4037 be all zero. For signed fields, the high-order bits should agree with
4038 the sign bit. */
4039
4040 if (lunsignedp)
4041 {
4042 if (wi::lrshift (rhs, lbitsize) != 0)
4043 {
4044 warning (0, "comparison is always %d due to width of bit-field",
4045 code == NE_EXPR);
4046 return constant_boolean_node (code == NE_EXPR, compare_type);
4047 }
4048 }
4049 else
4050 {
4051 wide_int tem = wi::arshift (rhs, lbitsize - 1);
4052 if (tem != 0 && tem != -1)
4053 {
4054 warning (0, "comparison is always %d due to width of bit-field",
4055 code == NE_EXPR);
4056 return constant_boolean_node (code == NE_EXPR, compare_type);
4057 }
4058 }
4059
4060 /* Single-bit compares should always be against zero. */
4061 if (lbitsize == 1 && ! integer_zerop (rhs))
4062 {
4063 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4064 rhs = build_int_cst (type, 0);
4065 }
4066
4067 /* Make a new bitfield reference, shift the constant over the
4068 appropriate number of bits and mask it with the computed mask
4069 (in case this was a signed field). If we changed it, make a new one. */
4070 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4071 nbitsize, nbitpos, 1, lreversep);
4072
4073 rhs = const_binop (BIT_AND_EXPR,
4074 const_binop (LSHIFT_EXPR,
4075 fold_convert_loc (loc, unsigned_type, rhs),
4076 size_int (lbitpos)),
4077 mask);
4078
4079 lhs = build2_loc (loc, code, compare_type,
4080 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4081 return lhs;
4082 }
4083 \f
4084 /* Subroutine for fold_truth_andor_1: decode a field reference.
4085
4086 If EXP is a comparison reference, we return the innermost reference.
4087
4088 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4089 set to the starting bit number.
4090
4091 If the innermost field can be completely contained in a mode-sized
4092 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4093
4094 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4095 otherwise it is not changed.
4096
4097 *PUNSIGNEDP is set to the signedness of the field.
4098
4099 *PREVERSEP is set to the storage order of the field.
4100
4101 *PMASK is set to the mask used. This is either contained in a
4102 BIT_AND_EXPR or derived from the width of the field.
4103
4104 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4105
4106 Return 0 if this is not a component reference or is one that we can't
4107 do anything with. */
4108
4109 static tree
4110 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4111 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4112 int *punsignedp, int *preversep, int *pvolatilep,
4113 tree *pmask, tree *pand_mask)
4114 {
4115 tree exp = *exp_;
4116 tree outer_type = 0;
4117 tree and_mask = 0;
4118 tree mask, inner, offset;
4119 tree unsigned_type;
4120 unsigned int precision;
4121
4122 /* All the optimizations using this function assume integer fields.
4123 There are problems with FP fields since the type_for_size call
4124 below can fail for, e.g., XFmode. */
4125 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4126 return 0;
4127
4128 /* We are interested in the bare arrangement of bits, so strip everything
4129 that doesn't affect the machine mode. However, record the type of the
4130 outermost expression if it may matter below. */
4131 if (CONVERT_EXPR_P (exp)
4132 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4133 outer_type = TREE_TYPE (exp);
4134 STRIP_NOPS (exp);
4135
4136 if (TREE_CODE (exp) == BIT_AND_EXPR)
4137 {
4138 and_mask = TREE_OPERAND (exp, 1);
4139 exp = TREE_OPERAND (exp, 0);
4140 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4141 if (TREE_CODE (and_mask) != INTEGER_CST)
4142 return 0;
4143 }
4144
4145 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4146 punsignedp, preversep, pvolatilep);
4147 if ((inner == exp && and_mask == 0)
4148 || *pbitsize < 0 || offset != 0
4149 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4150 /* Reject out-of-bound accesses (PR79731). */
4151 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4152 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4153 *pbitpos + *pbitsize) < 0))
4154 return 0;
4155
4156 *exp_ = exp;
4157
4158 /* If the number of bits in the reference is the same as the bitsize of
4159 the outer type, then the outer type gives the signedness. Otherwise
4160 (in case of a small bitfield) the signedness is unchanged. */
4161 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4162 *punsignedp = TYPE_UNSIGNED (outer_type);
4163
4164 /* Compute the mask to access the bitfield. */
4165 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4166 precision = TYPE_PRECISION (unsigned_type);
4167
4168 mask = build_int_cst_type (unsigned_type, -1);
4169
4170 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4171 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4172
4173 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4174 if (and_mask != 0)
4175 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4176 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4177
4178 *pmask = mask;
4179 *pand_mask = and_mask;
4180 return inner;
4181 }
4182
4183 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4184 bit positions and MASK is SIGNED. */
4185
4186 static int
4187 all_ones_mask_p (const_tree mask, unsigned int size)
4188 {
4189 tree type = TREE_TYPE (mask);
4190 unsigned int precision = TYPE_PRECISION (type);
4191
4192 /* If this function returns true when the type of the mask is
4193 UNSIGNED, then there will be errors. In particular see
4194 gcc.c-torture/execute/990326-1.c. There does not appear to be
4195 any documentation paper trail as to why this is so. But the pre
4196 wide-int worked with that restriction and it has been preserved
4197 here. */
4198 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4199 return false;
4200
4201 return wi::mask (size, false, precision) == mask;
4202 }
4203
4204 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4205 represents the sign bit of EXP's type. If EXP represents a sign
4206 or zero extension, also test VAL against the unextended type.
4207 The return value is the (sub)expression whose sign bit is VAL,
4208 or NULL_TREE otherwise. */
4209
4210 tree
4211 sign_bit_p (tree exp, const_tree val)
4212 {
4213 int width;
4214 tree t;
4215
4216 /* Tree EXP must have an integral type. */
4217 t = TREE_TYPE (exp);
4218 if (! INTEGRAL_TYPE_P (t))
4219 return NULL_TREE;
4220
4221 /* Tree VAL must be an integer constant. */
4222 if (TREE_CODE (val) != INTEGER_CST
4223 || TREE_OVERFLOW (val))
4224 return NULL_TREE;
4225
4226 width = TYPE_PRECISION (t);
4227 if (wi::only_sign_bit_p (val, width))
4228 return exp;
4229
4230 /* Handle extension from a narrower type. */
4231 if (TREE_CODE (exp) == NOP_EXPR
4232 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4233 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4234
4235 return NULL_TREE;
4236 }
4237
4238 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4239 to be evaluated unconditionally. */
4240
4241 static int
4242 simple_operand_p (const_tree exp)
4243 {
4244 /* Strip any conversions that don't change the machine mode. */
4245 STRIP_NOPS (exp);
4246
4247 return (CONSTANT_CLASS_P (exp)
4248 || TREE_CODE (exp) == SSA_NAME
4249 || (DECL_P (exp)
4250 && ! TREE_ADDRESSABLE (exp)
4251 && ! TREE_THIS_VOLATILE (exp)
4252 && ! DECL_NONLOCAL (exp)
4253 /* Don't regard global variables as simple. They may be
4254 allocated in ways unknown to the compiler (shared memory,
4255 #pragma weak, etc). */
4256 && ! TREE_PUBLIC (exp)
4257 && ! DECL_EXTERNAL (exp)
4258 /* Weakrefs are not safe to be read, since they can be NULL.
4259 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4260 have DECL_WEAK flag set. */
4261 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4262 /* Loading a static variable is unduly expensive, but global
4263 registers aren't expensive. */
4264 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4265 }
4266
4267 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4268 to be evaluated unconditionally.
4269 I addition to simple_operand_p, we assume that comparisons, conversions,
4270 and logic-not operations are simple, if their operands are simple, too. */
4271
4272 static bool
4273 simple_operand_p_2 (tree exp)
4274 {
4275 enum tree_code code;
4276
4277 if (TREE_SIDE_EFFECTS (exp)
4278 || tree_could_trap_p (exp))
4279 return false;
4280
4281 while (CONVERT_EXPR_P (exp))
4282 exp = TREE_OPERAND (exp, 0);
4283
4284 code = TREE_CODE (exp);
4285
4286 if (TREE_CODE_CLASS (code) == tcc_comparison)
4287 return (simple_operand_p (TREE_OPERAND (exp, 0))
4288 && simple_operand_p (TREE_OPERAND (exp, 1)));
4289
4290 if (code == TRUTH_NOT_EXPR)
4291 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4292
4293 return simple_operand_p (exp);
4294 }
4295
4296 \f
4297 /* The following functions are subroutines to fold_range_test and allow it to
4298 try to change a logical combination of comparisons into a range test.
4299
4300 For example, both
4301 X == 2 || X == 3 || X == 4 || X == 5
4302 and
4303 X >= 2 && X <= 5
4304 are converted to
4305 (unsigned) (X - 2) <= 3
4306
4307 We describe each set of comparisons as being either inside or outside
4308 a range, using a variable named like IN_P, and then describe the
4309 range with a lower and upper bound. If one of the bounds is omitted,
4310 it represents either the highest or lowest value of the type.
4311
4312 In the comments below, we represent a range by two numbers in brackets
4313 preceded by a "+" to designate being inside that range, or a "-" to
4314 designate being outside that range, so the condition can be inverted by
4315 flipping the prefix. An omitted bound is represented by a "-". For
4316 example, "- [-, 10]" means being outside the range starting at the lowest
4317 possible value and ending at 10, in other words, being greater than 10.
4318 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4319 always false.
4320
4321 We set up things so that the missing bounds are handled in a consistent
4322 manner so neither a missing bound nor "true" and "false" need to be
4323 handled using a special case. */
4324
4325 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4326 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4327 and UPPER1_P are nonzero if the respective argument is an upper bound
4328 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4329 must be specified for a comparison. ARG1 will be converted to ARG0's
4330 type if both are specified. */
4331
4332 static tree
4333 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4334 tree arg1, int upper1_p)
4335 {
4336 tree tem;
4337 int result;
4338 int sgn0, sgn1;
4339
4340 /* If neither arg represents infinity, do the normal operation.
4341 Else, if not a comparison, return infinity. Else handle the special
4342 comparison rules. Note that most of the cases below won't occur, but
4343 are handled for consistency. */
4344
4345 if (arg0 != 0 && arg1 != 0)
4346 {
4347 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4348 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4349 STRIP_NOPS (tem);
4350 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4351 }
4352
4353 if (TREE_CODE_CLASS (code) != tcc_comparison)
4354 return 0;
4355
4356 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4357 for neither. In real maths, we cannot assume open ended ranges are
4358 the same. But, this is computer arithmetic, where numbers are finite.
4359 We can therefore make the transformation of any unbounded range with
4360 the value Z, Z being greater than any representable number. This permits
4361 us to treat unbounded ranges as equal. */
4362 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4363 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4364 switch (code)
4365 {
4366 case EQ_EXPR:
4367 result = sgn0 == sgn1;
4368 break;
4369 case NE_EXPR:
4370 result = sgn0 != sgn1;
4371 break;
4372 case LT_EXPR:
4373 result = sgn0 < sgn1;
4374 break;
4375 case LE_EXPR:
4376 result = sgn0 <= sgn1;
4377 break;
4378 case GT_EXPR:
4379 result = sgn0 > sgn1;
4380 break;
4381 case GE_EXPR:
4382 result = sgn0 >= sgn1;
4383 break;
4384 default:
4385 gcc_unreachable ();
4386 }
4387
4388 return constant_boolean_node (result, type);
4389 }
4390 \f
4391 /* Helper routine for make_range. Perform one step for it, return
4392 new expression if the loop should continue or NULL_TREE if it should
4393 stop. */
4394
4395 tree
4396 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4397 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4398 bool *strict_overflow_p)
4399 {
4400 tree arg0_type = TREE_TYPE (arg0);
4401 tree n_low, n_high, low = *p_low, high = *p_high;
4402 int in_p = *p_in_p, n_in_p;
4403
4404 switch (code)
4405 {
4406 case TRUTH_NOT_EXPR:
4407 /* We can only do something if the range is testing for zero. */
4408 if (low == NULL_TREE || high == NULL_TREE
4409 || ! integer_zerop (low) || ! integer_zerop (high))
4410 return NULL_TREE;
4411 *p_in_p = ! in_p;
4412 return arg0;
4413
4414 case EQ_EXPR: case NE_EXPR:
4415 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4416 /* We can only do something if the range is testing for zero
4417 and if the second operand is an integer constant. Note that
4418 saying something is "in" the range we make is done by
4419 complementing IN_P since it will set in the initial case of
4420 being not equal to zero; "out" is leaving it alone. */
4421 if (low == NULL_TREE || high == NULL_TREE
4422 || ! integer_zerop (low) || ! integer_zerop (high)
4423 || TREE_CODE (arg1) != INTEGER_CST)
4424 return NULL_TREE;
4425
4426 switch (code)
4427 {
4428 case NE_EXPR: /* - [c, c] */
4429 low = high = arg1;
4430 break;
4431 case EQ_EXPR: /* + [c, c] */
4432 in_p = ! in_p, low = high = arg1;
4433 break;
4434 case GT_EXPR: /* - [-, c] */
4435 low = 0, high = arg1;
4436 break;
4437 case GE_EXPR: /* + [c, -] */
4438 in_p = ! in_p, low = arg1, high = 0;
4439 break;
4440 case LT_EXPR: /* - [c, -] */
4441 low = arg1, high = 0;
4442 break;
4443 case LE_EXPR: /* + [-, c] */
4444 in_p = ! in_p, low = 0, high = arg1;
4445 break;
4446 default:
4447 gcc_unreachable ();
4448 }
4449
4450 /* If this is an unsigned comparison, we also know that EXP is
4451 greater than or equal to zero. We base the range tests we make
4452 on that fact, so we record it here so we can parse existing
4453 range tests. We test arg0_type since often the return type
4454 of, e.g. EQ_EXPR, is boolean. */
4455 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4456 {
4457 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4458 in_p, low, high, 1,
4459 build_int_cst (arg0_type, 0),
4460 NULL_TREE))
4461 return NULL_TREE;
4462
4463 in_p = n_in_p, low = n_low, high = n_high;
4464
4465 /* If the high bound is missing, but we have a nonzero low
4466 bound, reverse the range so it goes from zero to the low bound
4467 minus 1. */
4468 if (high == 0 && low && ! integer_zerop (low))
4469 {
4470 in_p = ! in_p;
4471 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4472 build_int_cst (TREE_TYPE (low), 1), 0);
4473 low = build_int_cst (arg0_type, 0);
4474 }
4475 }
4476
4477 *p_low = low;
4478 *p_high = high;
4479 *p_in_p = in_p;
4480 return arg0;
4481
4482 case NEGATE_EXPR:
4483 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4484 low and high are non-NULL, then normalize will DTRT. */
4485 if (!TYPE_UNSIGNED (arg0_type)
4486 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4487 {
4488 if (low == NULL_TREE)
4489 low = TYPE_MIN_VALUE (arg0_type);
4490 if (high == NULL_TREE)
4491 high = TYPE_MAX_VALUE (arg0_type);
4492 }
4493
4494 /* (-x) IN [a,b] -> x in [-b, -a] */
4495 n_low = range_binop (MINUS_EXPR, exp_type,
4496 build_int_cst (exp_type, 0),
4497 0, high, 1);
4498 n_high = range_binop (MINUS_EXPR, exp_type,
4499 build_int_cst (exp_type, 0),
4500 0, low, 0);
4501 if (n_high != 0 && TREE_OVERFLOW (n_high))
4502 return NULL_TREE;
4503 goto normalize;
4504
4505 case BIT_NOT_EXPR:
4506 /* ~ X -> -X - 1 */
4507 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4508 build_int_cst (exp_type, 1));
4509
4510 case PLUS_EXPR:
4511 case MINUS_EXPR:
4512 if (TREE_CODE (arg1) != INTEGER_CST)
4513 return NULL_TREE;
4514
4515 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4516 move a constant to the other side. */
4517 if (!TYPE_UNSIGNED (arg0_type)
4518 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4519 return NULL_TREE;
4520
4521 /* If EXP is signed, any overflow in the computation is undefined,
4522 so we don't worry about it so long as our computations on
4523 the bounds don't overflow. For unsigned, overflow is defined
4524 and this is exactly the right thing. */
4525 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4526 arg0_type, low, 0, arg1, 0);
4527 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4528 arg0_type, high, 1, arg1, 0);
4529 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4530 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4531 return NULL_TREE;
4532
4533 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4534 *strict_overflow_p = true;
4535
4536 normalize:
4537 /* Check for an unsigned range which has wrapped around the maximum
4538 value thus making n_high < n_low, and normalize it. */
4539 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4540 {
4541 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4542 build_int_cst (TREE_TYPE (n_high), 1), 0);
4543 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4544 build_int_cst (TREE_TYPE (n_low), 1), 0);
4545
4546 /* If the range is of the form +/- [ x+1, x ], we won't
4547 be able to normalize it. But then, it represents the
4548 whole range or the empty set, so make it
4549 +/- [ -, - ]. */
4550 if (tree_int_cst_equal (n_low, low)
4551 && tree_int_cst_equal (n_high, high))
4552 low = high = 0;
4553 else
4554 in_p = ! in_p;
4555 }
4556 else
4557 low = n_low, high = n_high;
4558
4559 *p_low = low;
4560 *p_high = high;
4561 *p_in_p = in_p;
4562 return arg0;
4563
4564 CASE_CONVERT:
4565 case NON_LVALUE_EXPR:
4566 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4567 return NULL_TREE;
4568
4569 if (! INTEGRAL_TYPE_P (arg0_type)
4570 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4571 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4572 return NULL_TREE;
4573
4574 n_low = low, n_high = high;
4575
4576 if (n_low != 0)
4577 n_low = fold_convert_loc (loc, arg0_type, n_low);
4578
4579 if (n_high != 0)
4580 n_high = fold_convert_loc (loc, arg0_type, n_high);
4581
4582 /* If we're converting arg0 from an unsigned type, to exp,
4583 a signed type, we will be doing the comparison as unsigned.
4584 The tests above have already verified that LOW and HIGH
4585 are both positive.
4586
4587 So we have to ensure that we will handle large unsigned
4588 values the same way that the current signed bounds treat
4589 negative values. */
4590
4591 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4592 {
4593 tree high_positive;
4594 tree equiv_type;
4595 /* For fixed-point modes, we need to pass the saturating flag
4596 as the 2nd parameter. */
4597 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4598 equiv_type
4599 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4600 TYPE_SATURATING (arg0_type));
4601 else
4602 equiv_type
4603 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4604
4605 /* A range without an upper bound is, naturally, unbounded.
4606 Since convert would have cropped a very large value, use
4607 the max value for the destination type. */
4608 high_positive
4609 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4610 : TYPE_MAX_VALUE (arg0_type);
4611
4612 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4613 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4614 fold_convert_loc (loc, arg0_type,
4615 high_positive),
4616 build_int_cst (arg0_type, 1));
4617
4618 /* If the low bound is specified, "and" the range with the
4619 range for which the original unsigned value will be
4620 positive. */
4621 if (low != 0)
4622 {
4623 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4624 1, fold_convert_loc (loc, arg0_type,
4625 integer_zero_node),
4626 high_positive))
4627 return NULL_TREE;
4628
4629 in_p = (n_in_p == in_p);
4630 }
4631 else
4632 {
4633 /* Otherwise, "or" the range with the range of the input
4634 that will be interpreted as negative. */
4635 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4636 1, fold_convert_loc (loc, arg0_type,
4637 integer_zero_node),
4638 high_positive))
4639 return NULL_TREE;
4640
4641 in_p = (in_p != n_in_p);
4642 }
4643 }
4644
4645 *p_low = n_low;
4646 *p_high = n_high;
4647 *p_in_p = in_p;
4648 return arg0;
4649
4650 default:
4651 return NULL_TREE;
4652 }
4653 }
4654
4655 /* Given EXP, a logical expression, set the range it is testing into
4656 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4657 actually being tested. *PLOW and *PHIGH will be made of the same
4658 type as the returned expression. If EXP is not a comparison, we
4659 will most likely not be returning a useful value and range. Set
4660 *STRICT_OVERFLOW_P to true if the return value is only valid
4661 because signed overflow is undefined; otherwise, do not change
4662 *STRICT_OVERFLOW_P. */
4663
4664 tree
4665 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4666 bool *strict_overflow_p)
4667 {
4668 enum tree_code code;
4669 tree arg0, arg1 = NULL_TREE;
4670 tree exp_type, nexp;
4671 int in_p;
4672 tree low, high;
4673 location_t loc = EXPR_LOCATION (exp);
4674
4675 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4676 and see if we can refine the range. Some of the cases below may not
4677 happen, but it doesn't seem worth worrying about this. We "continue"
4678 the outer loop when we've changed something; otherwise we "break"
4679 the switch, which will "break" the while. */
4680
4681 in_p = 0;
4682 low = high = build_int_cst (TREE_TYPE (exp), 0);
4683
4684 while (1)
4685 {
4686 code = TREE_CODE (exp);
4687 exp_type = TREE_TYPE (exp);
4688 arg0 = NULL_TREE;
4689
4690 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4691 {
4692 if (TREE_OPERAND_LENGTH (exp) > 0)
4693 arg0 = TREE_OPERAND (exp, 0);
4694 if (TREE_CODE_CLASS (code) == tcc_binary
4695 || TREE_CODE_CLASS (code) == tcc_comparison
4696 || (TREE_CODE_CLASS (code) == tcc_expression
4697 && TREE_OPERAND_LENGTH (exp) > 1))
4698 arg1 = TREE_OPERAND (exp, 1);
4699 }
4700 if (arg0 == NULL_TREE)
4701 break;
4702
4703 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4704 &high, &in_p, strict_overflow_p);
4705 if (nexp == NULL_TREE)
4706 break;
4707 exp = nexp;
4708 }
4709
4710 /* If EXP is a constant, we can evaluate whether this is true or false. */
4711 if (TREE_CODE (exp) == INTEGER_CST)
4712 {
4713 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4714 exp, 0, low, 0))
4715 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4716 exp, 1, high, 1)));
4717 low = high = 0;
4718 exp = 0;
4719 }
4720
4721 *pin_p = in_p, *plow = low, *phigh = high;
4722 return exp;
4723 }
4724
4725 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4726 a bitwise check i.e. when
4727 LOW == 0xXX...X00...0
4728 HIGH == 0xXX...X11...1
4729 Return corresponding mask in MASK and stem in VALUE. */
4730
4731 static bool
4732 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
4733 tree *value)
4734 {
4735 if (TREE_CODE (low) != INTEGER_CST
4736 || TREE_CODE (high) != INTEGER_CST)
4737 return false;
4738
4739 unsigned prec = TYPE_PRECISION (type);
4740 wide_int lo = wi::to_wide (low, prec);
4741 wide_int hi = wi::to_wide (high, prec);
4742
4743 wide_int end_mask = lo ^ hi;
4744 if ((end_mask & (end_mask + 1)) != 0
4745 || (lo & end_mask) != 0)
4746 return false;
4747
4748 wide_int stem_mask = ~end_mask;
4749 wide_int stem = lo & stem_mask;
4750 if (stem != (hi & stem_mask))
4751 return false;
4752
4753 *mask = wide_int_to_tree (type, stem_mask);
4754 *value = wide_int_to_tree (type, stem);
4755
4756 return true;
4757 }
4758 \f
4759 /* Helper routine for build_range_check and match.pd. Return the type to
4760 perform the check or NULL if it shouldn't be optimized. */
4761
4762 tree
4763 range_check_type (tree etype)
4764 {
4765 /* First make sure that arithmetics in this type is valid, then make sure
4766 that it wraps around. */
4767 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4768 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4769 TYPE_UNSIGNED (etype));
4770
4771 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4772 {
4773 tree utype, minv, maxv;
4774
4775 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4776 for the type in question, as we rely on this here. */
4777 utype = unsigned_type_for (etype);
4778 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4779 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4780 build_int_cst (TREE_TYPE (maxv), 1), 1);
4781 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4782
4783 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4784 minv, 1, maxv, 1)))
4785 etype = utype;
4786 else
4787 return NULL_TREE;
4788 }
4789 return etype;
4790 }
4791
4792 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4793 type, TYPE, return an expression to test if EXP is in (or out of, depending
4794 on IN_P) the range. Return 0 if the test couldn't be created. */
4795
4796 tree
4797 build_range_check (location_t loc, tree type, tree exp, int in_p,
4798 tree low, tree high)
4799 {
4800 tree etype = TREE_TYPE (exp), mask, value;
4801
4802 /* Disable this optimization for function pointer expressions
4803 on targets that require function pointer canonicalization. */
4804 if (targetm.have_canonicalize_funcptr_for_compare ()
4805 && TREE_CODE (etype) == POINTER_TYPE
4806 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4807 return NULL_TREE;
4808
4809 if (! in_p)
4810 {
4811 value = build_range_check (loc, type, exp, 1, low, high);
4812 if (value != 0)
4813 return invert_truthvalue_loc (loc, value);
4814
4815 return 0;
4816 }
4817
4818 if (low == 0 && high == 0)
4819 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4820
4821 if (low == 0)
4822 return fold_build2_loc (loc, LE_EXPR, type, exp,
4823 fold_convert_loc (loc, etype, high));
4824
4825 if (high == 0)
4826 return fold_build2_loc (loc, GE_EXPR, type, exp,
4827 fold_convert_loc (loc, etype, low));
4828
4829 if (operand_equal_p (low, high, 0))
4830 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4831 fold_convert_loc (loc, etype, low));
4832
4833 if (TREE_CODE (exp) == BIT_AND_EXPR
4834 && maskable_range_p (low, high, etype, &mask, &value))
4835 return fold_build2_loc (loc, EQ_EXPR, type,
4836 fold_build2_loc (loc, BIT_AND_EXPR, etype,
4837 exp, mask),
4838 value);
4839
4840 if (integer_zerop (low))
4841 {
4842 if (! TYPE_UNSIGNED (etype))
4843 {
4844 etype = unsigned_type_for (etype);
4845 high = fold_convert_loc (loc, etype, high);
4846 exp = fold_convert_loc (loc, etype, exp);
4847 }
4848 return build_range_check (loc, type, exp, 1, 0, high);
4849 }
4850
4851 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4852 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4853 {
4854 int prec = TYPE_PRECISION (etype);
4855
4856 if (wi::mask (prec - 1, false, prec) == high)
4857 {
4858 if (TYPE_UNSIGNED (etype))
4859 {
4860 tree signed_etype = signed_type_for (etype);
4861 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4862 etype
4863 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4864 else
4865 etype = signed_etype;
4866 exp = fold_convert_loc (loc, etype, exp);
4867 }
4868 return fold_build2_loc (loc, GT_EXPR, type, exp,
4869 build_int_cst (etype, 0));
4870 }
4871 }
4872
4873 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4874 This requires wrap-around arithmetics for the type of the expression. */
4875 etype = range_check_type (etype);
4876 if (etype == NULL_TREE)
4877 return NULL_TREE;
4878
4879 if (POINTER_TYPE_P (etype))
4880 etype = unsigned_type_for (etype);
4881
4882 high = fold_convert_loc (loc, etype, high);
4883 low = fold_convert_loc (loc, etype, low);
4884 exp = fold_convert_loc (loc, etype, exp);
4885
4886 value = const_binop (MINUS_EXPR, high, low);
4887
4888 if (value != 0 && !TREE_OVERFLOW (value))
4889 return build_range_check (loc, type,
4890 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4891 1, build_int_cst (etype, 0), value);
4892
4893 return 0;
4894 }
4895 \f
4896 /* Return the predecessor of VAL in its type, handling the infinite case. */
4897
4898 static tree
4899 range_predecessor (tree val)
4900 {
4901 tree type = TREE_TYPE (val);
4902
4903 if (INTEGRAL_TYPE_P (type)
4904 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4905 return 0;
4906 else
4907 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4908 build_int_cst (TREE_TYPE (val), 1), 0);
4909 }
4910
4911 /* Return the successor of VAL in its type, handling the infinite case. */
4912
4913 static tree
4914 range_successor (tree val)
4915 {
4916 tree type = TREE_TYPE (val);
4917
4918 if (INTEGRAL_TYPE_P (type)
4919 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4920 return 0;
4921 else
4922 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4923 build_int_cst (TREE_TYPE (val), 1), 0);
4924 }
4925
4926 /* Given two ranges, see if we can merge them into one. Return 1 if we
4927 can, 0 if we can't. Set the output range into the specified parameters. */
4928
4929 bool
4930 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4931 tree high0, int in1_p, tree low1, tree high1)
4932 {
4933 int no_overlap;
4934 int subset;
4935 int temp;
4936 tree tem;
4937 int in_p;
4938 tree low, high;
4939 int lowequal = ((low0 == 0 && low1 == 0)
4940 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4941 low0, 0, low1, 0)));
4942 int highequal = ((high0 == 0 && high1 == 0)
4943 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4944 high0, 1, high1, 1)));
4945
4946 /* Make range 0 be the range that starts first, or ends last if they
4947 start at the same value. Swap them if it isn't. */
4948 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4949 low0, 0, low1, 0))
4950 || (lowequal
4951 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4952 high1, 1, high0, 1))))
4953 {
4954 temp = in0_p, in0_p = in1_p, in1_p = temp;
4955 tem = low0, low0 = low1, low1 = tem;
4956 tem = high0, high0 = high1, high1 = tem;
4957 }
4958
4959 /* Now flag two cases, whether the ranges are disjoint or whether the
4960 second range is totally subsumed in the first. Note that the tests
4961 below are simplified by the ones above. */
4962 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4963 high0, 1, low1, 0));
4964 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4965 high1, 1, high0, 1));
4966
4967 /* We now have four cases, depending on whether we are including or
4968 excluding the two ranges. */
4969 if (in0_p && in1_p)
4970 {
4971 /* If they don't overlap, the result is false. If the second range
4972 is a subset it is the result. Otherwise, the range is from the start
4973 of the second to the end of the first. */
4974 if (no_overlap)
4975 in_p = 0, low = high = 0;
4976 else if (subset)
4977 in_p = 1, low = low1, high = high1;
4978 else
4979 in_p = 1, low = low1, high = high0;
4980 }
4981
4982 else if (in0_p && ! in1_p)
4983 {
4984 /* If they don't overlap, the result is the first range. If they are
4985 equal, the result is false. If the second range is a subset of the
4986 first, and the ranges begin at the same place, we go from just after
4987 the end of the second range to the end of the first. If the second
4988 range is not a subset of the first, or if it is a subset and both
4989 ranges end at the same place, the range starts at the start of the
4990 first range and ends just before the second range.
4991 Otherwise, we can't describe this as a single range. */
4992 if (no_overlap)
4993 in_p = 1, low = low0, high = high0;
4994 else if (lowequal && highequal)
4995 in_p = 0, low = high = 0;
4996 else if (subset && lowequal)
4997 {
4998 low = range_successor (high1);
4999 high = high0;
5000 in_p = 1;
5001 if (low == 0)
5002 {
5003 /* We are in the weird situation where high0 > high1 but
5004 high1 has no successor. Punt. */
5005 return 0;
5006 }
5007 }
5008 else if (! subset || highequal)
5009 {
5010 low = low0;
5011 high = range_predecessor (low1);
5012 in_p = 1;
5013 if (high == 0)
5014 {
5015 /* low0 < low1 but low1 has no predecessor. Punt. */
5016 return 0;
5017 }
5018 }
5019 else
5020 return 0;
5021 }
5022
5023 else if (! in0_p && in1_p)
5024 {
5025 /* If they don't overlap, the result is the second range. If the second
5026 is a subset of the first, the result is false. Otherwise,
5027 the range starts just after the first range and ends at the
5028 end of the second. */
5029 if (no_overlap)
5030 in_p = 1, low = low1, high = high1;
5031 else if (subset || highequal)
5032 in_p = 0, low = high = 0;
5033 else
5034 {
5035 low = range_successor (high0);
5036 high = high1;
5037 in_p = 1;
5038 if (low == 0)
5039 {
5040 /* high1 > high0 but high0 has no successor. Punt. */
5041 return 0;
5042 }
5043 }
5044 }
5045
5046 else
5047 {
5048 /* The case where we are excluding both ranges. Here the complex case
5049 is if they don't overlap. In that case, the only time we have a
5050 range is if they are adjacent. If the second is a subset of the
5051 first, the result is the first. Otherwise, the range to exclude
5052 starts at the beginning of the first range and ends at the end of the
5053 second. */
5054 if (no_overlap)
5055 {
5056 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5057 range_successor (high0),
5058 1, low1, 0)))
5059 in_p = 0, low = low0, high = high1;
5060 else
5061 {
5062 /* Canonicalize - [min, x] into - [-, x]. */
5063 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5064 switch (TREE_CODE (TREE_TYPE (low0)))
5065 {
5066 case ENUMERAL_TYPE:
5067 if (TYPE_PRECISION (TREE_TYPE (low0))
5068 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
5069 break;
5070 /* FALLTHROUGH */
5071 case INTEGER_TYPE:
5072 if (tree_int_cst_equal (low0,
5073 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5074 low0 = 0;
5075 break;
5076 case POINTER_TYPE:
5077 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5078 && integer_zerop (low0))
5079 low0 = 0;
5080 break;
5081 default:
5082 break;
5083 }
5084
5085 /* Canonicalize - [x, max] into - [x, -]. */
5086 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5087 switch (TREE_CODE (TREE_TYPE (high1)))
5088 {
5089 case ENUMERAL_TYPE:
5090 if (TYPE_PRECISION (TREE_TYPE (high1))
5091 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
5092 break;
5093 /* FALLTHROUGH */
5094 case INTEGER_TYPE:
5095 if (tree_int_cst_equal (high1,
5096 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5097 high1 = 0;
5098 break;
5099 case POINTER_TYPE:
5100 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5101 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5102 high1, 1,
5103 build_int_cst (TREE_TYPE (high1), 1),
5104 1)))
5105 high1 = 0;
5106 break;
5107 default:
5108 break;
5109 }
5110
5111 /* The ranges might be also adjacent between the maximum and
5112 minimum values of the given type. For
5113 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5114 return + [x + 1, y - 1]. */
5115 if (low0 == 0 && high1 == 0)
5116 {
5117 low = range_successor (high0);
5118 high = range_predecessor (low1);
5119 if (low == 0 || high == 0)
5120 return 0;
5121
5122 in_p = 1;
5123 }
5124 else
5125 return 0;
5126 }
5127 }
5128 else if (subset)
5129 in_p = 0, low = low0, high = high0;
5130 else
5131 in_p = 0, low = low0, high = high1;
5132 }
5133
5134 *pin_p = in_p, *plow = low, *phigh = high;
5135 return 1;
5136 }
5137 \f
5138
5139 /* Subroutine of fold, looking inside expressions of the form
5140 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5141 of the COND_EXPR. This function is being used also to optimize
5142 A op B ? C : A, by reversing the comparison first.
5143
5144 Return a folded expression whose code is not a COND_EXPR
5145 anymore, or NULL_TREE if no folding opportunity is found. */
5146
5147 static tree
5148 fold_cond_expr_with_comparison (location_t loc, tree type,
5149 tree arg0, tree arg1, tree arg2)
5150 {
5151 enum tree_code comp_code = TREE_CODE (arg0);
5152 tree arg00 = TREE_OPERAND (arg0, 0);
5153 tree arg01 = TREE_OPERAND (arg0, 1);
5154 tree arg1_type = TREE_TYPE (arg1);
5155 tree tem;
5156
5157 STRIP_NOPS (arg1);
5158 STRIP_NOPS (arg2);
5159
5160 /* If we have A op 0 ? A : -A, consider applying the following
5161 transformations:
5162
5163 A == 0? A : -A same as -A
5164 A != 0? A : -A same as A
5165 A >= 0? A : -A same as abs (A)
5166 A > 0? A : -A same as abs (A)
5167 A <= 0? A : -A same as -abs (A)
5168 A < 0? A : -A same as -abs (A)
5169
5170 None of these transformations work for modes with signed
5171 zeros. If A is +/-0, the first two transformations will
5172 change the sign of the result (from +0 to -0, or vice
5173 versa). The last four will fix the sign of the result,
5174 even though the original expressions could be positive or
5175 negative, depending on the sign of A.
5176
5177 Note that all these transformations are correct if A is
5178 NaN, since the two alternatives (A and -A) are also NaNs. */
5179 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5180 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5181 ? real_zerop (arg01)
5182 : integer_zerop (arg01))
5183 && ((TREE_CODE (arg2) == NEGATE_EXPR
5184 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5185 /* In the case that A is of the form X-Y, '-A' (arg2) may
5186 have already been folded to Y-X, check for that. */
5187 || (TREE_CODE (arg1) == MINUS_EXPR
5188 && TREE_CODE (arg2) == MINUS_EXPR
5189 && operand_equal_p (TREE_OPERAND (arg1, 0),
5190 TREE_OPERAND (arg2, 1), 0)
5191 && operand_equal_p (TREE_OPERAND (arg1, 1),
5192 TREE_OPERAND (arg2, 0), 0))))
5193 switch (comp_code)
5194 {
5195 case EQ_EXPR:
5196 case UNEQ_EXPR:
5197 tem = fold_convert_loc (loc, arg1_type, arg1);
5198 return fold_convert_loc (loc, type, negate_expr (tem));
5199 case NE_EXPR:
5200 case LTGT_EXPR:
5201 return fold_convert_loc (loc, type, arg1);
5202 case UNGE_EXPR:
5203 case UNGT_EXPR:
5204 if (flag_trapping_math)
5205 break;
5206 /* Fall through. */
5207 case GE_EXPR:
5208 case GT_EXPR:
5209 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5210 break;
5211 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5212 return fold_convert_loc (loc, type, tem);
5213 case UNLE_EXPR:
5214 case UNLT_EXPR:
5215 if (flag_trapping_math)
5216 break;
5217 /* FALLTHRU */
5218 case LE_EXPR:
5219 case LT_EXPR:
5220 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5221 break;
5222 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5223 return negate_expr (fold_convert_loc (loc, type, tem));
5224 default:
5225 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5226 break;
5227 }
5228
5229 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5230 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5231 both transformations are correct when A is NaN: A != 0
5232 is then true, and A == 0 is false. */
5233
5234 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5235 && integer_zerop (arg01) && integer_zerop (arg2))
5236 {
5237 if (comp_code == NE_EXPR)
5238 return fold_convert_loc (loc, type, arg1);
5239 else if (comp_code == EQ_EXPR)
5240 return build_zero_cst (type);
5241 }
5242
5243 /* Try some transformations of A op B ? A : B.
5244
5245 A == B? A : B same as B
5246 A != B? A : B same as A
5247 A >= B? A : B same as max (A, B)
5248 A > B? A : B same as max (B, A)
5249 A <= B? A : B same as min (A, B)
5250 A < B? A : B same as min (B, A)
5251
5252 As above, these transformations don't work in the presence
5253 of signed zeros. For example, if A and B are zeros of
5254 opposite sign, the first two transformations will change
5255 the sign of the result. In the last four, the original
5256 expressions give different results for (A=+0, B=-0) and
5257 (A=-0, B=+0), but the transformed expressions do not.
5258
5259 The first two transformations are correct if either A or B
5260 is a NaN. In the first transformation, the condition will
5261 be false, and B will indeed be chosen. In the case of the
5262 second transformation, the condition A != B will be true,
5263 and A will be chosen.
