]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fold-const.c
Update copyright years.
[thirdparty/gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
27
28 /* The entry points in this file are fold, size_int_wide and size_binop.
29
30 fold takes a tree as argument and returns a simplified tree.
31
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
35
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
38
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "tree-into-ssa.h"
75 #include "md5.h"
76 #include "case-cfn-macros.h"
77 #include "stringpool.h"
78 #include "tree-vrp.h"
79 #include "tree-ssanames.h"
80 #include "selftest.h"
81 #include "stringpool.h"
82 #include "attribs.h"
83 #include "tree-vector-builder.h"
84 #include "vec-perm-indices.h"
85
86 /* Nonzero if we are folding constants inside an initializer; zero
87 otherwise. */
88 int folding_initializer = 0;
89
90 /* The following constants represent a bit based encoding of GCC's
91 comparison operators. This encoding simplifies transformations
92 on relational comparison operators, such as AND and OR. */
93 enum comparison_code {
94 COMPCODE_FALSE = 0,
95 COMPCODE_LT = 1,
96 COMPCODE_EQ = 2,
97 COMPCODE_LE = 3,
98 COMPCODE_GT = 4,
99 COMPCODE_LTGT = 5,
100 COMPCODE_GE = 6,
101 COMPCODE_ORD = 7,
102 COMPCODE_UNORD = 8,
103 COMPCODE_UNLT = 9,
104 COMPCODE_UNEQ = 10,
105 COMPCODE_UNLE = 11,
106 COMPCODE_UNGT = 12,
107 COMPCODE_NE = 13,
108 COMPCODE_UNGE = 14,
109 COMPCODE_TRUE = 15
110 };
111
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
115 static enum comparison_code comparison_to_compcode (enum tree_code);
116 static enum tree_code compcode_to_comparison (enum comparison_code);
117 static bool twoval_comparison_p (tree, tree *, tree *);
118 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
119 static tree optimize_bit_field_compare (location_t, enum tree_code,
120 tree, tree, tree);
121 static bool simple_operand_p (const_tree);
122 static bool simple_operand_p_2 (tree);
123 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
124 static tree range_predecessor (tree);
125 static tree range_successor (tree);
126 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
127 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
128 static tree unextend (tree, int, int, tree);
129 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
130 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
131 static tree fold_binary_op_with_conditional_arg (location_t,
132 enum tree_code, tree,
133 tree, tree,
134 tree, tree, int);
135 static tree fold_negate_const (tree, tree);
136 static tree fold_not_const (const_tree, tree);
137 static tree fold_relational_const (enum tree_code, tree, tree, tree);
138 static tree fold_convert_const (enum tree_code, tree, tree);
139 static tree fold_view_convert_expr (tree, tree);
140 static tree fold_negate_expr (location_t, tree);
141
142
143 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
144 Otherwise, return LOC. */
145
146 static location_t
147 expr_location_or (tree t, location_t loc)
148 {
149 location_t tloc = EXPR_LOCATION (t);
150 return tloc == UNKNOWN_LOCATION ? loc : tloc;
151 }
152
153 /* Similar to protected_set_expr_location, but never modify x in place,
154 if location can and needs to be set, unshare it. */
155
156 static inline tree
157 protected_set_expr_location_unshare (tree x, location_t loc)
158 {
159 if (CAN_HAVE_LOCATION_P (x)
160 && EXPR_LOCATION (x) != loc
161 && !(TREE_CODE (x) == SAVE_EXPR
162 || TREE_CODE (x) == TARGET_EXPR
163 || TREE_CODE (x) == BIND_EXPR))
164 {
165 x = copy_node (x);
166 SET_EXPR_LOCATION (x, loc);
167 }
168 return x;
169 }
170 \f
171 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
172 division and returns the quotient. Otherwise returns
173 NULL_TREE. */
174
175 tree
176 div_if_zero_remainder (const_tree arg1, const_tree arg2)
177 {
178 widest_int quo;
179
180 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
181 SIGNED, &quo))
182 return wide_int_to_tree (TREE_TYPE (arg1), quo);
183
184 return NULL_TREE;
185 }
186 \f
187 /* This is nonzero if we should defer warnings about undefined
188 overflow. This facility exists because these warnings are a
189 special case. The code to estimate loop iterations does not want
190 to issue any warnings, since it works with expressions which do not
191 occur in user code. Various bits of cleanup code call fold(), but
192 only use the result if it has certain characteristics (e.g., is a
193 constant); that code only wants to issue a warning if the result is
194 used. */
195
196 static int fold_deferring_overflow_warnings;
197
198 /* If a warning about undefined overflow is deferred, this is the
199 warning. Note that this may cause us to turn two warnings into
200 one, but that is fine since it is sufficient to only give one
201 warning per expression. */
202
203 static const char* fold_deferred_overflow_warning;
204
205 /* If a warning about undefined overflow is deferred, this is the
206 level at which the warning should be emitted. */
207
208 static enum warn_strict_overflow_code fold_deferred_overflow_code;
209
210 /* Start deferring overflow warnings. We could use a stack here to
211 permit nested calls, but at present it is not necessary. */
212
213 void
214 fold_defer_overflow_warnings (void)
215 {
216 ++fold_deferring_overflow_warnings;
217 }
218
219 /* Stop deferring overflow warnings. If there is a pending warning,
220 and ISSUE is true, then issue the warning if appropriate. STMT is
221 the statement with which the warning should be associated (used for
222 location information); STMT may be NULL. CODE is the level of the
223 warning--a warn_strict_overflow_code value. This function will use
224 the smaller of CODE and the deferred code when deciding whether to
225 issue the warning. CODE may be zero to mean to always use the
226 deferred code. */
227
228 void
229 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
230 {
231 const char *warnmsg;
232 location_t locus;
233
234 gcc_assert (fold_deferring_overflow_warnings > 0);
235 --fold_deferring_overflow_warnings;
236 if (fold_deferring_overflow_warnings > 0)
237 {
238 if (fold_deferred_overflow_warning != NULL
239 && code != 0
240 && code < (int) fold_deferred_overflow_code)
241 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
242 return;
243 }
244
245 warnmsg = fold_deferred_overflow_warning;
246 fold_deferred_overflow_warning = NULL;
247
248 if (!issue || warnmsg == NULL)
249 return;
250
251 if (gimple_no_warning_p (stmt))
252 return;
253
254 /* Use the smallest code level when deciding to issue the
255 warning. */
256 if (code == 0 || code > (int) fold_deferred_overflow_code)
257 code = fold_deferred_overflow_code;
258
259 if (!issue_strict_overflow_warning (code))
260 return;
261
262 if (stmt == NULL)
263 locus = input_location;
264 else
265 locus = gimple_location (stmt);
266 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
267 }
268
269 /* Stop deferring overflow warnings, ignoring any deferred
270 warnings. */
271
272 void
273 fold_undefer_and_ignore_overflow_warnings (void)
274 {
275 fold_undefer_overflow_warnings (false, NULL, 0);
276 }
277
278 /* Whether we are deferring overflow warnings. */
279
280 bool
281 fold_deferring_overflow_warnings_p (void)
282 {
283 return fold_deferring_overflow_warnings > 0;
284 }
285
286 /* This is called when we fold something based on the fact that signed
287 overflow is undefined. */
288
289 void
290 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
291 {
292 if (fold_deferring_overflow_warnings > 0)
293 {
294 if (fold_deferred_overflow_warning == NULL
295 || wc < fold_deferred_overflow_code)
296 {
297 fold_deferred_overflow_warning = gmsgid;
298 fold_deferred_overflow_code = wc;
299 }
300 }
301 else if (issue_strict_overflow_warning (wc))
302 warning (OPT_Wstrict_overflow, gmsgid);
303 }
304 \f
305 /* Return true if the built-in mathematical function specified by CODE
306 is odd, i.e. -f(x) == f(-x). */
307
308 bool
309 negate_mathfn_p (combined_fn fn)
310 {
311 switch (fn)
312 {
313 CASE_CFN_ASIN:
314 CASE_CFN_ASINH:
315 CASE_CFN_ATAN:
316 CASE_CFN_ATANH:
317 CASE_CFN_CASIN:
318 CASE_CFN_CASINH:
319 CASE_CFN_CATAN:
320 CASE_CFN_CATANH:
321 CASE_CFN_CBRT:
322 CASE_CFN_CPROJ:
323 CASE_CFN_CSIN:
324 CASE_CFN_CSINH:
325 CASE_CFN_CTAN:
326 CASE_CFN_CTANH:
327 CASE_CFN_ERF:
328 CASE_CFN_LLROUND:
329 CASE_CFN_LROUND:
330 CASE_CFN_ROUND:
331 CASE_CFN_ROUNDEVEN:
332 CASE_CFN_ROUNDEVEN_FN:
333 CASE_CFN_SIN:
334 CASE_CFN_SINH:
335 CASE_CFN_TAN:
336 CASE_CFN_TANH:
337 CASE_CFN_TRUNC:
338 return true;
339
340 CASE_CFN_LLRINT:
341 CASE_CFN_LRINT:
342 CASE_CFN_NEARBYINT:
343 CASE_CFN_RINT:
344 return !flag_rounding_math;
345
346 default:
347 break;
348 }
349 return false;
350 }
351
352 /* Check whether we may negate an integer constant T without causing
353 overflow. */
354
355 bool
356 may_negate_without_overflow_p (const_tree t)
357 {
358 tree type;
359
360 gcc_assert (TREE_CODE (t) == INTEGER_CST);
361
362 type = TREE_TYPE (t);
363 if (TYPE_UNSIGNED (type))
364 return false;
365
366 return !wi::only_sign_bit_p (wi::to_wide (t));
367 }
368
369 /* Determine whether an expression T can be cheaply negated using
370 the function negate_expr without introducing undefined overflow. */
371
372 static bool
373 negate_expr_p (tree t)
374 {
375 tree type;
376
377 if (t == 0)
378 return false;
379
380 type = TREE_TYPE (t);
381
382 STRIP_SIGN_NOPS (t);
383 switch (TREE_CODE (t))
384 {
385 case INTEGER_CST:
386 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
387 return true;
388
389 /* Check that -CST will not overflow type. */
390 return may_negate_without_overflow_p (t);
391 case BIT_NOT_EXPR:
392 return (INTEGRAL_TYPE_P (type)
393 && TYPE_OVERFLOW_WRAPS (type));
394
395 case FIXED_CST:
396 return true;
397
398 case NEGATE_EXPR:
399 return !TYPE_OVERFLOW_SANITIZED (type);
400
401 case REAL_CST:
402 /* We want to canonicalize to positive real constants. Pretend
403 that only negative ones can be easily negated. */
404 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
405
406 case COMPLEX_CST:
407 return negate_expr_p (TREE_REALPART (t))
408 && negate_expr_p (TREE_IMAGPART (t));
409
410 case VECTOR_CST:
411 {
412 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
413 return true;
414
415 /* Steps don't prevent negation. */
416 unsigned int count = vector_cst_encoded_nelts (t);
417 for (unsigned int i = 0; i < count; ++i)
418 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i)))
419 return false;
420
421 return true;
422 }
423
424 case COMPLEX_EXPR:
425 return negate_expr_p (TREE_OPERAND (t, 0))
426 && negate_expr_p (TREE_OPERAND (t, 1));
427
428 case CONJ_EXPR:
429 return negate_expr_p (TREE_OPERAND (t, 0));
430
431 case PLUS_EXPR:
432 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
433 || HONOR_SIGNED_ZEROS (element_mode (type))
434 || (ANY_INTEGRAL_TYPE_P (type)
435 && ! TYPE_OVERFLOW_WRAPS (type)))
436 return false;
437 /* -(A + B) -> (-B) - A. */
438 if (negate_expr_p (TREE_OPERAND (t, 1)))
439 return true;
440 /* -(A + B) -> (-A) - B. */
441 return negate_expr_p (TREE_OPERAND (t, 0));
442
443 case MINUS_EXPR:
444 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
445 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
446 && !HONOR_SIGNED_ZEROS (element_mode (type))
447 && (! ANY_INTEGRAL_TYPE_P (type)
448 || TYPE_OVERFLOW_WRAPS (type));
449
450 case MULT_EXPR:
451 if (TYPE_UNSIGNED (type))
452 break;
453 /* INT_MIN/n * n doesn't overflow while negating one operand it does
454 if n is a (negative) power of two. */
455 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
456 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
457 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
458 && (wi::popcount
459 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
460 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
461 && (wi::popcount
462 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
463 break;
464
465 /* Fall through. */
466
467 case RDIV_EXPR:
468 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
469 return negate_expr_p (TREE_OPERAND (t, 1))
470 || negate_expr_p (TREE_OPERAND (t, 0));
471 break;
472
473 case TRUNC_DIV_EXPR:
474 case ROUND_DIV_EXPR:
475 case EXACT_DIV_EXPR:
476 if (TYPE_UNSIGNED (type))
477 break;
478 /* In general we can't negate A in A / B, because if A is INT_MIN and
479 B is not 1 we change the sign of the result. */
480 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
481 && negate_expr_p (TREE_OPERAND (t, 0)))
482 return true;
483 /* In general we can't negate B in A / B, because if A is INT_MIN and
484 B is 1, we may turn this into INT_MIN / -1 which is undefined
485 and actually traps on some architectures. */
486 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
487 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
488 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
489 && ! integer_onep (TREE_OPERAND (t, 1))))
490 return negate_expr_p (TREE_OPERAND (t, 1));
491 break;
492
493 case NOP_EXPR:
494 /* Negate -((double)float) as (double)(-float). */
495 if (TREE_CODE (type) == REAL_TYPE)
496 {
497 tree tem = strip_float_extensions (t);
498 if (tem != t)
499 return negate_expr_p (tem);
500 }
501 break;
502
503 case CALL_EXPR:
504 /* Negate -f(x) as f(-x). */
505 if (negate_mathfn_p (get_call_combined_fn (t)))
506 return negate_expr_p (CALL_EXPR_ARG (t, 0));
507 break;
508
509 case RSHIFT_EXPR:
510 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
511 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
512 {
513 tree op1 = TREE_OPERAND (t, 1);
514 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
515 return true;
516 }
517 break;
518
519 default:
520 break;
521 }
522 return false;
523 }
524
525 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
526 simplification is possible.
527 If negate_expr_p would return true for T, NULL_TREE will never be
528 returned. */
529
530 static tree
531 fold_negate_expr_1 (location_t loc, tree t)
532 {
533 tree type = TREE_TYPE (t);
534 tree tem;
535
536 switch (TREE_CODE (t))
537 {
538 /* Convert - (~A) to A + 1. */
539 case BIT_NOT_EXPR:
540 if (INTEGRAL_TYPE_P (type))
541 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
542 build_one_cst (type));
543 break;
544
545 case INTEGER_CST:
546 tem = fold_negate_const (t, type);
547 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
548 || (ANY_INTEGRAL_TYPE_P (type)
549 && !TYPE_OVERFLOW_TRAPS (type)
550 && TYPE_OVERFLOW_WRAPS (type))
551 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
552 return tem;
553 break;
554
555 case POLY_INT_CST:
556 case REAL_CST:
557 case FIXED_CST:
558 tem = fold_negate_const (t, type);
559 return tem;
560
561 case COMPLEX_CST:
562 {
563 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
564 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
565 if (rpart && ipart)
566 return build_complex (type, rpart, ipart);
567 }
568 break;
569
570 case VECTOR_CST:
571 {
572 tree_vector_builder elts;
573 elts.new_unary_operation (type, t, true);
574 unsigned int count = elts.encoded_nelts ();
575 for (unsigned int i = 0; i < count; ++i)
576 {
577 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
578 if (elt == NULL_TREE)
579 return NULL_TREE;
580 elts.quick_push (elt);
581 }
582
583 return elts.build ();
584 }
585
586 case COMPLEX_EXPR:
587 if (negate_expr_p (t))
588 return fold_build2_loc (loc, COMPLEX_EXPR, type,
589 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
590 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
591 break;
592
593 case CONJ_EXPR:
594 if (negate_expr_p (t))
595 return fold_build1_loc (loc, CONJ_EXPR, type,
596 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
597 break;
598
599 case NEGATE_EXPR:
600 if (!TYPE_OVERFLOW_SANITIZED (type))
601 return TREE_OPERAND (t, 0);
602 break;
603
604 case PLUS_EXPR:
605 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
606 && !HONOR_SIGNED_ZEROS (element_mode (type)))
607 {
608 /* -(A + B) -> (-B) - A. */
609 if (negate_expr_p (TREE_OPERAND (t, 1)))
610 {
611 tem = negate_expr (TREE_OPERAND (t, 1));
612 return fold_build2_loc (loc, MINUS_EXPR, type,
613 tem, TREE_OPERAND (t, 0));
614 }
615
616 /* -(A + B) -> (-A) - B. */
617 if (negate_expr_p (TREE_OPERAND (t, 0)))
618 {
619 tem = negate_expr (TREE_OPERAND (t, 0));
620 return fold_build2_loc (loc, MINUS_EXPR, type,
621 tem, TREE_OPERAND (t, 1));
622 }
623 }
624 break;
625
626 case MINUS_EXPR:
627 /* - (A - B) -> B - A */
628 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
629 && !HONOR_SIGNED_ZEROS (element_mode (type)))
630 return fold_build2_loc (loc, MINUS_EXPR, type,
631 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
632 break;
633
634 case MULT_EXPR:
635 if (TYPE_UNSIGNED (type))
636 break;
637
638 /* Fall through. */
639
640 case RDIV_EXPR:
641 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
642 {
643 tem = TREE_OPERAND (t, 1);
644 if (negate_expr_p (tem))
645 return fold_build2_loc (loc, TREE_CODE (t), type,
646 TREE_OPERAND (t, 0), negate_expr (tem));
647 tem = TREE_OPERAND (t, 0);
648 if (negate_expr_p (tem))
649 return fold_build2_loc (loc, TREE_CODE (t), type,
650 negate_expr (tem), TREE_OPERAND (t, 1));
651 }
652 break;
653
654 case TRUNC_DIV_EXPR:
655 case ROUND_DIV_EXPR:
656 case EXACT_DIV_EXPR:
657 if (TYPE_UNSIGNED (type))
658 break;
659 /* In general we can't negate A in A / B, because if A is INT_MIN and
660 B is not 1 we change the sign of the result. */
661 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
662 && negate_expr_p (TREE_OPERAND (t, 0)))
663 return fold_build2_loc (loc, TREE_CODE (t), type,
664 negate_expr (TREE_OPERAND (t, 0)),
665 TREE_OPERAND (t, 1));
666 /* In general we can't negate B in A / B, because if A is INT_MIN and
667 B is 1, we may turn this into INT_MIN / -1 which is undefined
668 and actually traps on some architectures. */
669 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
670 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
671 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
672 && ! integer_onep (TREE_OPERAND (t, 1))))
673 && negate_expr_p (TREE_OPERAND (t, 1)))
674 return fold_build2_loc (loc, TREE_CODE (t), type,
675 TREE_OPERAND (t, 0),
676 negate_expr (TREE_OPERAND (t, 1)));
677 break;
678
679 case NOP_EXPR:
680 /* Convert -((double)float) into (double)(-float). */
681 if (TREE_CODE (type) == REAL_TYPE)
682 {
683 tem = strip_float_extensions (t);
684 if (tem != t && negate_expr_p (tem))
685 return fold_convert_loc (loc, type, negate_expr (tem));
686 }
687 break;
688
689 case CALL_EXPR:
690 /* Negate -f(x) as f(-x). */
691 if (negate_mathfn_p (get_call_combined_fn (t))
692 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
693 {
694 tree fndecl, arg;
695
696 fndecl = get_callee_fndecl (t);
697 arg = negate_expr (CALL_EXPR_ARG (t, 0));
698 return build_call_expr_loc (loc, fndecl, 1, arg);
699 }
700 break;
701
702 case RSHIFT_EXPR:
703 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
704 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
705 {
706 tree op1 = TREE_OPERAND (t, 1);
707 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
708 {
709 tree ntype = TYPE_UNSIGNED (type)
710 ? signed_type_for (type)
711 : unsigned_type_for (type);
712 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
713 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
714 return fold_convert_loc (loc, type, temp);
715 }
716 }
717 break;
718
719 default:
720 break;
721 }
722
723 return NULL_TREE;
724 }
725
726 /* A wrapper for fold_negate_expr_1. */
727
728 static tree
729 fold_negate_expr (location_t loc, tree t)
730 {
731 tree type = TREE_TYPE (t);
732 STRIP_SIGN_NOPS (t);
733 tree tem = fold_negate_expr_1 (loc, t);
734 if (tem == NULL_TREE)
735 return NULL_TREE;
736 return fold_convert_loc (loc, type, tem);
737 }
738
739 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
740 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
741 return NULL_TREE. */
742
743 static tree
744 negate_expr (tree t)
745 {
746 tree type, tem;
747 location_t loc;
748
749 if (t == NULL_TREE)
750 return NULL_TREE;
751
752 loc = EXPR_LOCATION (t);
753 type = TREE_TYPE (t);
754 STRIP_SIGN_NOPS (t);
755
756 tem = fold_negate_expr (loc, t);
757 if (!tem)
758 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
759 return fold_convert_loc (loc, type, tem);
760 }
761 \f
762 /* Split a tree IN into a constant, literal and variable parts that could be
763 combined with CODE to make IN. "constant" means an expression with
764 TREE_CONSTANT but that isn't an actual constant. CODE must be a
765 commutative arithmetic operation. Store the constant part into *CONP,
766 the literal in *LITP and return the variable part. If a part isn't
767 present, set it to null. If the tree does not decompose in this way,
768 return the entire tree as the variable part and the other parts as null.
769
770 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
771 case, we negate an operand that was subtracted. Except if it is a
772 literal for which we use *MINUS_LITP instead.
773
774 If NEGATE_P is true, we are negating all of IN, again except a literal
775 for which we use *MINUS_LITP instead. If a variable part is of pointer
776 type, it is negated after converting to TYPE. This prevents us from
777 generating illegal MINUS pointer expression. LOC is the location of
778 the converted variable part.
779
780 If IN is itself a literal or constant, return it as appropriate.
781
782 Note that we do not guarantee that any of the three values will be the
783 same type as IN, but they will have the same signedness and mode. */
784
785 static tree
786 split_tree (tree in, tree type, enum tree_code code,
787 tree *minus_varp, tree *conp, tree *minus_conp,
788 tree *litp, tree *minus_litp, int negate_p)
789 {
790 tree var = 0;
791 *minus_varp = 0;
792 *conp = 0;
793 *minus_conp = 0;
794 *litp = 0;
795 *minus_litp = 0;
796
797 /* Strip any conversions that don't change the machine mode or signedness. */
798 STRIP_SIGN_NOPS (in);
799
800 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
801 || TREE_CODE (in) == FIXED_CST)
802 *litp = in;
803 else if (TREE_CODE (in) == code
804 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
805 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
806 /* We can associate addition and subtraction together (even
807 though the C standard doesn't say so) for integers because
808 the value is not affected. For reals, the value might be
809 affected, so we can't. */
810 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
811 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
812 || (code == MINUS_EXPR
813 && (TREE_CODE (in) == PLUS_EXPR
814 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
815 {
816 tree op0 = TREE_OPERAND (in, 0);
817 tree op1 = TREE_OPERAND (in, 1);
818 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
819 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
820
821 /* First see if either of the operands is a literal, then a constant. */
822 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
823 || TREE_CODE (op0) == FIXED_CST)
824 *litp = op0, op0 = 0;
825 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
826 || TREE_CODE (op1) == FIXED_CST)
827 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
828
829 if (op0 != 0 && TREE_CONSTANT (op0))
830 *conp = op0, op0 = 0;
831 else if (op1 != 0 && TREE_CONSTANT (op1))
832 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
833
834 /* If we haven't dealt with either operand, this is not a case we can
835 decompose. Otherwise, VAR is either of the ones remaining, if any. */
836 if (op0 != 0 && op1 != 0)
837 var = in;
838 else if (op0 != 0)
839 var = op0;
840 else
841 var = op1, neg_var_p = neg1_p;
842
843 /* Now do any needed negations. */
844 if (neg_litp_p)
845 *minus_litp = *litp, *litp = 0;
846 if (neg_conp_p && *conp)
847 *minus_conp = *conp, *conp = 0;
848 if (neg_var_p && var)
849 *minus_varp = var, var = 0;
850 }
851 else if (TREE_CONSTANT (in))
852 *conp = in;
853 else if (TREE_CODE (in) == BIT_NOT_EXPR
854 && code == PLUS_EXPR)
855 {
856 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
857 when IN is constant. */
858 *litp = build_minus_one_cst (type);
859 *minus_varp = TREE_OPERAND (in, 0);
860 }
861 else
862 var = in;
863
864 if (negate_p)
865 {
866 if (*litp)
867 *minus_litp = *litp, *litp = 0;
868 else if (*minus_litp)
869 *litp = *minus_litp, *minus_litp = 0;
870 if (*conp)
871 *minus_conp = *conp, *conp = 0;
872 else if (*minus_conp)
873 *conp = *minus_conp, *minus_conp = 0;
874 if (var)
875 *minus_varp = var, var = 0;
876 else if (*minus_varp)
877 var = *minus_varp, *minus_varp = 0;
878 }
879
880 if (*litp
881 && TREE_OVERFLOW_P (*litp))
882 *litp = drop_tree_overflow (*litp);
883 if (*minus_litp
884 && TREE_OVERFLOW_P (*minus_litp))
885 *minus_litp = drop_tree_overflow (*minus_litp);
886
887 return var;
888 }
889
890 /* Re-associate trees split by the above function. T1 and T2 are
891 either expressions to associate or null. Return the new
892 expression, if any. LOC is the location of the new expression. If
893 we build an operation, do it in TYPE and with CODE. */
894
895 static tree
896 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
897 {
898 if (t1 == 0)
899 {
900 gcc_assert (t2 == 0 || code != MINUS_EXPR);
901 return t2;
902 }
903 else if (t2 == 0)
904 return t1;
905
906 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
907 try to fold this since we will have infinite recursion. But do
908 deal with any NEGATE_EXPRs. */
909 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
910 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
911 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
912 {
913 if (code == PLUS_EXPR)
914 {
915 if (TREE_CODE (t1) == NEGATE_EXPR)
916 return build2_loc (loc, MINUS_EXPR, type,
917 fold_convert_loc (loc, type, t2),
918 fold_convert_loc (loc, type,
919 TREE_OPERAND (t1, 0)));
920 else if (TREE_CODE (t2) == NEGATE_EXPR)
921 return build2_loc (loc, MINUS_EXPR, type,
922 fold_convert_loc (loc, type, t1),
923 fold_convert_loc (loc, type,
924 TREE_OPERAND (t2, 0)));
925 else if (integer_zerop (t2))
926 return fold_convert_loc (loc, type, t1);
927 }
928 else if (code == MINUS_EXPR)
929 {
930 if (integer_zerop (t2))
931 return fold_convert_loc (loc, type, t1);
932 }
933
934 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
935 fold_convert_loc (loc, type, t2));
936 }
937
938 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
939 fold_convert_loc (loc, type, t2));
940 }
941 \f
942 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
943 for use in int_const_binop, size_binop and size_diffop. */
944
945 static bool
946 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
947 {
948 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
949 return false;
950 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
951 return false;
952
953 switch (code)
954 {
955 case LSHIFT_EXPR:
956 case RSHIFT_EXPR:
957 case LROTATE_EXPR:
958 case RROTATE_EXPR:
959 return true;
960
961 default:
962 break;
963 }
964
965 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
966 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
967 && TYPE_MODE (type1) == TYPE_MODE (type2);
968 }
969
970 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
971 a new constant in RES. Return FALSE if we don't know how to
972 evaluate CODE at compile-time. */
973
974 bool
975 wide_int_binop (wide_int &res,
976 enum tree_code code, const wide_int &arg1, const wide_int &arg2,
977 signop sign, wi::overflow_type *overflow)
978 {
979 wide_int tmp;
980 *overflow = wi::OVF_NONE;
981 switch (code)
982 {
983 case BIT_IOR_EXPR:
984 res = wi::bit_or (arg1, arg2);
985 break;
986
987 case BIT_XOR_EXPR:
988 res = wi::bit_xor (arg1, arg2);
989 break;
990
991 case BIT_AND_EXPR:
992 res = wi::bit_and (arg1, arg2);
993 break;
994
995 case RSHIFT_EXPR:
996 case LSHIFT_EXPR:
997 if (wi::neg_p (arg2))
998 {
999 tmp = -arg2;
1000 if (code == RSHIFT_EXPR)
1001 code = LSHIFT_EXPR;
1002 else
1003 code = RSHIFT_EXPR;
1004 }
1005 else
1006 tmp = arg2;
1007
1008 if (code == RSHIFT_EXPR)
1009 /* It's unclear from the C standard whether shifts can overflow.
1010 The following code ignores overflow; perhaps a C standard
1011 interpretation ruling is needed. */
1012 res = wi::rshift (arg1, tmp, sign);
1013 else
1014 res = wi::lshift (arg1, tmp);
1015 break;
1016
1017 case RROTATE_EXPR:
1018 case LROTATE_EXPR:
1019 if (wi::neg_p (arg2))
1020 {
1021 tmp = -arg2;
1022 if (code == RROTATE_EXPR)
1023 code = LROTATE_EXPR;
1024 else
1025 code = RROTATE_EXPR;
1026 }
1027 else
1028 tmp = arg2;
1029
1030 if (code == RROTATE_EXPR)
1031 res = wi::rrotate (arg1, tmp);
1032 else
1033 res = wi::lrotate (arg1, tmp);
1034 break;
1035
1036 case PLUS_EXPR:
1037 res = wi::add (arg1, arg2, sign, overflow);
1038 break;
1039
1040 case MINUS_EXPR:
1041 res = wi::sub (arg1, arg2, sign, overflow);
1042 break;
1043
1044 case MULT_EXPR:
1045 res = wi::mul (arg1, arg2, sign, overflow);
1046 break;
1047
1048 case MULT_HIGHPART_EXPR:
1049 res = wi::mul_high (arg1, arg2, sign);
1050 break;
1051
1052 case TRUNC_DIV_EXPR:
1053 case EXACT_DIV_EXPR:
1054 if (arg2 == 0)
1055 return false;
1056 res = wi::div_trunc (arg1, arg2, sign, overflow);
1057 break;
1058
1059 case FLOOR_DIV_EXPR:
1060 if (arg2 == 0)
1061 return false;
1062 res = wi::div_floor (arg1, arg2, sign, overflow);
1063 break;
1064
1065 case CEIL_DIV_EXPR:
1066 if (arg2 == 0)
1067 return false;
1068 res = wi::div_ceil (arg1, arg2, sign, overflow);
1069 break;
1070
1071 case ROUND_DIV_EXPR:
1072 if (arg2 == 0)
1073 return false;
1074 res = wi::div_round (arg1, arg2, sign, overflow);
1075 break;
1076
1077 case TRUNC_MOD_EXPR:
1078 if (arg2 == 0)
1079 return false;
1080 res = wi::mod_trunc (arg1, arg2, sign, overflow);
1081 break;
1082
1083 case FLOOR_MOD_EXPR:
1084 if (arg2 == 0)
1085 return false;
1086 res = wi::mod_floor (arg1, arg2, sign, overflow);
1087 break;
1088
1089 case CEIL_MOD_EXPR:
1090 if (arg2 == 0)
1091 return false;
1092 res = wi::mod_ceil (arg1, arg2, sign, overflow);
1093 break;
1094
1095 case ROUND_MOD_EXPR:
1096 if (arg2 == 0)
1097 return false;
1098 res = wi::mod_round (arg1, arg2, sign, overflow);
1099 break;
1100
1101 case MIN_EXPR:
1102 res = wi::min (arg1, arg2, sign);
1103 break;
1104
1105 case MAX_EXPR:
1106 res = wi::max (arg1, arg2, sign);
1107 break;
1108
1109 default:
1110 return false;
1111 }
1112 return true;
1113 }
1114
1115 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1116 produce a new constant in RES. Return FALSE if we don't know how
1117 to evaluate CODE at compile-time. */
1118
1119 static bool
1120 poly_int_binop (poly_wide_int &res, enum tree_code code,
1121 const_tree arg1, const_tree arg2,
1122 signop sign, wi::overflow_type *overflow)
1123 {
1124 gcc_assert (NUM_POLY_INT_COEFFS != 1);
1125 gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2));
1126 switch (code)
1127 {
1128 case PLUS_EXPR:
1129 res = wi::add (wi::to_poly_wide (arg1),
1130 wi::to_poly_wide (arg2), sign, overflow);
1131 break;
1132
1133 case MINUS_EXPR:
1134 res = wi::sub (wi::to_poly_wide (arg1),
1135 wi::to_poly_wide (arg2), sign, overflow);
1136 break;
1137
1138 case MULT_EXPR:
1139 if (TREE_CODE (arg2) == INTEGER_CST)
1140 res = wi::mul (wi::to_poly_wide (arg1),
1141 wi::to_wide (arg2), sign, overflow);
1142 else if (TREE_CODE (arg1) == INTEGER_CST)
1143 res = wi::mul (wi::to_poly_wide (arg2),
1144 wi::to_wide (arg1), sign, overflow);
1145 else
1146 return NULL_TREE;
1147 break;
1148
1149 case LSHIFT_EXPR:
1150 if (TREE_CODE (arg2) == INTEGER_CST)
1151 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2);
1152 else
1153 return false;
1154 break;
1155
1156 case BIT_IOR_EXPR:
1157 if (TREE_CODE (arg2) != INTEGER_CST
1158 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2),
1159 &res))
1160 return false;
1161 break;
1162
1163 default:
1164 return false;
1165 }
1166 return true;
1167 }
1168
1169 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1170 produce a new constant. Return NULL_TREE if we don't know how to
1171 evaluate CODE at compile-time. */
1172
1173 tree
1174 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2,
1175 int overflowable)
1176 {
1177 poly_wide_int poly_res;
1178 tree type = TREE_TYPE (arg1);
1179 signop sign = TYPE_SIGN (type);
1180 wi::overflow_type overflow = wi::OVF_NONE;
1181
1182 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1183 {
1184 wide_int warg1 = wi::to_wide (arg1), res;
1185 wide_int warg2 = wi::to_wide (arg2, TYPE_PRECISION (type));
1186 if (!wide_int_binop (res, code, warg1, warg2, sign, &overflow))
1187 return NULL_TREE;
1188 poly_res = res;
1189 }
1190 else if (!poly_int_tree_p (arg1)
1191 || !poly_int_tree_p (arg2)
1192 || !poly_int_binop (poly_res, code, arg1, arg2, sign, &overflow))
1193 return NULL_TREE;
1194 return force_fit_type (type, poly_res, overflowable,
1195 (((sign == SIGNED || overflowable == -1)
1196 && overflow)
1197 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)));
1198 }
1199
1200 /* Return true if binary operation OP distributes over addition in operand
1201 OPNO, with the other operand being held constant. OPNO counts from 1. */
1202
1203 static bool
1204 distributes_over_addition_p (tree_code op, int opno)
1205 {
1206 switch (op)
1207 {
1208 case PLUS_EXPR:
1209 case MINUS_EXPR:
1210 case MULT_EXPR:
1211 return true;
1212
1213 case LSHIFT_EXPR:
1214 return opno == 1;
1215
1216 default:
1217 return false;
1218 }
1219 }
1220
1221 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1222 constant. We assume ARG1 and ARG2 have the same data type, or at least
1223 are the same kind of constant and the same machine mode. Return zero if
1224 combining the constants is not allowed in the current operating mode. */
1225
1226 static tree
1227 const_binop (enum tree_code code, tree arg1, tree arg2)
1228 {
1229 /* Sanity check for the recursive cases. */
1230 if (!arg1 || !arg2)
1231 return NULL_TREE;
1232
1233 STRIP_NOPS (arg1);
1234 STRIP_NOPS (arg2);
1235
1236 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1237 {
1238 if (code == POINTER_PLUS_EXPR)
1239 return int_const_binop (PLUS_EXPR,
1240 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1241
1242 return int_const_binop (code, arg1, arg2);
1243 }
1244
1245 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1246 {
1247 machine_mode mode;
1248 REAL_VALUE_TYPE d1;
1249 REAL_VALUE_TYPE d2;
1250 REAL_VALUE_TYPE value;
1251 REAL_VALUE_TYPE result;
1252 bool inexact;
1253 tree t, type;
1254
1255 /* The following codes are handled by real_arithmetic. */
1256 switch (code)
1257 {
1258 case PLUS_EXPR:
1259 case MINUS_EXPR:
1260 case MULT_EXPR:
1261 case RDIV_EXPR:
1262 case MIN_EXPR:
1263 case MAX_EXPR:
1264 break;
1265
1266 default:
1267 return NULL_TREE;
1268 }
1269
1270 d1 = TREE_REAL_CST (arg1);
1271 d2 = TREE_REAL_CST (arg2);
1272
1273 type = TREE_TYPE (arg1);
1274 mode = TYPE_MODE (type);
1275
1276 /* Don't perform operation if we honor signaling NaNs and
1277 either operand is a signaling NaN. */
1278 if (HONOR_SNANS (mode)
1279 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1280 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1281 return NULL_TREE;
1282
1283 /* Don't perform operation if it would raise a division
1284 by zero exception. */
1285 if (code == RDIV_EXPR
1286 && real_equal (&d2, &dconst0)
1287 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1288 return NULL_TREE;
1289
1290 /* If either operand is a NaN, just return it. Otherwise, set up
1291 for floating-point trap; we return an overflow. */
1292 if (REAL_VALUE_ISNAN (d1))
1293 {
1294 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1295 is off. */
1296 d1.signalling = 0;
1297 t = build_real (type, d1);
1298 return t;
1299 }
1300 else if (REAL_VALUE_ISNAN (d2))
1301 {
1302 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1303 is off. */
1304 d2.signalling = 0;
1305 t = build_real (type, d2);
1306 return t;
1307 }
1308
1309 inexact = real_arithmetic (&value, code, &d1, &d2);
1310 real_convert (&result, mode, &value);
1311
1312 /* Don't constant fold this floating point operation if
1313 the result has overflowed and flag_trapping_math. */
1314 if (flag_trapping_math
1315 && MODE_HAS_INFINITIES (mode)
1316 && REAL_VALUE_ISINF (result)
1317 && !REAL_VALUE_ISINF (d1)
1318 && !REAL_VALUE_ISINF (d2))
1319 return NULL_TREE;
1320
1321 /* Don't constant fold this floating point operation if the
1322 result may dependent upon the run-time rounding mode and
1323 flag_rounding_math is set, or if GCC's software emulation
1324 is unable to accurately represent the result. */
1325 if ((flag_rounding_math
1326 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1327 && (inexact || !real_identical (&result, &value)))
1328 return NULL_TREE;
1329
1330 t = build_real (type, result);
1331
1332 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1333 return t;
1334 }
1335
1336 if (TREE_CODE (arg1) == FIXED_CST)
1337 {
1338 FIXED_VALUE_TYPE f1;
1339 FIXED_VALUE_TYPE f2;
1340 FIXED_VALUE_TYPE result;
1341 tree t, type;
1342 int sat_p;
1343 bool overflow_p;
1344
1345 /* The following codes are handled by fixed_arithmetic. */
1346 switch (code)
1347 {
1348 case PLUS_EXPR:
1349 case MINUS_EXPR:
1350 case MULT_EXPR:
1351 case TRUNC_DIV_EXPR:
1352 if (TREE_CODE (arg2) != FIXED_CST)
1353 return NULL_TREE;
1354 f2 = TREE_FIXED_CST (arg2);
1355 break;
1356
1357 case LSHIFT_EXPR:
1358 case RSHIFT_EXPR:
1359 {
1360 if (TREE_CODE (arg2) != INTEGER_CST)
1361 return NULL_TREE;
1362 wi::tree_to_wide_ref w2 = wi::to_wide (arg2);
1363 f2.data.high = w2.elt (1);
1364 f2.data.low = w2.ulow ();
1365 f2.mode = SImode;
1366 }
1367 break;
1368
1369 default:
1370 return NULL_TREE;
1371 }
1372
1373 f1 = TREE_FIXED_CST (arg1);
1374 type = TREE_TYPE (arg1);
1375 sat_p = TYPE_SATURATING (type);
1376 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1377 t = build_fixed (type, result);
1378 /* Propagate overflow flags. */
1379 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1380 TREE_OVERFLOW (t) = 1;
1381 return t;
1382 }
1383
1384 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1385 {
1386 tree type = TREE_TYPE (arg1);
1387 tree r1 = TREE_REALPART (arg1);
1388 tree i1 = TREE_IMAGPART (arg1);
1389 tree r2 = TREE_REALPART (arg2);
1390 tree i2 = TREE_IMAGPART (arg2);
1391 tree real, imag;
1392
1393 switch (code)
1394 {
1395 case PLUS_EXPR:
1396 case MINUS_EXPR:
1397 real = const_binop (code, r1, r2);
1398 imag = const_binop (code, i1, i2);
1399 break;
1400
1401 case MULT_EXPR:
1402 if (COMPLEX_FLOAT_TYPE_P (type))
1403 return do_mpc_arg2 (arg1, arg2, type,
1404 /* do_nonfinite= */ folding_initializer,
1405 mpc_mul);
1406
1407 real = const_binop (MINUS_EXPR,
1408 const_binop (MULT_EXPR, r1, r2),
1409 const_binop (MULT_EXPR, i1, i2));
1410 imag = const_binop (PLUS_EXPR,
1411 const_binop (MULT_EXPR, r1, i2),
1412 const_binop (MULT_EXPR, i1, r2));
1413 break;
1414
1415 case RDIV_EXPR:
1416 if (COMPLEX_FLOAT_TYPE_P (type))
1417 return do_mpc_arg2 (arg1, arg2, type,
1418 /* do_nonfinite= */ folding_initializer,
1419 mpc_div);
1420 /* Fallthru. */
1421 case TRUNC_DIV_EXPR:
1422 case CEIL_DIV_EXPR:
1423 case FLOOR_DIV_EXPR:
1424 case ROUND_DIV_EXPR:
1425 if (flag_complex_method == 0)
1426 {
1427 /* Keep this algorithm in sync with
1428 tree-complex.c:expand_complex_div_straight().
1429
1430 Expand complex division to scalars, straightforward algorithm.
1431 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1432 t = br*br + bi*bi
1433 */
1434 tree magsquared
1435 = const_binop (PLUS_EXPR,
1436 const_binop (MULT_EXPR, r2, r2),
1437 const_binop (MULT_EXPR, i2, i2));
1438 tree t1
1439 = const_binop (PLUS_EXPR,
1440 const_binop (MULT_EXPR, r1, r2),
1441 const_binop (MULT_EXPR, i1, i2));
1442 tree t2
1443 = const_binop (MINUS_EXPR,
1444 const_binop (MULT_EXPR, i1, r2),
1445 const_binop (MULT_EXPR, r1, i2));
1446
1447 real = const_binop (code, t1, magsquared);
1448 imag = const_binop (code, t2, magsquared);
1449 }
1450 else
1451 {
1452 /* Keep this algorithm in sync with
1453 tree-complex.c:expand_complex_div_wide().
1454
1455 Expand complex division to scalars, modified algorithm to minimize
1456 overflow with wide input ranges. */
1457 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1458 fold_abs_const (r2, TREE_TYPE (type)),
1459 fold_abs_const (i2, TREE_TYPE (type)));
1460
1461 if (integer_nonzerop (compare))
1462 {
1463 /* In the TRUE branch, we compute
1464 ratio = br/bi;
1465 div = (br * ratio) + bi;
1466 tr = (ar * ratio) + ai;
1467 ti = (ai * ratio) - ar;
1468 tr = tr / div;
1469 ti = ti / div; */
1470 tree ratio = const_binop (code, r2, i2);
1471 tree div = const_binop (PLUS_EXPR, i2,
1472 const_binop (MULT_EXPR, r2, ratio));
1473 real = const_binop (MULT_EXPR, r1, ratio);
1474 real = const_binop (PLUS_EXPR, real, i1);
1475 real = const_binop (code, real, div);
1476
1477 imag = const_binop (MULT_EXPR, i1, ratio);
1478 imag = const_binop (MINUS_EXPR, imag, r1);
1479 imag = const_binop (code, imag, div);
1480 }
1481 else
1482 {
1483 /* In the FALSE branch, we compute
1484 ratio = d/c;
1485 divisor = (d * ratio) + c;
1486 tr = (b * ratio) + a;
1487 ti = b - (a * ratio);
1488 tr = tr / div;
1489 ti = ti / div; */
1490 tree ratio = const_binop (code, i2, r2);
1491 tree div = const_binop (PLUS_EXPR, r2,
1492 const_binop (MULT_EXPR, i2, ratio));
1493
1494 real = const_binop (MULT_EXPR, i1, ratio);
1495 real = const_binop (PLUS_EXPR, real, r1);
1496 real = const_binop (code, real, div);
1497
1498 imag = const_binop (MULT_EXPR, r1, ratio);
1499 imag = const_binop (MINUS_EXPR, i1, imag);
1500 imag = const_binop (code, imag, div);
1501 }
1502 }
1503 break;
1504
1505 default:
1506 return NULL_TREE;
1507 }
1508
1509 if (real && imag)
1510 return build_complex (type, real, imag);
1511 }
1512
1513 if (TREE_CODE (arg1) == VECTOR_CST
1514 && TREE_CODE (arg2) == VECTOR_CST
1515 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)),
1516 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2))))
1517 {
1518 tree type = TREE_TYPE (arg1);
1519 bool step_ok_p;
1520 if (VECTOR_CST_STEPPED_P (arg1)
1521 && VECTOR_CST_STEPPED_P (arg2))
1522 /* We can operate directly on the encoding if:
1523
1524 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1525 implies
1526 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1527
1528 Addition and subtraction are the supported operators
1529 for which this is true. */
1530 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR);
1531 else if (VECTOR_CST_STEPPED_P (arg1))
1532 /* We can operate directly on stepped encodings if:
1533
1534 a3 - a2 == a2 - a1
1535 implies:
1536 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1537
1538 which is true if (x -> x op c) distributes over addition. */
1539 step_ok_p = distributes_over_addition_p (code, 1);
1540 else
1541 /* Similarly in reverse. */
1542 step_ok_p = distributes_over_addition_p (code, 2);
1543 tree_vector_builder elts;
1544 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p))
1545 return NULL_TREE;
1546 unsigned int count = elts.encoded_nelts ();
1547 for (unsigned int i = 0; i < count; ++i)
1548 {
1549 tree elem1 = VECTOR_CST_ELT (arg1, i);
1550 tree elem2 = VECTOR_CST_ELT (arg2, i);
1551
1552 tree elt = const_binop (code, elem1, elem2);
1553
1554 /* It is possible that const_binop cannot handle the given
1555 code and return NULL_TREE */
1556 if (elt == NULL_TREE)
1557 return NULL_TREE;
1558 elts.quick_push (elt);
1559 }
1560
1561 return elts.build ();
1562 }
1563
1564 /* Shifts allow a scalar offset for a vector. */
1565 if (TREE_CODE (arg1) == VECTOR_CST
1566 && TREE_CODE (arg2) == INTEGER_CST)
1567 {
1568 tree type = TREE_TYPE (arg1);
1569 bool step_ok_p = distributes_over_addition_p (code, 1);
1570 tree_vector_builder elts;
1571 if (!elts.new_unary_operation (type, arg1, step_ok_p))
1572 return NULL_TREE;
1573 unsigned int count = elts.encoded_nelts ();
1574 for (unsigned int i = 0; i < count; ++i)
1575 {
1576 tree elem1 = VECTOR_CST_ELT (arg1, i);
1577
1578 tree elt = const_binop (code, elem1, arg2);
1579
1580 /* It is possible that const_binop cannot handle the given
1581 code and return NULL_TREE. */
1582 if (elt == NULL_TREE)
1583 return NULL_TREE;
1584 elts.quick_push (elt);
1585 }
1586
1587 return elts.build ();
1588 }
1589 return NULL_TREE;
1590 }
1591
1592 /* Overload that adds a TYPE parameter to be able to dispatch
1593 to fold_relational_const. */
1594
1595 tree
1596 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1597 {
1598 if (TREE_CODE_CLASS (code) == tcc_comparison)
1599 return fold_relational_const (code, type, arg1, arg2);
1600
1601 /* ??? Until we make the const_binop worker take the type of the
1602 result as argument put those cases that need it here. */
1603 switch (code)
1604 {
1605 case VEC_SERIES_EXPR:
1606 if (CONSTANT_CLASS_P (arg1)
1607 && CONSTANT_CLASS_P (arg2))
1608 return build_vec_series (type, arg1, arg2);
1609 return NULL_TREE;
1610
1611 case COMPLEX_EXPR:
1612 if ((TREE_CODE (arg1) == REAL_CST
1613 && TREE_CODE (arg2) == REAL_CST)
1614 || (TREE_CODE (arg1) == INTEGER_CST
1615 && TREE_CODE (arg2) == INTEGER_CST))
1616 return build_complex (type, arg1, arg2);
1617 return NULL_TREE;
1618
1619 case POINTER_DIFF_EXPR:
1620 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1621 {
1622 poly_offset_int res = (wi::to_poly_offset (arg1)
1623 - wi::to_poly_offset (arg2));
1624 return force_fit_type (type, res, 1,
1625 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1626 }
1627 return NULL_TREE;
1628
1629 case VEC_PACK_TRUNC_EXPR:
1630 case VEC_PACK_FIX_TRUNC_EXPR:
1631 case VEC_PACK_FLOAT_EXPR:
1632 {
1633 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i;
1634
1635 if (TREE_CODE (arg1) != VECTOR_CST
1636 || TREE_CODE (arg2) != VECTOR_CST)
1637 return NULL_TREE;
1638
1639 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1640 return NULL_TREE;
1641
1642 out_nelts = in_nelts * 2;
1643 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1644 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1645
1646 tree_vector_builder elts (type, out_nelts, 1);
1647 for (i = 0; i < out_nelts; i++)
1648 {
1649 tree elt = (i < in_nelts
1650 ? VECTOR_CST_ELT (arg1, i)
1651 : VECTOR_CST_ELT (arg2, i - in_nelts));
1652 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1653 ? NOP_EXPR
1654 : code == VEC_PACK_FLOAT_EXPR
1655 ? FLOAT_EXPR : FIX_TRUNC_EXPR,
1656 TREE_TYPE (type), elt);
1657 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1658 return NULL_TREE;
1659 elts.quick_push (elt);
1660 }
1661
1662 return elts.build ();
1663 }
1664
1665 case VEC_WIDEN_MULT_LO_EXPR:
1666 case VEC_WIDEN_MULT_HI_EXPR:
1667 case VEC_WIDEN_MULT_EVEN_EXPR:
1668 case VEC_WIDEN_MULT_ODD_EXPR:
1669 {
1670 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale;
1671
1672 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1673 return NULL_TREE;
1674
1675 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1676 return NULL_TREE;
1677 out_nelts = in_nelts / 2;
1678 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1679 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1680
1681 if (code == VEC_WIDEN_MULT_LO_EXPR)
1682 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1683 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1684 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1685 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1686 scale = 1, ofs = 0;
1687 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1688 scale = 1, ofs = 1;
1689
1690 tree_vector_builder elts (type, out_nelts, 1);
1691 for (out = 0; out < out_nelts; out++)
1692 {
1693 unsigned int in = (out << scale) + ofs;
1694 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1695 VECTOR_CST_ELT (arg1, in));
1696 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1697 VECTOR_CST_ELT (arg2, in));
1698
1699 if (t1 == NULL_TREE || t2 == NULL_TREE)
1700 return NULL_TREE;
1701 tree elt = const_binop (MULT_EXPR, t1, t2);
1702 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1703 return NULL_TREE;
1704 elts.quick_push (elt);
1705 }
1706
1707 return elts.build ();
1708 }
1709
1710 default:;
1711 }
1712
1713 if (TREE_CODE_CLASS (code) != tcc_binary)
1714 return NULL_TREE;
1715
1716 /* Make sure type and arg0 have the same saturating flag. */
1717 gcc_checking_assert (TYPE_SATURATING (type)
1718 == TYPE_SATURATING (TREE_TYPE (arg1)));
1719
1720 return const_binop (code, arg1, arg2);
1721 }
1722
1723 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1724 Return zero if computing the constants is not possible. */
1725
1726 tree
1727 const_unop (enum tree_code code, tree type, tree arg0)
1728 {
1729 /* Don't perform the operation, other than NEGATE and ABS, if
1730 flag_signaling_nans is on and the operand is a signaling NaN. */
1731 if (TREE_CODE (arg0) == REAL_CST
1732 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1733 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1734 && code != NEGATE_EXPR
1735 && code != ABS_EXPR
1736 && code != ABSU_EXPR)
1737 return NULL_TREE;
1738
1739 switch (code)
1740 {
1741 CASE_CONVERT:
1742 case FLOAT_EXPR:
1743 case FIX_TRUNC_EXPR:
1744 case FIXED_CONVERT_EXPR:
1745 return fold_convert_const (code, type, arg0);
1746
1747 case ADDR_SPACE_CONVERT_EXPR:
1748 /* If the source address is 0, and the source address space
1749 cannot have a valid object at 0, fold to dest type null. */
1750 if (integer_zerop (arg0)
1751 && !(targetm.addr_space.zero_address_valid
1752 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1753 return fold_convert_const (code, type, arg0);
1754 break;
1755
1756 case VIEW_CONVERT_EXPR:
1757 return fold_view_convert_expr (type, arg0);
1758
1759 case NEGATE_EXPR:
1760 {
1761 /* Can't call fold_negate_const directly here as that doesn't
1762 handle all cases and we might not be able to negate some
1763 constants. */
1764 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1765 if (tem && CONSTANT_CLASS_P (tem))
1766 return tem;
1767 break;
1768 }
1769
1770 case ABS_EXPR:
1771 case ABSU_EXPR:
1772 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1773 return fold_abs_const (arg0, type);
1774 break;
1775
1776 case CONJ_EXPR:
1777 if (TREE_CODE (arg0) == COMPLEX_CST)
1778 {
1779 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1780 TREE_TYPE (type));
1781 return build_complex (type, TREE_REALPART (arg0), ipart);
1782 }
1783 break;
1784
1785 case BIT_NOT_EXPR:
1786 if (TREE_CODE (arg0) == INTEGER_CST)
1787 return fold_not_const (arg0, type);
1788 else if (POLY_INT_CST_P (arg0))
1789 return wide_int_to_tree (type, -poly_int_cst_value (arg0));
1790 /* Perform BIT_NOT_EXPR on each element individually. */
1791 else if (TREE_CODE (arg0) == VECTOR_CST)
1792 {
1793 tree elem;
1794
1795 /* This can cope with stepped encodings because ~x == -1 - x. */
1796 tree_vector_builder elements;
1797 elements.new_unary_operation (type, arg0, true);
1798 unsigned int i, count = elements.encoded_nelts ();
1799 for (i = 0; i < count; ++i)
1800 {
1801 elem = VECTOR_CST_ELT (arg0, i);
1802 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1803 if (elem == NULL_TREE)
1804 break;
1805 elements.quick_push (elem);
1806 }
1807 if (i == count)
1808 return elements.build ();
1809 }
1810 break;
1811
1812 case TRUTH_NOT_EXPR:
1813 if (TREE_CODE (arg0) == INTEGER_CST)
1814 return constant_boolean_node (integer_zerop (arg0), type);
1815 break;
1816
1817 case REALPART_EXPR:
1818 if (TREE_CODE (arg0) == COMPLEX_CST)
1819 return fold_convert (type, TREE_REALPART (arg0));
1820 break;
1821
1822 case IMAGPART_EXPR:
1823 if (TREE_CODE (arg0) == COMPLEX_CST)
1824 return fold_convert (type, TREE_IMAGPART (arg0));
1825 break;
1826
1827 case VEC_UNPACK_LO_EXPR:
1828 case VEC_UNPACK_HI_EXPR:
1829 case VEC_UNPACK_FLOAT_LO_EXPR:
1830 case VEC_UNPACK_FLOAT_HI_EXPR:
1831 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
1832 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
1833 {
1834 unsigned HOST_WIDE_INT out_nelts, in_nelts, i;
1835 enum tree_code subcode;
1836
1837 if (TREE_CODE (arg0) != VECTOR_CST)
1838 return NULL_TREE;
1839
1840 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts))
1841 return NULL_TREE;
1842 out_nelts = in_nelts / 2;
1843 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1844
1845 unsigned int offset = 0;
1846 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1847 || code == VEC_UNPACK_FLOAT_LO_EXPR
1848 || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR))
1849 offset = out_nelts;
1850
1851 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1852 subcode = NOP_EXPR;
1853 else if (code == VEC_UNPACK_FLOAT_LO_EXPR
1854 || code == VEC_UNPACK_FLOAT_HI_EXPR)
1855 subcode = FLOAT_EXPR;
1856 else
1857 subcode = FIX_TRUNC_EXPR;
1858
1859 tree_vector_builder elts (type, out_nelts, 1);
1860 for (i = 0; i < out_nelts; i++)
1861 {
1862 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1863 VECTOR_CST_ELT (arg0, i + offset));
1864 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1865 return NULL_TREE;
1866 elts.quick_push (elt);
1867 }
1868
1869 return elts.build ();
1870 }
1871
1872 case VEC_DUPLICATE_EXPR:
1873 if (CONSTANT_CLASS_P (arg0))
1874 return build_vector_from_val (type, arg0);
1875 return NULL_TREE;
1876
1877 default:
1878 break;
1879 }
1880
1881 return NULL_TREE;
1882 }
1883
1884 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1885 indicates which particular sizetype to create. */
1886
1887 tree
1888 size_int_kind (poly_int64 number, enum size_type_kind kind)
1889 {
1890 return build_int_cst (sizetype_tab[(int) kind], number);
1891 }
1892 \f
1893 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1894 is a tree code. The type of the result is taken from the operands.