5264
5265 The conversions to max() and min() are not correct if B is
5266 a number and A is not. The conditions in the original
5267 expressions will be false, so all four give B. The min()
5268 and max() versions would give a NaN instead. */
5269 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5270 && operand_equal_for_comparison_p (arg01, arg2)
5271 /* Avoid these transformations if the COND_EXPR may be used
5272 as an lvalue in the C++ front-end. PR c++/19199. */
5273 && (in_gimple_form
5274 || VECTOR_TYPE_P (type)
5275 || (! lang_GNU_CXX ()
5276 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5277 || ! maybe_lvalue_p (arg1)
5278 || ! maybe_lvalue_p (arg2)))
5279 {
5280 tree comp_op0 = arg00;
5281 tree comp_op1 = arg01;
5282 tree comp_type = TREE_TYPE (comp_op0);
5283
5284 switch (comp_code)
5285 {
5286 case EQ_EXPR:
5287 return fold_convert_loc (loc, type, arg2);
5288 case NE_EXPR:
5289 return fold_convert_loc (loc, type, arg1);
5290 case LE_EXPR:
5291 case LT_EXPR:
5292 case UNLE_EXPR:
5293 case UNLT_EXPR:
5294 /* In C++ a ?: expression can be an lvalue, so put the
5295 operand which will be used if they are equal first
5296 so that we can convert this back to the
5297 corresponding COND_EXPR. */
5298 if (!HONOR_NANS (arg1))
5299 {
5300 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5301 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5302 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5303 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5304 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5305 comp_op1, comp_op0);
5306 return fold_convert_loc (loc, type, tem);
5307 }
5308 break;
5309 case GE_EXPR:
5310 case GT_EXPR:
5311 case UNGE_EXPR:
5312 case UNGT_EXPR:
5313 if (!HONOR_NANS (arg1))
5314 {
5315 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5316 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5317 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5318 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5319 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5320 comp_op1, comp_op0);
5321 return fold_convert_loc (loc, type, tem);
5322 }
5323 break;
5324 case UNEQ_EXPR:
5325 if (!HONOR_NANS (arg1))
5326 return fold_convert_loc (loc, type, arg2);
5327 break;
5328 case LTGT_EXPR:
5329 if (!HONOR_NANS (arg1))
5330 return fold_convert_loc (loc, type, arg1);
5331 break;
5332 default:
5333 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5334 break;
5335 }
5336 }
5337
5338 return NULL_TREE;
5339 }
5340
5341
5342 \f
5343 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5344 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5345 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5346 false) >= 2)
5347 #endif
5348
5349 /* EXP is some logical combination of boolean tests. See if we can
5350 merge it into some range test. Return the new tree if so. */
5351
5352 static tree
5353 fold_range_test (location_t loc, enum tree_code code, tree type,
5354 tree op0, tree op1)
5355 {
5356 int or_op = (code == TRUTH_ORIF_EXPR
5357 || code == TRUTH_OR_EXPR);
5358 int in0_p, in1_p, in_p;
5359 tree low0, low1, low, high0, high1, high;
5360 bool strict_overflow_p = false;
5361 tree tem, lhs, rhs;
5362 const char * const warnmsg = G_("assuming signed overflow does not occur "
5363 "when simplifying range test");
5364
5365 if (!INTEGRAL_TYPE_P (type))
5366 return 0;
5367
5368 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5369 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5370
5371 /* If this is an OR operation, invert both sides; we will invert
5372 again at the end. */
5373 if (or_op)
5374 in0_p = ! in0_p, in1_p = ! in1_p;
5375
5376 /* If both expressions are the same, if we can merge the ranges, and we
5377 can build the range test, return it or it inverted. If one of the
5378 ranges is always true or always false, consider it to be the same
5379 expression as the other. */
5380 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5381 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5382 in1_p, low1, high1)
5383 && 0 != (tem = (build_range_check (loc, type,
5384 lhs != 0 ? lhs
5385 : rhs != 0 ? rhs : integer_zero_node,
5386 in_p, low, high))))
5387 {
5388 if (strict_overflow_p)
5389 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5390 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5391 }
5392
5393 /* On machines where the branch cost is expensive, if this is a
5394 short-circuited branch and the underlying object on both sides
5395 is the same, make a non-short-circuit operation. */
5396 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5397 && lhs != 0 && rhs != 0
5398 && (code == TRUTH_ANDIF_EXPR
5399 || code == TRUTH_ORIF_EXPR)
5400 && operand_equal_p (lhs, rhs, 0))
5401 {
5402 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5403 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5404 which cases we can't do this. */
5405 if (simple_operand_p (lhs))
5406 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5407 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5408 type, op0, op1);
5409
5410 else if (!lang_hooks.decls.global_bindings_p ()
5411 && !CONTAINS_PLACEHOLDER_P (lhs))
5412 {
5413 tree common = save_expr (lhs);
5414
5415 if (0 != (lhs = build_range_check (loc, type, common,
5416 or_op ? ! in0_p : in0_p,
5417 low0, high0))
5418 && (0 != (rhs = build_range_check (loc, type, common,
5419 or_op ? ! in1_p : in1_p,
5420 low1, high1))))
5421 {
5422 if (strict_overflow_p)
5423 fold_overflow_warning (warnmsg,
5424 WARN_STRICT_OVERFLOW_COMPARISON);
5425 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5426 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5427 type, lhs, rhs);
5428 }
5429 }
5430 }
5431
5432 return 0;
5433 }
5434 \f
5435 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5436 bit value. Arrange things so the extra bits will be set to zero if and
5437 only if C is signed-extended to its full width. If MASK is nonzero,
5438 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5439
5440 static tree
5441 unextend (tree c, int p, int unsignedp, tree mask)
5442 {
5443 tree type = TREE_TYPE (c);
5444 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
5445 tree temp;
5446
5447 if (p == modesize || unsignedp)
5448 return c;
5449
5450 /* We work by getting just the sign bit into the low-order bit, then
5451 into the high-order bit, then sign-extend. We then XOR that value
5452 with C. */
5453 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5454
5455 /* We must use a signed type in order to get an arithmetic right shift.
5456 However, we must also avoid introducing accidental overflows, so that
5457 a subsequent call to integer_zerop will work. Hence we must
5458 do the type conversion here. At this point, the constant is either
5459 zero or one, and the conversion to a signed type can never overflow.
5460 We could get an overflow if this conversion is done anywhere else. */
5461 if (TYPE_UNSIGNED (type))
5462 temp = fold_convert (signed_type_for (type), temp);
5463
5464 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5465 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5466 if (mask != 0)
5467 temp = const_binop (BIT_AND_EXPR, temp,
5468 fold_convert (TREE_TYPE (c), mask));
5469 /* If necessary, convert the type back to match the type of C. */
5470 if (TYPE_UNSIGNED (type))
5471 temp = fold_convert (type, temp);
5472
5473 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5474 }
5475 \f
5476 /* For an expression that has the form
5477 (A && B) || ~B
5478 or
5479 (A || B) && ~B,
5480 we can drop one of the inner expressions and simplify to
5481 A || ~B
5482 or
5483 A && ~B
5484 LOC is the location of the resulting expression. OP is the inner
5485 logical operation; the left-hand side in the examples above, while CMPOP
5486 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5487 removing a condition that guards another, as in
5488 (A != NULL && A->...) || A == NULL
5489 which we must not transform. If RHS_ONLY is true, only eliminate the
5490 right-most operand of the inner logical operation. */
5491
5492 static tree
5493 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5494 bool rhs_only)
5495 {
5496 tree type = TREE_TYPE (cmpop);
5497 enum tree_code code = TREE_CODE (cmpop);
5498 enum tree_code truthop_code = TREE_CODE (op);
5499 tree lhs = TREE_OPERAND (op, 0);
5500 tree rhs = TREE_OPERAND (op, 1);
5501 tree orig_lhs = lhs, orig_rhs = rhs;
5502 enum tree_code rhs_code = TREE_CODE (rhs);
5503 enum tree_code lhs_code = TREE_CODE (lhs);
5504 enum tree_code inv_code;
5505
5506 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5507 return NULL_TREE;
5508
5509 if (TREE_CODE_CLASS (code) != tcc_comparison)
5510 return NULL_TREE;
5511
5512 if (rhs_code == truthop_code)
5513 {
5514 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5515 if (newrhs != NULL_TREE)
5516 {
5517 rhs = newrhs;
5518 rhs_code = TREE_CODE (rhs);
5519 }
5520 }
5521 if (lhs_code == truthop_code && !rhs_only)
5522 {
5523 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5524 if (newlhs != NULL_TREE)
5525 {
5526 lhs = newlhs;
5527 lhs_code = TREE_CODE (lhs);
5528 }
5529 }
5530
5531 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5532 if (inv_code == rhs_code
5533 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5534 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5535 return lhs;
5536 if (!rhs_only && inv_code == lhs_code
5537 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5538 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5539 return rhs;
5540 if (rhs != orig_rhs || lhs != orig_lhs)
5541 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5542 lhs, rhs);
5543 return NULL_TREE;
5544 }
5545
5546 /* Find ways of folding logical expressions of LHS and RHS:
5547 Try to merge two comparisons to the same innermost item.
5548 Look for range tests like "ch >= '0' && ch <= '9'".
5549 Look for combinations of simple terms on machines with expensive branches
5550 and evaluate the RHS unconditionally.
5551
5552 For example, if we have p->a == 2 && p->b == 4 and we can make an
5553 object large enough to span both A and B, we can do this with a comparison
5554 against the object ANDed with the a mask.
5555
5556 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5557 operations to do this with one comparison.
5558
5559 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5560 function and the one above.
5561
5562 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5563 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5564
5565 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5566 two operands.
5567
5568 We return the simplified tree or 0 if no optimization is possible. */
5569
5570 static tree
5571 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5572 tree lhs, tree rhs)
5573 {
5574 /* If this is the "or" of two comparisons, we can do something if
5575 the comparisons are NE_EXPR. If this is the "and", we can do something
5576 if the comparisons are EQ_EXPR. I.e.,
5577 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5578
5579 WANTED_CODE is this operation code. For single bit fields, we can
5580 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5581 comparison for one-bit fields. */
5582
5583 enum tree_code wanted_code;
5584 enum tree_code lcode, rcode;
5585 tree ll_arg, lr_arg, rl_arg, rr_arg;
5586 tree ll_inner, lr_inner, rl_inner, rr_inner;
5587 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5588 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5589 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5590 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5591 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5592 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5593 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5594 scalar_int_mode lnmode, rnmode;
5595 tree ll_mask, lr_mask, rl_mask, rr_mask;
5596 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5597 tree l_const, r_const;
5598 tree lntype, rntype, result;
5599 HOST_WIDE_INT first_bit, end_bit;
5600 int volatilep;
5601
5602 /* Start by getting the comparison codes. Fail if anything is volatile.
5603 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5604 it were surrounded with a NE_EXPR. */
5605
5606 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5607 return 0;
5608
5609 lcode = TREE_CODE (lhs);
5610 rcode = TREE_CODE (rhs);
5611
5612 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5613 {
5614 lhs = build2 (NE_EXPR, truth_type, lhs,
5615 build_int_cst (TREE_TYPE (lhs), 0));
5616 lcode = NE_EXPR;
5617 }
5618
5619 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5620 {
5621 rhs = build2 (NE_EXPR, truth_type, rhs,
5622 build_int_cst (TREE_TYPE (rhs), 0));
5623 rcode = NE_EXPR;
5624 }
5625
5626 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5627 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5628 return 0;
5629
5630 ll_arg = TREE_OPERAND (lhs, 0);
5631 lr_arg = TREE_OPERAND (lhs, 1);
5632 rl_arg = TREE_OPERAND (rhs, 0);
5633 rr_arg = TREE_OPERAND (rhs, 1);
5634
5635 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5636 if (simple_operand_p (ll_arg)
5637 && simple_operand_p (lr_arg))
5638 {
5639 if (operand_equal_p (ll_arg, rl_arg, 0)
5640 && operand_equal_p (lr_arg, rr_arg, 0))
5641 {
5642 result = combine_comparisons (loc, code, lcode, rcode,
5643 truth_type, ll_arg, lr_arg);
5644 if (result)
5645 return result;
5646 }
5647 else if (operand_equal_p (ll_arg, rr_arg, 0)
5648 && operand_equal_p (lr_arg, rl_arg, 0))
5649 {
5650 result = combine_comparisons (loc, code, lcode,
5651 swap_tree_comparison (rcode),
5652 truth_type, ll_arg, lr_arg);
5653 if (result)
5654 return result;
5655 }
5656 }
5657
5658 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5659 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5660
5661 /* If the RHS can be evaluated unconditionally and its operands are
5662 simple, it wins to evaluate the RHS unconditionally on machines
5663 with expensive branches. In this case, this isn't a comparison
5664 that can be merged. */
5665
5666 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5667 false) >= 2
5668 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5669 && simple_operand_p (rl_arg)
5670 && simple_operand_p (rr_arg))
5671 {
5672 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5673 if (code == TRUTH_OR_EXPR
5674 && lcode == NE_EXPR && integer_zerop (lr_arg)
5675 && rcode == NE_EXPR && integer_zerop (rr_arg)
5676 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5677 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5678 return build2_loc (loc, NE_EXPR, truth_type,
5679 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5680 ll_arg, rl_arg),
5681 build_int_cst (TREE_TYPE (ll_arg), 0));
5682
5683 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5684 if (code == TRUTH_AND_EXPR
5685 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5686 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5687 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5688 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5689 return build2_loc (loc, EQ_EXPR, truth_type,
5690 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5691 ll_arg, rl_arg),
5692 build_int_cst (TREE_TYPE (ll_arg), 0));
5693 }
5694
5695 /* See if the comparisons can be merged. Then get all the parameters for
5696 each side. */
5697
5698 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5699 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5700 return 0;
5701
5702 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5703 volatilep = 0;
5704 ll_inner = decode_field_reference (loc, &ll_arg,
5705 &ll_bitsize, &ll_bitpos, &ll_mode,
5706 &ll_unsignedp, &ll_reversep, &volatilep,
5707 &ll_mask, &ll_and_mask);
5708 lr_inner = decode_field_reference (loc, &lr_arg,
5709 &lr_bitsize, &lr_bitpos, &lr_mode,
5710 &lr_unsignedp, &lr_reversep, &volatilep,
5711 &lr_mask, &lr_and_mask);
5712 rl_inner = decode_field_reference (loc, &rl_arg,
5713 &rl_bitsize, &rl_bitpos, &rl_mode,
5714 &rl_unsignedp, &rl_reversep, &volatilep,
5715 &rl_mask, &rl_and_mask);
5716 rr_inner = decode_field_reference (loc, &rr_arg,
5717 &rr_bitsize, &rr_bitpos, &rr_mode,
5718 &rr_unsignedp, &rr_reversep, &volatilep,
5719 &rr_mask, &rr_and_mask);
5720
5721 /* It must be true that the inner operation on the lhs of each
5722 comparison must be the same if we are to be able to do anything.
5723 Then see if we have constants. If not, the same must be true for
5724 the rhs's. */
5725 if (volatilep
5726 || ll_reversep != rl_reversep
5727 || ll_inner == 0 || rl_inner == 0
5728 || ! operand_equal_p (ll_inner, rl_inner, 0))
5729 return 0;
5730
5731 if (TREE_CODE (lr_arg) == INTEGER_CST
5732 && TREE_CODE (rr_arg) == INTEGER_CST)
5733 {
5734 l_const = lr_arg, r_const = rr_arg;
5735 lr_reversep = ll_reversep;
5736 }
5737 else if (lr_reversep != rr_reversep
5738 || lr_inner == 0 || rr_inner == 0
5739 || ! operand_equal_p (lr_inner, rr_inner, 0))
5740 return 0;
5741 else
5742 l_const = r_const = 0;
5743
5744 /* If either comparison code is not correct for our logical operation,
5745 fail. However, we can convert a one-bit comparison against zero into
5746 the opposite comparison against that bit being set in the field. */
5747
5748 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5749 if (lcode != wanted_code)
5750 {
5751 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5752 {
5753 /* Make the left operand unsigned, since we are only interested
5754 in the value of one bit. Otherwise we are doing the wrong
5755 thing below. */
5756 ll_unsignedp = 1;
5757 l_const = ll_mask;
5758 }
5759 else
5760 return 0;
5761 }
5762
5763 /* This is analogous to the code for l_const above. */
5764 if (rcode != wanted_code)
5765 {
5766 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5767 {
5768 rl_unsignedp = 1;
5769 r_const = rl_mask;
5770 }
5771 else
5772 return 0;
5773 }
5774
5775 /* See if we can find a mode that contains both fields being compared on
5776 the left. If we can't, fail. Otherwise, update all constants and masks
5777 to be relative to a field of that size. */
5778 first_bit = MIN (ll_bitpos, rl_bitpos);
5779 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5780 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5781 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
5782 volatilep, &lnmode))
5783 return 0;
5784
5785 lnbitsize = GET_MODE_BITSIZE (lnmode);
5786 lnbitpos = first_bit & ~ (lnbitsize - 1);
5787 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5788 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5789
5790 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5791 {
5792 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5793 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5794 }
5795
5796 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5797 size_int (xll_bitpos));
5798 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5799 size_int (xrl_bitpos));
5800
5801 if (l_const)
5802 {
5803 l_const = fold_convert_loc (loc, lntype, l_const);
5804 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5805 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5806 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5807 fold_build1_loc (loc, BIT_NOT_EXPR,
5808 lntype, ll_mask))))
5809 {
5810 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5811
5812 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5813 }
5814 }
5815 if (r_const)
5816 {
5817 r_const = fold_convert_loc (loc, lntype, r_const);
5818 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5819 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5820 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5821 fold_build1_loc (loc, BIT_NOT_EXPR,
5822 lntype, rl_mask))))
5823 {
5824 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5825
5826 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5827 }
5828 }
5829
5830 /* If the right sides are not constant, do the same for it. Also,
5831 disallow this optimization if a size or signedness mismatch occurs
5832 between the left and right sides. */
5833 if (l_const == 0)
5834 {
5835 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5836 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5837 /* Make sure the two fields on the right
5838 correspond to the left without being swapped. */
5839 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5840 return 0;
5841
5842 first_bit = MIN (lr_bitpos, rr_bitpos);
5843 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5844 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5845 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
5846 volatilep, &rnmode))
5847 return 0;
5848
5849 rnbitsize = GET_MODE_BITSIZE (rnmode);
5850 rnbitpos = first_bit & ~ (rnbitsize - 1);
5851 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5852 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5853
5854 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5855 {
5856 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5857 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5858 }
5859
5860 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5861 rntype, lr_mask),
5862 size_int (xlr_bitpos));
5863 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5864 rntype, rr_mask),
5865 size_int (xrr_bitpos));
5866
5867 /* Make a mask that corresponds to both fields being compared.
5868 Do this for both items being compared. If the operands are the
5869 same size and the bits being compared are in the same position
5870 then we can do this by masking both and comparing the masked
5871 results. */
5872 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5873 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5874 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5875 {
5876 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5877 lntype, lnbitsize, lnbitpos,
5878 ll_unsignedp || rl_unsignedp, ll_reversep);
5879 if (! all_ones_mask_p (ll_mask, lnbitsize))
5880 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5881
5882 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5883 rntype, rnbitsize, rnbitpos,
5884 lr_unsignedp || rr_unsignedp, lr_reversep);
5885 if (! all_ones_mask_p (lr_mask, rnbitsize))
5886 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5887
5888 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5889 }
5890
5891 /* There is still another way we can do something: If both pairs of
5892 fields being compared are adjacent, we may be able to make a wider
5893 field containing them both.
5894
5895 Note that we still must mask the lhs/rhs expressions. Furthermore,
5896 the mask must be shifted to account for the shift done by
5897 make_bit_field_ref. */
5898 if ((ll_bitsize + ll_bitpos == rl_bitpos
5899 && lr_bitsize + lr_bitpos == rr_bitpos)
5900 || (ll_bitpos == rl_bitpos + rl_bitsize
5901 && lr_bitpos == rr_bitpos + rr_bitsize))
5902 {
5903 tree type;
5904
5905 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5906 ll_bitsize + rl_bitsize,
5907 MIN (ll_bitpos, rl_bitpos),
5908 ll_unsignedp, ll_reversep);
5909 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5910 lr_bitsize + rr_bitsize,
5911 MIN (lr_bitpos, rr_bitpos),
5912 lr_unsignedp, lr_reversep);
5913
5914 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5915 size_int (MIN (xll_bitpos, xrl_bitpos)));
5916 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5917 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5918
5919 /* Convert to the smaller type before masking out unwanted bits. */
5920 type = lntype;
5921 if (lntype != rntype)
5922 {
5923 if (lnbitsize > rnbitsize)
5924 {
5925 lhs = fold_convert_loc (loc, rntype, lhs);
5926 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5927 type = rntype;
5928 }
5929 else if (lnbitsize < rnbitsize)
5930 {
5931 rhs = fold_convert_loc (loc, lntype, rhs);
5932 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5933 type = lntype;
5934 }
5935 }
5936
5937 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5938 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5939
5940 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5941 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5942
5943 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5944 }
5945
5946 return 0;
5947 }
5948
5949 /* Handle the case of comparisons with constants. If there is something in
5950 common between the masks, those bits of the constants must be the same.
5951 If not, the condition is always false. Test for this to avoid generating
5952 incorrect code below. */
5953 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5954 if (! integer_zerop (result)
5955 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5956 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5957 {
5958 if (wanted_code == NE_EXPR)
5959 {
5960 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5961 return constant_boolean_node (true, truth_type);
5962 }
5963 else
5964 {
5965 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5966 return constant_boolean_node (false, truth_type);
5967 }
5968 }
5969
5970 /* Construct the expression we will return. First get the component
5971 reference we will make. Unless the mask is all ones the width of
5972 that field, perform the mask operation. Then compare with the
5973 merged constant. */
5974 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5975 lntype, lnbitsize, lnbitpos,
5976 ll_unsignedp || rl_unsignedp, ll_reversep);
5977
5978 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5979 if (! all_ones_mask_p (ll_mask, lnbitsize))
5980 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5981
5982 return build2_loc (loc, wanted_code, truth_type, result,
5983 const_binop (BIT_IOR_EXPR, l_const, r_const));
5984 }
5985 \f
5986 /* T is an integer expression that is being multiplied, divided, or taken a
5987 modulus (CODE says which and what kind of divide or modulus) by a
5988 constant C. See if we can eliminate that operation by folding it with
5989 other operations already in T. WIDE_TYPE, if non-null, is a type that
5990 should be used for the computation if wider than our type.
5991
5992 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5993 (X * 2) + (Y * 4). We must, however, be assured that either the original
5994 expression would not overflow or that overflow is undefined for the type
5995 in the language in question.
5996
5997 If we return a non-null expression, it is an equivalent form of the
5998 original computation, but need not be in the original type.
5999
6000 We set *STRICT_OVERFLOW_P to true if the return values depends on
6001 signed overflow being undefined. Otherwise we do not change
6002 *STRICT_OVERFLOW_P. */
6003
6004 static tree
6005 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6006 bool *strict_overflow_p)
6007 {
6008 /* To avoid exponential search depth, refuse to allow recursion past
6009 three levels. Beyond that (1) it's highly unlikely that we'll find
6010 something interesting and (2) we've probably processed it before
6011 when we built the inner expression. */
6012
6013 static int depth;
6014 tree ret;
6015
6016 if (depth > 3)
6017 return NULL;
6018
6019 depth++;
6020 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6021 depth--;
6022
6023 return ret;
6024 }
6025
6026 static tree
6027 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6028 bool *strict_overflow_p)
6029 {
6030 tree type = TREE_TYPE (t);
6031 enum tree_code tcode = TREE_CODE (t);
6032 tree ctype = (wide_type != 0
6033 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6034 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6035 ? wide_type : type);
6036 tree t1, t2;
6037 int same_p = tcode == code;
6038 tree op0 = NULL_TREE, op1 = NULL_TREE;
6039 bool sub_strict_overflow_p;
6040
6041 /* Don't deal with constants of zero here; they confuse the code below. */
6042 if (integer_zerop (c))
6043 return NULL_TREE;
6044
6045 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6046 op0 = TREE_OPERAND (t, 0);
6047
6048 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6049 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6050
6051 /* Note that we need not handle conditional operations here since fold
6052 already handles those cases. So just do arithmetic here. */
6053 switch (tcode)
6054 {
6055 case INTEGER_CST:
6056 /* For a constant, we can always simplify if we are a multiply
6057 or (for divide and modulus) if it is a multiple of our constant. */
6058 if (code == MULT_EXPR
6059 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
6060 {
6061 tree tem = const_binop (code, fold_convert (ctype, t),
6062 fold_convert (ctype, c));
6063 /* If the multiplication overflowed, we lost information on it.
6064 See PR68142 and PR69845. */
6065 if (TREE_OVERFLOW (tem))
6066 return NULL_TREE;
6067 return tem;
6068 }
6069 break;
6070
6071 CASE_CONVERT: case NON_LVALUE_EXPR:
6072 /* If op0 is an expression ... */
6073 if ((COMPARISON_CLASS_P (op0)
6074 || UNARY_CLASS_P (op0)
6075 || BINARY_CLASS_P (op0)
6076 || VL_EXP_CLASS_P (op0)
6077 || EXPRESSION_CLASS_P (op0))
6078 /* ... and has wrapping overflow, and its type is smaller
6079 than ctype, then we cannot pass through as widening. */
6080 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6081 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6082 && (TYPE_PRECISION (ctype)
6083 > TYPE_PRECISION (TREE_TYPE (op0))))
6084 /* ... or this is a truncation (t is narrower than op0),
6085 then we cannot pass through this narrowing. */
6086 || (TYPE_PRECISION (type)
6087 < TYPE_PRECISION (TREE_TYPE (op0)))
6088 /* ... or signedness changes for division or modulus,
6089 then we cannot pass through this conversion. */
6090 || (code != MULT_EXPR
6091 && (TYPE_UNSIGNED (ctype)
6092 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6093 /* ... or has undefined overflow while the converted to
6094 type has not, we cannot do the operation in the inner type
6095 as that would introduce undefined overflow. */
6096 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6097 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6098 && !TYPE_OVERFLOW_UNDEFINED (type))))
6099 break;
6100
6101 /* Pass the constant down and see if we can make a simplification. If
6102 we can, replace this expression with the inner simplification for
6103 possible later conversion to our or some other type. */
6104 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6105 && TREE_CODE (t2) == INTEGER_CST
6106 && !TREE_OVERFLOW (t2)
6107 && (0 != (t1 = extract_muldiv (op0, t2, code,
6108 code == MULT_EXPR
6109 ? ctype : NULL_TREE,
6110 strict_overflow_p))))
6111 return t1;
6112 break;
6113
6114 case ABS_EXPR:
6115 /* If widening the type changes it from signed to unsigned, then we
6116 must avoid building ABS_EXPR itself as unsigned. */
6117 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6118 {
6119 tree cstype = (*signed_type_for) (ctype);
6120 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6121 != 0)
6122 {
6123 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6124 return fold_convert (ctype, t1);
6125 }
6126 break;
6127 }
6128 /* If the constant is negative, we cannot simplify this. */
6129 if (tree_int_cst_sgn (c) == -1)
6130 break;
6131 /* FALLTHROUGH */
6132 case NEGATE_EXPR:
6133 /* For division and modulus, type can't be unsigned, as e.g.
6134 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6135 For signed types, even with wrapping overflow, this is fine. */
6136 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6137 break;
6138 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6139 != 0)
6140 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6141 break;
6142
6143 case MIN_EXPR: case MAX_EXPR:
6144 /* If widening the type changes the signedness, then we can't perform
6145 this optimization as that changes the result. */
6146 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6147 break;
6148
6149 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6150 sub_strict_overflow_p = false;
6151 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6152 &sub_strict_overflow_p)) != 0
6153 && (t2 = extract_muldiv (op1, c, code, wide_type,
6154 &sub_strict_overflow_p)) != 0)
6155 {
6156 if (tree_int_cst_sgn (c) < 0)
6157 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6158 if (sub_strict_overflow_p)
6159 *strict_overflow_p = true;
6160 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6161 fold_convert (ctype, t2));
6162 }
6163 break;
6164
6165 case LSHIFT_EXPR: case RSHIFT_EXPR:
6166 /* If the second operand is constant, this is a multiplication
6167 or floor division, by a power of two, so we can treat it that
6168 way unless the multiplier or divisor overflows. Signed
6169 left-shift overflow is implementation-defined rather than
6170 undefined in C90, so do not convert signed left shift into
6171 multiplication. */
6172 if (TREE_CODE (op1) == INTEGER_CST
6173 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6174 /* const_binop may not detect overflow correctly,
6175 so check for it explicitly here. */
6176 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6177 && 0 != (t1 = fold_convert (ctype,
6178 const_binop (LSHIFT_EXPR,
6179 size_one_node,
6180 op1)))
6181 && !TREE_OVERFLOW (t1))
6182 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6183 ? MULT_EXPR : FLOOR_DIV_EXPR,
6184 ctype,
6185 fold_convert (ctype, op0),
6186 t1),
6187 c, code, wide_type, strict_overflow_p);
6188 break;
6189
6190 case PLUS_EXPR: case MINUS_EXPR:
6191 /* See if we can eliminate the operation on both sides. If we can, we
6192 can return a new PLUS or MINUS. If we can't, the only remaining
6193 cases where we can do anything are if the second operand is a
6194 constant. */
6195 sub_strict_overflow_p = false;
6196 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6197 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6198 if (t1 != 0 && t2 != 0
6199 && TYPE_OVERFLOW_WRAPS (ctype)
6200 && (code == MULT_EXPR
6201 /* If not multiplication, we can only do this if both operands
6202 are divisible by c. */
6203 || (multiple_of_p (ctype, op0, c)
6204 && multiple_of_p (ctype, op1, c))))
6205 {
6206 if (sub_strict_overflow_p)
6207 *strict_overflow_p = true;
6208 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6209 fold_convert (ctype, t2));
6210 }
6211
6212 /* If this was a subtraction, negate OP1 and set it to be an addition.
6213 This simplifies the logic below. */
6214 if (tcode == MINUS_EXPR)
6215 {
6216 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6217 /* If OP1 was not easily negatable, the constant may be OP0. */
6218 if (TREE_CODE (op0) == INTEGER_CST)
6219 {
6220 std::swap (op0, op1);
6221 std::swap (t1, t2);
6222 }
6223 }
6224
6225 if (TREE_CODE (op1) != INTEGER_CST)
6226 break;
6227
6228 /* If either OP1 or C are negative, this optimization is not safe for
6229 some of the division and remainder types while for others we need
6230 to change the code. */
6231 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6232 {
6233 if (code == CEIL_DIV_EXPR)
6234 code = FLOOR_DIV_EXPR;
6235 else if (code == FLOOR_DIV_EXPR)
6236 code = CEIL_DIV_EXPR;
6237 else if (code != MULT_EXPR
6238 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6239 break;
6240 }
6241
6242 /* If it's a multiply or a division/modulus operation of a multiple
6243 of our constant, do the operation and verify it doesn't overflow. */
6244 if (code == MULT_EXPR
6245 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6246 {
6247 op1 = const_binop (code, fold_convert (ctype, op1),
6248 fold_convert (ctype, c));
6249 /* We allow the constant to overflow with wrapping semantics. */
6250 if (op1 == 0
6251 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6252 break;
6253 }
6254 else
6255 break;
6256
6257 /* If we have an unsigned type, we cannot widen the operation since it
6258 will change the result if the original computation overflowed. */
6259 if (TYPE_UNSIGNED (ctype) && ctype != type)
6260 break;
6261
6262 /* The last case is if we are a multiply. In that case, we can
6263 apply the distributive law to commute the multiply and addition
6264 if the multiplication of the constants doesn't overflow
6265 and overflow is defined. With undefined overflow
6266 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6267 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6268 return fold_build2 (tcode, ctype,
6269 fold_build2 (code, ctype,
6270 fold_convert (ctype, op0),
6271 fold_convert (ctype, c)),
6272 op1);
6273
6274 break;
6275
6276 case MULT_EXPR:
6277 /* We have a special case here if we are doing something like
6278 (C * 8) % 4 since we know that's zero. */
6279 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6280 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6281 /* If the multiplication can overflow we cannot optimize this. */
6282 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6283 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6284 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6285 {
6286 *strict_overflow_p = true;
6287 return omit_one_operand (type, integer_zero_node, op0);
6288 }
6289
6290 /* ... fall through ... */
6291
6292 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6293 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6294 /* If we can extract our operation from the LHS, do so and return a
6295 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6296 do something only if the second operand is a constant. */
6297 if (same_p
6298 && TYPE_OVERFLOW_WRAPS (ctype)
6299 && (t1 = extract_muldiv (op0, c, code, wide_type,
6300 strict_overflow_p)) != 0)
6301 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6302 fold_convert (ctype, op1));
6303 else if (tcode == MULT_EXPR && code == MULT_EXPR
6304 && TYPE_OVERFLOW_WRAPS (ctype)
6305 && (t1 = extract_muldiv (op1, c, code, wide_type,
6306 strict_overflow_p)) != 0)
6307 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6308 fold_convert (ctype, t1));
6309 else if (TREE_CODE (op1) != INTEGER_CST)
6310 return 0;
6311
6312 /* If these are the same operation types, we can associate them
6313 assuming no overflow. */
6314 if (tcode == code)
6315 {
6316 bool overflow_p = false;
6317 bool overflow_mul_p;
6318 signop sign = TYPE_SIGN (ctype);
6319 unsigned prec = TYPE_PRECISION (ctype);
6320 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6321 wi::to_wide (c, prec),
6322 sign, &overflow_mul_p);
6323 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6324 if (overflow_mul_p
6325 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6326 overflow_p = true;
6327 if (!overflow_p)
6328 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6329 wide_int_to_tree (ctype, mul));
6330 }
6331
6332 /* If these operations "cancel" each other, we have the main
6333 optimizations of this pass, which occur when either constant is a
6334 multiple of the other, in which case we replace this with either an
6335 operation or CODE or TCODE.
6336
6337 If we have an unsigned type, we cannot do this since it will change
6338 the result if the original computation overflowed. */
6339 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6340 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6341 || (tcode == MULT_EXPR
6342 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6343 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6344 && code != MULT_EXPR)))
6345 {
6346 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6347 {
6348 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6349 *strict_overflow_p = true;
6350 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6351 fold_convert (ctype,
6352 const_binop (TRUNC_DIV_EXPR,
6353 op1, c)));
6354 }
6355 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6356 {
6357 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6358 *strict_overflow_p = true;
6359 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6360 fold_convert (ctype,
6361 const_binop (TRUNC_DIV_EXPR,
6362 c, op1)));
6363 }
6364 }
6365 break;
6366
6367 default:
6368 break;
6369 }
6370
6371 return 0;
6372 }
6373 \f
6374 /* Return a node which has the indicated constant VALUE (either 0 or
6375 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6376 and is of the indicated TYPE. */
6377
6378 tree
6379 constant_boolean_node (bool value, tree type)
6380 {
6381 if (type == integer_type_node)
6382 return value ? integer_one_node : integer_zero_node;
6383 else if (type == boolean_type_node)
6384 return value ? boolean_true_node : boolean_false_node;
6385 else if (TREE_CODE (type) == VECTOR_TYPE)
6386 return build_vector_from_val (type,
6387 build_int_cst (TREE_TYPE (type),
6388 value ? -1 : 0));
6389 else
6390 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6391 }
6392
6393
6394 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6395 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6396 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6397 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6398 COND is the first argument to CODE; otherwise (as in the example
6399 given here), it is the second argument. TYPE is the type of the
6400 original expression. Return NULL_TREE if no simplification is
6401 possible. */
6402
6403 static tree
6404 fold_binary_op_with_conditional_arg (location_t loc,
6405 enum tree_code code,
6406 tree type, tree op0, tree op1,
6407 tree cond, tree arg, int cond_first_p)
6408 {
6409 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6410 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6411 tree test, true_value, false_value;
6412 tree lhs = NULL_TREE;
6413 tree rhs = NULL_TREE;
6414 enum tree_code cond_code = COND_EXPR;
6415
6416 if (TREE_CODE (cond) == COND_EXPR
6417 || TREE_CODE (cond) == VEC_COND_EXPR)
6418 {
6419 test = TREE_OPERAND (cond, 0);
6420 true_value = TREE_OPERAND (cond, 1);
6421 false_value = TREE_OPERAND (cond, 2);
6422 /* If this operand throws an expression, then it does not make
6423 sense to try to perform a logical or arithmetic operation
6424 involving it. */
6425 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6426 lhs = true_value;
6427 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6428 rhs = false_value;
6429 }
6430 else if (!(TREE_CODE (type) != VECTOR_TYPE
6431 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6432 {
6433 tree testtype = TREE_TYPE (cond);
6434 test = cond;
6435 true_value = constant_boolean_node (true, testtype);
6436 false_value = constant_boolean_node (false, testtype);
6437 }
6438 else
6439 /* Detect the case of mixing vector and scalar types - bail out. */
6440 return NULL_TREE;
6441
6442 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6443 cond_code = VEC_COND_EXPR;
6444
6445 /* This transformation is only worthwhile if we don't have to wrap ARG
6446 in a SAVE_EXPR and the operation can be simplified without recursing
6447 on at least one of the branches once its pushed inside the COND_EXPR. */
6448 if (!TREE_CONSTANT (arg)
6449 && (TREE_SIDE_EFFECTS (arg)
6450 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6451 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6452 return NULL_TREE;
6453
6454 arg = fold_convert_loc (loc, arg_type, arg);
6455 if (lhs == 0)
6456 {
6457 true_value = fold_convert_loc (loc, cond_type, true_value);
6458 if (cond_first_p)
6459 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6460 else
6461 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6462 }
6463 if (rhs == 0)
6464 {
6465 false_value = fold_convert_loc (loc, cond_type, false_value);
6466 if (cond_first_p)
6467 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6468 else
6469 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6470 }
6471
6472 /* Check that we have simplified at least one of the branches. */
6473 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6474 return NULL_TREE;
6475
6476 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6477 }
6478
6479 \f
6480 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6481
6482 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6483 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6484 ADDEND is the same as X.
6485
6486 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6487 and finite. The problematic cases are when X is zero, and its mode
6488 has signed zeros. In the case of rounding towards -infinity,
6489 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6490 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6491
6492 bool
6493 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6494 {
6495 if (!real_zerop (addend))
6496 return false;
6497
6498 /* Don't allow the fold with -fsignaling-nans. */
6499 if (HONOR_SNANS (element_mode (type)))
6500 return false;
6501
6502 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6503 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6504 return true;
6505
6506 /* In a vector or complex, we would need to check the sign of all zeros. */
6507 if (TREE_CODE (addend) != REAL_CST)
6508 return false;
6509
6510 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6511 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6512 negate = !negate;
6513
6514 /* The mode has signed zeros, and we have to honor their sign.
6515 In this situation, there is only one case we can return true for.
6516 X - 0 is the same as X unless rounding towards -infinity is
6517 supported. */
6518 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6519 }
6520
6521 /* Subroutine of match.pd that optimizes comparisons of a division by
6522 a nonzero integer constant against an integer constant, i.e.
6523 X/C1 op C2.
6524
6525 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6526 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6527
6528 enum tree_code
6529 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
6530 tree *hi, bool *neg_overflow)
6531 {
6532 tree prod, tmp, type = TREE_TYPE (c1);
6533 signop sign = TYPE_SIGN (type);
6534 bool overflow;
6535
6536 /* We have to do this the hard way to detect unsigned overflow.
6537 prod = int_const_binop (MULT_EXPR, c1, c2); */
6538 wide_int val = wi::mul (c1, c2, sign, &overflow);
6539 prod = force_fit_type (type, val, -1, overflow);
6540 *neg_overflow = false;
6541
6542 if (sign == UNSIGNED)
6543 {
6544 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6545 *lo = prod;
6546
6547 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6548 val = wi::add (prod, tmp, sign, &overflow);
6549 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
6550 }
6551 else if (tree_int_cst_sgn (c1) >= 0)
6552 {
6553 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6554 switch (tree_int_cst_sgn (c2))
6555 {
6556 case -1:
6557 *neg_overflow = true;
6558 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
6559 *hi = prod;
6560 break;
6561
6562 case 0:
6563 *lo = fold_negate_const (tmp, type);
6564 *hi = tmp;
6565 break;
6566
6567 case 1:
6568 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
6569 *lo = prod;
6570 break;
6571
6572 default:
6573 gcc_unreachable ();
6574 }
6575 }
6576 else
6577 {
6578 /* A negative divisor reverses the relational operators. */
6579 code = swap_tree_comparison (code);
6580
6581 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
6582 switch (tree_int_cst_sgn (c2))
6583 {
6584 case -1:
6585 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
6586 *lo = prod;
6587 break;
6588
6589 case 0:
6590 *hi = fold_negate_const (tmp, type);
6591 *lo = tmp;
6592 break;
6593
6594 case 1:
6595 *neg_overflow = true;
6596 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
6597 *hi = prod;
6598 break;
6599
6600 default:
6601 gcc_unreachable ();
6602 }
6603 }
6604
6605 if (code != EQ_EXPR && code != NE_EXPR)
6606 return code;
6607
6608 if (TREE_OVERFLOW (*lo)
6609 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
6610 *lo = NULL_TREE;
6611 if (TREE_OVERFLOW (*hi)
6612 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
6613 *hi = NULL_TREE;
6614
6615 return code;
6616 }
6617
6618
6619 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6620 equality/inequality test, then return a simplified form of the test
6621 using a sign testing. Otherwise return NULL. TYPE is the desired
6622 result type. */
6623
6624 static tree
6625 fold_single_bit_test_into_sign_test (location_t loc,
6626 enum tree_code code, tree arg0, tree arg1,
6627 tree result_type)
6628 {
6629 /* If this is testing a single bit, we can optimize the test. */
6630 if ((code == NE_EXPR || code == EQ_EXPR)
6631 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6632 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6633 {
6634 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6635 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6636 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6637
6638 if (arg00 != NULL_TREE
6639 /* This is only a win if casting to a signed type is cheap,
6640 i.e. when arg00's type is not a partial mode. */
6641 && type_has_mode_precision_p (TREE_TYPE (arg00)))
6642 {
6643 tree stype = signed_type_for (TREE_TYPE (arg00));
6644 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6645 result_type,
6646 fold_convert_loc (loc, stype, arg00),
6647 build_int_cst (stype, 0));
6648 }
6649 }
6650
6651 return NULL_TREE;
6652 }
6653
6654 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6655 equality/inequality test, then return a simplified form of
6656 the test using shifts and logical operations. Otherwise return
6657 NULL. TYPE is the desired result type. */
6658
6659 tree
6660 fold_single_bit_test (location_t loc, enum tree_code code,
6661 tree arg0, tree arg1, tree result_type)
6662 {
6663 /* If this is testing a single bit, we can optimize the test. */
6664 if ((code == NE_EXPR || code == EQ_EXPR)
6665 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6666 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6667 {
6668 tree inner = TREE_OPERAND (arg0, 0);
6669 tree type = TREE_TYPE (arg0);
6670 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6671 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
6672 int ops_unsigned;
6673 tree signed_type, unsigned_type, intermediate_type;
6674 tree tem, one;
6675
6676 /* First, see if we can fold the single bit test into a sign-bit
6677 test. */
6678 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6679 result_type);
6680 if (tem)
6681 return tem;
6682
6683 /* Otherwise we have (A & C) != 0 where C is a single bit,
6684 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6685 Similarly for (A & C) == 0. */
6686
6687 /* If INNER is a right shift of a constant and it plus BITNUM does
6688 not overflow, adjust BITNUM and INNER. */
6689 if (TREE_CODE (inner) == RSHIFT_EXPR
6690 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6691 && bitnum < TYPE_PRECISION (type)
6692 && wi::ltu_p (TREE_OPERAND (inner, 1),
6693 TYPE_PRECISION (type) - bitnum))
6694 {
6695 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6696 inner = TREE_OPERAND (inner, 0);
6697 }
6698
6699 /* If we are going to be able to omit the AND below, we must do our
6700 operations as unsigned. If we must use the AND, we have a choice.