1895 Both must be equivalent integer types, ala int_binop_types_match_p.
1896 If the operands are constant, so is the result. */
1897
1898 tree
1899 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1900 {
1901 tree type = TREE_TYPE (arg0);
1902
1903 if (arg0 == error_mark_node || arg1 == error_mark_node)
1904 return error_mark_node;
1905
1906 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1907 TREE_TYPE (arg1)));
1908
1909 /* Handle the special case of two poly_int constants faster. */
1910 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1))
1911 {
1912 /* And some specific cases even faster than that. */
1913 if (code == PLUS_EXPR)
1914 {
1915 if (integer_zerop (arg0)
1916 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1917 return arg1;
1918 if (integer_zerop (arg1)
1919 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1920 return arg0;
1921 }
1922 else if (code == MINUS_EXPR)
1923 {
1924 if (integer_zerop (arg1)
1925 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1926 return arg0;
1927 }
1928 else if (code == MULT_EXPR)
1929 {
1930 if (integer_onep (arg0)
1931 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1932 return arg1;
1933 }
1934
1935 /* Handle general case of two integer constants. For sizetype
1936 constant calculations we always want to know about overflow,
1937 even in the unsigned case. */
1938 tree res = int_const_binop (code, arg0, arg1, -1);
1939 if (res != NULL_TREE)
1940 return res;
1941 }
1942
1943 return fold_build2_loc (loc, code, type, arg0, arg1);
1944 }
1945
1946 /* Given two values, either both of sizetype or both of bitsizetype,
1947 compute the difference between the two values. Return the value
1948 in signed type corresponding to the type of the operands. */
1949
1950 tree
1951 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1952 {
1953 tree type = TREE_TYPE (arg0);
1954 tree ctype;
1955
1956 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1957 TREE_TYPE (arg1)));
1958
1959 /* If the type is already signed, just do the simple thing. */
1960 if (!TYPE_UNSIGNED (type))
1961 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1962
1963 if (type == sizetype)
1964 ctype = ssizetype;
1965 else if (type == bitsizetype)
1966 ctype = sbitsizetype;
1967 else
1968 ctype = signed_type_for (type);
1969
1970 /* If either operand is not a constant, do the conversions to the signed
1971 type and subtract. The hardware will do the right thing with any
1972 overflow in the subtraction. */
1973 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1974 return size_binop_loc (loc, MINUS_EXPR,
1975 fold_convert_loc (loc, ctype, arg0),
1976 fold_convert_loc (loc, ctype, arg1));
1977
1978 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1979 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1980 overflow) and negate (which can't either). Special-case a result
1981 of zero while we're here. */
1982 if (tree_int_cst_equal (arg0, arg1))
1983 return build_int_cst (ctype, 0);
1984 else if (tree_int_cst_lt (arg1, arg0))
1985 return fold_convert_loc (loc, ctype,
1986 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1987 else
1988 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1989 fold_convert_loc (loc, ctype,
1990 size_binop_loc (loc,
1991 MINUS_EXPR,
1992 arg1, arg0)));
1993 }
1994 \f
1995 /* A subroutine of fold_convert_const handling conversions of an
1996 INTEGER_CST to another integer type. */
1997
1998 static tree
1999 fold_convert_const_int_from_int (tree type, const_tree arg1)
2000 {
2001 /* Given an integer constant, make new constant with new type,
2002 appropriately sign-extended or truncated. Use widest_int
2003 so that any extension is done according ARG1's type. */
2004 return force_fit_type (type, wi::to_widest (arg1),
2005 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2006 TREE_OVERFLOW (arg1));
2007 }
2008
2009 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2010 to an integer type. */
2011
2012 static tree
2013 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2014 {
2015 bool overflow = false;
2016 tree t;
2017
2018 /* The following code implements the floating point to integer
2019 conversion rules required by the Java Language Specification,
2020 that IEEE NaNs are mapped to zero and values that overflow
2021 the target precision saturate, i.e. values greater than
2022 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2023 are mapped to INT_MIN. These semantics are allowed by the
2024 C and C++ standards that simply state that the behavior of
2025 FP-to-integer conversion is unspecified upon overflow. */
2026
2027 wide_int val;
2028 REAL_VALUE_TYPE r;
2029 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2030
2031 switch (code)
2032 {
2033 case FIX_TRUNC_EXPR:
2034 real_trunc (&r, VOIDmode, &x);
2035 break;
2036
2037 default:
2038 gcc_unreachable ();
2039 }
2040
2041 /* If R is NaN, return zero and show we have an overflow. */
2042 if (REAL_VALUE_ISNAN (r))
2043 {
2044 overflow = true;
2045 val = wi::zero (TYPE_PRECISION (type));
2046 }
2047
2048 /* See if R is less than the lower bound or greater than the
2049 upper bound. */
2050
2051 if (! overflow)
2052 {
2053 tree lt = TYPE_MIN_VALUE (type);
2054 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2055 if (real_less (&r, &l))
2056 {
2057 overflow = true;
2058 val = wi::to_wide (lt);
2059 }
2060 }
2061
2062 if (! overflow)
2063 {
2064 tree ut = TYPE_MAX_VALUE (type);
2065 if (ut)
2066 {
2067 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2068 if (real_less (&u, &r))
2069 {
2070 overflow = true;
2071 val = wi::to_wide (ut);
2072 }
2073 }
2074 }
2075
2076 if (! overflow)
2077 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
2078
2079 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
2080 return t;
2081 }
2082
2083 /* A subroutine of fold_convert_const handling conversions of a
2084 FIXED_CST to an integer type. */
2085
2086 static tree
2087 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2088 {
2089 tree t;
2090 double_int temp, temp_trunc;
2091 scalar_mode mode;
2092
2093 /* Right shift FIXED_CST to temp by fbit. */
2094 temp = TREE_FIXED_CST (arg1).data;
2095 mode = TREE_FIXED_CST (arg1).mode;
2096 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
2097 {
2098 temp = temp.rshift (GET_MODE_FBIT (mode),
2099 HOST_BITS_PER_DOUBLE_INT,
2100 SIGNED_FIXED_POINT_MODE_P (mode));
2101
2102 /* Left shift temp to temp_trunc by fbit. */
2103 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
2104 HOST_BITS_PER_DOUBLE_INT,
2105 SIGNED_FIXED_POINT_MODE_P (mode));
2106 }
2107 else
2108 {
2109 temp = double_int_zero;
2110 temp_trunc = double_int_zero;
2111 }
2112
2113 /* If FIXED_CST is negative, we need to round the value toward 0.
2114 By checking if the fractional bits are not zero to add 1 to temp. */
2115 if (SIGNED_FIXED_POINT_MODE_P (mode)
2116 && temp_trunc.is_negative ()
2117 && TREE_FIXED_CST (arg1).data != temp_trunc)
2118 temp += double_int_one;
2119
2120 /* Given a fixed-point constant, make new constant with new type,
2121 appropriately sign-extended or truncated. */
2122 t = force_fit_type (type, temp, -1,
2123 (temp.is_negative ()
2124 && (TYPE_UNSIGNED (type)
2125 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2126 | TREE_OVERFLOW (arg1));
2127
2128 return t;
2129 }
2130
2131 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2132 to another floating point type. */
2133
2134 static tree
2135 fold_convert_const_real_from_real (tree type, const_tree arg1)
2136 {
2137 REAL_VALUE_TYPE value;
2138 tree t;
2139
2140 /* Don't perform the operation if flag_signaling_nans is on
2141 and the operand is a signaling NaN. */
2142 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2143 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2144 return NULL_TREE;
2145
2146 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2147 t = build_real (type, value);
2148
2149 /* If converting an infinity or NAN to a representation that doesn't
2150 have one, set the overflow bit so that we can produce some kind of
2151 error message at the appropriate point if necessary. It's not the
2152 most user-friendly message, but it's better than nothing. */
2153 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2154 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2155 TREE_OVERFLOW (t) = 1;
2156 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2157 && !MODE_HAS_NANS (TYPE_MODE (type)))
2158 TREE_OVERFLOW (t) = 1;
2159 /* Regular overflow, conversion produced an infinity in a mode that
2160 can't represent them. */
2161 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2162 && REAL_VALUE_ISINF (value)
2163 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2164 TREE_OVERFLOW (t) = 1;
2165 else
2166 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2167 return t;
2168 }
2169
2170 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2171 to a floating point type. */
2172
2173 static tree
2174 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2175 {
2176 REAL_VALUE_TYPE value;
2177 tree t;
2178
2179 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2180 &TREE_FIXED_CST (arg1));
2181 t = build_real (type, value);
2182
2183 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2184 return t;
2185 }
2186
2187 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2188 to another fixed-point type. */
2189
2190 static tree
2191 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2192 {
2193 FIXED_VALUE_TYPE value;
2194 tree t;
2195 bool overflow_p;
2196
2197 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2198 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2199 t = build_fixed (type, value);
2200
2201 /* Propagate overflow flags. */
2202 if (overflow_p | TREE_OVERFLOW (arg1))
2203 TREE_OVERFLOW (t) = 1;
2204 return t;
2205 }
2206
2207 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2208 to a fixed-point type. */
2209
2210 static tree
2211 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2212 {
2213 FIXED_VALUE_TYPE value;
2214 tree t;
2215 bool overflow_p;
2216 double_int di;
2217
2218 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2219
2220 di.low = TREE_INT_CST_ELT (arg1, 0);
2221 if (TREE_INT_CST_NUNITS (arg1) == 1)
2222 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2223 else
2224 di.high = TREE_INT_CST_ELT (arg1, 1);
2225
2226 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2227 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2228 TYPE_SATURATING (type));
2229 t = build_fixed (type, value);
2230
2231 /* Propagate overflow flags. */
2232 if (overflow_p | TREE_OVERFLOW (arg1))
2233 TREE_OVERFLOW (t) = 1;
2234 return t;
2235 }
2236
2237 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2238 to a fixed-point type. */
2239
2240 static tree
2241 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2242 {
2243 FIXED_VALUE_TYPE value;
2244 tree t;
2245 bool overflow_p;
2246
2247 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2248 &TREE_REAL_CST (arg1),
2249 TYPE_SATURATING (type));
2250 t = build_fixed (type, value);
2251
2252 /* Propagate overflow flags. */
2253 if (overflow_p | TREE_OVERFLOW (arg1))
2254 TREE_OVERFLOW (t) = 1;
2255 return t;
2256 }
2257
2258 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2259 type TYPE. If no simplification can be done return NULL_TREE. */
2260
2261 static tree
2262 fold_convert_const (enum tree_code code, tree type, tree arg1)
2263 {
2264 tree arg_type = TREE_TYPE (arg1);
2265 if (arg_type == type)
2266 return arg1;
2267
2268 /* We can't widen types, since the runtime value could overflow the
2269 original type before being extended to the new type. */
2270 if (POLY_INT_CST_P (arg1)
2271 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2272 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type))
2273 return build_poly_int_cst (type,
2274 poly_wide_int::from (poly_int_cst_value (arg1),
2275 TYPE_PRECISION (type),
2276 TYPE_SIGN (arg_type)));
2277
2278 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2279 || TREE_CODE (type) == OFFSET_TYPE)
2280 {
2281 if (TREE_CODE (arg1) == INTEGER_CST)
2282 return fold_convert_const_int_from_int (type, arg1);
2283 else if (TREE_CODE (arg1) == REAL_CST)
2284 return fold_convert_const_int_from_real (code, type, arg1);
2285 else if (TREE_CODE (arg1) == FIXED_CST)
2286 return fold_convert_const_int_from_fixed (type, arg1);
2287 }
2288 else if (TREE_CODE (type) == REAL_TYPE)
2289 {
2290 if (TREE_CODE (arg1) == INTEGER_CST)
2291 return build_real_from_int_cst (type, arg1);
2292 else if (TREE_CODE (arg1) == REAL_CST)
2293 return fold_convert_const_real_from_real (type, arg1);
2294 else if (TREE_CODE (arg1) == FIXED_CST)
2295 return fold_convert_const_real_from_fixed (type, arg1);
2296 }
2297 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2298 {
2299 if (TREE_CODE (arg1) == FIXED_CST)
2300 return fold_convert_const_fixed_from_fixed (type, arg1);
2301 else if (TREE_CODE (arg1) == INTEGER_CST)
2302 return fold_convert_const_fixed_from_int (type, arg1);
2303 else if (TREE_CODE (arg1) == REAL_CST)
2304 return fold_convert_const_fixed_from_real (type, arg1);
2305 }
2306 else if (TREE_CODE (type) == VECTOR_TYPE)
2307 {
2308 if (TREE_CODE (arg1) == VECTOR_CST
2309 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1)))
2310 {
2311 tree elttype = TREE_TYPE (type);
2312 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1));
2313 /* We can't handle steps directly when extending, since the
2314 values need to wrap at the original precision first. */
2315 bool step_ok_p
2316 = (INTEGRAL_TYPE_P (elttype)
2317 && INTEGRAL_TYPE_P (arg1_elttype)
2318 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype));
2319 tree_vector_builder v;
2320 if (!v.new_unary_operation (type, arg1, step_ok_p))
2321 return NULL_TREE;
2322 unsigned int len = v.encoded_nelts ();
2323 for (unsigned int i = 0; i < len; ++i)
2324 {
2325 tree elt = VECTOR_CST_ELT (arg1, i);
2326 tree cvt = fold_convert_const (code, elttype, elt);
2327 if (cvt == NULL_TREE)
2328 return NULL_TREE;
2329 v.quick_push (cvt);
2330 }
2331 return v.build ();
2332 }
2333 }
2334 return NULL_TREE;
2335 }
2336
2337 /* Construct a vector of zero elements of vector type TYPE. */
2338
2339 static tree
2340 build_zero_vector (tree type)
2341 {
2342 tree t;
2343
2344 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2345 return build_vector_from_val (type, t);
2346 }
2347
2348 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2349
2350 bool
2351 fold_convertible_p (const_tree type, const_tree arg)
2352 {
2353 tree orig = TREE_TYPE (arg);
2354
2355 if (type == orig)
2356 return true;
2357
2358 if (TREE_CODE (arg) == ERROR_MARK
2359 || TREE_CODE (type) == ERROR_MARK
2360 || TREE_CODE (orig) == ERROR_MARK)
2361 return false;
2362
2363 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2364 return true;
2365
2366 switch (TREE_CODE (type))
2367 {
2368 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2369 case POINTER_TYPE: case REFERENCE_TYPE:
2370 case OFFSET_TYPE:
2371 return (INTEGRAL_TYPE_P (orig)
2372 || (POINTER_TYPE_P (orig)
2373 && TYPE_PRECISION (type) <= TYPE_PRECISION (orig))
2374 || TREE_CODE (orig) == OFFSET_TYPE);
2375
2376 case REAL_TYPE:
2377 case FIXED_POINT_TYPE:
2378 case VOID_TYPE:
2379 return TREE_CODE (type) == TREE_CODE (orig);
2380
2381 case VECTOR_TYPE:
2382 return (VECTOR_TYPE_P (orig)
2383 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2384 TYPE_VECTOR_SUBPARTS (orig))
2385 && fold_convertible_p (TREE_TYPE (type), TREE_TYPE (orig)));
2386
2387 default:
2388 return false;
2389 }
2390 }
2391
2392 /* Convert expression ARG to type TYPE. Used by the middle-end for
2393 simple conversions in preference to calling the front-end's convert. */
2394
2395 tree
2396 fold_convert_loc (location_t loc, tree type, tree arg)
2397 {
2398 tree orig = TREE_TYPE (arg);
2399 tree tem;
2400
2401 if (type == orig)
2402 return arg;
2403
2404 if (TREE_CODE (arg) == ERROR_MARK
2405 || TREE_CODE (type) == ERROR_MARK
2406 || TREE_CODE (orig) == ERROR_MARK)
2407 return error_mark_node;
2408
2409 switch (TREE_CODE (type))
2410 {
2411 case POINTER_TYPE:
2412 case REFERENCE_TYPE:
2413 /* Handle conversions between pointers to different address spaces. */
2414 if (POINTER_TYPE_P (orig)
2415 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2416 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2417 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2418 /* fall through */
2419
2420 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2421 case OFFSET_TYPE:
2422 if (TREE_CODE (arg) == INTEGER_CST)
2423 {
2424 tem = fold_convert_const (NOP_EXPR, type, arg);
2425 if (tem != NULL_TREE)
2426 return tem;
2427 }
2428 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2429 || TREE_CODE (orig) == OFFSET_TYPE)
2430 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2431 if (TREE_CODE (orig) == COMPLEX_TYPE)
2432 return fold_convert_loc (loc, type,
2433 fold_build1_loc (loc, REALPART_EXPR,
2434 TREE_TYPE (orig), arg));
2435 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2436 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2437 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2438
2439 case REAL_TYPE:
2440 if (TREE_CODE (arg) == INTEGER_CST)
2441 {
2442 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2443 if (tem != NULL_TREE)
2444 return tem;
2445 }
2446 else if (TREE_CODE (arg) == REAL_CST)
2447 {
2448 tem = fold_convert_const (NOP_EXPR, type, arg);
2449 if (tem != NULL_TREE)
2450 return tem;
2451 }
2452 else if (TREE_CODE (arg) == FIXED_CST)
2453 {
2454 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2455 if (tem != NULL_TREE)
2456 return tem;
2457 }
2458
2459 switch (TREE_CODE (orig))
2460 {
2461 case INTEGER_TYPE:
2462 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2463 case POINTER_TYPE: case REFERENCE_TYPE:
2464 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2465
2466 case REAL_TYPE:
2467 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2468
2469 case FIXED_POINT_TYPE:
2470 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2471
2472 case COMPLEX_TYPE:
2473 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2474 return fold_convert_loc (loc, type, tem);
2475
2476 default:
2477 gcc_unreachable ();
2478 }
2479
2480 case FIXED_POINT_TYPE:
2481 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2482 || TREE_CODE (arg) == REAL_CST)
2483 {
2484 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2485 if (tem != NULL_TREE)
2486 goto fold_convert_exit;
2487 }
2488
2489 switch (TREE_CODE (orig))
2490 {
2491 case FIXED_POINT_TYPE:
2492 case INTEGER_TYPE:
2493 case ENUMERAL_TYPE:
2494 case BOOLEAN_TYPE:
2495 case REAL_TYPE:
2496 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2497
2498 case COMPLEX_TYPE:
2499 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2500 return fold_convert_loc (loc, type, tem);
2501
2502 default:
2503 gcc_unreachable ();
2504 }
2505
2506 case COMPLEX_TYPE:
2507 switch (TREE_CODE (orig))
2508 {
2509 case INTEGER_TYPE:
2510 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2511 case POINTER_TYPE: case REFERENCE_TYPE:
2512 case REAL_TYPE:
2513 case FIXED_POINT_TYPE:
2514 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2515 fold_convert_loc (loc, TREE_TYPE (type), arg),
2516 fold_convert_loc (loc, TREE_TYPE (type),
2517 integer_zero_node));
2518 case COMPLEX_TYPE:
2519 {
2520 tree rpart, ipart;
2521
2522 if (TREE_CODE (arg) == COMPLEX_EXPR)
2523 {
2524 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2525 TREE_OPERAND (arg, 0));
2526 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2527 TREE_OPERAND (arg, 1));
2528 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2529 }
2530
2531 arg = save_expr (arg);
2532 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2533 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2534 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2535 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2536 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2537 }
2538
2539 default:
2540 gcc_unreachable ();
2541 }
2542
2543 case VECTOR_TYPE:
2544 if (integer_zerop (arg))
2545 return build_zero_vector (type);
2546 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2547 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2548 || TREE_CODE (orig) == VECTOR_TYPE);
2549 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2550
2551 case VOID_TYPE:
2552 tem = fold_ignored_result (arg);
2553 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2554
2555 default:
2556 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2557 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2558 gcc_unreachable ();
2559 }
2560 fold_convert_exit:
2561 protected_set_expr_location_unshare (tem, loc);
2562 return tem;
2563 }
2564 \f
2565 /* Return false if expr can be assumed not to be an lvalue, true
2566 otherwise. */
2567
2568 static bool
2569 maybe_lvalue_p (const_tree x)
2570 {
2571 /* We only need to wrap lvalue tree codes. */
2572 switch (TREE_CODE (x))
2573 {
2574 case VAR_DECL:
2575 case PARM_DECL:
2576 case RESULT_DECL:
2577 case LABEL_DECL:
2578 case FUNCTION_DECL:
2579 case SSA_NAME:
2580
2581 case COMPONENT_REF:
2582 case MEM_REF:
2583 case INDIRECT_REF:
2584 case ARRAY_REF:
2585 case ARRAY_RANGE_REF:
2586 case BIT_FIELD_REF:
2587 case OBJ_TYPE_REF:
2588
2589 case REALPART_EXPR:
2590 case IMAGPART_EXPR:
2591 case PREINCREMENT_EXPR:
2592 case PREDECREMENT_EXPR:
2593 case SAVE_EXPR:
2594 case TRY_CATCH_EXPR:
2595 case WITH_CLEANUP_EXPR:
2596 case COMPOUND_EXPR:
2597 case MODIFY_EXPR:
2598 case TARGET_EXPR:
2599 case COND_EXPR:
2600 case BIND_EXPR:
2601 case VIEW_CONVERT_EXPR:
2602 break;
2603
2604 default:
2605 /* Assume the worst for front-end tree codes. */
2606 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2607 break;
2608 return false;
2609 }
2610
2611 return true;
2612 }
2613
2614 /* Return an expr equal to X but certainly not valid as an lvalue. */
2615
2616 tree
2617 non_lvalue_loc (location_t loc, tree x)
2618 {
2619 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2620 us. */
2621 if (in_gimple_form)
2622 return x;
2623
2624 if (! maybe_lvalue_p (x))
2625 return x;
2626 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2627 }
2628
2629 /* When pedantic, return an expr equal to X but certainly not valid as a
2630 pedantic lvalue. Otherwise, return X. */
2631
2632 static tree
2633 pedantic_non_lvalue_loc (location_t loc, tree x)
2634 {
2635 return protected_set_expr_location_unshare (x, loc);
2636 }
2637 \f
2638 /* Given a tree comparison code, return the code that is the logical inverse.
2639 It is generally not safe to do this for floating-point comparisons, except
2640 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2641 ERROR_MARK in this case. */
2642
2643 enum tree_code
2644 invert_tree_comparison (enum tree_code code, bool honor_nans)
2645 {
2646 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2647 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2648 return ERROR_MARK;
2649
2650 switch (code)
2651 {
2652 case EQ_EXPR:
2653 return NE_EXPR;
2654 case NE_EXPR:
2655 return EQ_EXPR;
2656 case GT_EXPR:
2657 return honor_nans ? UNLE_EXPR : LE_EXPR;
2658 case GE_EXPR:
2659 return honor_nans ? UNLT_EXPR : LT_EXPR;
2660 case LT_EXPR:
2661 return honor_nans ? UNGE_EXPR : GE_EXPR;
2662 case LE_EXPR:
2663 return honor_nans ? UNGT_EXPR : GT_EXPR;
2664 case LTGT_EXPR:
2665 return UNEQ_EXPR;
2666 case UNEQ_EXPR:
2667 return LTGT_EXPR;
2668 case UNGT_EXPR:
2669 return LE_EXPR;
2670 case UNGE_EXPR:
2671 return LT_EXPR;
2672 case UNLT_EXPR:
2673 return GE_EXPR;
2674 case UNLE_EXPR:
2675 return GT_EXPR;
2676 case ORDERED_EXPR:
2677 return UNORDERED_EXPR;
2678 case UNORDERED_EXPR:
2679 return ORDERED_EXPR;
2680 default:
2681 gcc_unreachable ();
2682 }
2683 }
2684
2685 /* Similar, but return the comparison that results if the operands are
2686 swapped. This is safe for floating-point. */
2687
2688 enum tree_code
2689 swap_tree_comparison (enum tree_code code)
2690 {
2691 switch (code)
2692 {
2693 case EQ_EXPR:
2694 case NE_EXPR:
2695 case ORDERED_EXPR:
2696 case UNORDERED_EXPR:
2697 case LTGT_EXPR:
2698 case UNEQ_EXPR:
2699 return code;
2700 case GT_EXPR:
2701 return LT_EXPR;
2702 case GE_EXPR:
2703 return LE_EXPR;
2704 case LT_EXPR:
2705 return GT_EXPR;
2706 case LE_EXPR:
2707 return GE_EXPR;
2708 case UNGT_EXPR:
2709 return UNLT_EXPR;
2710 case UNGE_EXPR:
2711 return UNLE_EXPR;
2712 case UNLT_EXPR:
2713 return UNGT_EXPR;
2714 case UNLE_EXPR:
2715 return UNGE_EXPR;
2716 default:
2717 gcc_unreachable ();
2718 }
2719 }
2720
2721
2722 /* Convert a comparison tree code from an enum tree_code representation
2723 into a compcode bit-based encoding. This function is the inverse of
2724 compcode_to_comparison. */
2725
2726 static enum comparison_code
2727 comparison_to_compcode (enum tree_code code)
2728 {
2729 switch (code)
2730 {
2731 case LT_EXPR:
2732 return COMPCODE_LT;
2733 case EQ_EXPR:
2734 return COMPCODE_EQ;
2735 case LE_EXPR:
2736 return COMPCODE_LE;
2737 case GT_EXPR:
2738 return COMPCODE_GT;
2739 case NE_EXPR:
2740 return COMPCODE_NE;
2741 case GE_EXPR:
2742 return COMPCODE_GE;
2743 case ORDERED_EXPR:
2744 return COMPCODE_ORD;
2745 case UNORDERED_EXPR:
2746 return COMPCODE_UNORD;
2747 case UNLT_EXPR:
2748 return COMPCODE_UNLT;
2749 case UNEQ_EXPR:
2750 return COMPCODE_UNEQ;
2751 case UNLE_EXPR:
2752 return COMPCODE_UNLE;
2753 case UNGT_EXPR:
2754 return COMPCODE_UNGT;
2755 case LTGT_EXPR:
2756 return COMPCODE_LTGT;
2757 case UNGE_EXPR:
2758 return COMPCODE_UNGE;
2759 default:
2760 gcc_unreachable ();
2761 }
2762 }
2763
2764 /* Convert a compcode bit-based encoding of a comparison operator back
2765 to GCC's enum tree_code representation. This function is the
2766 inverse of comparison_to_compcode. */
2767
2768 static enum tree_code
2769 compcode_to_comparison (enum comparison_code code)
2770 {
2771 switch (code)
2772 {
2773 case COMPCODE_LT:
2774 return LT_EXPR;
2775 case COMPCODE_EQ:
2776 return EQ_EXPR;
2777 case COMPCODE_LE:
2778 return LE_EXPR;
2779 case COMPCODE_GT:
2780 return GT_EXPR;
2781 case COMPCODE_NE:
2782 return NE_EXPR;
2783 case COMPCODE_GE:
2784 return GE_EXPR;
2785 case COMPCODE_ORD:
2786 return ORDERED_EXPR;
2787 case COMPCODE_UNORD:
2788 return UNORDERED_EXPR;
2789 case COMPCODE_UNLT:
2790 return UNLT_EXPR;
2791 case COMPCODE_UNEQ:
2792 return UNEQ_EXPR;
2793 case COMPCODE_UNLE:
2794 return UNLE_EXPR;
2795 case COMPCODE_UNGT:
2796 return UNGT_EXPR;
2797 case COMPCODE_LTGT:
2798 return LTGT_EXPR;
2799 case COMPCODE_UNGE:
2800 return UNGE_EXPR;
2801 default:
2802 gcc_unreachable ();
2803 }
2804 }
2805
2806 /* Return true if COND1 tests the opposite condition of COND2. */
2807
2808 bool
2809 inverse_conditions_p (const_tree cond1, const_tree cond2)
2810 {
2811 return (COMPARISON_CLASS_P (cond1)
2812 && COMPARISON_CLASS_P (cond2)
2813 && (invert_tree_comparison
2814 (TREE_CODE (cond1),
2815 HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2))
2816 && operand_equal_p (TREE_OPERAND (cond1, 0),
2817 TREE_OPERAND (cond2, 0), 0)
2818 && operand_equal_p (TREE_OPERAND (cond1, 1),
2819 TREE_OPERAND (cond2, 1), 0));
2820 }
2821
2822 /* Return a tree for the comparison which is the combination of
2823 doing the AND or OR (depending on CODE) of the two operations LCODE
2824 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2825 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2826 if this makes the transformation invalid. */
2827
2828 tree
2829 combine_comparisons (location_t loc,
2830 enum tree_code code, enum tree_code lcode,
2831 enum tree_code rcode, tree truth_type,
2832 tree ll_arg, tree lr_arg)
2833 {
2834 bool honor_nans = HONOR_NANS (ll_arg);
2835 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2836 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2837 int compcode;
2838
2839 switch (code)
2840 {
2841 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2842 compcode = lcompcode & rcompcode;
2843 break;
2844
2845 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2846 compcode = lcompcode | rcompcode;
2847 break;
2848
2849 default:
2850 return NULL_TREE;
2851 }
2852
2853 if (!honor_nans)
2854 {
2855 /* Eliminate unordered comparisons, as well as LTGT and ORD
2856 which are not used unless the mode has NaNs. */
2857 compcode &= ~COMPCODE_UNORD;
2858 if (compcode == COMPCODE_LTGT)
2859 compcode = COMPCODE_NE;
2860 else if (compcode == COMPCODE_ORD)
2861 compcode = COMPCODE_TRUE;
2862 }
2863 else if (flag_trapping_math)
2864 {
2865 /* Check that the original operation and the optimized ones will trap
2866 under the same condition. */
2867 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2868 && (lcompcode != COMPCODE_EQ)
2869 && (lcompcode != COMPCODE_ORD);
2870 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2871 && (rcompcode != COMPCODE_EQ)
2872 && (rcompcode != COMPCODE_ORD);
2873 bool trap = (compcode & COMPCODE_UNORD) == 0
2874 && (compcode != COMPCODE_EQ)
2875 && (compcode != COMPCODE_ORD);
2876
2877 /* In a short-circuited boolean expression the LHS might be
2878 such that the RHS, if evaluated, will never trap. For
2879 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2880 if neither x nor y is NaN. (This is a mixed blessing: for
2881 example, the expression above will never trap, hence
2882 optimizing it to x < y would be invalid). */
2883 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2884 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2885 rtrap = false;
2886
2887 /* If the comparison was short-circuited, and only the RHS
2888 trapped, we may now generate a spurious trap. */
2889 if (rtrap && !ltrap
2890 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2891 return NULL_TREE;
2892
2893 /* If we changed the conditions that cause a trap, we lose. */
2894 if ((ltrap || rtrap) != trap)
2895 return NULL_TREE;
2896 }
2897
2898 if (compcode == COMPCODE_TRUE)
2899 return constant_boolean_node (true, truth_type);
2900 else if (compcode == COMPCODE_FALSE)
2901 return constant_boolean_node (false, truth_type);
2902 else
2903 {
2904 enum tree_code tcode;
2905
2906 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2907 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2908 }
2909 }
2910 \f
2911 /* Return nonzero if two operands (typically of the same tree node)
2912 are necessarily equal. FLAGS modifies behavior as follows:
2913
2914 If OEP_ONLY_CONST is set, only return nonzero for constants.
2915 This function tests whether the operands are indistinguishable;
2916 it does not test whether they are equal using C's == operation.
2917 The distinction is important for IEEE floating point, because
2918 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2919 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2920
2921 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2922 even though it may hold multiple values during a function.
2923 This is because a GCC tree node guarantees that nothing else is
2924 executed between the evaluation of its "operands" (which may often
2925 be evaluated in arbitrary order). Hence if the operands themselves
2926 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2927 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2928 unset means assuming isochronic (or instantaneous) tree equivalence.
2929 Unless comparing arbitrary expression trees, such as from different
2930 statements, this flag can usually be left unset.
2931
2932 If OEP_PURE_SAME is set, then pure functions with identical arguments
2933 are considered the same. It is used when the caller has other ways
2934 to ensure that global memory is unchanged in between.
2935
2936 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2937 not values of expressions.
2938
2939 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2940 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2941
2942 If OEP_BITWISE is set, then require the values to be bitwise identical
2943 rather than simply numerically equal. Do not take advantage of things
2944 like math-related flags or undefined behavior; only return true for
2945 values that are provably bitwise identical in all circumstances.
2946
2947 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2948 any operand with side effect. This is unnecesarily conservative in the
2949 case we know that arg0 and arg1 are in disjoint code paths (such as in
2950 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2951 addresses with TREE_CONSTANT flag set so we know that &var == &var
2952 even if var is volatile. */
2953
2954 bool
2955 operand_compare::operand_equal_p (const_tree arg0, const_tree arg1,
2956 unsigned int flags)
2957 {
2958 bool r;
2959 if (verify_hash_value (arg0, arg1, flags, &r))
2960 return r;
2961
2962 STRIP_ANY_LOCATION_WRAPPER (arg0);
2963 STRIP_ANY_LOCATION_WRAPPER (arg1);
2964
2965 /* If either is ERROR_MARK, they aren't equal. */
2966 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2967 || TREE_TYPE (arg0) == error_mark_node
2968 || TREE_TYPE (arg1) == error_mark_node)
2969 return false;
2970
2971 /* Similar, if either does not have a type (like a template id),
2972 they aren't equal. */
2973 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2974 return false;
2975
2976 /* Bitwise identity makes no sense if the values have different layouts. */
2977 if ((flags & OEP_BITWISE)
2978 && !tree_nop_conversion_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
2979 return false;
2980
2981 /* We cannot consider pointers to different address space equal. */
2982 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2983 && POINTER_TYPE_P (TREE_TYPE (arg1))
2984 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2985 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2986 return false;
2987
2988 /* Check equality of integer constants before bailing out due to
2989 precision differences. */
2990 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2991 {
2992 /* Address of INTEGER_CST is not defined; check that we did not forget
2993 to drop the OEP_ADDRESS_OF flags. */
2994 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2995 return tree_int_cst_equal (arg0, arg1);
2996 }
2997
2998 if (!(flags & OEP_ADDRESS_OF))
2999 {
3000 /* If both types don't have the same signedness, then we can't consider
3001 them equal. We must check this before the STRIP_NOPS calls
3002 because they may change the signedness of the arguments. As pointers
3003 strictly don't have a signedness, require either two pointers or
3004 two non-pointers as well. */
3005 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3006 || POINTER_TYPE_P (TREE_TYPE (arg0))
3007 != POINTER_TYPE_P (TREE_TYPE (arg1)))
3008 return false;
3009
3010 /* If both types don't have the same precision, then it is not safe
3011 to strip NOPs. */
3012 if (element_precision (TREE_TYPE (arg0))
3013 != element_precision (TREE_TYPE (arg1)))
3014 return false;
3015
3016 STRIP_NOPS (arg0);
3017 STRIP_NOPS (arg1);
3018 }
3019 #if 0
3020 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3021 sanity check once the issue is solved. */
3022 else
3023 /* Addresses of conversions and SSA_NAMEs (and many other things)
3024 are not defined. Check that we did not forget to drop the
3025 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3026 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
3027 && TREE_CODE (arg0) != SSA_NAME);
3028 #endif
3029
3030 /* In case both args are comparisons but with different comparison
3031 code, try to swap the comparison operands of one arg to produce
3032 a match and compare that variant. */
3033 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3034 && COMPARISON_CLASS_P (arg0)
3035 && COMPARISON_CLASS_P (arg1))
3036 {
3037 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3038
3039 if (TREE_CODE (arg0) == swap_code)
3040 return operand_equal_p (TREE_OPERAND (arg0, 0),
3041 TREE_OPERAND (arg1, 1), flags)
3042 && operand_equal_p (TREE_OPERAND (arg0, 1),
3043 TREE_OPERAND (arg1, 0), flags);
3044 }
3045
3046 if (TREE_CODE (arg0) != TREE_CODE (arg1))
3047 {
3048 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3049 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
3050 ;
3051 else if (flags & OEP_ADDRESS_OF)
3052 {
3053 /* If we are interested in comparing addresses ignore
3054 MEM_REF wrappings of the base that can appear just for
3055 TBAA reasons. */
3056 if (TREE_CODE (arg0) == MEM_REF
3057 && DECL_P (arg1)
3058 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
3059 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
3060 && integer_zerop (TREE_OPERAND (arg0, 1)))
3061 return true;
3062 else if (TREE_CODE (arg1) == MEM_REF
3063 && DECL_P (arg0)
3064 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
3065 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
3066 && integer_zerop (TREE_OPERAND (arg1, 1)))
3067 return true;
3068 return false;
3069 }
3070 else
3071 return false;
3072 }
3073
3074 /* When not checking adddresses, this is needed for conversions and for
3075 COMPONENT_REF. Might as well play it safe and always test this. */
3076 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3077 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3078 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
3079 && !(flags & OEP_ADDRESS_OF)))
3080 return false;
3081
3082 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3083 We don't care about side effects in that case because the SAVE_EXPR
3084 takes care of that for us. In all other cases, two expressions are
3085 equal if they have no side effects. If we have two identical
3086 expressions with side effects that should be treated the same due
3087 to the only side effects being identical SAVE_EXPR's, that will
3088 be detected in the recursive calls below.
3089 If we are taking an invariant address of two identical objects
3090 they are necessarily equal as well. */
3091 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3092 && (TREE_CODE (arg0) == SAVE_EXPR
3093 || (flags & OEP_MATCH_SIDE_EFFECTS)
3094 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3095 return true;
3096
3097 /* Next handle constant cases, those for which we can return 1 even
3098 if ONLY_CONST is set. */
3099 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3100 switch (TREE_CODE (arg0))
3101 {
3102 case INTEGER_CST:
3103 return tree_int_cst_equal (arg0, arg1);
3104
3105 case FIXED_CST:
3106 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3107 TREE_FIXED_CST (arg1));
3108
3109 case REAL_CST:
3110 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
3111 return true;
3112
3113 if (!(flags & OEP_BITWISE) && !HONOR_SIGNED_ZEROS (arg0))
3114 {
3115 /* If we do not distinguish between signed and unsigned zero,
3116 consider them equal. */
3117 if (real_zerop (arg0) && real_zerop (arg1))
3118 return true;
3119 }
3120 return false;
3121
3122 case VECTOR_CST:
3123 {
3124 if (VECTOR_CST_LOG2_NPATTERNS (arg0)
3125 != VECTOR_CST_LOG2_NPATTERNS (arg1))
3126 return false;
3127
3128 if (VECTOR_CST_NELTS_PER_PATTERN (arg0)
3129 != VECTOR_CST_NELTS_PER_PATTERN (arg1))
3130 return false;
3131
3132 unsigned int count = vector_cst_encoded_nelts (arg0);
3133 for (unsigned int i = 0; i < count; ++i)
3134 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i),
3135 VECTOR_CST_ENCODED_ELT (arg1, i), flags))
3136 return false;
3137 return true;
3138 }
3139
3140 case COMPLEX_CST:
3141 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3142 flags)
3143 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3144 flags));
3145
3146 case STRING_CST:
3147 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3148 && ! memcmp (TREE_STRING_POINTER (arg0),
3149 TREE_STRING_POINTER (arg1),
3150 TREE_STRING_LENGTH (arg0)));
3151
3152 case ADDR_EXPR:
3153 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3154 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3155 flags | OEP_ADDRESS_OF
3156 | OEP_MATCH_SIDE_EFFECTS);
3157 case CONSTRUCTOR:
3158 /* In GIMPLE empty constructors are allowed in initializers of
3159 aggregates. */
3160 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
3161 default:
3162 break;
3163 }
3164
3165 /* Don't handle more cases for OEP_BITWISE, since we can't guarantee that
3166 two instances of undefined behavior will give identical results. */
3167 if (flags & (OEP_ONLY_CONST | OEP_BITWISE))
3168 return false;
3169
3170 /* Define macros to test an operand from arg0 and arg1 for equality and a
3171 variant that allows null and views null as being different from any
3172 non-null value. In the latter case, if either is null, the both
3173 must be; otherwise, do the normal comparison. */
3174 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3175 TREE_OPERAND (arg1, N), flags)
3176
3177 #define OP_SAME_WITH_NULL(N) \
3178 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3179 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3180
3181 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3182 {
3183 case tcc_unary:
3184 /* Two conversions are equal only if signedness and modes match. */
3185 switch (TREE_CODE (arg0))
3186 {
3187 CASE_CONVERT:
3188 case FIX_TRUNC_EXPR:
3189 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3190 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3191 return false;
3192 break;
3193 default:
3194 break;
3195 }
3196
3197 return OP_SAME (0);
3198
3199
3200 case tcc_comparison:
3201 case tcc_binary:
3202 if (OP_SAME (0) && OP_SAME (1))
3203 return true;
3204
3205 /* For commutative ops, allow the other order. */
3206 return (commutative_tree_code (TREE_CODE (arg0))
3207 && operand_equal_p (TREE_OPERAND (arg0, 0),
3208 TREE_OPERAND (arg1, 1), flags)
3209 && operand_equal_p (TREE_OPERAND (arg0, 1),
3210 TREE_OPERAND (arg1, 0), flags));
3211
3212 case tcc_reference:
3213 /* If either of the pointer (or reference) expressions we are
3214 dereferencing contain a side effect, these cannot be equal,
3215 but their addresses can be. */
3216 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3217 && (TREE_SIDE_EFFECTS (arg0)
3218 || TREE_SIDE_EFFECTS (arg1)))
3219 return false;
3220
3221 switch (TREE_CODE (arg0))
3222 {
3223 case INDIRECT_REF:
3224 if (!(flags & OEP_ADDRESS_OF))
3225 {
3226 if (TYPE_ALIGN (TREE_TYPE (arg0))
3227 != TYPE_ALIGN (TREE_TYPE (arg1)))
3228 return false;
3229 /* Verify that the access types are compatible. */
3230 if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0))
3231 != TYPE_MAIN_VARIANT (TREE_TYPE (arg1)))
3232 return false;
3233 }
3234 flags &= ~OEP_ADDRESS_OF;
3235 return OP_SAME (0);
3236
3237 case IMAGPART_EXPR:
3238 /* Require the same offset. */
3239 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3240 TYPE_SIZE (TREE_TYPE (arg1)),
3241 flags & ~OEP_ADDRESS_OF))
3242 return false;
3243
3244 /* Fallthru. */
3245 case REALPART_EXPR:
3246 case VIEW_CONVERT_EXPR:
3247 return OP_SAME (0);
3248
3249 case TARGET_MEM_REF:
3250 case MEM_REF:
3251 if (!(flags & OEP_ADDRESS_OF))
3252 {
3253 /* Require equal access sizes */
3254 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3255 && (!TYPE_SIZE (TREE_TYPE (arg0))
3256 || !TYPE_SIZE (TREE_TYPE (arg1))
3257 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3258 TYPE_SIZE (TREE_TYPE (arg1)),
3259 flags)))
3260 return false;
3261 /* Verify that access happens in similar types. */
3262 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3263 return false;
3264 /* Verify that accesses are TBAA compatible. */
3265 if (!alias_ptr_types_compatible_p
3266 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3267 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3268 || (MR_DEPENDENCE_CLIQUE (arg0)
3269 != MR_DEPENDENCE_CLIQUE (arg1))
3270 || (MR_DEPENDENCE_BASE (arg0)
3271 != MR_DEPENDENCE_BASE (arg1)))
3272 return false;
3273 /* Verify that alignment is compatible. */
3274 if (TYPE_ALIGN (TREE_TYPE (arg0))
3275 != TYPE_ALIGN (TREE_TYPE (arg1)))
3276 return false;
3277 }
3278 flags &= ~OEP_ADDRESS_OF;
3279 return (OP_SAME (0) && OP_SAME (1)
3280 /* TARGET_MEM_REF require equal extra operands. */
3281 && (TREE_CODE (arg0) != TARGET_MEM_REF
3282 || (OP_SAME_WITH_NULL (2)
3283 && OP_SAME_WITH_NULL (3)
3284 && OP_SAME_WITH_NULL (4))));
3285
3286 case ARRAY_REF:
3287 case ARRAY_RANGE_REF:
3288 if (!OP_SAME (0))
3289 return false;
3290 flags &= ~OEP_ADDRESS_OF;
3291 /* Compare the array index by value if it is constant first as we
3292 may have different types but same value here. */
3293 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3294 TREE_OPERAND (arg1, 1))
3295 || OP_SAME (1))
3296 && OP_SAME_WITH_NULL (2)
3297 && OP_SAME_WITH_NULL (3)
3298 /* Compare low bound and element size as with OEP_ADDRESS_OF
3299 we have to account for the offset of the ref. */
3300 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3301 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3302 || (operand_equal_p (array_ref_low_bound
3303 (CONST_CAST_TREE (arg0)),
3304 array_ref_low_bound
3305 (CONST_CAST_TREE (arg1)), flags)
3306 && operand_equal_p (array_ref_element_size
3307 (CONST_CAST_TREE (arg0)),
3308 array_ref_element_size
3309 (CONST_CAST_TREE (arg1)),
3310 flags))));
3311
3312 case COMPONENT_REF:
3313 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3314 may be NULL when we're called to compare MEM_EXPRs. */
3315 if (!OP_SAME_WITH_NULL (0)
3316 || !OP_SAME (1))
3317 return false;
3318 flags &= ~OEP_ADDRESS_OF;
3319 return OP_SAME_WITH_NULL (2);
3320
3321 case BIT_FIELD_REF:
3322 if (!OP_SAME (0))
3323 return false;
3324 flags &= ~OEP_ADDRESS_OF;
3325 return OP_SAME (1) && OP_SAME (2);
3326
3327 /* Virtual table call. */
3328 case OBJ_TYPE_REF:
3329 {
3330 if (!operand_equal_p (OBJ_TYPE_REF_EXPR (arg0),
3331 OBJ_TYPE_REF_EXPR (arg1), flags))
3332 return false;
3333 if (tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg0))
3334 != tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg1)))
3335 return false;
3336 if (!operand_equal_p (OBJ_TYPE_REF_OBJECT (arg0),
3337 OBJ_TYPE_REF_OBJECT (arg1), flags))
3338 return false;
3339 if (!types_same_for_odr (obj_type_ref_class (arg0),
3340 obj_type_ref_class (arg1)))
3341 return false;
3342 return true;
3343 }
3344
3345 default:
3346 return false;
3347 }
3348
3349 case tcc_expression:
3350 switch (TREE_CODE (arg0))
3351 {
3352 case ADDR_EXPR:
3353 /* Be sure we pass right ADDRESS_OF flag. */
3354 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3355 return operand_equal_p (TREE_OPERAND (arg0, 0),
3356 TREE_OPERAND (arg1, 0),
3357 flags | OEP_ADDRESS_OF);
3358
3359 case TRUTH_NOT_EXPR:
3360 return OP_SAME (0);
3361
3362 case TRUTH_ANDIF_EXPR:
3363 case TRUTH_ORIF_EXPR:
3364 return OP_SAME (0) && OP_SAME (1);
3365
3366 case WIDEN_MULT_PLUS_EXPR:
3367 case WIDEN_MULT_MINUS_EXPR:
3368 if (!OP_SAME (2))
3369 return false;
3370 /* The multiplcation operands are commutative. */
3371 /* FALLTHRU */
3372
3373 case TRUTH_AND_EXPR:
3374 case TRUTH_OR_EXPR:
3375 case TRUTH_XOR_EXPR:
3376 if (OP_SAME (0) && OP_SAME (1))
3377 return true;
3378
3379 /* Otherwise take into account this is a commutative operation. */
3380 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3381 TREE_OPERAND (arg1, 1), flags)
3382 && operand_equal_p (TREE_OPERAND (arg0, 1),
3383 TREE_OPERAND (arg1, 0), flags));
3384
3385 case COND_EXPR:
3386 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3387 return false;
3388 flags &= ~OEP_ADDRESS_OF;
3389 return OP_SAME (0);
3390
3391 case BIT_INSERT_EXPR:
3392 /* BIT_INSERT_EXPR has an implict operand as the type precision
3393 of op1. Need to check to make sure they are the same. */
3394 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3395 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3396 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3397 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3398 return false;
3399 /* FALLTHRU */
3400
3401 case VEC_COND_EXPR:
3402 case DOT_PROD_EXPR:
3403 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3404
3405 case MODIFY_EXPR:
3406 case INIT_EXPR:
3407 case COMPOUND_EXPR:
3408 case PREDECREMENT_EXPR:
3409 case PREINCREMENT_EXPR:
3410 case POSTDECREMENT_EXPR:
3411 case POSTINCREMENT_EXPR:
3412 if (flags & OEP_LEXICOGRAPHIC)
3413 return OP_SAME (0) && OP_SAME (1);
3414 return false;
3415
3416 case CLEANUP_POINT_EXPR:
3417 case EXPR_STMT:
3418 case SAVE_EXPR:
3419 if (flags & OEP_LEXICOGRAPHIC)
3420 return OP_SAME (0);
3421 return false;
3422
3423 default:
3424 return false;
3425 }
3426
3427 case tcc_vl_exp:
3428 switch (TREE_CODE (arg0))
3429 {
3430 case CALL_EXPR:
3431 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3432 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3433 /* If not both CALL_EXPRs are either internal or normal function
3434 functions, then they are not equal. */
3435 return false;
3436 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3437 {
3438 /* If the CALL_EXPRs call different internal functions, then they
3439 are not equal. */
3440 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3441 return false;
3442 }
3443 else
3444 {
3445 /* If the CALL_EXPRs call different functions, then they are not
3446 equal. */
3447 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3448 flags))
3449 return false;
3450 }
3451
3452 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3453 {
3454 unsigned int cef = call_expr_flags (arg0);
3455 if (flags & OEP_PURE_SAME)
3456 cef &= ECF_CONST | ECF_PURE;
3457 else
3458 cef &= ECF_CONST;
3459 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3460 return false;
3461 }
3462
3463 /* Now see if all the arguments are the same. */
3464 {
3465 const_call_expr_arg_iterator iter0, iter1;
3466 const_tree a0, a1;
3467 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3468 a1 = first_const_call_expr_arg (arg1, &iter1);
3469 a0 && a1;
3470 a0 = next_const_call_expr_arg (&iter0),
3471 a1 = next_const_call_expr_arg (&iter1))
3472 if (! operand_equal_p (a0, a1, flags))
3473 return false;
3474
3475 /* If we get here and both argument lists are exhausted
3476 then the CALL_EXPRs are equal. */
3477 return ! (a0 || a1);
3478 }
3479 default:
3480 return false;
3481 }
3482
3483 case tcc_declaration:
3484 /* Consider __builtin_sqrt equal to sqrt. */
3485 return (TREE_CODE (arg0) == FUNCTION_DECL
3486 && fndecl_built_in_p (arg0) && fndecl_built_in_p (arg1)
3487 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3488 && (DECL_UNCHECKED_FUNCTION_CODE (arg0)
3489 == DECL_UNCHECKED_FUNCTION_CODE (arg1)));
3490
3491 case tcc_exceptional:
3492 if (TREE_CODE (arg0) == CONSTRUCTOR)
3493 {
3494 if (CONSTRUCTOR_NO_CLEARING (arg0) != CONSTRUCTOR_NO_CLEARING (arg1))
3495 return false;
3496
3497 /* In GIMPLE constructors are used only to build vectors from
3498 elements. Individual elements in the constructor must be
3499 indexed in increasing order and form an initial sequence.
3500
3501 We make no effort to compare constructors in generic.
3502 (see sem_variable::equals in ipa-icf which can do so for
3503 constants). */
3504 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3505 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3506 return false;
3507
3508 /* Be sure that vectors constructed have the same representation.
3509 We only tested element precision and modes to match.
3510 Vectors may be BLKmode and thus also check that the number of
3511 parts match. */
3512 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
3513 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))))
3514 return false;
3515
3516 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3517 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3518 unsigned int len = vec_safe_length (v0);
3519
3520 if (len != vec_safe_length (v1))
3521 return false;
3522
3523 for (unsigned int i = 0; i < len; i++)
3524 {
3525 constructor_elt *c0 = &(*v0)[i];
3526 constructor_elt *c1 = &(*v1)[i];
3527
3528 if (!operand_equal_p (c0->value, c1->value, flags)
3529 /* In GIMPLE the indexes can be either NULL or matching i.
3530 Double check this so we won't get false
3531 positives for GENERIC. */
3532 || (c0->index
3533 && (TREE_CODE (c0->index) != INTEGER_CST
3534 || compare_tree_int (c0->index, i)))
3535 || (c1->index
3536 && (TREE_CODE (c1->index) != INTEGER_CST
3537 || compare_tree_int (c1->index, i))))
3538 return false;
3539 }
3540 return true;
3541 }
3542 else if (TREE_CODE (arg0) == STATEMENT_LIST
3543 && (flags & OEP_LEXICOGRAPHIC))
3544 {
3545 /* Compare the STATEMENT_LISTs. */
3546 tree_stmt_iterator tsi1, tsi2;
3547 tree body1 = CONST_CAST_TREE (arg0);
3548 tree body2 = CONST_CAST_TREE (arg1);
3549 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3550 tsi_next (&tsi1), tsi_next (&tsi2))
3551 {
3552 /* The lists don't have the same number of statements. */
3553 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3554 return false;
3555 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3556 return true;
3557 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3558 flags & (OEP_LEXICOGRAPHIC
3559 | OEP_NO_HASH_CHECK)))
3560 return false;
3561 }
3562 }
3563 return false;
3564
3565 case tcc_statement:
3566 switch (TREE_CODE (arg0))
3567 {
3568 case RETURN_EXPR:
3569 if (flags & OEP_LEXICOGRAPHIC)
3570 return OP_SAME_WITH_NULL (0);
3571 return false;
3572 case DEBUG_BEGIN_STMT:
3573 if (flags & OEP_LEXICOGRAPHIC)
3574 return true;
3575 return false;
3576 default:
3577 return false;
3578 }
3579
3580 default:
3581 return false;
3582 }
3583
3584 #undef OP_SAME
3585 #undef OP_SAME_WITH_NULL
3586 }
3587
3588 /* Generate a hash value for an expression. This can be used iteratively
3589 by passing a previous result as the HSTATE argument. */
3590
3591 void
3592 operand_compare::hash_operand (const_tree t, inchash::hash &hstate,
3593 unsigned int flags)
3594 {
3595 int i;
3596 enum tree_code code;
3597 enum tree_code_class tclass;
3598
3599 if (t == NULL_TREE || t == error_mark_node)
3600 {
3601 hstate.merge_hash (0);
3602 return;
3603 }
3604
3605 STRIP_ANY_LOCATION_WRAPPER (t);
3606
3607 if (!(flags & OEP_ADDRESS_OF))
3608 STRIP_NOPS (t);
3609
3610 code = TREE_CODE (t);
3611
3612 switch (code)
3613 {
3614 /* Alas, constants aren't shared, so we can't rely on pointer
3615 identity. */
3616 case VOID_CST:
3617 hstate.merge_hash (0);
3618 return;
3619 case INTEGER_CST:
3620 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3621 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
3622 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
3623 return;
3624 case REAL_CST:
3625 {
3626 unsigned int val2;
3627 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
3628 val2 = rvc_zero;
3629 else
3630 val2 = real_hash (TREE_REAL_CST_PTR (t));
3631 hstate.merge_hash (val2);
3632 return;
3633 }
3634 case FIXED_CST:
3635 {
3636 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
3637 hstate.merge_hash (val2);
3638 return;
3639 }
3640 case STRING_CST:
3641 hstate.add ((const void *) TREE_STRING_POINTER (t),
3642 TREE_STRING_LENGTH (t));
3643 return;
3644 case COMPLEX_CST:
3645 hash_operand (TREE_REALPART (t), hstate, flags);
3646 hash_operand (TREE_IMAGPART (t), hstate, flags);
3647 return;
3648 case VECTOR_CST:
3649 {
3650 hstate.add_int (VECTOR_CST_NPATTERNS (t));
3651 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
3652 unsigned int count = vector_cst_encoded_nelts (t);
3653 for (unsigned int i = 0; i < count; ++i)
3654 hash_operand (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
3655 return;
3656 }
3657 case SSA_NAME:
3658 /* We can just compare by pointer. */
3659 hstate.add_hwi (SSA_NAME_VERSION (t));
3660 return;
3661 case PLACEHOLDER_EXPR:
3662 /* The node itself doesn't matter. */
3663 return;
3664 case BLOCK:
3665 case OMP_CLAUSE:
3666 /* Ignore. */
3667 return;
3668 case TREE_LIST:
3669 /* A list of expressions, for a CALL_EXPR or as the elements of a
3670 VECTOR_CST. */
3671 for (; t; t = TREE_CHAIN (t))
3672 hash_operand (TREE_VALUE (t), hstate, flags);
3673 return;
3674 case CONSTRUCTOR:
3675 {
3676 unsigned HOST_WIDE_INT idx;
3677 tree field, value;
3678 flags &= ~OEP_ADDRESS_OF;
3679 hstate.add_int (CONSTRUCTOR_NO_CLEARING (t));
3680 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
3681 {
3682 /* In GIMPLE the indexes can be either NULL or matching i. */
3683 if (field == NULL_TREE)
3684 field = bitsize_int (idx);
3685 hash_operand (field, hstate, flags);
3686 hash_operand (value, hstate, flags);
3687 }
3688 return;
3689 }
3690 case STATEMENT_LIST:
3691 {
3692 tree_stmt_iterator i;
3693 for (i = tsi_start (CONST_CAST_TREE (t));
3694 !tsi_end_p (i); tsi_next (&i))
3695 hash_operand (tsi_stmt (i), hstate, flags);
3696 return;
3697 }
3698 case TREE_VEC:
3699 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
3700 hash_operand (TREE_VEC_ELT (t, i), hstate, flags);
3701 return;
3702 case IDENTIFIER_NODE:
3703 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
3704 return;
3705 case FUNCTION_DECL:
3706 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
3707 Otherwise nodes that compare equal according to operand_equal_p might
3708 get different hash codes. However, don't do this for machine specific
3709 or front end builtins, since the function code is overloaded in those
3710 cases. */
3711 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
3712 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
3713 {
3714 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
3715 code = TREE_CODE (t);
3716 }
3717 /* FALL THROUGH */
3718 default:
3719 if (POLY_INT_CST_P (t))
3720 {
3721 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3722 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
3723 return;
3724 }
3725 tclass = TREE_CODE_CLASS (code);
3726
3727 if (tclass == tcc_declaration)
3728 {
3729 /* DECL's have a unique ID */
3730 hstate.add_hwi (DECL_UID (t));
3731 }
3732 else if (tclass == tcc_comparison && !commutative_tree_code (code))
3733 {
3734 /* For comparisons that can be swapped, use the lower
3735 tree code. */
3736 enum tree_code ccode = swap_tree_comparison (code);
3737 if (code < ccode)
3738 ccode = code;
3739 hstate.add_object (ccode);
3740 hash_operand (TREE_OPERAND (t, ccode != code), hstate, flags);
3741 hash_operand (TREE_OPERAND (t, ccode == code), hstate, flags);
3742 }
3743 else if (CONVERT_EXPR_CODE_P (code))
3744 {
3745 /* NOP_EXPR and CONVERT_EXPR are considered equal by
3746 operand_equal_p. */
3747 enum tree_code ccode = NOP_EXPR;
3748 hstate.add_object (ccode);
3749
3750 /* Don't hash the type, that can lead to having nodes which
3751 compare equal according to operand_equal_p, but which
3752 have different hash codes. Make sure to include signedness
3753 in the hash computation. */
3754 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
3755 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3756 }
3757 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
3758 else if (code == MEM_REF
3759 && (flags & OEP_ADDRESS_OF) != 0
3760 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
3761 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
3762 && integer_zerop (TREE_OPERAND (t, 1)))
3763 hash_operand (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
3764 hstate, flags);
3765 /* Don't ICE on FE specific trees, or their arguments etc.
3766 during operand_equal_p hash verification. */
3767 else if (!IS_EXPR_CODE_CLASS (tclass))
3768 gcc_assert (flags & OEP_HASH_CHECK);
3769 else
3770 {
3771 unsigned int sflags = flags;
3772
3773 hstate.add_object (code);
3774
3775 switch (code)
3776 {
3777 case ADDR_EXPR:
3778 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3779 flags |= OEP_ADDRESS_OF;
3780 sflags = flags;
3781 break;
3782
3783 case INDIRECT_REF:
3784 case MEM_REF:
3785 case TARGET_MEM_REF:
3786 flags &= ~OEP_ADDRESS_OF;
3787 sflags = flags;
3788 break;
3789
3790 case ARRAY_REF:
3791 case ARRAY_RANGE_REF:
3792 case COMPONENT_REF:
3793 case BIT_FIELD_REF:
3794 sflags &= ~OEP_ADDRESS_OF;
3795 break;
3796
3797 case COND_EXPR:
3798 flags &= ~OEP_ADDRESS_OF;
3799 break;
3800
3801 case WIDEN_MULT_PLUS_EXPR:
3802 case WIDEN_MULT_MINUS_EXPR:
3803 {
3804 /* The multiplication operands are commutative. */
3805 inchash::hash one, two;
3806 hash_operand (TREE_OPERAND (t, 0), one, flags);
3807 hash_operand (TREE_OPERAND (t, 1), two, flags);
3808 hstate.add_commutative (one, two);
3809 hash_operand (TREE_OPERAND (t, 2), two, flags);
3810 return;
3811 }
3812
3813 case CALL_EXPR:
3814 if (CALL_EXPR_FN (t) == NULL_TREE)
3815 hstate.add_int (CALL_EXPR_IFN (t));
3816 break;
3817
3818 case TARGET_EXPR:
3819 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
3820 Usually different TARGET_EXPRs just should use
3821 different temporaries in their slots. */
3822 hash_operand (TARGET_EXPR_SLOT (t), hstate, flags);
3823 return;
3824
3825 /* Virtual table call. */
3826 case OBJ_TYPE_REF:
3827 inchash::add_expr (OBJ_TYPE_REF_EXPR (t), hstate, flags);
3828 inchash::add_expr (OBJ_TYPE_REF_TOKEN (t), hstate, flags);
3829 inchash::add_expr (OBJ_TYPE_REF_OBJECT (t), hstate, flags);
3830 return;
3831 default:
3832 break;
3833 }
3834
3835 /* Don't hash the type, that can lead to having nodes which
3836 compare equal according to operand_equal_p, but which
3837 have different hash codes. */
3838 if (code == NON_LVALUE_EXPR)
3839 {
3840 /* Make sure to include signness in the hash computation. */
3841 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
3842 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3843 }
3844
3845 else if (commutative_tree_code (code))
3846 {
3847 /* It's a commutative expression. We want to hash it the same
3848 however it appears. We do this by first hashing both operands
3849 and then rehashing based on the order of their independent
3850 hashes. */
3851 inchash::hash one, two;
3852 hash_operand (TREE_OPERAND (t, 0), one, flags);
3853 hash_operand (TREE_OPERAND (t, 1), two, flags);
3854 hstate.add_commutative (one, two);
3855 }
3856 else
3857 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
3858 hash_operand (TREE_OPERAND (t, i), hstate,
3859 i == 0 ? flags : sflags);
3860 }
3861 return;
3862 }
3863 }
3864
3865 bool
3866 operand_compare::verify_hash_value (const_tree arg0, const_tree arg1,
3867 unsigned int flags, bool *ret)
3868 {
3869 /* When checking, verify at the outermost operand_equal_p call that
3870 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
3871 hash value. */
3872 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
3873 {
3874 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
3875 {
3876 if (arg0 != arg1)
3877 {
3878 inchash::hash hstate0 (0), hstate1 (0);
3879 hash_operand (arg0, hstate0, flags | OEP_HASH_CHECK);
3880 hash_operand (arg1, hstate1, flags | OEP_HASH_CHECK);
3881 hashval_t h0 = hstate0.end ();
3882 hashval_t h1 = hstate1.end ();
3883 gcc_assert (h0 == h1);
3884 }
3885 *ret = true;
3886 }
3887 else
3888 *ret = false;
3889
3890 return true;
3891 }
3892
3893 return false;
3894 }
3895
3896
3897 static operand_compare default_compare_instance;
3898
3899 /* Conveinece wrapper around operand_compare class because usually we do
3900 not need to play with the valueizer. */
3901
3902 bool
3903 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
3904 {
3905 return default_compare_instance.operand_equal_p (arg0, arg1, flags);
3906 }
3907
3908 namespace inchash
3909 {
3910
3911 /* Generate a hash value for an expression. This can be used iteratively
3912 by passing a previous result as the HSTATE argument.