6701 Normally unsigned is faster, but for some machines signed is. */
6702 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6703 && !flag_syntax_only) ? 0 : 1;
6704
6705 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6706 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6707 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6708 inner = fold_convert_loc (loc, intermediate_type, inner);
6709
6710 if (bitnum != 0)
6711 inner = build2 (RSHIFT_EXPR, intermediate_type,
6712 inner, size_int (bitnum));
6713
6714 one = build_int_cst (intermediate_type, 1);
6715
6716 if (code == EQ_EXPR)
6717 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6718
6719 /* Put the AND last so it can combine with more things. */
6720 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6721
6722 /* Make sure to return the proper type. */
6723 inner = fold_convert_loc (loc, result_type, inner);
6724
6725 return inner;
6726 }
6727 return NULL_TREE;
6728 }
6729
6730 /* Test whether it is preferable two swap two operands, ARG0 and
6731 ARG1, for example because ARG0 is an integer constant and ARG1
6732 isn't. */
6733
6734 bool
6735 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6736 {
6737 if (CONSTANT_CLASS_P (arg1))
6738 return 0;
6739 if (CONSTANT_CLASS_P (arg0))
6740 return 1;
6741
6742 STRIP_NOPS (arg0);
6743 STRIP_NOPS (arg1);
6744
6745 if (TREE_CONSTANT (arg1))
6746 return 0;
6747 if (TREE_CONSTANT (arg0))
6748 return 1;
6749
6750 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6751 for commutative and comparison operators. Ensuring a canonical
6752 form allows the optimizers to find additional redundancies without
6753 having to explicitly check for both orderings. */
6754 if (TREE_CODE (arg0) == SSA_NAME
6755 && TREE_CODE (arg1) == SSA_NAME
6756 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6757 return 1;
6758
6759 /* Put SSA_NAMEs last. */
6760 if (TREE_CODE (arg1) == SSA_NAME)
6761 return 0;
6762 if (TREE_CODE (arg0) == SSA_NAME)
6763 return 1;
6764
6765 /* Put variables last. */
6766 if (DECL_P (arg1))
6767 return 0;
6768 if (DECL_P (arg0))
6769 return 1;
6770
6771 return 0;
6772 }
6773
6774
6775 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6776 means A >= Y && A != MAX, but in this case we know that
6777 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6778
6779 static tree
6780 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6781 {
6782 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6783
6784 if (TREE_CODE (bound) == LT_EXPR)
6785 a = TREE_OPERAND (bound, 0);
6786 else if (TREE_CODE (bound) == GT_EXPR)
6787 a = TREE_OPERAND (bound, 1);
6788 else
6789 return NULL_TREE;
6790
6791 typea = TREE_TYPE (a);
6792 if (!INTEGRAL_TYPE_P (typea)
6793 && !POINTER_TYPE_P (typea))
6794 return NULL_TREE;
6795
6796 if (TREE_CODE (ineq) == LT_EXPR)
6797 {
6798 a1 = TREE_OPERAND (ineq, 1);
6799 y = TREE_OPERAND (ineq, 0);
6800 }
6801 else if (TREE_CODE (ineq) == GT_EXPR)
6802 {
6803 a1 = TREE_OPERAND (ineq, 0);
6804 y = TREE_OPERAND (ineq, 1);
6805 }
6806 else
6807 return NULL_TREE;
6808
6809 if (TREE_TYPE (a1) != typea)
6810 return NULL_TREE;
6811
6812 if (POINTER_TYPE_P (typea))
6813 {
6814 /* Convert the pointer types into integer before taking the difference. */
6815 tree ta = fold_convert_loc (loc, ssizetype, a);
6816 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6817 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6818 }
6819 else
6820 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6821
6822 if (!diff || !integer_onep (diff))
6823 return NULL_TREE;
6824
6825 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6826 }
6827
6828 /* Fold a sum or difference of at least one multiplication.
6829 Returns the folded tree or NULL if no simplification could be made. */
6830
6831 static tree
6832 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6833 tree arg0, tree arg1)
6834 {
6835 tree arg00, arg01, arg10, arg11;
6836 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6837
6838 /* (A * C) +- (B * C) -> (A+-B) * C.
6839 (A * C) +- A -> A * (C+-1).
6840 We are most concerned about the case where C is a constant,
6841 but other combinations show up during loop reduction. Since
6842 it is not difficult, try all four possibilities. */
6843
6844 if (TREE_CODE (arg0) == MULT_EXPR)
6845 {
6846 arg00 = TREE_OPERAND (arg0, 0);
6847 arg01 = TREE_OPERAND (arg0, 1);
6848 }
6849 else if (TREE_CODE (arg0) == INTEGER_CST)
6850 {
6851 arg00 = build_one_cst (type);
6852 arg01 = arg0;
6853 }
6854 else
6855 {
6856 /* We cannot generate constant 1 for fract. */
6857 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6858 return NULL_TREE;
6859 arg00 = arg0;
6860 arg01 = build_one_cst (type);
6861 }
6862 if (TREE_CODE (arg1) == MULT_EXPR)
6863 {
6864 arg10 = TREE_OPERAND (arg1, 0);
6865 arg11 = TREE_OPERAND (arg1, 1);
6866 }
6867 else if (TREE_CODE (arg1) == INTEGER_CST)
6868 {
6869 arg10 = build_one_cst (type);
6870 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6871 the purpose of this canonicalization. */
6872 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6873 && negate_expr_p (arg1)
6874 && code == PLUS_EXPR)
6875 {
6876 arg11 = negate_expr (arg1);
6877 code = MINUS_EXPR;
6878 }
6879 else
6880 arg11 = arg1;
6881 }
6882 else
6883 {
6884 /* We cannot generate constant 1 for fract. */
6885 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6886 return NULL_TREE;
6887 arg10 = arg1;
6888 arg11 = build_one_cst (type);
6889 }
6890 same = NULL_TREE;
6891
6892 /* Prefer factoring a common non-constant. */
6893 if (operand_equal_p (arg00, arg10, 0))
6894 same = arg00, alt0 = arg01, alt1 = arg11;
6895 else if (operand_equal_p (arg01, arg11, 0))
6896 same = arg01, alt0 = arg00, alt1 = arg10;
6897 else if (operand_equal_p (arg00, arg11, 0))
6898 same = arg00, alt0 = arg01, alt1 = arg10;
6899 else if (operand_equal_p (arg01, arg10, 0))
6900 same = arg01, alt0 = arg00, alt1 = arg11;
6901
6902 /* No identical multiplicands; see if we can find a common
6903 power-of-two factor in non-power-of-two multiplies. This
6904 can help in multi-dimensional array access. */
6905 else if (tree_fits_shwi_p (arg01)
6906 && tree_fits_shwi_p (arg11))
6907 {
6908 HOST_WIDE_INT int01, int11, tmp;
6909 bool swap = false;
6910 tree maybe_same;
6911 int01 = tree_to_shwi (arg01);
6912 int11 = tree_to_shwi (arg11);
6913
6914 /* Move min of absolute values to int11. */
6915 if (absu_hwi (int01) < absu_hwi (int11))
6916 {
6917 tmp = int01, int01 = int11, int11 = tmp;
6918 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6919 maybe_same = arg01;
6920 swap = true;
6921 }
6922 else
6923 maybe_same = arg11;
6924
6925 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6926 /* The remainder should not be a constant, otherwise we
6927 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6928 increased the number of multiplications necessary. */
6929 && TREE_CODE (arg10) != INTEGER_CST)
6930 {
6931 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6932 build_int_cst (TREE_TYPE (arg00),
6933 int01 / int11));
6934 alt1 = arg10;
6935 same = maybe_same;
6936 if (swap)
6937 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6938 }
6939 }
6940
6941 if (!same)
6942 return NULL_TREE;
6943
6944 if (! INTEGRAL_TYPE_P (type)
6945 || TYPE_OVERFLOW_WRAPS (type)
6946 /* We are neither factoring zero nor minus one. */
6947 || TREE_CODE (same) == INTEGER_CST)
6948 return fold_build2_loc (loc, MULT_EXPR, type,
6949 fold_build2_loc (loc, code, type,
6950 fold_convert_loc (loc, type, alt0),
6951 fold_convert_loc (loc, type, alt1)),
6952 fold_convert_loc (loc, type, same));
6953
6954 /* Same may be zero and thus the operation 'code' may overflow. Likewise
6955 same may be minus one and thus the multiplication may overflow. Perform
6956 the operations in an unsigned type. */
6957 tree utype = unsigned_type_for (type);
6958 tree tem = fold_build2_loc (loc, code, utype,
6959 fold_convert_loc (loc, utype, alt0),
6960 fold_convert_loc (loc, utype, alt1));
6961 /* If the sum evaluated to a constant that is not -INF the multiplication
6962 cannot overflow. */
6963 if (TREE_CODE (tem) == INTEGER_CST
6964 && ! wi::eq_p (tem, wi::min_value (TYPE_PRECISION (utype), SIGNED)))
6965 return fold_build2_loc (loc, MULT_EXPR, type,
6966 fold_convert (type, tem), same);
6967
6968 return fold_convert_loc (loc, type,
6969 fold_build2_loc (loc, MULT_EXPR, utype, tem,
6970 fold_convert_loc (loc, utype, same)));
6971 }
6972
6973 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6974 specified by EXPR into the buffer PTR of length LEN bytes.
6975 Return the number of bytes placed in the buffer, or zero
6976 upon failure. */
6977
6978 static int
6979 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6980 {
6981 tree type = TREE_TYPE (expr);
6982 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
6983 int byte, offset, word, words;
6984 unsigned char value;
6985
6986 if ((off == -1 && total_bytes > len)
6987 || off >= total_bytes)
6988 return 0;
6989 if (off == -1)
6990 off = 0;
6991 words = total_bytes / UNITS_PER_WORD;
6992
6993 for (byte = 0; byte < total_bytes; byte++)
6994 {
6995 int bitpos = byte * BITS_PER_UNIT;
6996 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6997 number of bytes. */
6998 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6999
7000 if (total_bytes > UNITS_PER_WORD)
7001 {
7002 word = byte / UNITS_PER_WORD;
7003 if (WORDS_BIG_ENDIAN)
7004 word = (words - 1) - word;
7005 offset = word * UNITS_PER_WORD;
7006 if (BYTES_BIG_ENDIAN)
7007 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7008 else
7009 offset += byte % UNITS_PER_WORD;
7010 }
7011 else
7012 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7013 if (offset >= off
7014 && offset - off < len)
7015 ptr[offset - off] = value;
7016 }
7017 return MIN (len, total_bytes - off);
7018 }
7019
7020
7021 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7022 specified by EXPR into the buffer PTR of length LEN bytes.
7023 Return the number of bytes placed in the buffer, or zero
7024 upon failure. */
7025
7026 static int
7027 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7028 {
7029 tree type = TREE_TYPE (expr);
7030 machine_mode mode = TYPE_MODE (type);
7031 int total_bytes = GET_MODE_SIZE (mode);
7032 FIXED_VALUE_TYPE value;
7033 tree i_value, i_type;
7034
7035 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7036 return 0;
7037
7038 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7039
7040 if (NULL_TREE == i_type
7041 || TYPE_PRECISION (i_type) != total_bytes)
7042 return 0;
7043
7044 value = TREE_FIXED_CST (expr);
7045 i_value = double_int_to_tree (i_type, value.data);
7046
7047 return native_encode_int (i_value, ptr, len, off);
7048 }
7049
7050
7051 /* Subroutine of native_encode_expr. Encode the REAL_CST
7052 specified by EXPR into the buffer PTR of length LEN bytes.
7053 Return the number of bytes placed in the buffer, or zero
7054 upon failure. */
7055
7056 static int
7057 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7058 {
7059 tree type = TREE_TYPE (expr);
7060 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7061 int byte, offset, word, words, bitpos;
7062 unsigned char value;
7063
7064 /* There are always 32 bits in each long, no matter the size of
7065 the hosts long. We handle floating point representations with
7066 up to 192 bits. */
7067 long tmp[6];
7068
7069 if ((off == -1 && total_bytes > len)
7070 || off >= total_bytes)
7071 return 0;
7072 if (off == -1)
7073 off = 0;
7074 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7075
7076 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7077
7078 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7079 bitpos += BITS_PER_UNIT)
7080 {
7081 byte = (bitpos / BITS_PER_UNIT) & 3;
7082 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7083
7084 if (UNITS_PER_WORD < 4)
7085 {
7086 word = byte / UNITS_PER_WORD;
7087 if (WORDS_BIG_ENDIAN)
7088 word = (words - 1) - word;
7089 offset = word * UNITS_PER_WORD;
7090 if (BYTES_BIG_ENDIAN)
7091 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7092 else
7093 offset += byte % UNITS_PER_WORD;
7094 }
7095 else
7096 {
7097 offset = byte;
7098 if (BYTES_BIG_ENDIAN)
7099 {
7100 /* Reverse bytes within each long, or within the entire float
7101 if it's smaller than a long (for HFmode). */
7102 offset = MIN (3, total_bytes - 1) - offset;
7103 gcc_assert (offset >= 0);
7104 }
7105 }
7106 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7107 if (offset >= off
7108 && offset - off < len)
7109 ptr[offset - off] = value;
7110 }
7111 return MIN (len, total_bytes - off);
7112 }
7113
7114 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7115 specified by EXPR into the buffer PTR of length LEN bytes.
7116 Return the number of bytes placed in the buffer, or zero
7117 upon failure. */
7118
7119 static int
7120 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7121 {
7122 int rsize, isize;
7123 tree part;
7124
7125 part = TREE_REALPART (expr);
7126 rsize = native_encode_expr (part, ptr, len, off);
7127 if (off == -1
7128 && rsize == 0)
7129 return 0;
7130 part = TREE_IMAGPART (expr);
7131 if (off != -1)
7132 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7133 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7134 if (off == -1
7135 && isize != rsize)
7136 return 0;
7137 return rsize + isize;
7138 }
7139
7140
7141 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7142 specified by EXPR into the buffer PTR of length LEN bytes.
7143 Return the number of bytes placed in the buffer, or zero
7144 upon failure. */
7145
7146 static int
7147 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7148 {
7149 unsigned i, count;
7150 int size, offset;
7151 tree itype, elem;
7152
7153 offset = 0;
7154 count = VECTOR_CST_NELTS (expr);
7155 itype = TREE_TYPE (TREE_TYPE (expr));
7156 size = GET_MODE_SIZE (TYPE_MODE (itype));
7157 for (i = 0; i < count; i++)
7158 {
7159 if (off >= size)
7160 {
7161 off -= size;
7162 continue;
7163 }
7164 elem = VECTOR_CST_ELT (expr, i);
7165 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7166 if ((off == -1 && res != size)
7167 || res == 0)
7168 return 0;
7169 offset += res;
7170 if (offset >= len)
7171 return offset;
7172 if (off != -1)
7173 off = 0;
7174 }
7175 return offset;
7176 }
7177
7178
7179 /* Subroutine of native_encode_expr. Encode the STRING_CST
7180 specified by EXPR into the buffer PTR of length LEN bytes.
7181 Return the number of bytes placed in the buffer, or zero
7182 upon failure. */
7183
7184 static int
7185 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7186 {
7187 tree type = TREE_TYPE (expr);
7188 HOST_WIDE_INT total_bytes;
7189
7190 if (TREE_CODE (type) != ARRAY_TYPE
7191 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7192 || (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (type)))
7193 != BITS_PER_UNIT)
7194 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7195 return 0;
7196 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7197 if ((off == -1 && total_bytes > len)
7198 || off >= total_bytes)
7199 return 0;
7200 if (off == -1)
7201 off = 0;
7202 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7203 {
7204 int written = 0;
7205 if (off < TREE_STRING_LENGTH (expr))
7206 {
7207 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7208 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7209 }
7210 memset (ptr + written, 0,
7211 MIN (total_bytes - written, len - written));
7212 }
7213 else
7214 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7215 return MIN (total_bytes - off, len);
7216 }
7217
7218
7219 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7220 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7221 buffer PTR of length LEN bytes. If OFF is not -1 then start
7222 the encoding at byte offset OFF and encode at most LEN bytes.
7223 Return the number of bytes placed in the buffer, or zero upon failure. */
7224
7225 int
7226 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7227 {
7228 /* We don't support starting at negative offset and -1 is special. */
7229 if (off < -1)
7230 return 0;
7231
7232 switch (TREE_CODE (expr))
7233 {
7234 case INTEGER_CST:
7235 return native_encode_int (expr, ptr, len, off);
7236
7237 case REAL_CST:
7238 return native_encode_real (expr, ptr, len, off);
7239
7240 case FIXED_CST:
7241 return native_encode_fixed (expr, ptr, len, off);
7242
7243 case COMPLEX_CST:
7244 return native_encode_complex (expr, ptr, len, off);
7245
7246 case VECTOR_CST:
7247 return native_encode_vector (expr, ptr, len, off);
7248
7249 case STRING_CST:
7250 return native_encode_string (expr, ptr, len, off);
7251
7252 default:
7253 return 0;
7254 }
7255 }
7256
7257
7258 /* Subroutine of native_interpret_expr. Interpret the contents of
7259 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7260 If the buffer cannot be interpreted, return NULL_TREE. */
7261
7262 static tree
7263 native_interpret_int (tree type, const unsigned char *ptr, int len)
7264 {
7265 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7266
7267 if (total_bytes > len
7268 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7269 return NULL_TREE;
7270
7271 wide_int result = wi::from_buffer (ptr, total_bytes);
7272
7273 return wide_int_to_tree (type, result);
7274 }
7275
7276
7277 /* Subroutine of native_interpret_expr. Interpret the contents of
7278 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7279 If the buffer cannot be interpreted, return NULL_TREE. */
7280
7281 static tree
7282 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7283 {
7284 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7285 double_int result;
7286 FIXED_VALUE_TYPE fixed_value;
7287
7288 if (total_bytes > len
7289 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7290 return NULL_TREE;
7291
7292 result = double_int::from_buffer (ptr, total_bytes);
7293 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7294
7295 return build_fixed (type, fixed_value);
7296 }
7297
7298
7299 /* Subroutine of native_interpret_expr. Interpret the contents of
7300 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7301 If the buffer cannot be interpreted, return NULL_TREE. */
7302
7303 static tree
7304 native_interpret_real (tree type, const unsigned char *ptr, int len)
7305 {
7306 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7307 int total_bytes = GET_MODE_SIZE (mode);
7308 unsigned char value;
7309 /* There are always 32 bits in each long, no matter the size of
7310 the hosts long. We handle floating point representations with
7311 up to 192 bits. */
7312 REAL_VALUE_TYPE r;
7313 long tmp[6];
7314
7315 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7316 if (total_bytes > len || total_bytes > 24)
7317 return NULL_TREE;
7318 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7319
7320 memset (tmp, 0, sizeof (tmp));
7321 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7322 bitpos += BITS_PER_UNIT)
7323 {
7324 /* Both OFFSET and BYTE index within a long;
7325 bitpos indexes the whole float. */
7326 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7327 if (UNITS_PER_WORD < 4)
7328 {
7329 int word = byte / UNITS_PER_WORD;
7330 if (WORDS_BIG_ENDIAN)
7331 word = (words - 1) - word;
7332 offset = word * UNITS_PER_WORD;
7333 if (BYTES_BIG_ENDIAN)
7334 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7335 else
7336 offset += byte % UNITS_PER_WORD;
7337 }
7338 else
7339 {
7340 offset = byte;
7341 if (BYTES_BIG_ENDIAN)
7342 {
7343 /* Reverse bytes within each long, or within the entire float
7344 if it's smaller than a long (for HFmode). */
7345 offset = MIN (3, total_bytes - 1) - offset;
7346 gcc_assert (offset >= 0);
7347 }
7348 }
7349 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7350
7351 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7352 }
7353
7354 real_from_target (&r, tmp, mode);
7355 return build_real (type, r);
7356 }
7357
7358
7359 /* Subroutine of native_interpret_expr. Interpret the contents of
7360 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7361 If the buffer cannot be interpreted, return NULL_TREE. */
7362
7363 static tree
7364 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7365 {
7366 tree etype, rpart, ipart;
7367 int size;
7368
7369 etype = TREE_TYPE (type);
7370 size = GET_MODE_SIZE (TYPE_MODE (etype));
7371 if (size * 2 > len)
7372 return NULL_TREE;
7373 rpart = native_interpret_expr (etype, ptr, size);
7374 if (!rpart)
7375 return NULL_TREE;
7376 ipart = native_interpret_expr (etype, ptr+size, size);
7377 if (!ipart)
7378 return NULL_TREE;
7379 return build_complex (type, rpart, ipart);
7380 }
7381
7382
7383 /* Subroutine of native_interpret_expr. Interpret the contents of
7384 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7385 If the buffer cannot be interpreted, return NULL_TREE. */
7386
7387 static tree
7388 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7389 {
7390 tree etype, elem;
7391 int i, size, count;
7392 tree *elements;
7393
7394 etype = TREE_TYPE (type);
7395 size = GET_MODE_SIZE (TYPE_MODE (etype));
7396 count = TYPE_VECTOR_SUBPARTS (type);
7397 if (size * count > len)
7398 return NULL_TREE;
7399
7400 elements = XALLOCAVEC (tree, count);
7401 for (i = count - 1; i >= 0; i--)
7402 {
7403 elem = native_interpret_expr (etype, ptr+(i*size), size);
7404 if (!elem)
7405 return NULL_TREE;
7406 elements[i] = elem;
7407 }
7408 return build_vector (type, elements);
7409 }
7410
7411
7412 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7413 the buffer PTR of length LEN as a constant of type TYPE. For
7414 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7415 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7416 return NULL_TREE. */
7417
7418 tree
7419 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7420 {
7421 switch (TREE_CODE (type))
7422 {
7423 case INTEGER_TYPE:
7424 case ENUMERAL_TYPE:
7425 case BOOLEAN_TYPE:
7426 case POINTER_TYPE:
7427 case REFERENCE_TYPE:
7428 return native_interpret_int (type, ptr, len);
7429
7430 case REAL_TYPE:
7431 return native_interpret_real (type, ptr, len);
7432
7433 case FIXED_POINT_TYPE:
7434 return native_interpret_fixed (type, ptr, len);
7435
7436 case COMPLEX_TYPE:
7437 return native_interpret_complex (type, ptr, len);
7438
7439 case VECTOR_TYPE:
7440 return native_interpret_vector (type, ptr, len);
7441
7442 default:
7443 return NULL_TREE;
7444 }
7445 }
7446
7447 /* Returns true if we can interpret the contents of a native encoding
7448 as TYPE. */
7449
7450 static bool
7451 can_native_interpret_type_p (tree type)
7452 {
7453 switch (TREE_CODE (type))
7454 {
7455 case INTEGER_TYPE:
7456 case ENUMERAL_TYPE:
7457 case BOOLEAN_TYPE:
7458 case POINTER_TYPE:
7459 case REFERENCE_TYPE:
7460 case FIXED_POINT_TYPE:
7461 case REAL_TYPE:
7462 case COMPLEX_TYPE:
7463 case VECTOR_TYPE:
7464 return true;
7465 default:
7466 return false;
7467 }
7468 }
7469
7470 /* Return true iff a constant of type TYPE is accepted by
7471 native_encode_expr. */
7472
7473 bool
7474 can_native_encode_type_p (tree type)
7475 {
7476 switch (TREE_CODE (type))
7477 {
7478 case INTEGER_TYPE:
7479 case REAL_TYPE:
7480 case FIXED_POINT_TYPE:
7481 case COMPLEX_TYPE:
7482 case VECTOR_TYPE:
7483 case POINTER_TYPE:
7484 return true;
7485 default:
7486 return false;
7487 }
7488 }
7489
7490 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7491 TYPE at compile-time. If we're unable to perform the conversion
7492 return NULL_TREE. */
7493
7494 static tree
7495 fold_view_convert_expr (tree type, tree expr)
7496 {
7497 /* We support up to 512-bit values (for V8DFmode). */
7498 unsigned char buffer[64];
7499 int len;
7500
7501 /* Check that the host and target are sane. */
7502 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7503 return NULL_TREE;
7504
7505 len = native_encode_expr (expr, buffer, sizeof (buffer));
7506 if (len == 0)
7507 return NULL_TREE;
7508
7509 return native_interpret_expr (type, buffer, len);
7510 }
7511
7512 /* Build an expression for the address of T. Folds away INDIRECT_REF
7513 to avoid confusing the gimplify process. */
7514
7515 tree
7516 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7517 {
7518 /* The size of the object is not relevant when talking about its address. */
7519 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7520 t = TREE_OPERAND (t, 0);
7521
7522 if (TREE_CODE (t) == INDIRECT_REF)
7523 {
7524 t = TREE_OPERAND (t, 0);
7525
7526 if (TREE_TYPE (t) != ptrtype)
7527 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7528 }
7529 else if (TREE_CODE (t) == MEM_REF
7530 && integer_zerop (TREE_OPERAND (t, 1)))
7531 return TREE_OPERAND (t, 0);
7532 else if (TREE_CODE (t) == MEM_REF
7533 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7534 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7535 TREE_OPERAND (t, 0),
7536 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7537 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7538 {
7539 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7540
7541 if (TREE_TYPE (t) != ptrtype)
7542 t = fold_convert_loc (loc, ptrtype, t);
7543 }
7544 else
7545 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7546
7547 return t;
7548 }
7549
7550 /* Build an expression for the address of T. */
7551
7552 tree
7553 build_fold_addr_expr_loc (location_t loc, tree t)
7554 {
7555 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7556
7557 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7558 }
7559
7560 /* Fold a unary expression of code CODE and type TYPE with operand
7561 OP0. Return the folded expression if folding is successful.
7562 Otherwise, return NULL_TREE. */
7563
7564 tree
7565 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7566 {
7567 tree tem;
7568 tree arg0;
7569 enum tree_code_class kind = TREE_CODE_CLASS (code);
7570
7571 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7572 && TREE_CODE_LENGTH (code) == 1);
7573
7574 arg0 = op0;
7575 if (arg0)
7576 {
7577 if (CONVERT_EXPR_CODE_P (code)
7578 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7579 {
7580 /* Don't use STRIP_NOPS, because signedness of argument type
7581 matters. */
7582 STRIP_SIGN_NOPS (arg0);
7583 }
7584 else
7585 {
7586 /* Strip any conversions that don't change the mode. This
7587 is safe for every expression, except for a comparison
7588 expression because its signedness is derived from its
7589 operands.
7590
7591 Note that this is done as an internal manipulation within
7592 the constant folder, in order to find the simplest
7593 representation of the arguments so that their form can be
7594 studied. In any cases, the appropriate type conversions
7595 should be put back in the tree that will get out of the
7596 constant folder. */
7597 STRIP_NOPS (arg0);
7598 }
7599
7600 if (CONSTANT_CLASS_P (arg0))
7601 {
7602 tree tem = const_unop (code, type, arg0);
7603 if (tem)
7604 {
7605 if (TREE_TYPE (tem) != type)
7606 tem = fold_convert_loc (loc, type, tem);
7607 return tem;
7608 }
7609 }
7610 }
7611
7612 tem = generic_simplify (loc, code, type, op0);
7613 if (tem)
7614 return tem;
7615
7616 if (TREE_CODE_CLASS (code) == tcc_unary)
7617 {
7618 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7619 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7620 fold_build1_loc (loc, code, type,
7621 fold_convert_loc (loc, TREE_TYPE (op0),
7622 TREE_OPERAND (arg0, 1))));
7623 else if (TREE_CODE (arg0) == COND_EXPR)
7624 {
7625 tree arg01 = TREE_OPERAND (arg0, 1);
7626 tree arg02 = TREE_OPERAND (arg0, 2);
7627 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7628 arg01 = fold_build1_loc (loc, code, type,
7629 fold_convert_loc (loc,
7630 TREE_TYPE (op0), arg01));
7631 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7632 arg02 = fold_build1_loc (loc, code, type,
7633 fold_convert_loc (loc,
7634 TREE_TYPE (op0), arg02));
7635 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7636 arg01, arg02);
7637
7638 /* If this was a conversion, and all we did was to move into
7639 inside the COND_EXPR, bring it back out. But leave it if
7640 it is a conversion from integer to integer and the
7641 result precision is no wider than a word since such a
7642 conversion is cheap and may be optimized away by combine,
7643 while it couldn't if it were outside the COND_EXPR. Then return
7644 so we don't get into an infinite recursion loop taking the
7645 conversion out and then back in. */
7646
7647 if ((CONVERT_EXPR_CODE_P (code)
7648 || code == NON_LVALUE_EXPR)
7649 && TREE_CODE (tem) == COND_EXPR
7650 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7651 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7652 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7653 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7654 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7655 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7656 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7657 && (INTEGRAL_TYPE_P
7658 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7659 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7660 || flag_syntax_only))
7661 tem = build1_loc (loc, code, type,
7662 build3 (COND_EXPR,
7663 TREE_TYPE (TREE_OPERAND
7664 (TREE_OPERAND (tem, 1), 0)),
7665 TREE_OPERAND (tem, 0),
7666 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7667 TREE_OPERAND (TREE_OPERAND (tem, 2),
7668 0)));
7669 return tem;
7670 }
7671 }
7672
7673 switch (code)
7674 {
7675 case NON_LVALUE_EXPR:
7676 if (!maybe_lvalue_p (op0))
7677 return fold_convert_loc (loc, type, op0);
7678 return NULL_TREE;
7679
7680 CASE_CONVERT:
7681 case FLOAT_EXPR:
7682 case FIX_TRUNC_EXPR:
7683 if (COMPARISON_CLASS_P (op0))
7684 {
7685 /* If we have (type) (a CMP b) and type is an integral type, return
7686 new expression involving the new type. Canonicalize
7687 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7688 non-integral type.
7689 Do not fold the result as that would not simplify further, also
7690 folding again results in recursions. */
7691 if (TREE_CODE (type) == BOOLEAN_TYPE)
7692 return build2_loc (loc, TREE_CODE (op0), type,
7693 TREE_OPERAND (op0, 0),
7694 TREE_OPERAND (op0, 1));
7695 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7696 && TREE_CODE (type) != VECTOR_TYPE)
7697 return build3_loc (loc, COND_EXPR, type, op0,
7698 constant_boolean_node (true, type),
7699 constant_boolean_node (false, type));
7700 }
7701
7702 /* Handle (T *)&A.B.C for A being of type T and B and C
7703 living at offset zero. This occurs frequently in
7704 C++ upcasting and then accessing the base. */
7705 if (TREE_CODE (op0) == ADDR_EXPR
7706 && POINTER_TYPE_P (type)
7707 && handled_component_p (TREE_OPERAND (op0, 0)))
7708 {
7709 HOST_WIDE_INT bitsize, bitpos;
7710 tree offset;
7711 machine_mode mode;
7712 int unsignedp, reversep, volatilep;
7713 tree base
7714 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7715 &offset, &mode, &unsignedp, &reversep,
7716 &volatilep);
7717 /* If the reference was to a (constant) zero offset, we can use
7718 the address of the base if it has the same base type
7719 as the result type and the pointer type is unqualified. */
7720 if (! offset && bitpos == 0
7721 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7722 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7723 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7724 return fold_convert_loc (loc, type,
7725 build_fold_addr_expr_loc (loc, base));
7726 }
7727
7728 if (TREE_CODE (op0) == MODIFY_EXPR
7729 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7730 /* Detect assigning a bitfield. */
7731 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7732 && DECL_BIT_FIELD
7733 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7734 {
7735 /* Don't leave an assignment inside a conversion
7736 unless assigning a bitfield. */
7737 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7738 /* First do the assignment, then return converted constant. */
7739 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7740 TREE_NO_WARNING (tem) = 1;
7741 TREE_USED (tem) = 1;
7742 return tem;
7743 }
7744
7745 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7746 constants (if x has signed type, the sign bit cannot be set
7747 in c). This folds extension into the BIT_AND_EXPR.
7748 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7749 very likely don't have maximal range for their precision and this
7750 transformation effectively doesn't preserve non-maximal ranges. */
7751 if (TREE_CODE (type) == INTEGER_TYPE
7752 && TREE_CODE (op0) == BIT_AND_EXPR
7753 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7754 {
7755 tree and_expr = op0;
7756 tree and0 = TREE_OPERAND (and_expr, 0);
7757 tree and1 = TREE_OPERAND (and_expr, 1);
7758 int change = 0;
7759
7760 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7761 || (TYPE_PRECISION (type)
7762 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7763 change = 1;
7764 else if (TYPE_PRECISION (TREE_TYPE (and1))
7765 <= HOST_BITS_PER_WIDE_INT
7766 && tree_fits_uhwi_p (and1))
7767 {
7768 unsigned HOST_WIDE_INT cst;
7769
7770 cst = tree_to_uhwi (and1);
7771 cst &= HOST_WIDE_INT_M1U
7772 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7773 change = (cst == 0);
7774 if (change
7775 && !flag_syntax_only
7776 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7777 == ZERO_EXTEND))
7778 {
7779 tree uns = unsigned_type_for (TREE_TYPE (and0));
7780 and0 = fold_convert_loc (loc, uns, and0);
7781 and1 = fold_convert_loc (loc, uns, and1);
7782 }
7783 }
7784 if (change)
7785 {
7786 tem = force_fit_type (type, wi::to_widest (and1), 0,
7787 TREE_OVERFLOW (and1));
7788 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7789 fold_convert_loc (loc, type, and0), tem);
7790 }
7791 }
7792
7793 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7794 cast (T1)X will fold away. We assume that this happens when X itself
7795 is a cast. */
7796 if (POINTER_TYPE_P (type)
7797 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7798 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7799 {
7800 tree arg00 = TREE_OPERAND (arg0, 0);
7801 tree arg01 = TREE_OPERAND (arg0, 1);
7802
7803 return fold_build_pointer_plus_loc
7804 (loc, fold_convert_loc (loc, type, arg00), arg01);
7805 }
7806
7807 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7808 of the same precision, and X is an integer type not narrower than
7809 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7810 if (INTEGRAL_TYPE_P (type)
7811 && TREE_CODE (op0) == BIT_NOT_EXPR
7812 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7813 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7814 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7815 {
7816 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7817 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7818 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7819 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7820 fold_convert_loc (loc, type, tem));
7821 }
7822
7823 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7824 type of X and Y (integer types only). */
7825 if (INTEGRAL_TYPE_P (type)
7826 && TREE_CODE (op0) == MULT_EXPR
7827 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7828 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7829 {
7830 /* Be careful not to introduce new overflows. */
7831 tree mult_type;
7832 if (TYPE_OVERFLOW_WRAPS (type))
7833 mult_type = type;
7834 else
7835 mult_type = unsigned_type_for (type);
7836
7837 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7838 {
7839 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7840 fold_convert_loc (loc, mult_type,
7841 TREE_OPERAND (op0, 0)),
7842 fold_convert_loc (loc, mult_type,
7843 TREE_OPERAND (op0, 1)));
7844 return fold_convert_loc (loc, type, tem);
7845 }
7846 }
7847
7848 return NULL_TREE;
7849
7850 case VIEW_CONVERT_EXPR:
7851 if (TREE_CODE (op0) == MEM_REF)
7852 {
7853 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7854 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7855 tem = fold_build2_loc (loc, MEM_REF, type,
7856 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7857 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7858 return tem;
7859 }
7860
7861 return NULL_TREE;
7862
7863 case NEGATE_EXPR:
7864 tem = fold_negate_expr (loc, arg0);
7865 if (tem)
7866 return fold_convert_loc (loc, type, tem);
7867 return NULL_TREE;
7868
7869 case ABS_EXPR:
7870 /* Convert fabs((double)float) into (double)fabsf(float). */
7871 if (TREE_CODE (arg0) == NOP_EXPR
7872 && TREE_CODE (type) == REAL_TYPE)
7873 {
7874 tree targ0 = strip_float_extensions (arg0);
7875 if (targ0 != arg0)
7876 return fold_convert_loc (loc, type,
7877 fold_build1_loc (loc, ABS_EXPR,
7878 TREE_TYPE (targ0),
7879 targ0));
7880 }
7881 return NULL_TREE;
7882
7883 case BIT_NOT_EXPR:
7884 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7885 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7886 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7887 fold_convert_loc (loc, type,
7888 TREE_OPERAND (arg0, 0)))))
7889 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7890 fold_convert_loc (loc, type,
7891 TREE_OPERAND (arg0, 1)));
7892 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7893 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7894 fold_convert_loc (loc, type,
7895 TREE_OPERAND (arg0, 1)))))
7896 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7897 fold_convert_loc (loc, type,
7898 TREE_OPERAND (arg0, 0)), tem);
7899
7900 return NULL_TREE;
7901
7902 case TRUTH_NOT_EXPR:
7903 /* Note that the operand of this must be an int
7904 and its values must be 0 or 1.
7905 ("true" is a fixed value perhaps depending on the language,
7906 but we don't handle values other than 1 correctly yet.) */
7907 tem = fold_truth_not_expr (loc, arg0);
7908 if (!tem)
7909 return NULL_TREE;
7910 return fold_convert_loc (loc, type, tem);
7911
7912 case INDIRECT_REF:
7913 /* Fold *&X to X if X is an lvalue. */
7914 if (TREE_CODE (op0) == ADDR_EXPR)
7915 {
7916 tree op00 = TREE_OPERAND (op0, 0);
7917 if ((VAR_P (op00)
7918 || TREE_CODE (op00) == PARM_DECL
7919 || TREE_CODE (op00) == RESULT_DECL)
7920 && !TREE_READONLY (op00))
7921 return op00;
7922 }
7923 return NULL_TREE;
7924
7925 default:
7926 return NULL_TREE;
7927 } /* switch (code) */
7928 }
7929
7930
7931 /* If the operation was a conversion do _not_ mark a resulting constant
7932 with TREE_OVERFLOW if the original constant was not. These conversions
7933 have implementation defined behavior and retaining the TREE_OVERFLOW
7934 flag here would confuse later passes such as VRP. */
7935 tree
7936 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7937 tree type, tree op0)
7938 {
7939 tree res = fold_unary_loc (loc, code, type, op0);
7940 if (res
7941 && TREE_CODE (res) == INTEGER_CST
7942 && TREE_CODE (op0) == INTEGER_CST
7943 && CONVERT_EXPR_CODE_P (code))
7944 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7945
7946 return res;
7947 }
7948
7949 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7950 operands OP0 and OP1. LOC is the location of the resulting expression.
7951 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7952 Return the folded expression if folding is successful. Otherwise,
7953 return NULL_TREE. */
7954 static tree
7955 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7956 tree arg0, tree arg1, tree op0, tree op1)
7957 {
7958 tree tem;
7959
7960 /* We only do these simplifications if we are optimizing. */
7961 if (!optimize)
7962 return NULL_TREE;
7963
7964 /* Check for things like (A || B) && (A || C). We can convert this
7965 to A || (B && C). Note that either operator can be any of the four
7966 truth and/or operations and the transformation will still be
7967 valid. Also note that we only care about order for the
7968 ANDIF and ORIF operators. If B contains side effects, this
7969 might change the truth-value of A. */
7970 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7971 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7972 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7973 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7974 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7975 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7976 {
7977 tree a00 = TREE_OPERAND (arg0, 0);
7978 tree a01 = TREE_OPERAND (arg0, 1);
7979 tree a10 = TREE_OPERAND (arg1, 0);
7980 tree a11 = TREE_OPERAND (arg1, 1);
7981 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7982 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7983 && (code == TRUTH_AND_EXPR
7984 || code == TRUTH_OR_EXPR));
7985
7986 if (operand_equal_p (a00, a10, 0))
7987 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7988 fold_build2_loc (loc, code, type, a01, a11));
7989 else if (commutative && operand_equal_p (a00, a11, 0))
7990 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7991 fold_build2_loc (loc, code, type, a01, a10));
7992 else if (commutative && operand_equal_p (a01, a10, 0))
7993 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7994 fold_build2_loc (loc, code, type, a00, a11));
7995
7996 /* This case if tricky because we must either have commutative
7997 operators or else A10 must not have side-effects. */
7998
7999 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8000 && operand_equal_p (a01, a11, 0))
8001 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8002 fold_build2_loc (loc, code, type, a00, a10),
8003 a01);
8004 }
8005
8006 /* See if we can build a range comparison. */
8007 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8008 return tem;
8009
8010 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8011 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8012 {
8013 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8014 if (tem)
8015 return fold_build2_loc (loc, code, type, tem, arg1);
8016 }
8017
8018 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8019 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8020 {
8021 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8022 if (tem)
8023 return fold_build2_loc (loc, code, type, arg0, tem);
8024 }
8025
8026 /* Check for the possibility of merging component references. If our
8027 lhs is another similar operation, try to merge its rhs with our
8028 rhs. Then try to merge our lhs and rhs. */
8029 if (TREE_CODE (arg0) == code
8030 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8031 TREE_OPERAND (arg0, 1), arg1)))
8032 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8033
8034 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8035 return tem;
8036
8037 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8038 && (code == TRUTH_AND_EXPR
8039 || code == TRUTH_ANDIF_EXPR
8040 || code == TRUTH_OR_EXPR
8041 || code == TRUTH_ORIF_EXPR))
8042 {
8043 enum tree_code ncode, icode;
8044
8045 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8046 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8047 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8048
8049 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8050 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8051 We don't want to pack more than two leafs to a non-IF AND/OR
8052 expression.
8053 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8054 equal to IF-CODE, then we don't want to add right-hand operand.
8055 If the inner right-hand side of left-hand operand has
8056 side-effects, or isn't simple, then we can't add to it,
8057 as otherwise we might destroy if-sequence. */
8058 if (TREE_CODE (arg0) == icode
8059 && simple_operand_p_2 (arg1)
8060 /* Needed for sequence points to handle trappings, and
8061 side-effects. */
8062 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8063 {
8064 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8065 arg1);
8066 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8067 tem);
8068 }
8069 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8070 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8071 else if (TREE_CODE (arg1) == icode
8072 && simple_operand_p_2 (arg0)
8073 /* Needed for sequence points to handle trappings, and
8074 side-effects. */
8075 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8076 {
8077 tem = fold_build2_loc (loc, ncode, type,
8078 arg0, TREE_OPERAND (arg1, 0));
8079 return fold_build2_loc (loc, icode, type, tem,
8080 TREE_OPERAND (arg1, 1));
8081 }
8082 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8083 into (A OR B).
8084 For sequence point consistancy, we need to check for trapping,
8085 and side-effects. */
8086 else if (code == icode && simple_operand_p_2 (arg0)
8087 && simple_operand_p_2 (arg1))
8088 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8089 }
8090
8091 return NULL_TREE;
8092 }
8093
8094 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8095 by changing CODE to reduce the magnitude of constants involved in
8096 ARG0 of the comparison.
8097 Returns a canonicalized comparison tree if a simplification was
8098 possible, otherwise returns NULL_TREE.
8099 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8100 valid if signed overflow is undefined. */
8101
8102 static tree
8103 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8104 tree arg0, tree arg1,
8105 bool *strict_overflow_p)
8106 {
8107 enum tree_code code0 = TREE_CODE (arg0);
8108 tree t, cst0 = NULL_TREE;
8109 int sgn0;
8110
8111 /* Match A +- CST code arg1. We can change this only if overflow
8112 is undefined. */
8113 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8114 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8115 /* In principle pointers also have undefined overflow behavior,
8116 but that causes problems elsewhere. */
8117 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8118 && (code0 == MINUS_EXPR
8119 || code0 == PLUS_EXPR)
8120 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8121 return NULL_TREE;
8122
8123 /* Identify the constant in arg0 and its sign. */
8124 cst0 = TREE_OPERAND (arg0, 1);
8125 sgn0 = tree_int_cst_sgn (cst0);
8126
8127 /* Overflowed constants and zero will cause problems. */
8128 if (integer_zerop (cst0)
8129 || TREE_OVERFLOW (cst0))
8130 return NULL_TREE;
8131
8132 /* See if we can reduce the magnitude of the constant in
8133 arg0 by changing the comparison code. */
8134 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8135 if (code == LT_EXPR
8136 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8137 code = LE_EXPR;
8138 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8139 else if (code == GT_EXPR
8140 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8141 code = GE_EXPR;
8142 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8143 else if (code == LE_EXPR
8144 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8145 code = LT_EXPR;
8146 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8147 else if (code == GE_EXPR
8148 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8149 code = GT_EXPR;
8150 else
8151 return NULL_TREE;
8152 *strict_overflow_p = true;
8153
8154 /* Now build the constant reduced in magnitude. But not if that
8155 would produce one outside of its types range. */
8156 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8157 && ((sgn0 == 1
8158 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8159 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8160 || (sgn0 == -1
8161 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8162 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8163 return NULL_TREE;
8164
8165 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8166 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8167 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8168 t = fold_convert (TREE_TYPE (arg1), t);
8169
8170 return fold_build2_loc (loc, code, type, t, arg1);
8171 }
8172
8173 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8174 overflow further. Try to decrease the magnitude of constants involved
8175 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8176 and put sole constants at the second argument position.
8177 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8178
8179 static tree
8180 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8181 tree arg0, tree arg1)
8182 {
8183 tree t;
8184 bool strict_overflow_p;
8185 const char * const warnmsg = G_("assuming signed overflow does not occur "
8186 "when reducing constant in comparison");
8187
8188 /* Try canonicalization by simplifying arg0. */
8189 strict_overflow_p = false;
8190 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8191 &strict_overflow_p);
8192 if (t)
8193 {
8194 if (strict_overflow_p)
8195 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8196 return t;
8197 }
8198
8199 /* Try canonicalization by simplifying arg1 using the swapped
8200 comparison. */
8201 code = swap_tree_comparison (code);
8202 strict_overflow_p = false;
8203 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8204 &strict_overflow_p);
8205 if (t && strict_overflow_p)
8206 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8207 return t;
8208 }
8209
8210 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8211 space. This is used to avoid issuing overflow warnings for
8212 expressions like &p->x which can not wrap. */
8213
8214 static bool
8215 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8216 {
8217 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8218 return true;
8219
8220 if (bitpos < 0)
8221 return true;
8222
8223 wide_int wi_offset;
8224 int precision = TYPE_PRECISION (TREE_TYPE (base));
8225 if (offset == NULL_TREE)
8226 wi_offset = wi::zero (precision);
8227 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8228 return true;
8229 else
8230 wi_offset = offset;
8231
8232 bool overflow;
8233 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8234 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8235 if (overflow)
8236 return true;
8237
8238 if (!wi::fits_uhwi_p (total))
8239 return true;
8240
8241 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8242 if (size <= 0)
8243 return true;
8244
8245 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8246 array. */
8247 if (TREE_CODE (base) == ADDR_EXPR)
8248 {
8249 HOST_WIDE_INT base_size;
8250
8251 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8252 if (base_size > 0 && size < base_size)
8253 size = base_size;
8254 }
8255
8256 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8257 }
8258
8259 /* Return a positive integer when the symbol DECL is known to have
8260 a nonzero address, zero when it's known not to (e.g., it's a weak
8261 symbol), and a negative integer when the symbol is not yet in the
8262 symbol table and so whether or not its address is zero is unknown.
8263 For function local objects always return positive integer. */
8264 static int
8265 maybe_nonzero_address (tree decl)
8266 {
8267 if (DECL_P (decl) && decl_in_symtab_p (decl))
8268 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8269 return symbol->nonzero_address ();
8270
8271 /* Function local objects are never NULL. */
8272 if (DECL_P (decl)
8273 && (DECL_CONTEXT (decl)
8274 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8275 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8276 return 1;
8277
8278 return -1;
8279 }
8280
8281 /* Subroutine of fold_binary. This routine performs all of the
8282 transformations that are common to the equality/inequality
8283 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8284 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8285 fold_binary should call fold_binary. Fold a comparison with
8286 tree code CODE and type TYPE with operands OP0 and OP1. Return
8287 the folded comparison or NULL_TREE. */
8288
8289 static tree
8290 fold_comparison (location_t loc, enum tree_code code, tree type,
8291 tree op0, tree op1)
8292 {
8293 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8294 tree arg0, arg1, tem;
8295
8296 arg0 = op0;
8297 arg1 = op1;
8298
8299 STRIP_SIGN_NOPS (arg0);
8300 STRIP_SIGN_NOPS (arg1);
8301
8302 /* For comparisons of pointers we can decompose it to a compile time
8303 comparison of the base objects and the offsets into the object.
8304 This requires at least one operand being an ADDR_EXPR or a
8305 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8306 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8307 && (TREE_CODE (arg0) == ADDR_EXPR
8308 || TREE_CODE (arg1) == ADDR_EXPR
8309 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8310 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8311 {
8312 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8313 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8314 machine_mode mode;
8315 int volatilep, reversep, unsignedp;
8316 bool indirect_base0 = false, indirect_base1 = false;
8317
8318 /* Get base and offset for the access. Strip ADDR_EXPR for
8319 get_inner_reference, but put it back by stripping INDIRECT_REF
8320 off the base object if possible. indirect_baseN will be true
8321 if baseN is not an address but refers to the object itself. */
8322 base0 = arg0;
8323 if (TREE_CODE (arg0) == ADDR_EXPR)
8324 {
8325 base0
8326 = get_inner_reference (TREE_OPERAND (arg0, 0),
8327 &bitsize, &bitpos0, &offset0, &mode,
8328 &unsignedp, &reversep, &volatilep);
8329 if (TREE_CODE (base0) == INDIRECT_REF)
8330 base0 = TREE_OPERAND (base0, 0);
8331 else
8332 indirect_base0 = true;
8333 }
8334 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8335 {
8336 base0 = TREE_OPERAND (arg0, 0);
8337 STRIP_SIGN_NOPS (base0);
8338 if (TREE_CODE (base0) == ADDR_EXPR)
8339 {
8340 base0
8341 = get_inner_reference (TREE_OPERAND (base0, 0),
8342 &bitsize, &bitpos0, &offset0, &mode,
8343 &unsignedp, &reversep, &volatilep);
8344 if (TREE_CODE (base0) == INDIRECT_REF)
8345 base0 = TREE_OPERAND (base0, 0);
8346 else
8347 indirect_base0 = true;
8348 }
8349 if (offset0 == NULL_TREE || integer_zerop (offset0))
8350 offset0 = TREE_OPERAND (arg0, 1);
8351 else
8352 offset0 = size_binop (PLUS_EXPR, offset0,
8353 TREE_OPERAND (arg0, 1));
8354 if (TREE_CODE (offset0) == INTEGER_CST)
8355 {
8356 offset_int tem = wi::sext (wi::to_offset (offset0),
8357 TYPE_PRECISION (sizetype));
8358 tem <<= LOG2_BITS_PER_UNIT;
8359 tem += bitpos0;
8360 if (wi::fits_shwi_p (tem))
8361 {
8362 bitpos0 = tem.to_shwi ();
8363 offset0 = NULL_TREE;
8364 }
8365 }
8366 }
8367
8368 base1 = arg1;
8369 if (TREE_CODE (arg1) == ADDR_EXPR)
8370 {
8371 base1
8372 = get_inner_reference (TREE_OPERAND (arg1, 0),
8373 &bitsize, &bitpos1, &offset1, &mode,
8374 &unsignedp, &reversep, &volatilep);
8375 if (TREE_CODE (base1) == INDIRECT_REF)
8376 base1 = TREE_OPERAND (base1, 0);
8377 else
8378 indirect_base1 = true;
8379 }
8380 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8381 {
8382 base1 = TREE_OPERAND (arg1, 0);
8383 STRIP_SIGN_NOPS (base1);
8384 if (TREE_CODE (base1) == ADDR_EXPR)
8385 {
8386 base1
8387 = get_inner_reference (TREE_OPERAND (base1, 0),
8388 &bitsize, &bitpos1, &offset1, &mode,
8389 &unsignedp, &reversep, &volatilep);
8390 if (TREE_CODE (base1) == INDIRECT_REF)
8391 base1 = TREE_OPERAND (base1, 0);
8392 else
8393 indirect_base1 = true;
8394 }
8395 if (offset1 == NULL_TREE || integer_zerop (offset1))
8396 offset1 = TREE_OPERAND (arg1, 1);
8397 else
8398 offset1 = size_binop (PLUS_EXPR, offset1,
8399 TREE_OPERAND (arg1, 1));
8400 if (TREE_CODE (offset1) == INTEGER_CST)
8401 {
8402 offset_int tem = wi::sext (wi::to_offset (offset1),
8403 TYPE_PRECISION (sizetype));
8404 tem <<= LOG2_BITS_PER_UNIT;
8405 tem += bitpos1;
8406 if (wi::fits_shwi_p (tem))
8407 {
8408 bitpos1 = tem.to_shwi ();
8409 offset1 = NULL_TREE;
8410 }
8411 }
8412 }
8413
8414 /* If we have equivalent bases we might be able to simplify. */
8415 if (indirect_base0 == indirect_base1
8416 && operand_equal_p (base0, base1,
8417 indirect_base0 ? OEP_ADDRESS_OF : 0))
8418 {
8419 /* We can fold this expression to a constant if the non-constant
8420 offset parts are equal. */
8421 if (offset0 == offset1
8422 || (offset0 && offset1
8423 && operand_equal_p (offset0, offset1, 0)))
8424 {
8425 if (!equality_code
8426 && bitpos0 != bitpos1
8427 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8428 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8429 fold_overflow_warning (("assuming pointer wraparound does not "
8430 "occur when comparing P +- C1 with "
8431 "P +- C2"),
8432 WARN_STRICT_OVERFLOW_CONDITIONAL);
8433
8434 switch (code)
8435 {
8436 case EQ_EXPR:
8437 return constant_boolean_node (bitpos0 == bitpos1, type);
8438 case NE_EXPR:
8439 return constant_boolean_node (bitpos0 != bitpos1, type);
8440 case LT_EXPR:
8441 return constant_boolean_node (bitpos0 < bitpos1, type);
8442 case LE_EXPR:
8443 return constant_boolean_node (bitpos0 <= bitpos1, type);
8444 case GE_EXPR:
8445 return constant_boolean_node (bitpos0 >= bitpos1, type);
8446 case GT_EXPR:
8447 return constant_boolean_node (bitpos0 > bitpos1, type);
8448 default:;
8449 }
8450 }
8451 /* We can simplify the comparison to a comparison of the variable
8452 offset parts if the constant offset parts are equal.
8453 Be careful to use signed sizetype here because otherwise we
8454 mess with array offsets in the wrong way. This is possible
8455 because pointer arithmetic is restricted to retain within an
8456 object and overflow on pointer differences is undefined as of
8457 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8458 else if (bitpos0 == bitpos1)
8459 {
8460 /* By converting to signed sizetype we cover middle-end pointer
8461 arithmetic which operates on unsigned pointer types of size
8462 type size and ARRAY_REF offsets which are properly sign or
8463 zero extended from their type in case it is narrower than
8464 sizetype. */
8465 if (offset0 == NULL_TREE)
8466 offset0 = build_int_cst (ssizetype, 0);
8467 else
8468 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8469 if (offset1 == NULL_TREE)
8470 offset1 = build_int_cst (ssizetype, 0);
8471 else
8472 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8473
8474 if (!equality_code
8475 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8476 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8477 fold_overflow_warning (("assuming pointer wraparound does not "
8478 "occur when comparing P +- C1 with "
8479 "P +- C2"),
8480 WARN_STRICT_OVERFLOW_COMPARISON);
8481
8482 return fold_build2_loc (loc, code, type, offset0, offset1);
8483 }
8484 }
8485 /* For equal offsets we can simplify to a comparison of the
8486 base addresses. */
8487 else if (bitpos0 == bitpos1
8488 && (indirect_base0
8489 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8490 && (indirect_base1
8491 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8492 && ((offset0 == offset1)
8493 || (offset0 && offset1
8494 && operand_equal_p (offset0, offset1, 0))))
8495 {
8496 if (indirect_base0)
8497 base0 = build_fold_addr_expr_loc (loc, base0);
8498 if (indirect_base1)
8499 base1 = build_fold_addr_expr_loc (loc, base1);
8500 return fold_build2_loc (loc, code, type, base0, base1);
8501 }
8502 /* Comparison between an ordinary (non-weak) symbol and a null
8503 pointer can be eliminated since such symbols must have a non
8504 null address. In C, relational expressions between pointers
8505 to objects and null pointers are undefined. The results
8506 below follow the C++ rules with the additional property that
8507 every object pointer compares greater than a null pointer.
8508 */
8509 else if (((DECL_P (base0)
8510 && maybe_nonzero_address (base0) > 0
8511 /* Avoid folding references to struct members at offset 0 to
8512 prevent tests like '&ptr->firstmember == 0' from getting
8513 eliminated. When ptr is null, although the -> expression
8514 is strictly speaking invalid, GCC retains it as a matter
8515 of QoI. See PR c/44555. */
8516 && (offset0 == NULL_TREE && bitpos0 != 0))
8517 || CONSTANT_CLASS_P (base0))
8518 && indirect_base0
8519 /* The caller guarantees that when one of the arguments is
8520 constant (i.e., null in this case) it is second. */
8521 && integer_zerop (arg1))
8522 {
8523 switch (code)
8524 {
8525 case EQ_EXPR:
8526 case LE_EXPR:
8527 case LT_EXPR:
8528 return constant_boolean_node (false, type);
8529 case GE_EXPR:
8530 case GT_EXPR:
8531 case NE_EXPR:
8532 return constant_boolean_node (true, type);
8533 default:
8534 gcc_unreachable ();
8535 }
8536 }
8537 }
8538
8539 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8540 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8541 the resulting offset is smaller in absolute value than the
8542 original one and has the same sign. */
8543 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8544 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8545 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8546 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8547 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8548 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8549 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8550 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8551 {
8552 tree const1 = TREE_OPERAND (arg0, 1);
8553 tree const2 = TREE_OPERAND (arg1, 1);
8554 tree variable1 = TREE_OPERAND (arg0, 0);
8555 tree variable2 = TREE_OPERAND (arg1, 0);
8556 tree cst;
8557 const char * const warnmsg = G_("assuming signed overflow does not "
8558 "occur when combining constants around "
8559 "a comparison");
8560
8561 /* Put the constant on the side where it doesn't overflow and is
8562 of lower absolute value and of same sign than before. */
8563 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8564 ? MINUS_EXPR : PLUS_EXPR,
8565 const2, const1);
8566 if (!TREE_OVERFLOW (cst)
8567 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8568 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8569 {
8570 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8571 return fold_build2_loc (loc, code, type,
8572 variable1,
8573 fold_build2_loc (loc, TREE_CODE (arg1),
8574 TREE_TYPE (arg1),
8575 variable2, cst));
8576 }
8577
8578 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8579 ? MINUS_EXPR : PLUS_EXPR,
8580 const1, const2);
8581 if (!TREE_OVERFLOW (cst)
8582 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8583 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8584 {
8585 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8586 return fold_build2_loc (loc, code, type,
8587 fold_build2_loc (loc, TREE_CODE (arg0),
8588 TREE_TYPE (arg0),
8589 variable1, cst),
8590 variable2);
8591 }
8592 }
8593
8594 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8595 if (tem)
8596 return tem;
8597
8598 /* If we are comparing an expression that just has comparisons
8599 of two integer values, arithmetic expressions of those comparisons,
8600 and constants, we can simplify it. There are only three cases
8601 to check: the two values can either be equal, the first can be
8602 greater, or the second can be greater. Fold the expression for
8603 those three values. Since each value must be 0 or 1, we have
8604 eight possibilities, each of which corresponds to the constant 0
8605 or 1 or one of the six possible comparisons.
8606
8607 This handles common cases like (a > b) == 0 but also handles
8608 expressions like ((x > y) - (y > x)) > 0, which supposedly
8609 occur in macroized code. */
8610
8611 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8612 {
8613 tree cval1 = 0, cval2 = 0;
8614 int save_p = 0;
8615
8616 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8617 /* Don't handle degenerate cases here; they should already
8618 have been handled anyway. */
8619 && cval1 != 0 && cval2 != 0
8620 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8621 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8622 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8623 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8624 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8625 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8626 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8627 {
8628 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8629 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8630
8631 /* We can't just pass T to eval_subst in case cval1 or cval2
8632 was the same as ARG1. */
8633
8634 tree high_result
8635 = fold_build2_loc (loc, code, type,
8636 eval_subst (loc, arg0, cval1, maxval,
8637 cval2, minval),
8638 arg1);
8639 tree equal_result
8640 = fold_build2_loc (loc, code, type,
8641 eval_subst (loc, arg0, cval1, maxval,
8642 cval2, maxval),
8643 arg1);
8644 tree low_result
8645 = fold_build2_loc (loc, code, type,
8646 eval_subst (loc, arg0, cval1, minval,
8647 cval2, maxval),
8648 arg1);
8649
8650 /* All three of these results should be 0 or 1. Confirm they are.
8651 Then use those values to select the proper code to use. */
8652
8653 if (TREE_CODE (high_result) == INTEGER_CST
8654 && TREE_CODE (equal_result) == INTEGER_CST
8655 && TREE_CODE (low_result) == INTEGER_CST)
8656 {
8657 /* Make a 3-bit mask with the high-order bit being the
8658 value for `>', the next for '=', and the low for '<'. */
8659 switch ((integer_onep (high_result) * 4)
8660 + (integer_onep (equal_result) * 2)
8661 + integer_onep (low_result))
8662 {
8663 case 0:
8664 /* Always false. */
8665 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8666 case 1:
8667 code = LT_EXPR;
8668 break;
8669 case 2:
8670 code = EQ_EXPR;
8671 break;
8672 case 3:
8673 code = LE_EXPR;
8674 break;
8675 case 4:
8676 code = GT_EXPR;
8677 break;
8678 case 5:
8679 code = NE_EXPR;
8680 break;
8681 case 6:
8682 code = GE_EXPR;
8683 break;
8684 case 7:
8685 /* Always true. */
8686 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8687 }
8688
8689 if (save_p)
8690 {
8691 tem = save_expr (build2 (code, type, cval1, cval2));
8692 protected_set_expr_location (tem, loc);
8693 return tem;
8694 }
8695 return fold_build2_loc (loc, code, type, cval1, cval2);
8696 }
8697 }
8698 }
8699
8700 return NULL_TREE;
8701 }
8702
8703
8704 /* Subroutine of fold_binary. Optimize complex multiplications of the
8705 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8706 argument EXPR represents the expression "z" of type TYPE. */
8707
8708 static tree
8709 fold_mult_zconjz (location_t loc, tree type, tree expr)
8710 {
8711 tree itype = TREE_TYPE (type);
8712 tree rpart, ipart, tem;
8713
8714 if (TREE_CODE (expr) == COMPLEX_EXPR)
8715 {
8716 rpart = TREE_OPERAND (expr, 0);
8717 ipart = TREE_OPERAND (expr, 1);
8718 }
8719 else if (TREE_CODE (expr) == COMPLEX_CST)
8720 {
8721 rpart = TREE_REALPART (expr);
8722 ipart = TREE_IMAGPART (expr);
8723 }
8724 else
8725 {
8726 expr = save_expr (expr);
8727 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8728 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8729 }
8730
8731 rpart = save_expr (rpart);
8732 ipart = save_expr (ipart);
8733 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8734 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8735 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8736 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8737 build_zero_cst (itype));
8738 }
8739
8740
8741 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8742 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8743
8744 static bool
8745 vec_cst_ctor_to_array (tree arg, tree *elts)
8746 {
8747 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8748
8749 if (TREE_CODE (arg) == VECTOR_CST)
8750 {
8751 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8752 elts[i] = VECTOR_CST_ELT (arg, i);
8753 }
8754 else if (TREE_CODE (arg) == CONSTRUCTOR)
8755 {
8756 constructor_elt *elt;
8757
8758 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8759 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8760 return false;
8761 else
8762 elts[i] = elt->value;
8763 }
8764 else
8765 return false;
8766 for (; i < nelts; i++)
8767 elts[i]
8768 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8769 return true;
8770 }
8771
8772 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8773 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8774 NULL_TREE otherwise. */
8775
8776 static tree
8777 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8778 {
8779 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8780 tree *elts;
8781 bool need_ctor = false;
8782
8783 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8784 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8785 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8786 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8787 return NULL_TREE;
8788
8789 elts = XALLOCAVEC (tree, nelts * 3);
8790 if (!vec_cst_ctor_to_array (arg0, elts)
8791 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8792 return NULL_TREE;
8793
8794 for (i = 0; i < nelts; i++)
8795 {
8796 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8797 need_ctor = true;
8798 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8799 }
8800
8801 if (need_ctor)
8802 {
8803 vec<constructor_elt, va_gc> *v;
8804 vec_alloc (v, nelts);
8805 for (i = 0; i < nelts; i++)
8806 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8807 return build_constructor (type, v);
8808 }
8809 else
8810 return build_vector (type, &elts[2 * nelts]);
8811 }
8812
8813 /* Try to fold a pointer difference of type TYPE two address expressions of
8814 array references AREF0 and AREF1 using location LOC. Return a
8815 simplified expression for the difference or NULL_TREE. */
8816
8817 static tree
8818 fold_addr_of_array_ref_difference (location_t loc, tree type,
8819 tree aref0, tree aref1)
8820 {
8821 tree base0 = TREE_OPERAND (aref0, 0);
8822 tree base1 = TREE_OPERAND (aref1, 0);
8823 tree base_offset = build_int_cst (type, 0);
8824
8825 /* If the bases are array references as well, recurse. If the bases
8826 are pointer indirections compute the difference of the pointers.
8827 If the bases are equal, we are set. */
8828 if ((TREE_CODE (base0) == ARRAY_REF
8829 && TREE_CODE (base1) == ARRAY_REF
8830 && (base_offset
8831 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8832 || (INDIRECT_REF_P (base0)
8833 && INDIRECT_REF_P (base1)
8834 && (base_offset
8835 = fold_binary_loc (loc, MINUS_EXPR, type,
8836 fold_convert (type, TREE_OPERAND (base0, 0)),
8837 fold_convert (type,
8838 TREE_OPERAND (base1, 0)))))
8839 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8840 {
8841 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8842 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8843 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8844 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
8845 return fold_build2_loc (loc, PLUS_EXPR, type,
8846 base_offset,
8847 fold_build2_loc (loc, MULT_EXPR, type,
8848 diff, esz));
8849 }
8850 return NULL_TREE;
8851 }
8852
8853 /* If the real or vector real constant CST of type TYPE has an exact
8854 inverse, return it, else return NULL. */
8855
8856 tree
8857 exact_inverse (tree type, tree cst)
8858 {
8859 REAL_VALUE_TYPE r;
8860 tree unit_type, *elts;
8861 machine_mode mode;
8862 unsigned vec_nelts, i;
8863
8864 switch (TREE_CODE (cst))
8865 {
8866 case REAL_CST:
8867 r = TREE_REAL_CST (cst);
8868
8869 if (exact_real_inverse (TYPE_MODE (type), &r))
8870 return build_real (type, r);
8871
8872 return NULL_TREE;
8873
8874 case VECTOR_CST:
8875 vec_nelts = VECTOR_CST_NELTS (cst);
8876 elts = XALLOCAVEC (tree, vec_nelts);
8877 unit_type = TREE_TYPE (type);
8878 mode = TYPE_MODE (unit_type);
8879
8880 for (i = 0; i < vec_nelts; i++)
8881 {
8882 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8883 if (!exact_real_inverse (mode, &r))
8884 return NULL_TREE;
8885 elts[i] = build_real (unit_type, r);
8886 }
8887
8888 return build_vector (type, elts);
8889
8890 default:
8891 return NULL_TREE;
8892 }
8893 }
8894
8895 /* Mask out the tz least significant bits of X of type TYPE where
8896 tz is the number of trailing zeroes in Y. */
8897 static wide_int
8898 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8899 {
8900 int tz = wi::ctz (y);
8901 if (tz > 0)
8902 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8903 return x;
8904 }
8905
8906 /* Return true when T is an address and is known to be nonzero.
8907 For floating point we further ensure that T is not denormal.
8908 Similar logic is present in nonzero_address in rtlanal.h.
8909
8910 If the return value is based on the assumption that signed overflow
8911 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8912 change *STRICT_OVERFLOW_P. */
8913
8914 static bool
8915 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8916 {
8917 tree type = TREE_TYPE (t);
8918 enum tree_code code;
8919
8920 /* Doing something useful for floating point would need more work. */
8921 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8922 return false;
8923
8924 code = TREE_CODE (t);
8925 switch (TREE_CODE_CLASS (code))
8926 {
8927 case tcc_unary:
8928 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8929 strict_overflow_p);
8930 case tcc_binary:
8931 case tcc_comparison:
8932 return tree_binary_nonzero_warnv_p (code, type,
8933 TREE_OPERAND (t, 0),
8934 TREE_OPERAND (t, 1),
8935 strict_overflow_p);
8936 case tcc_constant:
8937 case tcc_declaration:
8938 case tcc_reference:
8939 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8940
8941 default:
8942 break;
8943 }
8944
8945 switch (code)
8946 {
8947 case TRUTH_NOT_EXPR:
8948 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8949 strict_overflow_p);
8950
8951 case TRUTH_AND_EXPR:
8952 case TRUTH_OR_EXPR:
8953 case TRUTH_XOR_EXPR:
8954 return tree_binary_nonzero_warnv_p (code, type,
8955 TREE_OPERAND (t, 0),
8956 TREE_OPERAND (t, 1),
8957 strict_overflow_p);
8958
8959 case COND_EXPR:
8960 case CONSTRUCTOR:
8961 case OBJ_TYPE_REF:
8962 case ASSERT_EXPR:
8963 case ADDR_EXPR:
8964 case WITH_SIZE_EXPR:
8965 case SSA_NAME:
8966 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8967
8968 case COMPOUND_EXPR:
8969 case MODIFY_EXPR:
8970 case BIND_EXPR:
8971 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8972 strict_overflow_p);
8973
8974 case SAVE_EXPR:
8975 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8976 strict_overflow_p);
8977
8978 case CALL_EXPR:
8979 {
8980 tree fndecl = get_callee_fndecl (t);
8981 if (!fndecl) return false;
8982 if (flag_delete_null_pointer_checks && !flag_check_new
8983 && DECL_IS_OPERATOR_NEW (fndecl)
8984 && !TREE_NOTHROW (fndecl))
8985 return true;
8986 if (flag_delete_null_pointer_checks
8987 && lookup_attribute ("returns_nonnull",
8988 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
8989 return true;
8990 return alloca_call_p (t);
8991 }
8992
8993 default:
8994 break;
8995 }
8996 return false;
8997 }
8998
8999 /* Return true when T is an address and is known to be nonzero.
9000 Handle warnings about undefined signed overflow. */
9001
9002 bool
9003 tree_expr_nonzero_p (tree t)
9004 {
9005 bool ret, strict_overflow_p;
9006
9007 strict_overflow_p = false;
9008 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9009 if (strict_overflow_p)
9010 fold_overflow_warning (("assuming signed overflow does not occur when "
9011 "determining that expression is always "
9012 "non-zero"),
9013 WARN_STRICT_OVERFLOW_MISC);
9014 return ret;
9015 }
9016
9017 /* Return true if T is known not to be equal to an integer W. */
9018
9019 bool
9020 expr_not_equal_to (tree t, const wide_int &w)
9021 {
9022 wide_int min, max, nz;
9023 value_range_type rtype;
9024 switch (TREE_CODE (t))
9025 {
9026 case INTEGER_CST:
9027 return wi::ne_p (t, w);
9028
9029 case SSA_NAME:
9030 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9031 return false;
9032 rtype = get_range_info (t, &min, &max);
9033 if (rtype == VR_RANGE)
9034 {
9035 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9036 return true;
9037 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9038 return true;
9039 }
9040 else if (rtype == VR_ANTI_RANGE
9041 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9042 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9043 return true;
9044 /* If T has some known zero bits and W has any of those bits set,
9045 then T is known not to be equal to W. */
9046 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9047 TYPE_PRECISION (TREE_TYPE (t))), 0))
9048 return true;
9049 return false;
9050
9051 default:
9052 return false;
9053 }
9054 }
9055
9056 /* Fold a binary expression of code CODE and type TYPE with operands
9057 OP0 and OP1. LOC is the location of the resulting expression.
9058 Return the folded expression if folding is successful. Otherwise,
9059 return NULL_TREE. */
9060
9061 tree
9062 fold_binary_loc (location_t loc,
9063 enum tree_code code, tree type, tree op0, tree op1)
9064 {
9065 enum tree_code_class kind = TREE_CODE_CLASS (code);
9066 tree arg0, arg1, tem;
9067 tree t1 = NULL_TREE;
9068 bool strict_overflow_p;
9069 unsigned int prec;
9070
9071 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9072 && TREE_CODE_LENGTH (code) == 2
9073 && op0 != NULL_TREE
9074 && op1 != NULL_TREE);
9075
9076 arg0 = op0;
9077 arg1 = op1;
9078
9079 /* Strip any conversions that don't change the mode. This is
9080 safe for every expression, except for a comparison expression
9081 because its signedness is derived from its operands. So, in
9082 the latter case, only strip conversions that don't change the
9083 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9084 preserved.
9085
9086 Note that this is done as an internal manipulation within the
9087 constant folder, in order to find the simplest representation
9088 of the arguments so that their form can be studied. In any
9089 cases, the appropriate type conversions should be put back in
9090 the tree that will get out of the constant folder. */
9091
9092 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9093 {
9094 STRIP_SIGN_NOPS (arg0);
9095 STRIP_SIGN_NOPS (arg1);
9096 }
9097 else
9098 {
9099 STRIP_NOPS (arg0);
9100 STRIP_NOPS (arg1);
9101 }
9102
9103 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9104 constant but we can't do arithmetic on them. */
9105 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9106 {
9107 tem = const_binop (code, type, arg0, arg1);
9108 if (tem != NULL_TREE)
9109 {
9110 if (TREE_TYPE (tem) != type)
9111 tem = fold_convert_loc (loc, type, tem);
9112 return tem;
9113 }
9114 }
9115
9116 /* If this is a commutative operation, and ARG0 is a constant, move it
9117 to ARG1 to reduce the number of tests below. */
9118 if (commutative_tree_code (code)
9119 && tree_swap_operands_p (arg0, arg1))
9120 return fold_build2_loc (loc, code, type, op1, op0);
9121
9122 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9123 to ARG1 to reduce the number of tests below. */
9124 if (kind == tcc_comparison
9125 && tree_swap_operands_p (arg0, arg1))
9126 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9127
9128 tem = generic_simplify (loc, code, type, op0, op1);
9129 if (tem)
9130 return tem;
9131
9132 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9133
9134 First check for cases where an arithmetic operation is applied to a
9135 compound, conditional, or comparison operation. Push the arithmetic
9136 operation inside the compound or conditional to see if any folding
9137 can then be done. Convert comparison to conditional for this purpose.
9138 The also optimizes non-constant cases that used to be done in
9139 expand_expr.