3913
3914 This function is intended to produce the same hash for expressions which
3915 would compare equal using operand_equal_p. */
3916 void
3917 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
3918 {
3919 default_compare_instance.hash_operand (t, hstate, flags);
3920 }
3921
3922 }
3923 \f
3924 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3925 with a different signedness or a narrower precision. */
3926
3927 static bool
3928 operand_equal_for_comparison_p (tree arg0, tree arg1)
3929 {
3930 if (operand_equal_p (arg0, arg1, 0))
3931 return true;
3932
3933 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3934 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3935 return false;
3936
3937 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3938 and see if the inner values are the same. This removes any
3939 signedness comparison, which doesn't matter here. */
3940 tree op0 = arg0;
3941 tree op1 = arg1;
3942 STRIP_NOPS (op0);
3943 STRIP_NOPS (op1);
3944 if (operand_equal_p (op0, op1, 0))
3945 return true;
3946
3947 /* Discard a single widening conversion from ARG1 and see if the inner
3948 value is the same as ARG0. */
3949 if (CONVERT_EXPR_P (arg1)
3950 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3951 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3952 < TYPE_PRECISION (TREE_TYPE (arg1))
3953 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
3954 return true;
3955
3956 return false;
3957 }
3958 \f
3959 /* See if ARG is an expression that is either a comparison or is performing
3960 arithmetic on comparisons. The comparisons must only be comparing
3961 two different values, which will be stored in *CVAL1 and *CVAL2; if
3962 they are nonzero it means that some operands have already been found.
3963 No variables may be used anywhere else in the expression except in the
3964 comparisons.
3965
3966 If this is true, return 1. Otherwise, return zero. */
3967
3968 static bool
3969 twoval_comparison_p (tree arg, tree *cval1, tree *cval2)
3970 {
3971 enum tree_code code = TREE_CODE (arg);
3972 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3973
3974 /* We can handle some of the tcc_expression cases here. */
3975 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3976 tclass = tcc_unary;
3977 else if (tclass == tcc_expression
3978 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3979 || code == COMPOUND_EXPR))
3980 tclass = tcc_binary;
3981
3982 switch (tclass)
3983 {
3984 case tcc_unary:
3985 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2);
3986
3987 case tcc_binary:
3988 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3989 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2));
3990
3991 case tcc_constant:
3992 return true;
3993
3994 case tcc_expression:
3995 if (code == COND_EXPR)
3996 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3997 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)
3998 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2));
3999 return false;
4000
4001 case tcc_comparison:
4002 /* First see if we can handle the first operand, then the second. For
4003 the second operand, we know *CVAL1 can't be zero. It must be that
4004 one side of the comparison is each of the values; test for the
4005 case where this isn't true by failing if the two operands
4006 are the same. */
4007
4008 if (operand_equal_p (TREE_OPERAND (arg, 0),
4009 TREE_OPERAND (arg, 1), 0))
4010 return false;
4011
4012 if (*cval1 == 0)
4013 *cval1 = TREE_OPERAND (arg, 0);
4014 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
4015 ;
4016 else if (*cval2 == 0)
4017 *cval2 = TREE_OPERAND (arg, 0);
4018 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
4019 ;
4020 else
4021 return false;
4022
4023 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
4024 ;
4025 else if (*cval2 == 0)
4026 *cval2 = TREE_OPERAND (arg, 1);
4027 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
4028 ;
4029 else
4030 return false;
4031
4032 return true;
4033
4034 default:
4035 return false;
4036 }
4037 }
4038 \f
4039 /* ARG is a tree that is known to contain just arithmetic operations and
4040 comparisons. Evaluate the operations in the tree substituting NEW0 for
4041 any occurrence of OLD0 as an operand of a comparison and likewise for
4042 NEW1 and OLD1. */
4043
4044 static tree
4045 eval_subst (location_t loc, tree arg, tree old0, tree new0,
4046 tree old1, tree new1)
4047 {
4048 tree type = TREE_TYPE (arg);
4049 enum tree_code code = TREE_CODE (arg);
4050 enum tree_code_class tclass = TREE_CODE_CLASS (code);
4051
4052 /* We can handle some of the tcc_expression cases here. */
4053 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
4054 tclass = tcc_unary;
4055 else if (tclass == tcc_expression
4056 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
4057 tclass = tcc_binary;
4058
4059 switch (tclass)
4060 {
4061 case tcc_unary:
4062 return fold_build1_loc (loc, code, type,
4063 eval_subst (loc, TREE_OPERAND (arg, 0),
4064 old0, new0, old1, new1));
4065
4066 case tcc_binary:
4067 return fold_build2_loc (loc, code, type,
4068 eval_subst (loc, TREE_OPERAND (arg, 0),
4069 old0, new0, old1, new1),
4070 eval_subst (loc, TREE_OPERAND (arg, 1),
4071 old0, new0, old1, new1));
4072
4073 case tcc_expression:
4074 switch (code)
4075 {
4076 case SAVE_EXPR:
4077 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
4078 old1, new1);
4079
4080 case COMPOUND_EXPR:
4081 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
4082 old1, new1);
4083
4084 case COND_EXPR:
4085 return fold_build3_loc (loc, code, type,
4086 eval_subst (loc, TREE_OPERAND (arg, 0),
4087 old0, new0, old1, new1),
4088 eval_subst (loc, TREE_OPERAND (arg, 1),
4089 old0, new0, old1, new1),
4090 eval_subst (loc, TREE_OPERAND (arg, 2),
4091 old0, new0, old1, new1));
4092 default:
4093 break;
4094 }
4095 /* Fall through - ??? */
4096
4097 case tcc_comparison:
4098 {
4099 tree arg0 = TREE_OPERAND (arg, 0);
4100 tree arg1 = TREE_OPERAND (arg, 1);
4101
4102 /* We need to check both for exact equality and tree equality. The
4103 former will be true if the operand has a side-effect. In that
4104 case, we know the operand occurred exactly once. */
4105
4106 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
4107 arg0 = new0;
4108 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
4109 arg0 = new1;
4110
4111 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
4112 arg1 = new0;
4113 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
4114 arg1 = new1;
4115
4116 return fold_build2_loc (loc, code, type, arg0, arg1);
4117 }
4118
4119 default:
4120 return arg;
4121 }
4122 }
4123 \f
4124 /* Return a tree for the case when the result of an expression is RESULT
4125 converted to TYPE and OMITTED was previously an operand of the expression
4126 but is now not needed (e.g., we folded OMITTED * 0).
4127
4128 If OMITTED has side effects, we must evaluate it. Otherwise, just do
4129 the conversion of RESULT to TYPE. */
4130
4131 tree
4132 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
4133 {
4134 tree t = fold_convert_loc (loc, type, result);
4135
4136 /* If the resulting operand is an empty statement, just return the omitted
4137 statement casted to void. */
4138 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
4139 return build1_loc (loc, NOP_EXPR, void_type_node,
4140 fold_ignored_result (omitted));
4141
4142 if (TREE_SIDE_EFFECTS (omitted))
4143 return build2_loc (loc, COMPOUND_EXPR, type,
4144 fold_ignored_result (omitted), t);
4145
4146 return non_lvalue_loc (loc, t);
4147 }
4148
4149 /* Return a tree for the case when the result of an expression is RESULT
4150 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
4151 of the expression but are now not needed.
4152
4153 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
4154 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
4155 evaluated before OMITTED2. Otherwise, if neither has side effects,
4156 just do the conversion of RESULT to TYPE. */
4157
4158 tree
4159 omit_two_operands_loc (location_t loc, tree type, tree result,
4160 tree omitted1, tree omitted2)
4161 {
4162 tree t = fold_convert_loc (loc, type, result);
4163
4164 if (TREE_SIDE_EFFECTS (omitted2))
4165 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
4166 if (TREE_SIDE_EFFECTS (omitted1))
4167 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
4168
4169 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
4170 }
4171
4172 \f
4173 /* Return a simplified tree node for the truth-negation of ARG. This
4174 never alters ARG itself. We assume that ARG is an operation that
4175 returns a truth value (0 or 1).
4176
4177 FIXME: one would think we would fold the result, but it causes
4178 problems with the dominator optimizer. */
4179
4180 static tree
4181 fold_truth_not_expr (location_t loc, tree arg)
4182 {
4183 tree type = TREE_TYPE (arg);
4184 enum tree_code code = TREE_CODE (arg);
4185 location_t loc1, loc2;
4186
4187 /* If this is a comparison, we can simply invert it, except for
4188 floating-point non-equality comparisons, in which case we just
4189 enclose a TRUTH_NOT_EXPR around what we have. */
4190
4191 if (TREE_CODE_CLASS (code) == tcc_comparison)
4192 {
4193 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
4194 if (FLOAT_TYPE_P (op_type)
4195 && flag_trapping_math
4196 && code != ORDERED_EXPR && code != UNORDERED_EXPR
4197 && code != NE_EXPR && code != EQ_EXPR)
4198 return NULL_TREE;
4199
4200 code = invert_tree_comparison (code, HONOR_NANS (op_type));
4201 if (code == ERROR_MARK)
4202 return NULL_TREE;
4203
4204 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
4205 TREE_OPERAND (arg, 1));
4206 if (TREE_NO_WARNING (arg))
4207 TREE_NO_WARNING (ret) = 1;
4208 return ret;
4209 }
4210
4211 switch (code)
4212 {
4213 case INTEGER_CST:
4214 return constant_boolean_node (integer_zerop (arg), type);
4215
4216 case TRUTH_AND_EXPR:
4217 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4218 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4219 return build2_loc (loc, TRUTH_OR_EXPR, type,
4220 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4221 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4222
4223 case TRUTH_OR_EXPR:
4224 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4225 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4226 return build2_loc (loc, TRUTH_AND_EXPR, type,
4227 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4228 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4229
4230 case TRUTH_XOR_EXPR:
4231 /* Here we can invert either operand. We invert the first operand
4232 unless the second operand is a TRUTH_NOT_EXPR in which case our
4233 result is the XOR of the first operand with the inside of the
4234 negation of the second operand. */
4235
4236 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
4237 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
4238 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
4239 else
4240 return build2_loc (loc, TRUTH_XOR_EXPR, type,
4241 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
4242 TREE_OPERAND (arg, 1));
4243
4244 case TRUTH_ANDIF_EXPR:
4245 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4246 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4247 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
4248 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4249 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4250
4251 case TRUTH_ORIF_EXPR:
4252 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4253 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4254 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
4255 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4256 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4257
4258 case TRUTH_NOT_EXPR:
4259 return TREE_OPERAND (arg, 0);
4260
4261 case COND_EXPR:
4262 {
4263 tree arg1 = TREE_OPERAND (arg, 1);
4264 tree arg2 = TREE_OPERAND (arg, 2);
4265
4266 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4267 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
4268
4269 /* A COND_EXPR may have a throw as one operand, which
4270 then has void type. Just leave void operands
4271 as they are. */
4272 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
4273 VOID_TYPE_P (TREE_TYPE (arg1))
4274 ? arg1 : invert_truthvalue_loc (loc1, arg1),
4275 VOID_TYPE_P (TREE_TYPE (arg2))
4276 ? arg2 : invert_truthvalue_loc (loc2, arg2));
4277 }
4278
4279 case COMPOUND_EXPR:
4280 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4281 return build2_loc (loc, COMPOUND_EXPR, type,
4282 TREE_OPERAND (arg, 0),
4283 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
4284
4285 case NON_LVALUE_EXPR:
4286 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4287 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
4288
4289 CASE_CONVERT:
4290 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
4291 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
4292
4293 /* fall through */
4294
4295 case FLOAT_EXPR:
4296 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4297 return build1_loc (loc, TREE_CODE (arg), type,
4298 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4299
4300 case BIT_AND_EXPR:
4301 if (!integer_onep (TREE_OPERAND (arg, 1)))
4302 return NULL_TREE;
4303 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
4304
4305 case SAVE_EXPR:
4306 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
4307
4308 case CLEANUP_POINT_EXPR:
4309 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4310 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
4311 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4312
4313 default:
4314 return NULL_TREE;
4315 }
4316 }
4317
4318 /* Fold the truth-negation of ARG. This never alters ARG itself. We
4319 assume that ARG is an operation that returns a truth value (0 or 1
4320 for scalars, 0 or -1 for vectors). Return the folded expression if
4321 folding is successful. Otherwise, return NULL_TREE. */
4322
4323 static tree
4324 fold_invert_truthvalue (location_t loc, tree arg)
4325 {
4326 tree type = TREE_TYPE (arg);
4327 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
4328 ? BIT_NOT_EXPR
4329 : TRUTH_NOT_EXPR,
4330 type, arg);
4331 }
4332
4333 /* Return a simplified tree node for the truth-negation of ARG. This
4334 never alters ARG itself. We assume that ARG is an operation that
4335 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
4336
4337 tree
4338 invert_truthvalue_loc (location_t loc, tree arg)
4339 {
4340 if (TREE_CODE (arg) == ERROR_MARK)
4341 return arg;
4342
4343 tree type = TREE_TYPE (arg);
4344 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
4345 ? BIT_NOT_EXPR
4346 : TRUTH_NOT_EXPR,
4347 type, arg);
4348 }
4349 \f
4350 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
4351 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
4352 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
4353 is the original memory reference used to preserve the alias set of
4354 the access. */
4355
4356 static tree
4357 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
4358 HOST_WIDE_INT bitsize, poly_int64 bitpos,
4359 int unsignedp, int reversep)
4360 {
4361 tree result, bftype;
4362
4363 /* Attempt not to lose the access path if possible. */
4364 if (TREE_CODE (orig_inner) == COMPONENT_REF)
4365 {
4366 tree ninner = TREE_OPERAND (orig_inner, 0);
4367 machine_mode nmode;
4368 poly_int64 nbitsize, nbitpos;
4369 tree noffset;
4370 int nunsignedp, nreversep, nvolatilep = 0;
4371 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
4372 &noffset, &nmode, &nunsignedp,
4373 &nreversep, &nvolatilep);
4374 if (base == inner
4375 && noffset == NULL_TREE
4376 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize)
4377 && !reversep
4378 && !nreversep
4379 && !nvolatilep)
4380 {
4381 inner = ninner;
4382 bitpos -= nbitpos;
4383 }
4384 }
4385
4386 alias_set_type iset = get_alias_set (orig_inner);
4387 if (iset == 0 && get_alias_set (inner) != iset)
4388 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
4389 build_fold_addr_expr (inner),
4390 build_int_cst (ptr_type_node, 0));
4391
4392 if (known_eq (bitpos, 0) && !reversep)
4393 {
4394 tree size = TYPE_SIZE (TREE_TYPE (inner));
4395 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
4396 || POINTER_TYPE_P (TREE_TYPE (inner)))
4397 && tree_fits_shwi_p (size)
4398 && tree_to_shwi (size) == bitsize)
4399 return fold_convert_loc (loc, type, inner);
4400 }
4401
4402 bftype = type;
4403 if (TYPE_PRECISION (bftype) != bitsize
4404 || TYPE_UNSIGNED (bftype) == !unsignedp)
4405 bftype = build_nonstandard_integer_type (bitsize, 0);
4406
4407 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
4408 bitsize_int (bitsize), bitsize_int (bitpos));
4409 REF_REVERSE_STORAGE_ORDER (result) = reversep;
4410
4411 if (bftype != type)
4412 result = fold_convert_loc (loc, type, result);
4413
4414 return result;
4415 }
4416
4417 /* Optimize a bit-field compare.
4418
4419 There are two cases: First is a compare against a constant and the
4420 second is a comparison of two items where the fields are at the same
4421 bit position relative to the start of a chunk (byte, halfword, word)
4422 large enough to contain it. In these cases we can avoid the shift
4423 implicit in bitfield extractions.
4424
4425 For constants, we emit a compare of the shifted constant with the
4426 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4427 compared. For two fields at the same position, we do the ANDs with the
4428 similar mask and compare the result of the ANDs.
4429
4430 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4431 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4432 are the left and right operands of the comparison, respectively.
4433
4434 If the optimization described above can be done, we return the resulting
4435 tree. Otherwise we return zero. */
4436
4437 static tree
4438 optimize_bit_field_compare (location_t loc, enum tree_code code,
4439 tree compare_type, tree lhs, tree rhs)
4440 {
4441 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize;
4442 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize;
4443 tree type = TREE_TYPE (lhs);
4444 tree unsigned_type;
4445 int const_p = TREE_CODE (rhs) == INTEGER_CST;
4446 machine_mode lmode, rmode;
4447 scalar_int_mode nmode;
4448 int lunsignedp, runsignedp;
4449 int lreversep, rreversep;
4450 int lvolatilep = 0, rvolatilep = 0;
4451 tree linner, rinner = NULL_TREE;
4452 tree mask;
4453 tree offset;
4454
4455 /* Get all the information about the extractions being done. If the bit size
4456 is the same as the size of the underlying object, we aren't doing an
4457 extraction at all and so can do nothing. We also don't want to
4458 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4459 then will no longer be able to replace it. */
4460 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode,
4461 &lunsignedp, &lreversep, &lvolatilep);
4462 if (linner == lhs
4463 || !known_size_p (plbitsize)
4464 || !plbitsize.is_constant (&lbitsize)
4465 || !plbitpos.is_constant (&lbitpos)
4466 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode))
4467 || offset != 0
4468 || TREE_CODE (linner) == PLACEHOLDER_EXPR
4469 || lvolatilep)
4470 return 0;
4471
4472 if (const_p)
4473 rreversep = lreversep;
4474 else
4475 {
4476 /* If this is not a constant, we can only do something if bit positions,
4477 sizes, signedness and storage order are the same. */
4478 rinner
4479 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
4480 &runsignedp, &rreversep, &rvolatilep);
4481
4482 if (rinner == rhs
4483 || maybe_ne (lbitpos, rbitpos)
4484 || maybe_ne (lbitsize, rbitsize)
4485 || lunsignedp != runsignedp
4486 || lreversep != rreversep
4487 || offset != 0
4488 || TREE_CODE (rinner) == PLACEHOLDER_EXPR
4489 || rvolatilep)
4490 return 0;
4491 }
4492
4493 /* Honor the C++ memory model and mimic what RTL expansion does. */
4494 poly_uint64 bitstart = 0;
4495 poly_uint64 bitend = 0;
4496 if (TREE_CODE (lhs) == COMPONENT_REF)
4497 {
4498 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset);
4499 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE)
4500 return 0;
4501 }
4502
4503 /* See if we can find a mode to refer to this field. We should be able to,
4504 but fail if we can't. */
4505 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4506 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4507 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4508 TYPE_ALIGN (TREE_TYPE (rinner))),
4509 BITS_PER_WORD, false, &nmode))
4510 return 0;
4511
4512 /* Set signed and unsigned types of the precision of this mode for the
4513 shifts below. */
4514 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4515
4516 /* Compute the bit position and size for the new reference and our offset
4517 within it. If the new reference is the same size as the original, we
4518 won't optimize anything, so return zero. */
4519 nbitsize = GET_MODE_BITSIZE (nmode);
4520 nbitpos = lbitpos & ~ (nbitsize - 1);
4521 lbitpos -= nbitpos;
4522 if (nbitsize == lbitsize)
4523 return 0;
4524
4525 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4526 lbitpos = nbitsize - lbitsize - lbitpos;
4527
4528 /* Make the mask to be used against the extracted field. */
4529 mask = build_int_cst_type (unsigned_type, -1);
4530 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4531 mask = const_binop (RSHIFT_EXPR, mask,
4532 size_int (nbitsize - lbitsize - lbitpos));
4533
4534 if (! const_p)
4535 {
4536 if (nbitpos < 0)
4537 return 0;
4538
4539 /* If not comparing with constant, just rework the comparison
4540 and return. */
4541 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4542 nbitsize, nbitpos, 1, lreversep);
4543 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
4544 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type,
4545 nbitsize, nbitpos, 1, rreversep);
4546 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
4547 return fold_build2_loc (loc, code, compare_type, t1, t2);
4548 }
4549
4550 /* Otherwise, we are handling the constant case. See if the constant is too
4551 big for the field. Warn and return a tree for 0 (false) if so. We do
4552 this not only for its own sake, but to avoid having to test for this
4553 error case below. If we didn't, we might generate wrong code.
4554
4555 For unsigned fields, the constant shifted right by the field length should
4556 be all zero. For signed fields, the high-order bits should agree with
4557 the sign bit. */
4558
4559 if (lunsignedp)
4560 {
4561 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0)
4562 {
4563 warning (0, "comparison is always %d due to width of bit-field",
4564 code == NE_EXPR);
4565 return constant_boolean_node (code == NE_EXPR, compare_type);
4566 }
4567 }
4568 else
4569 {
4570 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1);
4571 if (tem != 0 && tem != -1)
4572 {
4573 warning (0, "comparison is always %d due to width of bit-field",
4574 code == NE_EXPR);
4575 return constant_boolean_node (code == NE_EXPR, compare_type);
4576 }
4577 }
4578
4579 if (nbitpos < 0)
4580 return 0;
4581
4582 /* Single-bit compares should always be against zero. */
4583 if (lbitsize == 1 && ! integer_zerop (rhs))
4584 {
4585 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4586 rhs = build_int_cst (type, 0);
4587 }
4588
4589 /* Make a new bitfield reference, shift the constant over the
4590 appropriate number of bits and mask it with the computed mask
4591 (in case this was a signed field). If we changed it, make a new one. */
4592 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4593 nbitsize, nbitpos, 1, lreversep);
4594
4595 rhs = const_binop (BIT_AND_EXPR,
4596 const_binop (LSHIFT_EXPR,
4597 fold_convert_loc (loc, unsigned_type, rhs),
4598 size_int (lbitpos)),
4599 mask);
4600
4601 lhs = build2_loc (loc, code, compare_type,
4602 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4603 return lhs;
4604 }
4605 \f
4606 /* Subroutine for fold_truth_andor_1: decode a field reference.
4607
4608 If EXP is a comparison reference, we return the innermost reference.
4609
4610 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4611 set to the starting bit number.
4612
4613 If the innermost field can be completely contained in a mode-sized
4614 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4615
4616 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4617 otherwise it is not changed.
4618
4619 *PUNSIGNEDP is set to the signedness of the field.
4620
4621 *PREVERSEP is set to the storage order of the field.
4622
4623 *PMASK is set to the mask used. This is either contained in a
4624 BIT_AND_EXPR or derived from the width of the field.
4625
4626 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4627
4628 Return 0 if this is not a component reference or is one that we can't
4629 do anything with. */
4630
4631 static tree
4632 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4633 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4634 int *punsignedp, int *preversep, int *pvolatilep,
4635 tree *pmask, tree *pand_mask)
4636 {
4637 tree exp = *exp_;
4638 tree outer_type = 0;
4639 tree and_mask = 0;
4640 tree mask, inner, offset;
4641 tree unsigned_type;
4642 unsigned int precision;
4643
4644 /* All the optimizations using this function assume integer fields.
4645 There are problems with FP fields since the type_for_size call
4646 below can fail for, e.g., XFmode. */
4647 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4648 return NULL_TREE;
4649
4650 /* We are interested in the bare arrangement of bits, so strip everything
4651 that doesn't affect the machine mode. However, record the type of the
4652 outermost expression if it may matter below. */
4653 if (CONVERT_EXPR_P (exp)
4654 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4655 outer_type = TREE_TYPE (exp);
4656 STRIP_NOPS (exp);
4657
4658 if (TREE_CODE (exp) == BIT_AND_EXPR)
4659 {
4660 and_mask = TREE_OPERAND (exp, 1);
4661 exp = TREE_OPERAND (exp, 0);
4662 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4663 if (TREE_CODE (and_mask) != INTEGER_CST)
4664 return NULL_TREE;
4665 }
4666
4667 poly_int64 poly_bitsize, poly_bitpos;
4668 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset,
4669 pmode, punsignedp, preversep, pvolatilep);
4670 if ((inner == exp && and_mask == 0)
4671 || !poly_bitsize.is_constant (pbitsize)
4672 || !poly_bitpos.is_constant (pbitpos)
4673 || *pbitsize < 0
4674 || offset != 0
4675 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4676 /* Reject out-of-bound accesses (PR79731). */
4677 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4678 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4679 *pbitpos + *pbitsize) < 0))
4680 return NULL_TREE;
4681
4682 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4683 if (unsigned_type == NULL_TREE)
4684 return NULL_TREE;
4685
4686 *exp_ = exp;
4687
4688 /* If the number of bits in the reference is the same as the bitsize of
4689 the outer type, then the outer type gives the signedness. Otherwise
4690 (in case of a small bitfield) the signedness is unchanged. */
4691 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4692 *punsignedp = TYPE_UNSIGNED (outer_type);
4693
4694 /* Compute the mask to access the bitfield. */
4695 precision = TYPE_PRECISION (unsigned_type);
4696
4697 mask = build_int_cst_type (unsigned_type, -1);
4698
4699 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4700 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4701
4702 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4703 if (and_mask != 0)
4704 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4705 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4706
4707 *pmask = mask;
4708 *pand_mask = and_mask;
4709 return inner;
4710 }
4711
4712 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4713 bit positions and MASK is SIGNED. */
4714
4715 static bool
4716 all_ones_mask_p (const_tree mask, unsigned int size)
4717 {
4718 tree type = TREE_TYPE (mask);
4719 unsigned int precision = TYPE_PRECISION (type);
4720
4721 /* If this function returns true when the type of the mask is
4722 UNSIGNED, then there will be errors. In particular see
4723 gcc.c-torture/execute/990326-1.c. There does not appear to be
4724 any documentation paper trail as to why this is so. But the pre
4725 wide-int worked with that restriction and it has been preserved
4726 here. */
4727 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4728 return false;
4729
4730 return wi::mask (size, false, precision) == wi::to_wide (mask);
4731 }
4732
4733 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4734 represents the sign bit of EXP's type. If EXP represents a sign
4735 or zero extension, also test VAL against the unextended type.
4736 The return value is the (sub)expression whose sign bit is VAL,
4737 or NULL_TREE otherwise. */
4738
4739 tree
4740 sign_bit_p (tree exp, const_tree val)
4741 {
4742 int width;
4743 tree t;
4744
4745 /* Tree EXP must have an integral type. */
4746 t = TREE_TYPE (exp);
4747 if (! INTEGRAL_TYPE_P (t))
4748 return NULL_TREE;
4749
4750 /* Tree VAL must be an integer constant. */
4751 if (TREE_CODE (val) != INTEGER_CST
4752 || TREE_OVERFLOW (val))
4753 return NULL_TREE;
4754
4755 width = TYPE_PRECISION (t);
4756 if (wi::only_sign_bit_p (wi::to_wide (val), width))
4757 return exp;
4758
4759 /* Handle extension from a narrower type. */
4760 if (TREE_CODE (exp) == NOP_EXPR
4761 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4762 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4763
4764 return NULL_TREE;
4765 }
4766
4767 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4768 to be evaluated unconditionally. */
4769
4770 static bool
4771 simple_operand_p (const_tree exp)
4772 {
4773 /* Strip any conversions that don't change the machine mode. */
4774 STRIP_NOPS (exp);
4775
4776 return (CONSTANT_CLASS_P (exp)
4777 || TREE_CODE (exp) == SSA_NAME
4778 || (DECL_P (exp)
4779 && ! TREE_ADDRESSABLE (exp)
4780 && ! TREE_THIS_VOLATILE (exp)
4781 && ! DECL_NONLOCAL (exp)
4782 /* Don't regard global variables as simple. They may be
4783 allocated in ways unknown to the compiler (shared memory,
4784 #pragma weak, etc). */
4785 && ! TREE_PUBLIC (exp)
4786 && ! DECL_EXTERNAL (exp)
4787 /* Weakrefs are not safe to be read, since they can be NULL.
4788 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4789 have DECL_WEAK flag set. */
4790 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4791 /* Loading a static variable is unduly expensive, but global
4792 registers aren't expensive. */
4793 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4794 }
4795
4796 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4797 to be evaluated unconditionally.
4798 I addition to simple_operand_p, we assume that comparisons, conversions,
4799 and logic-not operations are simple, if their operands are simple, too. */
4800
4801 static bool
4802 simple_operand_p_2 (tree exp)
4803 {
4804 enum tree_code code;
4805
4806 if (TREE_SIDE_EFFECTS (exp) || generic_expr_could_trap_p (exp))
4807 return false;
4808
4809 while (CONVERT_EXPR_P (exp))
4810 exp = TREE_OPERAND (exp, 0);
4811
4812 code = TREE_CODE (exp);
4813
4814 if (TREE_CODE_CLASS (code) == tcc_comparison)
4815 return (simple_operand_p (TREE_OPERAND (exp, 0))
4816 && simple_operand_p (TREE_OPERAND (exp, 1)));
4817
4818 if (code == TRUTH_NOT_EXPR)
4819 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4820
4821 return simple_operand_p (exp);
4822 }
4823
4824 \f
4825 /* The following functions are subroutines to fold_range_test and allow it to
4826 try to change a logical combination of comparisons into a range test.
4827
4828 For example, both
4829 X == 2 || X == 3 || X == 4 || X == 5
4830 and
4831 X >= 2 && X <= 5
4832 are converted to
4833 (unsigned) (X - 2) <= 3
4834
4835 We describe each set of comparisons as being either inside or outside
4836 a range, using a variable named like IN_P, and then describe the
4837 range with a lower and upper bound. If one of the bounds is omitted,
4838 it represents either the highest or lowest value of the type.
4839
4840 In the comments below, we represent a range by two numbers in brackets
4841 preceded by a "+" to designate being inside that range, or a "-" to
4842 designate being outside that range, so the condition can be inverted by
4843 flipping the prefix. An omitted bound is represented by a "-". For
4844 example, "- [-, 10]" means being outside the range starting at the lowest
4845 possible value and ending at 10, in other words, being greater than 10.
4846 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4847 always false.
4848
4849 We set up things so that the missing bounds are handled in a consistent
4850 manner so neither a missing bound nor "true" and "false" need to be
4851 handled using a special case. */
4852
4853 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4854 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4855 and UPPER1_P are nonzero if the respective argument is an upper bound
4856 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4857 must be specified for a comparison. ARG1 will be converted to ARG0's
4858 type if both are specified. */
4859
4860 static tree
4861 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4862 tree arg1, int upper1_p)
4863 {
4864 tree tem;
4865 int result;
4866 int sgn0, sgn1;
4867
4868 /* If neither arg represents infinity, do the normal operation.
4869 Else, if not a comparison, return infinity. Else handle the special
4870 comparison rules. Note that most of the cases below won't occur, but
4871 are handled for consistency. */
4872
4873 if (arg0 != 0 && arg1 != 0)
4874 {
4875 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4876 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4877 STRIP_NOPS (tem);
4878 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4879 }
4880
4881 if (TREE_CODE_CLASS (code) != tcc_comparison)
4882 return 0;
4883
4884 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4885 for neither. In real maths, we cannot assume open ended ranges are
4886 the same. But, this is computer arithmetic, where numbers are finite.
4887 We can therefore make the transformation of any unbounded range with
4888 the value Z, Z being greater than any representable number. This permits
4889 us to treat unbounded ranges as equal. */
4890 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4891 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4892 switch (code)
4893 {
4894 case EQ_EXPR:
4895 result = sgn0 == sgn1;
4896 break;
4897 case NE_EXPR:
4898 result = sgn0 != sgn1;
4899 break;
4900 case LT_EXPR:
4901 result = sgn0 < sgn1;
4902 break;
4903 case LE_EXPR:
4904 result = sgn0 <= sgn1;
4905 break;
4906 case GT_EXPR:
4907 result = sgn0 > sgn1;
4908 break;
4909 case GE_EXPR:
4910 result = sgn0 >= sgn1;
4911 break;
4912 default:
4913 gcc_unreachable ();
4914 }
4915
4916 return constant_boolean_node (result, type);
4917 }
4918 \f
4919 /* Helper routine for make_range. Perform one step for it, return
4920 new expression if the loop should continue or NULL_TREE if it should
4921 stop. */
4922
4923 tree
4924 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4925 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4926 bool *strict_overflow_p)
4927 {
4928 tree arg0_type = TREE_TYPE (arg0);
4929 tree n_low, n_high, low = *p_low, high = *p_high;
4930 int in_p = *p_in_p, n_in_p;
4931
4932 switch (code)
4933 {
4934 case TRUTH_NOT_EXPR:
4935 /* We can only do something if the range is testing for zero. */
4936 if (low == NULL_TREE || high == NULL_TREE
4937 || ! integer_zerop (low) || ! integer_zerop (high))
4938 return NULL_TREE;
4939 *p_in_p = ! in_p;
4940 return arg0;
4941
4942 case EQ_EXPR: case NE_EXPR:
4943 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4944 /* We can only do something if the range is testing for zero
4945 and if the second operand is an integer constant. Note that
4946 saying something is "in" the range we make is done by
4947 complementing IN_P since it will set in the initial case of
4948 being not equal to zero; "out" is leaving it alone. */
4949 if (low == NULL_TREE || high == NULL_TREE
4950 || ! integer_zerop (low) || ! integer_zerop (high)
4951 || TREE_CODE (arg1) != INTEGER_CST)
4952 return NULL_TREE;
4953
4954 switch (code)
4955 {
4956 case NE_EXPR: /* - [c, c] */
4957 low = high = arg1;
4958 break;
4959 case EQ_EXPR: /* + [c, c] */
4960 in_p = ! in_p, low = high = arg1;
4961 break;
4962 case GT_EXPR: /* - [-, c] */
4963 low = 0, high = arg1;
4964 break;
4965 case GE_EXPR: /* + [c, -] */
4966 in_p = ! in_p, low = arg1, high = 0;
4967 break;
4968 case LT_EXPR: /* - [c, -] */
4969 low = arg1, high = 0;
4970 break;
4971 case LE_EXPR: /* + [-, c] */
4972 in_p = ! in_p, low = 0, high = arg1;
4973 break;
4974 default:
4975 gcc_unreachable ();
4976 }
4977
4978 /* If this is an unsigned comparison, we also know that EXP is
4979 greater than or equal to zero. We base the range tests we make
4980 on that fact, so we record it here so we can parse existing
4981 range tests. We test arg0_type since often the return type
4982 of, e.g. EQ_EXPR, is boolean. */
4983 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4984 {
4985 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4986 in_p, low, high, 1,
4987 build_int_cst (arg0_type, 0),
4988 NULL_TREE))
4989 return NULL_TREE;
4990
4991 in_p = n_in_p, low = n_low, high = n_high;
4992
4993 /* If the high bound is missing, but we have a nonzero low
4994 bound, reverse the range so it goes from zero to the low bound
4995 minus 1. */
4996 if (high == 0 && low && ! integer_zerop (low))
4997 {
4998 in_p = ! in_p;
4999 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
5000 build_int_cst (TREE_TYPE (low), 1), 0);
5001 low = build_int_cst (arg0_type, 0);
5002 }
5003 }
5004
5005 *p_low = low;
5006 *p_high = high;
5007 *p_in_p = in_p;
5008 return arg0;
5009
5010 case NEGATE_EXPR:
5011 /* If flag_wrapv and ARG0_TYPE is signed, make sure
5012 low and high are non-NULL, then normalize will DTRT. */
5013 if (!TYPE_UNSIGNED (arg0_type)
5014 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5015 {
5016 if (low == NULL_TREE)
5017 low = TYPE_MIN_VALUE (arg0_type);
5018 if (high == NULL_TREE)
5019 high = TYPE_MAX_VALUE (arg0_type);
5020 }
5021
5022 /* (-x) IN [a,b] -> x in [-b, -a] */
5023 n_low = range_binop (MINUS_EXPR, exp_type,
5024 build_int_cst (exp_type, 0),
5025 0, high, 1);
5026 n_high = range_binop (MINUS_EXPR, exp_type,
5027 build_int_cst (exp_type, 0),
5028 0, low, 0);
5029 if (n_high != 0 && TREE_OVERFLOW (n_high))
5030 return NULL_TREE;
5031 goto normalize;
5032
5033 case BIT_NOT_EXPR:
5034 /* ~ X -> -X - 1 */
5035 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
5036 build_int_cst (exp_type, 1));
5037
5038 case PLUS_EXPR:
5039 case MINUS_EXPR:
5040 if (TREE_CODE (arg1) != INTEGER_CST)
5041 return NULL_TREE;
5042
5043 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
5044 move a constant to the other side. */
5045 if (!TYPE_UNSIGNED (arg0_type)
5046 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5047 return NULL_TREE;
5048
5049 /* If EXP is signed, any overflow in the computation is undefined,
5050 so we don't worry about it so long as our computations on
5051 the bounds don't overflow. For unsigned, overflow is defined
5052 and this is exactly the right thing. */
5053 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5054 arg0_type, low, 0, arg1, 0);
5055 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5056 arg0_type, high, 1, arg1, 0);
5057 if ((n_low != 0 && TREE_OVERFLOW (n_low))
5058 || (n_high != 0 && TREE_OVERFLOW (n_high)))
5059 return NULL_TREE;
5060
5061 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
5062 *strict_overflow_p = true;
5063
5064 normalize:
5065 /* Check for an unsigned range which has wrapped around the maximum
5066 value thus making n_high < n_low, and normalize it. */
5067 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
5068 {
5069 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
5070 build_int_cst (TREE_TYPE (n_high), 1), 0);
5071 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
5072 build_int_cst (TREE_TYPE (n_low), 1), 0);
5073
5074 /* If the range is of the form +/- [ x+1, x ], we won't
5075 be able to normalize it. But then, it represents the
5076 whole range or the empty set, so make it
5077 +/- [ -, - ]. */
5078 if (tree_int_cst_equal (n_low, low)
5079 && tree_int_cst_equal (n_high, high))
5080 low = high = 0;
5081 else
5082 in_p = ! in_p;
5083 }
5084 else
5085 low = n_low, high = n_high;
5086
5087 *p_low = low;
5088 *p_high = high;
5089 *p_in_p = in_p;
5090 return arg0;
5091
5092 CASE_CONVERT:
5093 case NON_LVALUE_EXPR:
5094 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
5095 return NULL_TREE;
5096
5097 if (! INTEGRAL_TYPE_P (arg0_type)
5098 || (low != 0 && ! int_fits_type_p (low, arg0_type))
5099 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
5100 return NULL_TREE;
5101
5102 n_low = low, n_high = high;
5103
5104 if (n_low != 0)
5105 n_low = fold_convert_loc (loc, arg0_type, n_low);
5106
5107 if (n_high != 0)
5108 n_high = fold_convert_loc (loc, arg0_type, n_high);
5109
5110 /* If we're converting arg0 from an unsigned type, to exp,
5111 a signed type, we will be doing the comparison as unsigned.
5112 The tests above have already verified that LOW and HIGH
5113 are both positive.
5114
5115 So we have to ensure that we will handle large unsigned
5116 values the same way that the current signed bounds treat
5117 negative values. */
5118
5119 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
5120 {
5121 tree high_positive;
5122 tree equiv_type;
5123 /* For fixed-point modes, we need to pass the saturating flag
5124 as the 2nd parameter. */
5125 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
5126 equiv_type
5127 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
5128 TYPE_SATURATING (arg0_type));
5129 else
5130 equiv_type
5131 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
5132
5133 /* A range without an upper bound is, naturally, unbounded.
5134 Since convert would have cropped a very large value, use
5135 the max value for the destination type. */
5136 high_positive
5137 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
5138 : TYPE_MAX_VALUE (arg0_type);
5139
5140 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
5141 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
5142 fold_convert_loc (loc, arg0_type,
5143 high_positive),
5144 build_int_cst (arg0_type, 1));
5145
5146 /* If the low bound is specified, "and" the range with the
5147 range for which the original unsigned value will be
5148 positive. */
5149 if (low != 0)
5150 {
5151 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
5152 1, fold_convert_loc (loc, arg0_type,
5153 integer_zero_node),
5154 high_positive))
5155 return NULL_TREE;
5156
5157 in_p = (n_in_p == in_p);
5158 }
5159 else
5160 {
5161 /* Otherwise, "or" the range with the range of the input
5162 that will be interpreted as negative. */
5163 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
5164 1, fold_convert_loc (loc, arg0_type,
5165 integer_zero_node),
5166 high_positive))
5167 return NULL_TREE;
5168
5169 in_p = (in_p != n_in_p);
5170 }
5171 }
5172
5173 *p_low = n_low;
5174 *p_high = n_high;
5175 *p_in_p = in_p;
5176 return arg0;
5177
5178 default:
5179 return NULL_TREE;
5180 }
5181 }
5182
5183 /* Given EXP, a logical expression, set the range it is testing into
5184 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
5185 actually being tested. *PLOW and *PHIGH will be made of the same
5186 type as the returned expression. If EXP is not a comparison, we
5187 will most likely not be returning a useful value and range. Set
5188 *STRICT_OVERFLOW_P to true if the return value is only valid
5189 because signed overflow is undefined; otherwise, do not change
5190 *STRICT_OVERFLOW_P. */
5191
5192 tree
5193 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
5194 bool *strict_overflow_p)
5195 {
5196 enum tree_code code;
5197 tree arg0, arg1 = NULL_TREE;
5198 tree exp_type, nexp;
5199 int in_p;
5200 tree low, high;
5201 location_t loc = EXPR_LOCATION (exp);
5202
5203 /* Start with simply saying "EXP != 0" and then look at the code of EXP
5204 and see if we can refine the range. Some of the cases below may not
5205 happen, but it doesn't seem worth worrying about this. We "continue"
5206 the outer loop when we've changed something; otherwise we "break"
5207 the switch, which will "break" the while. */
5208
5209 in_p = 0;
5210 low = high = build_int_cst (TREE_TYPE (exp), 0);
5211
5212 while (1)
5213 {
5214 code = TREE_CODE (exp);
5215 exp_type = TREE_TYPE (exp);
5216 arg0 = NULL_TREE;
5217
5218 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
5219 {
5220 if (TREE_OPERAND_LENGTH (exp) > 0)
5221 arg0 = TREE_OPERAND (exp, 0);
5222 if (TREE_CODE_CLASS (code) == tcc_binary
5223 || TREE_CODE_CLASS (code) == tcc_comparison
5224 || (TREE_CODE_CLASS (code) == tcc_expression
5225 && TREE_OPERAND_LENGTH (exp) > 1))
5226 arg1 = TREE_OPERAND (exp, 1);
5227 }
5228 if (arg0 == NULL_TREE)
5229 break;
5230
5231 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
5232 &high, &in_p, strict_overflow_p);
5233 if (nexp == NULL_TREE)
5234 break;
5235 exp = nexp;
5236 }
5237
5238 /* If EXP is a constant, we can evaluate whether this is true or false. */
5239 if (TREE_CODE (exp) == INTEGER_CST)
5240 {
5241 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
5242 exp, 0, low, 0))
5243 && integer_onep (range_binop (LE_EXPR, integer_type_node,
5244 exp, 1, high, 1)));
5245 low = high = 0;
5246 exp = 0;
5247 }
5248
5249 *pin_p = in_p, *plow = low, *phigh = high;
5250 return exp;
5251 }
5252
5253 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
5254 a bitwise check i.e. when
5255 LOW == 0xXX...X00...0
5256 HIGH == 0xXX...X11...1
5257 Return corresponding mask in MASK and stem in VALUE. */
5258
5259 static bool
5260 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
5261 tree *value)
5262 {
5263 if (TREE_CODE (low) != INTEGER_CST
5264 || TREE_CODE (high) != INTEGER_CST)
5265 return false;
5266
5267 unsigned prec = TYPE_PRECISION (type);
5268 wide_int lo = wi::to_wide (low, prec);
5269 wide_int hi = wi::to_wide (high, prec);
5270
5271 wide_int end_mask = lo ^ hi;
5272 if ((end_mask & (end_mask + 1)) != 0
5273 || (lo & end_mask) != 0)
5274 return false;
5275
5276 wide_int stem_mask = ~end_mask;
5277 wide_int stem = lo & stem_mask;
5278 if (stem != (hi & stem_mask))
5279 return false;
5280
5281 *mask = wide_int_to_tree (type, stem_mask);
5282 *value = wide_int_to_tree (type, stem);
5283
5284 return true;
5285 }
5286 \f
5287 /* Helper routine for build_range_check and match.pd. Return the type to
5288 perform the check or NULL if it shouldn't be optimized. */
5289
5290 tree
5291 range_check_type (tree etype)
5292 {
5293 /* First make sure that arithmetics in this type is valid, then make sure
5294 that it wraps around. */
5295 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
5296 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 1);
5297
5298 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_UNSIGNED (etype))
5299 {
5300 tree utype, minv, maxv;
5301
5302 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
5303 for the type in question, as we rely on this here. */
5304 utype = unsigned_type_for (etype);
5305 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
5306 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
5307 build_int_cst (TREE_TYPE (maxv), 1), 1);
5308 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
5309
5310 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
5311 minv, 1, maxv, 1)))
5312 etype = utype;
5313 else
5314 return NULL_TREE;
5315 }
5316 else if (POINTER_TYPE_P (etype))
5317 etype = unsigned_type_for (etype);
5318 return etype;
5319 }
5320
5321 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
5322 type, TYPE, return an expression to test if EXP is in (or out of, depending
5323 on IN_P) the range. Return 0 if the test couldn't be created. */
5324
5325 tree
5326 build_range_check (location_t loc, tree type, tree exp, int in_p,
5327 tree low, tree high)
5328 {
5329 tree etype = TREE_TYPE (exp), mask, value;
5330
5331 /* Disable this optimization for function pointer expressions
5332 on targets that require function pointer canonicalization. */
5333 if (targetm.have_canonicalize_funcptr_for_compare ()
5334 && POINTER_TYPE_P (etype)
5335 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype)))
5336 return NULL_TREE;
5337
5338 if (! in_p)
5339 {
5340 value = build_range_check (loc, type, exp, 1, low, high);
5341 if (value != 0)
5342 return invert_truthvalue_loc (loc, value);
5343
5344 return 0;
5345 }
5346
5347 if (low == 0 && high == 0)
5348 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
5349
5350 if (low == 0)
5351 return fold_build2_loc (loc, LE_EXPR, type, exp,
5352 fold_convert_loc (loc, etype, high));
5353
5354 if (high == 0)
5355 return fold_build2_loc (loc, GE_EXPR, type, exp,
5356 fold_convert_loc (loc, etype, low));
5357
5358 if (operand_equal_p (low, high, 0))
5359 return fold_build2_loc (loc, EQ_EXPR, type, exp,
5360 fold_convert_loc (loc, etype, low));
5361
5362 if (TREE_CODE (exp) == BIT_AND_EXPR
5363 && maskable_range_p (low, high, etype, &mask, &value))
5364 return fold_build2_loc (loc, EQ_EXPR, type,
5365 fold_build2_loc (loc, BIT_AND_EXPR, etype,
5366 exp, mask),
5367 value);
5368
5369 if (integer_zerop (low))
5370 {
5371 if (! TYPE_UNSIGNED (etype))
5372 {
5373 etype = unsigned_type_for (etype);
5374 high = fold_convert_loc (loc, etype, high);
5375 exp = fold_convert_loc (loc, etype, exp);
5376 }
5377 return build_range_check (loc, type, exp, 1, 0, high);
5378 }
5379
5380 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5381 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
5382 {
5383 int prec = TYPE_PRECISION (etype);
5384
5385 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high))
5386 {
5387 if (TYPE_UNSIGNED (etype))
5388 {
5389 tree signed_etype = signed_type_for (etype);
5390 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
5391 etype
5392 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
5393 else
5394 etype = signed_etype;
5395 exp = fold_convert_loc (loc, etype, exp);
5396 }
5397 return fold_build2_loc (loc, GT_EXPR, type, exp,
5398 build_int_cst (etype, 0));
5399 }
5400 }
5401
5402 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5403 This requires wrap-around arithmetics for the type of the expression. */
5404 etype = range_check_type (etype);
5405 if (etype == NULL_TREE)
5406 return NULL_TREE;
5407
5408 high = fold_convert_loc (loc, etype, high);
5409 low = fold_convert_loc (loc, etype, low);
5410 exp = fold_convert_loc (loc, etype, exp);
5411
5412 value = const_binop (MINUS_EXPR, high, low);
5413
5414 if (value != 0 && !TREE_OVERFLOW (value))
5415 return build_range_check (loc, type,
5416 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
5417 1, build_int_cst (etype, 0), value);
5418
5419 return 0;
5420 }
5421 \f
5422 /* Return the predecessor of VAL in its type, handling the infinite case. */
5423
5424 static tree
5425 range_predecessor (tree val)
5426 {
5427 tree type = TREE_TYPE (val);
5428
5429 if (INTEGRAL_TYPE_P (type)
5430 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
5431 return 0;
5432 else
5433 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
5434 build_int_cst (TREE_TYPE (val), 1), 0);
5435 }
5436
5437 /* Return the successor of VAL in its type, handling the infinite case. */
5438
5439 static tree
5440 range_successor (tree val)
5441 {
5442 tree type = TREE_TYPE (val);
5443
5444 if (INTEGRAL_TYPE_P (type)
5445 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
5446 return 0;
5447 else
5448 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
5449 build_int_cst (TREE_TYPE (val), 1), 0);
5450 }
5451
5452 /* Given two ranges, see if we can merge them into one. Return 1 if we
5453 can, 0 if we can't. Set the output range into the specified parameters. */
5454
5455 bool
5456 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
5457 tree high0, int in1_p, tree low1, tree high1)
5458 {
5459 int no_overlap;
5460 int subset;
5461 int temp;
5462 tree tem;
5463 int in_p;
5464 tree low, high;
5465 int lowequal = ((low0 == 0 && low1 == 0)
5466 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5467 low0, 0, low1, 0)));
5468 int highequal = ((high0 == 0 && high1 == 0)
5469 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5470 high0, 1, high1, 1)));
5471
5472 /* Make range 0 be the range that starts first, or ends last if they
5473 start at the same value. Swap them if it isn't. */
5474 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
5475 low0, 0, low1, 0))
5476 || (lowequal
5477 && integer_onep (range_binop (GT_EXPR, integer_type_node,
5478 high1, 1, high0, 1))))
5479 {
5480 temp = in0_p, in0_p = in1_p, in1_p = temp;
5481 tem = low0, low0 = low1, low1 = tem;
5482 tem = high0, high0 = high1, high1 = tem;
5483 }
5484
5485 /* If the second range is != high1 where high1 is the type maximum of
5486 the type, try first merging with < high1 range. */
5487 if (low1
5488 && high1
5489 && TREE_CODE (low1) == INTEGER_CST
5490 && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE
5491 || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE
5492 && known_eq (TYPE_PRECISION (TREE_TYPE (low1)),
5493 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1))))))
5494 && operand_equal_p (low1, high1, 0))
5495 {
5496 if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1)))
5497 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5498 !in1_p, NULL_TREE, range_predecessor (low1)))
5499 return true;
5500 /* Similarly for the second range != low1 where low1 is the type minimum
5501 of the type, try first merging with > low1 range. */
5502 if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1)))
5503 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5504 !in1_p, range_successor (low1), NULL_TREE))
5505 return true;
5506 }
5507
5508 /* Now flag two cases, whether the ranges are disjoint or whether the
5509 second range is totally subsumed in the first. Note that the tests
5510 below are simplified by the ones above. */
5511 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
5512 high0, 1, low1, 0));
5513 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
5514 high1, 1, high0, 1));
5515
5516 /* We now have four cases, depending on whether we are including or
5517 excluding the two ranges. */
5518 if (in0_p && in1_p)
5519 {
5520 /* If they don't overlap, the result is false. If the second range
5521 is a subset it is the result. Otherwise, the range is from the start
5522 of the second to the end of the first. */
5523 if (no_overlap)
5524 in_p = 0, low = high = 0;
5525 else if (subset)
5526 in_p = 1, low = low1, high = high1;
5527 else
5528 in_p = 1, low = low1, high = high0;
5529 }
5530
5531 else if (in0_p && ! in1_p)
5532 {
5533 /* If they don't overlap, the result is the first range. If they are
5534 equal, the result is false. If the second range is a subset of the
5535 first, and the ranges begin at the same place, we go from just after
5536 the end of the second range to the end of the first. If the second
5537 range is not a subset of the first, or if it is a subset and both
5538 ranges end at the same place, the range starts at the start of the
5539 first range and ends just before the second range.
5540 Otherwise, we can't describe this as a single range. */
5541 if (no_overlap)
5542 in_p = 1, low = low0, high = high0;
5543 else if (lowequal && highequal)
5544 in_p = 0, low = high = 0;
5545 else if (subset && lowequal)
5546 {
5547 low = range_successor (high1);
5548 high = high0;
5549 in_p = 1;
5550 if (low == 0)
5551 {
5552 /* We are in the weird situation where high0 > high1 but
5553 high1 has no successor. Punt. */
5554 return 0;
5555 }
5556 }
5557 else if (! subset || highequal)
5558 {
5559 low = low0;
5560 high = range_predecessor (low1);
5561 in_p = 1;
5562 if (high == 0)
5563 {
5564 /* low0 < low1 but low1 has no predecessor. Punt. */
5565 return 0;
5566 }
5567 }
5568 else
5569 return 0;
5570 }
5571
5572 else if (! in0_p && in1_p)
5573 {
5574 /* If they don't overlap, the result is the second range. If the second
5575 is a subset of the first, the result is false. Otherwise,
5576 the range starts just after the first range and ends at the
5577 end of the second. */
5578 if (no_overlap)
5579 in_p = 1, low = low1, high = high1;
5580 else if (subset || highequal)
5581 in_p = 0, low = high = 0;
5582 else
5583 {
5584 low = range_successor (high0);
5585 high = high1;
5586 in_p = 1;
5587 if (low == 0)
5588 {
5589 /* high1 > high0 but high0 has no successor. Punt. */
5590 return 0;
5591 }
5592 }
5593 }
5594
5595 else
5596 {
5597 /* The case where we are excluding both ranges. Here the complex case
5598 is if they don't overlap. In that case, the only time we have a
5599 range is if they are adjacent. If the second is a subset of the
5600 first, the result is the first. Otherwise, the range to exclude
5601 starts at the beginning of the first range and ends at the end of the
5602 second. */
5603 if (no_overlap)
5604 {
5605 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5606 range_successor (high0),
5607 1, low1, 0)))
5608 in_p = 0, low = low0, high = high1;
5609 else
5610 {
5611 /* Canonicalize - [min, x] into - [-, x]. */
5612 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5613 switch (TREE_CODE (TREE_TYPE (low0)))
5614 {
5615 case ENUMERAL_TYPE:
5616 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)),
5617 GET_MODE_BITSIZE
5618 (TYPE_MODE (TREE_TYPE (low0)))))
5619 break;
5620 /* FALLTHROUGH */
5621 case INTEGER_TYPE:
5622 if (tree_int_cst_equal (low0,
5623 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5624 low0 = 0;
5625 break;
5626 case POINTER_TYPE:
5627 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5628 && integer_zerop (low0))
5629 low0 = 0;
5630 break;
5631 default:
5632 break;
5633 }
5634
5635 /* Canonicalize - [x, max] into - [x, -]. */
5636 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5637 switch (TREE_CODE (TREE_TYPE (high1)))
5638 {
5639 case ENUMERAL_TYPE:
5640 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)),
5641 GET_MODE_BITSIZE
5642 (TYPE_MODE (TREE_TYPE (high1)))))
5643 break;
5644 /* FALLTHROUGH */
5645 case INTEGER_TYPE:
5646 if (tree_int_cst_equal (high1,
5647 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5648 high1 = 0;
5649 break;
5650 case POINTER_TYPE:
5651 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5652 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5653 high1, 1,
5654 build_int_cst (TREE_TYPE (high1), 1),
5655 1)))
5656 high1 = 0;
5657 break;
5658 default:
5659 break;
5660 }
5661
5662 /* The ranges might be also adjacent between the maximum and
5663 minimum values of the given type. For
5664 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5665 return + [x + 1, y - 1]. */
5666 if (low0 == 0 && high1 == 0)
5667 {
5668 low = range_successor (high0);
5669 high = range_predecessor (low1);
5670 if (low == 0 || high == 0)
5671 return 0;
5672
5673 in_p = 1;
5674 }
5675 else
5676 return 0;
5677 }
5678 }
5679 else if (subset)
5680 in_p = 0, low = low0, high = high0;
5681 else
5682 in_p = 0, low = low0, high = high1;
5683 }
5684
5685 *pin_p = in_p, *plow = low, *phigh = high;
5686 return 1;
5687 }
5688 \f
5689
5690 /* Subroutine of fold, looking inside expressions of the form
5691 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5692 of the COND_EXPR. This function is being used also to optimize
5693 A op B ? C : A, by reversing the comparison first.
5694
5695 Return a folded expression whose code is not a COND_EXPR
5696 anymore, or NULL_TREE if no folding opportunity is found. */
5697
5698 static tree
5699 fold_cond_expr_with_comparison (location_t loc, tree type,
5700 tree arg0, tree arg1, tree arg2)
5701 {
5702 enum tree_code comp_code = TREE_CODE (arg0);
5703 tree arg00 = TREE_OPERAND (arg0, 0);
5704 tree arg01 = TREE_OPERAND (arg0, 1);
5705 tree arg1_type = TREE_TYPE (arg1);
5706 tree tem;
5707
5708 STRIP_NOPS (arg1);
5709 STRIP_NOPS (arg2);
5710
5711 /* If we have A op 0 ? A : -A, consider applying the following
5712 transformations:
5713
5714 A == 0? A : -A same as -A
5715 A != 0? A : -A same as A
5716 A >= 0? A : -A same as abs (A)
5717 A > 0? A : -A same as abs (A)
5718 A <= 0? A : -A same as -abs (A)
5719 A < 0? A : -A same as -abs (A)
5720
5721 None of these transformations work for modes with signed
5722 zeros. If A is +/-0, the first two transformations will
5723 change the sign of the result (from +0 to -0, or vice
5724 versa). The last four will fix the sign of the result,
5725 even though the original expressions could be positive or
5726 negative, depending on the sign of A.
5727
5728 Note that all these transformations are correct if A is
5729 NaN, since the two alternatives (A and -A) are also NaNs. */
5730 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5731 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5732 ? real_zerop (arg01)
5733 : integer_zerop (arg01))
5734 && ((TREE_CODE (arg2) == NEGATE_EXPR
5735 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5736 /* In the case that A is of the form X-Y, '-A' (arg2) may
5737 have already been folded to Y-X, check for that. */
5738 || (TREE_CODE (arg1) == MINUS_EXPR
5739 && TREE_CODE (arg2) == MINUS_EXPR
5740 && operand_equal_p (TREE_OPERAND (arg1, 0),
5741 TREE_OPERAND (arg2, 1), 0)
5742 && operand_equal_p (TREE_OPERAND (arg1, 1),
5743 TREE_OPERAND (arg2, 0), 0))))
5744 switch (comp_code)
5745 {
5746 case EQ_EXPR:
5747 case UNEQ_EXPR:
5748 tem = fold_convert_loc (loc, arg1_type, arg1);
5749 return fold_convert_loc (loc, type, negate_expr (tem));
5750 case NE_EXPR:
5751 case LTGT_EXPR:
5752 return fold_convert_loc (loc, type, arg1);
5753 case UNGE_EXPR:
5754 case UNGT_EXPR:
5755 if (flag_trapping_math)
5756 break;
5757 /* Fall through. */
5758 case GE_EXPR:
5759 case GT_EXPR:
5760 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5761 break;
5762 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5763 return fold_convert_loc (loc, type, tem);
5764 case UNLE_EXPR:
5765 case UNLT_EXPR:
5766 if (flag_trapping_math)
5767 break;
5768 /* FALLTHRU */
5769 case LE_EXPR:
5770 case LT_EXPR:
5771 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5772 break;
5773 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5774 return negate_expr (fold_convert_loc (loc, type, tem));
5775 default:
5776 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5777 break;
5778 }
5779
5780 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5781 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5782 both transformations are correct when A is NaN: A != 0
5783 is then true, and A == 0 is false. */
5784
5785 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5786 && integer_zerop (arg01) && integer_zerop (arg2))
5787 {
5788 if (comp_code == NE_EXPR)
5789 return fold_convert_loc (loc, type, arg1);
5790 else if (comp_code == EQ_EXPR)
5791 return build_zero_cst (type);
5792 }
5793
5794 /* Try some transformations of A op B ? A : B.
5795
5796 A == B? A : B same as B
5797 A != B? A : B same as A
5798 A >= B? A : B same as max (A, B)
5799 A > B? A : B same as max (B, A)
5800 A <= B? A : B same as min (A, B)
5801 A < B? A : B same as min (B, A)
5802
5803 As above, these transformations don't work in the presence
5804 of signed zeros. For example, if A and B are zeros of
5805 opposite sign, the first two transformations will change
5806 the sign of the result. In the last four, the original
5807 expressions give different results for (A=+0, B=-0) and
5808 (A=-0, B=+0), but the transformed expressions do not.
5809
5810 The first two transformations are correct if either A or B
5811 is a NaN. In the first transformation, the condition will
5812 be false, and B will indeed be chosen. In the case of the
5813 second transformation, the condition A != B will be true,
5814 and A will be chosen.
5815
5816 The conversions to max() and min() are not correct if B is
5817 a number and A is not. The conditions in the original
5818 expressions will be false, so all four give B. The min()
5819 and max() versions would give a NaN instead. */
5820 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5821 && operand_equal_for_comparison_p (arg01, arg2)
5822 /* Avoid these transformations if the COND_EXPR may be used
5823 as an lvalue in the C++ front-end. PR c++/19199. */
5824 && (in_gimple_form
5825 || VECTOR_TYPE_P (type)
5826 || (! lang_GNU_CXX ()
5827 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5828 || ! maybe_lvalue_p (arg1)
5829 || ! maybe_lvalue_p (arg2)))
5830 {
5831 tree comp_op0 = arg00;
5832 tree comp_op1 = arg01;
5833 tree comp_type = TREE_TYPE (comp_op0);
5834
5835 switch (comp_code)
5836 {
5837 case EQ_EXPR:
5838 return fold_convert_loc (loc, type, arg2);
5839 case NE_EXPR:
5840 return fold_convert_loc (loc, type, arg1);
5841 case LE_EXPR:
5842 case LT_EXPR:
5843 case UNLE_EXPR:
5844 case UNLT_EXPR:
5845 /* In C++ a ?: expression can be an lvalue, so put the
5846 operand which will be used if they are equal first
5847 so that we can convert this back to the
5848 corresponding COND_EXPR. */
5849 if (!HONOR_NANS (arg1))
5850 {
5851 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5852 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5853 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5854 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5855 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5856 comp_op1, comp_op0);
5857 return fold_convert_loc (loc, type, tem);
5858 }
5859 break;
5860 case GE_EXPR:
5861 case GT_EXPR:
5862 case UNGE_EXPR:
5863 case UNGT_EXPR:
5864 if (!HONOR_NANS (arg1))
5865 {
5866 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5867 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5868 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5869 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5870 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5871 comp_op1, comp_op0);
5872 return fold_convert_loc (loc, type, tem);
5873 }
5874 break;
5875 case UNEQ_EXPR:
5876 if (!HONOR_NANS (arg1))
5877 return fold_convert_loc (loc, type, arg2);
5878 break;
5879 case LTGT_EXPR:
5880 if (!HONOR_NANS (arg1))
5881 return fold_convert_loc (loc, type, arg1);
5882 break;
5883 default:
5884 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5885 break;
5886 }
5887 }
5888
5889 return NULL_TREE;
5890 }
5891
5892
5893 \f
5894 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5895 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5896 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5897 false) >= 2)
5898 #endif
5899
5900 /* EXP is some logical combination of boolean tests. See if we can
5901 merge it into some range test. Return the new tree if so. */
5902
5903 static tree
5904 fold_range_test (location_t loc, enum tree_code code, tree type,
5905 tree op0, tree op1)
5906 {
5907 int or_op = (code == TRUTH_ORIF_EXPR
5908 || code == TRUTH_OR_EXPR);
5909 int in0_p, in1_p, in_p;
5910 tree low0, low1, low, high0, high1, high;
5911 bool strict_overflow_p = false;
5912 tree tem, lhs, rhs;
5913 const char * const warnmsg = G_("assuming signed overflow does not occur "
5914 "when simplifying range test");
5915
5916 if (!INTEGRAL_TYPE_P (type))
5917 return 0;
5918
5919 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5920 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5921
5922 /* If this is an OR operation, invert both sides; we will invert
5923 again at the end. */
5924 if (or_op)
5925 in0_p = ! in0_p, in1_p = ! in1_p;
5926
5927 /* If both expressions are the same, if we can merge the ranges, and we
5928 can build the range test, return it or it inverted. If one of the
5929 ranges is always true or always false, consider it to be the same
5930 expression as the other. */
5931 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5932 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5933 in1_p, low1, high1)
5934 && (tem = (build_range_check (loc, type,
5935 lhs != 0 ? lhs
5936 : rhs != 0 ? rhs : integer_zero_node,
5937 in_p, low, high))) != 0)
5938 {
5939 if (strict_overflow_p)
5940 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5941 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5942 }
5943
5944 /* On machines where the branch cost is expensive, if this is a
5945 short-circuited branch and the underlying object on both sides
5946 is the same, make a non-short-circuit operation. */
5947 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
5948 if (param_logical_op_non_short_circuit != -1)
5949 logical_op_non_short_circuit
5950 = param_logical_op_non_short_circuit;
5951 if (logical_op_non_short_circuit
5952 && !flag_sanitize_coverage
5953 && lhs != 0 && rhs != 0
5954 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
5955 && operand_equal_p (lhs, rhs, 0))
5956 {
5957 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5958 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5959 which cases we can't do this. */
5960 if (simple_operand_p (lhs))
5961 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5962 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5963 type, op0, op1);
5964
5965 else if (!lang_hooks.decls.global_bindings_p ()
5966 && !CONTAINS_PLACEHOLDER_P (lhs))
5967 {
5968 tree common = save_expr (lhs);
5969
5970 if ((lhs = build_range_check (loc, type, common,
5971 or_op ? ! in0_p : in0_p,
5972 low0, high0)) != 0
5973 && (rhs = build_range_check (loc, type, common,
5974 or_op ? ! in1_p : in1_p,
5975 low1, high1)) != 0)
5976 {
5977 if (strict_overflow_p)
5978 fold_overflow_warning (warnmsg,
5979 WARN_STRICT_OVERFLOW_COMPARISON);
5980 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5981 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5982 type, lhs, rhs);
5983 }
5984 }
5985 }
5986
5987 return 0;
5988 }
5989 \f
5990 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5991 bit value. Arrange things so the extra bits will be set to zero if and
5992 only if C is signed-extended to its full width. If MASK is nonzero,
5993 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5994
5995 static tree
5996 unextend (tree c, int p, int unsignedp, tree mask)
5997 {
5998 tree type = TREE_TYPE (c);
5999 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
6000 tree temp;
6001
6002 if (p == modesize || unsignedp)
6003 return c;
6004
6005 /* We work by getting just the sign bit into the low-order bit, then
6006 into the high-order bit, then sign-extend. We then XOR that value
6007 with C. */
6008 temp = build_int_cst (TREE_TYPE (c),
6009 wi::extract_uhwi (wi::to_wide (c), p - 1, 1));
6010
6011 /* We must use a signed type in order to get an arithmetic right shift.
6012 However, we must also avoid introducing accidental overflows, so that
6013 a subsequent call to integer_zerop will work. Hence we must
6014 do the type conversion here. At this point, the constant is either
6015 zero or one, and the conversion to a signed type can never overflow.
6016 We could get an overflow if this conversion is done anywhere else. */
6017 if (TYPE_UNSIGNED (type))
6018 temp = fold_convert (signed_type_for (type), temp);
6019
6020 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
6021 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
6022 if (mask != 0)
6023 temp = const_binop (BIT_AND_EXPR, temp,
6024 fold_convert (TREE_TYPE (c), mask));
6025 /* If necessary, convert the type back to match the type of C. */
6026 if (TYPE_UNSIGNED (type))
6027 temp = fold_convert (type, temp);
6028
6029 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
6030 }
6031 \f
6032 /* For an expression that has the form
6033 (A && B) || ~B
6034 or
6035 (A || B) && ~B,
6036 we can drop one of the inner expressions and simplify to
6037 A || ~B
6038 or
6039 A && ~B
6040 LOC is the location of the resulting expression. OP is the inner
6041 logical operation; the left-hand side in the examples above, while CMPOP
6042 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
6043 removing a condition that guards another, as in
6044 (A != NULL && A->...) || A == NULL
6045 which we must not transform. If RHS_ONLY is true, only eliminate the
6046 right-most operand of the inner logical operation. */
6047
6048 static tree
6049 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
6050 bool rhs_only)
6051 {
6052 tree type = TREE_TYPE (cmpop);
6053 enum tree_code code = TREE_CODE (cmpop);
6054 enum tree_code truthop_code = TREE_CODE (op);
6055 tree lhs = TREE_OPERAND (op, 0);
6056 tree rhs = TREE_OPERAND (op, 1);
6057 tree orig_lhs = lhs, orig_rhs = rhs;
6058 enum tree_code rhs_code = TREE_CODE (rhs);
6059 enum tree_code lhs_code = TREE_CODE (lhs);
6060 enum tree_code inv_code;
6061
6062 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
6063 return NULL_TREE;
6064
6065 if (TREE_CODE_CLASS (code) != tcc_comparison)
6066 return NULL_TREE;
6067
6068 if (rhs_code == truthop_code)
6069 {
6070 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
6071 if (newrhs != NULL_TREE)
6072 {
6073 rhs = newrhs;
6074 rhs_code = TREE_CODE (rhs);
6075 }
6076 }
6077 if (lhs_code == truthop_code && !rhs_only)
6078 {
6079 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
6080 if (newlhs != NULL_TREE)
6081 {
6082 lhs = newlhs;
6083 lhs_code = TREE_CODE (lhs);
6084 }
6085 }
6086
6087 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
6088 if (inv_code == rhs_code
6089 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
6090 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
6091 return lhs;
6092 if (!rhs_only && inv_code == lhs_code
6093 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
6094 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
6095 return rhs;
6096 if (rhs != orig_rhs || lhs != orig_lhs)
6097 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
6098 lhs, rhs);
6099 return NULL_TREE;
6100 }
6101
6102 /* Find ways of folding logical expressions of LHS and RHS:
6103 Try to merge two comparisons to the same innermost item.
6104 Look for range tests like "ch >= '0' && ch <= '9'".
6105 Look for combinations of simple terms on machines with expensive branches
6106 and evaluate the RHS unconditionally.
6107
6108 For example, if we have p->a == 2 && p->b == 4 and we can make an
6109 object large enough to span both A and B, we can do this with a comparison
6110 against the object ANDed with the a mask.
6111
6112 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
6113 operations to do this with one comparison.
6114
6115 We check for both normal comparisons and the BIT_AND_EXPRs made this by
6116 function and the one above.
6117
6118 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
6119 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
6120
6121 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
6122 two operands.
6123
6124 We return the simplified tree or 0 if no optimization is possible. */
6125
6126 static tree
6127 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
6128 tree lhs, tree rhs)
6129 {
6130 /* If this is the "or" of two comparisons, we can do something if
6131 the comparisons are NE_EXPR. If this is the "and", we can do something
6132 if the comparisons are EQ_EXPR. I.e.,
6133 (a->b == 2 && a->c == 4) can become (a->new == NEW).
6134
6135 WANTED_CODE is this operation code. For single bit fields, we can
6136 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
6137 comparison for one-bit fields. */
6138
6139 enum tree_code wanted_code;
6140 enum tree_code lcode, rcode;
6141 tree ll_arg, lr_arg, rl_arg, rr_arg;
6142 tree ll_inner, lr_inner, rl_inner, rr_inner;
6143 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
6144 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
6145 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
6146 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
6147 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
6148 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
6149 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
6150 scalar_int_mode lnmode, rnmode;
6151 tree ll_mask, lr_mask, rl_mask, rr_mask;
6152 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
6153 tree l_const, r_const;
6154 tree lntype, rntype, result;
6155 HOST_WIDE_INT first_bit, end_bit;
6156 int volatilep;
6157
6158 /* Start by getting the comparison codes. Fail if anything is volatile.
6159 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
6160 it were surrounded with a NE_EXPR. */
6161
6162 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
6163 return 0;
6164
6165 lcode = TREE_CODE (lhs);
6166 rcode = TREE_CODE (rhs);
6167
6168 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
6169 {
6170 lhs = build2 (NE_EXPR, truth_type, lhs,
6171 build_int_cst (TREE_TYPE (lhs), 0));
6172 lcode = NE_EXPR;
6173 }
6174
6175 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
6176 {
6177 rhs = build2 (NE_EXPR, truth_type, rhs,
6178 build_int_cst (TREE_TYPE (rhs), 0));
6179 rcode = NE_EXPR;
6180 }
6181
6182 if (TREE_CODE_CLASS (lcode) != tcc_comparison
6183 || TREE_CODE_CLASS (rcode) != tcc_comparison)
6184 return 0;
6185
6186 ll_arg = TREE_OPERAND (lhs, 0);
6187 lr_arg = TREE_OPERAND (lhs, 1);
6188 rl_arg = TREE_OPERAND (rhs, 0);
6189 rr_arg = TREE_OPERAND (rhs, 1);
6190
6191 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
6192 if (simple_operand_p (ll_arg)
6193 && simple_operand_p (lr_arg))
6194 {
6195 if (operand_equal_p (ll_arg, rl_arg, 0)
6196 && operand_equal_p (lr_arg, rr_arg, 0))
6197 {
6198 result = combine_comparisons (loc, code, lcode, rcode,
6199 truth_type, ll_arg, lr_arg);
6200 if (result)
6201 return result;
6202 }
6203 else if (operand_equal_p (ll_arg, rr_arg, 0)
6204 && operand_equal_p (lr_arg, rl_arg, 0))
6205 {
6206 result = combine_comparisons (loc, code, lcode,
6207 swap_tree_comparison (rcode),
6208 truth_type, ll_arg, lr_arg);
6209 if (result)
6210 return result;
6211 }
6212 }
6213
6214 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
6215 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
6216
6217 /* If the RHS can be evaluated unconditionally and its operands are
6218 simple, it wins to evaluate the RHS unconditionally on machines
6219 with expensive branches. In this case, this isn't a comparison
6220 that can be merged. */
6221
6222 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
6223 false) >= 2
6224 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
6225 && simple_operand_p (rl_arg)
6226 && simple_operand_p (rr_arg))
6227 {
6228 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
6229 if (code == TRUTH_OR_EXPR
6230 && lcode == NE_EXPR && integer_zerop (lr_arg)
6231 && rcode == NE_EXPR && integer_zerop (rr_arg)
6232 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6233 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6234 return build2_loc (loc, NE_EXPR, truth_type,
6235 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6236 ll_arg, rl_arg),
6237 build_int_cst (TREE_TYPE (ll_arg), 0));
6238
6239 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
6240 if (code == TRUTH_AND_EXPR
6241 && lcode == EQ_EXPR && integer_zerop (lr_arg)
6242 && rcode == EQ_EXPR && integer_zerop (rr_arg)
6243 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6244 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6245 return build2_loc (loc, EQ_EXPR, truth_type,
6246 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6247 ll_arg, rl_arg),
6248 build_int_cst (TREE_TYPE (ll_arg), 0));
6249 }
6250
6251 /* See if the comparisons can be merged. Then get all the parameters for
6252 each side. */
6253
6254 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
6255 || (rcode != EQ_EXPR && rcode != NE_EXPR))
6256 return 0;
6257
6258 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
6259 volatilep = 0;
6260 ll_inner = decode_field_reference (loc, &ll_arg,
6261 &ll_bitsize, &ll_bitpos, &ll_mode,
6262 &ll_unsignedp, &ll_reversep, &volatilep,
6263 &ll_mask, &ll_and_mask);
6264 lr_inner = decode_field_reference (loc, &lr_arg,
6265 &lr_bitsize, &lr_bitpos, &lr_mode,
6266 &lr_unsignedp, &lr_reversep, &volatilep,
6267 &lr_mask, &lr_and_mask);
6268 rl_inner = decode_field_reference (loc, &rl_arg,
6269 &rl_bitsize, &rl_bitpos, &rl_mode,
6270 &rl_unsignedp, &rl_reversep, &volatilep,
6271 &rl_mask, &rl_and_mask);
6272 rr_inner = decode_field_reference (loc, &rr_arg,
6273 &rr_bitsize, &rr_bitpos, &rr_mode,
6274 &rr_unsignedp, &rr_reversep, &volatilep,
6275 &rr_mask, &rr_and_mask);
6276
6277 /* It must be true that the inner operation on the lhs of each
6278 comparison must be the same if we are to be able to do anything.
6279 Then see if we have constants. If not, the same must be true for
6280 the rhs's. */
6281 if (volatilep
6282 || ll_reversep != rl_reversep
6283 || ll_inner == 0 || rl_inner == 0
6284 || ! operand_equal_p (ll_inner, rl_inner, 0))
6285 return 0;
6286
6287 if (TREE_CODE (lr_arg) == INTEGER_CST
6288 && TREE_CODE (rr_arg) == INTEGER_CST)
6289 {
6290 l_const = lr_arg, r_const = rr_arg;
6291 lr_reversep = ll_reversep;
6292 }
6293 else if (lr_reversep != rr_reversep
6294 || lr_inner == 0 || rr_inner == 0
6295 || ! operand_equal_p (lr_inner, rr_inner, 0))
6296 return 0;
6297 else
6298 l_const = r_const = 0;
6299
6300 /* If either comparison code is not correct for our logical operation,
6301 fail. However, we can convert a one-bit comparison against zero into
6302 the opposite comparison against that bit being set in the field. */
6303
6304 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
6305 if (lcode != wanted_code)
6306 {
6307 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
6308 {
6309 /* Make the left operand unsigned, since we are only interested
6310 in the value of one bit. Otherwise we are doing the wrong
6311 thing below. */
6312 ll_unsignedp = 1;
6313 l_const = ll_mask;
6314 }
6315 else
6316 return 0;
6317 }
6318
6319 /* This is analogous to the code for l_const above. */
6320 if (rcode != wanted_code)
6321 {
6322 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
6323 {
6324 rl_unsignedp = 1;
6325 r_const = rl_mask;
6326 }
6327 else
6328 return 0;
6329 }
6330
6331 /* See if we can find a mode that contains both fields being compared on
6332 the left. If we can't, fail. Otherwise, update all constants and masks
6333 to be relative to a field of that size. */
6334 first_bit = MIN (ll_bitpos, rl_bitpos);
6335 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
6336 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6337 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
6338 volatilep, &lnmode))
6339 return 0;
6340
6341 lnbitsize = GET_MODE_BITSIZE (lnmode);
6342 lnbitpos = first_bit & ~ (lnbitsize - 1);
6343 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
6344 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
6345
6346 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6347 {
6348 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
6349 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
6350 }
6351
6352 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
6353 size_int (xll_bitpos));
6354 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
6355 size_int (xrl_bitpos));
6356
6357 if (l_const)
6358 {
6359 l_const = fold_convert_loc (loc, lntype, l_const);
6360 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
6361 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
6362 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
6363 fold_build1_loc (loc, BIT_NOT_EXPR,
6364 lntype, ll_mask))))
6365 {
6366 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6367
6368 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6369 }
6370 }
6371 if (r_const)
6372 {
6373 r_const = fold_convert_loc (loc, lntype, r_const);
6374 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
6375 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
6376 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
6377 fold_build1_loc (loc, BIT_NOT_EXPR,
6378 lntype, rl_mask))))
6379 {
6380 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6381
6382 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6383 }
6384 }
6385
6386 /* If the right sides are not constant, do the same for it. Also,
6387 disallow this optimization if a size, signedness or storage order
6388 mismatch occurs between the left and right sides. */
6389 if (l_const == 0)
6390 {
6391 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
6392 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
6393 || ll_reversep != lr_reversep
6394 /* Make sure the two fields on the right
6395 correspond to the left without being swapped. */
6396 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
6397 return 0;
6398
6399 first_bit = MIN (lr_bitpos, rr_bitpos);
6400 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
6401 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6402 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
6403 volatilep, &rnmode))
6404 return 0;
6405
6406 rnbitsize = GET_MODE_BITSIZE (rnmode);
6407 rnbitpos = first_bit & ~ (rnbitsize - 1);
6408 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
6409 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
6410
6411 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6412 {
6413 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
6414 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
6415 }
6416
6417 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6418 rntype, lr_mask),
6419 size_int (xlr_bitpos));
6420 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6421 rntype, rr_mask),
6422 size_int (xrr_bitpos));
6423
6424 /* Make a mask that corresponds to both fields being compared.
6425 Do this for both items being compared. If the operands are the
6426 same size and the bits being compared are in the same position
6427 then we can do this by masking both and comparing the masked
6428 results. */
6429 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6430 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
6431 if (lnbitsize == rnbitsize
6432 && xll_bitpos == xlr_bitpos
6433 && lnbitpos >= 0
6434 && rnbitpos >= 0)
6435 {
6436 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
6437 lntype, lnbitsize, lnbitpos,
6438 ll_unsignedp || rl_unsignedp, ll_reversep);
6439 if (! all_ones_mask_p (ll_mask, lnbitsize))
6440 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
6441
6442 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
6443 rntype, rnbitsize, rnbitpos,
6444 lr_unsignedp || rr_unsignedp, lr_reversep);
6445 if (! all_ones_mask_p (lr_mask, rnbitsize))
6446 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
6447
6448 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6449 }
6450
6451 /* There is still another way we can do something: If both pairs of
6452 fields being compared are adjacent, we may be able to make a wider
6453 field containing them both.
6454
6455 Note that we still must mask the lhs/rhs expressions. Furthermore,
6456 the mask must be shifted to account for the shift done by
6457 make_bit_field_ref. */
6458 if (((ll_bitsize + ll_bitpos == rl_bitpos
6459 && lr_bitsize + lr_bitpos == rr_bitpos)
6460 || (ll_bitpos == rl_bitpos + rl_bitsize
6461 && lr_bitpos == rr_bitpos + rr_bitsize))
6462 && ll_bitpos >= 0
6463 && rl_bitpos >= 0
6464 && lr_bitpos >= 0
6465 && rr_bitpos >= 0)
6466 {
6467 tree type;
6468
6469 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
6470 ll_bitsize + rl_bitsize,
6471 MIN (ll_bitpos, rl_bitpos),
6472 ll_unsignedp, ll_reversep);
6473 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
6474 lr_bitsize + rr_bitsize,
6475 MIN (lr_bitpos, rr_bitpos),
6476 lr_unsignedp, lr_reversep);
6477
6478 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
6479 size_int (MIN (xll_bitpos, xrl_bitpos)));
6480 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
6481 size_int (MIN (xlr_bitpos, xrr_bitpos)));
6482
6483 /* Convert to the smaller type before masking out unwanted bits. */
6484 type = lntype;
6485 if (lntype != rntype)
6486 {
6487 if (lnbitsize > rnbitsize)
6488 {
6489 lhs = fold_convert_loc (loc, rntype, lhs);
6490 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
6491 type = rntype;
6492 }
6493 else if (lnbitsize < rnbitsize)
6494 {
6495 rhs = fold_convert_loc (loc, lntype, rhs);
6496 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
6497 type = lntype;
6498 }
6499 }
6500
6501 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
6502 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
6503
6504 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
6505 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
6506
6507 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6508 }
6509
6510 return 0;
6511 }
6512
6513 /* Handle the case of comparisons with constants. If there is something in
6514 common between the masks, those bits of the constants must be the same.
6515 If not, the condition is always false. Test for this to avoid generating
6516 incorrect code below. */
6517 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
6518 if (! integer_zerop (result)
6519 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
6520 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
6521 {
6522 if (wanted_code == NE_EXPR)
6523 {
6524 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6525 return constant_boolean_node (true, truth_type);
6526 }
6527 else
6528 {
6529 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6530 return constant_boolean_node (false, truth_type);
6531 }
6532 }
6533
6534 if (lnbitpos < 0)
6535 return 0;
6536
6537 /* Construct the expression we will return. First get the component
6538 reference we will make. Unless the mask is all ones the width of
6539 that field, perform the mask operation. Then compare with the
6540 merged constant. */
6541 result = make_bit_field_ref (loc, ll_inner, ll_arg,
6542 lntype, lnbitsize, lnbitpos,
6543 ll_unsignedp || rl_unsignedp, ll_reversep);
6544
6545 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6546 if (! all_ones_mask_p (ll_mask, lnbitsize))
6547 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
6548
6549 return build2_loc (loc, wanted_code, truth_type, result,
6550 const_binop (BIT_IOR_EXPR, l_const, r_const));
6551 }
6552 \f
6553 /* T is an integer expression that is being multiplied, divided, or taken a
6554 modulus (CODE says which and what kind of divide or modulus) by a
6555 constant C. See if we can eliminate that operation by folding it with
6556 other operations already in T. WIDE_TYPE, if non-null, is a type that
6557 should be used for the computation if wider than our type.
6558
6559 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6560 (X * 2) + (Y * 4). We must, however, be assured that either the original
6561 expression would not overflow or that overflow is undefined for the type
6562 in the language in question.
6563
6564 If we return a non-null expression, it is an equivalent form of the
6565 original computation, but need not be in the original type.
6566
6567 We set *STRICT_OVERFLOW_P to true if the return values depends on
6568 signed overflow being undefined. Otherwise we do not change
6569 *STRICT_OVERFLOW_P. */
6570
6571 static tree
6572 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6573 bool *strict_overflow_p)
6574 {
6575 /* To avoid exponential search depth, refuse to allow recursion past
6576 three levels. Beyond that (1) it's highly unlikely that we'll find
6577 something interesting and (2) we've probably processed it before
6578 when we built the inner expression. */
6579
6580 static int depth;
6581 tree ret;
6582
6583 if (depth > 3)
6584 return NULL;
6585
6586 depth++;
6587 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6588 depth--;
6589
6590 return ret;
6591 }
6592
6593 static tree
6594 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6595 bool *strict_overflow_p)
6596 {
6597 tree type = TREE_TYPE (t);
6598 enum tree_code tcode = TREE_CODE (t);
6599 tree ctype = (wide_type != 0
6600 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6601 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6602 ? wide_type : type);
6603 tree t1, t2;
6604 int same_p = tcode == code;
6605 tree op0 = NULL_TREE, op1 = NULL_TREE;
6606 bool sub_strict_overflow_p;
6607
6608 /* Don't deal with constants of zero here; they confuse the code below. */
6609 if (integer_zerop (c))
6610 return NULL_TREE;
6611
6612 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6613 op0 = TREE_OPERAND (t, 0);
6614
6615 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6616 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6617
6618 /* Note that we need not handle conditional operations here since fold
6619 already handles those cases. So just do arithmetic here. */
6620 switch (tcode)
6621 {
6622 case INTEGER_CST:
6623 /* For a constant, we can always simplify if we are a multiply
6624 or (for divide and modulus) if it is a multiple of our constant. */
6625 if (code == MULT_EXPR
6626 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c),
6627 TYPE_SIGN (type)))
6628 {
6629 tree tem = const_binop (code, fold_convert (ctype, t),
6630 fold_convert (ctype, c));
6631 /* If the multiplication overflowed, we lost information on it.
6632 See PR68142 and PR69845. */
6633 if (TREE_OVERFLOW (tem))
6634 return NULL_TREE;
6635 return tem;
6636 }
6637 break;
6638
6639 CASE_CONVERT: case NON_LVALUE_EXPR:
6640 /* If op0 is an expression ... */
6641 if ((COMPARISON_CLASS_P (op0)
6642 || UNARY_CLASS_P (op0)
6643 || BINARY_CLASS_P (op0)
6644 || VL_EXP_CLASS_P (op0)
6645 || EXPRESSION_CLASS_P (op0))
6646 /* ... and has wrapping overflow, and its type is smaller
6647 than ctype, then we cannot pass through as widening. */
6648 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6649 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6650 && (TYPE_PRECISION (ctype)
6651 > TYPE_PRECISION (TREE_TYPE (op0))))
6652 /* ... or this is a truncation (t is narrower than op0),
6653 then we cannot pass through this narrowing. */
6654 || (TYPE_PRECISION (type)
6655 < TYPE_PRECISION (TREE_TYPE (op0)))
6656 /* ... or signedness changes for division or modulus,
6657 then we cannot pass through this conversion. */
6658 || (code != MULT_EXPR
6659 && (TYPE_UNSIGNED (ctype)
6660 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6661 /* ... or has undefined overflow while the converted to
6662 type has not, we cannot do the operation in the inner type
6663 as that would introduce undefined overflow. */
6664 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6665 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6666 && !TYPE_OVERFLOW_UNDEFINED (type))))
6667 break;
6668
6669 /* Pass the constant down and see if we can make a simplification. If
6670 we can, replace this expression with the inner simplification for
6671 possible later conversion to our or some other type. */
6672 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6673 && TREE_CODE (t2) == INTEGER_CST
6674 && !TREE_OVERFLOW (t2)
6675 && (t1 = extract_muldiv (op0, t2, code,
6676 code == MULT_EXPR ? ctype : NULL_TREE,
6677 strict_overflow_p)) != 0)
6678 return t1;
6679 break;
6680
6681 case ABS_EXPR:
6682 /* If widening the type changes it from signed to unsigned, then we
6683 must avoid building ABS_EXPR itself as unsigned. */
6684 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6685 {
6686 tree cstype = (*signed_type_for) (ctype);
6687 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6688 != 0)
6689 {
6690 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6691 return fold_convert (ctype, t1);
6692 }
6693 break;
6694 }
6695 /* If the constant is negative, we cannot simplify this. */
6696 if (tree_int_cst_sgn (c) == -1)
6697 break;
6698 /* FALLTHROUGH */
6699 case NEGATE_EXPR:
6700 /* For division and modulus, type can't be unsigned, as e.g.
6701 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6702 For signed types, even with wrapping overflow, this is fine. */
6703 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6704 break;
6705 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6706 != 0)
6707 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6708 break;
6709
6710 case MIN_EXPR: case MAX_EXPR:
6711 /* If widening the type changes the signedness, then we can't perform
6712 this optimization as that changes the result. */
6713 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6714 break;
6715
6716 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6717 sub_strict_overflow_p = false;
6718 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6719 &sub_strict_overflow_p)) != 0
6720 && (t2 = extract_muldiv (op1, c, code, wide_type,
6721 &sub_strict_overflow_p)) != 0)
6722 {
6723 if (tree_int_cst_sgn (c) < 0)
6724 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6725 if (sub_strict_overflow_p)
6726 *strict_overflow_p = true;
6727 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6728 fold_convert (ctype, t2));
6729 }
6730 break;
6731
6732 case LSHIFT_EXPR: case RSHIFT_EXPR:
6733 /* If the second operand is constant, this is a multiplication
6734 or floor division, by a power of two, so we can treat it that
6735 way unless the multiplier or divisor overflows. Signed
6736 left-shift overflow is implementation-defined rather than
6737 undefined in C90, so do not convert signed left shift into
6738 multiplication. */
6739 if (TREE_CODE (op1) == INTEGER_CST
6740 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6741 /* const_binop may not detect overflow correctly,
6742 so check for it explicitly here. */
6743 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
6744 wi::to_wide (op1))
6745 && (t1 = fold_convert (ctype,
6746 const_binop (LSHIFT_EXPR, size_one_node,
6747 op1))) != 0
6748 && !TREE_OVERFLOW (t1))
6749 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6750 ? MULT_EXPR : FLOOR_DIV_EXPR,
6751 ctype,
6752 fold_convert (ctype, op0),
6753 t1),
6754 c, code, wide_type, strict_overflow_p);
6755 break;
6756
6757 case PLUS_EXPR: case MINUS_EXPR:
6758 /* See if we can eliminate the operation on both sides. If we can, we
6759 can return a new PLUS or MINUS. If we can't, the only remaining
6760 cases where we can do anything are if the second operand is a
6761 constant. */
6762 sub_strict_overflow_p = false;
6763 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6764 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6765 if (t1 != 0 && t2 != 0
6766 && TYPE_OVERFLOW_WRAPS (ctype)
6767 && (code == MULT_EXPR
6768 /* If not multiplication, we can only do this if both operands
6769 are divisible by c. */
6770 || (multiple_of_p (ctype, op0, c)
6771 && multiple_of_p (ctype, op1, c))))
6772 {
6773 if (sub_strict_overflow_p)
6774 *strict_overflow_p = true;
6775 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6776 fold_convert (ctype, t2));
6777 }
6778
6779 /* If this was a subtraction, negate OP1 and set it to be an addition.
6780 This simplifies the logic below. */
6781 if (tcode == MINUS_EXPR)
6782 {
6783 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6784 /* If OP1 was not easily negatable, the constant may be OP0. */
6785 if (TREE_CODE (op0) == INTEGER_CST)
6786 {
6787 std::swap (op0, op1);
6788 std::swap (t1, t2);
6789 }
6790 }
6791
6792 if (TREE_CODE (op1) != INTEGER_CST)
6793 break;
6794
6795 /* If either OP1 or C are negative, this optimization is not safe for
6796 some of the division and remainder types while for others we need
6797 to change the code. */
6798 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6799 {
6800 if (code == CEIL_DIV_EXPR)
6801 code = FLOOR_DIV_EXPR;
6802 else if (code == FLOOR_DIV_EXPR)
6803 code = CEIL_DIV_EXPR;
6804 else if (code != MULT_EXPR
6805 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6806 break;
6807 }
6808
6809 /* If it's a multiply or a division/modulus operation of a multiple
6810 of our constant, do the operation and verify it doesn't overflow. */
6811 if (code == MULT_EXPR
6812 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6813 TYPE_SIGN (type)))
6814 {
6815 op1 = const_binop (code, fold_convert (ctype, op1),
6816 fold_convert (ctype, c));
6817 /* We allow the constant to overflow with wrapping semantics. */
6818 if (op1 == 0
6819 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6820 break;
6821 }
6822 else
6823 break;
6824
6825 /* If we have an unsigned type, we cannot widen the operation since it
6826 will change the result if the original computation overflowed. */
6827 if (TYPE_UNSIGNED (ctype) && ctype != type)
6828 break;
6829
6830 /* The last case is if we are a multiply. In that case, we can
6831 apply the distributive law to commute the multiply and addition
6832 if the multiplication of the constants doesn't overflow
6833 and overflow is defined. With undefined overflow
6834 op0 * c might overflow, while (op0 + orig_op1) * c doesn't.
6835 But fold_plusminus_mult_expr would factor back any power-of-two
6836 value so do not distribute in the first place in this case. */
6837 if (code == MULT_EXPR
6838 && TYPE_OVERFLOW_WRAPS (ctype)
6839 && !(tree_fits_shwi_p (c) && pow2p_hwi (absu_hwi (tree_to_shwi (c)))))
6840 return fold_build2 (tcode, ctype,
6841 fold_build2 (code, ctype,
6842 fold_convert (ctype, op0),
6843 fold_convert (ctype, c)),
6844 op1);
6845
6846 break;
6847
6848 case MULT_EXPR:
6849 /* We have a special case here if we are doing something like
6850 (C * 8) % 4 since we know that's zero. */
6851 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6852 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6853 /* If the multiplication can overflow we cannot optimize this. */
6854 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6855 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6856 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6857 TYPE_SIGN (type)))
6858 {
6859 *strict_overflow_p = true;
6860 return omit_one_operand (type, integer_zero_node, op0);
6861 }
6862
6863 /* ... fall through ... */
6864
6865 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6866 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6867 /* If we can extract our operation from the LHS, do so and return a
6868 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6869 do something only if the second operand is a constant. */
6870 if (same_p
6871 && TYPE_OVERFLOW_WRAPS (ctype)
6872 && (t1 = extract_muldiv (op0, c, code, wide_type,
6873 strict_overflow_p)) != 0)
6874 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6875 fold_convert (ctype, op1));
6876 else if (tcode == MULT_EXPR && code == MULT_EXPR
6877 && TYPE_OVERFLOW_WRAPS (ctype)
6878 && (t1 = extract_muldiv (op1, c, code, wide_type,
6879 strict_overflow_p)) != 0)
6880 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6881 fold_convert (ctype, t1));
6882 else if (TREE_CODE (op1) != INTEGER_CST)
6883 return 0;
6884
6885 /* If these are the same operation types, we can associate them
6886 assuming no overflow. */
6887 if (tcode == code)
6888 {
6889 bool overflow_p = false;
6890 wi::overflow_type overflow_mul;
6891 signop sign = TYPE_SIGN (ctype);
6892 unsigned prec = TYPE_PRECISION (ctype);
6893 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6894 wi::to_wide (c, prec),
6895 sign, &overflow_mul);
6896 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6897 if (overflow_mul
6898 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6899 overflow_p = true;
6900 if (!overflow_p)
6901 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6902 wide_int_to_tree (ctype, mul));
6903 }
6904
6905 /* If these operations "cancel" each other, we have the main
6906 optimizations of this pass, which occur when either constant is a
6907 multiple of the other, in which case we replace this with either an
6908 operation or CODE or TCODE.
6909
6910 If we have an unsigned type, we cannot do this since it will change
6911 the result if the original computation overflowed. */
6912 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6913 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6914 || (tcode == MULT_EXPR
6915 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6916 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6917 && code != MULT_EXPR)))
6918 {
6919 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6920 TYPE_SIGN (type)))
6921 {
6922 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6923 *strict_overflow_p = true;
6924 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6925 fold_convert (ctype,
6926 const_binop (TRUNC_DIV_EXPR,
6927 op1, c)));
6928 }
6929 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1),
6930 TYPE_SIGN (type)))
6931 {
6932 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6933 *strict_overflow_p = true;
6934 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6935 fold_convert (ctype,
6936 const_binop (TRUNC_DIV_EXPR,
6937 c, op1)));
6938 }
6939 }
6940 break;
6941
6942 default:
6943 break;
6944 }
6945
6946 return 0;
6947 }
6948 \f
6949 /* Return a node which has the indicated constant VALUE (either 0 or
6950 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6951 and is of the indicated TYPE. */
6952
6953 tree
6954 constant_boolean_node (bool value, tree type)
6955 {
6956 if (type == integer_type_node)
6957 return value ? integer_one_node : integer_zero_node;
6958 else if (type == boolean_type_node)
6959 return value ? boolean_true_node : boolean_false_node;
6960 else if (TREE_CODE (type) == VECTOR_TYPE)
6961 return build_vector_from_val (type,
6962 build_int_cst (TREE_TYPE (type),
6963 value ? -1 : 0));
6964 else
6965 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6966 }
6967
6968
6969 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6970 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6971 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6972 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6973 COND is the first argument to CODE; otherwise (as in the example
6974 given here), it is the second argument. TYPE is the type of the
6975 original expression. Return NULL_TREE if no simplification is
6976 possible. */
6977
6978 static tree
6979 fold_binary_op_with_conditional_arg (location_t loc,
6980 enum tree_code code,
6981 tree type, tree op0, tree op1,
6982 tree cond, tree arg, int cond_first_p)
6983 {
6984 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6985 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6986 tree test, true_value, false_value;
6987 tree lhs = NULL_TREE;
6988 tree rhs = NULL_TREE;
6989 enum tree_code cond_code = COND_EXPR;
6990
6991 /* Do not move possibly trapping operations into the conditional as this
6992 pessimizes code and causes gimplification issues when applied late. */
6993 if (operation_could_trap_p (code, FLOAT_TYPE_P (type),
6994 ANY_INTEGRAL_TYPE_P (type)
6995 && TYPE_OVERFLOW_TRAPS (type), op1))
6996 return NULL_TREE;
6997
6998 if (TREE_CODE (cond) == COND_EXPR
6999 || TREE_CODE (cond) == VEC_COND_EXPR)
7000 {
7001 test = TREE_OPERAND (cond, 0);
7002 true_value = TREE_OPERAND (cond, 1);
7003 false_value = TREE_OPERAND (cond, 2);
7004 /* If this operand throws an expression, then it does not make
7005 sense to try to perform a logical or arithmetic operation
7006 involving it. */
7007 if (VOID_TYPE_P (TREE_TYPE (true_value)))
7008 lhs = true_value;
7009 if (VOID_TYPE_P (TREE_TYPE (false_value)))
7010 rhs = false_value;
7011 }
7012 else if (!(TREE_CODE (type) != VECTOR_TYPE
7013 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
7014 {
7015 tree testtype = TREE_TYPE (cond);
7016 test = cond;
7017 true_value = constant_boolean_node (true, testtype);
7018 false_value = constant_boolean_node (false, testtype);
7019 }
7020 else
7021 /* Detect the case of mixing vector and scalar types - bail out. */
7022 return NULL_TREE;
7023
7024 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
7025 cond_code = VEC_COND_EXPR;
7026
7027 /* This transformation is only worthwhile if we don't have to wrap ARG
7028 in a SAVE_EXPR and the operation can be simplified without recursing
7029 on at least one of the branches once its pushed inside the COND_EXPR. */
7030 if (!TREE_CONSTANT (arg)
7031 && (TREE_SIDE_EFFECTS (arg)
7032 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
7033 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
7034 return NULL_TREE;
7035
7036 arg = fold_convert_loc (loc, arg_type, arg);
7037 if (lhs == 0)
7038 {
7039 true_value = fold_convert_loc (loc, cond_type, true_value);
7040 if (cond_first_p)
7041 lhs = fold_build2_loc (loc, code, type, true_value, arg);
7042 else
7043 lhs = fold_build2_loc (loc, code, type, arg, true_value);
7044 }
7045 if (rhs == 0)
7046 {
7047 false_value = fold_convert_loc (loc, cond_type, false_value);
7048 if (cond_first_p)
7049 rhs = fold_build2_loc (loc, code, type, false_value, arg);
7050 else
7051 rhs = fold_build2_loc (loc, code, type, arg, false_value);
7052 }
7053
7054 /* Check that we have simplified at least one of the branches. */
7055 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
7056 return NULL_TREE;
7057
7058 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
7059 }
7060
7061 \f
7062 /* Subroutine of fold() that checks for the addition of +/- 0.0.
7063
7064 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
7065 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
7066 ADDEND is the same as X.
7067
7068 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
7069 and finite. The problematic cases are when X is zero, and its mode
7070 has signed zeros. In the case of rounding towards -infinity,
7071 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
7072 modes, X + 0 is not the same as X because -0 + 0 is 0. */
7073
7074 bool
7075 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
7076 {
7077 if (!real_zerop (addend))
7078 return false;
7079
7080 /* Don't allow the fold with -fsignaling-nans. */
7081 if (HONOR_SNANS (type))
7082 return false;
7083
7084 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
7085 if (!HONOR_SIGNED_ZEROS (type))
7086 return true;
7087
7088 /* There is no case that is safe for all rounding modes. */
7089 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
7090 return false;
7091
7092 /* In a vector or complex, we would need to check the sign of all zeros. */
7093 if (TREE_CODE (addend) == VECTOR_CST)
7094 addend = uniform_vector_p (addend);
7095 if (!addend || TREE_CODE (addend) != REAL_CST)
7096 return false;
7097
7098 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
7099 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
7100 negate = !negate;
7101
7102 /* The mode has signed zeros, and we have to honor their sign.
7103 In this situation, there is only one case we can return true for.
7104 X - 0 is the same as X with default rounding. */
7105 return negate;
7106 }
7107
7108 /* Subroutine of match.pd that optimizes comparisons of a division by
7109 a nonzero integer constant against an integer constant, i.e.
7110 X/C1 op C2.
7111
7112 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
7113 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
7114
7115 enum tree_code
7116 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
7117 tree *hi, bool *neg_overflow)
7118 {
7119 tree prod, tmp, type = TREE_TYPE (c1);
7120 signop sign = TYPE_SIGN (type);
7121 wi::overflow_type overflow;
7122
7123 /* We have to do this the hard way to detect unsigned overflow.
7124 prod = int_const_binop (MULT_EXPR, c1, c2); */
7125 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow);
7126 prod = force_fit_type (type, val, -1, overflow);
7127 *neg_overflow = false;
7128
7129 if (sign == UNSIGNED)
7130 {
7131 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
7132 *lo = prod;
7133
7134 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
7135 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow);
7136 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
7137 }
7138 else if (tree_int_cst_sgn (c1) >= 0)
7139 {
7140 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
7141 switch (tree_int_cst_sgn (c2))
7142 {
7143 case -1:
7144 *neg_overflow = true;
7145 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
7146 *hi = prod;
7147 break;
7148
7149 case 0:
7150 *lo = fold_negate_const (tmp, type);
7151 *hi = tmp;
7152 break;
7153
7154 case 1:
7155 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
7156 *lo = prod;
7157 break;
7158
7159 default:
7160 gcc_unreachable ();
7161 }
7162 }
7163 else
7164 {
7165 /* A negative divisor reverses the relational operators. */
7166 code = swap_tree_comparison (code);
7167
7168 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
7169 switch (tree_int_cst_sgn (c2))
7170 {
7171 case -1:
7172 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
7173 *lo = prod;
7174 break;
7175
7176 case 0:
7177 *hi = fold_negate_const (tmp, type);
7178 *lo = tmp;
7179 break;
7180
7181 case 1:
7182 *neg_overflow = true;
7183 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
7184 *hi = prod;
7185 break;
7186
7187 default:
7188 gcc_unreachable ();
7189 }
7190 }
7191
7192 if (code != EQ_EXPR && code != NE_EXPR)
7193 return code;
7194
7195 if (TREE_OVERFLOW (*lo)
7196 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
7197 *lo = NULL_TREE;
7198 if (TREE_OVERFLOW (*hi)
7199 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
7200 *hi = NULL_TREE;
7201
7202 return code;
7203 }
7204
7205
7206 /* If CODE with arguments ARG0 and ARG1 represents a single bit
7207 equality/inequality test, then return a simplified form of the test
7208 using a sign testing. Otherwise return NULL. TYPE is the desired
7209 result type. */
7210
7211 static tree
7212 fold_single_bit_test_into_sign_test (location_t loc,
7213 enum tree_code code, tree arg0, tree arg1,
7214 tree result_type)
7215 {
7216 /* If this is testing a single bit, we can optimize the test. */
7217 if ((code == NE_EXPR || code == EQ_EXPR)
7218 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
7219 && integer_pow2p (TREE_OPERAND (arg0, 1)))
7220 {
7221 /* If we have (A & C) != 0 where C is the sign bit of A, convert
7222 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
7223 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
7224
7225 if (arg00 != NULL_TREE
7226 /* This is only a win if casting to a signed type is cheap,
7227 i.e. when arg00's type is not a partial mode. */
7228 && type_has_mode_precision_p (TREE_TYPE (arg00)))
7229 {
7230 tree stype = signed_type_for (TREE_TYPE (arg00));
7231 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
7232 result_type,
7233 fold_convert_loc (loc, stype, arg00),
7234 build_int_cst (stype, 0));
7235 }
7236 }
7237
7238 return NULL_TREE;
7239 }
7240
7241 /* If CODE with arguments ARG0 and ARG1 represents a single bit
7242 equality/inequality test, then return a simplified form of
7243 the test using shifts and logical operations. Otherwise return
7244 NULL. TYPE is the desired result type. */
7245
7246 tree
7247 fold_single_bit_test (location_t loc, enum tree_code code,
7248 tree arg0, tree arg1, tree result_type)
7249 {
7250 /* If this is testing a single bit, we can optimize the test. */
7251 if ((code == NE_EXPR || code == EQ_EXPR)
7252 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
7253 && integer_pow2p (TREE_OPERAND (arg0, 1)))
7254 {
7255 tree inner = TREE_OPERAND (arg0, 0);
7256 tree type = TREE_TYPE (arg0);
7257 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
7258 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
7259 int ops_unsigned;
7260 tree signed_type, unsigned_type, intermediate_type;
7261 tree tem, one;
7262
7263 /* First, see if we can fold the single bit test into a sign-bit
7264 test. */
7265 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
7266 result_type);
7267 if (tem)
7268 return tem;
7269
7270 /* Otherwise we have (A & C) != 0 where C is a single bit,
7271 convert that into ((A >> C2) & 1). Where C2 = log2(C).
7272 Similarly for (A & C) == 0. */
7273
7274 /* If INNER is a right shift of a constant and it plus BITNUM does
7275 not overflow, adjust BITNUM and INNER. */
7276 if (TREE_CODE (inner) == RSHIFT_EXPR
7277 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
7278 && bitnum < TYPE_PRECISION (type)
7279 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)),
7280 TYPE_PRECISION (type) - bitnum))
7281 {
7282 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
7283 inner = TREE_OPERAND (inner, 0);
7284 }
7285
7286 /* If we are going to be able to omit the AND below, we must do our
7287 operations as unsigned. If we must use the AND, we have a choice.
7288 Normally unsigned is faster, but for some machines signed is. */
7289 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
7290 && !flag_syntax_only) ? 0 : 1;
7291
7292 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
7293 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
7294 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
7295 inner = fold_convert_loc (loc, intermediate_type, inner);
7296
7297 if (bitnum != 0)
7298 inner = build2 (RSHIFT_EXPR, intermediate_type,
7299 inner, size_int (bitnum));
7300
7301 one = build_int_cst (intermediate_type, 1);
7302
7303 if (code == EQ_EXPR)
7304 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
7305
7306 /* Put the AND last so it can combine with more things. */
7307 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
7308
7309 /* Make sure to return the proper type. */
7310 inner = fold_convert_loc (loc, result_type, inner);
7311
7312 return inner;
7313 }
7314 return NULL_TREE;
7315 }
7316
7317 /* Test whether it is preferable two swap two operands, ARG0 and
7318 ARG1, for example because ARG0 is an integer constant and ARG1
7319 isn't. */
7320
7321 bool
7322 tree_swap_operands_p (const_tree arg0, const_tree arg1)
7323 {
7324 if (CONSTANT_CLASS_P (arg1))
7325 return 0;
7326 if (CONSTANT_CLASS_P (arg0))
7327 return 1;
7328
7329 STRIP_NOPS (arg0);
7330 STRIP_NOPS (arg1);
7331
7332 if (TREE_CONSTANT (arg1))
7333 return 0;
7334 if (TREE_CONSTANT (arg0))
7335 return 1;
7336
7337 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7338 for commutative and comparison operators. Ensuring a canonical
7339 form allows the optimizers to find additional redundancies without
7340 having to explicitly check for both orderings. */
7341 if (TREE_CODE (arg0) == SSA_NAME
7342 && TREE_CODE (arg1) == SSA_NAME
7343 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7344 return 1;
7345
7346 /* Put SSA_NAMEs last. */
7347 if (TREE_CODE (arg1) == SSA_NAME)
7348 return 0;
7349 if (TREE_CODE (arg0) == SSA_NAME)
7350 return 1;
7351
7352 /* Put variables last. */
7353 if (DECL_P (arg1))
7354 return 0;
7355 if (DECL_P (arg0))
7356 return 1;
7357
7358 return 0;
7359 }
7360
7361
7362 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7363 means A >= Y && A != MAX, but in this case we know that
7364 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7365
7366 static tree
7367 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7368 {
7369 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7370
7371 if (TREE_CODE (bound) == LT_EXPR)
7372 a = TREE_OPERAND (bound, 0);
7373 else if (TREE_CODE (bound) == GT_EXPR)
7374 a = TREE_OPERAND (bound, 1);
7375 else
7376 return NULL_TREE;
7377
7378 typea = TREE_TYPE (a);
7379 if (!INTEGRAL_TYPE_P (typea)
7380 && !POINTER_TYPE_P (typea))
7381 return NULL_TREE;
7382
7383 if (TREE_CODE (ineq) == LT_EXPR)
7384 {
7385 a1 = TREE_OPERAND (ineq, 1);
7386 y = TREE_OPERAND (ineq, 0);
7387 }
7388 else if (TREE_CODE (ineq) == GT_EXPR)
7389 {
7390 a1 = TREE_OPERAND (ineq, 0);
7391 y = TREE_OPERAND (ineq, 1);
7392 }
7393 else
7394 return NULL_TREE;
7395
7396 if (TREE_TYPE (a1) != typea)
7397 return NULL_TREE;
7398
7399 if (POINTER_TYPE_P (typea))
7400 {
7401 /* Convert the pointer types into integer before taking the difference. */
7402 tree ta = fold_convert_loc (loc, ssizetype, a);
7403 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7404 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7405 }
7406 else
7407 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7408
7409 if (!diff || !integer_onep (diff))
7410 return NULL_TREE;
7411
7412 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7413 }
7414
7415 /* Fold a sum or difference of at least one multiplication.
7416 Returns the folded tree or NULL if no simplification could be made. */
7417
7418 static tree
7419 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7420 tree arg0, tree arg1)
7421 {
7422 tree arg00, arg01, arg10, arg11;
7423 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7424
7425 /* (A * C) +- (B * C) -> (A+-B) * C.
7426 (A * C) +- A -> A * (C+-1).
7427 We are most concerned about the case where C is a constant,
7428 but other combinations show up during loop reduction. Since
7429 it is not difficult, try all four possibilities. */
7430
7431 if (TREE_CODE (arg0) == MULT_EXPR)
7432 {
7433 arg00 = TREE_OPERAND (arg0, 0);
7434 arg01 = TREE_OPERAND (arg0, 1);
7435 }
7436 else if (TREE_CODE (arg0) == INTEGER_CST)
7437 {
7438 arg00 = build_one_cst (type);
7439 arg01 = arg0;
7440 }
7441 else
7442 {
7443 /* We cannot generate constant 1 for fract. */
7444 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7445 return NULL_TREE;
7446 arg00 = arg0;
7447 arg01 = build_one_cst (type);
7448 }
7449 if (TREE_CODE (arg1) == MULT_EXPR)
7450 {
7451 arg10 = TREE_OPERAND (arg1, 0);
7452 arg11 = TREE_OPERAND (arg1, 1);
7453 }
7454 else if (TREE_CODE (arg1) == INTEGER_CST)
7455 {
7456 arg10 = build_one_cst (type);
7457 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7458 the purpose of this canonicalization. */
7459 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1)))
7460 && negate_expr_p (arg1)
7461 && code == PLUS_EXPR)
7462 {
7463 arg11 = negate_expr (arg1);
7464 code = MINUS_EXPR;
7465 }
7466 else
7467 arg11 = arg1;
7468 }
7469 else
7470 {
7471 /* We cannot generate constant 1 for fract. */
7472 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7473 return NULL_TREE;
7474 arg10 = arg1;
7475 arg11 = build_one_cst (type);
7476 }
7477 same = NULL_TREE;
7478
7479 /* Prefer factoring a common non-constant. */
7480 if (operand_equal_p (arg00, arg10, 0))
7481 same = arg00, alt0 = arg01, alt1 = arg11;
7482 else if (operand_equal_p (arg01, arg11, 0))
7483 same = arg01, alt0 = arg00, alt1 = arg10;
7484 else if (operand_equal_p (arg00, arg11, 0))
7485 same = arg00, alt0 = arg01, alt1 = arg10;
7486 else if (operand_equal_p (arg01, arg10, 0))
7487 same = arg01, alt0 = arg00, alt1 = arg11;
7488
7489 /* No identical multiplicands; see if we can find a common
7490 power-of-two factor in non-power-of-two multiplies. This
7491 can help in multi-dimensional array access. */
7492 else if (tree_fits_shwi_p (arg01) && tree_fits_shwi_p (arg11))
7493 {
7494 HOST_WIDE_INT int01 = tree_to_shwi (arg01);
7495 HOST_WIDE_INT int11 = tree_to_shwi (arg11);
7496 HOST_WIDE_INT tmp;
7497 bool swap = false;
7498 tree maybe_same;
7499
7500 /* Move min of absolute values to int11. */
7501 if (absu_hwi (int01) < absu_hwi (int11))
7502 {
7503 tmp = int01, int01 = int11, int11 = tmp;
7504 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7505 maybe_same = arg01;
7506 swap = true;
7507 }
7508 else
7509 maybe_same = arg11;
7510
7511 const unsigned HOST_WIDE_INT factor = absu_hwi (int11);
7512 if (factor > 1
7513 && pow2p_hwi (factor)
7514 && (int01 & (factor - 1)) == 0
7515 /* The remainder should not be a constant, otherwise we
7516 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7517 increased the number of multiplications necessary. */
7518 && TREE_CODE (arg10) != INTEGER_CST)
7519 {
7520 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7521 build_int_cst (TREE_TYPE (arg00),
7522 int01 / int11));
7523 alt1 = arg10;
7524 same = maybe_same;
7525 if (swap)
7526 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7527 }
7528 }
7529
7530 if (!same)
7531 return NULL_TREE;
7532
7533 if (! ANY_INTEGRAL_TYPE_P (type)
7534 || TYPE_OVERFLOW_WRAPS (type)
7535 /* We are neither factoring zero nor minus one. */
7536 || TREE_CODE (same) == INTEGER_CST)
7537 return fold_build2_loc (loc, MULT_EXPR, type,
7538 fold_build2_loc (loc, code, type,
7539 fold_convert_loc (loc, type, alt0),
7540 fold_convert_loc (loc, type, alt1)),
7541 fold_convert_loc (loc, type, same));
7542
7543 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7544 same may be minus one and thus the multiplication may overflow. Perform
7545 the sum operation in an unsigned type. */
7546 tree utype = unsigned_type_for (type);
7547 tree tem = fold_build2_loc (loc, code, utype,
7548 fold_convert_loc (loc, utype, alt0),
7549 fold_convert_loc (loc, utype, alt1));
7550 /* If the sum evaluated to a constant that is not -INF the multiplication
7551 cannot overflow. */
7552 if (TREE_CODE (tem) == INTEGER_CST
7553 && (wi::to_wide (tem)
7554 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
7555 return fold_build2_loc (loc, MULT_EXPR, type,
7556 fold_convert (type, tem), same);
7557
7558 /* Do not resort to unsigned multiplication because
7559 we lose the no-overflow property of the expression. */
7560 return NULL_TREE;
7561 }
7562
7563 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7564 specified by EXPR into the buffer PTR of length LEN bytes.
7565 Return the number of bytes placed in the buffer, or zero
7566 upon failure. */
7567
7568 static int
7569 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7570 {
7571 tree type = TREE_TYPE (expr);
7572 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7573 int byte, offset, word, words;
7574 unsigned char value;
7575
7576 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7577 return 0;
7578 if (off == -1)
7579 off = 0;
7580
7581 if (ptr == NULL)
7582 /* Dry run. */
7583 return MIN (len, total_bytes - off);
7584
7585 words = total_bytes / UNITS_PER_WORD;
7586
7587 for (byte = 0; byte < total_bytes; byte++)
7588 {
7589 int bitpos = byte * BITS_PER_UNIT;
7590 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7591 number of bytes. */
7592 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7593
7594 if (total_bytes > UNITS_PER_WORD)
7595 {
7596 word = byte / UNITS_PER_WORD;
7597 if (WORDS_BIG_ENDIAN)
7598 word = (words - 1) - word;
7599 offset = word * UNITS_PER_WORD;
7600 if (BYTES_BIG_ENDIAN)
7601 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7602 else
7603 offset += byte % UNITS_PER_WORD;
7604 }
7605 else
7606 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7607 if (offset >= off && offset - off < len)
7608 ptr[offset - off] = value;
7609 }
7610 return MIN (len, total_bytes - off);
7611 }
7612
7613
7614 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7615 specified by EXPR into the buffer PTR of length LEN bytes.