9140
9141 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9142 one of the operands is a comparison and the other is a comparison, a
9143 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9144 code below would make the expression more complex. Change it to a
9145 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9146 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9147
9148 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9149 || code == EQ_EXPR || code == NE_EXPR)
9150 && TREE_CODE (type) != VECTOR_TYPE
9151 && ((truth_value_p (TREE_CODE (arg0))
9152 && (truth_value_p (TREE_CODE (arg1))
9153 || (TREE_CODE (arg1) == BIT_AND_EXPR
9154 && integer_onep (TREE_OPERAND (arg1, 1)))))
9155 || (truth_value_p (TREE_CODE (arg1))
9156 && (truth_value_p (TREE_CODE (arg0))
9157 || (TREE_CODE (arg0) == BIT_AND_EXPR
9158 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9159 {
9160 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9161 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9162 : TRUTH_XOR_EXPR,
9163 boolean_type_node,
9164 fold_convert_loc (loc, boolean_type_node, arg0),
9165 fold_convert_loc (loc, boolean_type_node, arg1));
9166
9167 if (code == EQ_EXPR)
9168 tem = invert_truthvalue_loc (loc, tem);
9169
9170 return fold_convert_loc (loc, type, tem);
9171 }
9172
9173 if (TREE_CODE_CLASS (code) == tcc_binary
9174 || TREE_CODE_CLASS (code) == tcc_comparison)
9175 {
9176 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9177 {
9178 tem = fold_build2_loc (loc, code, type,
9179 fold_convert_loc (loc, TREE_TYPE (op0),
9180 TREE_OPERAND (arg0, 1)), op1);
9181 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9182 tem);
9183 }
9184 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9185 {
9186 tem = fold_build2_loc (loc, code, type, op0,
9187 fold_convert_loc (loc, TREE_TYPE (op1),
9188 TREE_OPERAND (arg1, 1)));
9189 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9190 tem);
9191 }
9192
9193 if (TREE_CODE (arg0) == COND_EXPR
9194 || TREE_CODE (arg0) == VEC_COND_EXPR
9195 || COMPARISON_CLASS_P (arg0))
9196 {
9197 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9198 arg0, arg1,
9199 /*cond_first_p=*/1);
9200 if (tem != NULL_TREE)
9201 return tem;
9202 }
9203
9204 if (TREE_CODE (arg1) == COND_EXPR
9205 || TREE_CODE (arg1) == VEC_COND_EXPR
9206 || COMPARISON_CLASS_P (arg1))
9207 {
9208 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9209 arg1, arg0,
9210 /*cond_first_p=*/0);
9211 if (tem != NULL_TREE)
9212 return tem;
9213 }
9214 }
9215
9216 switch (code)
9217 {
9218 case MEM_REF:
9219 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9220 if (TREE_CODE (arg0) == ADDR_EXPR
9221 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9222 {
9223 tree iref = TREE_OPERAND (arg0, 0);
9224 return fold_build2 (MEM_REF, type,
9225 TREE_OPERAND (iref, 0),
9226 int_const_binop (PLUS_EXPR, arg1,
9227 TREE_OPERAND (iref, 1)));
9228 }
9229
9230 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9231 if (TREE_CODE (arg0) == ADDR_EXPR
9232 && handled_component_p (TREE_OPERAND (arg0, 0)))
9233 {
9234 tree base;
9235 HOST_WIDE_INT coffset;
9236 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9237 &coffset);
9238 if (!base)
9239 return NULL_TREE;
9240 return fold_build2 (MEM_REF, type,
9241 build_fold_addr_expr (base),
9242 int_const_binop (PLUS_EXPR, arg1,
9243 size_int (coffset)));
9244 }
9245
9246 return NULL_TREE;
9247
9248 case POINTER_PLUS_EXPR:
9249 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9250 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9251 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9252 return fold_convert_loc (loc, type,
9253 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9254 fold_convert_loc (loc, sizetype,
9255 arg1),
9256 fold_convert_loc (loc, sizetype,
9257 arg0)));
9258
9259 return NULL_TREE;
9260
9261 case PLUS_EXPR:
9262 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9263 {
9264 /* X + (X / CST) * -CST is X % CST. */
9265 if (TREE_CODE (arg1) == MULT_EXPR
9266 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9267 && operand_equal_p (arg0,
9268 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9269 {
9270 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9271 tree cst1 = TREE_OPERAND (arg1, 1);
9272 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9273 cst1, cst0);
9274 if (sum && integer_zerop (sum))
9275 return fold_convert_loc (loc, type,
9276 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9277 TREE_TYPE (arg0), arg0,
9278 cst0));
9279 }
9280 }
9281
9282 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9283 one. Make sure the type is not saturating and has the signedness of
9284 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9285 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9286 if ((TREE_CODE (arg0) == MULT_EXPR
9287 || TREE_CODE (arg1) == MULT_EXPR)
9288 && !TYPE_SATURATING (type)
9289 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9290 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9291 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9292 {
9293 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9294 if (tem)
9295 return tem;
9296 }
9297
9298 if (! FLOAT_TYPE_P (type))
9299 {
9300 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9301 (plus (plus (mult) (mult)) (foo)) so that we can
9302 take advantage of the factoring cases below. */
9303 if (ANY_INTEGRAL_TYPE_P (type)
9304 && TYPE_OVERFLOW_WRAPS (type)
9305 && (((TREE_CODE (arg0) == PLUS_EXPR
9306 || TREE_CODE (arg0) == MINUS_EXPR)
9307 && TREE_CODE (arg1) == MULT_EXPR)
9308 || ((TREE_CODE (arg1) == PLUS_EXPR
9309 || TREE_CODE (arg1) == MINUS_EXPR)
9310 && TREE_CODE (arg0) == MULT_EXPR)))
9311 {
9312 tree parg0, parg1, parg, marg;
9313 enum tree_code pcode;
9314
9315 if (TREE_CODE (arg1) == MULT_EXPR)
9316 parg = arg0, marg = arg1;
9317 else
9318 parg = arg1, marg = arg0;
9319 pcode = TREE_CODE (parg);
9320 parg0 = TREE_OPERAND (parg, 0);
9321 parg1 = TREE_OPERAND (parg, 1);
9322 STRIP_NOPS (parg0);
9323 STRIP_NOPS (parg1);
9324
9325 if (TREE_CODE (parg0) == MULT_EXPR
9326 && TREE_CODE (parg1) != MULT_EXPR)
9327 return fold_build2_loc (loc, pcode, type,
9328 fold_build2_loc (loc, PLUS_EXPR, type,
9329 fold_convert_loc (loc, type,
9330 parg0),
9331 fold_convert_loc (loc, type,
9332 marg)),
9333 fold_convert_loc (loc, type, parg1));
9334 if (TREE_CODE (parg0) != MULT_EXPR
9335 && TREE_CODE (parg1) == MULT_EXPR)
9336 return
9337 fold_build2_loc (loc, PLUS_EXPR, type,
9338 fold_convert_loc (loc, type, parg0),
9339 fold_build2_loc (loc, pcode, type,
9340 fold_convert_loc (loc, type, marg),
9341 fold_convert_loc (loc, type,
9342 parg1)));
9343 }
9344 }
9345 else
9346 {
9347 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9348 to __complex__ ( x, y ). This is not the same for SNaNs or
9349 if signed zeros are involved. */
9350 if (!HONOR_SNANS (element_mode (arg0))
9351 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9352 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9353 {
9354 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9355 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9356 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9357 bool arg0rz = false, arg0iz = false;
9358 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9359 || (arg0i && (arg0iz = real_zerop (arg0i))))
9360 {
9361 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9362 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9363 if (arg0rz && arg1i && real_zerop (arg1i))
9364 {
9365 tree rp = arg1r ? arg1r
9366 : build1 (REALPART_EXPR, rtype, arg1);
9367 tree ip = arg0i ? arg0i
9368 : build1 (IMAGPART_EXPR, rtype, arg0);
9369 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9370 }
9371 else if (arg0iz && arg1r && real_zerop (arg1r))
9372 {
9373 tree rp = arg0r ? arg0r
9374 : build1 (REALPART_EXPR, rtype, arg0);
9375 tree ip = arg1i ? arg1i
9376 : build1 (IMAGPART_EXPR, rtype, arg1);
9377 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9378 }
9379 }
9380 }
9381
9382 if (flag_unsafe_math_optimizations
9383 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9384 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9385 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9386 return tem;
9387
9388 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9389 We associate floats only if the user has specified
9390 -fassociative-math. */
9391 if (flag_associative_math
9392 && TREE_CODE (arg1) == PLUS_EXPR
9393 && TREE_CODE (arg0) != MULT_EXPR)
9394 {
9395 tree tree10 = TREE_OPERAND (arg1, 0);
9396 tree tree11 = TREE_OPERAND (arg1, 1);
9397 if (TREE_CODE (tree11) == MULT_EXPR
9398 && TREE_CODE (tree10) == MULT_EXPR)
9399 {
9400 tree tree0;
9401 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9402 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9403 }
9404 }
9405 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9406 We associate floats only if the user has specified
9407 -fassociative-math. */
9408 if (flag_associative_math
9409 && TREE_CODE (arg0) == PLUS_EXPR
9410 && TREE_CODE (arg1) != MULT_EXPR)
9411 {
9412 tree tree00 = TREE_OPERAND (arg0, 0);
9413 tree tree01 = TREE_OPERAND (arg0, 1);
9414 if (TREE_CODE (tree01) == MULT_EXPR
9415 && TREE_CODE (tree00) == MULT_EXPR)
9416 {
9417 tree tree0;
9418 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9419 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9420 }
9421 }
9422 }
9423
9424 bit_rotate:
9425 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9426 is a rotate of A by C1 bits. */
9427 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9428 is a rotate of A by B bits. */
9429 {
9430 enum tree_code code0, code1;
9431 tree rtype;
9432 code0 = TREE_CODE (arg0);
9433 code1 = TREE_CODE (arg1);
9434 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9435 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9436 && operand_equal_p (TREE_OPERAND (arg0, 0),
9437 TREE_OPERAND (arg1, 0), 0)
9438 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9439 TYPE_UNSIGNED (rtype))
9440 /* Only create rotates in complete modes. Other cases are not
9441 expanded properly. */
9442 && (element_precision (rtype)
9443 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9444 {
9445 tree tree01, tree11;
9446 enum tree_code code01, code11;
9447
9448 tree01 = TREE_OPERAND (arg0, 1);
9449 tree11 = TREE_OPERAND (arg1, 1);
9450 STRIP_NOPS (tree01);
9451 STRIP_NOPS (tree11);
9452 code01 = TREE_CODE (tree01);
9453 code11 = TREE_CODE (tree11);
9454 if (code01 == INTEGER_CST
9455 && code11 == INTEGER_CST
9456 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9457 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9458 {
9459 tem = build2_loc (loc, LROTATE_EXPR,
9460 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9461 TREE_OPERAND (arg0, 0),
9462 code0 == LSHIFT_EXPR
9463 ? TREE_OPERAND (arg0, 1)
9464 : TREE_OPERAND (arg1, 1));
9465 return fold_convert_loc (loc, type, tem);
9466 }
9467 else if (code11 == MINUS_EXPR)
9468 {
9469 tree tree110, tree111;
9470 tree110 = TREE_OPERAND (tree11, 0);
9471 tree111 = TREE_OPERAND (tree11, 1);
9472 STRIP_NOPS (tree110);
9473 STRIP_NOPS (tree111);
9474 if (TREE_CODE (tree110) == INTEGER_CST
9475 && 0 == compare_tree_int (tree110,
9476 element_precision
9477 (TREE_TYPE (TREE_OPERAND
9478 (arg0, 0))))
9479 && operand_equal_p (tree01, tree111, 0))
9480 return
9481 fold_convert_loc (loc, type,
9482 build2 ((code0 == LSHIFT_EXPR
9483 ? LROTATE_EXPR
9484 : RROTATE_EXPR),
9485 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9486 TREE_OPERAND (arg0, 0),
9487 TREE_OPERAND (arg0, 1)));
9488 }
9489 else if (code01 == MINUS_EXPR)
9490 {
9491 tree tree010, tree011;
9492 tree010 = TREE_OPERAND (tree01, 0);
9493 tree011 = TREE_OPERAND (tree01, 1);
9494 STRIP_NOPS (tree010);
9495 STRIP_NOPS (tree011);
9496 if (TREE_CODE (tree010) == INTEGER_CST
9497 && 0 == compare_tree_int (tree010,
9498 element_precision
9499 (TREE_TYPE (TREE_OPERAND
9500 (arg0, 0))))
9501 && operand_equal_p (tree11, tree011, 0))
9502 return fold_convert_loc
9503 (loc, type,
9504 build2 ((code0 != LSHIFT_EXPR
9505 ? LROTATE_EXPR
9506 : RROTATE_EXPR),
9507 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9508 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9509 }
9510 }
9511 }
9512
9513 associate:
9514 /* In most languages, can't associate operations on floats through
9515 parentheses. Rather than remember where the parentheses were, we
9516 don't associate floats at all, unless the user has specified
9517 -fassociative-math.
9518 And, we need to make sure type is not saturating. */
9519
9520 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9521 && !TYPE_SATURATING (type))
9522 {
9523 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
9524 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
9525 tree atype = type;
9526 bool ok = true;
9527
9528 /* Split both trees into variables, constants, and literals. Then
9529 associate each group together, the constants with literals,
9530 then the result with variables. This increases the chances of
9531 literals being recombined later and of generating relocatable
9532 expressions for the sum of a constant and literal. */
9533 var0 = split_tree (arg0, type, code,
9534 &minus_var0, &con0, &minus_con0,
9535 &lit0, &minus_lit0, 0);
9536 var1 = split_tree (arg1, type, code,
9537 &minus_var1, &con1, &minus_con1,
9538 &lit1, &minus_lit1, code == MINUS_EXPR);
9539
9540 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9541 if (code == MINUS_EXPR)
9542 code = PLUS_EXPR;
9543
9544 /* With undefined overflow prefer doing association in a type
9545 which wraps on overflow, if that is one of the operand types. */
9546 if (POINTER_TYPE_P (type)
9547 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9548 {
9549 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9550 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9551 atype = TREE_TYPE (arg0);
9552 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9553 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9554 atype = TREE_TYPE (arg1);
9555 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9556 }
9557
9558 /* With undefined overflow we can only associate constants with one
9559 variable, and constants whose association doesn't overflow. */
9560 if (POINTER_TYPE_P (atype)
9561 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9562 {
9563 if ((var0 && var1) || (minus_var0 && minus_var1))
9564 {
9565 /* ??? If split_tree would handle NEGATE_EXPR we could
9566 simply reject these cases and the allowed cases would
9567 be the var0/minus_var1 ones. */
9568 tree tmp0 = var0 ? var0 : minus_var0;
9569 tree tmp1 = var1 ? var1 : minus_var1;
9570 bool one_neg = false;
9571
9572 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9573 {
9574 tmp0 = TREE_OPERAND (tmp0, 0);
9575 one_neg = !one_neg;
9576 }
9577 if (CONVERT_EXPR_P (tmp0)
9578 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9579 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9580 <= TYPE_PRECISION (atype)))
9581 tmp0 = TREE_OPERAND (tmp0, 0);
9582 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9583 {
9584 tmp1 = TREE_OPERAND (tmp1, 0);
9585 one_neg = !one_neg;
9586 }
9587 if (CONVERT_EXPR_P (tmp1)
9588 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9589 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9590 <= TYPE_PRECISION (atype)))
9591 tmp1 = TREE_OPERAND (tmp1, 0);
9592 /* The only case we can still associate with two variables
9593 is if they cancel out. */
9594 if (!one_neg
9595 || !operand_equal_p (tmp0, tmp1, 0))
9596 ok = false;
9597 }
9598 else if ((var0 && minus_var1
9599 && ! operand_equal_p (var0, minus_var1, 0))
9600 || (minus_var0 && var1
9601 && ! operand_equal_p (minus_var0, var1, 0)))
9602 ok = false;
9603 }
9604
9605 /* Only do something if we found more than two objects. Otherwise,
9606 nothing has changed and we risk infinite recursion. */
9607 if (ok
9608 && (2 < ((var0 != 0) + (var1 != 0)
9609 + (minus_var0 != 0) + (minus_var1 != 0)
9610 + (con0 != 0) + (con1 != 0)
9611 + (minus_con0 != 0) + (minus_con1 != 0)
9612 + (lit0 != 0) + (lit1 != 0)
9613 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9614 {
9615 var0 = associate_trees (loc, var0, var1, code, atype);
9616 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
9617 code, atype);
9618 con0 = associate_trees (loc, con0, con1, code, atype);
9619 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
9620 code, atype);
9621 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9622 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9623 code, atype);
9624
9625 if (minus_var0 && var0)
9626 {
9627 var0 = associate_trees (loc, var0, minus_var0,
9628 MINUS_EXPR, atype);
9629 minus_var0 = 0;
9630 }
9631 if (minus_con0 && con0)
9632 {
9633 con0 = associate_trees (loc, con0, minus_con0,
9634 MINUS_EXPR, atype);
9635 minus_con0 = 0;
9636 }
9637
9638 /* Preserve the MINUS_EXPR if the negative part of the literal is
9639 greater than the positive part. Otherwise, the multiplicative
9640 folding code (i.e extract_muldiv) may be fooled in case
9641 unsigned constants are subtracted, like in the following
9642 example: ((X*2 + 4) - 8U)/2. */
9643 if (minus_lit0 && lit0)
9644 {
9645 if (TREE_CODE (lit0) == INTEGER_CST
9646 && TREE_CODE (minus_lit0) == INTEGER_CST
9647 && tree_int_cst_lt (lit0, minus_lit0)
9648 /* But avoid ending up with only negated parts. */
9649 && (var0 || con0))
9650 {
9651 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9652 MINUS_EXPR, atype);
9653 lit0 = 0;
9654 }
9655 else
9656 {
9657 lit0 = associate_trees (loc, lit0, minus_lit0,
9658 MINUS_EXPR, atype);
9659 minus_lit0 = 0;
9660 }
9661 }
9662
9663 /* Don't introduce overflows through reassociation. */
9664 if ((lit0 && TREE_OVERFLOW_P (lit0))
9665 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
9666 return NULL_TREE;
9667
9668 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9669 con0 = associate_trees (loc, con0, lit0, code, atype);
9670 lit0 = 0;
9671 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
9672 code, atype);
9673 minus_lit0 = 0;
9674
9675 /* Eliminate minus_con0. */
9676 if (minus_con0)
9677 {
9678 if (con0)
9679 con0 = associate_trees (loc, con0, minus_con0,
9680 MINUS_EXPR, atype);
9681 else if (var0)
9682 var0 = associate_trees (loc, var0, minus_con0,
9683 MINUS_EXPR, atype);
9684 else
9685 gcc_unreachable ();
9686 minus_con0 = 0;
9687 }
9688
9689 /* Eliminate minus_var0. */
9690 if (minus_var0)
9691 {
9692 if (con0)
9693 con0 = associate_trees (loc, con0, minus_var0,
9694 MINUS_EXPR, atype);
9695 else
9696 gcc_unreachable ();
9697 minus_var0 = 0;
9698 }
9699
9700 return
9701 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9702 code, atype));
9703 }
9704 }
9705
9706 return NULL_TREE;
9707
9708 case MINUS_EXPR:
9709 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9710 if (TREE_CODE (arg0) == NEGATE_EXPR
9711 && negate_expr_p (op1))
9712 return fold_build2_loc (loc, MINUS_EXPR, type,
9713 negate_expr (op1),
9714 fold_convert_loc (loc, type,
9715 TREE_OPERAND (arg0, 0)));
9716
9717 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9718 __complex__ ( x, -y ). This is not the same for SNaNs or if
9719 signed zeros are involved. */
9720 if (!HONOR_SNANS (element_mode (arg0))
9721 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9722 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9723 {
9724 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9725 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9726 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9727 bool arg0rz = false, arg0iz = false;
9728 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9729 || (arg0i && (arg0iz = real_zerop (arg0i))))
9730 {
9731 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9732 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9733 if (arg0rz && arg1i && real_zerop (arg1i))
9734 {
9735 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9736 arg1r ? arg1r
9737 : build1 (REALPART_EXPR, rtype, arg1));
9738 tree ip = arg0i ? arg0i
9739 : build1 (IMAGPART_EXPR, rtype, arg0);
9740 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9741 }
9742 else if (arg0iz && arg1r && real_zerop (arg1r))
9743 {
9744 tree rp = arg0r ? arg0r
9745 : build1 (REALPART_EXPR, rtype, arg0);
9746 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9747 arg1i ? arg1i
9748 : build1 (IMAGPART_EXPR, rtype, arg1));
9749 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9750 }
9751 }
9752 }
9753
9754 /* A - B -> A + (-B) if B is easily negatable. */
9755 if (negate_expr_p (op1)
9756 && ! TYPE_OVERFLOW_SANITIZED (type)
9757 && ((FLOAT_TYPE_P (type)
9758 /* Avoid this transformation if B is a positive REAL_CST. */
9759 && (TREE_CODE (op1) != REAL_CST
9760 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9761 || INTEGRAL_TYPE_P (type)))
9762 return fold_build2_loc (loc, PLUS_EXPR, type,
9763 fold_convert_loc (loc, type, arg0),
9764 negate_expr (op1));
9765
9766 /* Fold &a[i] - &a[j] to i-j. */
9767 if (TREE_CODE (arg0) == ADDR_EXPR
9768 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9769 && TREE_CODE (arg1) == ADDR_EXPR
9770 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9771 {
9772 tree tem = fold_addr_of_array_ref_difference (loc, type,
9773 TREE_OPERAND (arg0, 0),
9774 TREE_OPERAND (arg1, 0));
9775 if (tem)
9776 return tem;
9777 }
9778
9779 if (FLOAT_TYPE_P (type)
9780 && flag_unsafe_math_optimizations
9781 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9782 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9783 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9784 return tem;
9785
9786 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9787 one. Make sure the type is not saturating and has the signedness of
9788 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9789 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9790 if ((TREE_CODE (arg0) == MULT_EXPR
9791 || TREE_CODE (arg1) == MULT_EXPR)
9792 && !TYPE_SATURATING (type)
9793 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9794 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9795 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9796 {
9797 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9798 if (tem)
9799 return tem;
9800 }
9801
9802 goto associate;
9803
9804 case MULT_EXPR:
9805 if (! FLOAT_TYPE_P (type))
9806 {
9807 /* Transform x * -C into -x * C if x is easily negatable. */
9808 if (TREE_CODE (op1) == INTEGER_CST
9809 && tree_int_cst_sgn (op1) == -1
9810 && negate_expr_p (op0)
9811 && negate_expr_p (op1)
9812 && (tem = negate_expr (op1)) != op1
9813 && ! TREE_OVERFLOW (tem))
9814 return fold_build2_loc (loc, MULT_EXPR, type,
9815 fold_convert_loc (loc, type,
9816 negate_expr (op0)), tem);
9817
9818 strict_overflow_p = false;
9819 if (TREE_CODE (arg1) == INTEGER_CST
9820 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9821 &strict_overflow_p)))
9822 {
9823 if (strict_overflow_p)
9824 fold_overflow_warning (("assuming signed overflow does not "
9825 "occur when simplifying "
9826 "multiplication"),
9827 WARN_STRICT_OVERFLOW_MISC);
9828 return fold_convert_loc (loc, type, tem);
9829 }
9830
9831 /* Optimize z * conj(z) for integer complex numbers. */
9832 if (TREE_CODE (arg0) == CONJ_EXPR
9833 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9834 return fold_mult_zconjz (loc, type, arg1);
9835 if (TREE_CODE (arg1) == CONJ_EXPR
9836 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9837 return fold_mult_zconjz (loc, type, arg0);
9838 }
9839 else
9840 {
9841 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9842 This is not the same for NaNs or if signed zeros are
9843 involved. */
9844 if (!HONOR_NANS (arg0)
9845 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9846 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9847 && TREE_CODE (arg1) == COMPLEX_CST
9848 && real_zerop (TREE_REALPART (arg1)))
9849 {
9850 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9851 if (real_onep (TREE_IMAGPART (arg1)))
9852 return
9853 fold_build2_loc (loc, COMPLEX_EXPR, type,
9854 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9855 rtype, arg0)),
9856 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9857 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9858 return
9859 fold_build2_loc (loc, COMPLEX_EXPR, type,
9860 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9861 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9862 rtype, arg0)));
9863 }
9864
9865 /* Optimize z * conj(z) for floating point complex numbers.
9866 Guarded by flag_unsafe_math_optimizations as non-finite
9867 imaginary components don't produce scalar results. */
9868 if (flag_unsafe_math_optimizations
9869 && TREE_CODE (arg0) == CONJ_EXPR
9870 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9871 return fold_mult_zconjz (loc, type, arg1);
9872 if (flag_unsafe_math_optimizations
9873 && TREE_CODE (arg1) == CONJ_EXPR
9874 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9875 return fold_mult_zconjz (loc, type, arg0);
9876 }
9877 goto associate;
9878
9879 case BIT_IOR_EXPR:
9880 /* Canonicalize (X & C1) | C2. */
9881 if (TREE_CODE (arg0) == BIT_AND_EXPR
9882 && TREE_CODE (arg1) == INTEGER_CST
9883 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9884 {
9885 int width = TYPE_PRECISION (type), w;
9886 wide_int c1 = TREE_OPERAND (arg0, 1);
9887 wide_int c2 = arg1;
9888
9889 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9890 if ((c1 & c2) == c1)
9891 return omit_one_operand_loc (loc, type, arg1,
9892 TREE_OPERAND (arg0, 0));
9893
9894 wide_int msk = wi::mask (width, false,
9895 TYPE_PRECISION (TREE_TYPE (arg1)));
9896
9897 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9898 if (msk.and_not (c1 | c2) == 0)
9899 {
9900 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9901 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9902 }
9903
9904 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9905 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9906 mode which allows further optimizations. */
9907 c1 &= msk;
9908 c2 &= msk;
9909 wide_int c3 = c1.and_not (c2);
9910 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9911 {
9912 wide_int mask = wi::mask (w, false,
9913 TYPE_PRECISION (type));
9914 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9915 {
9916 c3 = mask;
9917 break;
9918 }
9919 }
9920
9921 if (c3 != c1)
9922 {
9923 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9924 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
9925 wide_int_to_tree (type, c3));
9926 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
9927 }
9928 }
9929
9930 /* See if this can be simplified into a rotate first. If that
9931 is unsuccessful continue in the association code. */
9932 goto bit_rotate;
9933
9934 case BIT_XOR_EXPR:
9935 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9936 if (TREE_CODE (arg0) == BIT_AND_EXPR
9937 && INTEGRAL_TYPE_P (type)
9938 && integer_onep (TREE_OPERAND (arg0, 1))
9939 && integer_onep (arg1))
9940 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9941 build_zero_cst (TREE_TYPE (arg0)));
9942
9943 /* See if this can be simplified into a rotate first. If that
9944 is unsuccessful continue in the association code. */
9945 goto bit_rotate;
9946
9947 case BIT_AND_EXPR:
9948 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9949 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9950 && INTEGRAL_TYPE_P (type)
9951 && integer_onep (TREE_OPERAND (arg0, 1))
9952 && integer_onep (arg1))
9953 {
9954 tree tem2;
9955 tem = TREE_OPERAND (arg0, 0);
9956 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9957 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9958 tem, tem2);
9959 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9960 build_zero_cst (TREE_TYPE (tem)));
9961 }
9962 /* Fold ~X & 1 as (X & 1) == 0. */
9963 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9964 && INTEGRAL_TYPE_P (type)
9965 && integer_onep (arg1))
9966 {
9967 tree tem2;
9968 tem = TREE_OPERAND (arg0, 0);
9969 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9970 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9971 tem, tem2);
9972 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9973 build_zero_cst (TREE_TYPE (tem)));
9974 }
9975 /* Fold !X & 1 as X == 0. */
9976 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9977 && integer_onep (arg1))
9978 {
9979 tem = TREE_OPERAND (arg0, 0);
9980 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9981 build_zero_cst (TREE_TYPE (tem)));
9982 }
9983
9984 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9985 multiple of 1 << CST. */
9986 if (TREE_CODE (arg1) == INTEGER_CST)
9987 {
9988 wide_int cst1 = arg1;
9989 wide_int ncst1 = -cst1;
9990 if ((cst1 & ncst1) == ncst1
9991 && multiple_of_p (type, arg0,
9992 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9993 return fold_convert_loc (loc, type, arg0);
9994 }
9995
9996 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9997 bits from CST2. */
9998 if (TREE_CODE (arg1) == INTEGER_CST
9999 && TREE_CODE (arg0) == MULT_EXPR
10000 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10001 {
10002 wide_int warg1 = arg1;
10003 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10004
10005 if (masked == 0)
10006 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10007 arg0, arg1);
10008 else if (masked != warg1)
10009 {
10010 /* Avoid the transform if arg1 is a mask of some
10011 mode which allows further optimizations. */
10012 int pop = wi::popcount (warg1);
10013 if (!(pop >= BITS_PER_UNIT
10014 && pow2p_hwi (pop)
10015 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10016 return fold_build2_loc (loc, code, type, op0,
10017 wide_int_to_tree (type, masked));
10018 }
10019 }
10020
10021 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10022 ((A & N) + B) & M -> (A + B) & M
10023 Similarly if (N & M) == 0,
10024 ((A | N) + B) & M -> (A + B) & M
10025 and for - instead of + (or unary - instead of +)
10026 and/or ^ instead of |.
10027 If B is constant and (B & M) == 0, fold into A & M. */
10028 if (TREE_CODE (arg1) == INTEGER_CST)
10029 {
10030 wide_int cst1 = arg1;
10031 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10032 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10033 && (TREE_CODE (arg0) == PLUS_EXPR
10034 || TREE_CODE (arg0) == MINUS_EXPR
10035 || TREE_CODE (arg0) == NEGATE_EXPR)
10036 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10037 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10038 {
10039 tree pmop[2];
10040 int which = 0;
10041 wide_int cst0;
10042
10043 /* Now we know that arg0 is (C + D) or (C - D) or
10044 -C and arg1 (M) is == (1LL << cst) - 1.
10045 Store C into PMOP[0] and D into PMOP[1]. */
10046 pmop[0] = TREE_OPERAND (arg0, 0);
10047 pmop[1] = NULL;
10048 if (TREE_CODE (arg0) != NEGATE_EXPR)
10049 {
10050 pmop[1] = TREE_OPERAND (arg0, 1);
10051 which = 1;
10052 }
10053
10054 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10055 which = -1;
10056
10057 for (; which >= 0; which--)
10058 switch (TREE_CODE (pmop[which]))
10059 {
10060 case BIT_AND_EXPR:
10061 case BIT_IOR_EXPR:
10062 case BIT_XOR_EXPR:
10063 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10064 != INTEGER_CST)
10065 break;
10066 cst0 = TREE_OPERAND (pmop[which], 1);
10067 cst0 &= cst1;
10068 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10069 {
10070 if (cst0 != cst1)
10071 break;
10072 }
10073 else if (cst0 != 0)
10074 break;
10075 /* If C or D is of the form (A & N) where
10076 (N & M) == M, or of the form (A | N) or
10077 (A ^ N) where (N & M) == 0, replace it with A. */
10078 pmop[which] = TREE_OPERAND (pmop[which], 0);
10079 break;
10080 case INTEGER_CST:
10081 /* If C or D is a N where (N & M) == 0, it can be
10082 omitted (assumed 0). */
10083 if ((TREE_CODE (arg0) == PLUS_EXPR
10084 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10085 && (cst1 & pmop[which]) == 0)
10086 pmop[which] = NULL;
10087 break;
10088 default:
10089 break;
10090 }
10091
10092 /* Only build anything new if we optimized one or both arguments
10093 above. */
10094 if (pmop[0] != TREE_OPERAND (arg0, 0)
10095 || (TREE_CODE (arg0) != NEGATE_EXPR
10096 && pmop[1] != TREE_OPERAND (arg0, 1)))
10097 {
10098 tree utype = TREE_TYPE (arg0);
10099 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10100 {
10101 /* Perform the operations in a type that has defined
10102 overflow behavior. */
10103 utype = unsigned_type_for (TREE_TYPE (arg0));
10104 if (pmop[0] != NULL)
10105 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10106 if (pmop[1] != NULL)
10107 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10108 }
10109
10110 if (TREE_CODE (arg0) == NEGATE_EXPR)
10111 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10112 else if (TREE_CODE (arg0) == PLUS_EXPR)
10113 {
10114 if (pmop[0] != NULL && pmop[1] != NULL)
10115 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10116 pmop[0], pmop[1]);
10117 else if (pmop[0] != NULL)
10118 tem = pmop[0];
10119 else if (pmop[1] != NULL)
10120 tem = pmop[1];
10121 else
10122 return build_int_cst (type, 0);
10123 }
10124 else if (pmop[0] == NULL)
10125 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10126 else
10127 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10128 pmop[0], pmop[1]);
10129 /* TEM is now the new binary +, - or unary - replacement. */
10130 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10131 fold_convert_loc (loc, utype, arg1));
10132 return fold_convert_loc (loc, type, tem);
10133 }
10134 }
10135 }
10136
10137 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10138 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10139 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10140 {
10141 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10142
10143 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10144 if (mask == -1)
10145 return
10146 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10147 }
10148
10149 goto associate;
10150
10151 case RDIV_EXPR:
10152 /* Don't touch a floating-point divide by zero unless the mode
10153 of the constant can represent infinity. */
10154 if (TREE_CODE (arg1) == REAL_CST
10155 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10156 && real_zerop (arg1))
10157 return NULL_TREE;
10158
10159 /* (-A) / (-B) -> A / B */
10160 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10161 return fold_build2_loc (loc, RDIV_EXPR, type,
10162 TREE_OPERAND (arg0, 0),
10163 negate_expr (arg1));
10164 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10165 return fold_build2_loc (loc, RDIV_EXPR, type,
10166 negate_expr (arg0),
10167 TREE_OPERAND (arg1, 0));
10168 return NULL_TREE;
10169
10170 case TRUNC_DIV_EXPR:
10171 /* Fall through */
10172
10173 case FLOOR_DIV_EXPR:
10174 /* Simplify A / (B << N) where A and B are positive and B is
10175 a power of 2, to A >> (N + log2(B)). */
10176 strict_overflow_p = false;
10177 if (TREE_CODE (arg1) == LSHIFT_EXPR
10178 && (TYPE_UNSIGNED (type)
10179 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10180 {
10181 tree sval = TREE_OPERAND (arg1, 0);
10182 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10183 {
10184 tree sh_cnt = TREE_OPERAND (arg1, 1);
10185 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10186 wi::exact_log2 (sval));
10187
10188 if (strict_overflow_p)
10189 fold_overflow_warning (("assuming signed overflow does not "
10190 "occur when simplifying A / (B << N)"),
10191 WARN_STRICT_OVERFLOW_MISC);
10192
10193 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10194 sh_cnt, pow2);
10195 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10196 fold_convert_loc (loc, type, arg0), sh_cnt);
10197 }
10198 }
10199
10200 /* Fall through */
10201
10202 case ROUND_DIV_EXPR:
10203 case CEIL_DIV_EXPR:
10204 case EXACT_DIV_EXPR:
10205 if (integer_zerop (arg1))
10206 return NULL_TREE;
10207
10208 /* Convert -A / -B to A / B when the type is signed and overflow is
10209 undefined. */
10210 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10211 && TREE_CODE (op0) == NEGATE_EXPR
10212 && negate_expr_p (op1))
10213 {
10214 if (INTEGRAL_TYPE_P (type))
10215 fold_overflow_warning (("assuming signed overflow does not occur "
10216 "when distributing negation across "
10217 "division"),
10218 WARN_STRICT_OVERFLOW_MISC);
10219 return fold_build2_loc (loc, code, type,
10220 fold_convert_loc (loc, type,
10221 TREE_OPERAND (arg0, 0)),
10222 negate_expr (op1));
10223 }
10224 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10225 && TREE_CODE (arg1) == NEGATE_EXPR
10226 && negate_expr_p (op0))
10227 {
10228 if (INTEGRAL_TYPE_P (type))
10229 fold_overflow_warning (("assuming signed overflow does not occur "
10230 "when distributing negation across "
10231 "division"),
10232 WARN_STRICT_OVERFLOW_MISC);
10233 return fold_build2_loc (loc, code, type,
10234 negate_expr (op0),
10235 fold_convert_loc (loc, type,
10236 TREE_OPERAND (arg1, 0)));
10237 }
10238
10239 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10240 operation, EXACT_DIV_EXPR.
10241
10242 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10243 At one time others generated faster code, it's not clear if they do
10244 after the last round to changes to the DIV code in expmed.c. */
10245 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10246 && multiple_of_p (type, arg0, arg1))
10247 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10248 fold_convert (type, arg0),
10249 fold_convert (type, arg1));
10250
10251 strict_overflow_p = false;
10252 if (TREE_CODE (arg1) == INTEGER_CST
10253 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10254 &strict_overflow_p)))
10255 {
10256 if (strict_overflow_p)
10257 fold_overflow_warning (("assuming signed overflow does not occur "
10258 "when simplifying division"),
10259 WARN_STRICT_OVERFLOW_MISC);
10260 return fold_convert_loc (loc, type, tem);
10261 }
10262
10263 return NULL_TREE;
10264
10265 case CEIL_MOD_EXPR:
10266 case FLOOR_MOD_EXPR:
10267 case ROUND_MOD_EXPR:
10268 case TRUNC_MOD_EXPR:
10269 strict_overflow_p = false;
10270 if (TREE_CODE (arg1) == INTEGER_CST
10271 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10272 &strict_overflow_p)))
10273 {
10274 if (strict_overflow_p)
10275 fold_overflow_warning (("assuming signed overflow does not occur "
10276 "when simplifying modulus"),
10277 WARN_STRICT_OVERFLOW_MISC);
10278 return fold_convert_loc (loc, type, tem);
10279 }
10280
10281 return NULL_TREE;
10282
10283 case LROTATE_EXPR:
10284 case RROTATE_EXPR:
10285 case RSHIFT_EXPR:
10286 case LSHIFT_EXPR:
10287 /* Since negative shift count is not well-defined,
10288 don't try to compute it in the compiler. */
10289 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10290 return NULL_TREE;
10291
10292 prec = element_precision (type);
10293
10294 /* If we have a rotate of a bit operation with the rotate count and
10295 the second operand of the bit operation both constant,
10296 permute the two operations. */
10297 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10298 && (TREE_CODE (arg0) == BIT_AND_EXPR
10299 || TREE_CODE (arg0) == BIT_IOR_EXPR
10300 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10301 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10302 {
10303 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10304 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10305 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10306 fold_build2_loc (loc, code, type,
10307 arg00, arg1),
10308 fold_build2_loc (loc, code, type,
10309 arg01, arg1));
10310 }
10311
10312 /* Two consecutive rotates adding up to the some integer
10313 multiple of the precision of the type can be ignored. */
10314 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10315 && TREE_CODE (arg0) == RROTATE_EXPR
10316 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10317 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10318 prec) == 0)
10319 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10320
10321 return NULL_TREE;
10322
10323 case MIN_EXPR:
10324 case MAX_EXPR:
10325 goto associate;
10326
10327 case TRUTH_ANDIF_EXPR:
10328 /* Note that the operands of this must be ints
10329 and their values must be 0 or 1.
10330 ("true" is a fixed value perhaps depending on the language.) */
10331 /* If first arg is constant zero, return it. */
10332 if (integer_zerop (arg0))
10333 return fold_convert_loc (loc, type, arg0);
10334 /* FALLTHRU */
10335 case TRUTH_AND_EXPR:
10336 /* If either arg is constant true, drop it. */
10337 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10338 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10339 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10340 /* Preserve sequence points. */
10341 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10342 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10343 /* If second arg is constant zero, result is zero, but first arg
10344 must be evaluated. */
10345 if (integer_zerop (arg1))
10346 return omit_one_operand_loc (loc, type, arg1, arg0);
10347 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10348 case will be handled here. */
10349 if (integer_zerop (arg0))
10350 return omit_one_operand_loc (loc, type, arg0, arg1);
10351
10352 /* !X && X is always false. */
10353 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10354 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10355 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10356 /* X && !X is always false. */
10357 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10358 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10359 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10360
10361 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10362 means A >= Y && A != MAX, but in this case we know that
10363 A < X <= MAX. */
10364
10365 if (!TREE_SIDE_EFFECTS (arg0)
10366 && !TREE_SIDE_EFFECTS (arg1))
10367 {
10368 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10369 if (tem && !operand_equal_p (tem, arg0, 0))
10370 return fold_build2_loc (loc, code, type, tem, arg1);
10371
10372 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10373 if (tem && !operand_equal_p (tem, arg1, 0))
10374 return fold_build2_loc (loc, code, type, arg0, tem);
10375 }
10376
10377 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10378 != NULL_TREE)
10379 return tem;
10380
10381 return NULL_TREE;
10382
10383 case TRUTH_ORIF_EXPR:
10384 /* Note that the operands of this must be ints
10385 and their values must be 0 or true.
10386 ("true" is a fixed value perhaps depending on the language.) */
10387 /* If first arg is constant true, return it. */
10388 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10389 return fold_convert_loc (loc, type, arg0);
10390 /* FALLTHRU */
10391 case TRUTH_OR_EXPR:
10392 /* If either arg is constant zero, drop it. */
10393 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10394 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10395 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10396 /* Preserve sequence points. */
10397 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10398 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10399 /* If second arg is constant true, result is true, but we must
10400 evaluate first arg. */
10401 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10402 return omit_one_operand_loc (loc, type, arg1, arg0);
10403 /* Likewise for first arg, but note this only occurs here for
10404 TRUTH_OR_EXPR. */
10405 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10406 return omit_one_operand_loc (loc, type, arg0, arg1);
10407
10408 /* !X || X is always true. */
10409 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10410 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10411 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10412 /* X || !X is always true. */
10413 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10414 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10415 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10416
10417 /* (X && !Y) || (!X && Y) is X ^ Y */
10418 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10419 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10420 {
10421 tree a0, a1, l0, l1, n0, n1;
10422
10423 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10424 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10425
10426 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10427 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10428
10429 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10430 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10431
10432 if ((operand_equal_p (n0, a0, 0)
10433 && operand_equal_p (n1, a1, 0))
10434 || (operand_equal_p (n0, a1, 0)
10435 && operand_equal_p (n1, a0, 0)))
10436 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10437 }
10438
10439 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10440 != NULL_TREE)
10441 return tem;
10442
10443 return NULL_TREE;
10444
10445 case TRUTH_XOR_EXPR:
10446 /* If the second arg is constant zero, drop it. */
10447 if (integer_zerop (arg1))
10448 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10449 /* If the second arg is constant true, this is a logical inversion. */
10450 if (integer_onep (arg1))
10451 {
10452 tem = invert_truthvalue_loc (loc, arg0);
10453 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10454 }
10455 /* Identical arguments cancel to zero. */
10456 if (operand_equal_p (arg0, arg1, 0))
10457 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10458
10459 /* !X ^ X is always true. */
10460 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10461 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10462 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10463
10464 /* X ^ !X is always true. */
10465 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10466 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10467 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10468
10469 return NULL_TREE;
10470
10471 case EQ_EXPR:
10472 case NE_EXPR:
10473 STRIP_NOPS (arg0);
10474 STRIP_NOPS (arg1);
10475
10476 tem = fold_comparison (loc, code, type, op0, op1);
10477 if (tem != NULL_TREE)
10478 return tem;
10479
10480 /* bool_var != 1 becomes !bool_var. */
10481 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10482 && code == NE_EXPR)
10483 return fold_convert_loc (loc, type,
10484 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10485 TREE_TYPE (arg0), arg0));
10486
10487 /* bool_var == 0 becomes !bool_var. */
10488 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10489 && code == EQ_EXPR)
10490 return fold_convert_loc (loc, type,
10491 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10492 TREE_TYPE (arg0), arg0));
10493
10494 /* !exp != 0 becomes !exp */
10495 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10496 && code == NE_EXPR)
10497 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10498
10499 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10500 if ((TREE_CODE (arg0) == PLUS_EXPR
10501 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10502 || TREE_CODE (arg0) == MINUS_EXPR)
10503 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10504 0)),
10505 arg1, 0)
10506 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10507 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10508 {
10509 tree val = TREE_OPERAND (arg0, 1);
10510 val = fold_build2_loc (loc, code, type, val,
10511 build_int_cst (TREE_TYPE (val), 0));
10512 return omit_two_operands_loc (loc, type, val,
10513 TREE_OPERAND (arg0, 0), arg1);
10514 }
10515
10516 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10517 if ((TREE_CODE (arg1) == PLUS_EXPR
10518 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10519 || TREE_CODE (arg1) == MINUS_EXPR)
10520 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10521 0)),
10522 arg0, 0)
10523 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10524 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10525 {
10526 tree val = TREE_OPERAND (arg1, 1);
10527 val = fold_build2_loc (loc, code, type, val,
10528 build_int_cst (TREE_TYPE (val), 0));
10529 return omit_two_operands_loc (loc, type, val,
10530 TREE_OPERAND (arg1, 0), arg0);
10531 }
10532
10533 /* If this is an EQ or NE comparison with zero and ARG0 is
10534 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10535 two operations, but the latter can be done in one less insn
10536 on machines that have only two-operand insns or on which a
10537 constant cannot be the first operand. */
10538 if (TREE_CODE (arg0) == BIT_AND_EXPR
10539 && integer_zerop (arg1))
10540 {
10541 tree arg00 = TREE_OPERAND (arg0, 0);
10542 tree arg01 = TREE_OPERAND (arg0, 1);
10543 if (TREE_CODE (arg00) == LSHIFT_EXPR
10544 && integer_onep (TREE_OPERAND (arg00, 0)))
10545 {
10546 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10547 arg01, TREE_OPERAND (arg00, 1));
10548 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10549 build_int_cst (TREE_TYPE (arg0), 1));
10550 return fold_build2_loc (loc, code, type,
10551 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10552 arg1);
10553 }
10554 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10555 && integer_onep (TREE_OPERAND (arg01, 0)))
10556 {
10557 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10558 arg00, TREE_OPERAND (arg01, 1));
10559 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10560 build_int_cst (TREE_TYPE (arg0), 1));
10561 return fold_build2_loc (loc, code, type,
10562 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10563 arg1);
10564 }
10565 }
10566
10567 /* If this is an NE or EQ comparison of zero against the result of a
10568 signed MOD operation whose second operand is a power of 2, make
10569 the MOD operation unsigned since it is simpler and equivalent. */
10570 if (integer_zerop (arg1)
10571 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10572 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10573 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10574 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10575 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10576 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10577 {
10578 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10579 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10580 fold_convert_loc (loc, newtype,
10581 TREE_OPERAND (arg0, 0)),
10582 fold_convert_loc (loc, newtype,
10583 TREE_OPERAND (arg0, 1)));
10584
10585 return fold_build2_loc (loc, code, type, newmod,
10586 fold_convert_loc (loc, newtype, arg1));
10587 }
10588
10589 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10590 C1 is a valid shift constant, and C2 is a power of two, i.e.