7616 Return the number of bytes placed in the buffer, or zero
7617 upon failure. */
7618
7619 static int
7620 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7621 {
7622 tree type = TREE_TYPE (expr);
7623 scalar_mode mode = SCALAR_TYPE_MODE (type);
7624 int total_bytes = GET_MODE_SIZE (mode);
7625 FIXED_VALUE_TYPE value;
7626 tree i_value, i_type;
7627
7628 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7629 return 0;
7630
7631 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7632
7633 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7634 return 0;
7635
7636 value = TREE_FIXED_CST (expr);
7637 i_value = double_int_to_tree (i_type, value.data);
7638
7639 return native_encode_int (i_value, ptr, len, off);
7640 }
7641
7642
7643 /* Subroutine of native_encode_expr. Encode the REAL_CST
7644 specified by EXPR into the buffer PTR of length LEN bytes.
7645 Return the number of bytes placed in the buffer, or zero
7646 upon failure. */
7647
7648 static int
7649 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7650 {
7651 tree type = TREE_TYPE (expr);
7652 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7653 int byte, offset, word, words, bitpos;
7654 unsigned char value;
7655
7656 /* There are always 32 bits in each long, no matter the size of
7657 the hosts long. We handle floating point representations with
7658 up to 192 bits. */
7659 long tmp[6];
7660
7661 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7662 return 0;
7663 if (off == -1)
7664 off = 0;
7665
7666 if (ptr == NULL)
7667 /* Dry run. */
7668 return MIN (len, total_bytes - off);
7669
7670 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7671
7672 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7673
7674 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7675 bitpos += BITS_PER_UNIT)
7676 {
7677 byte = (bitpos / BITS_PER_UNIT) & 3;
7678 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7679
7680 if (UNITS_PER_WORD < 4)
7681 {
7682 word = byte / UNITS_PER_WORD;
7683 if (WORDS_BIG_ENDIAN)
7684 word = (words - 1) - word;
7685 offset = word * UNITS_PER_WORD;
7686 if (BYTES_BIG_ENDIAN)
7687 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7688 else
7689 offset += byte % UNITS_PER_WORD;
7690 }
7691 else
7692 {
7693 offset = byte;
7694 if (BYTES_BIG_ENDIAN)
7695 {
7696 /* Reverse bytes within each long, or within the entire float
7697 if it's smaller than a long (for HFmode). */
7698 offset = MIN (3, total_bytes - 1) - offset;
7699 gcc_assert (offset >= 0);
7700 }
7701 }
7702 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7703 if (offset >= off
7704 && offset - off < len)
7705 ptr[offset - off] = value;
7706 }
7707 return MIN (len, total_bytes - off);
7708 }
7709
7710 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7711 specified by EXPR into the buffer PTR of length LEN bytes.
7712 Return the number of bytes placed in the buffer, or zero
7713 upon failure. */
7714
7715 static int
7716 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7717 {
7718 int rsize, isize;
7719 tree part;
7720
7721 part = TREE_REALPART (expr);
7722 rsize = native_encode_expr (part, ptr, len, off);
7723 if (off == -1 && rsize == 0)
7724 return 0;
7725 part = TREE_IMAGPART (expr);
7726 if (off != -1)
7727 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7728 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7729 len - rsize, off);
7730 if (off == -1 && isize != rsize)
7731 return 0;
7732 return rsize + isize;
7733 }
7734
7735 /* Like native_encode_vector, but only encode the first COUNT elements.
7736 The other arguments are as for native_encode_vector. */
7737
7738 static int
7739 native_encode_vector_part (const_tree expr, unsigned char *ptr, int len,
7740 int off, unsigned HOST_WIDE_INT count)
7741 {
7742 tree itype = TREE_TYPE (TREE_TYPE (expr));
7743 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (expr))
7744 && TYPE_PRECISION (itype) <= BITS_PER_UNIT)
7745 {
7746 /* This is the only case in which elements can be smaller than a byte.
7747 Element 0 is always in the lsb of the containing byte. */
7748 unsigned int elt_bits = TYPE_PRECISION (itype);
7749 int total_bytes = CEIL (elt_bits * count, BITS_PER_UNIT);
7750 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7751 return 0;
7752
7753 if (off == -1)
7754 off = 0;
7755
7756 /* Zero the buffer and then set bits later where necessary. */
7757 int extract_bytes = MIN (len, total_bytes - off);
7758 if (ptr)
7759 memset (ptr, 0, extract_bytes);
7760
7761 unsigned int elts_per_byte = BITS_PER_UNIT / elt_bits;
7762 unsigned int first_elt = off * elts_per_byte;
7763 unsigned int extract_elts = extract_bytes * elts_per_byte;
7764 for (unsigned int i = 0; i < extract_elts; ++i)
7765 {
7766 tree elt = VECTOR_CST_ELT (expr, first_elt + i);
7767 if (TREE_CODE (elt) != INTEGER_CST)
7768 return 0;
7769
7770 if (ptr && wi::extract_uhwi (wi::to_wide (elt), 0, 1))
7771 {
7772 unsigned int bit = i * elt_bits;
7773 ptr[bit / BITS_PER_UNIT] |= 1 << (bit % BITS_PER_UNIT);
7774 }
7775 }
7776 return extract_bytes;
7777 }
7778
7779 int offset = 0;
7780 int size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7781 for (unsigned HOST_WIDE_INT i = 0; i < count; i++)
7782 {
7783 if (off >= size)
7784 {
7785 off -= size;
7786 continue;
7787 }
7788 tree elem = VECTOR_CST_ELT (expr, i);
7789 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
7790 len - offset, off);
7791 if ((off == -1 && res != size) || res == 0)
7792 return 0;
7793 offset += res;
7794 if (offset >= len)
7795 return (off == -1 && i < count - 1) ? 0 : offset;
7796 if (off != -1)
7797 off = 0;
7798 }
7799 return offset;
7800 }
7801
7802 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7803 specified by EXPR into the buffer PTR of length LEN bytes.
7804 Return the number of bytes placed in the buffer, or zero
7805 upon failure. */
7806
7807 static int
7808 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7809 {
7810 unsigned HOST_WIDE_INT count;
7811 if (!VECTOR_CST_NELTS (expr).is_constant (&count))
7812 return 0;
7813 return native_encode_vector_part (expr, ptr, len, off, count);
7814 }
7815
7816
7817 /* Subroutine of native_encode_expr. Encode the STRING_CST
7818 specified by EXPR into the buffer PTR of length LEN bytes.
7819 Return the number of bytes placed in the buffer, or zero
7820 upon failure. */
7821
7822 static int
7823 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7824 {
7825 tree type = TREE_TYPE (expr);
7826
7827 /* Wide-char strings are encoded in target byte-order so native
7828 encoding them is trivial. */
7829 if (BITS_PER_UNIT != CHAR_BIT
7830 || TREE_CODE (type) != ARRAY_TYPE
7831 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7832 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7833 return 0;
7834
7835 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
7836 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7837 return 0;
7838 if (off == -1)
7839 off = 0;
7840 if (ptr == NULL)
7841 /* Dry run. */;
7842 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7843 {
7844 int written = 0;
7845 if (off < TREE_STRING_LENGTH (expr))
7846 {
7847 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7848 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7849 }
7850 memset (ptr + written, 0,
7851 MIN (total_bytes - written, len - written));
7852 }
7853 else
7854 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7855 return MIN (total_bytes - off, len);
7856 }
7857
7858
7859 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7860 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7861 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7862 anything, just do a dry run. If OFF is not -1 then start
7863 the encoding at byte offset OFF and encode at most LEN bytes.
7864 Return the number of bytes placed in the buffer, or zero upon failure. */
7865
7866 int
7867 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7868 {
7869 /* We don't support starting at negative offset and -1 is special. */
7870 if (off < -1)
7871 return 0;
7872
7873 switch (TREE_CODE (expr))
7874 {
7875 case INTEGER_CST:
7876 return native_encode_int (expr, ptr, len, off);
7877
7878 case REAL_CST:
7879 return native_encode_real (expr, ptr, len, off);
7880
7881 case FIXED_CST:
7882 return native_encode_fixed (expr, ptr, len, off);
7883
7884 case COMPLEX_CST:
7885 return native_encode_complex (expr, ptr, len, off);
7886
7887 case VECTOR_CST:
7888 return native_encode_vector (expr, ptr, len, off);
7889
7890 case STRING_CST:
7891 return native_encode_string (expr, ptr, len, off);
7892
7893 default:
7894 return 0;
7895 }
7896 }
7897
7898
7899 /* Subroutine of native_interpret_expr. Interpret the contents of
7900 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7901 If the buffer cannot be interpreted, return NULL_TREE. */
7902
7903 static tree
7904 native_interpret_int (tree type, const unsigned char *ptr, int len)
7905 {
7906 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7907
7908 if (total_bytes > len
7909 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7910 return NULL_TREE;
7911
7912 wide_int result = wi::from_buffer (ptr, total_bytes);
7913
7914 return wide_int_to_tree (type, result);
7915 }
7916
7917
7918 /* Subroutine of native_interpret_expr. Interpret the contents of
7919 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7920 If the buffer cannot be interpreted, return NULL_TREE. */
7921
7922 static tree
7923 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7924 {
7925 scalar_mode mode = SCALAR_TYPE_MODE (type);
7926 int total_bytes = GET_MODE_SIZE (mode);
7927 double_int result;
7928 FIXED_VALUE_TYPE fixed_value;
7929
7930 if (total_bytes > len
7931 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7932 return NULL_TREE;
7933
7934 result = double_int::from_buffer (ptr, total_bytes);
7935 fixed_value = fixed_from_double_int (result, mode);
7936
7937 return build_fixed (type, fixed_value);
7938 }
7939
7940
7941 /* Subroutine of native_interpret_expr. Interpret the contents of
7942 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7943 If the buffer cannot be interpreted, return NULL_TREE. */
7944
7945 static tree
7946 native_interpret_real (tree type, const unsigned char *ptr, int len)
7947 {
7948 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7949 int total_bytes = GET_MODE_SIZE (mode);
7950 unsigned char value;
7951 /* There are always 32 bits in each long, no matter the size of
7952 the hosts long. We handle floating point representations with
7953 up to 192 bits. */
7954 REAL_VALUE_TYPE r;
7955 long tmp[6];
7956
7957 if (total_bytes > len || total_bytes > 24)
7958 return NULL_TREE;
7959 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7960
7961 memset (tmp, 0, sizeof (tmp));
7962 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7963 bitpos += BITS_PER_UNIT)
7964 {
7965 /* Both OFFSET and BYTE index within a long;
7966 bitpos indexes the whole float. */
7967 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7968 if (UNITS_PER_WORD < 4)
7969 {
7970 int word = byte / UNITS_PER_WORD;
7971 if (WORDS_BIG_ENDIAN)
7972 word = (words - 1) - word;
7973 offset = word * UNITS_PER_WORD;
7974 if (BYTES_BIG_ENDIAN)
7975 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7976 else
7977 offset += byte % UNITS_PER_WORD;
7978 }
7979 else
7980 {
7981 offset = byte;
7982 if (BYTES_BIG_ENDIAN)
7983 {
7984 /* Reverse bytes within each long, or within the entire float
7985 if it's smaller than a long (for HFmode). */
7986 offset = MIN (3, total_bytes - 1) - offset;
7987 gcc_assert (offset >= 0);
7988 }
7989 }
7990 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7991
7992 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7993 }
7994
7995 real_from_target (&r, tmp, mode);
7996 return build_real (type, r);
7997 }
7998
7999
8000 /* Subroutine of native_interpret_expr. Interpret the contents of
8001 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
8002 If the buffer cannot be interpreted, return NULL_TREE. */
8003
8004 static tree
8005 native_interpret_complex (tree type, const unsigned char *ptr, int len)
8006 {
8007 tree etype, rpart, ipart;
8008 int size;
8009
8010 etype = TREE_TYPE (type);
8011 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
8012 if (size * 2 > len)
8013 return NULL_TREE;
8014 rpart = native_interpret_expr (etype, ptr, size);
8015 if (!rpart)
8016 return NULL_TREE;
8017 ipart = native_interpret_expr (etype, ptr+size, size);
8018 if (!ipart)
8019 return NULL_TREE;
8020 return build_complex (type, rpart, ipart);
8021 }
8022
8023 /* Read a vector of type TYPE from the target memory image given by BYTES,
8024 which contains LEN bytes. The vector is known to be encodable using
8025 NPATTERNS interleaved patterns with NELTS_PER_PATTERN elements each.
8026
8027 Return the vector on success, otherwise return null. */
8028
8029 static tree
8030 native_interpret_vector_part (tree type, const unsigned char *bytes,
8031 unsigned int len, unsigned int npatterns,
8032 unsigned int nelts_per_pattern)
8033 {
8034 tree elt_type = TREE_TYPE (type);
8035 if (VECTOR_BOOLEAN_TYPE_P (type)
8036 && TYPE_PRECISION (elt_type) <= BITS_PER_UNIT)
8037 {
8038 /* This is the only case in which elements can be smaller than a byte.
8039 Element 0 is always in the lsb of the containing byte. */
8040 unsigned int elt_bits = TYPE_PRECISION (elt_type);
8041 if (elt_bits * npatterns * nelts_per_pattern > len * BITS_PER_UNIT)
8042 return NULL_TREE;
8043
8044 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8045 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8046 {
8047 unsigned int bit_index = i * elt_bits;
8048 unsigned int byte_index = bit_index / BITS_PER_UNIT;
8049 unsigned int lsb = bit_index % BITS_PER_UNIT;
8050 builder.quick_push (bytes[byte_index] & (1 << lsb)
8051 ? build_all_ones_cst (elt_type)
8052 : build_zero_cst (elt_type));
8053 }
8054 return builder.build ();
8055 }
8056
8057 unsigned int elt_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (elt_type));
8058 if (elt_bytes * npatterns * nelts_per_pattern > len)
8059 return NULL_TREE;
8060
8061 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8062 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8063 {
8064 tree elt = native_interpret_expr (elt_type, bytes, elt_bytes);
8065 if (!elt)
8066 return NULL_TREE;
8067 builder.quick_push (elt);
8068 bytes += elt_bytes;
8069 }
8070 return builder.build ();
8071 }
8072
8073 /* Subroutine of native_interpret_expr. Interpret the contents of
8074 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
8075 If the buffer cannot be interpreted, return NULL_TREE. */
8076
8077 static tree
8078 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len)
8079 {
8080 tree etype;
8081 unsigned int size;
8082 unsigned HOST_WIDE_INT count;
8083
8084 etype = TREE_TYPE (type);
8085 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
8086 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count)
8087 || size * count > len)
8088 return NULL_TREE;
8089
8090 return native_interpret_vector_part (type, ptr, len, count, 1);
8091 }
8092
8093
8094 /* Subroutine of fold_view_convert_expr. Interpret the contents of
8095 the buffer PTR of length LEN as a constant of type TYPE. For
8096 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
8097 we return a REAL_CST, etc... If the buffer cannot be interpreted,
8098 return NULL_TREE. */
8099
8100 tree
8101 native_interpret_expr (tree type, const unsigned char *ptr, int len)
8102 {
8103 switch (TREE_CODE (type))
8104 {
8105 case INTEGER_TYPE:
8106 case ENUMERAL_TYPE:
8107 case BOOLEAN_TYPE:
8108 case POINTER_TYPE:
8109 case REFERENCE_TYPE:
8110 return native_interpret_int (type, ptr, len);
8111
8112 case REAL_TYPE:
8113 return native_interpret_real (type, ptr, len);
8114
8115 case FIXED_POINT_TYPE:
8116 return native_interpret_fixed (type, ptr, len);
8117
8118 case COMPLEX_TYPE:
8119 return native_interpret_complex (type, ptr, len);
8120
8121 case VECTOR_TYPE:
8122 return native_interpret_vector (type, ptr, len);
8123
8124 default:
8125 return NULL_TREE;
8126 }
8127 }
8128
8129 /* Returns true if we can interpret the contents of a native encoding
8130 as TYPE. */
8131
8132 static bool
8133 can_native_interpret_type_p (tree type)
8134 {
8135 switch (TREE_CODE (type))
8136 {
8137 case INTEGER_TYPE:
8138 case ENUMERAL_TYPE:
8139 case BOOLEAN_TYPE:
8140 case POINTER_TYPE:
8141 case REFERENCE_TYPE:
8142 case FIXED_POINT_TYPE:
8143 case REAL_TYPE:
8144 case COMPLEX_TYPE:
8145 case VECTOR_TYPE:
8146 return true;
8147 default:
8148 return false;
8149 }
8150 }
8151
8152 /* Try to view-convert VECTOR_CST EXPR to VECTOR_TYPE TYPE by operating
8153 directly on the VECTOR_CST encoding, in a way that works for variable-
8154 length vectors. Return the resulting VECTOR_CST on success or null
8155 on failure. */
8156
8157 static tree
8158 fold_view_convert_vector_encoding (tree type, tree expr)
8159 {
8160 tree expr_type = TREE_TYPE (expr);
8161 poly_uint64 type_bits, expr_bits;
8162 if (!poly_int_tree_p (TYPE_SIZE (type), &type_bits)
8163 || !poly_int_tree_p (TYPE_SIZE (expr_type), &expr_bits))
8164 return NULL_TREE;
8165
8166 poly_uint64 type_units = TYPE_VECTOR_SUBPARTS (type);
8167 poly_uint64 expr_units = TYPE_VECTOR_SUBPARTS (expr_type);
8168 unsigned int type_elt_bits = vector_element_size (type_bits, type_units);
8169 unsigned int expr_elt_bits = vector_element_size (expr_bits, expr_units);
8170
8171 /* We can only preserve the semantics of a stepped pattern if the new
8172 vector element is an integer of the same size. */
8173 if (VECTOR_CST_STEPPED_P (expr)
8174 && (!INTEGRAL_TYPE_P (type) || type_elt_bits != expr_elt_bits))
8175 return NULL_TREE;
8176
8177 /* The number of bits needed to encode one element from every pattern
8178 of the original vector. */
8179 unsigned int expr_sequence_bits
8180 = VECTOR_CST_NPATTERNS (expr) * expr_elt_bits;
8181
8182 /* The number of bits needed to encode one element from every pattern
8183 of the result. */
8184 unsigned int type_sequence_bits
8185 = least_common_multiple (expr_sequence_bits, type_elt_bits);
8186
8187 /* Don't try to read more bytes than are available, which can happen
8188 for constant-sized vectors if TYPE has larger elements than EXPR_TYPE.
8189 The general VIEW_CONVERT handling can cope with that case, so there's
8190 no point complicating things here. */
8191 unsigned int nelts_per_pattern = VECTOR_CST_NELTS_PER_PATTERN (expr);
8192 unsigned int buffer_bytes = CEIL (nelts_per_pattern * type_sequence_bits,
8193 BITS_PER_UNIT);
8194 unsigned int buffer_bits = buffer_bytes * BITS_PER_UNIT;
8195 if (known_gt (buffer_bits, expr_bits))
8196 return NULL_TREE;
8197
8198 /* Get enough bytes of EXPR to form the new encoding. */
8199 auto_vec<unsigned char, 128> buffer (buffer_bytes);
8200 buffer.quick_grow (buffer_bytes);
8201 if (native_encode_vector_part (expr, buffer.address (), buffer_bytes, 0,
8202 buffer_bits / expr_elt_bits)
8203 != (int) buffer_bytes)
8204 return NULL_TREE;
8205
8206 /* Reencode the bytes as TYPE. */
8207 unsigned int type_npatterns = type_sequence_bits / type_elt_bits;
8208 return native_interpret_vector_part (type, &buffer[0], buffer.length (),
8209 type_npatterns, nelts_per_pattern);
8210 }
8211
8212 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
8213 TYPE at compile-time. If we're unable to perform the conversion
8214 return NULL_TREE. */
8215
8216 static tree
8217 fold_view_convert_expr (tree type, tree expr)
8218 {
8219 /* We support up to 512-bit values (for V8DFmode). */
8220 unsigned char buffer[64];
8221 int len;
8222
8223 /* Check that the host and target are sane. */
8224 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
8225 return NULL_TREE;
8226
8227 if (VECTOR_TYPE_P (type) && TREE_CODE (expr) == VECTOR_CST)
8228 if (tree res = fold_view_convert_vector_encoding (type, expr))
8229 return res;
8230
8231 len = native_encode_expr (expr, buffer, sizeof (buffer));
8232 if (len == 0)
8233 return NULL_TREE;
8234
8235 return native_interpret_expr (type, buffer, len);
8236 }
8237
8238 /* Build an expression for the address of T. Folds away INDIRECT_REF
8239 to avoid confusing the gimplify process. */
8240
8241 tree
8242 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
8243 {
8244 /* The size of the object is not relevant when talking about its address. */
8245 if (TREE_CODE (t) == WITH_SIZE_EXPR)
8246 t = TREE_OPERAND (t, 0);
8247
8248 if (TREE_CODE (t) == INDIRECT_REF)
8249 {
8250 t = TREE_OPERAND (t, 0);
8251
8252 if (TREE_TYPE (t) != ptrtype)
8253 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
8254 }
8255 else if (TREE_CODE (t) == MEM_REF
8256 && integer_zerop (TREE_OPERAND (t, 1)))
8257 return TREE_OPERAND (t, 0);
8258 else if (TREE_CODE (t) == MEM_REF
8259 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
8260 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
8261 TREE_OPERAND (t, 0),
8262 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
8263 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
8264 {
8265 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
8266
8267 if (TREE_TYPE (t) != ptrtype)
8268 t = fold_convert_loc (loc, ptrtype, t);
8269 }
8270 else
8271 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
8272
8273 return t;
8274 }
8275
8276 /* Build an expression for the address of T. */
8277
8278 tree
8279 build_fold_addr_expr_loc (location_t loc, tree t)
8280 {
8281 tree ptrtype = build_pointer_type (TREE_TYPE (t));
8282
8283 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
8284 }
8285
8286 /* Fold a unary expression of code CODE and type TYPE with operand
8287 OP0. Return the folded expression if folding is successful.
8288 Otherwise, return NULL_TREE. */
8289
8290 tree
8291 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
8292 {
8293 tree tem;
8294 tree arg0;
8295 enum tree_code_class kind = TREE_CODE_CLASS (code);
8296
8297 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8298 && TREE_CODE_LENGTH (code) == 1);
8299
8300 arg0 = op0;
8301 if (arg0)
8302 {
8303 if (CONVERT_EXPR_CODE_P (code)
8304 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
8305 {
8306 /* Don't use STRIP_NOPS, because signedness of argument type
8307 matters. */
8308 STRIP_SIGN_NOPS (arg0);
8309 }
8310 else
8311 {
8312 /* Strip any conversions that don't change the mode. This
8313 is safe for every expression, except for a comparison
8314 expression because its signedness is derived from its
8315 operands.
8316
8317 Note that this is done as an internal manipulation within
8318 the constant folder, in order to find the simplest
8319 representation of the arguments so that their form can be
8320 studied. In any cases, the appropriate type conversions
8321 should be put back in the tree that will get out of the
8322 constant folder. */
8323 STRIP_NOPS (arg0);
8324 }
8325
8326 if (CONSTANT_CLASS_P (arg0))
8327 {
8328 tree tem = const_unop (code, type, arg0);
8329 if (tem)
8330 {
8331 if (TREE_TYPE (tem) != type)
8332 tem = fold_convert_loc (loc, type, tem);
8333 return tem;
8334 }
8335 }
8336 }
8337
8338 tem = generic_simplify (loc, code, type, op0);
8339 if (tem)
8340 return tem;
8341
8342 if (TREE_CODE_CLASS (code) == tcc_unary)
8343 {
8344 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8345 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8346 fold_build1_loc (loc, code, type,
8347 fold_convert_loc (loc, TREE_TYPE (op0),
8348 TREE_OPERAND (arg0, 1))));
8349 else if (TREE_CODE (arg0) == COND_EXPR)
8350 {
8351 tree arg01 = TREE_OPERAND (arg0, 1);
8352 tree arg02 = TREE_OPERAND (arg0, 2);
8353 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
8354 arg01 = fold_build1_loc (loc, code, type,
8355 fold_convert_loc (loc,
8356 TREE_TYPE (op0), arg01));
8357 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
8358 arg02 = fold_build1_loc (loc, code, type,
8359 fold_convert_loc (loc,
8360 TREE_TYPE (op0), arg02));
8361 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
8362 arg01, arg02);
8363
8364 /* If this was a conversion, and all we did was to move into
8365 inside the COND_EXPR, bring it back out. But leave it if
8366 it is a conversion from integer to integer and the
8367 result precision is no wider than a word since such a
8368 conversion is cheap and may be optimized away by combine,
8369 while it couldn't if it were outside the COND_EXPR. Then return
8370 so we don't get into an infinite recursion loop taking the
8371 conversion out and then back in. */
8372
8373 if ((CONVERT_EXPR_CODE_P (code)
8374 || code == NON_LVALUE_EXPR)
8375 && TREE_CODE (tem) == COND_EXPR
8376 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
8377 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
8378 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
8379 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
8380 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
8381 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
8382 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8383 && (INTEGRAL_TYPE_P
8384 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
8385 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
8386 || flag_syntax_only))
8387 tem = build1_loc (loc, code, type,
8388 build3 (COND_EXPR,
8389 TREE_TYPE (TREE_OPERAND
8390 (TREE_OPERAND (tem, 1), 0)),
8391 TREE_OPERAND (tem, 0),
8392 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
8393 TREE_OPERAND (TREE_OPERAND (tem, 2),
8394 0)));
8395 return tem;
8396 }
8397 }
8398
8399 switch (code)
8400 {
8401 case NON_LVALUE_EXPR:
8402 if (!maybe_lvalue_p (op0))
8403 return fold_convert_loc (loc, type, op0);
8404 return NULL_TREE;
8405
8406 CASE_CONVERT:
8407 case FLOAT_EXPR:
8408 case FIX_TRUNC_EXPR:
8409 if (COMPARISON_CLASS_P (op0))
8410 {
8411 /* If we have (type) (a CMP b) and type is an integral type, return
8412 new expression involving the new type. Canonicalize
8413 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
8414 non-integral type.
8415 Do not fold the result as that would not simplify further, also
8416 folding again results in recursions. */
8417 if (TREE_CODE (type) == BOOLEAN_TYPE)
8418 return build2_loc (loc, TREE_CODE (op0), type,
8419 TREE_OPERAND (op0, 0),
8420 TREE_OPERAND (op0, 1));
8421 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
8422 && TREE_CODE (type) != VECTOR_TYPE)
8423 return build3_loc (loc, COND_EXPR, type, op0,
8424 constant_boolean_node (true, type),
8425 constant_boolean_node (false, type));
8426 }
8427
8428 /* Handle (T *)&A.B.C for A being of type T and B and C
8429 living at offset zero. This occurs frequently in
8430 C++ upcasting and then accessing the base. */
8431 if (TREE_CODE (op0) == ADDR_EXPR
8432 && POINTER_TYPE_P (type)
8433 && handled_component_p (TREE_OPERAND (op0, 0)))
8434 {
8435 poly_int64 bitsize, bitpos;
8436 tree offset;
8437 machine_mode mode;
8438 int unsignedp, reversep, volatilep;
8439 tree base
8440 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
8441 &offset, &mode, &unsignedp, &reversep,
8442 &volatilep);
8443 /* If the reference was to a (constant) zero offset, we can use
8444 the address of the base if it has the same base type
8445 as the result type and the pointer type is unqualified. */
8446 if (!offset
8447 && known_eq (bitpos, 0)
8448 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
8449 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
8450 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
8451 return fold_convert_loc (loc, type,
8452 build_fold_addr_expr_loc (loc, base));
8453 }
8454
8455 if (TREE_CODE (op0) == MODIFY_EXPR
8456 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
8457 /* Detect assigning a bitfield. */
8458 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
8459 && DECL_BIT_FIELD
8460 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
8461 {
8462 /* Don't leave an assignment inside a conversion
8463 unless assigning a bitfield. */
8464 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
8465 /* First do the assignment, then return converted constant. */
8466 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8467 TREE_NO_WARNING (tem) = 1;
8468 TREE_USED (tem) = 1;
8469 return tem;
8470 }
8471
8472 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8473 constants (if x has signed type, the sign bit cannot be set
8474 in c). This folds extension into the BIT_AND_EXPR.
8475 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8476 very likely don't have maximal range for their precision and this
8477 transformation effectively doesn't preserve non-maximal ranges. */
8478 if (TREE_CODE (type) == INTEGER_TYPE
8479 && TREE_CODE (op0) == BIT_AND_EXPR
8480 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
8481 {
8482 tree and_expr = op0;
8483 tree and0 = TREE_OPERAND (and_expr, 0);
8484 tree and1 = TREE_OPERAND (and_expr, 1);
8485 int change = 0;
8486
8487 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
8488 || (TYPE_PRECISION (type)
8489 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
8490 change = 1;
8491 else if (TYPE_PRECISION (TREE_TYPE (and1))
8492 <= HOST_BITS_PER_WIDE_INT
8493 && tree_fits_uhwi_p (and1))
8494 {
8495 unsigned HOST_WIDE_INT cst;
8496
8497 cst = tree_to_uhwi (and1);
8498 cst &= HOST_WIDE_INT_M1U
8499 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8500 change = (cst == 0);
8501 if (change
8502 && !flag_syntax_only
8503 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
8504 == ZERO_EXTEND))
8505 {
8506 tree uns = unsigned_type_for (TREE_TYPE (and0));
8507 and0 = fold_convert_loc (loc, uns, and0);
8508 and1 = fold_convert_loc (loc, uns, and1);
8509 }
8510 }
8511 if (change)
8512 {
8513 tem = force_fit_type (type, wi::to_widest (and1), 0,
8514 TREE_OVERFLOW (and1));
8515 return fold_build2_loc (loc, BIT_AND_EXPR, type,
8516 fold_convert_loc (loc, type, and0), tem);
8517 }
8518 }
8519
8520 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
8521 cast (T1)X will fold away. We assume that this happens when X itself
8522 is a cast. */
8523 if (POINTER_TYPE_P (type)
8524 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8525 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
8526 {
8527 tree arg00 = TREE_OPERAND (arg0, 0);
8528 tree arg01 = TREE_OPERAND (arg0, 1);
8529
8530 return fold_build_pointer_plus_loc
8531 (loc, fold_convert_loc (loc, type, arg00), arg01);
8532 }
8533
8534 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8535 of the same precision, and X is an integer type not narrower than
8536 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8537 if (INTEGRAL_TYPE_P (type)
8538 && TREE_CODE (op0) == BIT_NOT_EXPR
8539 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8540 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8541 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8542 {
8543 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8544 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8545 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8546 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8547 fold_convert_loc (loc, type, tem));
8548 }
8549
8550 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8551 type of X and Y (integer types only). */
8552 if (INTEGRAL_TYPE_P (type)
8553 && TREE_CODE (op0) == MULT_EXPR
8554 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8555 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8556 {
8557 /* Be careful not to introduce new overflows. */
8558 tree mult_type;
8559 if (TYPE_OVERFLOW_WRAPS (type))
8560 mult_type = type;
8561 else
8562 mult_type = unsigned_type_for (type);
8563
8564 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8565 {
8566 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8567 fold_convert_loc (loc, mult_type,
8568 TREE_OPERAND (op0, 0)),
8569 fold_convert_loc (loc, mult_type,
8570 TREE_OPERAND (op0, 1)));
8571 return fold_convert_loc (loc, type, tem);
8572 }
8573 }
8574
8575 return NULL_TREE;
8576
8577 case VIEW_CONVERT_EXPR:
8578 if (TREE_CODE (op0) == MEM_REF)
8579 {
8580 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
8581 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
8582 tem = fold_build2_loc (loc, MEM_REF, type,
8583 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8584 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
8585 return tem;
8586 }
8587
8588 return NULL_TREE;
8589
8590 case NEGATE_EXPR:
8591 tem = fold_negate_expr (loc, arg0);
8592 if (tem)
8593 return fold_convert_loc (loc, type, tem);
8594 return NULL_TREE;
8595
8596 case ABS_EXPR:
8597 /* Convert fabs((double)float) into (double)fabsf(float). */
8598 if (TREE_CODE (arg0) == NOP_EXPR
8599 && TREE_CODE (type) == REAL_TYPE)
8600 {
8601 tree targ0 = strip_float_extensions (arg0);
8602 if (targ0 != arg0)
8603 return fold_convert_loc (loc, type,
8604 fold_build1_loc (loc, ABS_EXPR,
8605 TREE_TYPE (targ0),
8606 targ0));
8607 }
8608 return NULL_TREE;
8609
8610 case BIT_NOT_EXPR:
8611 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8612 if (TREE_CODE (arg0) == BIT_XOR_EXPR
8613 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8614 fold_convert_loc (loc, type,
8615 TREE_OPERAND (arg0, 0)))))
8616 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8617 fold_convert_loc (loc, type,
8618 TREE_OPERAND (arg0, 1)));
8619 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8620 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8621 fold_convert_loc (loc, type,
8622 TREE_OPERAND (arg0, 1)))))
8623 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8624 fold_convert_loc (loc, type,
8625 TREE_OPERAND (arg0, 0)), tem);
8626
8627 return NULL_TREE;
8628
8629 case TRUTH_NOT_EXPR:
8630 /* Note that the operand of this must be an int
8631 and its values must be 0 or 1.
8632 ("true" is a fixed value perhaps depending on the language,
8633 but we don't handle values other than 1 correctly yet.) */
8634 tem = fold_truth_not_expr (loc, arg0);
8635 if (!tem)
8636 return NULL_TREE;
8637 return fold_convert_loc (loc, type, tem);
8638
8639 case INDIRECT_REF:
8640 /* Fold *&X to X if X is an lvalue. */
8641 if (TREE_CODE (op0) == ADDR_EXPR)
8642 {
8643 tree op00 = TREE_OPERAND (op0, 0);
8644 if ((VAR_P (op00)
8645 || TREE_CODE (op00) == PARM_DECL
8646 || TREE_CODE (op00) == RESULT_DECL)
8647 && !TREE_READONLY (op00))
8648 return op00;
8649 }
8650 return NULL_TREE;
8651
8652 default:
8653 return NULL_TREE;
8654 } /* switch (code) */
8655 }
8656
8657
8658 /* If the operation was a conversion do _not_ mark a resulting constant
8659 with TREE_OVERFLOW if the original constant was not. These conversions
8660 have implementation defined behavior and retaining the TREE_OVERFLOW
8661 flag here would confuse later passes such as VRP. */
8662 tree
8663 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8664 tree type, tree op0)
8665 {
8666 tree res = fold_unary_loc (loc, code, type, op0);
8667 if (res
8668 && TREE_CODE (res) == INTEGER_CST
8669 && TREE_CODE (op0) == INTEGER_CST
8670 && CONVERT_EXPR_CODE_P (code))
8671 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8672
8673 return res;
8674 }
8675
8676 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8677 operands OP0 and OP1. LOC is the location of the resulting expression.
8678 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8679 Return the folded expression if folding is successful. Otherwise,
8680 return NULL_TREE. */
8681 static tree
8682 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8683 tree arg0, tree arg1, tree op0, tree op1)
8684 {
8685 tree tem;
8686
8687 /* We only do these simplifications if we are optimizing. */
8688 if (!optimize)
8689 return NULL_TREE;
8690
8691 /* Check for things like (A || B) && (A || C). We can convert this
8692 to A || (B && C). Note that either operator can be any of the four
8693 truth and/or operations and the transformation will still be
8694 valid. Also note that we only care about order for the
8695 ANDIF and ORIF operators. If B contains side effects, this
8696 might change the truth-value of A. */
8697 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8698 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8699 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8700 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8701 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8702 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8703 {
8704 tree a00 = TREE_OPERAND (arg0, 0);
8705 tree a01 = TREE_OPERAND (arg0, 1);
8706 tree a10 = TREE_OPERAND (arg1, 0);
8707 tree a11 = TREE_OPERAND (arg1, 1);
8708 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8709 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8710 && (code == TRUTH_AND_EXPR
8711 || code == TRUTH_OR_EXPR));
8712
8713 if (operand_equal_p (a00, a10, 0))
8714 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8715 fold_build2_loc (loc, code, type, a01, a11));
8716 else if (commutative && operand_equal_p (a00, a11, 0))
8717 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8718 fold_build2_loc (loc, code, type, a01, a10));
8719 else if (commutative && operand_equal_p (a01, a10, 0))
8720 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8721 fold_build2_loc (loc, code, type, a00, a11));
8722
8723 /* This case if tricky because we must either have commutative
8724 operators or else A10 must not have side-effects. */
8725
8726 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8727 && operand_equal_p (a01, a11, 0))
8728 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8729 fold_build2_loc (loc, code, type, a00, a10),
8730 a01);
8731 }
8732
8733 /* See if we can build a range comparison. */
8734 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0)
8735 return tem;
8736
8737 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8738 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8739 {
8740 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8741 if (tem)
8742 return fold_build2_loc (loc, code, type, tem, arg1);
8743 }
8744
8745 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8746 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8747 {
8748 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8749 if (tem)
8750 return fold_build2_loc (loc, code, type, arg0, tem);
8751 }
8752
8753 /* Check for the possibility of merging component references. If our
8754 lhs is another similar operation, try to merge its rhs with our
8755 rhs. Then try to merge our lhs and rhs. */
8756 if (TREE_CODE (arg0) == code
8757 && (tem = fold_truth_andor_1 (loc, code, type,
8758 TREE_OPERAND (arg0, 1), arg1)) != 0)
8759 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8760
8761 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8762 return tem;
8763
8764 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
8765 if (param_logical_op_non_short_circuit != -1)
8766 logical_op_non_short_circuit
8767 = param_logical_op_non_short_circuit;
8768 if (logical_op_non_short_circuit
8769 && !flag_sanitize_coverage
8770 && (code == TRUTH_AND_EXPR
8771 || code == TRUTH_ANDIF_EXPR
8772 || code == TRUTH_OR_EXPR
8773 || code == TRUTH_ORIF_EXPR))
8774 {
8775 enum tree_code ncode, icode;
8776
8777 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8778 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8779 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8780
8781 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8782 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8783 We don't want to pack more than two leafs to a non-IF AND/OR
8784 expression.
8785 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8786 equal to IF-CODE, then we don't want to add right-hand operand.
8787 If the inner right-hand side of left-hand operand has
8788 side-effects, or isn't simple, then we can't add to it,
8789 as otherwise we might destroy if-sequence. */
8790 if (TREE_CODE (arg0) == icode
8791 && simple_operand_p_2 (arg1)
8792 /* Needed for sequence points to handle trappings, and
8793 side-effects. */
8794 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8795 {
8796 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8797 arg1);
8798 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8799 tem);
8800 }
8801 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8802 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8803 else if (TREE_CODE (arg1) == icode
8804 && simple_operand_p_2 (arg0)
8805 /* Needed for sequence points to handle trappings, and
8806 side-effects. */
8807 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8808 {
8809 tem = fold_build2_loc (loc, ncode, type,
8810 arg0, TREE_OPERAND (arg1, 0));
8811 return fold_build2_loc (loc, icode, type, tem,
8812 TREE_OPERAND (arg1, 1));
8813 }
8814 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8815 into (A OR B).
8816 For sequence point consistancy, we need to check for trapping,
8817 and side-effects. */
8818 else if (code == icode && simple_operand_p_2 (arg0)
8819 && simple_operand_p_2 (arg1))
8820 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8821 }
8822
8823 return NULL_TREE;
8824 }
8825
8826 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8827 by changing CODE to reduce the magnitude of constants involved in
8828 ARG0 of the comparison.
8829 Returns a canonicalized comparison tree if a simplification was
8830 possible, otherwise returns NULL_TREE.
8831 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8832 valid if signed overflow is undefined. */
8833
8834 static tree
8835 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8836 tree arg0, tree arg1,
8837 bool *strict_overflow_p)
8838 {
8839 enum tree_code code0 = TREE_CODE (arg0);
8840 tree t, cst0 = NULL_TREE;
8841 int sgn0;
8842
8843 /* Match A +- CST code arg1. We can change this only if overflow
8844 is undefined. */
8845 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8846 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8847 /* In principle pointers also have undefined overflow behavior,
8848 but that causes problems elsewhere. */
8849 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8850 && (code0 == MINUS_EXPR
8851 || code0 == PLUS_EXPR)
8852 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8853 return NULL_TREE;
8854
8855 /* Identify the constant in arg0 and its sign. */
8856 cst0 = TREE_OPERAND (arg0, 1);
8857 sgn0 = tree_int_cst_sgn (cst0);
8858
8859 /* Overflowed constants and zero will cause problems. */
8860 if (integer_zerop (cst0)
8861 || TREE_OVERFLOW (cst0))
8862 return NULL_TREE;
8863
8864 /* See if we can reduce the magnitude of the constant in
8865 arg0 by changing the comparison code. */
8866 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8867 if (code == LT_EXPR
8868 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8869 code = LE_EXPR;
8870 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8871 else if (code == GT_EXPR
8872 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8873 code = GE_EXPR;
8874 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8875 else if (code == LE_EXPR
8876 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8877 code = LT_EXPR;
8878 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8879 else if (code == GE_EXPR
8880 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8881 code = GT_EXPR;
8882 else
8883 return NULL_TREE;
8884 *strict_overflow_p = true;
8885
8886 /* Now build the constant reduced in magnitude. But not if that
8887 would produce one outside of its types range. */
8888 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8889 && ((sgn0 == 1
8890 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8891 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8892 || (sgn0 == -1
8893 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8894 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8895 return NULL_TREE;
8896
8897 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8898 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8899 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8900 t = fold_convert (TREE_TYPE (arg1), t);
8901
8902 return fold_build2_loc (loc, code, type, t, arg1);
8903 }
8904
8905 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8906 overflow further. Try to decrease the magnitude of constants involved
8907 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8908 and put sole constants at the second argument position.
8909 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8910
8911 static tree
8912 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8913 tree arg0, tree arg1)
8914 {
8915 tree t;
8916 bool strict_overflow_p;
8917 const char * const warnmsg = G_("assuming signed overflow does not occur "
8918 "when reducing constant in comparison");
8919
8920 /* Try canonicalization by simplifying arg0. */
8921 strict_overflow_p = false;
8922 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8923 &strict_overflow_p);
8924 if (t)
8925 {
8926 if (strict_overflow_p)
8927 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8928 return t;
8929 }
8930
8931 /* Try canonicalization by simplifying arg1 using the swapped
8932 comparison. */
8933 code = swap_tree_comparison (code);
8934 strict_overflow_p = false;
8935 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8936 &strict_overflow_p);
8937 if (t && strict_overflow_p)
8938 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8939 return t;
8940 }
8941
8942 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8943 space. This is used to avoid issuing overflow warnings for
8944 expressions like &p->x which cannot wrap. */
8945
8946 static bool
8947 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos)
8948 {
8949 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8950 return true;
8951
8952 if (maybe_lt (bitpos, 0))
8953 return true;
8954
8955 poly_wide_int wi_offset;
8956 int precision = TYPE_PRECISION (TREE_TYPE (base));
8957 if (offset == NULL_TREE)
8958 wi_offset = wi::zero (precision);
8959 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset))
8960 return true;
8961 else
8962 wi_offset = wi::to_poly_wide (offset);
8963
8964 wi::overflow_type overflow;
8965 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos),
8966 precision);
8967 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8968 if (overflow)
8969 return true;
8970
8971 poly_uint64 total_hwi, size;
8972 if (!total.to_uhwi (&total_hwi)
8973 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))),
8974 &size)
8975 || known_eq (size, 0U))
8976 return true;
8977
8978 if (known_le (total_hwi, size))
8979 return false;
8980
8981 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8982 array. */
8983 if (TREE_CODE (base) == ADDR_EXPR
8984 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))),
8985 &size)
8986 && maybe_ne (size, 0U)
8987 && known_le (total_hwi, size))
8988 return false;
8989
8990 return true;
8991 }
8992
8993 /* Return a positive integer when the symbol DECL is known to have
8994 a nonzero address, zero when it's known not to (e.g., it's a weak
8995 symbol), and a negative integer when the symbol is not yet in the
8996 symbol table and so whether or not its address is zero is unknown.
8997 For function local objects always return positive integer. */
8998 static int
8999 maybe_nonzero_address (tree decl)
9000 {
9001 if (DECL_P (decl) && decl_in_symtab_p (decl))
9002 if (struct symtab_node *symbol = symtab_node::get_create (decl))
9003 return symbol->nonzero_address ();
9004
9005 /* Function local objects are never NULL. */
9006 if (DECL_P (decl)
9007 && (DECL_CONTEXT (decl)
9008 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
9009 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
9010 return 1;
9011
9012 return -1;
9013 }
9014
9015 /* Subroutine of fold_binary. This routine performs all of the
9016 transformations that are common to the equality/inequality
9017 operators (EQ_EXPR and NE_EXPR) and the ordering operators
9018 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
9019 fold_binary should call fold_binary. Fold a comparison with
9020 tree code CODE and type TYPE with operands OP0 and OP1. Return
9021 the folded comparison or NULL_TREE. */
9022
9023 static tree
9024 fold_comparison (location_t loc, enum tree_code code, tree type,
9025 tree op0, tree op1)
9026 {
9027 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
9028 tree arg0, arg1, tem;
9029
9030 arg0 = op0;
9031 arg1 = op1;
9032
9033 STRIP_SIGN_NOPS (arg0);
9034 STRIP_SIGN_NOPS (arg1);
9035
9036 /* For comparisons of pointers we can decompose it to a compile time
9037 comparison of the base objects and the offsets into the object.
9038 This requires at least one operand being an ADDR_EXPR or a
9039 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
9040 if (POINTER_TYPE_P (TREE_TYPE (arg0))
9041 && (TREE_CODE (arg0) == ADDR_EXPR
9042 || TREE_CODE (arg1) == ADDR_EXPR
9043 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
9044 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
9045 {
9046 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
9047 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0;
9048 machine_mode mode;
9049 int volatilep, reversep, unsignedp;
9050 bool indirect_base0 = false, indirect_base1 = false;
9051
9052 /* Get base and offset for the access. Strip ADDR_EXPR for
9053 get_inner_reference, but put it back by stripping INDIRECT_REF
9054 off the base object if possible. indirect_baseN will be true
9055 if baseN is not an address but refers to the object itself. */
9056 base0 = arg0;
9057 if (TREE_CODE (arg0) == ADDR_EXPR)
9058 {
9059 base0
9060 = get_inner_reference (TREE_OPERAND (arg0, 0),
9061 &bitsize, &bitpos0, &offset0, &mode,
9062 &unsignedp, &reversep, &volatilep);
9063 if (TREE_CODE (base0) == INDIRECT_REF)
9064 base0 = TREE_OPERAND (base0, 0);
9065 else
9066 indirect_base0 = true;
9067 }
9068 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9069 {
9070 base0 = TREE_OPERAND (arg0, 0);
9071 STRIP_SIGN_NOPS (base0);
9072 if (TREE_CODE (base0) == ADDR_EXPR)
9073 {
9074 base0
9075 = get_inner_reference (TREE_OPERAND (base0, 0),
9076 &bitsize, &bitpos0, &offset0, &mode,
9077 &unsignedp, &reversep, &volatilep);
9078 if (TREE_CODE (base0) == INDIRECT_REF)
9079 base0 = TREE_OPERAND (base0, 0);
9080 else
9081 indirect_base0 = true;
9082 }
9083 if (offset0 == NULL_TREE || integer_zerop (offset0))
9084 offset0 = TREE_OPERAND (arg0, 1);
9085 else
9086 offset0 = size_binop (PLUS_EXPR, offset0,
9087 TREE_OPERAND (arg0, 1));
9088 if (poly_int_tree_p (offset0))
9089 {
9090 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0),
9091 TYPE_PRECISION (sizetype));
9092 tem <<= LOG2_BITS_PER_UNIT;
9093 tem += bitpos0;
9094 if (tem.to_shwi (&bitpos0))
9095 offset0 = NULL_TREE;
9096 }
9097 }
9098
9099 base1 = arg1;
9100 if (TREE_CODE (arg1) == ADDR_EXPR)
9101 {
9102 base1
9103 = get_inner_reference (TREE_OPERAND (arg1, 0),
9104 &bitsize, &bitpos1, &offset1, &mode,
9105 &unsignedp, &reversep, &volatilep);
9106 if (TREE_CODE (base1) == INDIRECT_REF)
9107 base1 = TREE_OPERAND (base1, 0);
9108 else
9109 indirect_base1 = true;
9110 }
9111 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9112 {
9113 base1 = TREE_OPERAND (arg1, 0);
9114 STRIP_SIGN_NOPS (base1);
9115 if (TREE_CODE (base1) == ADDR_EXPR)
9116 {
9117 base1
9118 = get_inner_reference (TREE_OPERAND (base1, 0),
9119 &bitsize, &bitpos1, &offset1, &mode,
9120 &unsignedp, &reversep, &volatilep);
9121 if (TREE_CODE (base1) == INDIRECT_REF)
9122 base1 = TREE_OPERAND (base1, 0);
9123 else
9124 indirect_base1 = true;
9125 }
9126 if (offset1 == NULL_TREE || integer_zerop (offset1))
9127 offset1 = TREE_OPERAND (arg1, 1);
9128 else
9129 offset1 = size_binop (PLUS_EXPR, offset1,
9130 TREE_OPERAND (arg1, 1));
9131 if (poly_int_tree_p (offset1))
9132 {
9133 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1),
9134 TYPE_PRECISION (sizetype));
9135 tem <<= LOG2_BITS_PER_UNIT;
9136 tem += bitpos1;
9137 if (tem.to_shwi (&bitpos1))
9138 offset1 = NULL_TREE;
9139 }
9140 }
9141
9142 /* If we have equivalent bases we might be able to simplify. */
9143 if (indirect_base0 == indirect_base1
9144 && operand_equal_p (base0, base1,
9145 indirect_base0 ? OEP_ADDRESS_OF : 0))
9146 {
9147 /* We can fold this expression to a constant if the non-constant
9148 offset parts are equal. */
9149 if ((offset0 == offset1
9150 || (offset0 && offset1
9151 && operand_equal_p (offset0, offset1, 0)))
9152 && (equality_code
9153 || (indirect_base0
9154 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
9155 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
9156 {
9157 if (!equality_code
9158 && maybe_ne (bitpos0, bitpos1)
9159 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9160 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9161 fold_overflow_warning (("assuming pointer wraparound does not "
9162 "occur when comparing P +- C1 with "
9163 "P +- C2"),
9164 WARN_STRICT_OVERFLOW_CONDITIONAL);
9165
9166 switch (code)
9167 {
9168 case EQ_EXPR:
9169 if (known_eq (bitpos0, bitpos1))
9170 return constant_boolean_node (true, type);
9171 if (known_ne (bitpos0, bitpos1))
9172 return constant_boolean_node (false, type);
9173 break;
9174 case NE_EXPR:
9175 if (known_ne (bitpos0, bitpos1))
9176 return constant_boolean_node (true, type);
9177 if (known_eq (bitpos0, bitpos1))
9178 return constant_boolean_node (false, type);
9179 break;
9180 case LT_EXPR:
9181 if (known_lt (bitpos0, bitpos1))
9182 return constant_boolean_node (true, type);
9183 if (known_ge (bitpos0, bitpos1))
9184 return constant_boolean_node (false, type);
9185 break;
9186 case LE_EXPR:
9187 if (known_le (bitpos0, bitpos1))
9188 return constant_boolean_node (true, type);
9189 if (known_gt (bitpos0, bitpos1))
9190 return constant_boolean_node (false, type);
9191 break;
9192 case GE_EXPR:
9193 if (known_ge (bitpos0, bitpos1))
9194 return constant_boolean_node (true, type);
9195 if (known_lt (bitpos0, bitpos1))
9196 return constant_boolean_node (false, type);
9197 break;
9198 case GT_EXPR:
9199 if (known_gt (bitpos0, bitpos1))
9200 return constant_boolean_node (true, type);
9201 if (known_le (bitpos0, bitpos1))
9202 return constant_boolean_node (false, type);
9203 break;
9204 default:;
9205 }
9206 }
9207 /* We can simplify the comparison to a comparison of the variable
9208 offset parts if the constant offset parts are equal.
9209 Be careful to use signed sizetype here because otherwise we
9210 mess with array offsets in the wrong way. This is possible
9211 because pointer arithmetic is restricted to retain within an
9212 object and overflow on pointer differences is undefined as of
9213 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
9214 else if (known_eq (bitpos0, bitpos1)
9215 && (equality_code
9216 || (indirect_base0
9217 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
9218 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
9219 {
9220 /* By converting to signed sizetype we cover middle-end pointer
9221 arithmetic which operates on unsigned pointer types of size
9222 type size and ARRAY_REF offsets which are properly sign or
9223 zero extended from their type in case it is narrower than
9224 sizetype. */
9225 if (offset0 == NULL_TREE)
9226 offset0 = build_int_cst (ssizetype, 0);
9227 else
9228 offset0 = fold_convert_loc (loc, ssizetype, offset0);
9229 if (offset1 == NULL_TREE)
9230 offset1 = build_int_cst (ssizetype, 0);
9231 else
9232 offset1 = fold_convert_loc (loc, ssizetype, offset1);
9233
9234 if (!equality_code
9235 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9236 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9237 fold_overflow_warning (("assuming pointer wraparound does not "
9238 "occur when comparing P +- C1 with "
9239 "P +- C2"),
9240 WARN_STRICT_OVERFLOW_COMPARISON);
9241
9242 return fold_build2_loc (loc, code, type, offset0, offset1);
9243 }
9244 }
9245 /* For equal offsets we can simplify to a comparison of the
9246 base addresses. */
9247 else if (known_eq (bitpos0, bitpos1)
9248 && (indirect_base0
9249 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9250 && (indirect_base1
9251 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9252 && ((offset0 == offset1)
9253 || (offset0 && offset1
9254 && operand_equal_p (offset0, offset1, 0))))
9255 {
9256 if (indirect_base0)
9257 base0 = build_fold_addr_expr_loc (loc, base0);
9258 if (indirect_base1)
9259 base1 = build_fold_addr_expr_loc (loc, base1);
9260 return fold_build2_loc (loc, code, type, base0, base1);
9261 }
9262 /* Comparison between an ordinary (non-weak) symbol and a null
9263 pointer can be eliminated since such symbols must have a non
9264 null address. In C, relational expressions between pointers
9265 to objects and null pointers are undefined. The results
9266 below follow the C++ rules with the additional property that
9267 every object pointer compares greater than a null pointer.
9268 */
9269 else if (((DECL_P (base0)
9270 && maybe_nonzero_address (base0) > 0
9271 /* Avoid folding references to struct members at offset 0 to
9272 prevent tests like '&ptr->firstmember == 0' from getting
9273 eliminated. When ptr is null, although the -> expression
9274 is strictly speaking invalid, GCC retains it as a matter
9275 of QoI. See PR c/44555. */
9276 && (offset0 == NULL_TREE && known_ne (bitpos0, 0)))
9277 || CONSTANT_CLASS_P (base0))
9278 && indirect_base0
9279 /* The caller guarantees that when one of the arguments is
9280 constant (i.e., null in this case) it is second. */
9281 && integer_zerop (arg1))
9282 {
9283 switch (code)
9284 {
9285 case EQ_EXPR:
9286 case LE_EXPR:
9287 case LT_EXPR:
9288 return constant_boolean_node (false, type);
9289 case GE_EXPR:
9290 case GT_EXPR:
9291 case NE_EXPR:
9292 return constant_boolean_node (true, type);
9293 default:
9294 gcc_unreachable ();
9295 }
9296 }
9297 }
9298
9299 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9300 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9301 the resulting offset is smaller in absolute value than the
9302 original one and has the same sign. */
9303 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9304 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9305 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9306 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9307 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9308 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9309 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9310 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9311 {
9312 tree const1 = TREE_OPERAND (arg0, 1);
9313 tree const2 = TREE_OPERAND (arg1, 1);
9314 tree variable1 = TREE_OPERAND (arg0, 0);
9315 tree variable2 = TREE_OPERAND (arg1, 0);
9316 tree cst;
9317 const char * const warnmsg = G_("assuming signed overflow does not "
9318 "occur when combining constants around "
9319 "a comparison");
9320
9321 /* Put the constant on the side where it doesn't overflow and is
9322 of lower absolute value and of same sign than before. */
9323 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9324 ? MINUS_EXPR : PLUS_EXPR,
9325 const2, const1);
9326 if (!TREE_OVERFLOW (cst)
9327 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
9328 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
9329 {
9330 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9331 return fold_build2_loc (loc, code, type,
9332 variable1,
9333 fold_build2_loc (loc, TREE_CODE (arg1),
9334 TREE_TYPE (arg1),
9335 variable2, cst));
9336 }
9337
9338 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9339 ? MINUS_EXPR : PLUS_EXPR,
9340 const1, const2);
9341 if (!TREE_OVERFLOW (cst)
9342 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
9343 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
9344 {
9345 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9346 return fold_build2_loc (loc, code, type,
9347 fold_build2_loc (loc, TREE_CODE (arg0),
9348 TREE_TYPE (arg0),
9349 variable1, cst),
9350 variable2);
9351 }
9352 }
9353
9354 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
9355 if (tem)
9356 return tem;
9357
9358 /* If we are comparing an expression that just has comparisons
9359 of two integer values, arithmetic expressions of those comparisons,
9360 and constants, we can simplify it. There are only three cases
9361 to check: the two values can either be equal, the first can be
9362 greater, or the second can be greater. Fold the expression for
9363 those three values. Since each value must be 0 or 1, we have
9364 eight possibilities, each of which corresponds to the constant 0
9365 or 1 or one of the six possible comparisons.
9366
9367 This handles common cases like (a > b) == 0 but also handles
9368 expressions like ((x > y) - (y > x)) > 0, which supposedly
9369 occur in macroized code. */
9370
9371 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9372 {
9373 tree cval1 = 0, cval2 = 0;
9374
9375 if (twoval_comparison_p (arg0, &cval1, &cval2)
9376 /* Don't handle degenerate cases here; they should already
9377 have been handled anyway. */
9378 && cval1 != 0 && cval2 != 0
9379 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9380 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9381 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9382 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9383 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9384 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9385 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9386 {
9387 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9388 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9389
9390 /* We can't just pass T to eval_subst in case cval1 or cval2
9391 was the same as ARG1. */
9392
9393 tree high_result
9394 = fold_build2_loc (loc, code, type,
9395 eval_subst (loc, arg0, cval1, maxval,
9396 cval2, minval),
9397 arg1);
9398 tree equal_result
9399 = fold_build2_loc (loc, code, type,
9400 eval_subst (loc, arg0, cval1, maxval,
9401 cval2, maxval),
9402 arg1);
9403 tree low_result
9404 = fold_build2_loc (loc, code, type,
9405 eval_subst (loc, arg0, cval1, minval,
9406 cval2, maxval),
9407 arg1);
9408
9409 /* All three of these results should be 0 or 1. Confirm they are.
9410 Then use those values to select the proper code to use. */
9411
9412 if (TREE_CODE (high_result) == INTEGER_CST
9413 && TREE_CODE (equal_result) == INTEGER_CST
9414 && TREE_CODE (low_result) == INTEGER_CST)
9415 {
9416 /* Make a 3-bit mask with the high-order bit being the
9417 value for `>', the next for '=', and the low for '<'. */
9418 switch ((integer_onep (high_result) * 4)
9419 + (integer_onep (equal_result) * 2)
9420 + integer_onep (low_result))
9421 {
9422 case 0:
9423 /* Always false. */
9424 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9425 case 1:
9426 code = LT_EXPR;
9427 break;
9428 case 2:
9429 code = EQ_EXPR;
9430 break;
9431 case 3:
9432 code = LE_EXPR;
9433 break;
9434 case 4:
9435 code = GT_EXPR;
9436 break;
9437 case 5:
9438 code = NE_EXPR;
9439 break;
9440 case 6:
9441 code = GE_EXPR;
9442 break;
9443 case 7:
9444 /* Always true. */
9445 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
9446 }
9447
9448 return fold_build2_loc (loc, code, type, cval1, cval2);
9449 }
9450 }
9451 }
9452
9453 return NULL_TREE;
9454 }
9455
9456
9457 /* Subroutine of fold_binary. Optimize complex multiplications of the
9458 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9459 argument EXPR represents the expression "z" of type TYPE. */
9460
9461 static tree
9462 fold_mult_zconjz (location_t loc, tree type, tree expr)
9463 {
9464 tree itype = TREE_TYPE (type);
9465 tree rpart, ipart, tem;
9466
9467 if (TREE_CODE (expr) == COMPLEX_EXPR)
9468 {
9469 rpart = TREE_OPERAND (expr, 0);
9470 ipart = TREE_OPERAND (expr, 1);
9471 }
9472 else if (TREE_CODE (expr) == COMPLEX_CST)
9473 {
9474 rpart = TREE_REALPART (expr);
9475 ipart = TREE_IMAGPART (expr);
9476 }
9477 else
9478 {
9479 expr = save_expr (expr);
9480 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
9481 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
9482 }
9483
9484 rpart = save_expr (rpart);
9485 ipart = save_expr (ipart);
9486 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
9487 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
9488 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
9489 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
9490 build_zero_cst (itype));
9491 }
9492
9493
9494 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9495 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
9496 true if successful. */
9497
9498 static bool
9499 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
9500 {
9501 unsigned HOST_WIDE_INT i, nunits;
9502
9503 if (TREE_CODE (arg) == VECTOR_CST
9504 && VECTOR_CST_NELTS (arg).is_constant (&nunits))
9505 {
9506 for (i = 0; i < nunits; ++i)
9507 elts[i] = VECTOR_CST_ELT (arg, i);
9508 }
9509 else if (TREE_CODE (arg) == CONSTRUCTOR)
9510 {
9511 constructor_elt *elt;
9512
9513 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
9514 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
9515 return false;
9516 else
9517 elts[i] = elt->value;
9518 }
9519 else
9520 return false;
9521 for (; i < nelts; i++)
9522 elts[i]
9523 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
9524 return true;
9525 }
9526
9527 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9528 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9529 NULL_TREE otherwise. */
9530
9531 tree
9532 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
9533 {
9534 unsigned int i;
9535 unsigned HOST_WIDE_INT nelts;
9536 bool need_ctor = false;
9537
9538 if (!sel.length ().is_constant (&nelts))
9539 return NULL_TREE;
9540 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts)
9541 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts)
9542 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts));
9543 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9544 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9545 return NULL_TREE;
9546
9547 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
9548 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
9549 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
9550 return NULL_TREE;
9551
9552 tree_vector_builder out_elts (type, nelts, 1);
9553 for (i = 0; i < nelts; i++)
9554 {
9555 HOST_WIDE_INT index;
9556 if (!sel[i].is_constant (&index))
9557 return NULL_TREE;
9558 if (!CONSTANT_CLASS_P (in_elts[index]))
9559 need_ctor = true;
9560 out_elts.quick_push (unshare_expr (in_elts[index]));
9561 }
9562
9563 if (need_ctor)
9564 {
9565 vec<constructor_elt, va_gc> *v;
9566 vec_alloc (v, nelts);
9567 for (i = 0; i < nelts; i++)
9568 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
9569 return build_constructor (type, v);
9570 }
9571 else
9572 return out_elts.build ();
9573 }
9574
9575 /* Try to fold a pointer difference of type TYPE two address expressions of
9576 array references AREF0 and AREF1 using location LOC. Return a
9577 simplified expression for the difference or NULL_TREE. */
9578
9579 static tree
9580 fold_addr_of_array_ref_difference (location_t loc, tree type,
9581 tree aref0, tree aref1,
9582 bool use_pointer_diff)
9583 {
9584 tree base0 = TREE_OPERAND (aref0, 0);
9585 tree base1 = TREE_OPERAND (aref1, 0);
9586 tree base_offset = build_int_cst (type, 0);
9587
9588 /* If the bases are array references as well, recurse. If the bases
9589 are pointer indirections compute the difference of the pointers.
9590 If the bases are equal, we are set. */
9591 if ((TREE_CODE (base0) == ARRAY_REF
9592 && TREE_CODE (base1) == ARRAY_REF
9593 && (base_offset
9594 = fold_addr_of_array_ref_difference (loc, type, base0, base1,
9595 use_pointer_diff)))
9596 || (INDIRECT_REF_P (base0)
9597 && INDIRECT_REF_P (base1)
9598 && (base_offset
9599 = use_pointer_diff
9600 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
9601 TREE_OPERAND (base0, 0),
9602 TREE_OPERAND (base1, 0))
9603 : fold_binary_loc (loc, MINUS_EXPR, type,
9604 fold_convert (type,
9605 TREE_OPERAND (base0, 0)),
9606 fold_convert (type,
9607 TREE_OPERAND (base1, 0)))))
9608 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
9609 {
9610 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9611 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9612 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9613 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
9614 return fold_build2_loc (loc, PLUS_EXPR, type,
9615 base_offset,
9616 fold_build2_loc (loc, MULT_EXPR, type,
9617 diff, esz));
9618 }
9619 return NULL_TREE;
9620 }
9621
9622 /* If the real or vector real constant CST of type TYPE has an exact
9623 inverse, return it, else return NULL. */
9624
9625 tree
9626 exact_inverse (tree type, tree cst)
9627 {
9628 REAL_VALUE_TYPE r;
9629 tree unit_type;
9630 machine_mode mode;
9631
9632 switch (TREE_CODE (cst))
9633 {
9634 case REAL_CST:
9635 r = TREE_REAL_CST (cst);
9636
9637 if (exact_real_inverse (TYPE_MODE (type), &r))
9638 return build_real (type, r);
9639
9640 return NULL_TREE;
9641
9642 case VECTOR_CST:
9643 {
9644 unit_type = TREE_TYPE (type);
9645 mode = TYPE_MODE (unit_type);
9646
9647 tree_vector_builder elts;
9648 if (!elts.new_unary_operation (type, cst, false))
9649 return NULL_TREE;
9650 unsigned int count = elts.encoded_nelts ();
9651 for (unsigned int i = 0; i < count; ++i)
9652 {
9653 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9654 if (!exact_real_inverse (mode, &r))
9655 return NULL_TREE;
9656 elts.quick_push (build_real (unit_type, r));
9657 }
9658
9659 return elts.build ();
9660 }
9661
9662 default:
9663 return NULL_TREE;
9664 }
9665 }
9666
9667 /* Mask out the tz least significant bits of X of type TYPE where
9668 tz is the number of trailing zeroes in Y. */
9669 static wide_int
9670 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9671 {
9672 int tz = wi::ctz (y);
9673 if (tz > 0)
9674 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9675 return x;
9676 }
9677
9678 /* Return true when T is an address and is known to be nonzero.
9679 For floating point we further ensure that T is not denormal.
9680 Similar logic is present in nonzero_address in rtlanal.h.
9681
9682 If the return value is based on the assumption that signed overflow
9683 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9684 change *STRICT_OVERFLOW_P. */
9685
9686 static bool
9687 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9688 {
9689 tree type = TREE_TYPE (t);
9690 enum tree_code code;
9691
9692 /* Doing something useful for floating point would need more work. */
9693 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9694 return false;
9695
9696 code = TREE_CODE (t);
9697 switch (TREE_CODE_CLASS (code))
9698 {
9699 case tcc_unary:
9700 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9701 strict_overflow_p);
9702 case tcc_binary:
9703 case tcc_comparison:
9704 return tree_binary_nonzero_warnv_p (code, type,
9705 TREE_OPERAND (t, 0),
9706 TREE_OPERAND (t, 1),
9707 strict_overflow_p);
9708 case tcc_constant:
9709 case tcc_declaration:
9710 case tcc_reference:
9711 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9712
9713 default:
9714 break;
9715 }
9716
9717 switch (code)
9718 {
9719 case TRUTH_NOT_EXPR:
9720 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9721 strict_overflow_p);
9722
9723 case TRUTH_AND_EXPR:
9724 case TRUTH_OR_EXPR:
9725 case TRUTH_XOR_EXPR:
9726 return tree_binary_nonzero_warnv_p (code, type,
9727 TREE_OPERAND (t, 0),
9728 TREE_OPERAND (t, 1),
9729 strict_overflow_p);
9730
9731 case COND_EXPR:
9732 case CONSTRUCTOR:
9733 case OBJ_TYPE_REF:
9734 case ASSERT_EXPR:
9735 case ADDR_EXPR:
9736 case WITH_SIZE_EXPR:
9737 case SSA_NAME:
9738 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9739
9740 case COMPOUND_EXPR:
9741 case MODIFY_EXPR:
9742 case BIND_EXPR:
9743 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9744 strict_overflow_p);
9745
9746 case SAVE_EXPR:
9747 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9748 strict_overflow_p);
9749
9750 case CALL_EXPR:
9751 {
9752 tree fndecl = get_callee_fndecl (t);
9753 if (!fndecl) return false;
9754 if (flag_delete_null_pointer_checks && !flag_check_new
9755 && DECL_IS_OPERATOR_NEW_P (fndecl)
9756 && !TREE_NOTHROW (fndecl))
9757 return true;
9758 if (flag_delete_null_pointer_checks
9759 && lookup_attribute ("returns_nonnull",
9760 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9761 return true;
9762 return alloca_call_p (t);
9763 }
9764
9765 default:
9766 break;
9767 }
9768 return false;
9769 }
9770
9771 /* Return true when T is an address and is known to be nonzero.
9772 Handle warnings about undefined signed overflow. */
9773
9774 bool
9775 tree_expr_nonzero_p (tree t)
9776 {
9777 bool ret, strict_overflow_p;
9778
9779 strict_overflow_p = false;
9780 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9781 if (strict_overflow_p)
9782 fold_overflow_warning (("assuming signed overflow does not occur when "
9783 "determining that expression is always "
9784 "non-zero"),
9785 WARN_STRICT_OVERFLOW_MISC);
9786 return ret;
9787 }
9788
9789 /* Return true if T is known not to be equal to an integer W. */
9790
9791 bool
9792 expr_not_equal_to (tree t, const wide_int &w)
9793 {
9794 wide_int min, max, nz;
9795 value_range_kind rtype;
9796 switch (TREE_CODE (t))
9797 {
9798 case INTEGER_CST:
9799 return wi::to_wide (t) != w;
9800
9801 case SSA_NAME:
9802 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9803 return false;
9804 rtype = get_range_info (t, &min, &max);
9805 if (rtype == VR_RANGE)
9806 {
9807 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9808 return true;
9809 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9810 return true;
9811 }
9812 else if (rtype == VR_ANTI_RANGE
9813 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9814 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9815 return true;
9816 /* If T has some known zero bits and W has any of those bits set,
9817 then T is known not to be equal to W. */
9818 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9819 TYPE_PRECISION (TREE_TYPE (t))), 0))
9820 return true;
9821 return false;
9822
9823 default:
9824 return false;
9825 }
9826 }
9827
9828 /* Fold a binary expression of code CODE and type TYPE with operands
9829 OP0 and OP1. LOC is the location of the resulting expression.
9830 Return the folded expression if folding is successful. Otherwise,
9831 return NULL_TREE. */
9832
9833 tree
9834 fold_binary_loc (location_t loc, enum tree_code code, tree type,
9835 tree op0, tree op1)
9836 {
9837 enum tree_code_class kind = TREE_CODE_CLASS (code);
9838 tree arg0, arg1, tem;
9839 tree t1 = NULL_TREE;
9840 bool strict_overflow_p;
9841 unsigned int prec;
9842
9843 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9844 && TREE_CODE_LENGTH (code) == 2
9845 && op0 != NULL_TREE
9846 && op1 != NULL_TREE);
9847
9848 arg0 = op0;
9849 arg1 = op1;
9850
9851 /* Strip any conversions that don't change the mode. This is
9852 safe for every expression, except for a comparison expression
9853 because its signedness is derived from its operands. So, in
9854 the latter case, only strip conversions that don't change the
9855 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9856 preserved.
9857
9858 Note that this is done as an internal manipulation within the
9859 constant folder, in order to find the simplest representation
9860 of the arguments so that their form can be studied. In any
9861 cases, the appropriate type conversions should be put back in
9862 the tree that will get out of the constant folder. */
9863
9864 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9865 {
9866 STRIP_SIGN_NOPS (arg0);
9867 STRIP_SIGN_NOPS (arg1);
9868 }
9869 else
9870 {
9871 STRIP_NOPS (arg0);
9872 STRIP_NOPS (arg1);
9873 }
9874
9875 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9876 constant but we can't do arithmetic on them. */
9877 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9878 {
9879 tem = const_binop (code, type, arg0, arg1);
9880 if (tem != NULL_TREE)
9881 {
9882 if (TREE_TYPE (tem) != type)
9883 tem = fold_convert_loc (loc, type, tem);
9884 return tem;
9885 }
9886 }
9887
9888 /* If this is a commutative operation, and ARG0 is a constant, move it
9889 to ARG1 to reduce the number of tests below. */
9890 if (commutative_tree_code (code)
9891 && tree_swap_operands_p (arg0, arg1))
9892 return fold_build2_loc (loc, code, type, op1, op0);
9893
9894 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9895 to ARG1 to reduce the number of tests below. */
9896 if (kind == tcc_comparison
9897 && tree_swap_operands_p (arg0, arg1))
9898 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9899
9900 tem = generic_simplify (loc, code, type, op0, op1);
9901 if (tem)
9902 return tem;
9903
9904 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9905
9906 First check for cases where an arithmetic operation is applied to a
9907 compound, conditional, or comparison operation. Push the arithmetic
9908 operation inside the compound or conditional to see if any folding
9909 can then be done. Convert comparison to conditional for this purpose.
9910 The also optimizes non-constant cases that used to be done in
9911 expand_expr.
9912
9913 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9914 one of the operands is a comparison and the other is a comparison, a
9915 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9916 code below would make the expression more complex. Change it to a
9917 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9918 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9919
9920 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9921 || code == EQ_EXPR || code == NE_EXPR)
9922 && !VECTOR_TYPE_P (TREE_TYPE (arg0))
9923 && ((truth_value_p (TREE_CODE (arg0))
9924 && (truth_value_p (TREE_CODE (arg1))
9925 || (TREE_CODE (arg1) == BIT_AND_EXPR
9926 && integer_onep (TREE_OPERAND (arg1, 1)))))
9927 || (truth_value_p (TREE_CODE (arg1))
9928 && (truth_value_p (TREE_CODE (arg0))
9929 || (TREE_CODE (arg0) == BIT_AND_EXPR
9930 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9931 {
9932 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9933 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9934 : TRUTH_XOR_EXPR,
9935 boolean_type_node,
9936 fold_convert_loc (loc, boolean_type_node, arg0),
9937 fold_convert_loc (loc, boolean_type_node, arg1));
9938
9939 if (code == EQ_EXPR)
9940 tem = invert_truthvalue_loc (loc, tem);
9941
9942 return fold_convert_loc (loc, type, tem);
9943 }
9944
9945 if (TREE_CODE_CLASS (code) == tcc_binary
9946 || TREE_CODE_CLASS (code) == tcc_comparison)
9947 {
9948 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9949 {
9950 tem = fold_build2_loc (loc, code, type,
9951 fold_convert_loc (loc, TREE_TYPE (op0),
9952 TREE_OPERAND (arg0, 1)), op1);
9953 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9954 tem);
9955 }
9956 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9957 {
9958 tem = fold_build2_loc (loc, code, type, op0,
9959 fold_convert_loc (loc, TREE_TYPE (op1),
9960 TREE_OPERAND (arg1, 1)));
9961 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9962 tem);
9963 }
9964
9965 if (TREE_CODE (arg0) == COND_EXPR
9966 || TREE_CODE (arg0) == VEC_COND_EXPR
9967 || COMPARISON_CLASS_P (arg0))
9968 {
9969 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9970 arg0, arg1,
9971 /*cond_first_p=*/1);
9972 if (tem != NULL_TREE)
9973 return tem;
9974 }
9975
9976 if (TREE_CODE (arg1) == COND_EXPR
9977 || TREE_CODE (arg1) == VEC_COND_EXPR
9978 || COMPARISON_CLASS_P (arg1))
9979 {
9980 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9981 arg1, arg0,
9982 /*cond_first_p=*/0);
9983 if (tem != NULL_TREE)
9984 return tem;
9985 }
9986 }
9987
9988 switch (code)
9989 {
9990 case MEM_REF:
9991 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9992 if (TREE_CODE (arg0) == ADDR_EXPR
9993 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9994 {
9995 tree iref = TREE_OPERAND (arg0, 0);
9996 return fold_build2 (MEM_REF, type,
9997 TREE_OPERAND (iref, 0),
9998 int_const_binop (PLUS_EXPR, arg1,
9999 TREE_OPERAND (iref, 1)));
10000 }
10001
10002 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10003 if (TREE_CODE (arg0) == ADDR_EXPR
10004 && handled_component_p (TREE_OPERAND (arg0, 0)))
10005 {
10006 tree base;
10007 poly_int64 coffset;
10008 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
10009 &coffset);
10010 if (!base)
10011 return NULL_TREE;
10012 return fold_build2 (MEM_REF, type,
10013 build_fold_addr_expr (base),
10014 int_const_binop (PLUS_EXPR, arg1,
10015 size_int (coffset)));
10016 }
10017
10018 return NULL_TREE;
10019
10020 case POINTER_PLUS_EXPR:
10021 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
10022 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10023 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
10024 return fold_convert_loc (loc, type,
10025 fold_build2_loc (loc, PLUS_EXPR, sizetype,
10026 fold_convert_loc (loc, sizetype,
10027 arg1),
10028 fold_convert_loc (loc, sizetype,
10029 arg0)));
10030
10031 return NULL_TREE;
10032
10033 case PLUS_EXPR:
10034 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
10035 {
10036 /* X + (X / CST) * -CST is X % CST. */
10037 if (TREE_CODE (arg1) == MULT_EXPR
10038 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10039 && operand_equal_p (arg0,
10040 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
10041 {
10042 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
10043 tree cst1 = TREE_OPERAND (arg1, 1);
10044 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
10045 cst1, cst0);
10046 if (sum && integer_zerop (sum))
10047 return fold_convert_loc (loc, type,
10048 fold_build2_loc (loc, TRUNC_MOD_EXPR,
10049 TREE_TYPE (arg0), arg0,
10050 cst0));
10051 }
10052 }
10053
10054 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
10055 one. Make sure the type is not saturating and has the signedness of
10056 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10057 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10058 if ((TREE_CODE (arg0) == MULT_EXPR
10059 || TREE_CODE (arg1) == MULT_EXPR)
10060 && !TYPE_SATURATING (type)
10061 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10062 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10063 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10064 {
10065 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10066 if (tem)
10067 return tem;
10068 }
10069
10070 if (! FLOAT_TYPE_P (type))
10071 {
10072 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10073 (plus (plus (mult) (mult)) (foo)) so that we can
10074 take advantage of the factoring cases below. */
10075 if (ANY_INTEGRAL_TYPE_P (type)
10076 && TYPE_OVERFLOW_WRAPS (type)
10077 && (((TREE_CODE (arg0) == PLUS_EXPR
10078 || TREE_CODE (arg0) == MINUS_EXPR)
10079 && TREE_CODE (arg1) == MULT_EXPR)
10080 || ((TREE_CODE (arg1) == PLUS_EXPR
10081 || TREE_CODE (arg1) == MINUS_EXPR)
10082 && TREE_CODE (arg0) == MULT_EXPR)))
10083 {
10084 tree parg0, parg1, parg, marg;
10085 enum tree_code pcode;
10086
10087 if (TREE_CODE (arg1) == MULT_EXPR)
10088 parg = arg0, marg = arg1;
10089 else
10090 parg = arg1, marg = arg0;
10091 pcode = TREE_CODE (parg);
10092 parg0 = TREE_OPERAND (parg, 0);
10093 parg1 = TREE_OPERAND (parg, 1);
10094 STRIP_NOPS (parg0);
10095 STRIP_NOPS (parg1);
10096
10097 if (TREE_CODE (parg0) == MULT_EXPR
10098 && TREE_CODE (parg1) != MULT_EXPR)
10099 return fold_build2_loc (loc, pcode, type,
10100 fold_build2_loc (loc, PLUS_EXPR, type,
10101 fold_convert_loc (loc, type,
10102 parg0),
10103 fold_convert_loc (loc, type,
10104 marg)),
10105 fold_convert_loc (loc, type, parg1));
10106 if (TREE_CODE (parg0) != MULT_EXPR
10107 && TREE_CODE (parg1) == MULT_EXPR)
10108 return
10109 fold_build2_loc (loc, PLUS_EXPR, type,
10110 fold_convert_loc (loc, type, parg0),
10111 fold_build2_loc (loc, pcode, type,
10112 fold_convert_loc (loc, type, marg),
10113 fold_convert_loc (loc, type,
10114 parg1)));
10115 }
10116 }
10117 else
10118 {
10119 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10120 to __complex__ ( x, y ). This is not the same for SNaNs or
10121 if signed zeros are involved. */
10122 if (!HONOR_SNANS (element_mode (arg0))
10123 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10124 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10125 {
10126 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10127 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10128 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10129 bool arg0rz = false, arg0iz = false;
10130 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10131 || (arg0i && (arg0iz = real_zerop (arg0i))))
10132 {
10133 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10134 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10135 if (arg0rz && arg1i && real_zerop (arg1i))
10136 {
10137 tree rp = arg1r ? arg1r
10138 : build1 (REALPART_EXPR, rtype, arg1);
10139 tree ip = arg0i ? arg0i
10140 : build1 (IMAGPART_EXPR, rtype, arg0);
10141 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10142 }
10143 else if (arg0iz && arg1r && real_zerop (arg1r))
10144 {
10145 tree rp = arg0r ? arg0r
10146 : build1 (REALPART_EXPR, rtype, arg0);
10147 tree ip = arg1i ? arg1i
10148 : build1 (IMAGPART_EXPR, rtype, arg1);
10149 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10150 }
10151 }
10152 }
10153
10154 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10155 We associate floats only if the user has specified
10156 -fassociative-math. */
10157 if (flag_associative_math
10158 && TREE_CODE (arg1) == PLUS_EXPR
10159 && TREE_CODE (arg0) != MULT_EXPR)
10160 {
10161 tree tree10 = TREE_OPERAND (arg1, 0);
10162 tree tree11 = TREE_OPERAND (arg1, 1);
10163 if (TREE_CODE (tree11) == MULT_EXPR
10164 && TREE_CODE (tree10) == MULT_EXPR)
10165 {
10166 tree tree0;
10167 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
10168 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
10169 }
10170 }
10171 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10172 We associate floats only if the user has specified
10173 -fassociative-math. */
10174 if (flag_associative_math
10175 && TREE_CODE (arg0) == PLUS_EXPR
10176 && TREE_CODE (arg1) != MULT_EXPR)
10177 {
10178 tree tree00 = TREE_OPERAND (arg0, 0);
10179 tree tree01 = TREE_OPERAND (arg0, 1);
10180 if (TREE_CODE (tree01) == MULT_EXPR
10181 && TREE_CODE (tree00) == MULT_EXPR)
10182 {
10183 tree tree0;
10184 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
10185 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
10186 }
10187 }
10188 }
10189
10190 bit_rotate:
10191 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10192 is a rotate of A by C1 bits. */
10193 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10194 is a rotate of A by B bits.
10195 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
10196 though in this case CODE must be | and not + or ^, otherwise
10197 it doesn't return A when B is 0. */
10198 {
10199 enum tree_code code0, code1;
10200 tree rtype;
10201 code0 = TREE_CODE (arg0);
10202 code1 = TREE_CODE (arg1);
10203 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10204 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10205 && operand_equal_p (TREE_OPERAND (arg0, 0),
10206 TREE_OPERAND (arg1, 0), 0)
10207 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10208 TYPE_UNSIGNED (rtype))
10209 /* Only create rotates in complete modes. Other cases are not
10210 expanded properly. */
10211 && (element_precision (rtype)
10212 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
10213 {
10214 tree tree01, tree11;
10215 tree orig_tree01, orig_tree11;
10216 enum tree_code code01, code11;
10217
10218 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
10219 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
10220 STRIP_NOPS (tree01);
10221 STRIP_NOPS (tree11);
10222 code01 = TREE_CODE (tree01);
10223 code11 = TREE_CODE (tree11);
10224 if (code11 != MINUS_EXPR
10225 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
10226 {
10227 std::swap (code0, code1);
10228 std::swap (code01, code11);
10229 std::swap (tree01, tree11);
10230 std::swap (orig_tree01, orig_tree11);
10231 }
10232 if (code01 == INTEGER_CST
10233 && code11 == INTEGER_CST
10234 && (wi::to_widest (tree01) + wi::to_widest (tree11)
10235 == element_precision (rtype)))
10236 {
10237 tem = build2_loc (loc, LROTATE_EXPR,
10238 rtype, TREE_OPERAND (arg0, 0),
10239 code0 == LSHIFT_EXPR
10240 ? orig_tree01 : orig_tree11);
10241 return fold_convert_loc (loc, type, tem);
10242 }
10243 else if (code11 == MINUS_EXPR)
10244 {
10245 tree tree110, tree111;
10246 tree110 = TREE_OPERAND (tree11, 0);
10247 tree111 = TREE_OPERAND (tree11, 1);
10248 STRIP_NOPS (tree110);
10249 STRIP_NOPS (tree111);
10250 if (TREE_CODE (tree110) == INTEGER_CST
10251 && compare_tree_int (tree110,
10252 element_precision (rtype)) == 0
10253 && operand_equal_p (tree01, tree111, 0))
10254 {
10255 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
10256 ? LROTATE_EXPR : RROTATE_EXPR),
10257 rtype, TREE_OPERAND (arg0, 0),
10258 orig_tree01);
10259 return fold_convert_loc (loc, type, tem);
10260 }
10261 }
10262 else if (code == BIT_IOR_EXPR
10263 && code11 == BIT_AND_EXPR
10264 && pow2p_hwi (element_precision (rtype)))
10265 {
10266 tree tree110, tree111;
10267 tree110 = TREE_OPERAND (tree11, 0);
10268 tree111 = TREE_OPERAND (tree11, 1);
10269 STRIP_NOPS (tree110);
10270 STRIP_NOPS (tree111);
10271 if (TREE_CODE (tree110) == NEGATE_EXPR
10272 && TREE_CODE (tree111) == INTEGER_CST
10273 && compare_tree_int (tree111,
10274 element_precision (rtype) - 1) == 0
10275 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0))
10276 {
10277 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
10278 ? LROTATE_EXPR : RROTATE_EXPR),
10279 rtype, TREE_OPERAND (arg0, 0),
10280 orig_tree01);
10281 return fold_convert_loc (loc, type, tem);
10282 }
10283 }
10284 }
10285 }
10286
10287 associate:
10288 /* In most languages, can't associate operations on floats through
10289 parentheses. Rather than remember where the parentheses were, we
10290 don't associate floats at all, unless the user has specified
10291 -fassociative-math.
10292 And, we need to make sure type is not saturating. */
10293
10294 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10295 && !TYPE_SATURATING (type))
10296 {
10297 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
10298 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
10299 tree atype = type;
10300 bool ok = true;
10301
10302 /* Split both trees into variables, constants, and literals. Then
10303 associate each group together, the constants with literals,
10304 then the result with variables. This increases the chances of
10305 literals being recombined later and of generating relocatable
10306 expressions for the sum of a constant and literal. */
10307 var0 = split_tree (arg0, type, code,
10308 &minus_var0, &con0, &minus_con0,
10309 &lit0, &minus_lit0, 0);
10310 var1 = split_tree (arg1, type, code,
10311 &minus_var1, &con1, &minus_con1,
10312 &lit1, &minus_lit1, code == MINUS_EXPR);
10313
10314 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10315 if (code == MINUS_EXPR)
10316 code = PLUS_EXPR;
10317
10318 /* With undefined overflow prefer doing association in a type
10319 which wraps on overflow, if that is one of the operand types. */
10320 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
10321 && !TYPE_OVERFLOW_WRAPS (type))
10322 {
10323 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10324 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10325 atype = TREE_TYPE (arg0);
10326 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10327 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
10328 atype = TREE_TYPE (arg1);
10329 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
10330 }
10331
10332 /* With undefined overflow we can only associate constants with one
10333 variable, and constants whose association doesn't overflow. */
10334 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype))
10335 && !TYPE_OVERFLOW_WRAPS (atype))
10336 {
10337 if ((var0 && var1) || (minus_var0 && minus_var1))
10338 {
10339 /* ??? If split_tree would handle NEGATE_EXPR we could
10340 simply reject these cases and the allowed cases would
10341 be the var0/minus_var1 ones. */
10342 tree tmp0 = var0 ? var0 : minus_var0;
10343 tree tmp1 = var1 ? var1 : minus_var1;
10344 bool one_neg = false;
10345
10346 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10347 {
10348 tmp0 = TREE_OPERAND (tmp0, 0);
10349 one_neg = !one_neg;
10350 }
10351 if (CONVERT_EXPR_P (tmp0)
10352 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10353 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
10354 <= TYPE_PRECISION (atype)))
10355 tmp0 = TREE_OPERAND (tmp0, 0);
10356 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10357 {
10358 tmp1 = TREE_OPERAND (tmp1, 0);
10359 one_neg = !one_neg;
10360 }
10361 if (CONVERT_EXPR_P (tmp1)
10362 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10363 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
10364 <= TYPE_PRECISION (atype)))
10365 tmp1 = TREE_OPERAND (tmp1, 0);
10366 /* The only case we can still associate with two variables
10367 is if they cancel out. */
10368 if (!one_neg
10369 || !operand_equal_p (tmp0, tmp1, 0))
10370 ok = false;
10371 }
10372 else if ((var0 && minus_var1
10373 && ! operand_equal_p (var0, minus_var1, 0))
10374 || (minus_var0 && var1
10375 && ! operand_equal_p (minus_var0, var1, 0)))
10376 ok = false;
10377 }
10378
10379 /* Only do something if we found more than two objects. Otherwise,
10380 nothing has changed and we risk infinite recursion. */
10381 if (ok
10382 && ((var0 != 0) + (var1 != 0)
10383 + (minus_var0 != 0) + (minus_var1 != 0)
10384 + (con0 != 0) + (con1 != 0)
10385 + (minus_con0 != 0) + (minus_con1 != 0)
10386 + (lit0 != 0) + (lit1 != 0)
10387 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2)
10388 {
10389 var0 = associate_trees (loc, var0, var1, code, atype);
10390 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
10391 code, atype);
10392 con0 = associate_trees (loc, con0, con1, code, atype);
10393 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
10394 code, atype);
10395 lit0 = associate_trees (loc, lit0, lit1, code, atype);
10396 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
10397 code, atype);
10398
10399 if (minus_var0 && var0)
10400 {
10401 var0 = associate_trees (loc, var0, minus_var0,
10402 MINUS_EXPR, atype);
10403 minus_var0 = 0;
10404 }
10405 if (minus_con0 && con0)
10406 {
10407 con0 = associate_trees (loc, con0, minus_con0,
10408 MINUS_EXPR, atype);
10409 minus_con0 = 0;
10410 }
10411
10412 /* Preserve the MINUS_EXPR if the negative part of the literal is
10413 greater than the positive part. Otherwise, the multiplicative
10414 folding code (i.e extract_muldiv) may be fooled in case
10415 unsigned constants are subtracted, like in the following
10416 example: ((X*2 + 4) - 8U)/2. */
10417 if (minus_lit0 && lit0)
10418 {
10419 if (TREE_CODE (lit0) == INTEGER_CST
10420 && TREE_CODE (minus_lit0) == INTEGER_CST
10421 && tree_int_cst_lt (lit0, minus_lit0)
10422 /* But avoid ending up with only negated parts. */
10423 && (var0 || con0))
10424 {
10425 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
10426 MINUS_EXPR, atype);
10427 lit0 = 0;
10428 }
10429 else
10430 {
10431 lit0 = associate_trees (loc, lit0, minus_lit0,
10432 MINUS_EXPR, atype);
10433 minus_lit0 = 0;
10434 }
10435 }
10436
10437 /* Don't introduce overflows through reassociation. */
10438 if ((lit0 && TREE_OVERFLOW_P (lit0))
10439 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
10440 return NULL_TREE;
10441
10442 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
10443 con0 = associate_trees (loc, con0, lit0, code, atype);
10444 lit0 = 0;
10445 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
10446 code, atype);
10447 minus_lit0 = 0;
10448
10449 /* Eliminate minus_con0. */
10450 if (minus_con0)
10451 {
10452 if (con0)
10453 con0 = associate_trees (loc, con0, minus_con0,
10454 MINUS_EXPR, atype);
10455 else if (var0)
10456 var0 = associate_trees (loc, var0, minus_con0,
10457 MINUS_EXPR, atype);
10458 else
10459 gcc_unreachable ();
10460 minus_con0 = 0;
10461 }
10462
10463 /* Eliminate minus_var0. */
10464 if (minus_var0)
10465 {
10466 if (con0)
10467 con0 = associate_trees (loc, con0, minus_var0,
10468 MINUS_EXPR, atype);
10469 else
10470 gcc_unreachable ();
10471 minus_var0 = 0;
10472 }
10473
10474 return
10475 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
10476 code, atype));
10477 }
10478 }
10479
10480 return NULL_TREE;
10481
10482 case POINTER_DIFF_EXPR:
10483 case MINUS_EXPR:
10484 /* Fold &a[i] - &a[j] to i-j. */
10485 if (TREE_CODE (arg0) == ADDR_EXPR
10486 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10487 && TREE_CODE (arg1) == ADDR_EXPR
10488 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10489 {
10490 tree tem = fold_addr_of_array_ref_difference (loc, type,
10491 TREE_OPERAND (arg0, 0),
10492 TREE_OPERAND (arg1, 0),
10493 code
10494 == POINTER_DIFF_EXPR);
10495 if (tem)
10496 return tem;
10497 }
10498
10499 /* Further transformations are not for pointers. */
10500 if (code == POINTER_DIFF_EXPR)
10501 return NULL_TREE;
10502
10503 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10504 if (TREE_CODE (arg0) == NEGATE_EXPR
10505 && negate_expr_p (op1)
10506 /* If arg0 is e.g. unsigned int and type is int, then this could
10507 introduce UB, because if A is INT_MIN at runtime, the original
10508 expression can be well defined while the latter is not.
10509 See PR83269. */
10510 && !(ANY_INTEGRAL_TYPE_P (type)
10511 && TYPE_OVERFLOW_UNDEFINED (type)
10512 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10513 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10514 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1),
10515 fold_convert_loc (loc, type,
10516 TREE_OPERAND (arg0, 0)));
10517
10518 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10519 __complex__ ( x, -y ). This is not the same for SNaNs or if
10520 signed zeros are involved. */
10521 if (!HONOR_SNANS (element_mode (arg0))
10522 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10523 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10524 {
10525 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10526 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
10527 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
10528 bool arg0rz = false, arg0iz = false;
10529 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10530 || (arg0i && (arg0iz = real_zerop (arg0i))))
10531 {
10532 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10533 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10534 if (arg0rz && arg1i && real_zerop (arg1i))
10535 {
10536 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10537 arg1r ? arg1r
10538 : build1 (REALPART_EXPR, rtype, arg1));
10539 tree ip = arg0i ? arg0i
10540 : build1 (IMAGPART_EXPR, rtype, arg0);
10541 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10542 }
10543 else if (arg0iz && arg1r && real_zerop (arg1r))
10544 {
10545 tree rp = arg0r ? arg0r
10546 : build1 (REALPART_EXPR, rtype, arg0);
10547 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10548 arg1i ? arg1i
10549 : build1 (IMAGPART_EXPR, rtype, arg1));
10550 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10551 }
10552 }
10553 }
10554
10555 /* A - B -> A + (-B) if B is easily negatable. */
10556 if (negate_expr_p (op1)
10557 && ! TYPE_OVERFLOW_SANITIZED (type)
10558 && ((FLOAT_TYPE_P (type)
10559 /* Avoid this transformation if B is a positive REAL_CST. */
10560 && (TREE_CODE (op1) != REAL_CST
10561 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
10562 || INTEGRAL_TYPE_P (type)))
10563 return fold_build2_loc (loc, PLUS_EXPR, type,
10564 fold_convert_loc (loc, type, arg0),
10565 negate_expr (op1));
10566
10567 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10568 one. Make sure the type is not saturating and has the signedness of
10569 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10570 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10571 if ((TREE_CODE (arg0) == MULT_EXPR
10572 || TREE_CODE (arg1) == MULT_EXPR)
10573 && !TYPE_SATURATING (type)
10574 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10575 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10576 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10577 {
10578 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10579 if (tem)
10580 return tem;
10581 }
10582
10583 goto associate;
10584
10585 case MULT_EXPR:
10586 if (! FLOAT_TYPE_P (type))
10587 {
10588 /* Transform x * -C into -x * C if x is easily negatable. */
10589 if (TREE_CODE (op1) == INTEGER_CST
10590 && tree_int_cst_sgn (op1) == -1
10591 && negate_expr_p (op0)
10592 && negate_expr_p (op1)
10593 && (tem = negate_expr (op1)) != op1
10594 && ! TREE_OVERFLOW (tem))
10595 return fold_build2_loc (loc, MULT_EXPR, type,
10596 fold_convert_loc (loc, type,
10597 negate_expr (op0)), tem);
10598
10599 strict_overflow_p = false;
10600 if (TREE_CODE (arg1) == INTEGER_CST
10601 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10602 &strict_overflow_p)) != 0)
10603 {
10604 if (strict_overflow_p)
10605 fold_overflow_warning (("assuming signed overflow does not "
10606 "occur when simplifying "
10607 "multiplication"),
10608 WARN_STRICT_OVERFLOW_MISC);
10609 return fold_convert_loc (loc, type, tem);
10610 }
10611
10612 /* Optimize z * conj(z) for integer complex numbers. */
10613 if (TREE_CODE (arg0) == CONJ_EXPR
10614 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10615 return fold_mult_zconjz (loc, type, arg1);
10616 if (TREE_CODE (arg1) == CONJ_EXPR
10617 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10618 return fold_mult_zconjz (loc, type, arg0);
10619 }
10620 else
10621 {
10622 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10623 This is not the same for NaNs or if signed zeros are
10624 involved. */
10625 if (!HONOR_NANS (arg0)
10626 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10627 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10628 && TREE_CODE (arg1) == COMPLEX_CST
10629 && real_zerop (TREE_REALPART (arg1)))
10630 {
10631 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10632 if (real_onep (TREE_IMAGPART (arg1)))
10633 return
10634 fold_build2_loc (loc, COMPLEX_EXPR, type,
10635 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10636 rtype, arg0)),
10637 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10638 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10639 return
10640 fold_build2_loc (loc, COMPLEX_EXPR, type,
10641 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10642 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10643 rtype, arg0)));
10644 }
10645
10646 /* Optimize z * conj(z) for floating point complex numbers.
10647 Guarded by flag_unsafe_math_optimizations as non-finite
10648 imaginary components don't produce scalar results. */
10649 if (flag_unsafe_math_optimizations
10650 && TREE_CODE (arg0) == CONJ_EXPR
10651 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10652 return fold_mult_zconjz (loc, type, arg1);
10653 if (flag_unsafe_math_optimizations
10654 && TREE_CODE (arg1) == CONJ_EXPR
10655 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10656 return fold_mult_zconjz (loc, type, arg0);
10657 }
10658 goto associate;
10659
10660 case BIT_IOR_EXPR:
10661 /* Canonicalize (X & C1) | C2. */
10662 if (TREE_CODE (arg0) == BIT_AND_EXPR
10663 && TREE_CODE (arg1) == INTEGER_CST
10664 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10665 {
10666 int width = TYPE_PRECISION (type), w;
10667 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
10668 wide_int c2 = wi::to_wide (arg1);
10669
10670 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10671 if ((c1 & c2) == c1)
10672 return omit_one_operand_loc (loc, type, arg1,
10673 TREE_OPERAND (arg0, 0));
10674
10675 wide_int msk = wi::mask (width, false,
10676 TYPE_PRECISION (TREE_TYPE (arg1)));
10677
10678 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10679 if (wi::bit_and_not (msk, c1 | c2) == 0)
10680 {
10681 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10682 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10683 }
10684
10685 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10686 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10687 mode which allows further optimizations. */
10688 c1 &= msk;
10689 c2 &= msk;
10690 wide_int c3 = wi::bit_and_not (c1, c2);
10691 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10692 {
10693 wide_int mask = wi::mask (w, false,
10694 TYPE_PRECISION (type));
10695 if (((c1 | c2) & mask) == mask
10696 && wi::bit_and_not (c1, mask) == 0)
10697 {
10698 c3 = mask;
10699 break;
10700 }
10701 }
10702
10703 if (c3 != c1)
10704 {
10705 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10706 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
10707 wide_int_to_tree (type, c3));
10708 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10709 }
10710 }
10711
10712 /* See if this can be simplified into a rotate first. If that
10713 is unsuccessful continue in the association code. */
10714 goto bit_rotate;
10715
10716 case BIT_XOR_EXPR:
10717 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10718 if (TREE_CODE (arg0) == BIT_AND_EXPR
10719 && INTEGRAL_TYPE_P (type)
10720 && integer_onep (TREE_OPERAND (arg0, 1))
10721 && integer_onep (arg1))
10722 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10723 build_zero_cst (TREE_TYPE (arg0)));
10724
10725 /* See if this can be simplified into a rotate first. If that
10726 is unsuccessful continue in the association code. */
10727 goto bit_rotate;
10728
10729 case BIT_AND_EXPR:
10730 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10731 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10732 && INTEGRAL_TYPE_P (type)
10733 && integer_onep (TREE_OPERAND (arg0, 1))
10734 && integer_onep (arg1))
10735 {
10736 tree tem2;
10737 tem = TREE_OPERAND (arg0, 0);
10738 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10739 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10740 tem, tem2);
10741 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10742 build_zero_cst (TREE_TYPE (tem)));
10743 }
10744 /* Fold ~X & 1 as (X & 1) == 0. */
10745 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10746 && INTEGRAL_TYPE_P (type)
10747 && integer_onep (arg1))
10748 {
10749 tree tem2;
10750 tem = TREE_OPERAND (arg0, 0);
10751 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10752 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10753 tem, tem2);
10754 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10755 build_zero_cst (TREE_TYPE (tem)));
10756 }
10757 /* Fold !X & 1 as X == 0. */
10758 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10759 && integer_onep (arg1))
10760 {
10761 tem = TREE_OPERAND (arg0, 0);
10762 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10763 build_zero_cst (TREE_TYPE (tem)));
10764 }
10765
10766 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10767 multiple of 1 << CST. */
10768 if (TREE_CODE (arg1) == INTEGER_CST)
10769 {
10770 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
10771 wide_int ncst1 = -cst1;
10772 if ((cst1 & ncst1) == ncst1
10773 && multiple_of_p (type, arg0,
10774 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10775 return fold_convert_loc (loc, type, arg0);
10776 }
10777
10778 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10779 bits from CST2. */
10780 if (TREE_CODE (arg1) == INTEGER_CST
10781 && TREE_CODE (arg0) == MULT_EXPR
10782 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10783 {
10784 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1);
10785 wide_int masked
10786 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1)));
10787
10788 if (masked == 0)
10789 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10790 arg0, arg1);
10791 else if (masked != warg1)
10792 {
10793 /* Avoid the transform if arg1 is a mask of some
10794 mode which allows further optimizations. */
10795 int pop = wi::popcount (warg1);
10796 if (!(pop >= BITS_PER_UNIT
10797 && pow2p_hwi (pop)
10798 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10799 return fold_build2_loc (loc, code, type, op0,
10800 wide_int_to_tree (type, masked));
10801 }
10802 }
10803
10804 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10805 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10806 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10807 {
10808 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10809
10810 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED);
10811 if (mask == -1)
10812 return
10813 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10814 }
10815
10816 goto associate;
10817
10818 case RDIV_EXPR:
10819 /* Don't touch a floating-point divide by zero unless the mode
10820 of the constant can represent infinity. */
10821 if (TREE_CODE (arg1) == REAL_CST
10822 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10823 && real_zerop (arg1))
10824 return NULL_TREE;
10825
10826 /* (-A) / (-B) -> A / B */
10827 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10828 return fold_build2_loc (loc, RDIV_EXPR, type,
10829 TREE_OPERAND (arg0, 0),
10830 negate_expr (arg1));
10831 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10832 return fold_build2_loc (loc, RDIV_EXPR, type,
10833 negate_expr (arg0),
10834 TREE_OPERAND (arg1, 0));
10835 return NULL_TREE;
10836
10837 case TRUNC_DIV_EXPR:
10838 /* Fall through */
10839
10840 case FLOOR_DIV_EXPR:
10841 /* Simplify A / (B << N) where A and B are positive and B is
10842 a power of 2, to A >> (N + log2(B)). */
10843 strict_overflow_p = false;
10844 if (TREE_CODE (arg1) == LSHIFT_EXPR
10845 && (TYPE_UNSIGNED (type)
10846 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10847 {
10848 tree sval = TREE_OPERAND (arg1, 0);
10849 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10850 {
10851 tree sh_cnt = TREE_OPERAND (arg1, 1);
10852 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10853 wi::exact_log2 (wi::to_wide (sval)));
10854
10855 if (strict_overflow_p)
10856 fold_overflow_warning (("assuming signed overflow does not "
10857 "occur when simplifying A / (B << N)"),
10858 WARN_STRICT_OVERFLOW_MISC);
10859
10860 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10861 sh_cnt, pow2);
10862 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10863 fold_convert_loc (loc, type, arg0), sh_cnt);
10864 }
10865 }
10866
10867 /* Fall through */
10868
10869 case ROUND_DIV_EXPR:
10870 case CEIL_DIV_EXPR:
10871 case EXACT_DIV_EXPR:
10872 if (integer_zerop (arg1))
10873 return NULL_TREE;
10874
10875 /* Convert -A / -B to A / B when the type is signed and overflow is
10876 undefined. */
10877 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10878 && TREE_CODE (op0) == NEGATE_EXPR
10879 && negate_expr_p (op1))
10880 {
10881 if (INTEGRAL_TYPE_P (type))
10882 fold_overflow_warning (("assuming signed overflow does not occur "
10883 "when distributing negation across "
10884 "division"),
10885 WARN_STRICT_OVERFLOW_MISC);
10886 return fold_build2_loc (loc, code, type,
10887 fold_convert_loc (loc, type,
10888 TREE_OPERAND (arg0, 0)),
10889 negate_expr (op1));
10890 }
10891 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10892 && TREE_CODE (arg1) == NEGATE_EXPR
10893 && negate_expr_p (op0))
10894 {
10895 if (INTEGRAL_TYPE_P (type))
10896 fold_overflow_warning (("assuming signed overflow does not occur "
10897 "when distributing negation across "
10898 "division"),
10899 WARN_STRICT_OVERFLOW_MISC);
10900 return fold_build2_loc (loc, code, type,
10901 negate_expr (op0),
10902 fold_convert_loc (loc, type,
10903 TREE_OPERAND (arg1, 0)));
10904 }
10905
10906 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10907 operation, EXACT_DIV_EXPR.
10908
10909 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10910 At one time others generated faster code, it's not clear if they do
10911 after the last round to changes to the DIV code in expmed.c. */
10912 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10913 && multiple_of_p (type, arg0, arg1))
10914 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10915 fold_convert (type, arg0),
10916 fold_convert (type, arg1));
10917
10918 strict_overflow_p = false;
10919 if (TREE_CODE (arg1) == INTEGER_CST
10920 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10921 &strict_overflow_p)) != 0)
10922 {
10923 if (strict_overflow_p)
10924 fold_overflow_warning (("assuming signed overflow does not occur "
10925 "when simplifying division"),
10926 WARN_STRICT_OVERFLOW_MISC);
10927 return fold_convert_loc (loc, type, tem);
10928 }
10929
10930 return NULL_TREE;
10931
10932 case CEIL_MOD_EXPR:
10933 case FLOOR_MOD_EXPR:
10934 case ROUND_MOD_EXPR:
10935 case TRUNC_MOD_EXPR:
10936 strict_overflow_p = false;
10937 if (TREE_CODE (arg1) == INTEGER_CST
10938 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10939 &strict_overflow_p)) != 0)
10940 {
10941 if (strict_overflow_p)
10942 fold_overflow_warning (("assuming signed overflow does not occur "
10943 "when simplifying modulus"),
10944 WARN_STRICT_OVERFLOW_MISC);
10945 return fold_convert_loc (loc, type, tem);
10946 }
10947
10948 return NULL_TREE;
10949
10950 case LROTATE_EXPR:
10951 case RROTATE_EXPR:
10952 case RSHIFT_EXPR:
10953 case LSHIFT_EXPR:
10954 /* Since negative shift count is not well-defined,
10955 don't try to compute it in the compiler. */
10956 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10957 return NULL_TREE;
10958
10959 prec = element_precision (type);
10960
10961 /* If we have a rotate of a bit operation with the rotate count and
10962 the second operand of the bit operation both constant,
10963 permute the two operations. */
10964 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10965 && (TREE_CODE (arg0) == BIT_AND_EXPR
10966 || TREE_CODE (arg0) == BIT_IOR_EXPR
10967 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10968 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10969 {
10970 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10971 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10972 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10973 fold_build2_loc (loc, code, type,
10974 arg00, arg1),
10975 fold_build2_loc (loc, code, type,
10976 arg01, arg1));
10977 }
10978
10979 /* Two consecutive rotates adding up to the some integer
10980 multiple of the precision of the type can be ignored. */
10981 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10982 && TREE_CODE (arg0) == RROTATE_EXPR
10983 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10984 && wi::umod_trunc (wi::to_wide (arg1)
10985 + wi::to_wide (TREE_OPERAND (arg0, 1)),
10986 prec) == 0)
10987 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10988
10989 return NULL_TREE;
10990
10991 case MIN_EXPR:
10992 case MAX_EXPR:
10993 goto associate;
10994
10995 case TRUTH_ANDIF_EXPR:
10996 /* Note that the operands of this must be ints
10997 and their values must be 0 or 1.
10998 ("true" is a fixed value perhaps depending on the language.) */
10999 /* If first arg is constant zero, return it. */
11000 if (integer_zerop (arg0))
11001 return fold_convert_loc (loc, type, arg0);
11002 /* FALLTHRU */
11003 case TRUTH_AND_EXPR:
11004 /* If either arg is constant true, drop it. */
11005 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11006 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11007 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11008 /* Preserve sequence points. */
11009 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11010 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11011 /* If second arg is constant zero, result is zero, but first arg
11012 must be evaluated. */
11013 if (integer_zerop (arg1))
11014 return omit_one_operand_loc (loc, type, arg1, arg0);
11015 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11016 case will be handled here. */
11017 if (integer_zerop (arg0))
11018 return omit_one_operand_loc (loc, type, arg0, arg1);
11019
11020 /* !X && X is always false. */
11021 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11022 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11023 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
11024 /* X && !X is always false. */
11025 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11026 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11027 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11028
11029 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11030 means A >= Y && A != MAX, but in this case we know that
11031 A < X <= MAX. */
11032
11033 if (!TREE_SIDE_EFFECTS (arg0)
11034 && !TREE_SIDE_EFFECTS (arg1))
11035 {
11036 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
11037 if (tem && !operand_equal_p (tem, arg0, 0))
11038 return fold_build2_loc (loc, code, type, tem, arg1);
11039
11040 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
11041 if (tem && !operand_equal_p (tem, arg1, 0))
11042 return fold_build2_loc (loc, code, type, arg0, tem);
11043 }
11044
11045 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11046 != NULL_TREE)
11047 return tem;
11048
11049 return NULL_TREE;
11050
11051 case TRUTH_ORIF_EXPR:
11052 /* Note that the operands of this must be ints
11053 and their values must be 0 or true.
11054 ("true" is a fixed value perhaps depending on the language.) */
11055 /* If first arg is constant true, return it. */
11056 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11057 return fold_convert_loc (loc, type, arg0);
11058 /* FALLTHRU */
11059 case TRUTH_OR_EXPR:
11060 /* If either arg is constant zero, drop it. */
11061 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
11062 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11063 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
11064 /* Preserve sequence points. */
11065 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11066 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11067 /* If second arg is constant true, result is true, but we must
11068 evaluate first arg. */
11069 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
11070 return omit_one_operand_loc (loc, type, arg1, arg0);
11071 /* Likewise for first arg, but note this only occurs here for
11072 TRUTH_OR_EXPR. */
11073 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11074 return omit_one_operand_loc (loc, type, arg0, arg1);
11075
11076 /* !X || X is always true. */
11077 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11078 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11079 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11080 /* X || !X is always true. */
11081 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11082 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11083 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11084
11085 /* (X && !Y) || (!X && Y) is X ^ Y */
11086 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
11087 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
11088 {
11089 tree a0, a1, l0, l1, n0, n1;
11090
11091 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
11092 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
11093
11094 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11095 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11096
11097 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
11098 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
11099
11100 if ((operand_equal_p (n0, a0, 0)
11101 && operand_equal_p (n1, a1, 0))
11102 || (operand_equal_p (n0, a1, 0)
11103 && operand_equal_p (n1, a0, 0)))
11104 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
11105 }
11106
11107 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
11108 != NULL_TREE)
11109 return tem;
11110
11111 return NULL_TREE;
11112
11113 case TRUTH_XOR_EXPR:
11114 /* If the second arg is constant zero, drop it. */
11115 if (integer_zerop (arg1))
11116 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11117 /* If the second arg is constant true, this is a logical inversion. */
11118 if (integer_onep (arg1))
11119 {
11120 tem = invert_truthvalue_loc (loc, arg0);
11121 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
11122 }
11123 /* Identical arguments cancel to zero. */
11124 if (operand_equal_p (arg0, arg1, 0))
11125 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
11126
11127 /* !X ^ X is always true. */
11128 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11129 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11130 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
11131
11132 /* X ^ !X is always true. */
11133 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11134 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11135 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
11136
11137 return NULL_TREE;
11138
11139 case EQ_EXPR:
11140 case NE_EXPR:
11141 STRIP_NOPS (arg0);
11142 STRIP_NOPS (arg1);
11143
11144 tem = fold_comparison (loc, code, type, op0, op1);
11145 if (tem != NULL_TREE)
11146 return tem;
11147
11148 /* bool_var != 1 becomes !bool_var. */
11149 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11150 && code == NE_EXPR)
11151 return fold_convert_loc (loc, type,
11152 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11153 TREE_TYPE (arg0), arg0));
11154
11155 /* bool_var == 0 becomes !bool_var. */
11156 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11157 && code == EQ_EXPR)
11158 return fold_convert_loc (loc, type,
11159 fold_build1_loc (loc, TRUTH_NOT_EXPR,
11160 TREE_TYPE (arg0), arg0));
11161
11162 /* !exp != 0 becomes !exp */
11163 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
11164 && code == NE_EXPR)
11165 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
11166
11167 /* If this is an EQ or NE comparison with zero and ARG0 is
11168 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11169 two operations, but the latter can be done in one less insn
11170 on machines that have only two-operand insns or on which a
11171 constant cannot be the first operand. */
11172 if (TREE_CODE (arg0) == BIT_AND_EXPR
11173 && integer_zerop (arg1))
11174 {
11175 tree arg00 = TREE_OPERAND (arg0, 0);
11176 tree arg01 = TREE_OPERAND (arg0, 1);
11177 if (TREE_CODE (arg00) == LSHIFT_EXPR
11178 && integer_onep (TREE_OPERAND (arg00, 0)))
11179 {
11180 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
11181 arg01, TREE_OPERAND (arg00, 1));
11182 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11183 build_int_cst (TREE_TYPE (arg0), 1));
11184 return fold_build2_loc (loc, code, type,
11185 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11186 arg1);
11187 }
11188 else if (TREE_CODE (arg01) == LSHIFT_EXPR
11189 && integer_onep (TREE_OPERAND (arg01, 0)))
11190 {
11191 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
11192 arg00, TREE_OPERAND (arg01, 1));
11193 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
11194 build_int_cst (TREE_TYPE (arg0), 1));
11195 return fold_build2_loc (loc, code, type,
11196 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
11197 arg1);
11198 }
11199 }
11200
11201 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11202 C1 is a valid shift constant, and C2 is a power of two, i.e.