10591 a single bit. */
10592 if (TREE_CODE (arg0) == BIT_AND_EXPR
10593 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10594 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10595 == INTEGER_CST
10596 && integer_pow2p (TREE_OPERAND (arg0, 1))
10597 && integer_zerop (arg1))
10598 {
10599 tree itype = TREE_TYPE (arg0);
10600 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10601 prec = TYPE_PRECISION (itype);
10602
10603 /* Check for a valid shift count. */
10604 if (wi::ltu_p (arg001, prec))
10605 {
10606 tree arg01 = TREE_OPERAND (arg0, 1);
10607 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10608 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10609 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10610 can be rewritten as (X & (C2 << C1)) != 0. */
10611 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10612 {
10613 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10614 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10615 return fold_build2_loc (loc, code, type, tem,
10616 fold_convert_loc (loc, itype, arg1));
10617 }
10618 /* Otherwise, for signed (arithmetic) shifts,
10619 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10620 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10621 else if (!TYPE_UNSIGNED (itype))
10622 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10623 arg000, build_int_cst (itype, 0));
10624 /* Otherwise, of unsigned (logical) shifts,
10625 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10626 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10627 else
10628 return omit_one_operand_loc (loc, type,
10629 code == EQ_EXPR ? integer_one_node
10630 : integer_zero_node,
10631 arg000);
10632 }
10633 }
10634
10635 /* If this is a comparison of a field, we may be able to simplify it. */
10636 if ((TREE_CODE (arg0) == COMPONENT_REF
10637 || TREE_CODE (arg0) == BIT_FIELD_REF)
10638 /* Handle the constant case even without -O
10639 to make sure the warnings are given. */
10640 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10641 {
10642 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10643 if (t1)
10644 return t1;
10645 }
10646
10647 /* Optimize comparisons of strlen vs zero to a compare of the
10648 first character of the string vs zero. To wit,
10649 strlen(ptr) == 0 => *ptr == 0
10650 strlen(ptr) != 0 => *ptr != 0
10651 Other cases should reduce to one of these two (or a constant)
10652 due to the return value of strlen being unsigned. */
10653 if (TREE_CODE (arg0) == CALL_EXPR
10654 && integer_zerop (arg1))
10655 {
10656 tree fndecl = get_callee_fndecl (arg0);
10657
10658 if (fndecl
10659 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10660 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10661 && call_expr_nargs (arg0) == 1
10662 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10663 {
10664 tree iref = build_fold_indirect_ref_loc (loc,
10665 CALL_EXPR_ARG (arg0, 0));
10666 return fold_build2_loc (loc, code, type, iref,
10667 build_int_cst (TREE_TYPE (iref), 0));
10668 }
10669 }
10670
10671 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10672 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10673 if (TREE_CODE (arg0) == RSHIFT_EXPR
10674 && integer_zerop (arg1)
10675 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10676 {
10677 tree arg00 = TREE_OPERAND (arg0, 0);
10678 tree arg01 = TREE_OPERAND (arg0, 1);
10679 tree itype = TREE_TYPE (arg00);
10680 if (wi::eq_p (arg01, element_precision (itype) - 1))
10681 {
10682 if (TYPE_UNSIGNED (itype))
10683 {
10684 itype = signed_type_for (itype);
10685 arg00 = fold_convert_loc (loc, itype, arg00);
10686 }
10687 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10688 type, arg00, build_zero_cst (itype));
10689 }
10690 }
10691
10692 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10693 (X & C) == 0 when C is a single bit. */
10694 if (TREE_CODE (arg0) == BIT_AND_EXPR
10695 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10696 && integer_zerop (arg1)
10697 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10698 {
10699 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10700 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10701 TREE_OPERAND (arg0, 1));
10702 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10703 type, tem,
10704 fold_convert_loc (loc, TREE_TYPE (arg0),
10705 arg1));
10706 }
10707
10708 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10709 constant C is a power of two, i.e. a single bit. */
10710 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10711 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10712 && integer_zerop (arg1)
10713 && integer_pow2p (TREE_OPERAND (arg0, 1))
10714 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10715 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10716 {
10717 tree arg00 = TREE_OPERAND (arg0, 0);
10718 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10719 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10720 }
10721
10722 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10723 when is C is a power of two, i.e. a single bit. */
10724 if (TREE_CODE (arg0) == BIT_AND_EXPR
10725 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10726 && integer_zerop (arg1)
10727 && integer_pow2p (TREE_OPERAND (arg0, 1))
10728 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10729 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10730 {
10731 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10732 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10733 arg000, TREE_OPERAND (arg0, 1));
10734 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10735 tem, build_int_cst (TREE_TYPE (tem), 0));
10736 }
10737
10738 if (integer_zerop (arg1)
10739 && tree_expr_nonzero_p (arg0))
10740 {
10741 tree res = constant_boolean_node (code==NE_EXPR, type);
10742 return omit_one_operand_loc (loc, type, res, arg0);
10743 }
10744
10745 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10746 if (TREE_CODE (arg0) == BIT_AND_EXPR
10747 && TREE_CODE (arg1) == BIT_AND_EXPR)
10748 {
10749 tree arg00 = TREE_OPERAND (arg0, 0);
10750 tree arg01 = TREE_OPERAND (arg0, 1);
10751 tree arg10 = TREE_OPERAND (arg1, 0);
10752 tree arg11 = TREE_OPERAND (arg1, 1);
10753 tree itype = TREE_TYPE (arg0);
10754
10755 if (operand_equal_p (arg01, arg11, 0))
10756 {
10757 tem = fold_convert_loc (loc, itype, arg10);
10758 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10759 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10760 return fold_build2_loc (loc, code, type, tem,
10761 build_zero_cst (itype));
10762 }
10763 if (operand_equal_p (arg01, arg10, 0))
10764 {
10765 tem = fold_convert_loc (loc, itype, arg11);
10766 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10767 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10768 return fold_build2_loc (loc, code, type, tem,
10769 build_zero_cst (itype));
10770 }
10771 if (operand_equal_p (arg00, arg11, 0))
10772 {
10773 tem = fold_convert_loc (loc, itype, arg10);
10774 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10775 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10776 return fold_build2_loc (loc, code, type, tem,
10777 build_zero_cst (itype));
10778 }
10779 if (operand_equal_p (arg00, arg10, 0))
10780 {
10781 tem = fold_convert_loc (loc, itype, arg11);
10782 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10783 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10784 return fold_build2_loc (loc, code, type, tem,
10785 build_zero_cst (itype));
10786 }
10787 }
10788
10789 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10790 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10791 {
10792 tree arg00 = TREE_OPERAND (arg0, 0);
10793 tree arg01 = TREE_OPERAND (arg0, 1);
10794 tree arg10 = TREE_OPERAND (arg1, 0);
10795 tree arg11 = TREE_OPERAND (arg1, 1);
10796 tree itype = TREE_TYPE (arg0);
10797
10798 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10799 operand_equal_p guarantees no side-effects so we don't need
10800 to use omit_one_operand on Z. */
10801 if (operand_equal_p (arg01, arg11, 0))
10802 return fold_build2_loc (loc, code, type, arg00,
10803 fold_convert_loc (loc, TREE_TYPE (arg00),
10804 arg10));
10805 if (operand_equal_p (arg01, arg10, 0))
10806 return fold_build2_loc (loc, code, type, arg00,
10807 fold_convert_loc (loc, TREE_TYPE (arg00),
10808 arg11));
10809 if (operand_equal_p (arg00, arg11, 0))
10810 return fold_build2_loc (loc, code, type, arg01,
10811 fold_convert_loc (loc, TREE_TYPE (arg01),
10812 arg10));
10813 if (operand_equal_p (arg00, arg10, 0))
10814 return fold_build2_loc (loc, code, type, arg01,
10815 fold_convert_loc (loc, TREE_TYPE (arg01),
10816 arg11));
10817
10818 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10819 if (TREE_CODE (arg01) == INTEGER_CST
10820 && TREE_CODE (arg11) == INTEGER_CST)
10821 {
10822 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10823 fold_convert_loc (loc, itype, arg11));
10824 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10825 return fold_build2_loc (loc, code, type, tem,
10826 fold_convert_loc (loc, itype, arg10));
10827 }
10828 }
10829
10830 /* Attempt to simplify equality/inequality comparisons of complex
10831 values. Only lower the comparison if the result is known or
10832 can be simplified to a single scalar comparison. */
10833 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10834 || TREE_CODE (arg0) == COMPLEX_CST)
10835 && (TREE_CODE (arg1) == COMPLEX_EXPR
10836 || TREE_CODE (arg1) == COMPLEX_CST))
10837 {
10838 tree real0, imag0, real1, imag1;
10839 tree rcond, icond;
10840
10841 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10842 {
10843 real0 = TREE_OPERAND (arg0, 0);
10844 imag0 = TREE_OPERAND (arg0, 1);
10845 }
10846 else
10847 {
10848 real0 = TREE_REALPART (arg0);
10849 imag0 = TREE_IMAGPART (arg0);
10850 }
10851
10852 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10853 {
10854 real1 = TREE_OPERAND (arg1, 0);
10855 imag1 = TREE_OPERAND (arg1, 1);
10856 }
10857 else
10858 {
10859 real1 = TREE_REALPART (arg1);
10860 imag1 = TREE_IMAGPART (arg1);
10861 }
10862
10863 rcond = fold_binary_loc (loc, code, type, real0, real1);
10864 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10865 {
10866 if (integer_zerop (rcond))
10867 {
10868 if (code == EQ_EXPR)
10869 return omit_two_operands_loc (loc, type, boolean_false_node,
10870 imag0, imag1);
10871 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10872 }
10873 else
10874 {
10875 if (code == NE_EXPR)
10876 return omit_two_operands_loc (loc, type, boolean_true_node,
10877 imag0, imag1);
10878 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10879 }
10880 }
10881
10882 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10883 if (icond && TREE_CODE (icond) == INTEGER_CST)
10884 {
10885 if (integer_zerop (icond))
10886 {
10887 if (code == EQ_EXPR)
10888 return omit_two_operands_loc (loc, type, boolean_false_node,
10889 real0, real1);
10890 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10891 }
10892 else
10893 {
10894 if (code == NE_EXPR)
10895 return omit_two_operands_loc (loc, type, boolean_true_node,
10896 real0, real1);
10897 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10898 }
10899 }
10900 }
10901
10902 return NULL_TREE;
10903
10904 case LT_EXPR:
10905 case GT_EXPR:
10906 case LE_EXPR:
10907 case GE_EXPR:
10908 tem = fold_comparison (loc, code, type, op0, op1);
10909 if (tem != NULL_TREE)
10910 return tem;
10911
10912 /* Transform comparisons of the form X +- C CMP X. */
10913 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10914 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10915 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10916 && !HONOR_SNANS (arg0))
10917 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10918 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10919 {
10920 tree arg01 = TREE_OPERAND (arg0, 1);
10921 enum tree_code code0 = TREE_CODE (arg0);
10922 int is_positive;
10923
10924 if (TREE_CODE (arg01) == REAL_CST)
10925 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10926 else
10927 is_positive = tree_int_cst_sgn (arg01);
10928
10929 /* (X - c) > X becomes false. */
10930 if (code == GT_EXPR
10931 && ((code0 == MINUS_EXPR && is_positive >= 0)
10932 || (code0 == PLUS_EXPR && is_positive <= 0)))
10933 {
10934 if (TREE_CODE (arg01) == INTEGER_CST
10935 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10936 fold_overflow_warning (("assuming signed overflow does not "
10937 "occur when assuming that (X - c) > X "
10938 "is always false"),
10939 WARN_STRICT_OVERFLOW_ALL);
10940 return constant_boolean_node (0, type);
10941 }
10942
10943 /* Likewise (X + c) < X becomes false. */
10944 if (code == LT_EXPR
10945 && ((code0 == PLUS_EXPR && is_positive >= 0)
10946 || (code0 == MINUS_EXPR && is_positive <= 0)))
10947 {
10948 if (TREE_CODE (arg01) == INTEGER_CST
10949 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10950 fold_overflow_warning (("assuming signed overflow does not "
10951 "occur when assuming that "
10952 "(X + c) < X is always false"),
10953 WARN_STRICT_OVERFLOW_ALL);
10954 return constant_boolean_node (0, type);
10955 }
10956
10957 /* Convert (X - c) <= X to true. */
10958 if (!HONOR_NANS (arg1)
10959 && code == LE_EXPR
10960 && ((code0 == MINUS_EXPR && is_positive >= 0)
10961 || (code0 == PLUS_EXPR && is_positive <= 0)))
10962 {
10963 if (TREE_CODE (arg01) == INTEGER_CST
10964 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10965 fold_overflow_warning (("assuming signed overflow does not "
10966 "occur when assuming that "
10967 "(X - c) <= X is always true"),
10968 WARN_STRICT_OVERFLOW_ALL);
10969 return constant_boolean_node (1, type);
10970 }
10971
10972 /* Convert (X + c) >= X to true. */
10973 if (!HONOR_NANS (arg1)
10974 && code == GE_EXPR
10975 && ((code0 == PLUS_EXPR && is_positive >= 0)
10976 || (code0 == MINUS_EXPR && is_positive <= 0)))
10977 {
10978 if (TREE_CODE (arg01) == INTEGER_CST
10979 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10980 fold_overflow_warning (("assuming signed overflow does not "
10981 "occur when assuming that "
10982 "(X + c) >= X is always true"),
10983 WARN_STRICT_OVERFLOW_ALL);
10984 return constant_boolean_node (1, type);
10985 }
10986
10987 if (TREE_CODE (arg01) == INTEGER_CST)
10988 {
10989 /* Convert X + c > X and X - c < X to true for integers. */
10990 if (code == GT_EXPR
10991 && ((code0 == PLUS_EXPR && is_positive > 0)
10992 || (code0 == MINUS_EXPR && is_positive < 0)))
10993 {
10994 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10995 fold_overflow_warning (("assuming signed overflow does "
10996 "not occur when assuming that "
10997 "(X + c) > X is always true"),
10998 WARN_STRICT_OVERFLOW_ALL);
10999 return constant_boolean_node (1, type);
11000 }
11001
11002 if (code == LT_EXPR
11003 && ((code0 == MINUS_EXPR && is_positive > 0)
11004 || (code0 == PLUS_EXPR && is_positive < 0)))
11005 {
11006 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11007 fold_overflow_warning (("assuming signed overflow does "
11008 "not occur when assuming that "
11009 "(X - c) < X is always true"),
11010 WARN_STRICT_OVERFLOW_ALL);
11011 return constant_boolean_node (1, type);
11012 }
11013
11014 /* Convert X + c <= X and X - c >= X to false for integers. */
11015 if (code == LE_EXPR
11016 && ((code0 == PLUS_EXPR && is_positive > 0)
11017 || (code0 == MINUS_EXPR && is_positive < 0)))
11018 {
11019 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11020 fold_overflow_warning (("assuming signed overflow does "
11021 "not occur when assuming that "
11022 "(X + c) <= X is always false"),
11023 WARN_STRICT_OVERFLOW_ALL);
11024 return constant_boolean_node (0, type);
11025 }
11026
11027 if (code == GE_EXPR
11028 && ((code0 == MINUS_EXPR && is_positive > 0)
11029 || (code0 == PLUS_EXPR && is_positive < 0)))
11030 {
11031 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11032 fold_overflow_warning (("assuming signed overflow does "
11033 "not occur when assuming that "
11034 "(X - c) >= X is always false"),
11035 WARN_STRICT_OVERFLOW_ALL);
11036 return constant_boolean_node (0, type);
11037 }
11038 }
11039 }
11040
11041 /* If we are comparing an ABS_EXPR with a constant, we can
11042 convert all the cases into explicit comparisons, but they may
11043 well not be faster than doing the ABS and one comparison.
11044 But ABS (X) <= C is a range comparison, which becomes a subtraction
11045 and a comparison, and is probably faster. */
11046 if (code == LE_EXPR
11047 && TREE_CODE (arg1) == INTEGER_CST
11048 && TREE_CODE (arg0) == ABS_EXPR
11049 && ! TREE_SIDE_EFFECTS (arg0)
11050 && (0 != (tem = negate_expr (arg1)))
11051 && TREE_CODE (tem) == INTEGER_CST
11052 && !TREE_OVERFLOW (tem))
11053 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11054 build2 (GE_EXPR, type,
11055 TREE_OPERAND (arg0, 0), tem),
11056 build2 (LE_EXPR, type,
11057 TREE_OPERAND (arg0, 0), arg1));
11058
11059 /* Convert ABS_EXPR<x> >= 0 to true. */
11060 strict_overflow_p = false;
11061 if (code == GE_EXPR
11062 && (integer_zerop (arg1)
11063 || (! HONOR_NANS (arg0)
11064 && real_zerop (arg1)))
11065 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11066 {
11067 if (strict_overflow_p)
11068 fold_overflow_warning (("assuming signed overflow does not occur "
11069 "when simplifying comparison of "
11070 "absolute value and zero"),
11071 WARN_STRICT_OVERFLOW_CONDITIONAL);
11072 return omit_one_operand_loc (loc, type,
11073 constant_boolean_node (true, type),
11074 arg0);
11075 }
11076
11077 /* Convert ABS_EXPR<x> < 0 to false. */
11078 strict_overflow_p = false;
11079 if (code == LT_EXPR
11080 && (integer_zerop (arg1) || real_zerop (arg1))
11081 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11082 {
11083 if (strict_overflow_p)
11084 fold_overflow_warning (("assuming signed overflow does not occur "
11085 "when simplifying comparison of "
11086 "absolute value and zero"),
11087 WARN_STRICT_OVERFLOW_CONDITIONAL);
11088 return omit_one_operand_loc (loc, type,
11089 constant_boolean_node (false, type),
11090 arg0);
11091 }
11092
11093 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11094 and similarly for >= into !=. */
11095 if ((code == LT_EXPR || code == GE_EXPR)
11096 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11097 && TREE_CODE (arg1) == LSHIFT_EXPR
11098 && integer_onep (TREE_OPERAND (arg1, 0)))
11099 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11100 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11101 TREE_OPERAND (arg1, 1)),
11102 build_zero_cst (TREE_TYPE (arg0)));
11103
11104 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11105 otherwise Y might be >= # of bits in X's type and thus e.g.
11106 (unsigned char) (1 << Y) for Y 15 might be 0.
11107 If the cast is widening, then 1 << Y should have unsigned type,
11108 otherwise if Y is number of bits in the signed shift type minus 1,
11109 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11110 31 might be 0xffffffff80000000. */
11111 if ((code == LT_EXPR || code == GE_EXPR)
11112 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11113 && CONVERT_EXPR_P (arg1)
11114 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11115 && (element_precision (TREE_TYPE (arg1))
11116 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11117 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11118 || (element_precision (TREE_TYPE (arg1))
11119 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11120 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11121 {
11122 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11123 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11124 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11125 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11126 build_zero_cst (TREE_TYPE (arg0)));
11127 }
11128
11129 return NULL_TREE;
11130
11131 case UNORDERED_EXPR:
11132 case ORDERED_EXPR:
11133 case UNLT_EXPR:
11134 case UNLE_EXPR:
11135 case UNGT_EXPR:
11136 case UNGE_EXPR:
11137 case UNEQ_EXPR:
11138 case LTGT_EXPR:
11139 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11140 {
11141 tree targ0 = strip_float_extensions (arg0);
11142 tree targ1 = strip_float_extensions (arg1);
11143 tree newtype = TREE_TYPE (targ0);
11144
11145 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11146 newtype = TREE_TYPE (targ1);
11147
11148 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11149 return fold_build2_loc (loc, code, type,
11150 fold_convert_loc (loc, newtype, targ0),
11151 fold_convert_loc (loc, newtype, targ1));
11152 }
11153
11154 return NULL_TREE;
11155
11156 case COMPOUND_EXPR:
11157 /* When pedantic, a compound expression can be neither an lvalue
11158 nor an integer constant expression. */
11159 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11160 return NULL_TREE;
11161 /* Don't let (0, 0) be null pointer constant. */
11162 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11163 : fold_convert_loc (loc, type, arg1);
11164 return pedantic_non_lvalue_loc (loc, tem);
11165
11166 case ASSERT_EXPR:
11167 /* An ASSERT_EXPR should never be passed to fold_binary. */
11168 gcc_unreachable ();
11169
11170 default:
11171 return NULL_TREE;
11172 } /* switch (code) */
11173 }
11174
11175 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11176 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11177 of GOTO_EXPR. */
11178
11179 static tree
11180 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11181 {
11182 switch (TREE_CODE (*tp))
11183 {
11184 case LABEL_EXPR:
11185 return *tp;
11186
11187 case GOTO_EXPR:
11188 *walk_subtrees = 0;
11189
11190 /* fall through */
11191
11192 default:
11193 return NULL_TREE;
11194 }
11195 }
11196
11197 /* Return whether the sub-tree ST contains a label which is accessible from
11198 outside the sub-tree. */
11199
11200 static bool
11201 contains_label_p (tree st)
11202 {
11203 return
11204 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11205 }
11206
11207 /* Fold a ternary expression of code CODE and type TYPE with operands
11208 OP0, OP1, and OP2. Return the folded expression if folding is
11209 successful. Otherwise, return NULL_TREE. */
11210
11211 tree
11212 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11213 tree op0, tree op1, tree op2)
11214 {
11215 tree tem;
11216 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11217 enum tree_code_class kind = TREE_CODE_CLASS (code);
11218
11219 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11220 && TREE_CODE_LENGTH (code) == 3);
11221
11222 /* If this is a commutative operation, and OP0 is a constant, move it
11223 to OP1 to reduce the number of tests below. */
11224 if (commutative_ternary_tree_code (code)
11225 && tree_swap_operands_p (op0, op1))
11226 return fold_build3_loc (loc, code, type, op1, op0, op2);
11227
11228 tem = generic_simplify (loc, code, type, op0, op1, op2);
11229 if (tem)
11230 return tem;
11231
11232 /* Strip any conversions that don't change the mode. This is safe
11233 for every expression, except for a comparison expression because
11234 its signedness is derived from its operands. So, in the latter
11235 case, only strip conversions that don't change the signedness.
11236
11237 Note that this is done as an internal manipulation within the
11238 constant folder, in order to find the simplest representation of
11239 the arguments so that their form can be studied. In any cases,
11240 the appropriate type conversions should be put back in the tree
11241 that will get out of the constant folder. */
11242 if (op0)
11243 {
11244 arg0 = op0;
11245 STRIP_NOPS (arg0);
11246 }
11247
11248 if (op1)
11249 {
11250 arg1 = op1;
11251 STRIP_NOPS (arg1);
11252 }
11253
11254 if (op2)
11255 {
11256 arg2 = op2;
11257 STRIP_NOPS (arg2);
11258 }
11259
11260 switch (code)
11261 {
11262 case COMPONENT_REF:
11263 if (TREE_CODE (arg0) == CONSTRUCTOR
11264 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11265 {
11266 unsigned HOST_WIDE_INT idx;
11267 tree field, value;
11268 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11269 if (field == arg1)
11270 return value;
11271 }
11272 return NULL_TREE;
11273
11274 case COND_EXPR:
11275 case VEC_COND_EXPR:
11276 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11277 so all simple results must be passed through pedantic_non_lvalue. */
11278 if (TREE_CODE (arg0) == INTEGER_CST)
11279 {
11280 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11281 tem = integer_zerop (arg0) ? op2 : op1;
11282 /* Only optimize constant conditions when the selected branch
11283 has the same type as the COND_EXPR. This avoids optimizing
11284 away "c ? x : throw", where the throw has a void type.
11285 Avoid throwing away that operand which contains label. */
11286 if ((!TREE_SIDE_EFFECTS (unused_op)
11287 || !contains_label_p (unused_op))
11288 && (! VOID_TYPE_P (TREE_TYPE (tem))
11289 || VOID_TYPE_P (type)))
11290 return pedantic_non_lvalue_loc (loc, tem);
11291 return NULL_TREE;
11292 }
11293 else if (TREE_CODE (arg0) == VECTOR_CST)
11294 {
11295 if ((TREE_CODE (arg1) == VECTOR_CST
11296 || TREE_CODE (arg1) == CONSTRUCTOR)
11297 && (TREE_CODE (arg2) == VECTOR_CST
11298 || TREE_CODE (arg2) == CONSTRUCTOR))
11299 {
11300 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11301 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11302 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11303 for (i = 0; i < nelts; i++)
11304 {
11305 tree val = VECTOR_CST_ELT (arg0, i);
11306 if (integer_all_onesp (val))
11307 sel[i] = i;
11308 else if (integer_zerop (val))
11309 sel[i] = nelts + i;
11310 else /* Currently unreachable. */
11311 return NULL_TREE;
11312 }
11313 tree t = fold_vec_perm (type, arg1, arg2, sel);
11314 if (t != NULL_TREE)
11315 return t;
11316 }
11317 }
11318
11319 /* If we have A op B ? A : C, we may be able to convert this to a
11320 simpler expression, depending on the operation and the values
11321 of B and C. Signed zeros prevent all of these transformations,
11322 for reasons given above each one.
11323
11324 Also try swapping the arguments and inverting the conditional. */
11325 if (COMPARISON_CLASS_P (arg0)
11326 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), arg1)
11327 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11328 {
11329 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11330 if (tem)
11331 return tem;
11332 }
11333
11334 if (COMPARISON_CLASS_P (arg0)
11335 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11336 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11337 {
11338 location_t loc0 = expr_location_or (arg0, loc);
11339 tem = fold_invert_truthvalue (loc0, arg0);
11340 if (tem && COMPARISON_CLASS_P (tem))
11341 {
11342 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11343 if (tem)
11344 return tem;
11345 }
11346 }
11347
11348 /* If the second operand is simpler than the third, swap them
11349 since that produces better jump optimization results. */
11350 if (truth_value_p (TREE_CODE (arg0))
11351 && tree_swap_operands_p (op1, op2))
11352 {
11353 location_t loc0 = expr_location_or (arg0, loc);
11354 /* See if this can be inverted. If it can't, possibly because
11355 it was a floating-point inequality comparison, don't do
11356 anything. */
11357 tem = fold_invert_truthvalue (loc0, arg0);
11358 if (tem)
11359 return fold_build3_loc (loc, code, type, tem, op2, op1);
11360 }
11361
11362 /* Convert A ? 1 : 0 to simply A. */
11363 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11364 : (integer_onep (op1)
11365 && !VECTOR_TYPE_P (type)))
11366 && integer_zerop (op2)
11367 /* If we try to convert OP0 to our type, the
11368 call to fold will try to move the conversion inside
11369 a COND, which will recurse. In that case, the COND_EXPR
11370 is probably the best choice, so leave it alone. */
11371 && type == TREE_TYPE (arg0))
11372 return pedantic_non_lvalue_loc (loc, arg0);
11373
11374 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11375 over COND_EXPR in cases such as floating point comparisons. */
11376 if (integer_zerop (op1)
11377 && code == COND_EXPR
11378 && integer_onep (op2)
11379 && !VECTOR_TYPE_P (type)
11380 && truth_value_p (TREE_CODE (arg0)))
11381 return pedantic_non_lvalue_loc (loc,
11382 fold_convert_loc (loc, type,
11383 invert_truthvalue_loc (loc,
11384 arg0)));
11385
11386 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11387 if (TREE_CODE (arg0) == LT_EXPR
11388 && integer_zerop (TREE_OPERAND (arg0, 1))
11389 && integer_zerop (op2)
11390 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11391 {
11392 /* sign_bit_p looks through both zero and sign extensions,
11393 but for this optimization only sign extensions are
11394 usable. */
11395 tree tem2 = TREE_OPERAND (arg0, 0);
11396 while (tem != tem2)
11397 {
11398 if (TREE_CODE (tem2) != NOP_EXPR
11399 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11400 {
11401 tem = NULL_TREE;
11402 break;
11403 }
11404 tem2 = TREE_OPERAND (tem2, 0);
11405 }
11406 /* sign_bit_p only checks ARG1 bits within A's precision.
11407 If <sign bit of A> has wider type than A, bits outside
11408 of A's precision in <sign bit of A> need to be checked.
11409 If they are all 0, this optimization needs to be done
11410 in unsigned A's type, if they are all 1 in signed A's type,
11411 otherwise this can't be done. */
11412 if (tem
11413 && TYPE_PRECISION (TREE_TYPE (tem))
11414 < TYPE_PRECISION (TREE_TYPE (arg1))
11415 && TYPE_PRECISION (TREE_TYPE (tem))
11416 < TYPE_PRECISION (type))
11417 {
11418 int inner_width, outer_width;
11419 tree tem_type;
11420
11421 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11422 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11423 if (outer_width > TYPE_PRECISION (type))
11424 outer_width = TYPE_PRECISION (type);
11425
11426 wide_int mask = wi::shifted_mask
11427 (inner_width, outer_width - inner_width, false,
11428 TYPE_PRECISION (TREE_TYPE (arg1)));
11429
11430 wide_int common = mask & arg1;
11431 if (common == mask)
11432 {
11433 tem_type = signed_type_for (TREE_TYPE (tem));
11434 tem = fold_convert_loc (loc, tem_type, tem);
11435 }
11436 else if (common == 0)
11437 {
11438 tem_type = unsigned_type_for (TREE_TYPE (tem));
11439 tem = fold_convert_loc (loc, tem_type, tem);
11440 }
11441 else
11442 tem = NULL;
11443 }
11444
11445 if (tem)
11446 return
11447 fold_convert_loc (loc, type,
11448 fold_build2_loc (loc, BIT_AND_EXPR,
11449 TREE_TYPE (tem), tem,
11450 fold_convert_loc (loc,
11451 TREE_TYPE (tem),
11452 arg1)));
11453 }
11454
11455 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11456 already handled above. */
11457 if (TREE_CODE (arg0) == BIT_AND_EXPR
11458 && integer_onep (TREE_OPERAND (arg0, 1))
11459 && integer_zerop (op2)
11460 && integer_pow2p (arg1))
11461 {
11462 tree tem = TREE_OPERAND (arg0, 0);
11463 STRIP_NOPS (tem);
11464 if (TREE_CODE (tem) == RSHIFT_EXPR
11465 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11466 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11467 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11468 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11469 fold_convert_loc (loc, type,
11470 TREE_OPERAND (tem, 0)),
11471 op1);
11472 }
11473
11474 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11475 is probably obsolete because the first operand should be a
11476 truth value (that's why we have the two cases above), but let's
11477 leave it in until we can confirm this for all front-ends. */
11478 if (integer_zerop (op2)
11479 && TREE_CODE (arg0) == NE_EXPR
11480 && integer_zerop (TREE_OPERAND (arg0, 1))
11481 && integer_pow2p (arg1)
11482 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11483 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11484 arg1, OEP_ONLY_CONST))
11485 return pedantic_non_lvalue_loc (loc,
11486 fold_convert_loc (loc, type,
11487 TREE_OPERAND (arg0, 0)));
11488
11489 /* Disable the transformations below for vectors, since
11490 fold_binary_op_with_conditional_arg may undo them immediately,
11491 yielding an infinite loop. */
11492 if (code == VEC_COND_EXPR)
11493 return NULL_TREE;
11494
11495 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11496 if (integer_zerop (op2)
11497 && truth_value_p (TREE_CODE (arg0))
11498 && truth_value_p (TREE_CODE (arg1))
11499 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11500 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11501 : TRUTH_ANDIF_EXPR,
11502 type, fold_convert_loc (loc, type, arg0), op1);
11503
11504 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11505 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11506 && truth_value_p (TREE_CODE (arg0))
11507 && truth_value_p (TREE_CODE (arg1))
11508 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11509 {
11510 location_t loc0 = expr_location_or (arg0, loc);
11511 /* Only perform transformation if ARG0 is easily inverted. */
11512 tem = fold_invert_truthvalue (loc0, arg0);
11513 if (tem)
11514 return fold_build2_loc (loc, code == VEC_COND_EXPR
11515 ? BIT_IOR_EXPR
11516 : TRUTH_ORIF_EXPR,
11517 type, fold_convert_loc (loc, type, tem),
11518 op1);
11519 }
11520
11521 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11522 if (integer_zerop (arg1)
11523 && truth_value_p (TREE_CODE (arg0))
11524 && truth_value_p (TREE_CODE (op2))
11525 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11526 {
11527 location_t loc0 = expr_location_or (arg0, loc);
11528 /* Only perform transformation if ARG0 is easily inverted. */
11529 tem = fold_invert_truthvalue (loc0, arg0);
11530 if (tem)
11531 return fold_build2_loc (loc, code == VEC_COND_EXPR
11532 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11533 type, fold_convert_loc (loc, type, tem),
11534 op2);
11535 }
11536
11537 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11538 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11539 && truth_value_p (TREE_CODE (arg0))
11540 && truth_value_p (TREE_CODE (op2))
11541 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11542 return fold_build2_loc (loc, code == VEC_COND_EXPR
11543 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11544 type, fold_convert_loc (loc, type, arg0), op2);
11545
11546 return NULL_TREE;
11547
11548 case CALL_EXPR:
11549 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11550 of fold_ternary on them. */
11551 gcc_unreachable ();
11552
11553 case BIT_FIELD_REF:
11554 if (TREE_CODE (arg0) == VECTOR_CST
11555 && (type == TREE_TYPE (TREE_TYPE (arg0))
11556 || (TREE_CODE (type) == VECTOR_TYPE
11557 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11558 {
11559 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11560 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11561 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11562 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11563
11564 if (n != 0
11565 && (idx % width) == 0
11566 && (n % width) == 0
11567 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11568 {
11569 idx = idx / width;
11570 n = n / width;
11571
11572 if (TREE_CODE (arg0) == VECTOR_CST)
11573 {
11574 if (n == 1)
11575 return VECTOR_CST_ELT (arg0, idx);
11576
11577 tree *vals = XALLOCAVEC (tree, n);
11578 for (unsigned i = 0; i < n; ++i)
11579 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11580 return build_vector (type, vals);
11581 }
11582 }
11583 }
11584
11585 /* On constants we can use native encode/interpret to constant
11586 fold (nearly) all BIT_FIELD_REFs. */
11587 if (CONSTANT_CLASS_P (arg0)
11588 && can_native_interpret_type_p (type)
11589 && BITS_PER_UNIT == 8)
11590 {
11591 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11592 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11593 /* Limit us to a reasonable amount of work. To relax the
11594 other limitations we need bit-shifting of the buffer
11595 and rounding up the size. */
11596 if (bitpos % BITS_PER_UNIT == 0
11597 && bitsize % BITS_PER_UNIT == 0
11598 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11599 {
11600 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11601 unsigned HOST_WIDE_INT len
11602 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11603 bitpos / BITS_PER_UNIT);
11604 if (len > 0
11605 && len * BITS_PER_UNIT >= bitsize)
11606 {
11607 tree v = native_interpret_expr (type, b,
11608 bitsize / BITS_PER_UNIT);
11609 if (v)
11610 return v;
11611 }
11612 }
11613 }
11614
11615 return NULL_TREE;
11616
11617 case FMA_EXPR:
11618 /* For integers we can decompose the FMA if possible. */
11619 if (TREE_CODE (arg0) == INTEGER_CST
11620 && TREE_CODE (arg1) == INTEGER_CST)
11621 return fold_build2_loc (loc, PLUS_EXPR, type,
11622 const_binop (MULT_EXPR, arg0, arg1), arg2);
11623 if (integer_zerop (arg2))
11624 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11625
11626 return fold_fma (loc, type, arg0, arg1, arg2);
11627
11628 case VEC_PERM_EXPR:
11629 if (TREE_CODE (arg2) == VECTOR_CST)
11630 {
11631 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11632 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11633 unsigned char *sel2 = sel + nelts;
11634 bool need_mask_canon = false;
11635 bool need_mask_canon2 = false;
11636 bool all_in_vec0 = true;
11637 bool all_in_vec1 = true;
11638 bool maybe_identity = true;
11639 bool single_arg = (op0 == op1);
11640 bool changed = false;
11641
11642 mask2 = 2 * nelts - 1;
11643 mask = single_arg ? (nelts - 1) : mask2;
11644 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11645 for (i = 0; i < nelts; i++)
11646 {
11647 tree val = VECTOR_CST_ELT (arg2, i);
11648 if (TREE_CODE (val) != INTEGER_CST)
11649 return NULL_TREE;
11650
11651 /* Make sure that the perm value is in an acceptable
11652 range. */
11653 wide_int t = val;
11654 need_mask_canon |= wi::gtu_p (t, mask);
11655 need_mask_canon2 |= wi::gtu_p (t, mask2);
11656 sel[i] = t.to_uhwi () & mask;
11657 sel2[i] = t.to_uhwi () & mask2;
11658
11659 if (sel[i] < nelts)
11660 all_in_vec1 = false;
11661 else
11662 all_in_vec0 = false;
11663
11664 if ((sel[i] & (nelts-1)) != i)
11665 maybe_identity = false;
11666 }
11667
11668 if (maybe_identity)
11669 {
11670 if (all_in_vec0)
11671 return op0;
11672 if (all_in_vec1)
11673 return op1;
11674 }
11675
11676 if (all_in_vec0)
11677 op1 = op0;
11678 else if (all_in_vec1)
11679 {
11680 op0 = op1;
11681 for (i = 0; i < nelts; i++)
11682 sel[i] -= nelts;
11683 need_mask_canon = true;
11684 }
11685
11686 if ((TREE_CODE (op0) == VECTOR_CST
11687 || TREE_CODE (op0) == CONSTRUCTOR)
11688 && (TREE_CODE (op1) == VECTOR_CST
11689 || TREE_CODE (op1) == CONSTRUCTOR))
11690 {
11691 tree t = fold_vec_perm (type, op0, op1, sel);
11692 if (t != NULL_TREE)
11693 return t;
11694 }
11695
11696 if (op0 == op1 && !single_arg)
11697 changed = true;
11698
11699 /* Some targets are deficient and fail to expand a single
11700 argument permutation while still allowing an equivalent
11701 2-argument version. */
11702 if (need_mask_canon && arg2 == op2
11703 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11704 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11705 {
11706 need_mask_canon = need_mask_canon2;
11707 sel = sel2;
11708 }
11709
11710 if (need_mask_canon && arg2 == op2)
11711 {
11712 tree *tsel = XALLOCAVEC (tree, nelts);
11713 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11714 for (i = 0; i < nelts; i++)
11715 tsel[i] = build_int_cst (eltype, sel[i]);
11716 op2 = build_vector (TREE_TYPE (arg2), tsel);
11717 changed = true;
11718 }
11719
11720 if (changed)
11721 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11722 }
11723 return NULL_TREE;
11724
11725 case BIT_INSERT_EXPR:
11726 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11727 if (TREE_CODE (arg0) == INTEGER_CST
11728 && TREE_CODE (arg1) == INTEGER_CST)
11729 {
11730 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11731 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11732 wide_int tem = wi::bit_and (arg0,
11733 wi::shifted_mask (bitpos, bitsize, true,
11734 TYPE_PRECISION (type)));
11735 wide_int tem2
11736 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11737 bitsize), bitpos);
11738 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11739 }
11740 else if (TREE_CODE (arg0) == VECTOR_CST
11741 && CONSTANT_CLASS_P (arg1)
11742 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11743 TREE_TYPE (arg1)))
11744 {
11745 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11746 unsigned HOST_WIDE_INT elsize
11747 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11748 if (bitpos % elsize == 0)
11749 {
11750 unsigned k = bitpos / elsize;
11751 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11752 return arg0;
11753 else
11754 {
11755 tree *elts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
11756 memcpy (elts, VECTOR_CST_ELTS (arg0),
11757 sizeof (tree) * TYPE_VECTOR_SUBPARTS (type));
11758 elts[k] = arg1;
11759 return build_vector (type, elts);
11760 }
11761 }
11762 }
11763 return NULL_TREE;
11764
11765 default:
11766 return NULL_TREE;
11767 } /* switch (code) */
11768 }
11769
11770 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11771 of an array (or vector). */
11772
11773 tree
11774 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11775 {
11776 tree index_type = NULL_TREE;
11777 offset_int low_bound = 0;
11778
11779 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11780 {
11781 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11782 if (domain_type && TYPE_MIN_VALUE (domain_type))
11783 {
11784 /* Static constructors for variably sized objects makes no sense. */
11785 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11786 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11787 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11788 }
11789 }
11790
11791 if (index_type)
11792 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11793 TYPE_SIGN (index_type));
11794
11795 offset_int index = low_bound - 1;
11796 if (index_type)
11797 index = wi::ext (index, TYPE_PRECISION (index_type),
11798 TYPE_SIGN (index_type));
11799
11800 offset_int max_index;
11801 unsigned HOST_WIDE_INT cnt;
11802 tree cfield, cval;
11803
11804 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11805 {
11806 /* Array constructor might explicitly set index, or specify a range,
11807 or leave index NULL meaning that it is next index after previous
11808 one. */
11809 if (cfield)
11810 {
11811 if (TREE_CODE (cfield) == INTEGER_CST)
11812 max_index = index = wi::to_offset (cfield);
11813 else
11814 {
11815 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11816 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11817 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11818 }
11819 }
11820 else
11821 {
11822 index += 1;
11823 if (index_type)
11824 index = wi::ext (index, TYPE_PRECISION (index_type),
11825 TYPE_SIGN (index_type));
11826 max_index = index;
11827 }
11828
11829 /* Do we have match? */
11830 if (wi::cmpu (access_index, index) >= 0
11831 && wi::cmpu (access_index, max_index) <= 0)
11832 return cval;
11833 }
11834 return NULL_TREE;
11835 }
11836
11837 /* Perform constant folding and related simplification of EXPR.