11203 a single bit. */
11204 if (TREE_CODE (arg0) == BIT_AND_EXPR
11205 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11206 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11207 == INTEGER_CST
11208 && integer_pow2p (TREE_OPERAND (arg0, 1))
11209 && integer_zerop (arg1))
11210 {
11211 tree itype = TREE_TYPE (arg0);
11212 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11213 prec = TYPE_PRECISION (itype);
11214
11215 /* Check for a valid shift count. */
11216 if (wi::ltu_p (wi::to_wide (arg001), prec))
11217 {
11218 tree arg01 = TREE_OPERAND (arg0, 1);
11219 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11220 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11221 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11222 can be rewritten as (X & (C2 << C1)) != 0. */
11223 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11224 {
11225 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
11226 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
11227 return fold_build2_loc (loc, code, type, tem,
11228 fold_convert_loc (loc, itype, arg1));
11229 }
11230 /* Otherwise, for signed (arithmetic) shifts,
11231 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11232 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11233 else if (!TYPE_UNSIGNED (itype))
11234 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11235 arg000, build_int_cst (itype, 0));
11236 /* Otherwise, of unsigned (logical) shifts,
11237 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11238 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11239 else
11240 return omit_one_operand_loc (loc, type,
11241 code == EQ_EXPR ? integer_one_node
11242 : integer_zero_node,
11243 arg000);
11244 }
11245 }
11246
11247 /* If this is a comparison of a field, we may be able to simplify it. */
11248 if ((TREE_CODE (arg0) == COMPONENT_REF
11249 || TREE_CODE (arg0) == BIT_FIELD_REF)
11250 /* Handle the constant case even without -O
11251 to make sure the warnings are given. */
11252 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
11253 {
11254 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
11255 if (t1)
11256 return t1;
11257 }
11258
11259 /* Optimize comparisons of strlen vs zero to a compare of the
11260 first character of the string vs zero. To wit,
11261 strlen(ptr) == 0 => *ptr == 0
11262 strlen(ptr) != 0 => *ptr != 0
11263 Other cases should reduce to one of these two (or a constant)
11264 due to the return value of strlen being unsigned. */
11265 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1))
11266 {
11267 tree fndecl = get_callee_fndecl (arg0);
11268
11269 if (fndecl
11270 && fndecl_built_in_p (fndecl, BUILT_IN_STRLEN)
11271 && call_expr_nargs (arg0) == 1
11272 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0)))
11273 == POINTER_TYPE))
11274 {
11275 tree ptrtype
11276 = build_pointer_type (build_qualified_type (char_type_node,
11277 TYPE_QUAL_CONST));
11278 tree ptr = fold_convert_loc (loc, ptrtype,
11279 CALL_EXPR_ARG (arg0, 0));
11280 tree iref = build_fold_indirect_ref_loc (loc, ptr);
11281 return fold_build2_loc (loc, code, type, iref,
11282 build_int_cst (TREE_TYPE (iref), 0));
11283 }
11284 }
11285
11286 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11287 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11288 if (TREE_CODE (arg0) == RSHIFT_EXPR
11289 && integer_zerop (arg1)
11290 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11291 {
11292 tree arg00 = TREE_OPERAND (arg0, 0);
11293 tree arg01 = TREE_OPERAND (arg0, 1);
11294 tree itype = TREE_TYPE (arg00);
11295 if (wi::to_wide (arg01) == element_precision (itype) - 1)
11296 {
11297 if (TYPE_UNSIGNED (itype))
11298 {
11299 itype = signed_type_for (itype);
11300 arg00 = fold_convert_loc (loc, itype, arg00);
11301 }
11302 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
11303 type, arg00, build_zero_cst (itype));
11304 }
11305 }
11306
11307 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
11308 (X & C) == 0 when C is a single bit. */
11309 if (TREE_CODE (arg0) == BIT_AND_EXPR
11310 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
11311 && integer_zerop (arg1)
11312 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11313 {
11314 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
11315 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
11316 TREE_OPERAND (arg0, 1));
11317 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
11318 type, tem,
11319 fold_convert_loc (loc, TREE_TYPE (arg0),
11320 arg1));
11321 }
11322
11323 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11324 constant C is a power of two, i.e. a single bit. */
11325 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11326 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11327 && integer_zerop (arg1)
11328 && integer_pow2p (TREE_OPERAND (arg0, 1))
11329 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11330 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11331 {
11332 tree arg00 = TREE_OPERAND (arg0, 0);
11333 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11334 arg00, build_int_cst (TREE_TYPE (arg00), 0));
11335 }
11336
11337 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
11338 when is C is a power of two, i.e. a single bit. */
11339 if (TREE_CODE (arg0) == BIT_AND_EXPR
11340 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
11341 && integer_zerop (arg1)
11342 && integer_pow2p (TREE_OPERAND (arg0, 1))
11343 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11344 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11345 {
11346 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11347 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
11348 arg000, TREE_OPERAND (arg0, 1));
11349 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11350 tem, build_int_cst (TREE_TYPE (tem), 0));
11351 }
11352
11353 if (integer_zerop (arg1)
11354 && tree_expr_nonzero_p (arg0))
11355 {
11356 tree res = constant_boolean_node (code==NE_EXPR, type);
11357 return omit_one_operand_loc (loc, type, res, arg0);
11358 }
11359
11360 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
11361 if (TREE_CODE (arg0) == BIT_AND_EXPR
11362 && TREE_CODE (arg1) == BIT_AND_EXPR)
11363 {
11364 tree arg00 = TREE_OPERAND (arg0, 0);
11365 tree arg01 = TREE_OPERAND (arg0, 1);
11366 tree arg10 = TREE_OPERAND (arg1, 0);
11367 tree arg11 = TREE_OPERAND (arg1, 1);
11368 tree itype = TREE_TYPE (arg0);
11369
11370 if (operand_equal_p (arg01, arg11, 0))
11371 {
11372 tem = fold_convert_loc (loc, itype, arg10);
11373 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11374 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
11375 return fold_build2_loc (loc, code, type, tem,
11376 build_zero_cst (itype));
11377 }
11378 if (operand_equal_p (arg01, arg10, 0))
11379 {
11380 tem = fold_convert_loc (loc, itype, arg11);
11381 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11382 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
11383 return fold_build2_loc (loc, code, type, tem,
11384 build_zero_cst (itype));
11385 }
11386 if (operand_equal_p (arg00, arg11, 0))
11387 {
11388 tem = fold_convert_loc (loc, itype, arg10);
11389 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
11390 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
11391 return fold_build2_loc (loc, code, type, tem,
11392 build_zero_cst (itype));
11393 }
11394 if (operand_equal_p (arg00, arg10, 0))
11395 {
11396 tem = fold_convert_loc (loc, itype, arg11);
11397 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
11398 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
11399 return fold_build2_loc (loc, code, type, tem,
11400 build_zero_cst (itype));
11401 }
11402 }
11403
11404 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11405 && TREE_CODE (arg1) == BIT_XOR_EXPR)
11406 {
11407 tree arg00 = TREE_OPERAND (arg0, 0);
11408 tree arg01 = TREE_OPERAND (arg0, 1);
11409 tree arg10 = TREE_OPERAND (arg1, 0);
11410 tree arg11 = TREE_OPERAND (arg1, 1);
11411 tree itype = TREE_TYPE (arg0);
11412
11413 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
11414 operand_equal_p guarantees no side-effects so we don't need
11415 to use omit_one_operand on Z. */
11416 if (operand_equal_p (arg01, arg11, 0))
11417 return fold_build2_loc (loc, code, type, arg00,
11418 fold_convert_loc (loc, TREE_TYPE (arg00),
11419 arg10));
11420 if (operand_equal_p (arg01, arg10, 0))
11421 return fold_build2_loc (loc, code, type, arg00,
11422 fold_convert_loc (loc, TREE_TYPE (arg00),
11423 arg11));
11424 if (operand_equal_p (arg00, arg11, 0))
11425 return fold_build2_loc (loc, code, type, arg01,
11426 fold_convert_loc (loc, TREE_TYPE (arg01),
11427 arg10));
11428 if (operand_equal_p (arg00, arg10, 0))
11429 return fold_build2_loc (loc, code, type, arg01,
11430 fold_convert_loc (loc, TREE_TYPE (arg01),
11431 arg11));
11432
11433 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
11434 if (TREE_CODE (arg01) == INTEGER_CST
11435 && TREE_CODE (arg11) == INTEGER_CST)
11436 {
11437 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
11438 fold_convert_loc (loc, itype, arg11));
11439 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
11440 return fold_build2_loc (loc, code, type, tem,
11441 fold_convert_loc (loc, itype, arg10));
11442 }
11443 }
11444
11445 /* Attempt to simplify equality/inequality comparisons of complex
11446 values. Only lower the comparison if the result is known or
11447 can be simplified to a single scalar comparison. */
11448 if ((TREE_CODE (arg0) == COMPLEX_EXPR
11449 || TREE_CODE (arg0) == COMPLEX_CST)
11450 && (TREE_CODE (arg1) == COMPLEX_EXPR
11451 || TREE_CODE (arg1) == COMPLEX_CST))
11452 {
11453 tree real0, imag0, real1, imag1;
11454 tree rcond, icond;
11455
11456 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11457 {
11458 real0 = TREE_OPERAND (arg0, 0);
11459 imag0 = TREE_OPERAND (arg0, 1);
11460 }
11461 else
11462 {
11463 real0 = TREE_REALPART (arg0);
11464 imag0 = TREE_IMAGPART (arg0);
11465 }
11466
11467 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11468 {
11469 real1 = TREE_OPERAND (arg1, 0);
11470 imag1 = TREE_OPERAND (arg1, 1);
11471 }
11472 else
11473 {
11474 real1 = TREE_REALPART (arg1);
11475 imag1 = TREE_IMAGPART (arg1);
11476 }
11477
11478 rcond = fold_binary_loc (loc, code, type, real0, real1);
11479 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11480 {
11481 if (integer_zerop (rcond))
11482 {
11483 if (code == EQ_EXPR)
11484 return omit_two_operands_loc (loc, type, boolean_false_node,
11485 imag0, imag1);
11486 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11487 }
11488 else
11489 {
11490 if (code == NE_EXPR)
11491 return omit_two_operands_loc (loc, type, boolean_true_node,
11492 imag0, imag1);
11493 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11494 }
11495 }
11496
11497 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11498 if (icond && TREE_CODE (icond) == INTEGER_CST)
11499 {
11500 if (integer_zerop (icond))
11501 {
11502 if (code == EQ_EXPR)
11503 return omit_two_operands_loc (loc, type, boolean_false_node,
11504 real0, real1);
11505 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11506 }
11507 else
11508 {
11509 if (code == NE_EXPR)
11510 return omit_two_operands_loc (loc, type, boolean_true_node,
11511 real0, real1);
11512 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11513 }
11514 }
11515 }
11516
11517 return NULL_TREE;
11518
11519 case LT_EXPR:
11520 case GT_EXPR:
11521 case LE_EXPR:
11522 case GE_EXPR:
11523 tem = fold_comparison (loc, code, type, op0, op1);
11524 if (tem != NULL_TREE)
11525 return tem;
11526
11527 /* Transform comparisons of the form X +- C CMP X. */
11528 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11529 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11530 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11531 && !HONOR_SNANS (arg0))
11532 {
11533 tree arg01 = TREE_OPERAND (arg0, 1);
11534 enum tree_code code0 = TREE_CODE (arg0);
11535 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11536
11537 /* (X - c) > X becomes false. */
11538 if (code == GT_EXPR
11539 && ((code0 == MINUS_EXPR && is_positive >= 0)
11540 || (code0 == PLUS_EXPR && is_positive <= 0)))
11541 return constant_boolean_node (0, type);
11542
11543 /* Likewise (X + c) < X becomes false. */
11544 if (code == LT_EXPR
11545 && ((code0 == PLUS_EXPR && is_positive >= 0)
11546 || (code0 == MINUS_EXPR && is_positive <= 0)))
11547 return constant_boolean_node (0, type);
11548
11549 /* Convert (X - c) <= X to true. */
11550 if (!HONOR_NANS (arg1)
11551 && code == LE_EXPR
11552 && ((code0 == MINUS_EXPR && is_positive >= 0)
11553 || (code0 == PLUS_EXPR && is_positive <= 0)))
11554 return constant_boolean_node (1, type);
11555
11556 /* Convert (X + c) >= X to true. */
11557 if (!HONOR_NANS (arg1)
11558 && code == GE_EXPR
11559 && ((code0 == PLUS_EXPR && is_positive >= 0)
11560 || (code0 == MINUS_EXPR && is_positive <= 0)))
11561 return constant_boolean_node (1, type);
11562 }
11563
11564 /* If we are comparing an ABS_EXPR with a constant, we can
11565 convert all the cases into explicit comparisons, but they may
11566 well not be faster than doing the ABS and one comparison.
11567 But ABS (X) <= C is a range comparison, which becomes a subtraction
11568 and a comparison, and is probably faster. */
11569 if (code == LE_EXPR
11570 && TREE_CODE (arg1) == INTEGER_CST
11571 && TREE_CODE (arg0) == ABS_EXPR
11572 && ! TREE_SIDE_EFFECTS (arg0)
11573 && (tem = negate_expr (arg1)) != 0
11574 && TREE_CODE (tem) == INTEGER_CST
11575 && !TREE_OVERFLOW (tem))
11576 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11577 build2 (GE_EXPR, type,
11578 TREE_OPERAND (arg0, 0), tem),
11579 build2 (LE_EXPR, type,
11580 TREE_OPERAND (arg0, 0), arg1));
11581
11582 /* Convert ABS_EXPR<x> >= 0 to true. */
11583 strict_overflow_p = false;
11584 if (code == GE_EXPR
11585 && (integer_zerop (arg1)
11586 || (! HONOR_NANS (arg0)
11587 && real_zerop (arg1)))
11588 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11589 {
11590 if (strict_overflow_p)
11591 fold_overflow_warning (("assuming signed overflow does not occur "
11592 "when simplifying comparison of "
11593 "absolute value and zero"),
11594 WARN_STRICT_OVERFLOW_CONDITIONAL);
11595 return omit_one_operand_loc (loc, type,
11596 constant_boolean_node (true, type),
11597 arg0);
11598 }
11599
11600 /* Convert ABS_EXPR<x> < 0 to false. */
11601 strict_overflow_p = false;
11602 if (code == LT_EXPR
11603 && (integer_zerop (arg1) || real_zerop (arg1))
11604 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11605 {
11606 if (strict_overflow_p)
11607 fold_overflow_warning (("assuming signed overflow does not occur "
11608 "when simplifying comparison of "
11609 "absolute value and zero"),
11610 WARN_STRICT_OVERFLOW_CONDITIONAL);
11611 return omit_one_operand_loc (loc, type,
11612 constant_boolean_node (false, type),
11613 arg0);
11614 }
11615
11616 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11617 and similarly for >= into !=. */
11618 if ((code == LT_EXPR || code == GE_EXPR)
11619 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11620 && TREE_CODE (arg1) == LSHIFT_EXPR
11621 && integer_onep (TREE_OPERAND (arg1, 0)))
11622 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11623 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11624 TREE_OPERAND (arg1, 1)),
11625 build_zero_cst (TREE_TYPE (arg0)));
11626
11627 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11628 otherwise Y might be >= # of bits in X's type and thus e.g.
11629 (unsigned char) (1 << Y) for Y 15 might be 0.
11630 If the cast is widening, then 1 << Y should have unsigned type,
11631 otherwise if Y is number of bits in the signed shift type minus 1,
11632 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11633 31 might be 0xffffffff80000000. */
11634 if ((code == LT_EXPR || code == GE_EXPR)
11635 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11636 && CONVERT_EXPR_P (arg1)
11637 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11638 && (element_precision (TREE_TYPE (arg1))
11639 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11640 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11641 || (element_precision (TREE_TYPE (arg1))
11642 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11643 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11644 {
11645 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11646 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11647 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11648 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11649 build_zero_cst (TREE_TYPE (arg0)));
11650 }
11651
11652 return NULL_TREE;
11653
11654 case UNORDERED_EXPR:
11655 case ORDERED_EXPR:
11656 case UNLT_EXPR:
11657 case UNLE_EXPR:
11658 case UNGT_EXPR:
11659 case UNGE_EXPR:
11660 case UNEQ_EXPR:
11661 case LTGT_EXPR:
11662 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11663 {
11664 tree targ0 = strip_float_extensions (arg0);
11665 tree targ1 = strip_float_extensions (arg1);
11666 tree newtype = TREE_TYPE (targ0);
11667
11668 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11669 newtype = TREE_TYPE (targ1);
11670
11671 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11672 return fold_build2_loc (loc, code, type,
11673 fold_convert_loc (loc, newtype, targ0),
11674 fold_convert_loc (loc, newtype, targ1));
11675 }
11676
11677 return NULL_TREE;
11678
11679 case COMPOUND_EXPR:
11680 /* When pedantic, a compound expression can be neither an lvalue
11681 nor an integer constant expression. */
11682 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11683 return NULL_TREE;
11684 /* Don't let (0, 0) be null pointer constant. */
11685 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11686 : fold_convert_loc (loc, type, arg1);
11687 return pedantic_non_lvalue_loc (loc, tem);
11688
11689 case ASSERT_EXPR:
11690 /* An ASSERT_EXPR should never be passed to fold_binary. */
11691 gcc_unreachable ();
11692
11693 default:
11694 return NULL_TREE;
11695 } /* switch (code) */
11696 }
11697
11698 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11699 ((A & N) + B) & M -> (A + B) & M
11700 Similarly if (N & M) == 0,
11701 ((A | N) + B) & M -> (A + B) & M
11702 and for - instead of + (or unary - instead of +)
11703 and/or ^ instead of |.
11704 If B is constant and (B & M) == 0, fold into A & M.
11705
11706 This function is a helper for match.pd patterns. Return non-NULL
11707 type in which the simplified operation should be performed only
11708 if any optimization is possible.
11709
11710 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11711 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11712 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11713 +/-. */
11714 tree
11715 fold_bit_and_mask (tree type, tree arg1, enum tree_code code,
11716 tree arg00, enum tree_code code00, tree arg000, tree arg001,
11717 tree arg01, enum tree_code code01, tree arg010, tree arg011,
11718 tree *pmop)
11719 {
11720 gcc_assert (TREE_CODE (arg1) == INTEGER_CST);
11721 gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR);
11722 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
11723 if (~cst1 == 0
11724 || (cst1 & (cst1 + 1)) != 0
11725 || !INTEGRAL_TYPE_P (type)
11726 || (!TYPE_OVERFLOW_WRAPS (type)
11727 && TREE_CODE (type) != INTEGER_TYPE)
11728 || (wi::max_value (type) & cst1) != cst1)
11729 return NULL_TREE;
11730
11731 enum tree_code codes[2] = { code00, code01 };
11732 tree arg0xx[4] = { arg000, arg001, arg010, arg011 };
11733 int which = 0;
11734 wide_int cst0;
11735
11736 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11737 arg1 (M) is == (1LL << cst) - 1.
11738 Store C into PMOP[0] and D into PMOP[1]. */
11739 pmop[0] = arg00;
11740 pmop[1] = arg01;
11741 which = code != NEGATE_EXPR;
11742
11743 for (; which >= 0; which--)
11744 switch (codes[which])
11745 {
11746 case BIT_AND_EXPR:
11747 case BIT_IOR_EXPR:
11748 case BIT_XOR_EXPR:
11749 gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST);
11750 cst0 = wi::to_wide (arg0xx[2 * which + 1]) & cst1;
11751 if (codes[which] == BIT_AND_EXPR)
11752 {
11753 if (cst0 != cst1)
11754 break;
11755 }
11756 else if (cst0 != 0)
11757 break;
11758 /* If C or D is of the form (A & N) where
11759 (N & M) == M, or of the form (A | N) or
11760 (A ^ N) where (N & M) == 0, replace it with A. */
11761 pmop[which] = arg0xx[2 * which];
11762 break;
11763 case ERROR_MARK:
11764 if (TREE_CODE (pmop[which]) != INTEGER_CST)
11765 break;
11766 /* If C or D is a N where (N & M) == 0, it can be
11767 omitted (replaced with 0). */
11768 if ((code == PLUS_EXPR
11769 || (code == MINUS_EXPR && which == 0))
11770 && (cst1 & wi::to_wide (pmop[which])) == 0)
11771 pmop[which] = build_int_cst (type, 0);
11772 /* Similarly, with C - N where (-N & M) == 0. */
11773 if (code == MINUS_EXPR
11774 && which == 1
11775 && (cst1 & -wi::to_wide (pmop[which])) == 0)
11776 pmop[which] = build_int_cst (type, 0);
11777 break;
11778 default:
11779 gcc_unreachable ();
11780 }
11781
11782 /* Only build anything new if we optimized one or both arguments above. */
11783 if (pmop[0] == arg00 && pmop[1] == arg01)
11784 return NULL_TREE;
11785
11786 if (TYPE_OVERFLOW_WRAPS (type))
11787 return type;
11788 else
11789 return unsigned_type_for (type);
11790 }
11791
11792 /* Used by contains_label_[p1]. */
11793
11794 struct contains_label_data
11795 {
11796 hash_set<tree> *pset;
11797 bool inside_switch_p;
11798 };
11799
11800 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11801 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11802 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11803
11804 static tree
11805 contains_label_1 (tree *tp, int *walk_subtrees, void *data)
11806 {
11807 contains_label_data *d = (contains_label_data *) data;
11808 switch (TREE_CODE (*tp))
11809 {
11810 case LABEL_EXPR:
11811 return *tp;
11812
11813 case CASE_LABEL_EXPR:
11814 if (!d->inside_switch_p)
11815 return *tp;
11816 return NULL_TREE;
11817
11818 case SWITCH_EXPR:
11819 if (!d->inside_switch_p)
11820 {
11821 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset))
11822 return *tp;
11823 d->inside_switch_p = true;
11824 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset))
11825 return *tp;
11826 d->inside_switch_p = false;
11827 *walk_subtrees = 0;
11828 }
11829 return NULL_TREE;
11830
11831 case GOTO_EXPR:
11832 *walk_subtrees = 0;
11833 return NULL_TREE;
11834
11835 default:
11836 return NULL_TREE;
11837 }
11838 }
11839
11840 /* Return whether the sub-tree ST contains a label which is accessible from
11841 outside the sub-tree. */
11842
11843 static bool
11844 contains_label_p (tree st)
11845 {
11846 hash_set<tree> pset;
11847 contains_label_data data = { &pset, false };
11848 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE;
11849 }
11850
11851 /* Fold a ternary expression of code CODE and type TYPE with operands
11852 OP0, OP1, and OP2. Return the folded expression if folding is
11853 successful. Otherwise, return NULL_TREE. */
11854
11855 tree
11856 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11857 tree op0, tree op1, tree op2)
11858 {
11859 tree tem;
11860 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11861 enum tree_code_class kind = TREE_CODE_CLASS (code);
11862
11863 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11864 && TREE_CODE_LENGTH (code) == 3);
11865
11866 /* If this is a commutative operation, and OP0 is a constant, move it
11867 to OP1 to reduce the number of tests below. */
11868 if (commutative_ternary_tree_code (code)
11869 && tree_swap_operands_p (op0, op1))
11870 return fold_build3_loc (loc, code, type, op1, op0, op2);
11871
11872 tem = generic_simplify (loc, code, type, op0, op1, op2);
11873 if (tem)
11874 return tem;
11875
11876 /* Strip any conversions that don't change the mode. This is safe
11877 for every expression, except for a comparison expression because
11878 its signedness is derived from its operands. So, in the latter
11879 case, only strip conversions that don't change the signedness.
11880
11881 Note that this is done as an internal manipulation within the
11882 constant folder, in order to find the simplest representation of
11883 the arguments so that their form can be studied. In any cases,
11884 the appropriate type conversions should be put back in the tree
11885 that will get out of the constant folder. */
11886 if (op0)
11887 {
11888 arg0 = op0;
11889 STRIP_NOPS (arg0);
11890 }
11891
11892 if (op1)
11893 {
11894 arg1 = op1;
11895 STRIP_NOPS (arg1);
11896 }
11897
11898 if (op2)
11899 {
11900 arg2 = op2;
11901 STRIP_NOPS (arg2);
11902 }
11903
11904 switch (code)
11905 {
11906 case COMPONENT_REF:
11907 if (TREE_CODE (arg0) == CONSTRUCTOR
11908 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11909 {
11910 unsigned HOST_WIDE_INT idx;
11911 tree field, value;
11912 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11913 if (field == arg1)
11914 return value;
11915 }
11916 return NULL_TREE;
11917
11918 case COND_EXPR:
11919 case VEC_COND_EXPR:
11920 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11921 so all simple results must be passed through pedantic_non_lvalue. */
11922 if (TREE_CODE (arg0) == INTEGER_CST)
11923 {
11924 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11925 tem = integer_zerop (arg0) ? op2 : op1;
11926 /* Only optimize constant conditions when the selected branch
11927 has the same type as the COND_EXPR. This avoids optimizing
11928 away "c ? x : throw", where the throw has a void type.
11929 Avoid throwing away that operand which contains label. */
11930 if ((!TREE_SIDE_EFFECTS (unused_op)
11931 || !contains_label_p (unused_op))
11932 && (! VOID_TYPE_P (TREE_TYPE (tem))
11933 || VOID_TYPE_P (type)))
11934 return pedantic_non_lvalue_loc (loc, tem);
11935 return NULL_TREE;
11936 }
11937 else if (TREE_CODE (arg0) == VECTOR_CST)
11938 {
11939 unsigned HOST_WIDE_INT nelts;
11940 if ((TREE_CODE (arg1) == VECTOR_CST
11941 || TREE_CODE (arg1) == CONSTRUCTOR)
11942 && (TREE_CODE (arg2) == VECTOR_CST
11943 || TREE_CODE (arg2) == CONSTRUCTOR)
11944 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
11945 {
11946 vec_perm_builder sel (nelts, nelts, 1);
11947 for (unsigned int i = 0; i < nelts; i++)
11948 {
11949 tree val = VECTOR_CST_ELT (arg0, i);
11950 if (integer_all_onesp (val))
11951 sel.quick_push (i);
11952 else if (integer_zerop (val))
11953 sel.quick_push (nelts + i);
11954 else /* Currently unreachable. */
11955 return NULL_TREE;
11956 }
11957 vec_perm_indices indices (sel, 2, nelts);
11958 tree t = fold_vec_perm (type, arg1, arg2, indices);
11959 if (t != NULL_TREE)
11960 return t;
11961 }
11962 }
11963
11964 /* If we have A op B ? A : C, we may be able to convert this to a
11965 simpler expression, depending on the operation and the values
11966 of B and C. Signed zeros prevent all of these transformations,
11967 for reasons given above each one.
11968
11969 Also try swapping the arguments and inverting the conditional. */
11970 if (COMPARISON_CLASS_P (arg0)
11971 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1)
11972 && !HONOR_SIGNED_ZEROS (element_mode (op1)))
11973 {
11974 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11975 if (tem)
11976 return tem;
11977 }
11978
11979 if (COMPARISON_CLASS_P (arg0)
11980 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11981 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11982 {
11983 location_t loc0 = expr_location_or (arg0, loc);
11984 tem = fold_invert_truthvalue (loc0, arg0);
11985 if (tem && COMPARISON_CLASS_P (tem))
11986 {
11987 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11988 if (tem)
11989 return tem;
11990 }
11991 }
11992
11993 /* If the second operand is simpler than the third, swap them
11994 since that produces better jump optimization results. */
11995 if (truth_value_p (TREE_CODE (arg0))
11996 && tree_swap_operands_p (op1, op2))
11997 {
11998 location_t loc0 = expr_location_or (arg0, loc);
11999 /* See if this can be inverted. If it can't, possibly because
12000 it was a floating-point inequality comparison, don't do
12001 anything. */
12002 tem = fold_invert_truthvalue (loc0, arg0);
12003 if (tem)
12004 return fold_build3_loc (loc, code, type, tem, op2, op1);
12005 }
12006
12007 /* Convert A ? 1 : 0 to simply A. */
12008 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
12009 : (integer_onep (op1)
12010 && !VECTOR_TYPE_P (type)))
12011 && integer_zerop (op2)
12012 /* If we try to convert OP0 to our type, the
12013 call to fold will try to move the conversion inside
12014 a COND, which will recurse. In that case, the COND_EXPR
12015 is probably the best choice, so leave it alone. */
12016 && type == TREE_TYPE (arg0))
12017 return pedantic_non_lvalue_loc (loc, arg0);
12018
12019 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12020 over COND_EXPR in cases such as floating point comparisons. */
12021 if (integer_zerop (op1)
12022 && code == COND_EXPR
12023 && integer_onep (op2)
12024 && !VECTOR_TYPE_P (type)
12025 && truth_value_p (TREE_CODE (arg0)))
12026 return pedantic_non_lvalue_loc (loc,
12027 fold_convert_loc (loc, type,
12028 invert_truthvalue_loc (loc,
12029 arg0)));
12030
12031 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12032 if (TREE_CODE (arg0) == LT_EXPR
12033 && integer_zerop (TREE_OPERAND (arg0, 1))
12034 && integer_zerop (op2)
12035 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12036 {
12037 /* sign_bit_p looks through both zero and sign extensions,
12038 but for this optimization only sign extensions are
12039 usable. */
12040 tree tem2 = TREE_OPERAND (arg0, 0);
12041 while (tem != tem2)
12042 {
12043 if (TREE_CODE (tem2) != NOP_EXPR
12044 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
12045 {
12046 tem = NULL_TREE;
12047 break;
12048 }
12049 tem2 = TREE_OPERAND (tem2, 0);
12050 }
12051 /* sign_bit_p only checks ARG1 bits within A's precision.
12052 If <sign bit of A> has wider type than A, bits outside
12053 of A's precision in <sign bit of A> need to be checked.
12054 If they are all 0, this optimization needs to be done
12055 in unsigned A's type, if they are all 1 in signed A's type,
12056 otherwise this can't be done. */
12057 if (tem
12058 && TYPE_PRECISION (TREE_TYPE (tem))
12059 < TYPE_PRECISION (TREE_TYPE (arg1))
12060 && TYPE_PRECISION (TREE_TYPE (tem))
12061 < TYPE_PRECISION (type))
12062 {
12063 int inner_width, outer_width;
12064 tree tem_type;
12065
12066 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
12067 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
12068 if (outer_width > TYPE_PRECISION (type))
12069 outer_width = TYPE_PRECISION (type);
12070
12071 wide_int mask = wi::shifted_mask
12072 (inner_width, outer_width - inner_width, false,
12073 TYPE_PRECISION (TREE_TYPE (arg1)));
12074
12075 wide_int common = mask & wi::to_wide (arg1);
12076 if (common == mask)
12077 {
12078 tem_type = signed_type_for (TREE_TYPE (tem));
12079 tem = fold_convert_loc (loc, tem_type, tem);
12080 }
12081 else if (common == 0)
12082 {
12083 tem_type = unsigned_type_for (TREE_TYPE (tem));
12084 tem = fold_convert_loc (loc, tem_type, tem);
12085 }
12086 else
12087 tem = NULL;
12088 }
12089
12090 if (tem)
12091 return
12092 fold_convert_loc (loc, type,
12093 fold_build2_loc (loc, BIT_AND_EXPR,
12094 TREE_TYPE (tem), tem,
12095 fold_convert_loc (loc,
12096 TREE_TYPE (tem),
12097 arg1)));
12098 }
12099
12100 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12101 already handled above. */
12102 if (TREE_CODE (arg0) == BIT_AND_EXPR
12103 && integer_onep (TREE_OPERAND (arg0, 1))
12104 && integer_zerop (op2)
12105 && integer_pow2p (arg1))
12106 {
12107 tree tem = TREE_OPERAND (arg0, 0);
12108 STRIP_NOPS (tem);
12109 if (TREE_CODE (tem) == RSHIFT_EXPR
12110 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
12111 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
12112 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
12113 return fold_build2_loc (loc, BIT_AND_EXPR, type,
12114 fold_convert_loc (loc, type,
12115 TREE_OPERAND (tem, 0)),
12116 op1);
12117 }
12118
12119 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12120 is probably obsolete because the first operand should be a
12121 truth value (that's why we have the two cases above), but let's
12122 leave it in until we can confirm this for all front-ends. */
12123 if (integer_zerop (op2)
12124 && TREE_CODE (arg0) == NE_EXPR
12125 && integer_zerop (TREE_OPERAND (arg0, 1))
12126 && integer_pow2p (arg1)
12127 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12128 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12129 arg1, OEP_ONLY_CONST)
12130 /* operand_equal_p compares just value, not precision, so e.g.
12131 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
12132 second operand 32-bit -128, which is not a power of two (or vice
12133 versa. */
12134 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)))
12135 return pedantic_non_lvalue_loc (loc,
12136 fold_convert_loc (loc, type,
12137 TREE_OPERAND (arg0,
12138 0)));
12139
12140 /* Disable the transformations below for vectors, since
12141 fold_binary_op_with_conditional_arg may undo them immediately,
12142 yielding an infinite loop. */
12143 if (code == VEC_COND_EXPR)
12144 return NULL_TREE;
12145
12146 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12147 if (integer_zerop (op2)
12148 && truth_value_p (TREE_CODE (arg0))
12149 && truth_value_p (TREE_CODE (arg1))
12150 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12151 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
12152 : TRUTH_ANDIF_EXPR,
12153 type, fold_convert_loc (loc, type, arg0), op1);
12154
12155 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12156 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
12157 && truth_value_p (TREE_CODE (arg0))
12158 && truth_value_p (TREE_CODE (arg1))
12159 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12160 {
12161 location_t loc0 = expr_location_or (arg0, loc);
12162 /* Only perform transformation if ARG0 is easily inverted. */
12163 tem = fold_invert_truthvalue (loc0, arg0);
12164 if (tem)
12165 return fold_build2_loc (loc, code == VEC_COND_EXPR
12166 ? BIT_IOR_EXPR
12167 : TRUTH_ORIF_EXPR,
12168 type, fold_convert_loc (loc, type, tem),
12169 op1);
12170 }
12171
12172 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
12173 if (integer_zerop (arg1)
12174 && truth_value_p (TREE_CODE (arg0))
12175 && truth_value_p (TREE_CODE (op2))
12176 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12177 {
12178 location_t loc0 = expr_location_or (arg0, loc);
12179 /* Only perform transformation if ARG0 is easily inverted. */
12180 tem = fold_invert_truthvalue (loc0, arg0);
12181 if (tem)
12182 return fold_build2_loc (loc, code == VEC_COND_EXPR
12183 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
12184 type, fold_convert_loc (loc, type, tem),
12185 op2);
12186 }
12187
12188 /* Convert A ? 1 : B into A || B if A and B are truth values. */
12189 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
12190 && truth_value_p (TREE_CODE (arg0))
12191 && truth_value_p (TREE_CODE (op2))
12192 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
12193 return fold_build2_loc (loc, code == VEC_COND_EXPR
12194 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
12195 type, fold_convert_loc (loc, type, arg0), op2);
12196
12197 return NULL_TREE;
12198
12199 case CALL_EXPR:
12200 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
12201 of fold_ternary on them. */
12202 gcc_unreachable ();
12203
12204 case BIT_FIELD_REF:
12205 if (TREE_CODE (arg0) == VECTOR_CST
12206 && (type == TREE_TYPE (TREE_TYPE (arg0))
12207 || (VECTOR_TYPE_P (type)
12208 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0))))
12209 && tree_fits_uhwi_p (op1)
12210 && tree_fits_uhwi_p (op2))
12211 {
12212 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
12213 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
12214 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
12215 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
12216
12217 if (n != 0
12218 && (idx % width) == 0
12219 && (n % width) == 0
12220 && known_le ((idx + n) / width,
12221 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))))
12222 {
12223 idx = idx / width;
12224 n = n / width;
12225
12226 if (TREE_CODE (arg0) == VECTOR_CST)
12227 {
12228 if (n == 1)
12229 {
12230 tem = VECTOR_CST_ELT (arg0, idx);
12231 if (VECTOR_TYPE_P (type))
12232 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem);
12233 return tem;
12234 }
12235
12236 tree_vector_builder vals (type, n, 1);
12237 for (unsigned i = 0; i < n; ++i)
12238 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
12239 return vals.build ();
12240 }
12241 }
12242 }
12243
12244 /* On constants we can use native encode/interpret to constant
12245 fold (nearly) all BIT_FIELD_REFs. */
12246 if (CONSTANT_CLASS_P (arg0)
12247 && can_native_interpret_type_p (type)
12248 && BITS_PER_UNIT == 8
12249 && tree_fits_uhwi_p (op1)
12250 && tree_fits_uhwi_p (op2))
12251 {
12252 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12253 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
12254 /* Limit us to a reasonable amount of work. To relax the
12255 other limitations we need bit-shifting of the buffer
12256 and rounding up the size. */
12257 if (bitpos % BITS_PER_UNIT == 0
12258 && bitsize % BITS_PER_UNIT == 0
12259 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
12260 {
12261 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
12262 unsigned HOST_WIDE_INT len
12263 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
12264 bitpos / BITS_PER_UNIT);
12265 if (len > 0
12266 && len * BITS_PER_UNIT >= bitsize)
12267 {
12268 tree v = native_interpret_expr (type, b,
12269 bitsize / BITS_PER_UNIT);
12270 if (v)
12271 return v;
12272 }
12273 }
12274 }
12275
12276 return NULL_TREE;
12277
12278 case VEC_PERM_EXPR:
12279 /* Perform constant folding of BIT_INSERT_EXPR. */
12280 if (TREE_CODE (arg2) == VECTOR_CST
12281 && TREE_CODE (op0) == VECTOR_CST
12282 && TREE_CODE (op1) == VECTOR_CST)
12283 {
12284 /* Build a vector of integers from the tree mask. */
12285 vec_perm_builder builder;
12286 if (!tree_to_vec_perm_builder (&builder, arg2))
12287 return NULL_TREE;
12288
12289 /* Create a vec_perm_indices for the integer vector. */
12290 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
12291 bool single_arg = (op0 == op1);
12292 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
12293 return fold_vec_perm (type, op0, op1, sel);
12294 }
12295 return NULL_TREE;
12296
12297 case BIT_INSERT_EXPR:
12298 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
12299 if (TREE_CODE (arg0) == INTEGER_CST
12300 && TREE_CODE (arg1) == INTEGER_CST)
12301 {
12302 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12303 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
12304 wide_int tem = (wi::to_wide (arg0)
12305 & wi::shifted_mask (bitpos, bitsize, true,
12306 TYPE_PRECISION (type)));
12307 wide_int tem2
12308 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
12309 bitsize), bitpos);
12310 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
12311 }
12312 else if (TREE_CODE (arg0) == VECTOR_CST
12313 && CONSTANT_CLASS_P (arg1)
12314 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
12315 TREE_TYPE (arg1)))
12316 {
12317 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
12318 unsigned HOST_WIDE_INT elsize
12319 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
12320 if (bitpos % elsize == 0)
12321 {
12322 unsigned k = bitpos / elsize;
12323 unsigned HOST_WIDE_INT nelts;
12324 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
12325 return arg0;
12326 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts))
12327 {
12328 tree_vector_builder elts (type, nelts, 1);
12329 elts.quick_grow (nelts);
12330 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i)
12331 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
12332 return elts.build ();
12333 }
12334 }
12335 }
12336 return NULL_TREE;
12337
12338 default:
12339 return NULL_TREE;
12340 } /* switch (code) */
12341 }
12342
12343 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
12344 of an array (or vector). *CTOR_IDX if non-NULL is updated with the
12345 constructor element index of the value returned. If the element is
12346 not found NULL_TREE is returned and *CTOR_IDX is updated to
12347 the index of the element after the ACCESS_INDEX position (which
12348 may be outside of the CTOR array). */
12349
12350 tree
12351 get_array_ctor_element_at_index (tree ctor, offset_int access_index,
12352 unsigned *ctor_idx)
12353 {
12354 tree index_type = NULL_TREE;
12355 signop index_sgn = UNSIGNED;
12356 offset_int low_bound = 0;
12357
12358 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
12359 {
12360 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
12361 if (domain_type && TYPE_MIN_VALUE (domain_type))
12362 {
12363 /* Static constructors for variably sized objects makes no sense. */
12364 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
12365 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
12366 /* ??? When it is obvious that the range is signed, treat it so. */
12367 if (TYPE_UNSIGNED (index_type)
12368 && TYPE_MAX_VALUE (domain_type)
12369 && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type),
12370 TYPE_MIN_VALUE (domain_type)))
12371 {
12372 index_sgn = SIGNED;
12373 low_bound
12374 = offset_int::from (wi::to_wide (TYPE_MIN_VALUE (domain_type)),
12375 SIGNED);
12376 }
12377 else
12378 {
12379 index_sgn = TYPE_SIGN (index_type);
12380 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
12381 }
12382 }
12383 }
12384
12385 if (index_type)
12386 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
12387 index_sgn);
12388
12389 offset_int index = low_bound;
12390 if (index_type)
12391 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
12392
12393 offset_int max_index = index;
12394 unsigned cnt;
12395 tree cfield, cval;
12396 bool first_p = true;
12397
12398 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
12399 {
12400 /* Array constructor might explicitly set index, or specify a range,
12401 or leave index NULL meaning that it is next index after previous
12402 one. */
12403 if (cfield)
12404 {
12405 if (TREE_CODE (cfield) == INTEGER_CST)
12406 max_index = index
12407 = offset_int::from (wi::to_wide (cfield), index_sgn);
12408 else
12409 {
12410 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
12411 index = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 0)),
12412 index_sgn);
12413 max_index
12414 = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 1)),
12415 index_sgn);
12416 gcc_checking_assert (wi::le_p (index, max_index, index_sgn));
12417 }
12418 }
12419 else if (!first_p)
12420 {
12421 index = max_index + 1;
12422 if (index_type)
12423 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
12424 gcc_checking_assert (wi::gt_p (index, max_index, index_sgn));
12425 max_index = index;
12426 }
12427 else
12428 first_p = false;
12429
12430 /* Do we have match? */
12431 if (wi::cmp (access_index, index, index_sgn) >= 0)
12432 {
12433 if (wi::cmp (access_index, max_index, index_sgn) <= 0)
12434 {
12435 if (ctor_idx)
12436 *ctor_idx = cnt;
12437 return cval;
12438 }
12439 }
12440 else if (in_gimple_form)
12441 /* We're past the element we search for. Note during parsing
12442 the elements might not be sorted.
12443 ??? We should use a binary search and a flag on the
12444 CONSTRUCTOR as to whether elements are sorted in declaration
12445 order. */
12446 break;
12447 }
12448 if (ctor_idx)
12449 *ctor_idx = cnt;
12450 return NULL_TREE;
12451 }
12452
12453 /* Perform constant folding and related simplification of EXPR.
12454 The related simplifications include x*1 => x, x*0 => 0, etc.,
12455 and application of the associative law.
12456 NOP_EXPR conversions may be removed freely (as long as we
12457 are careful not to change the type of the overall expression).
12458 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12459 but we can constant-fold them if they have constant operands. */
12460
12461 #ifdef ENABLE_FOLD_CHECKING
12462 # define fold(x) fold_1 (x)
12463 static tree fold_1 (tree);
12464 static
12465 #endif
12466 tree
12467 fold (tree expr)
12468 {
12469 const tree t = expr;
12470 enum tree_code code = TREE_CODE (t);
12471 enum tree_code_class kind = TREE_CODE_CLASS (code);
12472 tree tem;
12473 location_t loc = EXPR_LOCATION (expr);
12474
12475 /* Return right away if a constant. */
12476 if (kind == tcc_constant)
12477 return t;
12478
12479 /* CALL_EXPR-like objects with variable numbers of operands are
12480 treated specially. */
12481 if (kind == tcc_vl_exp)
12482 {
12483 if (code == CALL_EXPR)
12484 {
12485 tem = fold_call_expr (loc, expr, false);
12486 return tem ? tem : expr;
12487 }
12488 return expr;
12489 }
12490
12491 if (IS_EXPR_CODE_CLASS (kind))
12492 {
12493 tree type = TREE_TYPE (t);
12494 tree op0, op1, op2;
12495
12496 switch (TREE_CODE_LENGTH (code))
12497 {
12498 case 1:
12499 op0 = TREE_OPERAND (t, 0);
12500 tem = fold_unary_loc (loc, code, type, op0);
12501 return tem ? tem : expr;
12502 case 2:
12503 op0 = TREE_OPERAND (t, 0);
12504 op1 = TREE_OPERAND (t, 1);
12505 tem = fold_binary_loc (loc, code, type, op0, op1);
12506 return tem ? tem : expr;
12507 case 3:
12508 op0 = TREE_OPERAND (t, 0);
12509 op1 = TREE_OPERAND (t, 1);
12510 op2 = TREE_OPERAND (t, 2);
12511 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12512 return tem ? tem : expr;
12513 default:
12514 break;
12515 }
12516 }
12517
12518 switch (code)
12519 {
12520 case ARRAY_REF:
12521 {
12522 tree op0 = TREE_OPERAND (t, 0);
12523 tree op1 = TREE_OPERAND (t, 1);
12524
12525 if (TREE_CODE (op1) == INTEGER_CST
12526 && TREE_CODE (op0) == CONSTRUCTOR
12527 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12528 {
12529 tree val = get_array_ctor_element_at_index (op0,
12530 wi::to_offset (op1));
12531 if (val)
12532 return val;
12533 }
12534
12535 return t;
12536 }
12537
12538 /* Return a VECTOR_CST if possible. */
12539 case CONSTRUCTOR:
12540 {
12541 tree type = TREE_TYPE (t);
12542 if (TREE_CODE (type) != VECTOR_TYPE)
12543 return t;
12544
12545 unsigned i;
12546 tree val;
12547 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
12548 if (! CONSTANT_CLASS_P (val))
12549 return t;
12550
12551 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
12552 }
12553
12554 case CONST_DECL:
12555 return fold (DECL_INITIAL (t));
12556
12557 default:
12558 return t;
12559 } /* switch (code) */
12560 }
12561
12562 #ifdef ENABLE_FOLD_CHECKING
12563 #undef fold
12564
12565 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12566 hash_table<nofree_ptr_hash<const tree_node> > *);
12567 static void fold_check_failed (const_tree, const_tree);
12568 void print_fold_checksum (const_tree);
12569
12570 /* When --enable-checking=fold, compute a digest of expr before
12571 and after actual fold call to see if fold did not accidentally
12572 change original expr. */
12573
12574 tree
12575 fold (tree expr)
12576 {
12577 tree ret;
12578 struct md5_ctx ctx;
12579 unsigned char checksum_before[16], checksum_after[16];
12580 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12581
12582 md5_init_ctx (&ctx);
12583 fold_checksum_tree (expr, &ctx, &ht);
12584 md5_finish_ctx (&ctx, checksum_before);
12585 ht.empty ();
12586
12587 ret = fold_1 (expr);
12588
12589 md5_init_ctx (&ctx);
12590 fold_checksum_tree (expr, &ctx, &ht);
12591 md5_finish_ctx (&ctx, checksum_after);
12592
12593 if (memcmp (checksum_before, checksum_after, 16))
12594 fold_check_failed (expr, ret);
12595
12596 return ret;
12597 }
12598
12599 void
12600 print_fold_checksum (const_tree expr)
12601 {
12602 struct md5_ctx ctx;
12603 unsigned char checksum[16], cnt;
12604 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12605
12606 md5_init_ctx (&ctx);
12607 fold_checksum_tree (expr, &ctx, &ht);
12608 md5_finish_ctx (&ctx, checksum);
12609 for (cnt = 0; cnt < 16; ++cnt)
12610 fprintf (stderr, "%02x", checksum[cnt]);
12611 putc ('\n', stderr);
12612 }
12613
12614 static void
12615 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12616 {
12617 internal_error ("fold check: original tree changed by fold");
12618 }
12619
12620 static void
12621 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12622 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12623 {
12624 const tree_node **slot;
12625 enum tree_code code;
12626 union tree_node *buf;
12627 int i, len;
12628
12629 recursive_label:
12630 if (expr == NULL)
12631 return;
12632 slot = ht->find_slot (expr, INSERT);
12633 if (*slot != NULL)
12634 return;
12635 *slot = expr;
12636 code = TREE_CODE (expr);
12637 if (TREE_CODE_CLASS (code) == tcc_declaration
12638 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12639 {
12640 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12641 size_t sz = tree_size (expr);
12642 buf = XALLOCAVAR (union tree_node, sz);
12643 memcpy ((char *) buf, expr, sz);
12644 SET_DECL_ASSEMBLER_NAME ((tree) buf, NULL);
12645 buf->decl_with_vis.symtab_node = NULL;
12646 buf->base.nowarning_flag = 0;
12647 expr = (tree) buf;
12648 }
12649 else if (TREE_CODE_CLASS (code) == tcc_type
12650 && (TYPE_POINTER_TO (expr)
12651 || TYPE_REFERENCE_TO (expr)
12652 || TYPE_CACHED_VALUES_P (expr)
12653 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12654 || TYPE_NEXT_VARIANT (expr)
12655 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12656 {
12657 /* Allow these fields to be modified. */
12658 tree tmp;
12659 size_t sz = tree_size (expr);
12660 buf = XALLOCAVAR (union tree_node, sz);
12661 memcpy ((char *) buf, expr, sz);
12662 expr = tmp = (tree) buf;
12663 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12664 TYPE_POINTER_TO (tmp) = NULL;
12665 TYPE_REFERENCE_TO (tmp) = NULL;
12666 TYPE_NEXT_VARIANT (tmp) = NULL;
12667 TYPE_ALIAS_SET (tmp) = -1;
12668 if (TYPE_CACHED_VALUES_P (tmp))
12669 {
12670 TYPE_CACHED_VALUES_P (tmp) = 0;
12671 TYPE_CACHED_VALUES (tmp) = NULL;
12672 }
12673 }
12674 else if (TREE_NO_WARNING (expr) && (DECL_P (expr) || EXPR_P (expr)))
12675 {
12676 /* Allow TREE_NO_WARNING to be set. Perhaps we shouldn't allow that
12677 and change builtins.c etc. instead - see PR89543. */
12678 size_t sz = tree_size (expr);
12679 buf = XALLOCAVAR (union tree_node, sz);
12680 memcpy ((char *) buf, expr, sz);
12681 buf->base.nowarning_flag = 0;
12682 expr = (tree) buf;
12683 }
12684 md5_process_bytes (expr, tree_size (expr), ctx);
12685 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12686 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12687 if (TREE_CODE_CLASS (code) != tcc_type
12688 && TREE_CODE_CLASS (code) != tcc_declaration
12689 && code != TREE_LIST
12690 && code != SSA_NAME
12691 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12692 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12693 switch (TREE_CODE_CLASS (code))
12694 {
12695 case tcc_constant:
12696 switch (code)
12697 {
12698 case STRING_CST:
12699 md5_process_bytes (TREE_STRING_POINTER (expr),
12700 TREE_STRING_LENGTH (expr), ctx);
12701 break;
12702 case COMPLEX_CST:
12703 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12704 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12705 break;
12706 case VECTOR_CST:
12707 len = vector_cst_encoded_nelts (expr);
12708 for (i = 0; i < len; ++i)
12709 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht);
12710 break;
12711 default:
12712 break;
12713 }
12714 break;
12715 case tcc_exceptional:
12716 switch (code)
12717 {
12718 case TREE_LIST:
12719 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12720 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12721 expr = TREE_CHAIN (expr);
12722 goto recursive_label;
12723 break;
12724 case TREE_VEC:
12725 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12726 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12727 break;
12728 default:
12729 break;
12730 }
12731 break;
12732 case tcc_expression:
12733 case tcc_reference:
12734 case tcc_comparison:
12735 case tcc_unary:
12736 case tcc_binary:
12737 case tcc_statement:
12738 case tcc_vl_exp:
12739 len = TREE_OPERAND_LENGTH (expr);
12740 for (i = 0; i < len; ++i)
12741 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12742 break;
12743 case tcc_declaration:
12744 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12745 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12746 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12747 {
12748 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12749 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12750 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12751 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12752 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12753 }
12754
12755 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12756 {
12757 if (TREE_CODE (expr) == FUNCTION_DECL)
12758 {
12759 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12760 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12761 }
12762 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12763 }
12764 break;
12765 case tcc_type:
12766 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12767 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12768 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12769 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12770 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12771 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12772 if (INTEGRAL_TYPE_P (expr)
12773 || SCALAR_FLOAT_TYPE_P (expr))
12774 {
12775 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12776 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12777 }
12778 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12779 if (TREE_CODE (expr) == RECORD_TYPE
12780 || TREE_CODE (expr) == UNION_TYPE
12781 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12782 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12783 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12784 break;
12785 default:
12786 break;
12787 }
12788 }
12789
12790 /* Helper function for outputting the checksum of a tree T. When
12791 debugging with gdb, you can "define mynext" to be "next" followed
12792 by "call debug_fold_checksum (op0)", then just trace down till the
12793 outputs differ. */
12794
12795 DEBUG_FUNCTION void
12796 debug_fold_checksum (const_tree t)
12797 {
12798 int i;
12799 unsigned char checksum[16];
12800 struct md5_ctx ctx;
12801 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12802
12803 md5_init_ctx (&ctx);
12804 fold_checksum_tree (t, &ctx, &ht);
12805 md5_finish_ctx (&ctx, checksum);
12806 ht.empty ();
12807
12808 for (i = 0; i < 16; i++)
12809 fprintf (stderr, "%d ", checksum[i]);
12810
12811 fprintf (stderr, "\n");
12812 }
12813
12814 #endif
12815
12816 /* Fold a unary tree expression with code CODE of type TYPE with an
12817 operand OP0. LOC is the location of the resulting expression.
12818 Return a folded expression if successful. Otherwise, return a tree
12819 expression with code CODE of type TYPE with an operand OP0. */
12820
12821 tree
12822 fold_build1_loc (location_t loc,
12823 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12824 {
12825 tree tem;
12826 #ifdef ENABLE_FOLD_CHECKING
12827 unsigned char checksum_before[16], checksum_after[16];
12828 struct md5_ctx ctx;
12829 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12830
12831 md5_init_ctx (&ctx);
12832 fold_checksum_tree (op0, &ctx, &ht);
12833 md5_finish_ctx (&ctx, checksum_before);
12834 ht.empty ();
12835 #endif
12836
12837 tem = fold_unary_loc (loc, code, type, op0);
12838 if (!tem)
12839 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12840
12841 #ifdef ENABLE_FOLD_CHECKING
12842 md5_init_ctx (&ctx);
12843 fold_checksum_tree (op0, &ctx, &ht);
12844 md5_finish_ctx (&ctx, checksum_after);
12845
12846 if (memcmp (checksum_before, checksum_after, 16))
12847 fold_check_failed (op0, tem);
12848 #endif
12849 return tem;
12850 }
12851
12852 /* Fold a binary tree expression with code CODE of type TYPE with
12853 operands OP0 and OP1. LOC is the location of the resulting
12854 expression. Return a folded expression if successful. Otherwise,
12855 return a tree expression with code CODE of type TYPE with operands
12856 OP0 and OP1. */
12857
12858 tree
12859 fold_build2_loc (location_t loc,
12860 enum tree_code code, tree type, tree op0, tree op1
12861 MEM_STAT_DECL)
12862 {
12863 tree tem;
12864 #ifdef ENABLE_FOLD_CHECKING
12865 unsigned char checksum_before_op0[16],
12866 checksum_before_op1[16],
12867 checksum_after_op0[16],
12868 checksum_after_op1[16];
12869 struct md5_ctx ctx;
12870 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12871
12872 md5_init_ctx (&ctx);
12873 fold_checksum_tree (op0, &ctx, &ht);
12874 md5_finish_ctx (&ctx, checksum_before_op0);
12875 ht.empty ();
12876
12877 md5_init_ctx (&ctx);
12878 fold_checksum_tree (op1, &ctx, &ht);
12879 md5_finish_ctx (&ctx, checksum_before_op1);
12880 ht.empty ();
12881 #endif
12882
12883 tem = fold_binary_loc (loc, code, type, op0, op1);
12884 if (!tem)
12885 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12886
12887 #ifdef ENABLE_FOLD_CHECKING
12888 md5_init_ctx (&ctx);
12889 fold_checksum_tree (op0, &ctx, &ht);
12890 md5_finish_ctx (&ctx, checksum_after_op0);
12891 ht.empty ();
12892
12893 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12894 fold_check_failed (op0, tem);
12895
12896 md5_init_ctx (&ctx);
12897 fold_checksum_tree (op1, &ctx, &ht);
12898 md5_finish_ctx (&ctx, checksum_after_op1);
12899
12900 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12901 fold_check_failed (op1, tem);
12902 #endif
12903 return tem;
12904 }
12905
12906 /* Fold a ternary tree expression with code CODE of type TYPE with
12907 operands OP0, OP1, and OP2. Return a folded expression if
12908 successful. Otherwise, return a tree expression with code CODE of
12909 type TYPE with operands OP0, OP1, and OP2. */
12910
12911 tree
12912 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12913 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12914 {
12915 tree tem;
12916 #ifdef ENABLE_FOLD_CHECKING
12917 unsigned char checksum_before_op0[16],
12918 checksum_before_op1[16],
12919 checksum_before_op2[16],
12920 checksum_after_op0[16],
12921 checksum_after_op1[16],
12922 checksum_after_op2[16];
12923 struct md5_ctx ctx;
12924 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12925
12926 md5_init_ctx (&ctx);
12927 fold_checksum_tree (op0, &ctx, &ht);
12928 md5_finish_ctx (&ctx, checksum_before_op0);
12929 ht.empty ();
12930
12931 md5_init_ctx (&ctx);
12932 fold_checksum_tree (op1, &ctx, &ht);
12933 md5_finish_ctx (&ctx, checksum_before_op1);
12934 ht.empty ();
12935
12936 md5_init_ctx (&ctx);
12937 fold_checksum_tree (op2, &ctx, &ht);
12938 md5_finish_ctx (&ctx, checksum_before_op2);
12939 ht.empty ();
12940 #endif
12941
12942 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12943 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12944 if (!tem)
12945 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12946
12947 #ifdef ENABLE_FOLD_CHECKING
12948 md5_init_ctx (&ctx);
12949 fold_checksum_tree (op0, &ctx, &ht);
12950 md5_finish_ctx (&ctx, checksum_after_op0);
12951 ht.empty ();
12952
12953 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12954 fold_check_failed (op0, tem);
12955
12956 md5_init_ctx (&ctx);
12957 fold_checksum_tree (op1, &ctx, &ht);
12958 md5_finish_ctx (&ctx, checksum_after_op1);
12959 ht.empty ();
12960
12961 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12962 fold_check_failed (op1, tem);
12963
12964 md5_init_ctx (&ctx);
12965 fold_checksum_tree (op2, &ctx, &ht);
12966 md5_finish_ctx (&ctx, checksum_after_op2);
12967
12968 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12969 fold_check_failed (op2, tem);
12970 #endif
12971 return tem;
12972 }
12973
12974 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12975 arguments in ARGARRAY, and a null static chain.
12976 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12977 of type TYPE from the given operands as constructed by build_call_array. */
12978
12979 tree
12980 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12981 int nargs, tree *argarray)
12982 {
12983 tree tem;
12984 #ifdef ENABLE_FOLD_CHECKING
12985 unsigned char checksum_before_fn[16],
12986 checksum_before_arglist[16],
12987 checksum_after_fn[16],
12988 checksum_after_arglist[16];
12989 struct md5_ctx ctx;
12990 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12991 int i;
12992
12993 md5_init_ctx (&ctx);
12994 fold_checksum_tree (fn, &ctx, &ht);
12995 md5_finish_ctx (&ctx, checksum_before_fn);
12996 ht.empty ();
12997
12998 md5_init_ctx (&ctx);
12999 for (i = 0; i < nargs; i++)
13000 fold_checksum_tree (argarray[i], &ctx, &ht);
13001 md5_finish_ctx (&ctx, checksum_before_arglist);
13002 ht.empty ();
13003 #endif
13004
13005 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
13006 if (!tem)
13007 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
13008
13009 #ifdef ENABLE_FOLD_CHECKING
13010 md5_init_ctx (&ctx);
13011 fold_checksum_tree (fn, &ctx, &ht);
13012 md5_finish_ctx (&ctx, checksum_after_fn);
13013 ht.empty ();
13014
13015 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13016 fold_check_failed (fn, tem);
13017
13018 md5_init_ctx (&ctx);
13019 for (i = 0; i < nargs; i++)
13020 fold_checksum_tree (argarray[i], &ctx, &ht);
13021 md5_finish_ctx (&ctx, checksum_after_arglist);
13022
13023 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13024 fold_check_failed (NULL_TREE, tem);
13025 #endif
13026 return tem;
13027 }
13028
13029 /* Perform constant folding and related simplification of initializer
13030 expression EXPR. These behave identically to "fold_buildN" but ignore
13031 potential run-time traps and exceptions that fold must preserve. */
13032
13033 #define START_FOLD_INIT \
13034 int saved_signaling_nans = flag_signaling_nans;\
13035 int saved_trapping_math = flag_trapping_math;\
13036 int saved_rounding_math = flag_rounding_math;\
13037 int saved_trapv = flag_trapv;\
13038 int saved_folding_initializer = folding_initializer;\
13039 flag_signaling_nans = 0;\
13040 flag_trapping_math = 0;\
13041 flag_rounding_math = 0;\
13042 flag_trapv = 0;\
13043 folding_initializer = 1;
13044
13045 #define END_FOLD_INIT \
13046 flag_signaling_nans = saved_signaling_nans;\
13047 flag_trapping_math = saved_trapping_math;\
13048 flag_rounding_math = saved_rounding_math;\
13049 flag_trapv = saved_trapv;\
13050 folding_initializer = saved_folding_initializer;
13051
13052 tree
13053 fold_build1_initializer_loc (location_t loc, enum tree_code code,
13054 tree type, tree op)
13055 {
13056 tree result;
13057 START_FOLD_INIT;
13058
13059 result = fold_build1_loc (loc, code, type, op);
13060
13061 END_FOLD_INIT;
13062 return result;
13063 }
13064
13065 tree
13066 fold_build2_initializer_loc (location_t loc, enum tree_code code,
13067 tree type, tree op0, tree op1)
13068 {
13069 tree result;
13070 START_FOLD_INIT;
13071
13072 result = fold_build2_loc (loc, code, type, op0, op1);
13073
13074 END_FOLD_INIT;
13075 return result;
13076 }
13077
13078 tree
13079 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
13080 int nargs, tree *argarray)
13081 {
13082 tree result;
13083 START_FOLD_INIT;
13084
13085 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
13086
13087 END_FOLD_INIT;
13088 return result;
13089 }
13090
13091 #undef START_FOLD_INIT
13092 #undef END_FOLD_INIT
13093
13094 /* Determine if first argument is a multiple of second argument. Return 0 if
13095 it is not, or we cannot easily determined it to be.
13096
13097 An example of the sort of thing we care about (at this point; this routine
13098 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13099 fold cases do now) is discovering that
13100
13101 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13102
13103 is a multiple of
13104
13105 SAVE_EXPR (J * 8)
13106
13107 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13108
13109 This code also handles discovering that
13110
13111 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13112
13113 is a multiple of 8 so we don't have to worry about dealing with a
13114 possible remainder.