11838 The related simplifications include x*1 => x, x*0 => 0, etc.,
11839 and application of the associative law.
11840 NOP_EXPR conversions may be removed freely (as long as we
11841 are careful not to change the type of the overall expression).
11842 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11843 but we can constant-fold them if they have constant operands. */
11844
11845 #ifdef ENABLE_FOLD_CHECKING
11846 # define fold(x) fold_1 (x)
11847 static tree fold_1 (tree);
11848 static
11849 #endif
11850 tree
11851 fold (tree expr)
11852 {
11853 const tree t = expr;
11854 enum tree_code code = TREE_CODE (t);
11855 enum tree_code_class kind = TREE_CODE_CLASS (code);
11856 tree tem;
11857 location_t loc = EXPR_LOCATION (expr);
11858
11859 /* Return right away if a constant. */
11860 if (kind == tcc_constant)
11861 return t;
11862
11863 /* CALL_EXPR-like objects with variable numbers of operands are
11864 treated specially. */
11865 if (kind == tcc_vl_exp)
11866 {
11867 if (code == CALL_EXPR)
11868 {
11869 tem = fold_call_expr (loc, expr, false);
11870 return tem ? tem : expr;
11871 }
11872 return expr;
11873 }
11874
11875 if (IS_EXPR_CODE_CLASS (kind))
11876 {
11877 tree type = TREE_TYPE (t);
11878 tree op0, op1, op2;
11879
11880 switch (TREE_CODE_LENGTH (code))
11881 {
11882 case 1:
11883 op0 = TREE_OPERAND (t, 0);
11884 tem = fold_unary_loc (loc, code, type, op0);
11885 return tem ? tem : expr;
11886 case 2:
11887 op0 = TREE_OPERAND (t, 0);
11888 op1 = TREE_OPERAND (t, 1);
11889 tem = fold_binary_loc (loc, code, type, op0, op1);
11890 return tem ? tem : expr;
11891 case 3:
11892 op0 = TREE_OPERAND (t, 0);
11893 op1 = TREE_OPERAND (t, 1);
11894 op2 = TREE_OPERAND (t, 2);
11895 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11896 return tem ? tem : expr;
11897 default:
11898 break;
11899 }
11900 }
11901
11902 switch (code)
11903 {
11904 case ARRAY_REF:
11905 {
11906 tree op0 = TREE_OPERAND (t, 0);
11907 tree op1 = TREE_OPERAND (t, 1);
11908
11909 if (TREE_CODE (op1) == INTEGER_CST
11910 && TREE_CODE (op0) == CONSTRUCTOR
11911 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11912 {
11913 tree val = get_array_ctor_element_at_index (op0,
11914 wi::to_offset (op1));
11915 if (val)
11916 return val;
11917 }
11918
11919 return t;
11920 }
11921
11922 /* Return a VECTOR_CST if possible. */
11923 case CONSTRUCTOR:
11924 {
11925 tree type = TREE_TYPE (t);
11926 if (TREE_CODE (type) != VECTOR_TYPE)
11927 return t;
11928
11929 unsigned i;
11930 tree val;
11931 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11932 if (! CONSTANT_CLASS_P (val))
11933 return t;
11934
11935 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11936 }
11937
11938 case CONST_DECL:
11939 return fold (DECL_INITIAL (t));
11940
11941 default:
11942 return t;
11943 } /* switch (code) */
11944 }
11945
11946 #ifdef ENABLE_FOLD_CHECKING
11947 #undef fold
11948
11949 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11950 hash_table<nofree_ptr_hash<const tree_node> > *);
11951 static void fold_check_failed (const_tree, const_tree);
11952 void print_fold_checksum (const_tree);
11953
11954 /* When --enable-checking=fold, compute a digest of expr before
11955 and after actual fold call to see if fold did not accidentally
11956 change original expr. */
11957
11958 tree
11959 fold (tree expr)
11960 {
11961 tree ret;
11962 struct md5_ctx ctx;
11963 unsigned char checksum_before[16], checksum_after[16];
11964 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11965
11966 md5_init_ctx (&ctx);
11967 fold_checksum_tree (expr, &ctx, &ht);
11968 md5_finish_ctx (&ctx, checksum_before);
11969 ht.empty ();
11970
11971 ret = fold_1 (expr);
11972
11973 md5_init_ctx (&ctx);
11974 fold_checksum_tree (expr, &ctx, &ht);
11975 md5_finish_ctx (&ctx, checksum_after);
11976
11977 if (memcmp (checksum_before, checksum_after, 16))
11978 fold_check_failed (expr, ret);
11979
11980 return ret;
11981 }
11982
11983 void
11984 print_fold_checksum (const_tree expr)
11985 {
11986 struct md5_ctx ctx;
11987 unsigned char checksum[16], cnt;
11988 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
11989
11990 md5_init_ctx (&ctx);
11991 fold_checksum_tree (expr, &ctx, &ht);
11992 md5_finish_ctx (&ctx, checksum);
11993 for (cnt = 0; cnt < 16; ++cnt)
11994 fprintf (stderr, "%02x", checksum[cnt]);
11995 putc ('\n', stderr);
11996 }
11997
11998 static void
11999 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12000 {
12001 internal_error ("fold check: original tree changed by fold");
12002 }
12003
12004 static void
12005 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12006 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12007 {
12008 const tree_node **slot;
12009 enum tree_code code;
12010 union tree_node buf;
12011 int i, len;
12012
12013 recursive_label:
12014 if (expr == NULL)
12015 return;
12016 slot = ht->find_slot (expr, INSERT);
12017 if (*slot != NULL)
12018 return;
12019 *slot = expr;
12020 code = TREE_CODE (expr);
12021 if (TREE_CODE_CLASS (code) == tcc_declaration
12022 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12023 {
12024 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12025 memcpy ((char *) &buf, expr, tree_size (expr));
12026 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12027 buf.decl_with_vis.symtab_node = NULL;
12028 expr = (tree) &buf;
12029 }
12030 else if (TREE_CODE_CLASS (code) == tcc_type
12031 && (TYPE_POINTER_TO (expr)
12032 || TYPE_REFERENCE_TO (expr)
12033 || TYPE_CACHED_VALUES_P (expr)
12034 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12035 || TYPE_NEXT_VARIANT (expr)
12036 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12037 {
12038 /* Allow these fields to be modified. */
12039 tree tmp;
12040 memcpy ((char *) &buf, expr, tree_size (expr));
12041 expr = tmp = (tree) &buf;
12042 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12043 TYPE_POINTER_TO (tmp) = NULL;
12044 TYPE_REFERENCE_TO (tmp) = NULL;
12045 TYPE_NEXT_VARIANT (tmp) = NULL;
12046 TYPE_ALIAS_SET (tmp) = -1;
12047 if (TYPE_CACHED_VALUES_P (tmp))
12048 {
12049 TYPE_CACHED_VALUES_P (tmp) = 0;
12050 TYPE_CACHED_VALUES (tmp) = NULL;
12051 }
12052 }
12053 md5_process_bytes (expr, tree_size (expr), ctx);
12054 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12055 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12056 if (TREE_CODE_CLASS (code) != tcc_type
12057 && TREE_CODE_CLASS (code) != tcc_declaration
12058 && code != TREE_LIST
12059 && code != SSA_NAME
12060 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12061 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12062 switch (TREE_CODE_CLASS (code))
12063 {
12064 case tcc_constant:
12065 switch (code)
12066 {
12067 case STRING_CST:
12068 md5_process_bytes (TREE_STRING_POINTER (expr),
12069 TREE_STRING_LENGTH (expr), ctx);
12070 break;
12071 case COMPLEX_CST:
12072 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12073 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12074 break;
12075 case VECTOR_CST:
12076 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12077 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12078 break;
12079 default:
12080 break;
12081 }
12082 break;
12083 case tcc_exceptional:
12084 switch (code)
12085 {
12086 case TREE_LIST:
12087 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12088 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12089 expr = TREE_CHAIN (expr);
12090 goto recursive_label;
12091 break;
12092 case TREE_VEC:
12093 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12094 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12095 break;
12096 default:
12097 break;
12098 }
12099 break;
12100 case tcc_expression:
12101 case tcc_reference:
12102 case tcc_comparison:
12103 case tcc_unary:
12104 case tcc_binary:
12105 case tcc_statement:
12106 case tcc_vl_exp:
12107 len = TREE_OPERAND_LENGTH (expr);
12108 for (i = 0; i < len; ++i)
12109 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12110 break;
12111 case tcc_declaration:
12112 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12113 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12114 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12115 {
12116 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12117 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12118 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12119 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12120 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12121 }
12122
12123 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12124 {
12125 if (TREE_CODE (expr) == FUNCTION_DECL)
12126 {
12127 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12128 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12129 }
12130 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12131 }
12132 break;
12133 case tcc_type:
12134 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12135 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12136 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12137 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12138 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12139 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12140 if (INTEGRAL_TYPE_P (expr)
12141 || SCALAR_FLOAT_TYPE_P (expr))
12142 {
12143 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12144 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12145 }
12146 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12147 if (TREE_CODE (expr) == RECORD_TYPE
12148 || TREE_CODE (expr) == UNION_TYPE
12149 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12150 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12151 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12152 break;
12153 default:
12154 break;
12155 }
12156 }
12157
12158 /* Helper function for outputting the checksum of a tree T. When
12159 debugging with gdb, you can "define mynext" to be "next" followed
12160 by "call debug_fold_checksum (op0)", then just trace down till the
12161 outputs differ. */
12162
12163 DEBUG_FUNCTION void
12164 debug_fold_checksum (const_tree t)
12165 {
12166 int i;
12167 unsigned char checksum[16];
12168 struct md5_ctx ctx;
12169 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12170
12171 md5_init_ctx (&ctx);
12172 fold_checksum_tree (t, &ctx, &ht);
12173 md5_finish_ctx (&ctx, checksum);
12174 ht.empty ();
12175
12176 for (i = 0; i < 16; i++)
12177 fprintf (stderr, "%d ", checksum[i]);
12178
12179 fprintf (stderr, "\n");
12180 }
12181
12182 #endif
12183
12184 /* Fold a unary tree expression with code CODE of type TYPE with an
12185 operand OP0. LOC is the location of the resulting expression.
12186 Return a folded expression if successful. Otherwise, return a tree
12187 expression with code CODE of type TYPE with an operand OP0. */
12188
12189 tree
12190 fold_build1_loc (location_t loc,
12191 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12192 {
12193 tree tem;
12194 #ifdef ENABLE_FOLD_CHECKING
12195 unsigned char checksum_before[16], checksum_after[16];
12196 struct md5_ctx ctx;
12197 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12198
12199 md5_init_ctx (&ctx);
12200 fold_checksum_tree (op0, &ctx, &ht);
12201 md5_finish_ctx (&ctx, checksum_before);
12202 ht.empty ();
12203 #endif
12204
12205 tem = fold_unary_loc (loc, code, type, op0);
12206 if (!tem)
12207 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12208
12209 #ifdef ENABLE_FOLD_CHECKING
12210 md5_init_ctx (&ctx);
12211 fold_checksum_tree (op0, &ctx, &ht);
12212 md5_finish_ctx (&ctx, checksum_after);
12213
12214 if (memcmp (checksum_before, checksum_after, 16))
12215 fold_check_failed (op0, tem);
12216 #endif
12217 return tem;
12218 }
12219
12220 /* Fold a binary tree expression with code CODE of type TYPE with
12221 operands OP0 and OP1. LOC is the location of the resulting
12222 expression. Return a folded expression if successful. Otherwise,
12223 return a tree expression with code CODE of type TYPE with operands
12224 OP0 and OP1. */
12225
12226 tree
12227 fold_build2_loc (location_t loc,
12228 enum tree_code code, tree type, tree op0, tree op1
12229 MEM_STAT_DECL)
12230 {
12231 tree tem;
12232 #ifdef ENABLE_FOLD_CHECKING
12233 unsigned char checksum_before_op0[16],
12234 checksum_before_op1[16],
12235 checksum_after_op0[16],
12236 checksum_after_op1[16];
12237 struct md5_ctx ctx;
12238 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12239
12240 md5_init_ctx (&ctx);
12241 fold_checksum_tree (op0, &ctx, &ht);
12242 md5_finish_ctx (&ctx, checksum_before_op0);
12243 ht.empty ();
12244
12245 md5_init_ctx (&ctx);
12246 fold_checksum_tree (op1, &ctx, &ht);
12247 md5_finish_ctx (&ctx, checksum_before_op1);
12248 ht.empty ();
12249 #endif
12250
12251 tem = fold_binary_loc (loc, code, type, op0, op1);
12252 if (!tem)
12253 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12254
12255 #ifdef ENABLE_FOLD_CHECKING
12256 md5_init_ctx (&ctx);
12257 fold_checksum_tree (op0, &ctx, &ht);
12258 md5_finish_ctx (&ctx, checksum_after_op0);
12259 ht.empty ();
12260
12261 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12262 fold_check_failed (op0, tem);
12263
12264 md5_init_ctx (&ctx);
12265 fold_checksum_tree (op1, &ctx, &ht);
12266 md5_finish_ctx (&ctx, checksum_after_op1);
12267
12268 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12269 fold_check_failed (op1, tem);
12270 #endif
12271 return tem;
12272 }
12273
12274 /* Fold a ternary tree expression with code CODE of type TYPE with
12275 operands OP0, OP1, and OP2. Return a folded expression if
12276 successful. Otherwise, return a tree expression with code CODE of
12277 type TYPE with operands OP0, OP1, and OP2. */
12278
12279 tree
12280 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12281 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12282 {
12283 tree tem;
12284 #ifdef ENABLE_FOLD_CHECKING
12285 unsigned char checksum_before_op0[16],
12286 checksum_before_op1[16],
12287 checksum_before_op2[16],
12288 checksum_after_op0[16],
12289 checksum_after_op1[16],
12290 checksum_after_op2[16];
12291 struct md5_ctx ctx;
12292 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12293
12294 md5_init_ctx (&ctx);
12295 fold_checksum_tree (op0, &ctx, &ht);
12296 md5_finish_ctx (&ctx, checksum_before_op0);
12297 ht.empty ();
12298
12299 md5_init_ctx (&ctx);
12300 fold_checksum_tree (op1, &ctx, &ht);
12301 md5_finish_ctx (&ctx, checksum_before_op1);
12302 ht.empty ();
12303
12304 md5_init_ctx (&ctx);
12305 fold_checksum_tree (op2, &ctx, &ht);
12306 md5_finish_ctx (&ctx, checksum_before_op2);
12307 ht.empty ();
12308 #endif
12309
12310 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12311 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12312 if (!tem)
12313 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12314
12315 #ifdef ENABLE_FOLD_CHECKING
12316 md5_init_ctx (&ctx);
12317 fold_checksum_tree (op0, &ctx, &ht);
12318 md5_finish_ctx (&ctx, checksum_after_op0);
12319 ht.empty ();
12320
12321 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12322 fold_check_failed (op0, tem);
12323
12324 md5_init_ctx (&ctx);
12325 fold_checksum_tree (op1, &ctx, &ht);
12326 md5_finish_ctx (&ctx, checksum_after_op1);
12327 ht.empty ();
12328
12329 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12330 fold_check_failed (op1, tem);
12331
12332 md5_init_ctx (&ctx);
12333 fold_checksum_tree (op2, &ctx, &ht);
12334 md5_finish_ctx (&ctx, checksum_after_op2);
12335
12336 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12337 fold_check_failed (op2, tem);
12338 #endif
12339 return tem;
12340 }
12341
12342 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12343 arguments in ARGARRAY, and a null static chain.
12344 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12345 of type TYPE from the given operands as constructed by build_call_array. */
12346
12347 tree
12348 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12349 int nargs, tree *argarray)
12350 {
12351 tree tem;
12352 #ifdef ENABLE_FOLD_CHECKING
12353 unsigned char checksum_before_fn[16],
12354 checksum_before_arglist[16],
12355 checksum_after_fn[16],
12356 checksum_after_arglist[16];
12357 struct md5_ctx ctx;
12358 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12359 int i;
12360
12361 md5_init_ctx (&ctx);
12362 fold_checksum_tree (fn, &ctx, &ht);
12363 md5_finish_ctx (&ctx, checksum_before_fn);
12364 ht.empty ();
12365
12366 md5_init_ctx (&ctx);
12367 for (i = 0; i < nargs; i++)
12368 fold_checksum_tree (argarray[i], &ctx, &ht);
12369 md5_finish_ctx (&ctx, checksum_before_arglist);
12370 ht.empty ();
12371 #endif
12372
12373 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12374 if (!tem)
12375 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12376
12377 #ifdef ENABLE_FOLD_CHECKING
12378 md5_init_ctx (&ctx);
12379 fold_checksum_tree (fn, &ctx, &ht);
12380 md5_finish_ctx (&ctx, checksum_after_fn);
12381 ht.empty ();
12382
12383 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12384 fold_check_failed (fn, tem);
12385
12386 md5_init_ctx (&ctx);
12387 for (i = 0; i < nargs; i++)
12388 fold_checksum_tree (argarray[i], &ctx, &ht);
12389 md5_finish_ctx (&ctx, checksum_after_arglist);
12390
12391 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12392 fold_check_failed (NULL_TREE, tem);
12393 #endif
12394 return tem;
12395 }
12396
12397 /* Perform constant folding and related simplification of initializer
12398 expression EXPR. These behave identically to "fold_buildN" but ignore
12399 potential run-time traps and exceptions that fold must preserve. */
12400
12401 #define START_FOLD_INIT \
12402 int saved_signaling_nans = flag_signaling_nans;\
12403 int saved_trapping_math = flag_trapping_math;\
12404 int saved_rounding_math = flag_rounding_math;\
12405 int saved_trapv = flag_trapv;\
12406 int saved_folding_initializer = folding_initializer;\
12407 flag_signaling_nans = 0;\
12408 flag_trapping_math = 0;\
12409 flag_rounding_math = 0;\
12410 flag_trapv = 0;\
12411 folding_initializer = 1;
12412
12413 #define END_FOLD_INIT \
12414 flag_signaling_nans = saved_signaling_nans;\
12415 flag_trapping_math = saved_trapping_math;\
12416 flag_rounding_math = saved_rounding_math;\
12417 flag_trapv = saved_trapv;\
12418 folding_initializer = saved_folding_initializer;
12419
12420 tree
12421 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12422 tree type, tree op)
12423 {
12424 tree result;
12425 START_FOLD_INIT;
12426
12427 result = fold_build1_loc (loc, code, type, op);
12428
12429 END_FOLD_INIT;
12430 return result;
12431 }
12432
12433 tree
12434 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12435 tree type, tree op0, tree op1)
12436 {
12437 tree result;
12438 START_FOLD_INIT;
12439
12440 result = fold_build2_loc (loc, code, type, op0, op1);
12441
12442 END_FOLD_INIT;
12443 return result;
12444 }
12445
12446 tree
12447 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12448 int nargs, tree *argarray)
12449 {
12450 tree result;
12451 START_FOLD_INIT;
12452
12453 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12454
12455 END_FOLD_INIT;
12456 return result;
12457 }
12458
12459 #undef START_FOLD_INIT
12460 #undef END_FOLD_INIT
12461
12462 /* Determine if first argument is a multiple of second argument. Return 0 if
12463 it is not, or we cannot easily determined it to be.
12464
12465 An example of the sort of thing we care about (at this point; this routine
12466 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12467 fold cases do now) is discovering that
12468
12469 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12470
12471 is a multiple of
12472
12473 SAVE_EXPR (J * 8)
12474
12475 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12476
12477 This code also handles discovering that
12478
12479 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12480
12481 is a multiple of 8 so we don't have to worry about dealing with a
12482 possible remainder.
12483
12484 Note that we *look* inside a SAVE_EXPR only to determine how it was
12485 calculated; it is not safe for fold to do much of anything else with the
12486 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12487 at run time. For example, the latter example above *cannot* be implemented
12488 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12489 evaluation time of the original SAVE_EXPR is not necessarily the same at
12490 the time the new expression is evaluated. The only optimization of this
12491 sort that would be valid is changing
12492
12493 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12494
12495 divided by 8 to
12496
12497 SAVE_EXPR (I) * SAVE_EXPR (J)
12498
12499 (where the same SAVE_EXPR (J) is used in the original and the
12500 transformed version). */
12501
12502 int
12503 multiple_of_p (tree type, const_tree top, const_tree bottom)
12504 {
12505 gimple *stmt;
12506 tree t1, op1, op2;
12507
12508 if (operand_equal_p (top, bottom, 0))
12509 return 1;
12510
12511 if (TREE_CODE (type) != INTEGER_TYPE)
12512 return 0;
12513
12514 switch (TREE_CODE (top))
12515 {
12516 case BIT_AND_EXPR:
12517 /* Bitwise and provides a power of two multiple. If the mask is
12518 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12519 if (!integer_pow2p (bottom))
12520 return 0;
12521 /* FALLTHRU */
12522
12523 case MULT_EXPR:
12524 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12525 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12526
12527 case MINUS_EXPR:
12528 /* It is impossible to prove if op0 - op1 is multiple of bottom
12529 precisely, so be conservative here checking if both op0 and op1
12530 are multiple of bottom. Note we check the second operand first
12531 since it's usually simpler. */
12532 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12533 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12534
12535 case PLUS_EXPR:
12536 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12537 as op0 - 3 if the expression has unsigned type. For example,
12538 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12539 op1 = TREE_OPERAND (top, 1);
12540 if (TYPE_UNSIGNED (type)
12541 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12542 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12543 return (multiple_of_p (type, op1, bottom)
12544 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12545
12546 case LSHIFT_EXPR:
12547 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12548 {
12549 op1 = TREE_OPERAND (top, 1);
12550 /* const_binop may not detect overflow correctly,
12551 so check for it explicitly here. */
12552 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12553 && 0 != (t1 = fold_convert (type,
12554 const_binop (LSHIFT_EXPR,
12555 size_one_node,
12556 op1)))
12557 && !TREE_OVERFLOW (t1))
12558 return multiple_of_p (type, t1, bottom);
12559 }
12560 return 0;
12561
12562 case NOP_EXPR:
12563 /* Can't handle conversions from non-integral or wider integral type. */
12564 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12565 || (TYPE_PRECISION (type)
12566 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12567 return 0;
12568
12569 /* fall through */
12570
12571 case SAVE_EXPR:
12572 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12573
12574 case COND_EXPR:
12575 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12576 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12577
12578 case INTEGER_CST:
12579 if (TREE_CODE (bottom) != INTEGER_CST
12580 || integer_zerop (bottom)
12581 || (TYPE_UNSIGNED (type)
12582 && (tree_int_cst_sgn (top) < 0
12583 || tree_int_cst_sgn (bottom) < 0)))
12584 return 0;
12585 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12586 SIGNED);
12587
12588 case SSA_NAME:
12589 if (TREE_CODE (bottom) == INTEGER_CST
12590 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12591 && gimple_code (stmt) == GIMPLE_ASSIGN)
12592 {
12593 enum tree_code code = gimple_assign_rhs_code (stmt);
12594
12595 /* Check for special cases to see if top is defined as multiple
12596 of bottom:
12597
12598 top = (X & ~(bottom - 1) ; bottom is power of 2
12599
12600 or
12601
12602 Y = X % bottom
12603 top = X - Y. */
12604 if (code == BIT_AND_EXPR
12605 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12606 && TREE_CODE (op2) == INTEGER_CST
12607 && integer_pow2p (bottom)
12608 && wi::multiple_of_p (wi::to_widest (op2),
12609 wi::to_widest (bottom), UNSIGNED))
12610 return 1;
12611
12612 op1 = gimple_assign_rhs1 (stmt);
12613 if (code == MINUS_EXPR
12614 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12615 && TREE_CODE (op2) == SSA_NAME
12616 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12617 && gimple_code (stmt) == GIMPLE_ASSIGN
12618 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12619 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12620 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12621 return 1;
12622 }
12623
12624 /* fall through */
12625
12626 default:
12627 return 0;
12628 }
12629 }
12630
12631 #define tree_expr_nonnegative_warnv_p(X, Y) \
12632 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12633
12634 #define RECURSE(X) \
12635 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12636
12637 /* Return true if CODE or TYPE is known to be non-negative. */
12638
12639 static bool
12640 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12641 {
12642 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12643 && truth_value_p (code))
12644 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12645 have a signed:1 type (where the value is -1 and 0). */
12646 return true;
12647 return false;
12648 }
12649
12650 /* Return true if (CODE OP0) is known to be non-negative. If the return
12651 value is based on the assumption that signed overflow is undefined,
12652 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12653 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12654
12655 bool
12656 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12657 bool *strict_overflow_p, int depth)
12658 {
12659 if (TYPE_UNSIGNED (type))
12660 return true;
12661
12662 switch (code)
12663 {
12664 case ABS_EXPR:
12665 /* We can't return 1 if flag_wrapv is set because
12666 ABS_EXPR<INT_MIN> = INT_MIN. */
12667 if (!ANY_INTEGRAL_TYPE_P (type))
12668 return true;
12669 if (TYPE_OVERFLOW_UNDEFINED (type))
12670 {
12671 *strict_overflow_p = true;
12672 return true;
12673 }
12674 break;
12675
12676 case NON_LVALUE_EXPR:
12677 case FLOAT_EXPR:
12678 case FIX_TRUNC_EXPR:
12679 return RECURSE (op0);
12680
12681 CASE_CONVERT:
12682 {
12683 tree inner_type = TREE_TYPE (op0);
12684 tree outer_type = type;
12685
12686 if (TREE_CODE (outer_type) == REAL_TYPE)
12687 {
12688 if (TREE_CODE (inner_type) == REAL_TYPE)
12689 return RECURSE (op0);
12690 if (INTEGRAL_TYPE_P (inner_type))
12691 {
12692 if (TYPE_UNSIGNED (inner_type))
12693 return true;
12694 return RECURSE (op0);
12695 }
12696 }
12697 else if (INTEGRAL_TYPE_P (outer_type))
12698 {
12699 if (TREE_CODE (inner_type) == REAL_TYPE)
12700 return RECURSE (op0);
12701 if (INTEGRAL_TYPE_P (inner_type))
12702 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12703 && TYPE_UNSIGNED (inner_type);
12704 }
12705 }
12706 break;
12707
12708 default:
12709 return tree_simple_nonnegative_warnv_p (code, type);
12710 }
12711
12712 /* We don't know sign of `t', so be conservative and return false. */
12713 return false;
12714 }
12715
12716 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12717 value is based on the assumption that signed overflow is undefined,
12718 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12719 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12720
12721 bool
12722 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12723 tree op1, bool *strict_overflow_p,
12724 int depth)
12725 {
12726 if (TYPE_UNSIGNED (type))
12727 return true;
12728
12729 switch (code)
12730 {
12731 case POINTER_PLUS_EXPR:
12732 case PLUS_EXPR:
12733 if (FLOAT_TYPE_P (type))
12734 return RECURSE (op0) && RECURSE (op1);
12735
12736 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12737 both unsigned and at least 2 bits shorter than the result. */
12738 if (TREE_CODE (type) == INTEGER_TYPE
12739 && TREE_CODE (op0) == NOP_EXPR
12740 && TREE_CODE (op1) == NOP_EXPR)
12741 {
12742 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12743 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12744 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12745 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12746 {
12747 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12748 TYPE_PRECISION (inner2)) + 1;
12749 return prec < TYPE_PRECISION (type);
12750 }
12751 }
12752 break;
12753
12754 case MULT_EXPR:
12755 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12756 {
12757 /* x * x is always non-negative for floating point x
12758 or without overflow. */
12759 if (operand_equal_p (op0, op1, 0)
12760 || (RECURSE (op0) && RECURSE (op1)))
12761 {
12762 if (ANY_INTEGRAL_TYPE_P (type)
12763 && TYPE_OVERFLOW_UNDEFINED (type))
12764 *strict_overflow_p = true;
12765 return true;
12766 }
12767 }
12768
12769 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12770 both unsigned and their total bits is shorter than the result. */
12771 if (TREE_CODE (type) == INTEGER_TYPE
12772 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12773 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12774 {
12775 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12776 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12777 : TREE_TYPE (op0);
12778 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12779 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12780 : TREE_TYPE (op1);
12781
12782 bool unsigned0 = TYPE_UNSIGNED (inner0);
12783 bool unsigned1 = TYPE_UNSIGNED (inner1);
12784
12785 if (TREE_CODE (op0) == INTEGER_CST)
12786 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12787
12788 if (TREE_CODE (op1) == INTEGER_CST)
12789 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12790
12791 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12792 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12793 {
12794 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12795 ? tree_int_cst_min_precision (op0, UNSIGNED)
12796 : TYPE_PRECISION (inner0);
12797
12798 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12799 ? tree_int_cst_min_precision (op1, UNSIGNED)
12800 : TYPE_PRECISION (inner1);
12801
12802 return precision0 + precision1 < TYPE_PRECISION (type);
12803 }
12804 }
12805 return false;
12806
12807 case BIT_AND_EXPR:
12808 case MAX_EXPR:
12809 return RECURSE (op0) || RECURSE (op1);
12810
12811 case BIT_IOR_EXPR:
12812 case BIT_XOR_EXPR:
12813 case MIN_EXPR:
12814 case RDIV_EXPR:
12815 case TRUNC_DIV_EXPR:
12816 case CEIL_DIV_EXPR:
12817 case FLOOR_DIV_EXPR:
12818 case ROUND_DIV_EXPR:
12819 return RECURSE (op0) && RECURSE (op1);
12820
12821 case TRUNC_MOD_EXPR:
12822 return RECURSE (op0);
12823
12824 case FLOOR_MOD_EXPR:
12825 return RECURSE (op1);
12826
12827 case CEIL_MOD_EXPR:
12828 case ROUND_MOD_EXPR:
12829 default:
12830 return tree_simple_nonnegative_warnv_p (code, type);
12831 }
12832
12833 /* We don't know sign of `t', so be conservative and return false. */
12834 return false;
12835 }
12836
12837 /* Return true if T is known to be non-negative. If the return
12838 value is based on the assumption that signed overflow is undefined,
12839 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12840 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12841
12842 bool
12843 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12844 {
12845 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12846 return true;
12847
12848 switch (TREE_CODE (t))
12849 {
12850 case INTEGER_CST:
12851 return tree_int_cst_sgn (t) >= 0;
12852
12853 case REAL_CST:
12854 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12855
12856 case FIXED_CST:
12857 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12858
12859 case COND_EXPR:
12860 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12861
12862 case SSA_NAME:
12863 /* Limit the depth of recursion to avoid quadratic behavior.
12864 This is expected to catch almost all occurrences in practice.
12865 If this code misses important cases that unbounded recursion
12866 would not, passes that need this information could be revised
12867 to provide it through dataflow propagation. */
12868 return (!name_registered_for_update_p (t)
12869 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12870 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12871 strict_overflow_p, depth));
12872
12873 default:
12874 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12875 }
12876 }
12877
12878 /* Return true if T is known to be non-negative. If the return
12879 value is based on the assumption that signed overflow is undefined,
12880 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12881 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12882
12883 bool
12884 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12885 bool *strict_overflow_p, int depth)
12886 {
12887 switch (fn)
12888 {
12889 CASE_CFN_ACOS:
12890 CASE_CFN_ACOSH:
12891 CASE_CFN_CABS:
12892 CASE_CFN_COSH:
12893 CASE_CFN_ERFC:
12894 CASE_CFN_EXP:
12895 CASE_CFN_EXP10:
12896 CASE_CFN_EXP2:
12897 CASE_CFN_FABS:
12898 CASE_CFN_FDIM:
12899 CASE_CFN_HYPOT:
12900 CASE_CFN_POW10:
12901 CASE_CFN_FFS:
12902 CASE_CFN_PARITY:
12903 CASE_CFN_POPCOUNT:
12904 CASE_CFN_CLZ:
12905 CASE_CFN_CLRSB:
12906 case CFN_BUILT_IN_BSWAP32:
12907 case CFN_BUILT_IN_BSWAP64:
12908 /* Always true. */
12909 return true;
12910
12911 CASE_CFN_SQRT:
12912 /* sqrt(-0.0) is -0.0. */
12913 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12914 return true;
12915 return RECURSE (arg0);
12916
12917 CASE_CFN_ASINH:
12918 CASE_CFN_ATAN:
12919 CASE_CFN_ATANH:
12920 CASE_CFN_CBRT:
12921 CASE_CFN_CEIL:
12922 CASE_CFN_ERF:
12923 CASE_CFN_EXPM1:
12924 CASE_CFN_FLOOR:
12925 CASE_CFN_FMOD:
12926 CASE_CFN_FREXP:
12927 CASE_CFN_ICEIL:
12928 CASE_CFN_IFLOOR:
12929 CASE_CFN_IRINT:
12930 CASE_CFN_IROUND:
12931 CASE_CFN_LCEIL:
12932 CASE_CFN_LDEXP:
12933 CASE_CFN_LFLOOR:
12934 CASE_CFN_LLCEIL:
12935 CASE_CFN_LLFLOOR:
12936 CASE_CFN_LLRINT:
12937 CASE_CFN_LLROUND:
12938 CASE_CFN_LRINT:
12939 CASE_CFN_LROUND:
12940 CASE_CFN_MODF:
12941 CASE_CFN_NEARBYINT:
12942 CASE_CFN_RINT:
12943 CASE_CFN_ROUND:
12944 CASE_CFN_SCALB:
12945 CASE_CFN_SCALBLN:
12946 CASE_CFN_SCALBN:
12947 CASE_CFN_SIGNBIT:
12948 CASE_CFN_SIGNIFICAND:
12949 CASE_CFN_SINH:
12950 CASE_CFN_TANH:
12951 CASE_CFN_TRUNC:
12952 /* True if the 1st argument is nonnegative. */
12953 return RECURSE (arg0);
12954
12955 CASE_CFN_FMAX:
12956 /* True if the 1st OR 2nd arguments are nonnegative. */
12957 return RECURSE (arg0) || RECURSE (arg1);
12958
12959 CASE_CFN_FMIN:
12960 /* True if the 1st AND 2nd arguments are nonnegative. */
12961 return RECURSE (arg0) && RECURSE (arg1);
12962
12963 CASE_CFN_COPYSIGN:
12964 /* True if the 2nd argument is nonnegative. */
12965 return RECURSE (arg1);
12966
12967 CASE_CFN_POWI:
12968 /* True if the 1st argument is nonnegative or the second
12969 argument is an even integer. */
12970 if (TREE_CODE (arg1) == INTEGER_CST
12971 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
12972 return true;
12973 return RECURSE (arg0);
12974
12975 CASE_CFN_POW:
12976 /* True if the 1st argument is nonnegative or the second
12977 argument is an even integer valued real. */
12978 if (TREE_CODE (arg1) == REAL_CST)
12979 {
12980 REAL_VALUE_TYPE c;
12981 HOST_WIDE_INT n;
12982
12983 c = TREE_REAL_CST (arg1);
12984 n = real_to_integer (&c);
12985 if ((n & 1) == 0)
12986 {
12987 REAL_VALUE_TYPE cint;
12988 real_from_integer (&cint, VOIDmode, n, SIGNED);
12989 if (real_identical (&c, &cint))
12990 return true;
12991 }
12992 }
12993 return RECURSE (arg0);
12994
12995 default:
12996 break;
12997 }
12998 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
12999 }
13000
13001 /* Return true if T is known to be non-negative. If the return
13002 value is based on the assumption that signed overflow is undefined,
13003 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13004 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13005
13006 static bool
13007 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13008 {
13009 enum tree_code code = TREE_CODE (t);
13010 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13011 return true;
13012
13013 switch (code)
13014 {
13015 case TARGET_EXPR:
13016 {
13017 tree temp = TARGET_EXPR_SLOT (t);
13018 t = TARGET_EXPR_INITIAL (t);
13019
13020 /* If the initializer is non-void, then it's a normal expression
13021 that will be assigned to the slot. */
13022 if (!VOID_TYPE_P (t))
13023 return RECURSE (t);
13024
13025 /* Otherwise, the initializer sets the slot in some way. One common
13026 way is an assignment statement at the end of the initializer. */
13027 while (1)
13028 {
13029 if (TREE_CODE (t) == BIND_EXPR)
13030 t = expr_last (BIND_EXPR_BODY (t));
13031 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13032 || TREE_CODE (t) == TRY_CATCH_EXPR)
13033 t = expr_last (TREE_OPERAND (t, 0));
13034 else if (TREE_CODE (t) == STATEMENT_LIST)
13035 t = expr_last (t);
13036 else
13037 break;
13038 }
13039 if (TREE_CODE (t) == MODIFY_EXPR
13040 && TREE_OPERAND (t, 0) == temp)
13041 return RECURSE (TREE_OPERAND (t, 1));
13042
13043 return false;
13044 }
13045
13046 case CALL_EXPR:
13047 {
13048 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13049 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13050
13051 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13052 get_call_combined_fn (t),
13053 arg0,
13054 arg1,
13055 strict_overflow_p, depth);
13056 }
13057 case COMPOUND_EXPR:
13058 case MODIFY_EXPR:
13059 return RECURSE (TREE_OPERAND (t, 1));
13060
13061 case BIND_EXPR:
13062 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13063
13064 case SAVE_EXPR:
13065 return RECURSE (TREE_OPERAND (t, 0));
13066
13067 default:
13068 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13069 }
13070 }
13071
13072 #undef RECURSE
13073 #undef tree_expr_nonnegative_warnv_p
13074
13075 /* Return true if T is known to be non-negative. If the return
13076 value is based on the assumption that signed overflow is undefined,
13077 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13078 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13079
13080 bool
13081 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13082 {
13083 enum tree_code code;
13084 if (t == error_mark_node)
13085 return false;
13086
13087 code = TREE_CODE (t);
13088 switch (TREE_CODE_CLASS (code))
13089 {
13090 case tcc_binary:
13091 case tcc_comparison:
13092 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13093 TREE_TYPE (t),
13094 TREE_OPERAND (t, 0),
13095 TREE_OPERAND (t, 1),
13096 strict_overflow_p, depth);
13097
13098 case tcc_unary:
13099 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13100 TREE_TYPE (t),
13101 TREE_OPERAND (t, 0),
13102 strict_overflow_p, depth);
13103
13104 case tcc_constant:
13105 case tcc_declaration:
13106 case tcc_reference:
13107 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13108
13109 default:
13110 break;
13111 }
13112
13113 switch (code)
13114 {
13115 case TRUTH_AND_EXPR:
13116 case TRUTH_OR_EXPR:
13117 case TRUTH_XOR_EXPR:
13118 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13119 TREE_TYPE (t),
13120 TREE_OPERAND (t, 0),
13121 TREE_OPERAND (t, 1),
13122 strict_overflow_p, depth);
13123 case TRUTH_NOT_EXPR:
13124 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13125 TREE_TYPE (t),
13126 TREE_OPERAND (t, 0),
13127 strict_overflow_p, depth);
13128
13129 case COND_EXPR:
13130 case CONSTRUCTOR:
13131 case OBJ_TYPE_REF:
13132 case ASSERT_EXPR:
13133 case ADDR_EXPR:
13134 case WITH_SIZE_EXPR:
13135 case SSA_NAME:
13136 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13137
13138 default:
13139 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13140 }
13141 }
13142
13143 /* Return true if `t' is known to be non-negative. Handle warnings
13144 about undefined signed overflow. */
13145
13146 bool
13147 tree_expr_nonnegative_p (tree t)
13148 {
13149 bool ret, strict_overflow_p;
13150
13151 strict_overflow_p = false;
13152 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13153 if (strict_overflow_p)
13154 fold_overflow_warning (("assuming signed overflow does not occur when "
13155 "determining that expression is always "
13156 "non-negative"),
13157 WARN_STRICT_OVERFLOW_MISC);
13158 return ret;
13159 }
13160
13161
13162 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13163 For floating point we further ensure that T is not denormal.
13164 Similar logic is present in nonzero_address in rtlanal.h.
13165
13166 If the return value is based on the assumption that signed overflow
13167 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13168 change *STRICT_OVERFLOW_P. */
13169
13170 bool
13171 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13172 bool *strict_overflow_p)
13173 {
13174 switch (code)
13175 {
13176 case ABS_EXPR:
13177 return tree_expr_nonzero_warnv_p (op0,
13178 strict_overflow_p);
13179
13180 case NOP_EXPR:
13181 {
13182 tree inner_type = TREE_TYPE (op0);
13183 tree outer_type = type;
13184
13185 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13186 && tree_expr_nonzero_warnv_p (op0,
13187 strict_overflow_p));
13188 }
13189 break;
13190
13191 case NON_LVALUE_EXPR:
13192 return tree_expr_nonzero_warnv_p (op0,
13193 strict_overflow_p);
13194
13195 default:
13196 break;
13197 }
13198
13199 return false;
13200 }
13201
13202 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13203 For floating point we further ensure that T is not denormal.
13204 Similar logic is present in nonzero_address in rtlanal.h.
13205
13206 If the return value is based on the assumption that signed overflow
13207 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13208 change *STRICT_OVERFLOW_P. */
13209
13210 bool
13211 tree_binary_nonzero_warnv_p (enum tree_code code,
13212 tree type,
13213 tree op0,
13214 tree op1, bool *strict_overflow_p)
13215 {
13216 bool sub_strict_overflow_p;
13217 switch (code)
13218 {
13219 case POINTER_PLUS_EXPR:
13220 case PLUS_EXPR:
13221 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13222 {
13223 /* With the presence of negative values it is hard
13224 to say something. */
13225 sub_strict_overflow_p = false;
13226 if (!tree_expr_nonnegative_warnv_p (op0,
13227 &sub_strict_overflow_p)
13228 || !tree_expr_nonnegative_warnv_p (op1,
13229 &sub_strict_overflow_p))
13230 return false;
13231 /* One of operands must be positive and the other non-negative. */
13232 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13233 overflows, on a twos-complement machine the sum of two
13234 nonnegative numbers can never be zero. */
13235 return (tree_expr_nonzero_warnv_p (op0,
13236 strict_overflow_p)
13237 || tree_expr_nonzero_warnv_p (op1,
13238 strict_overflow_p));
13239 }
13240 break;
13241
13242 case MULT_EXPR:
13243 if (TYPE_OVERFLOW_UNDEFINED (type))
13244 {
13245 if (tree_expr_nonzero_warnv_p (op0,
13246 strict_overflow_p)
13247 && tree_expr_nonzero_warnv_p (op1,
13248 strict_overflow_p))
13249 {
13250 *strict_overflow_p = true;
13251 return true;
13252 }
13253 }
13254 break;
13255
13256 case MIN_EXPR:
13257 sub_strict_overflow_p = false;
13258 if (tree_expr_nonzero_warnv_p (op0,
13259 &sub_strict_overflow_p)
13260 && tree_expr_nonzero_warnv_p (op1,
13261 &sub_strict_overflow_p))
13262 {
13263 if (sub_strict_overflow_p)
13264 *strict_overflow_p = true;
13265 }
13266 break;
13267
13268 case MAX_EXPR:
13269 sub_strict_overflow_p = false;
13270 if (tree_expr_nonzero_warnv_p (op0,
13271 &sub_strict_overflow_p))
13272 {
13273 if (sub_strict_overflow_p)
13274 *strict_overflow_p = true;
13275
13276 /* When both operands are nonzero, then MAX must be too. */
13277 if (tree_expr_nonzero_warnv_p (op1,
13278 strict_overflow_p))
13279 return true;
13280
13281 /* MAX where operand 0 is positive is positive. */
13282 return tree_expr_nonnegative_warnv_p (op0,
13283 strict_overflow_p);
13284 }
13285 /* MAX where operand 1 is positive is positive. */
13286 else if (tree_expr_nonzero_warnv_p (op1,
13287 &sub_strict_overflow_p)
13288 && tree_expr_nonnegative_warnv_p (op1,
13289 &sub_strict_overflow_p))
13290 {
13291 if (sub_strict_overflow_p)
13292 *strict_overflow_p = true;
13293 return true;
13294 }
13295 break;
13296
13297 case BIT_IOR_EXPR:
13298 return (tree_expr_nonzero_warnv_p (op1,
13299 strict_overflow_p)
13300 || tree_expr_nonzero_warnv_p (op0,
13301 strict_overflow_p));
13302
13303 default:
13304 break;
13305 }
13306
13307 return false;
13308 }
13309
13310 /* Return true when T is an address and is known to be nonzero.
13311 For floating point we further ensure that T is not denormal.
13312 Similar logic is present in nonzero_address in rtlanal.h.
13313
13314 If the return value is based on the assumption that signed overflow
13315 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13316 change *STRICT_OVERFLOW_P. */
13317
13318 bool
13319 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13320 {
13321 bool sub_strict_overflow_p;
13322 switch (TREE_CODE (t))
13323 {
13324 case INTEGER_CST:
13325 return !integer_zerop (t);
13326
13327 case ADDR_EXPR:
13328 {
13329 tree base = TREE_OPERAND (t, 0);
13330
13331 if (!DECL_P (base))
13332 base = get_base_address (base);
13333
13334 if (base && TREE_CODE (base) == TARGET_EXPR)
13335 base = TARGET_EXPR_SLOT (base);
13336
13337 if (!base)
13338 return false;
13339
13340 /* For objects in symbol table check if we know they are non-zero.
13341 Don't do anything for variables and functions before symtab is built;
13342 it is quite possible that they will be declared weak later. */
13343 int nonzero_addr = maybe_nonzero_address (base);
13344 if (nonzero_addr >= 0)
13345 return nonzero_addr;
13346
13347 /* Constants are never weak. */
13348 if (CONSTANT_CLASS_P (base))
13349 return true;
13350
13351 return false;
13352 }
13353
13354 case COND_EXPR:
13355 sub_strict_overflow_p = false;
13356 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13357 &sub_strict_overflow_p)
13358 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13359 &sub_strict_overflow_p))
13360 {
13361 if (sub_strict_overflow_p)
13362 *strict_overflow_p = true;
13363 return true;
13364 }
13365 break;
13366
13367 case SSA_NAME:
13368 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13369 break;
13370 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13371
13372 default:
13373 break;
13374 }
13375 return false;
13376 }
13377
13378 #define integer_valued_real_p(X) \
13379 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13380
13381 #define RECURSE(X) \
13382 ((integer_valued_real_p) (X, depth + 1))
13383
13384 /* Return true if the floating point result of (CODE OP0) has an
13385 integer value. We also allow +Inf, -Inf and NaN to be considered
13386 integer values. Return false for signaling NaN.
13387
13388 DEPTH is the current nesting depth of the query. */
13389
13390 bool
13391 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13392 {
13393 switch (code)
13394 {
13395 case FLOAT_EXPR:
13396 return true;
13397
13398 case ABS_EXPR:
13399 return RECURSE (op0);
13400
13401 CASE_CONVERT:
13402 {
13403 tree type = TREE_TYPE (op0);
13404 if (TREE_CODE (type) == INTEGER_TYPE)
13405 return true;
13406 if (TREE_CODE (type) == REAL_TYPE)
13407 return RECURSE (op0);
13408 break;
13409 }
13410
13411 default:
13412 break;
13413 }
13414 return false;
13415 }
13416
13417 /* Return true if the floating point result of (CODE OP0 OP1) has an
13418 integer value. We also allow +Inf, -Inf and NaN to be considered
13419 integer values. Return false for signaling NaN.
13420
13421 DEPTH is the current nesting depth of the query. */
13422
13423 bool
13424 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13425 {
13426 switch (code)
13427 {
13428 case PLUS_EXPR:
13429 case MINUS_EXPR:
13430 case MULT_EXPR:
13431 case MIN_EXPR:
13432 case MAX_EXPR:
13433 return RECURSE (op0) && RECURSE (op1);
13434
13435 default:
13436 break;
13437 }
13438 return false;
13439 }
13440
13441 /* Return true if the floating point result of calling FNDECL with arguments
13442 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13443 considered integer values. Return false for signaling NaN. If FNDECL
13444 takes fewer than 2 arguments, the remaining ARGn are null.
13445
13446 DEPTH is the current nesting depth of the query. */
13447
13448 bool
13449 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13450 {
13451 switch (fn)
13452 {
13453 CASE_CFN_CEIL:
13454 CASE_CFN_FLOOR:
13455 CASE_CFN_NEARBYINT:
13456 CASE_CFN_RINT:
13457 CASE_CFN_ROUND:
13458 CASE_CFN_TRUNC:
13459 return true;
13460
13461 CASE_CFN_FMIN:
13462 CASE_CFN_FMAX:
13463 return RECURSE (arg0) && RECURSE (arg1);
13464
13465 default:
13466 break;
13467 }
13468 return false;
13469 }
13470
13471 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13472 has an integer value. We also allow +Inf, -Inf and NaN to be
13473 considered integer values. Return false for signaling NaN.
13474
13475 DEPTH is the current nesting depth of the query. */
13476
13477 bool
13478 integer_valued_real_single_p (tree t, int depth)
13479 {
13480 switch (TREE_CODE (t))
13481 {
13482 case REAL_CST:
13483 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13484
13485 case COND_EXPR:
13486 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13487
13488 case SSA_NAME:
13489 /* Limit the depth of recursion to avoid quadratic behavior.
13490 This is expected to catch almost all occurrences in practice.
13491 If this code misses important cases that unbounded recursion
13492 would not, passes that need this information could be revised
13493 to provide it through dataflow propagation. */
13494 return (!name_registered_for_update_p (t)
13495 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13496 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13497 depth));
13498
13499 default:
13500 break;
13501 }
13502 return false;
13503 }
13504
13505 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13506 has an integer value. We also allow +Inf, -Inf and NaN to be
13507 considered integer values. Return false for signaling NaN.
13508
13509 DEPTH is the current nesting depth of the query. */
13510
13511 static bool
13512 integer_valued_real_invalid_p (tree t, int depth)
13513 {
13514 switch (TREE_CODE (t))
13515 {
13516 case COMPOUND_EXPR:
13517 case MODIFY_EXPR:
13518 case BIND_EXPR:
13519 return RECURSE (TREE_OPERAND (t, 1));
13520
13521 case SAVE_EXPR:
13522 return RECURSE (TREE_OPERAND (t, 0));
13523
13524 default:
13525 break;
13526 }
13527 return false;
13528 }
13529
13530 #undef RECURSE
13531 #undef integer_valued_real_p
13532
13533 /* Return true if the floating point expression T has an integer value.
13534 We also allow +Inf, -Inf and NaN to be considered integer values.
13535 Return false for signaling NaN.
13536
13537 DEPTH is the current nesting depth of the query. */
13538
13539 bool
13540 integer_valued_real_p (tree t, int depth)
13541 {
13542 if (t == error_mark_node)
13543 return false;
13544
13545 tree_code code = TREE_CODE (t);
13546 switch (TREE_CODE_CLASS (code))
13547 {
13548 case tcc_binary:
13549 case tcc_comparison:
13550 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13551 TREE_OPERAND (t, 1), depth);
13552
13553 case tcc_unary:
13554 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13555
13556 case tcc_constant:
13557 case tcc_declaration:
13558 case tcc_reference:
13559 return integer_valued_real_single_p (t, depth);
13560
13561 default:
13562 break;
13563 }
13564
13565 switch (code)
13566 {
13567 case COND_EXPR:
13568 case SSA_NAME:
13569 return integer_valued_real_single_p (t, depth);
13570
13571 case CALL_EXPR:
13572 {
13573 tree arg0 = (call_expr_nargs (t) > 0
13574 ? CALL_EXPR_ARG (t, 0)
13575 : NULL_TREE);
13576 tree arg1 = (call_expr_nargs (t) > 1
13577 ? CALL_EXPR_ARG (t, 1)
13578 : NULL_TREE);
13579 return integer_valued_real_call_p (get_call_combined_fn (t),
13580 arg0, arg1, depth);
13581 }
13582
13583 default:
13584 return integer_valued_real_invalid_p (t, depth);
13585 }
13586 }
13587
13588 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13589 attempt to fold the expression to a constant without modifying TYPE,
13590 OP0 or OP1.
13591
13592 If the expression could be simplified to a constant, then return
13593 the constant. If the expression would not be simplified to a
13594 constant, then return NULL_TREE. */
13595
13596 tree
13597 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13598 {
13599 tree tem = fold_binary (code, type, op0, op1);
13600 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13601 }
13602
13603 /* Given the components of a unary expression CODE, TYPE and OP0,
13604 attempt to fold the expression to a constant without modifying
13605 TYPE or OP0.
13606
13607 If the expression could be simplified to a constant, then return
13608 the constant. If the expression would not be simplified to a
13609 constant, then return NULL_TREE. */
13610
13611 tree
13612 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13613 {
13614 tree tem = fold_unary (code, type, op0);
13615 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13616 }
13617
13618 /* If EXP represents referencing an element in a constant string
13619 (either via pointer arithmetic or array indexing), return the
13620 tree representing the value accessed, otherwise return NULL. */
13621
13622 tree
13623 fold_read_from_constant_string (tree exp)
13624 {
13625 if ((TREE_CODE (exp) == INDIRECT_REF
13626 || TREE_CODE (exp) == ARRAY_REF)
13627 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13628 {
13629 tree exp1 = TREE_OPERAND (exp, 0);
13630 tree index;
13631 tree string;
13632 location_t loc = EXPR_LOCATION (exp);
13633
13634 if (TREE_CODE (exp) == INDIRECT_REF)
13635 string = string_constant (exp1, &index);
13636 else
13637 {
13638 tree low_bound = array_ref_low_bound (exp);
13639 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13640
13641 /* Optimize the special-case of a zero lower bound.
13642
13643 We convert the low_bound to sizetype to avoid some problems
13644 with constant folding. (E.g. suppose the lower bound is 1,
13645 and its mode is QI. Without the conversion,l (ARRAY
13646 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13647 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13648 if (! integer_zerop (low_bound))
13649 index = size_diffop_loc (loc, index,
13650 fold_convert_loc (loc, sizetype, low_bound));
13651
13652 string = exp1;
13653 }
13654
13655 scalar_int_mode char_mode;
13656 if (string
13657 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13658 && TREE_CODE (string) == STRING_CST
13659 && TREE_CODE (index) == INTEGER_CST
13660 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13661 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
13662 &char_mode)
13663 && GET_MODE_SIZE (char_mode) == 1)
13664 return build_int_cst_type (TREE_TYPE (exp),
13665 (TREE_STRING_POINTER (string)
13666 [TREE_INT_CST_LOW (index)]));
13667 }
13668 return NULL;
13669 }
13670
13671 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13672 an integer constant, real, or fixed-point constant.
13673
13674 TYPE is the type of the result. */
13675
13676 static tree
13677 fold_negate_const (tree arg0, tree type)
13678 {
13679 tree t = NULL_TREE;
13680
13681 switch (TREE_CODE (arg0))
13682 {
13683 case INTEGER_CST:
13684 {
13685 bool overflow;
13686 wide_int val = wi::neg (arg0, &overflow);
13687 t = force_fit_type (type, val, 1,
13688 (overflow && ! TYPE_UNSIGNED (type))
13689 || TREE_OVERFLOW (arg0));
13690 break;
13691 }
13692
13693 case REAL_CST:
13694 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13695 break;
13696
13697 case FIXED_CST:
13698 {
13699 FIXED_VALUE_TYPE f;
13700 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13701 &(TREE_FIXED_CST (arg0)), NULL,
13702 TYPE_SATURATING (type));
13703 t = build_fixed (type, f);
13704 /* Propagate overflow flags. */
13705 if (overflow_p | TREE_OVERFLOW (arg0))
13706 TREE_OVERFLOW (t) = 1;
13707 break;
13708 }
13709
13710 default:
13711 gcc_unreachable ();
13712 }
13713
13714 return t;
13715 }
13716
13717 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13718 an integer constant or real constant.
13719
13720 TYPE is the type of the result. */
13721
13722 tree
13723 fold_abs_const (tree arg0, tree type)
13724 {
13725 tree t = NULL_TREE;
13726
13727 switch (TREE_CODE (arg0))
13728 {
13729 case INTEGER_CST:
13730 {
13731 /* If the value is unsigned or non-negative, then the absolute value
13732 is the same as the ordinary value. */
13733 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13734 t = arg0;
13735
13736 /* If the value is negative, then the absolute value is
13737 its negation. */
13738 else
13739 {
13740 bool overflow;
13741 wide_int val = wi::neg (arg0, &overflow);
13742 t = force_fit_type (type, val, -1,
13743 overflow | TREE_OVERFLOW (arg0));
13744 }
13745 }
13746 break;
13747
13748 case REAL_CST:
13749 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13750 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13751 else
13752 t = arg0;
13753 break;
13754
13755 default:
13756 gcc_unreachable ();
13757 }
13758
13759 return t;
13760 }
13761
13762 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13763 constant. TYPE is the type of the result. */
13764
13765 static tree
13766 fold_not_const (const_tree arg0, tree type)
13767 {
13768 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13769
13770 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13771 }
13772
13773 /* Given CODE, a relational operator, the target type, TYPE and two
13774 constant operands OP0 and OP1, return the result of the
13775 relational operation. If the result is not a compile time
13776 constant, then return NULL_TREE. */
13777
13778 static tree
13779 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13780 {
13781 int result, invert;
13782
13783 /* From here on, the only cases we handle are when the result is
13784 known to be a constant. */
13785
13786 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13787 {
13788 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13789 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13790
13791 /* Handle the cases where either operand is a NaN. */
13792 if (real_isnan (c0) || real_isnan (c1))
13793 {
13794 switch (code)
13795 {
13796 case EQ_EXPR:
13797 case ORDERED_EXPR:
13798 result = 0;
13799 break;
13800
13801 case NE_EXPR:
13802 case UNORDERED_EXPR:
13803 case UNLT_EXPR:
13804 case UNLE_EXPR:
13805 case UNGT_EXPR:
13806 case UNGE_EXPR:
13807 case UNEQ_EXPR:
13808 result = 1;
13809 break;
13810
13811 case LT_EXPR:
13812 case LE_EXPR:
13813 case GT_EXPR:
13814 case GE_EXPR:
13815 case LTGT_EXPR:
13816 if (flag_trapping_math)
13817 return NULL_TREE;
13818 result = 0;
13819 break;
13820
13821 default:
13822 gcc_unreachable ();
13823 }
13824
13825 return constant_boolean_node (result, type);
13826 }
13827
13828 return constant_boolean_node (real_compare (code, c0, c1), type);
13829 }
13830
13831 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13832 {
13833 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13834 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13835 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13836 }
13837
13838 /* Handle equality/inequality of complex constants. */
13839 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13840 {
13841 tree rcond = fold_relational_const (code, type,
13842 TREE_REALPART (op0),
13843 TREE_REALPART (op1));
13844 tree icond = fold_relational_const (code, type,
13845 TREE_IMAGPART (op0),
13846 TREE_IMAGPART (op1));
13847 if (code == EQ_EXPR)
13848 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13849 else if (code == NE_EXPR)
13850 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13851 else
13852 return NULL_TREE;
13853 }
13854
13855 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13856 {
13857 if (!VECTOR_TYPE_P (type))
13858 {
13859 /* Have vector comparison with scalar boolean result. */
13860 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13861 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13862 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13863 {
13864 tree elem0 = VECTOR_CST_ELT (op0, i);
13865 tree elem1 = VECTOR_CST_ELT (op1, i);
13866 tree tmp = fold_relational_const (code, type, elem0, elem1);
13867 if (tmp == NULL_TREE)
13868 return NULL_TREE;
13869 if (integer_zerop (tmp))
13870 return constant_boolean_node (false, type);
13871 }
13872 return constant_boolean_node (true, type);
13873 }
13874 unsigned count = VECTOR_CST_NELTS (op0);
13875 tree *elts = XALLOCAVEC (tree, count);
13876 gcc_assert (VECTOR_CST_NELTS (op1) == count
13877 && TYPE_VECTOR_SUBPARTS (type) == count);
13878
13879 for (unsigned i = 0; i < count; i++)
13880 {
13881 tree elem_type = TREE_TYPE (type);
13882 tree elem0 = VECTOR_CST_ELT (op0, i);
13883 tree elem1 = VECTOR_CST_ELT (op1, i);
13884
13885 tree tem = fold_relational_const (code, elem_type,
13886 elem0, elem1);
13887
13888 if (tem == NULL_TREE)
13889 return NULL_TREE;
13890
13891 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13892 }
13893
13894 return build_vector (type, elts);
13895 }
13896
13897 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13898
13899 To compute GT, swap the arguments and do LT.
13900 To compute GE, do LT and invert the result.
13901 To compute LE, swap the arguments, do LT and invert the result.
13902 To compute NE, do EQ and invert the result.
13903
13904 Therefore, the code below must handle only EQ and LT. */
13905
13906 if (code == LE_EXPR || code == GT_EXPR)
13907 {
13908 std::swap (op0, op1);
13909 code = swap_tree_comparison (code);
13910 }
13911
13912 /* Note that it is safe to invert for real values here because we
13913 have already handled the one case that it matters. */
13914
13915 invert = 0;
13916 if (code == NE_EXPR || code == GE_EXPR)
13917 {
13918 invert = 1;
13919 code = invert_tree_comparison (code, false);
13920 }
13921
13922 /* Compute a result for LT or EQ if args permit;
13923 Otherwise return T. */
13924 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13925 {
13926 if (code == EQ_EXPR)
13927 result = tree_int_cst_equal (op0, op1);
13928 else
13929 result = tree_int_cst_lt (op0, op1);
13930 }
13931 else
13932 return NULL_TREE;
13933
13934 if (invert)
13935 result ^= 1;
13936 return constant_boolean_node (result, type);
13937 }
13938
13939 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13940 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13941 itself. */
13942
13943 tree
13944 fold_build_cleanup_point_expr (tree type, tree expr)
13945 {
13946 /* If the expression does not have side effects then we don't have to wrap
13947 it with a cleanup point expression. */
13948 if (!TREE_SIDE_EFFECTS (expr))
13949 return expr;
13950
13951 /* If the expression is a return, check to see if the expression inside the
13952 return has no side effects or the right hand side of the modify expression
13953 inside the return. If either don't have side effects set we don't need to
13954 wrap the expression in a cleanup point expression. Note we don't check the
13955 left hand side of the modify because it should always be a return decl. */
13956 if (TREE_CODE (expr) == RETURN_EXPR)
13957 {
13958 tree op = TREE_OPERAND (expr, 0);
13959 if (!op || !TREE_SIDE_EFFECTS (op))
13960 return expr;
13961 op = TREE_OPERAND (op, 1);
13962 if (!TREE_SIDE_EFFECTS (op))
13963 return expr;
13964 }
13965
13966 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
13967 }
13968
13969 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13970 of an indirection through OP0, or NULL_TREE if no simplification is
13971 possible. */
13972
13973 tree
13974 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
13975 {
13976 tree sub = op0;
13977 tree subtype;
13978
13979 STRIP_NOPS (sub);
13980 subtype = TREE_TYPE (sub);
13981 if (!POINTER_TYPE_P (subtype)
13982 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
13983 return NULL_TREE;
13984
13985 if (TREE_CODE (sub) == ADDR_EXPR)
13986 {
13987 tree op = TREE_OPERAND (sub, 0);
13988 tree optype = TREE_TYPE (op);
13989 /* *&CONST_DECL -> to the value of the const decl. */
13990 if (TREE_CODE (op) == CONST_DECL)
13991 return DECL_INITIAL (op);
13992 /* *&p => p; make sure to handle *&"str"[cst] here. */
13993 if (type == optype)
13994 {
13995 tree fop = fold_read_from_constant_string (op);
13996 if (fop)
13997 return fop;
13998 else
13999 return op;
14000 }
14001 /* *(foo *)&fooarray => fooarray[0] */
14002 else if (TREE_CODE (optype) == ARRAY_TYPE
14003 && type == TREE_TYPE (optype)
14004 && (!in_gimple_form
14005 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14006 {
14007 tree type_domain = TYPE_DOMAIN (optype);
14008 tree min_val = size_zero_node;
14009 if (type_domain && TYPE_MIN_VALUE (type_domain))
14010 min_val = TYPE_MIN_VALUE (type_domain);
14011 if (in_gimple_form
14012 && TREE_CODE (min_val) != INTEGER_CST)
14013 return NULL_TREE;
14014 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14015 NULL_TREE, NULL_TREE);
14016 }
14017 /* *(foo *)&complexfoo => __real__ complexfoo */
14018 else if (TREE_CODE (optype) == COMPLEX_TYPE
14019 && type == TREE_TYPE (optype))
14020 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14021 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14022 else if (TREE_CODE (optype) == VECTOR_TYPE
14023 && type == TREE_TYPE (optype))
14024 {
14025 tree part_width = TYPE_SIZE (type);
14026 tree index = bitsize_int (0);
14027 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14028 }
14029 }
14030
14031 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14032 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14033 {
14034 tree op00 = TREE_OPERAND (sub, 0);
14035 tree op01 = TREE_OPERAND (sub, 1);
14036
14037 STRIP_NOPS (op00);
14038 if (TREE_CODE (op00) == ADDR_EXPR)
14039 {
14040 tree op00type;
14041 op00 = TREE_OPERAND (op00, 0);
14042 op00type = TREE_TYPE (op00);
14043
14044 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14045 if (TREE_CODE (op00type) == VECTOR_TYPE
14046 && type == TREE_TYPE (op00type))
14047 {
14048 tree part_width = TYPE_SIZE (type);
14049 unsigned HOST_WIDE_INT max_offset
14050 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14051 * TYPE_VECTOR_SUBPARTS (op00type));
14052 if (tree_int_cst_sign_bit (op01) == 0
14053 && compare_tree_int (op01, max_offset) == -1)
14054 {
14055 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
14056 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14057 tree index = bitsize_int (indexi);
14058 return fold_build3_loc (loc,
14059 BIT_FIELD_REF, type, op00,
14060 part_width, index);
14061 }
14062 }
14063 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14064 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14065 && type == TREE_TYPE (op00type))
14066 {
14067 tree size = TYPE_SIZE_UNIT (type);
14068 if (tree_int_cst_equal (size, op01))
14069 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14070 }
14071 /* ((foo *)&fooarray)[1] => fooarray[1] */
14072 else if (TREE_CODE (op00type) == ARRAY_TYPE
14073 && type == TREE_TYPE (op00type))
14074 {
14075 tree type_domain = TYPE_DOMAIN (op00type);
14076 tree min = size_zero_node;
14077 if (type_domain && TYPE_MIN_VALUE (type_domain))
14078 min = TYPE_MIN_VALUE (type_domain);
14079 offset_int off = wi::to_offset (op01);
14080 offset_int el_sz = wi::to_offset (TYPE_SIZE_UNIT (type));
14081 offset_int remainder;
14082 off = wi::divmod_trunc (off, el_sz, SIGNED, &remainder);
14083 if (remainder == 0 && TREE_CODE (min) == INTEGER_CST)
14084 {
14085 off = off + wi::to_offset (min);
14086 op01 = wide_int_to_tree (sizetype, off);
14087 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14088 NULL_TREE, NULL_TREE);
14089 }
14090 }
14091 }
14092 }
14093
14094 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14095 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14096 && type == TREE_TYPE (TREE_TYPE (subtype))
14097 && (!in_gimple_form
14098 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14099 {
14100 tree type_domain;
14101 tree min_val = size_zero_node;
14102 sub = build_fold_indirect_ref_loc (loc, sub);
14103 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14104 if (type_domain && TYPE_MIN_VALUE (type_domain))
14105 min_val = TYPE_MIN_VALUE (type_domain);
14106 if (in_gimple_form
14107 && TREE_CODE (min_val) != INTEGER_CST)
14108 return NULL_TREE;
14109 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14110 NULL_TREE);
14111 }
14112
14113 return NULL_TREE;
14114 }
14115
14116 /* Builds an expression for an indirection through T, simplifying some
14117 cases. */
14118
14119 tree
14120 build_fold_indirect_ref_loc (location_t loc, tree t)
14121 {
14122 tree type = TREE_TYPE (TREE_TYPE (t));
14123 tree sub = fold_indirect_ref_1 (loc, type, t);
14124
14125 if (sub)
14126 return sub;
14127
14128 return build1_loc (loc, INDIRECT_REF, type, t);
14129 }
14130
14131 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14132
14133 tree
14134 fold_indirect_ref_loc (location_t loc, tree t)
14135 {
14136 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14137
14138 if (sub)
14139 return sub;
14140 else
14141 return t;
14142 }
14143
14144 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14145 whose result is ignored. The type of the returned tree need not be
14146 the same as the original expression. */
14147
14148 tree
14149 fold_ignored_result (tree t)
14150 {
14151 if (!TREE_SIDE_EFFECTS (t))
14152 return integer_zero_node;
14153
14154 for (;;)
14155 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14156 {
14157 case tcc_unary:
14158 t = TREE_OPERAND (t, 0);
14159 break;
14160
14161 case tcc_binary:
14162 case tcc_comparison:
14163 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14164 t = TREE_OPERAND (t, 0);
14165 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14166 t = TREE_OPERAND (t, 1);
14167 else
14168 return t;
14169 break;
14170
14171 case tcc_expression:
14172 switch (TREE_CODE (t))
14173 {
14174 case COMPOUND_EXPR:
14175 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14176 return t;
14177 t = TREE_OPERAND (t, 0);
14178 break;
14179
14180 case COND_EXPR:
14181 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14182 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14183 return t;
14184 t = TREE_OPERAND (t, 0);
14185 break;
14186
14187 default:
14188 return t;
14189 }
14190 break;
14191
14192 default:
14193 return t;
14194 }
14195 }
14196
14197 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14198
14199 tree
14200 round_up_loc (location_t loc, tree value, unsigned int divisor)
14201 {
14202 tree div = NULL_TREE;
14203
14204 if (divisor == 1)
14205 return value;
14206
14207 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14208 have to do anything. Only do this when we are not given a const,
14209 because in that case, this check is more expensive than just
14210 doing it. */
14211 if (TREE_CODE (value) != INTEGER_CST)
14212 {
14213 div = build_int_cst (TREE_TYPE (value), divisor);
14214
14215 if (multiple_of_p (TREE_TYPE (value), value, div))
14216 return value;
14217 }
14218
14219 /* If divisor is a power of two, simplify this to bit manipulation. */
14220 if (pow2_or_zerop (divisor))
14221 {
14222 if (TREE_CODE (value) == INTEGER_CST)
14223 {
14224 wide_int val = value;
14225 bool overflow_p;
14226
14227 if ((val & (divisor - 1)) == 0)
14228 return value;
14229
14230 overflow_p = TREE_OVERFLOW (value);
14231 val += divisor - 1;
14232 val &= (int) -divisor;
14233 if (val == 0)
14234 overflow_p = true;
14235
14236 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14237 }
14238 else
14239 {
14240 tree t;
14241
14242 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14243 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14244 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14245 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14246 }
14247 }
14248 else
14249 {
14250 if (!div)
14251 div = build_int_cst (TREE_TYPE (value), divisor);
14252 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14253 value = size_binop_loc (loc, MULT_EXPR, value, div);
14254 }
14255
14256 return value;
14257 }
14258
14259 /* Likewise, but round down. */
14260
14261 tree
14262 round_down_loc (location_t loc, tree value, int divisor)
14263 {
14264 tree div = NULL_TREE;
14265
14266 gcc_assert (divisor > 0);
14267 if (divisor == 1)
14268 return value;
14269
14270 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14271 have to do anything. Only do this when we are not given a const,
14272 because in that case, this check is more expensive than just
14273 doing it. */
14274 if (TREE_CODE (value) != INTEGER_CST)
14275 {
14276 div = build_int_cst (TREE_TYPE (value), divisor);
14277
14278 if (multiple_of_p (TREE_TYPE (value), value, div))
14279 return value;
14280 }
14281
14282 /* If divisor is a power of two, simplify this to bit manipulation. */
14283 if (pow2_or_zerop (divisor))
14284 {
14285 tree t;
14286
14287 t = build_int_cst (TREE_TYPE (value), -divisor);
14288 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14289 }
14290 else
14291 {
14292 if (!div)
14293 div = build_int_cst (TREE_TYPE (value), divisor);
14294 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14295 value = size_binop_loc (loc, MULT_EXPR, value, div);
14296 }
14297
14298 return value;
14299 }
14300
14301 /* Returns the pointer to the base of the object addressed by EXP and
14302 extracts the information about the offset of the access, storing it
14303 to PBITPOS and POFFSET. */
14304
14305 static tree
14306 split_address_to_core_and_offset (tree exp,
14307 HOST_WIDE_INT *pbitpos, tree *poffset)
14308 {
14309 tree core;
14310 machine_mode mode;
14311 int unsignedp, reversep, volatilep;
14312 HOST_WIDE_INT bitsize;
14313 location_t loc = EXPR_LOCATION (exp);
14314
14315 if (TREE_CODE (exp) == ADDR_EXPR)
14316 {
14317 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14318 poffset, &mode, &unsignedp, &reversep,
14319 &volatilep);
14320 core = build_fold_addr_expr_loc (loc, core);
14321 }
14322 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14323 {
14324 core = TREE_OPERAND (exp, 0);
14325 STRIP_NOPS (core);
14326 *pbitpos = 0;
14327 *poffset = TREE_OPERAND (exp, 1);
14328 if (TREE_CODE (*poffset) == INTEGER_CST)
14329 {
14330 offset_int tem = wi::sext (wi::to_offset (*poffset),
14331 TYPE_PRECISION (TREE_TYPE (*poffset)));
14332 tem <<= LOG2_BITS_PER_UNIT;
14333 if (wi::fits_shwi_p (tem))
14334 {
14335 *pbitpos = tem.to_shwi ();
14336 *poffset = NULL_TREE;
14337 }
14338 }
14339 }
14340 else
14341 {
14342 core = exp;
14343 *pbitpos = 0;
14344 *poffset = NULL_TREE;
14345 }
14346
14347 return core;
14348 }
14349
14350 /* Returns true if addresses of E1 and E2 differ by a constant, false
14351 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14352
14353 bool
14354 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14355 {
14356 tree core1, core2;
14357 HOST_WIDE_INT bitpos1, bitpos2;
14358 tree toffset1, toffset2, tdiff, type;
14359
14360 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14361 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14362
14363 if (bitpos1 % BITS_PER_UNIT != 0
14364 || bitpos2 % BITS_PER_UNIT != 0
14365 || !operand_equal_p (core1, core2, 0))
14366 return false;
14367
14368 if (toffset1 && toffset2)
14369 {
14370 type = TREE_TYPE (toffset1);
14371 if (type != TREE_TYPE (toffset2))
14372 toffset2 = fold_convert (type, toffset2);
14373
14374 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14375 if (!cst_and_fits_in_hwi (tdiff))
14376 return false;
14377
14378 *diff = int_cst_value (tdiff);
14379 }
14380 else if (toffset1 || toffset2)
14381 {
14382 /* If only one of the offsets is non-constant, the difference cannot
14383 be a constant. */
14384 return false;
14385 }
14386 else
14387 *diff = 0;
14388
14389 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14390 return true;
14391 }
14392
14393 /* Return OFF converted to a pointer offset type suitable as offset for
14394 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14395 tree
14396 convert_to_ptrofftype_loc (location_t loc, tree off)
14397 {
14398 return fold_convert_loc (loc, sizetype, off);
14399 }
14400
14401 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14402 tree
14403 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14404 {
14405 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14406 ptr, convert_to_ptrofftype_loc (loc, off));
14407 }
14408
14409 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14410 tree
14411 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14412 {
14413 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14414 ptr, size_int (off));
14415 }
14416
14417 /* Return a char pointer for a C string if it is a string constant
14418 or sum of string constant and integer constant. We only support
14419 string constants properly terminated with '\0' character.
14420 If STRLEN is a valid pointer, length (including terminating character)
14421 of returned string is stored to the argument. */
14422
14423 const char *
14424 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen)
14425 {
14426 tree offset_node;
14427
14428 if (strlen)
14429 *strlen = 0;
14430
14431 src = string_constant (src, &offset_node);
14432 if (src == 0)
14433 return NULL;
14434
14435 unsigned HOST_WIDE_INT offset = 0;
14436 if (offset_node != NULL_TREE)
14437 {
14438 if (!tree_fits_uhwi_p (offset_node))
14439 return NULL;
14440 else
14441 offset = tree_to_uhwi (offset_node);
14442 }
14443
14444 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14445 const char *string = TREE_STRING_POINTER (src);
14446
14447 /* Support only properly null-terminated strings. */
14448 if (string_length == 0
14449 || string[string_length - 1] != '\0'
14450 || offset >= string_length)
14451 return NULL;
14452
14453 if (strlen)
14454 *strlen = string_length - offset;
14455 return string + offset;
14456 }
14457
14458 #if CHECKING_P
14459
14460 namespace selftest {
14461
14462 /* Helper functions for writing tests of folding trees. */
14463
14464 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14465
14466 static void
14467 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14468 tree constant)
14469 {
14470 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14471 }
14472
14473 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14474 wrapping WRAPPED_EXPR. */
14475
14476 static void
14477 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14478 tree wrapped_expr)
14479 {
14480 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14481 ASSERT_NE (wrapped_expr, result);
14482 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14483 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14484 }
14485
14486 /* Verify that various arithmetic binary operations are folded
14487 correctly. */
14488
14489 static void
14490 test_arithmetic_folding ()
14491 {
14492 tree type = integer_type_node;
14493 tree x = create_tmp_var_raw (type, "x");
14494 tree zero = build_zero_cst (type);
14495 tree one = build_int_cst (type, 1);
14496
14497 /* Addition. */
14498 /* 1 <-- (0 + 1) */
14499 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14500 one);
14501 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14502 one);
14503
14504 /* (nonlvalue)x <-- (x + 0) */
14505 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14506 x);
14507
14508 /* Subtraction. */
14509 /* 0 <-- (x - x) */
14510 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14511 zero);
14512 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14513 x);
14514
14515 /* Multiplication. */
14516 /* 0 <-- (x * 0) */
14517 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14518 zero);
14519
14520 /* (nonlvalue)x <-- (x * 1) */
14521 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14522 x);
14523 }
14524
14525 /* Verify that various binary operations on vectors are folded
14526 correctly. */
14527
14528 static void
14529 test_vector_folding ()
14530 {
14531 tree inner_type = integer_type_node;
14532 tree type = build_vector_type (inner_type, 4);
14533 tree zero = build_zero_cst (type);
14534 tree one = build_one_cst (type);
14535
14536 /* Verify equality tests that return a scalar boolean result. */
14537 tree res_type = boolean_type_node;
14538 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14539 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14540 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14541 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14542 }
14543
14544 /* Run all of the selftests within this file. */
14545
14546 void
14547 fold_const_c_tests ()
14548 {
14549 test_arithmetic_folding ();
14550 test_vector_folding ();
14551 }
14552
14553 } // namespace selftest
14554
14555 #endif /* CHECKING_P */