13115
13116 Note that we *look* inside a SAVE_EXPR only to determine how it was
13117 calculated; it is not safe for fold to do much of anything else with the
13118 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13119 at run time. For example, the latter example above *cannot* be implemented
13120 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13121 evaluation time of the original SAVE_EXPR is not necessarily the same at
13122 the time the new expression is evaluated. The only optimization of this
13123 sort that would be valid is changing
13124
13125 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13126
13127 divided by 8 to
13128
13129 SAVE_EXPR (I) * SAVE_EXPR (J)
13130
13131 (where the same SAVE_EXPR (J) is used in the original and the
13132 transformed version). */
13133
13134 int
13135 multiple_of_p (tree type, const_tree top, const_tree bottom)
13136 {
13137 gimple *stmt;
13138 tree t1, op1, op2;
13139
13140 if (operand_equal_p (top, bottom, 0))
13141 return 1;
13142
13143 if (TREE_CODE (type) != INTEGER_TYPE)
13144 return 0;
13145
13146 switch (TREE_CODE (top))
13147 {
13148 case BIT_AND_EXPR:
13149 /* Bitwise and provides a power of two multiple. If the mask is
13150 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13151 if (!integer_pow2p (bottom))
13152 return 0;
13153 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13154 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13155
13156 case MULT_EXPR:
13157 if (TREE_CODE (bottom) == INTEGER_CST)
13158 {
13159 op1 = TREE_OPERAND (top, 0);
13160 op2 = TREE_OPERAND (top, 1);
13161 if (TREE_CODE (op1) == INTEGER_CST)
13162 std::swap (op1, op2);
13163 if (TREE_CODE (op2) == INTEGER_CST)
13164 {
13165 if (multiple_of_p (type, op2, bottom))
13166 return 1;
13167 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
13168 if (multiple_of_p (type, bottom, op2))
13169 {
13170 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom),
13171 wi::to_widest (op2));
13172 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom)))
13173 {
13174 op2 = wide_int_to_tree (TREE_TYPE (bottom), w);
13175 return multiple_of_p (type, op1, op2);
13176 }
13177 }
13178 return multiple_of_p (type, op1, bottom);
13179 }
13180 }
13181 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13182 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13183
13184 case MINUS_EXPR:
13185 /* It is impossible to prove if op0 - op1 is multiple of bottom
13186 precisely, so be conservative here checking if both op0 and op1
13187 are multiple of bottom. Note we check the second operand first
13188 since it's usually simpler. */
13189 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13190 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13191
13192 case PLUS_EXPR:
13193 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
13194 as op0 - 3 if the expression has unsigned type. For example,
13195 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
13196 op1 = TREE_OPERAND (top, 1);
13197 if (TYPE_UNSIGNED (type)
13198 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
13199 op1 = fold_build1 (NEGATE_EXPR, type, op1);
13200 return (multiple_of_p (type, op1, bottom)
13201 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
13202
13203 case LSHIFT_EXPR:
13204 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13205 {
13206 op1 = TREE_OPERAND (top, 1);
13207 /* const_binop may not detect overflow correctly,
13208 so check for it explicitly here. */
13209 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
13210 wi::to_wide (op1))
13211 && (t1 = fold_convert (type,
13212 const_binop (LSHIFT_EXPR, size_one_node,
13213 op1))) != 0
13214 && !TREE_OVERFLOW (t1))
13215 return multiple_of_p (type, t1, bottom);
13216 }
13217 return 0;
13218
13219 case NOP_EXPR:
13220 /* Can't handle conversions from non-integral or wider integral type. */
13221 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13222 || (TYPE_PRECISION (type)
13223 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13224 return 0;
13225
13226 /* fall through */
13227
13228 case SAVE_EXPR:
13229 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13230
13231 case COND_EXPR:
13232 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
13233 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
13234
13235 case INTEGER_CST:
13236 if (TREE_CODE (bottom) != INTEGER_CST
13237 || integer_zerop (bottom)
13238 || (TYPE_UNSIGNED (type)
13239 && (tree_int_cst_sgn (top) < 0
13240 || tree_int_cst_sgn (bottom) < 0)))
13241 return 0;
13242 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
13243 SIGNED);
13244
13245 case SSA_NAME:
13246 if (TREE_CODE (bottom) == INTEGER_CST
13247 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
13248 && gimple_code (stmt) == GIMPLE_ASSIGN)
13249 {
13250 enum tree_code code = gimple_assign_rhs_code (stmt);
13251
13252 /* Check for special cases to see if top is defined as multiple
13253 of bottom:
13254
13255 top = (X & ~(bottom - 1) ; bottom is power of 2
13256
13257 or
13258
13259 Y = X % bottom
13260 top = X - Y. */
13261 if (code == BIT_AND_EXPR
13262 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
13263 && TREE_CODE (op2) == INTEGER_CST
13264 && integer_pow2p (bottom)
13265 && wi::multiple_of_p (wi::to_widest (op2),
13266 wi::to_widest (bottom), UNSIGNED))
13267 return 1;
13268
13269 op1 = gimple_assign_rhs1 (stmt);
13270 if (code == MINUS_EXPR
13271 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
13272 && TREE_CODE (op2) == SSA_NAME
13273 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
13274 && gimple_code (stmt) == GIMPLE_ASSIGN
13275 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
13276 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
13277 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
13278 return 1;
13279 }
13280
13281 /* fall through */
13282
13283 default:
13284 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom))
13285 return multiple_p (wi::to_poly_widest (top),
13286 wi::to_poly_widest (bottom));
13287
13288 return 0;
13289 }
13290 }
13291
13292 #define tree_expr_nonnegative_warnv_p(X, Y) \
13293 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13294
13295 #define RECURSE(X) \
13296 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
13297
13298 /* Return true if CODE or TYPE is known to be non-negative. */
13299
13300 static bool
13301 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
13302 {
13303 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
13304 && truth_value_p (code))
13305 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
13306 have a signed:1 type (where the value is -1 and 0). */
13307 return true;
13308 return false;
13309 }
13310
13311 /* Return true if (CODE OP0) is known to be non-negative. If the return
13312 value is based on the assumption that signed overflow is undefined,
13313 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13314 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13315
13316 bool
13317 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13318 bool *strict_overflow_p, int depth)
13319 {
13320 if (TYPE_UNSIGNED (type))
13321 return true;
13322
13323 switch (code)
13324 {
13325 case ABS_EXPR:
13326 /* We can't return 1 if flag_wrapv is set because
13327 ABS_EXPR<INT_MIN> = INT_MIN. */
13328 if (!ANY_INTEGRAL_TYPE_P (type))
13329 return true;
13330 if (TYPE_OVERFLOW_UNDEFINED (type))
13331 {
13332 *strict_overflow_p = true;
13333 return true;
13334 }
13335 break;
13336
13337 case NON_LVALUE_EXPR:
13338 case FLOAT_EXPR:
13339 case FIX_TRUNC_EXPR:
13340 return RECURSE (op0);
13341
13342 CASE_CONVERT:
13343 {
13344 tree inner_type = TREE_TYPE (op0);
13345 tree outer_type = type;
13346
13347 if (TREE_CODE (outer_type) == REAL_TYPE)
13348 {
13349 if (TREE_CODE (inner_type) == REAL_TYPE)
13350 return RECURSE (op0);
13351 if (INTEGRAL_TYPE_P (inner_type))
13352 {
13353 if (TYPE_UNSIGNED (inner_type))
13354 return true;
13355 return RECURSE (op0);
13356 }
13357 }
13358 else if (INTEGRAL_TYPE_P (outer_type))
13359 {
13360 if (TREE_CODE (inner_type) == REAL_TYPE)
13361 return RECURSE (op0);
13362 if (INTEGRAL_TYPE_P (inner_type))
13363 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
13364 && TYPE_UNSIGNED (inner_type);
13365 }
13366 }
13367 break;
13368
13369 default:
13370 return tree_simple_nonnegative_warnv_p (code, type);
13371 }
13372
13373 /* We don't know sign of `t', so be conservative and return false. */
13374 return false;
13375 }
13376
13377 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
13378 value is based on the assumption that signed overflow is undefined,
13379 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13380 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13381
13382 bool
13383 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
13384 tree op1, bool *strict_overflow_p,
13385 int depth)
13386 {
13387 if (TYPE_UNSIGNED (type))
13388 return true;
13389
13390 switch (code)
13391 {
13392 case POINTER_PLUS_EXPR:
13393 case PLUS_EXPR:
13394 if (FLOAT_TYPE_P (type))
13395 return RECURSE (op0) && RECURSE (op1);
13396
13397 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13398 both unsigned and at least 2 bits shorter than the result. */
13399 if (TREE_CODE (type) == INTEGER_TYPE
13400 && TREE_CODE (op0) == NOP_EXPR
13401 && TREE_CODE (op1) == NOP_EXPR)
13402 {
13403 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
13404 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
13405 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13406 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13407 {
13408 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13409 TYPE_PRECISION (inner2)) + 1;
13410 return prec < TYPE_PRECISION (type);
13411 }
13412 }
13413 break;
13414
13415 case MULT_EXPR:
13416 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
13417 {
13418 /* x * x is always non-negative for floating point x
13419 or without overflow. */
13420 if (operand_equal_p (op0, op1, 0)
13421 || (RECURSE (op0) && RECURSE (op1)))
13422 {
13423 if (ANY_INTEGRAL_TYPE_P (type)
13424 && TYPE_OVERFLOW_UNDEFINED (type))
13425 *strict_overflow_p = true;
13426 return true;
13427 }
13428 }
13429
13430 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13431 both unsigned and their total bits is shorter than the result. */
13432 if (TREE_CODE (type) == INTEGER_TYPE
13433 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
13434 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
13435 {
13436 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
13437 ? TREE_TYPE (TREE_OPERAND (op0, 0))
13438 : TREE_TYPE (op0);
13439 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
13440 ? TREE_TYPE (TREE_OPERAND (op1, 0))
13441 : TREE_TYPE (op1);
13442
13443 bool unsigned0 = TYPE_UNSIGNED (inner0);
13444 bool unsigned1 = TYPE_UNSIGNED (inner1);
13445
13446 if (TREE_CODE (op0) == INTEGER_CST)
13447 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
13448
13449 if (TREE_CODE (op1) == INTEGER_CST)
13450 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
13451
13452 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
13453 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
13454 {
13455 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
13456 ? tree_int_cst_min_precision (op0, UNSIGNED)
13457 : TYPE_PRECISION (inner0);
13458
13459 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
13460 ? tree_int_cst_min_precision (op1, UNSIGNED)
13461 : TYPE_PRECISION (inner1);
13462
13463 return precision0 + precision1 < TYPE_PRECISION (type);
13464 }
13465 }
13466 return false;
13467
13468 case BIT_AND_EXPR:
13469 case MAX_EXPR:
13470 return RECURSE (op0) || RECURSE (op1);
13471
13472 case BIT_IOR_EXPR:
13473 case BIT_XOR_EXPR:
13474 case MIN_EXPR:
13475 case RDIV_EXPR:
13476 case TRUNC_DIV_EXPR:
13477 case CEIL_DIV_EXPR:
13478 case FLOOR_DIV_EXPR:
13479 case ROUND_DIV_EXPR:
13480 return RECURSE (op0) && RECURSE (op1);
13481
13482 case TRUNC_MOD_EXPR:
13483 return RECURSE (op0);
13484
13485 case FLOOR_MOD_EXPR:
13486 return RECURSE (op1);
13487
13488 case CEIL_MOD_EXPR:
13489 case ROUND_MOD_EXPR:
13490 default:
13491 return tree_simple_nonnegative_warnv_p (code, type);
13492 }
13493
13494 /* We don't know sign of `t', so be conservative and return false. */
13495 return false;
13496 }
13497
13498 /* Return true if T is known to be non-negative. If the return
13499 value is based on the assumption that signed overflow is undefined,
13500 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13501 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13502
13503 bool
13504 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13505 {
13506 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13507 return true;
13508
13509 switch (TREE_CODE (t))
13510 {
13511 case INTEGER_CST:
13512 return tree_int_cst_sgn (t) >= 0;
13513
13514 case REAL_CST:
13515 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13516
13517 case FIXED_CST:
13518 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13519
13520 case COND_EXPR:
13521 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13522
13523 case SSA_NAME:
13524 /* Limit the depth of recursion to avoid quadratic behavior.
13525 This is expected to catch almost all occurrences in practice.
13526 If this code misses important cases that unbounded recursion
13527 would not, passes that need this information could be revised
13528 to provide it through dataflow propagation. */
13529 return (!name_registered_for_update_p (t)
13530 && depth < param_max_ssa_name_query_depth
13531 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
13532 strict_overflow_p, depth));
13533
13534 default:
13535 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13536 }
13537 }
13538
13539 /* Return true if T is known to be non-negative. If the return
13540 value is based on the assumption that signed overflow is undefined,
13541 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13542 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13543
13544 bool
13545 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
13546 bool *strict_overflow_p, int depth)
13547 {
13548 switch (fn)
13549 {
13550 CASE_CFN_ACOS:
13551 CASE_CFN_ACOSH:
13552 CASE_CFN_CABS:
13553 CASE_CFN_COSH:
13554 CASE_CFN_ERFC:
13555 CASE_CFN_EXP:
13556 CASE_CFN_EXP10:
13557 CASE_CFN_EXP2:
13558 CASE_CFN_FABS:
13559 CASE_CFN_FDIM:
13560 CASE_CFN_HYPOT:
13561 CASE_CFN_POW10:
13562 CASE_CFN_FFS:
13563 CASE_CFN_PARITY:
13564 CASE_CFN_POPCOUNT:
13565 CASE_CFN_CLZ:
13566 CASE_CFN_CLRSB:
13567 case CFN_BUILT_IN_BSWAP32:
13568 case CFN_BUILT_IN_BSWAP64:
13569 /* Always true. */
13570 return true;
13571
13572 CASE_CFN_SQRT:
13573 CASE_CFN_SQRT_FN:
13574 /* sqrt(-0.0) is -0.0. */
13575 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13576 return true;
13577 return RECURSE (arg0);
13578
13579 CASE_CFN_ASINH:
13580 CASE_CFN_ATAN:
13581 CASE_CFN_ATANH:
13582 CASE_CFN_CBRT:
13583 CASE_CFN_CEIL:
13584 CASE_CFN_CEIL_FN:
13585 CASE_CFN_ERF:
13586 CASE_CFN_EXPM1:
13587 CASE_CFN_FLOOR:
13588 CASE_CFN_FLOOR_FN:
13589 CASE_CFN_FMOD:
13590 CASE_CFN_FREXP:
13591 CASE_CFN_ICEIL:
13592 CASE_CFN_IFLOOR:
13593 CASE_CFN_IRINT:
13594 CASE_CFN_IROUND:
13595 CASE_CFN_LCEIL:
13596 CASE_CFN_LDEXP:
13597 CASE_CFN_LFLOOR:
13598 CASE_CFN_LLCEIL:
13599 CASE_CFN_LLFLOOR:
13600 CASE_CFN_LLRINT:
13601 CASE_CFN_LLROUND:
13602 CASE_CFN_LRINT:
13603 CASE_CFN_LROUND:
13604 CASE_CFN_MODF:
13605 CASE_CFN_NEARBYINT:
13606 CASE_CFN_NEARBYINT_FN:
13607 CASE_CFN_RINT:
13608 CASE_CFN_RINT_FN:
13609 CASE_CFN_ROUND:
13610 CASE_CFN_ROUND_FN:
13611 CASE_CFN_ROUNDEVEN:
13612 CASE_CFN_ROUNDEVEN_FN:
13613 CASE_CFN_SCALB:
13614 CASE_CFN_SCALBLN:
13615 CASE_CFN_SCALBN:
13616 CASE_CFN_SIGNBIT:
13617 CASE_CFN_SIGNIFICAND:
13618 CASE_CFN_SINH:
13619 CASE_CFN_TANH:
13620 CASE_CFN_TRUNC:
13621 CASE_CFN_TRUNC_FN:
13622 /* True if the 1st argument is nonnegative. */
13623 return RECURSE (arg0);
13624
13625 CASE_CFN_FMAX:
13626 CASE_CFN_FMAX_FN:
13627 /* True if the 1st OR 2nd arguments are nonnegative. */
13628 return RECURSE (arg0) || RECURSE (arg1);
13629
13630 CASE_CFN_FMIN:
13631 CASE_CFN_FMIN_FN:
13632 /* True if the 1st AND 2nd arguments are nonnegative. */
13633 return RECURSE (arg0) && RECURSE (arg1);
13634
13635 CASE_CFN_COPYSIGN:
13636 CASE_CFN_COPYSIGN_FN:
13637 /* True if the 2nd argument is nonnegative. */
13638 return RECURSE (arg1);
13639
13640 CASE_CFN_POWI:
13641 /* True if the 1st argument is nonnegative or the second
13642 argument is an even integer. */
13643 if (TREE_CODE (arg1) == INTEGER_CST
13644 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13645 return true;
13646 return RECURSE (arg0);
13647
13648 CASE_CFN_POW:
13649 /* True if the 1st argument is nonnegative or the second
13650 argument is an even integer valued real. */
13651 if (TREE_CODE (arg1) == REAL_CST)
13652 {
13653 REAL_VALUE_TYPE c;
13654 HOST_WIDE_INT n;
13655
13656 c = TREE_REAL_CST (arg1);
13657 n = real_to_integer (&c);
13658 if ((n & 1) == 0)
13659 {
13660 REAL_VALUE_TYPE cint;
13661 real_from_integer (&cint, VOIDmode, n, SIGNED);
13662 if (real_identical (&c, &cint))
13663 return true;
13664 }
13665 }
13666 return RECURSE (arg0);
13667
13668 default:
13669 break;
13670 }
13671 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13672 }
13673
13674 /* Return true if T is known to be non-negative. If the return
13675 value is based on the assumption that signed overflow is undefined,
13676 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13677 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13678
13679 static bool
13680 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13681 {
13682 enum tree_code code = TREE_CODE (t);
13683 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13684 return true;
13685
13686 switch (code)
13687 {
13688 case TARGET_EXPR:
13689 {
13690 tree temp = TARGET_EXPR_SLOT (t);
13691 t = TARGET_EXPR_INITIAL (t);
13692
13693 /* If the initializer is non-void, then it's a normal expression
13694 that will be assigned to the slot. */
13695 if (!VOID_TYPE_P (t))
13696 return RECURSE (t);
13697
13698 /* Otherwise, the initializer sets the slot in some way. One common
13699 way is an assignment statement at the end of the initializer. */
13700 while (1)
13701 {
13702 if (TREE_CODE (t) == BIND_EXPR)
13703 t = expr_last (BIND_EXPR_BODY (t));
13704 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13705 || TREE_CODE (t) == TRY_CATCH_EXPR)
13706 t = expr_last (TREE_OPERAND (t, 0));
13707 else if (TREE_CODE (t) == STATEMENT_LIST)
13708 t = expr_last (t);
13709 else
13710 break;
13711 }
13712 if (TREE_CODE (t) == MODIFY_EXPR
13713 && TREE_OPERAND (t, 0) == temp)
13714 return RECURSE (TREE_OPERAND (t, 1));
13715
13716 return false;
13717 }
13718
13719 case CALL_EXPR:
13720 {
13721 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13722 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13723
13724 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13725 get_call_combined_fn (t),
13726 arg0,
13727 arg1,
13728 strict_overflow_p, depth);
13729 }
13730 case COMPOUND_EXPR:
13731 case MODIFY_EXPR:
13732 return RECURSE (TREE_OPERAND (t, 1));
13733
13734 case BIND_EXPR:
13735 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13736
13737 case SAVE_EXPR:
13738 return RECURSE (TREE_OPERAND (t, 0));
13739
13740 default:
13741 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13742 }
13743 }
13744
13745 #undef RECURSE
13746 #undef tree_expr_nonnegative_warnv_p
13747
13748 /* Return true if T is known to be non-negative. If the return
13749 value is based on the assumption that signed overflow is undefined,
13750 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13751 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13752
13753 bool
13754 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13755 {
13756 enum tree_code code;
13757 if (t == error_mark_node)
13758 return false;
13759
13760 code = TREE_CODE (t);
13761 switch (TREE_CODE_CLASS (code))
13762 {
13763 case tcc_binary:
13764 case tcc_comparison:
13765 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13766 TREE_TYPE (t),
13767 TREE_OPERAND (t, 0),
13768 TREE_OPERAND (t, 1),
13769 strict_overflow_p, depth);
13770
13771 case tcc_unary:
13772 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13773 TREE_TYPE (t),
13774 TREE_OPERAND (t, 0),
13775 strict_overflow_p, depth);
13776
13777 case tcc_constant:
13778 case tcc_declaration:
13779 case tcc_reference:
13780 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13781
13782 default:
13783 break;
13784 }
13785
13786 switch (code)
13787 {
13788 case TRUTH_AND_EXPR:
13789 case TRUTH_OR_EXPR:
13790 case TRUTH_XOR_EXPR:
13791 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13792 TREE_TYPE (t),
13793 TREE_OPERAND (t, 0),
13794 TREE_OPERAND (t, 1),
13795 strict_overflow_p, depth);
13796 case TRUTH_NOT_EXPR:
13797 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13798 TREE_TYPE (t),
13799 TREE_OPERAND (t, 0),
13800 strict_overflow_p, depth);
13801
13802 case COND_EXPR:
13803 case CONSTRUCTOR:
13804 case OBJ_TYPE_REF:
13805 case ASSERT_EXPR:
13806 case ADDR_EXPR:
13807 case WITH_SIZE_EXPR:
13808 case SSA_NAME:
13809 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13810
13811 default:
13812 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13813 }
13814 }
13815
13816 /* Return true if `t' is known to be non-negative. Handle warnings
13817 about undefined signed overflow. */
13818
13819 bool
13820 tree_expr_nonnegative_p (tree t)
13821 {
13822 bool ret, strict_overflow_p;
13823
13824 strict_overflow_p = false;
13825 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13826 if (strict_overflow_p)
13827 fold_overflow_warning (("assuming signed overflow does not occur when "
13828 "determining that expression is always "
13829 "non-negative"),
13830 WARN_STRICT_OVERFLOW_MISC);
13831 return ret;
13832 }
13833
13834
13835 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13836 For floating point we further ensure that T is not denormal.
13837 Similar logic is present in nonzero_address in rtlanal.h.
13838
13839 If the return value is based on the assumption that signed overflow
13840 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13841 change *STRICT_OVERFLOW_P. */
13842
13843 bool
13844 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13845 bool *strict_overflow_p)
13846 {
13847 switch (code)
13848 {
13849 case ABS_EXPR:
13850 return tree_expr_nonzero_warnv_p (op0,
13851 strict_overflow_p);
13852
13853 case NOP_EXPR:
13854 {
13855 tree inner_type = TREE_TYPE (op0);
13856 tree outer_type = type;
13857
13858 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13859 && tree_expr_nonzero_warnv_p (op0,
13860 strict_overflow_p));
13861 }
13862 break;
13863
13864 case NON_LVALUE_EXPR:
13865 return tree_expr_nonzero_warnv_p (op0,
13866 strict_overflow_p);
13867
13868 default:
13869 break;
13870 }
13871
13872 return false;
13873 }
13874
13875 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13876 For floating point we further ensure that T is not denormal.
13877 Similar logic is present in nonzero_address in rtlanal.h.
13878
13879 If the return value is based on the assumption that signed overflow
13880 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13881 change *STRICT_OVERFLOW_P. */
13882
13883 bool
13884 tree_binary_nonzero_warnv_p (enum tree_code code,
13885 tree type,
13886 tree op0,
13887 tree op1, bool *strict_overflow_p)
13888 {
13889 bool sub_strict_overflow_p;
13890 switch (code)
13891 {
13892 case POINTER_PLUS_EXPR:
13893 case PLUS_EXPR:
13894 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13895 {
13896 /* With the presence of negative values it is hard
13897 to say something. */
13898 sub_strict_overflow_p = false;
13899 if (!tree_expr_nonnegative_warnv_p (op0,
13900 &sub_strict_overflow_p)
13901 || !tree_expr_nonnegative_warnv_p (op1,
13902 &sub_strict_overflow_p))
13903 return false;
13904 /* One of operands must be positive and the other non-negative. */
13905 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13906 overflows, on a twos-complement machine the sum of two
13907 nonnegative numbers can never be zero. */
13908 return (tree_expr_nonzero_warnv_p (op0,
13909 strict_overflow_p)
13910 || tree_expr_nonzero_warnv_p (op1,
13911 strict_overflow_p));
13912 }
13913 break;
13914
13915 case MULT_EXPR:
13916 if (TYPE_OVERFLOW_UNDEFINED (type))
13917 {
13918 if (tree_expr_nonzero_warnv_p (op0,
13919 strict_overflow_p)
13920 && tree_expr_nonzero_warnv_p (op1,
13921 strict_overflow_p))
13922 {
13923 *strict_overflow_p = true;
13924 return true;
13925 }
13926 }
13927 break;
13928
13929 case MIN_EXPR:
13930 sub_strict_overflow_p = false;
13931 if (tree_expr_nonzero_warnv_p (op0,
13932 &sub_strict_overflow_p)
13933 && tree_expr_nonzero_warnv_p (op1,
13934 &sub_strict_overflow_p))
13935 {
13936 if (sub_strict_overflow_p)
13937 *strict_overflow_p = true;
13938 }
13939 break;
13940
13941 case MAX_EXPR:
13942 sub_strict_overflow_p = false;
13943 if (tree_expr_nonzero_warnv_p (op0,
13944 &sub_strict_overflow_p))
13945 {
13946 if (sub_strict_overflow_p)
13947 *strict_overflow_p = true;
13948
13949 /* When both operands are nonzero, then MAX must be too. */
13950 if (tree_expr_nonzero_warnv_p (op1,
13951 strict_overflow_p))
13952 return true;
13953
13954 /* MAX where operand 0 is positive is positive. */
13955 return tree_expr_nonnegative_warnv_p (op0,
13956 strict_overflow_p);
13957 }
13958 /* MAX where operand 1 is positive is positive. */
13959 else if (tree_expr_nonzero_warnv_p (op1,
13960 &sub_strict_overflow_p)
13961 && tree_expr_nonnegative_warnv_p (op1,
13962 &sub_strict_overflow_p))
13963 {
13964 if (sub_strict_overflow_p)
13965 *strict_overflow_p = true;
13966 return true;
13967 }
13968 break;
13969
13970 case BIT_IOR_EXPR:
13971 return (tree_expr_nonzero_warnv_p (op1,
13972 strict_overflow_p)
13973 || tree_expr_nonzero_warnv_p (op0,
13974 strict_overflow_p));
13975
13976 default:
13977 break;
13978 }
13979
13980 return false;
13981 }
13982
13983 /* Return true when T is an address and is known to be nonzero.
13984 For floating point we further ensure that T is not denormal.
13985 Similar logic is present in nonzero_address in rtlanal.h.
13986
13987 If the return value is based on the assumption that signed overflow
13988 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13989 change *STRICT_OVERFLOW_P. */
13990
13991 bool
13992 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13993 {
13994 bool sub_strict_overflow_p;
13995 switch (TREE_CODE (t))
13996 {
13997 case INTEGER_CST:
13998 return !integer_zerop (t);
13999
14000 case ADDR_EXPR:
14001 {
14002 tree base = TREE_OPERAND (t, 0);
14003
14004 if (!DECL_P (base))
14005 base = get_base_address (base);
14006
14007 if (base && TREE_CODE (base) == TARGET_EXPR)
14008 base = TARGET_EXPR_SLOT (base);
14009
14010 if (!base)
14011 return false;
14012
14013 /* For objects in symbol table check if we know they are non-zero.
14014 Don't do anything for variables and functions before symtab is built;
14015 it is quite possible that they will be declared weak later. */
14016 int nonzero_addr = maybe_nonzero_address (base);
14017 if (nonzero_addr >= 0)
14018 return nonzero_addr;
14019
14020 /* Constants are never weak. */
14021 if (CONSTANT_CLASS_P (base))
14022 return true;
14023
14024 return false;
14025 }
14026
14027 case COND_EXPR:
14028 sub_strict_overflow_p = false;
14029 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14030 &sub_strict_overflow_p)
14031 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
14032 &sub_strict_overflow_p))
14033 {
14034 if (sub_strict_overflow_p)
14035 *strict_overflow_p = true;
14036 return true;
14037 }
14038 break;
14039
14040 case SSA_NAME:
14041 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
14042 break;
14043 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
14044
14045 default:
14046 break;
14047 }
14048 return false;
14049 }
14050
14051 #define integer_valued_real_p(X) \
14052 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
14053
14054 #define RECURSE(X) \
14055 ((integer_valued_real_p) (X, depth + 1))
14056
14057 /* Return true if the floating point result of (CODE OP0) has an
14058 integer value. We also allow +Inf, -Inf and NaN to be considered
14059 integer values. Return false for signaling NaN.
14060
14061 DEPTH is the current nesting depth of the query. */
14062
14063 bool
14064 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
14065 {
14066 switch (code)
14067 {
14068 case FLOAT_EXPR:
14069 return true;
14070
14071 case ABS_EXPR:
14072 return RECURSE (op0);
14073
14074 CASE_CONVERT:
14075 {
14076 tree type = TREE_TYPE (op0);
14077 if (TREE_CODE (type) == INTEGER_TYPE)
14078 return true;
14079 if (TREE_CODE (type) == REAL_TYPE)
14080 return RECURSE (op0);
14081 break;
14082 }
14083
14084 default:
14085 break;
14086 }
14087 return false;
14088 }
14089
14090 /* Return true if the floating point result of (CODE OP0 OP1) has an
14091 integer value. We also allow +Inf, -Inf and NaN to be considered
14092 integer values. Return false for signaling NaN.
14093
14094 DEPTH is the current nesting depth of the query. */
14095
14096 bool
14097 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
14098 {
14099 switch (code)
14100 {
14101 case PLUS_EXPR:
14102 case MINUS_EXPR:
14103 case MULT_EXPR:
14104 case MIN_EXPR:
14105 case MAX_EXPR:
14106 return RECURSE (op0) && RECURSE (op1);
14107
14108 default:
14109 break;
14110 }
14111 return false;
14112 }
14113
14114 /* Return true if the floating point result of calling FNDECL with arguments
14115 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
14116 considered integer values. Return false for signaling NaN. If FNDECL
14117 takes fewer than 2 arguments, the remaining ARGn are null.
14118
14119 DEPTH is the current nesting depth of the query. */
14120
14121 bool
14122 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
14123 {
14124 switch (fn)
14125 {
14126 CASE_CFN_CEIL:
14127 CASE_CFN_CEIL_FN:
14128 CASE_CFN_FLOOR:
14129 CASE_CFN_FLOOR_FN:
14130 CASE_CFN_NEARBYINT:
14131 CASE_CFN_NEARBYINT_FN:
14132 CASE_CFN_RINT:
14133 CASE_CFN_RINT_FN:
14134 CASE_CFN_ROUND:
14135 CASE_CFN_ROUND_FN:
14136 CASE_CFN_ROUNDEVEN:
14137 CASE_CFN_ROUNDEVEN_FN:
14138 CASE_CFN_TRUNC:
14139 CASE_CFN_TRUNC_FN:
14140 return true;
14141
14142 CASE_CFN_FMIN:
14143 CASE_CFN_FMIN_FN:
14144 CASE_CFN_FMAX:
14145 CASE_CFN_FMAX_FN:
14146 return RECURSE (arg0) && RECURSE (arg1);
14147
14148 default:
14149 break;
14150 }
14151 return false;
14152 }
14153
14154 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
14155 has an integer value. We also allow +Inf, -Inf and NaN to be
14156 considered integer values. Return false for signaling NaN.
14157
14158 DEPTH is the current nesting depth of the query. */
14159
14160 bool
14161 integer_valued_real_single_p (tree t, int depth)
14162 {
14163 switch (TREE_CODE (t))
14164 {
14165 case REAL_CST:
14166 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
14167
14168 case COND_EXPR:
14169 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
14170
14171 case SSA_NAME:
14172 /* Limit the depth of recursion to avoid quadratic behavior.
14173 This is expected to catch almost all occurrences in practice.
14174 If this code misses important cases that unbounded recursion
14175 would not, passes that need this information could be revised
14176 to provide it through dataflow propagation. */
14177 return (!name_registered_for_update_p (t)
14178 && depth < param_max_ssa_name_query_depth
14179 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
14180 depth));
14181
14182 default:
14183 break;
14184 }
14185 return false;
14186 }
14187
14188 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
14189 has an integer value. We also allow +Inf, -Inf and NaN to be
14190 considered integer values. Return false for signaling NaN.
14191
14192 DEPTH is the current nesting depth of the query. */
14193
14194 static bool
14195 integer_valued_real_invalid_p (tree t, int depth)
14196 {
14197 switch (TREE_CODE (t))
14198 {
14199 case COMPOUND_EXPR:
14200 case MODIFY_EXPR:
14201 case BIND_EXPR:
14202 return RECURSE (TREE_OPERAND (t, 1));
14203
14204 case SAVE_EXPR:
14205 return RECURSE (TREE_OPERAND (t, 0));
14206
14207 default:
14208 break;
14209 }
14210 return false;
14211 }
14212
14213 #undef RECURSE
14214 #undef integer_valued_real_p
14215
14216 /* Return true if the floating point expression T has an integer value.
14217 We also allow +Inf, -Inf and NaN to be considered integer values.
14218 Return false for signaling NaN.
14219
14220 DEPTH is the current nesting depth of the query. */
14221
14222 bool
14223 integer_valued_real_p (tree t, int depth)
14224 {
14225 if (t == error_mark_node)
14226 return false;
14227
14228 STRIP_ANY_LOCATION_WRAPPER (t);
14229
14230 tree_code code = TREE_CODE (t);
14231 switch (TREE_CODE_CLASS (code))
14232 {
14233 case tcc_binary:
14234 case tcc_comparison:
14235 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
14236 TREE_OPERAND (t, 1), depth);
14237
14238 case tcc_unary:
14239 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
14240
14241 case tcc_constant:
14242 case tcc_declaration:
14243 case tcc_reference:
14244 return integer_valued_real_single_p (t, depth);
14245
14246 default:
14247 break;
14248 }
14249
14250 switch (code)
14251 {
14252 case COND_EXPR:
14253 case SSA_NAME:
14254 return integer_valued_real_single_p (t, depth);
14255
14256 case CALL_EXPR:
14257 {
14258 tree arg0 = (call_expr_nargs (t) > 0
14259 ? CALL_EXPR_ARG (t, 0)
14260 : NULL_TREE);
14261 tree arg1 = (call_expr_nargs (t) > 1
14262 ? CALL_EXPR_ARG (t, 1)
14263 : NULL_TREE);
14264 return integer_valued_real_call_p (get_call_combined_fn (t),
14265 arg0, arg1, depth);
14266 }
14267
14268 default:
14269 return integer_valued_real_invalid_p (t, depth);
14270 }
14271 }
14272
14273 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14274 attempt to fold the expression to a constant without modifying TYPE,
14275 OP0 or OP1.
14276
14277 If the expression could be simplified to a constant, then return
14278 the constant. If the expression would not be simplified to a
14279 constant, then return NULL_TREE. */
14280
14281 tree
14282 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
14283 {
14284 tree tem = fold_binary (code, type, op0, op1);
14285 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14286 }
14287
14288 /* Given the components of a unary expression CODE, TYPE and OP0,
14289 attempt to fold the expression to a constant without modifying
14290 TYPE or OP0.
14291
14292 If the expression could be simplified to a constant, then return
14293 the constant. If the expression would not be simplified to a
14294 constant, then return NULL_TREE. */
14295
14296 tree
14297 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
14298 {
14299 tree tem = fold_unary (code, type, op0);
14300 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14301 }
14302
14303 /* If EXP represents referencing an element in a constant string
14304 (either via pointer arithmetic or array indexing), return the
14305 tree representing the value accessed, otherwise return NULL. */
14306
14307 tree
14308 fold_read_from_constant_string (tree exp)
14309 {
14310 if ((TREE_CODE (exp) == INDIRECT_REF
14311 || TREE_CODE (exp) == ARRAY_REF)
14312 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
14313 {
14314 tree exp1 = TREE_OPERAND (exp, 0);
14315 tree index;
14316 tree string;
14317 location_t loc = EXPR_LOCATION (exp);
14318
14319 if (TREE_CODE (exp) == INDIRECT_REF)
14320 string = string_constant (exp1, &index, NULL, NULL);
14321 else
14322 {
14323 tree low_bound = array_ref_low_bound (exp);
14324 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
14325
14326 /* Optimize the special-case of a zero lower bound.
14327
14328 We convert the low_bound to sizetype to avoid some problems
14329 with constant folding. (E.g. suppose the lower bound is 1,
14330 and its mode is QI. Without the conversion,l (ARRAY
14331 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14332 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
14333 if (! integer_zerop (low_bound))
14334 index = size_diffop_loc (loc, index,
14335 fold_convert_loc (loc, sizetype, low_bound));
14336
14337 string = exp1;
14338 }
14339
14340 scalar_int_mode char_mode;
14341 if (string
14342 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
14343 && TREE_CODE (string) == STRING_CST
14344 && TREE_CODE (index) == INTEGER_CST
14345 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
14346 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
14347 &char_mode)
14348 && GET_MODE_SIZE (char_mode) == 1)
14349 return build_int_cst_type (TREE_TYPE (exp),
14350 (TREE_STRING_POINTER (string)
14351 [TREE_INT_CST_LOW (index)]));
14352 }
14353 return NULL;
14354 }
14355
14356 /* Folds a read from vector element at IDX of vector ARG. */
14357
14358 tree
14359 fold_read_from_vector (tree arg, poly_uint64 idx)
14360 {
14361 unsigned HOST_WIDE_INT i;
14362 if (known_lt (idx, TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)))
14363 && known_ge (idx, 0u)
14364 && idx.is_constant (&i))
14365 {
14366 if (TREE_CODE (arg) == VECTOR_CST)
14367 return VECTOR_CST_ELT (arg, i);
14368 else if (TREE_CODE (arg) == CONSTRUCTOR)
14369 {
14370 if (i >= CONSTRUCTOR_NELTS (arg))
14371 return build_zero_cst (TREE_TYPE (TREE_TYPE (arg)));
14372 return CONSTRUCTOR_ELT (arg, i)->value;
14373 }
14374 }
14375 return NULL_TREE;
14376 }
14377
14378 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14379 an integer constant, real, or fixed-point constant.
14380
14381 TYPE is the type of the result. */
14382
14383 static tree
14384 fold_negate_const (tree arg0, tree type)
14385 {
14386 tree t = NULL_TREE;
14387
14388 switch (TREE_CODE (arg0))
14389 {
14390 case REAL_CST:
14391 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14392 break;
14393
14394 case FIXED_CST:
14395 {
14396 FIXED_VALUE_TYPE f;
14397 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
14398 &(TREE_FIXED_CST (arg0)), NULL,
14399 TYPE_SATURATING (type));
14400 t = build_fixed (type, f);
14401 /* Propagate overflow flags. */
14402 if (overflow_p | TREE_OVERFLOW (arg0))
14403 TREE_OVERFLOW (t) = 1;
14404 break;
14405 }
14406
14407 default:
14408 if (poly_int_tree_p (arg0))
14409 {
14410 wi::overflow_type overflow;
14411 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow);
14412 t = force_fit_type (type, res, 1,
14413 (overflow && ! TYPE_UNSIGNED (type))
14414 || TREE_OVERFLOW (arg0));
14415 break;
14416 }
14417
14418 gcc_unreachable ();
14419 }
14420
14421 return t;
14422 }
14423
14424 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14425 an integer constant or real constant.
14426
14427 TYPE is the type of the result. */
14428
14429 tree
14430 fold_abs_const (tree arg0, tree type)
14431 {
14432 tree t = NULL_TREE;
14433
14434 switch (TREE_CODE (arg0))
14435 {
14436 case INTEGER_CST:
14437 {
14438 /* If the value is unsigned or non-negative, then the absolute value
14439 is the same as the ordinary value. */
14440 wide_int val = wi::to_wide (arg0);
14441 wi::overflow_type overflow = wi::OVF_NONE;
14442 if (!wi::neg_p (val, TYPE_SIGN (TREE_TYPE (arg0))))
14443 ;
14444
14445 /* If the value is negative, then the absolute value is
14446 its negation. */
14447 else
14448 val = wi::neg (val, &overflow);
14449
14450 /* Force to the destination type, set TREE_OVERFLOW for signed
14451 TYPE only. */
14452 t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0));
14453 }
14454 break;
14455
14456 case REAL_CST:
14457 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
14458 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
14459 else
14460 t = arg0;
14461 break;
14462
14463 default:
14464 gcc_unreachable ();
14465 }
14466
14467 return t;
14468 }
14469
14470 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14471 constant. TYPE is the type of the result. */
14472
14473 static tree
14474 fold_not_const (const_tree arg0, tree type)
14475 {
14476 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
14477
14478 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0));
14479 }
14480
14481 /* Given CODE, a relational operator, the target type, TYPE and two
14482 constant operands OP0 and OP1, return the result of the
14483 relational operation. If the result is not a compile time
14484 constant, then return NULL_TREE. */
14485
14486 static tree
14487 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
14488 {
14489 int result, invert;
14490
14491 /* From here on, the only cases we handle are when the result is
14492 known to be a constant. */
14493
14494 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
14495 {
14496 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
14497 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
14498
14499 /* Handle the cases where either operand is a NaN. */
14500 if (real_isnan (c0) || real_isnan (c1))
14501 {
14502 switch (code)
14503 {
14504 case EQ_EXPR:
14505 case ORDERED_EXPR:
14506 result = 0;
14507 break;
14508
14509 case NE_EXPR:
14510 case UNORDERED_EXPR:
14511 case UNLT_EXPR:
14512 case UNLE_EXPR:
14513 case UNGT_EXPR:
14514 case UNGE_EXPR:
14515 case UNEQ_EXPR:
14516 result = 1;
14517 break;
14518
14519 case LT_EXPR:
14520 case LE_EXPR:
14521 case GT_EXPR:
14522 case GE_EXPR:
14523 case LTGT_EXPR:
14524 if (flag_trapping_math)
14525 return NULL_TREE;
14526 result = 0;
14527 break;
14528
14529 default:
14530 gcc_unreachable ();
14531 }
14532
14533 return constant_boolean_node (result, type);
14534 }
14535
14536 return constant_boolean_node (real_compare (code, c0, c1), type);
14537 }
14538
14539 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14540 {
14541 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14542 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14543 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14544 }
14545
14546 /* Handle equality/inequality of complex constants. */
14547 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14548 {
14549 tree rcond = fold_relational_const (code, type,
14550 TREE_REALPART (op0),
14551 TREE_REALPART (op1));
14552 tree icond = fold_relational_const (code, type,
14553 TREE_IMAGPART (op0),
14554 TREE_IMAGPART (op1));
14555 if (code == EQ_EXPR)
14556 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14557 else if (code == NE_EXPR)
14558 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14559 else
14560 return NULL_TREE;
14561 }
14562
14563 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14564 {
14565 if (!VECTOR_TYPE_P (type))
14566 {
14567 /* Have vector comparison with scalar boolean result. */
14568 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
14569 && known_eq (VECTOR_CST_NELTS (op0),
14570 VECTOR_CST_NELTS (op1)));
14571 unsigned HOST_WIDE_INT nunits;
14572 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits))
14573 return NULL_TREE;
14574 for (unsigned i = 0; i < nunits; i++)
14575 {
14576 tree elem0 = VECTOR_CST_ELT (op0, i);
14577 tree elem1 = VECTOR_CST_ELT (op1, i);
14578 tree tmp = fold_relational_const (EQ_EXPR, type, elem0, elem1);
14579 if (tmp == NULL_TREE)
14580 return NULL_TREE;
14581 if (integer_zerop (tmp))
14582 return constant_boolean_node (code == NE_EXPR, type);
14583 }
14584 return constant_boolean_node (code == EQ_EXPR, type);
14585 }
14586 tree_vector_builder elts;
14587 if (!elts.new_binary_operation (type, op0, op1, false))
14588 return NULL_TREE;
14589 unsigned int count = elts.encoded_nelts ();
14590 for (unsigned i = 0; i < count; i++)
14591 {
14592 tree elem_type = TREE_TYPE (type);
14593 tree elem0 = VECTOR_CST_ELT (op0, i);
14594 tree elem1 = VECTOR_CST_ELT (op1, i);
14595
14596 tree tem = fold_relational_const (code, elem_type,
14597 elem0, elem1);
14598
14599 if (tem == NULL_TREE)
14600 return NULL_TREE;
14601
14602 elts.quick_push (build_int_cst (elem_type,
14603 integer_zerop (tem) ? 0 : -1));
14604 }
14605
14606 return elts.build ();
14607 }
14608
14609 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14610
14611 To compute GT, swap the arguments and do LT.
14612 To compute GE, do LT and invert the result.
14613 To compute LE, swap the arguments, do LT and invert the result.
14614 To compute NE, do EQ and invert the result.
14615
14616 Therefore, the code below must handle only EQ and LT. */
14617
14618 if (code == LE_EXPR || code == GT_EXPR)
14619 {
14620 std::swap (op0, op1);
14621 code = swap_tree_comparison (code);
14622 }
14623
14624 /* Note that it is safe to invert for real values here because we
14625 have already handled the one case that it matters. */
14626
14627 invert = 0;
14628 if (code == NE_EXPR || code == GE_EXPR)
14629 {
14630 invert = 1;
14631 code = invert_tree_comparison (code, false);
14632 }
14633
14634 /* Compute a result for LT or EQ if args permit;
14635 Otherwise return T. */
14636 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14637 {
14638 if (code == EQ_EXPR)
14639 result = tree_int_cst_equal (op0, op1);
14640 else
14641 result = tree_int_cst_lt (op0, op1);
14642 }
14643 else
14644 return NULL_TREE;
14645
14646 if (invert)
14647 result ^= 1;
14648 return constant_boolean_node (result, type);
14649 }
14650
14651 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14652 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14653 itself. */
14654
14655 tree
14656 fold_build_cleanup_point_expr (tree type, tree expr)
14657 {
14658 /* If the expression does not have side effects then we don't have to wrap
14659 it with a cleanup point expression. */
14660 if (!TREE_SIDE_EFFECTS (expr))
14661 return expr;
14662
14663 /* If the expression is a return, check to see if the expression inside the
14664 return has no side effects or the right hand side of the modify expression
14665 inside the return. If either don't have side effects set we don't need to
14666 wrap the expression in a cleanup point expression. Note we don't check the
14667 left hand side of the modify because it should always be a return decl. */
14668 if (TREE_CODE (expr) == RETURN_EXPR)
14669 {
14670 tree op = TREE_OPERAND (expr, 0);
14671 if (!op || !TREE_SIDE_EFFECTS (op))
14672 return expr;
14673 op = TREE_OPERAND (op, 1);
14674 if (!TREE_SIDE_EFFECTS (op))
14675 return expr;
14676 }
14677
14678 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
14679 }
14680
14681 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14682 of an indirection through OP0, or NULL_TREE if no simplification is
14683 possible. */
14684
14685 tree
14686 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14687 {
14688 tree sub = op0;
14689 tree subtype;
14690 poly_uint64 const_op01;
14691
14692 STRIP_NOPS (sub);
14693 subtype = TREE_TYPE (sub);
14694 if (!POINTER_TYPE_P (subtype)
14695 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
14696 return NULL_TREE;
14697
14698 if (TREE_CODE (sub) == ADDR_EXPR)
14699 {
14700 tree op = TREE_OPERAND (sub, 0);
14701 tree optype = TREE_TYPE (op);
14702
14703 /* *&CONST_DECL -> to the value of the const decl. */
14704 if (TREE_CODE (op) == CONST_DECL)
14705 return DECL_INITIAL (op);
14706 /* *&p => p; make sure to handle *&"str"[cst] here. */
14707 if (type == optype)
14708 {
14709 tree fop = fold_read_from_constant_string (op);
14710 if (fop)
14711 return fop;
14712 else
14713 return op;
14714 }
14715 /* *(foo *)&fooarray => fooarray[0] */
14716 else if (TREE_CODE (optype) == ARRAY_TYPE
14717 && type == TREE_TYPE (optype)
14718 && (!in_gimple_form
14719 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14720 {
14721 tree type_domain = TYPE_DOMAIN (optype);
14722 tree min_val = size_zero_node;
14723 if (type_domain && TYPE_MIN_VALUE (type_domain))
14724 min_val = TYPE_MIN_VALUE (type_domain);
14725 if (in_gimple_form
14726 && TREE_CODE (min_val) != INTEGER_CST)
14727 return NULL_TREE;
14728 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14729 NULL_TREE, NULL_TREE);
14730 }
14731 /* *(foo *)&complexfoo => __real__ complexfoo */
14732 else if (TREE_CODE (optype) == COMPLEX_TYPE
14733 && type == TREE_TYPE (optype))
14734 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14735 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14736 else if (VECTOR_TYPE_P (optype)
14737 && type == TREE_TYPE (optype))
14738 {
14739 tree part_width = TYPE_SIZE (type);
14740 tree index = bitsize_int (0);
14741 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width,
14742 index);
14743 }
14744 }
14745
14746 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14747 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01))
14748 {
14749 tree op00 = TREE_OPERAND (sub, 0);
14750 tree op01 = TREE_OPERAND (sub, 1);
14751
14752 STRIP_NOPS (op00);
14753 if (TREE_CODE (op00) == ADDR_EXPR)
14754 {
14755 tree op00type;
14756 op00 = TREE_OPERAND (op00, 0);
14757 op00type = TREE_TYPE (op00);
14758
14759 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14760 if (VECTOR_TYPE_P (op00type)
14761 && type == TREE_TYPE (op00type)
14762 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14763 but we want to treat offsets with MSB set as negative.
14764 For the code below negative offsets are invalid and
14765 TYPE_SIZE of the element is something unsigned, so
14766 check whether op01 fits into poly_int64, which implies
14767 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14768 then just use poly_uint64 because we want to treat the
14769 value as unsigned. */
14770 && tree_fits_poly_int64_p (op01))
14771 {
14772 tree part_width = TYPE_SIZE (type);
14773 poly_uint64 max_offset
14774 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14775 * TYPE_VECTOR_SUBPARTS (op00type));
14776 if (known_lt (const_op01, max_offset))
14777 {
14778 tree index = bitsize_int (const_op01 * BITS_PER_UNIT);
14779 return fold_build3_loc (loc,
14780 BIT_FIELD_REF, type, op00,
14781 part_width, index);
14782 }
14783 }
14784 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14785 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14786 && type == TREE_TYPE (op00type))
14787 {
14788 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)),
14789 const_op01))
14790 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14791 }
14792 /* ((foo *)&fooarray)[1] => fooarray[1] */
14793 else if (TREE_CODE (op00type) == ARRAY_TYPE
14794 && type == TREE_TYPE (op00type))
14795 {
14796 tree type_domain = TYPE_DOMAIN (op00type);
14797 tree min_val = size_zero_node;
14798 if (type_domain && TYPE_MIN_VALUE (type_domain))
14799 min_val = TYPE_MIN_VALUE (type_domain);
14800 poly_uint64 type_size, index;
14801 if (poly_int_tree_p (min_val)
14802 && poly_int_tree_p (TYPE_SIZE_UNIT (type), &type_size)
14803 && multiple_p (const_op01, type_size, &index))
14804 {
14805 poly_offset_int off = index + wi::to_poly_offset (min_val);
14806 op01 = wide_int_to_tree (sizetype, off);
14807 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14808 NULL_TREE, NULL_TREE);
14809 }
14810 }
14811 }
14812 }
14813
14814 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14815 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14816 && type == TREE_TYPE (TREE_TYPE (subtype))
14817 && (!in_gimple_form
14818 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14819 {
14820 tree type_domain;
14821 tree min_val = size_zero_node;
14822 sub = build_fold_indirect_ref_loc (loc, sub);
14823 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14824 if (type_domain && TYPE_MIN_VALUE (type_domain))
14825 min_val = TYPE_MIN_VALUE (type_domain);
14826 if (in_gimple_form
14827 && TREE_CODE (min_val) != INTEGER_CST)
14828 return NULL_TREE;
14829 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14830 NULL_TREE);
14831 }
14832
14833 return NULL_TREE;
14834 }
14835
14836 /* Builds an expression for an indirection through T, simplifying some
14837 cases. */
14838
14839 tree
14840 build_fold_indirect_ref_loc (location_t loc, tree t)
14841 {
14842 tree type = TREE_TYPE (TREE_TYPE (t));
14843 tree sub = fold_indirect_ref_1 (loc, type, t);
14844
14845 if (sub)
14846 return sub;
14847
14848 return build1_loc (loc, INDIRECT_REF, type, t);
14849 }
14850
14851 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14852
14853 tree
14854 fold_indirect_ref_loc (location_t loc, tree t)
14855 {
14856 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14857
14858 if (sub)
14859 return sub;
14860 else
14861 return t;
14862 }
14863
14864 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14865 whose result is ignored. The type of the returned tree need not be
14866 the same as the original expression. */
14867
14868 tree
14869 fold_ignored_result (tree t)
14870 {
14871 if (!TREE_SIDE_EFFECTS (t))
14872 return integer_zero_node;
14873
14874 for (;;)
14875 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14876 {
14877 case tcc_unary:
14878 t = TREE_OPERAND (t, 0);
14879 break;
14880
14881 case tcc_binary:
14882 case tcc_comparison:
14883 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14884 t = TREE_OPERAND (t, 0);
14885 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14886 t = TREE_OPERAND (t, 1);
14887 else
14888 return t;
14889 break;
14890
14891 case tcc_expression:
14892 switch (TREE_CODE (t))
14893 {
14894 case COMPOUND_EXPR:
14895 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14896 return t;
14897 t = TREE_OPERAND (t, 0);
14898 break;
14899
14900 case COND_EXPR:
14901 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14902 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14903 return t;
14904 t = TREE_OPERAND (t, 0);
14905 break;
14906
14907 default:
14908 return t;
14909 }
14910 break;
14911
14912 default:
14913 return t;
14914 }
14915 }
14916
14917 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14918
14919 tree
14920 round_up_loc (location_t loc, tree value, unsigned int divisor)
14921 {
14922 tree div = NULL_TREE;
14923
14924 if (divisor == 1)
14925 return value;
14926
14927 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14928 have to do anything. Only do this when we are not given a const,
14929 because in that case, this check is more expensive than just
14930 doing it. */
14931 if (TREE_CODE (value) != INTEGER_CST)
14932 {
14933 div = build_int_cst (TREE_TYPE (value), divisor);
14934
14935 if (multiple_of_p (TREE_TYPE (value), value, div))
14936 return value;
14937 }
14938
14939 /* If divisor is a power of two, simplify this to bit manipulation. */
14940 if (pow2_or_zerop (divisor))
14941 {
14942 if (TREE_CODE (value) == INTEGER_CST)
14943 {
14944 wide_int val = wi::to_wide (value);
14945 bool overflow_p;
14946
14947 if ((val & (divisor - 1)) == 0)
14948 return value;
14949
14950 overflow_p = TREE_OVERFLOW (value);
14951 val += divisor - 1;
14952 val &= (int) -divisor;
14953 if (val == 0)
14954 overflow_p = true;
14955
14956 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14957 }
14958 else
14959 {
14960 tree t;
14961
14962 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14963 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14964 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14965 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14966 }
14967 }
14968 else
14969 {
14970 if (!div)
14971 div = build_int_cst (TREE_TYPE (value), divisor);
14972 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14973 value = size_binop_loc (loc, MULT_EXPR, value, div);
14974 }
14975
14976 return value;
14977 }
14978
14979 /* Likewise, but round down. */
14980
14981 tree
14982 round_down_loc (location_t loc, tree value, int divisor)
14983 {
14984 tree div = NULL_TREE;
14985
14986 gcc_assert (divisor > 0);
14987 if (divisor == 1)
14988 return value;
14989
14990 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14991 have to do anything. Only do this when we are not given a const,
14992 because in that case, this check is more expensive than just
14993 doing it. */
14994 if (TREE_CODE (value) != INTEGER_CST)
14995 {
14996 div = build_int_cst (TREE_TYPE (value), divisor);
14997
14998 if (multiple_of_p (TREE_TYPE (value), value, div))
14999 return value;
15000 }
15001
15002 /* If divisor is a power of two, simplify this to bit manipulation. */
15003 if (pow2_or_zerop (divisor))
15004 {
15005 tree t;
15006
15007 t = build_int_cst (TREE_TYPE (value), -divisor);
15008 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
15009 }
15010 else
15011 {
15012 if (!div)
15013 div = build_int_cst (TREE_TYPE (value), divisor);
15014 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
15015 value = size_binop_loc (loc, MULT_EXPR, value, div);
15016 }
15017
15018 return value;
15019 }
15020
15021 /* Returns the pointer to the base of the object addressed by EXP and
15022 extracts the information about the offset of the access, storing it
15023 to PBITPOS and POFFSET. */
15024
15025 static tree
15026 split_address_to_core_and_offset (tree exp,
15027 poly_int64_pod *pbitpos, tree *poffset)
15028 {
15029 tree core;
15030 machine_mode mode;
15031 int unsignedp, reversep, volatilep;
15032 poly_int64 bitsize;
15033 location_t loc = EXPR_LOCATION (exp);
15034
15035 if (TREE_CODE (exp) == ADDR_EXPR)
15036 {
15037 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15038 poffset, &mode, &unsignedp, &reversep,
15039 &volatilep);
15040 core = build_fold_addr_expr_loc (loc, core);
15041 }
15042 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
15043 {
15044 core = TREE_OPERAND (exp, 0);
15045 STRIP_NOPS (core);
15046 *pbitpos = 0;
15047 *poffset = TREE_OPERAND (exp, 1);
15048 if (poly_int_tree_p (*poffset))
15049 {
15050 poly_offset_int tem
15051 = wi::sext (wi::to_poly_offset (*poffset),
15052 TYPE_PRECISION (TREE_TYPE (*poffset)));
15053 tem <<= LOG2_BITS_PER_UNIT;
15054 if (tem.to_shwi (pbitpos))
15055 *poffset = NULL_TREE;
15056 }
15057 }
15058 else
15059 {
15060 core = exp;
15061 *pbitpos = 0;
15062 *poffset = NULL_TREE;
15063 }
15064
15065 return core;
15066 }
15067
15068 /* Returns true if addresses of E1 and E2 differ by a constant, false
15069 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15070
15071 bool
15072 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff)
15073 {
15074 tree core1, core2;
15075 poly_int64 bitpos1, bitpos2;
15076 tree toffset1, toffset2, tdiff, type;
15077
15078 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15079 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15080
15081 poly_int64 bytepos1, bytepos2;
15082 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1)
15083 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2)
15084 || !operand_equal_p (core1, core2, 0))
15085 return false;
15086
15087 if (toffset1 && toffset2)
15088 {
15089 type = TREE_TYPE (toffset1);
15090 if (type != TREE_TYPE (toffset2))
15091 toffset2 = fold_convert (type, toffset2);
15092
15093 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15094 if (!cst_and_fits_in_hwi (tdiff))
15095 return false;
15096
15097 *diff = int_cst_value (tdiff);
15098 }
15099 else if (toffset1 || toffset2)
15100 {
15101 /* If only one of the offsets is non-constant, the difference cannot
15102 be a constant. */
15103 return false;
15104 }
15105 else
15106 *diff = 0;
15107
15108 *diff += bytepos1 - bytepos2;
15109 return true;
15110 }
15111
15112 /* Return OFF converted to a pointer offset type suitable as offset for
15113 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
15114 tree
15115 convert_to_ptrofftype_loc (location_t loc, tree off)
15116 {
15117 return fold_convert_loc (loc, sizetype, off);
15118 }
15119
15120 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
15121 tree
15122 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
15123 {
15124 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
15125 ptr, convert_to_ptrofftype_loc (loc, off));
15126 }
15127
15128 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
15129 tree
15130 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
15131 {
15132 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
15133 ptr, size_int (off));
15134 }
15135
15136 /* Return a pointer P to a NUL-terminated string representing the sequence
15137 of constant characters referred to by SRC (or a subsequence of such
15138 characters within it if SRC is a reference to a string plus some
15139 constant offset). If STRLEN is non-null, store the number of bytes
15140 in the string constant including the terminating NUL char. *STRLEN is
15141 typically strlen(P) + 1 in the absence of embedded NUL characters. */
15142
15143 const char *
15144 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen /* = NULL */)
15145 {
15146 tree offset_node;
15147 tree mem_size;
15148
15149 if (strlen)
15150 *strlen = 0;
15151
15152 src = string_constant (src, &offset_node, &mem_size, NULL);
15153 if (src == 0)
15154 return NULL;
15155
15156 unsigned HOST_WIDE_INT offset = 0;
15157 if (offset_node != NULL_TREE)
15158 {
15159 if (!tree_fits_uhwi_p (offset_node))
15160 return NULL;
15161 else
15162 offset = tree_to_uhwi (offset_node);
15163 }
15164
15165 if (!tree_fits_uhwi_p (mem_size))
15166 return NULL;
15167
15168 /* STRING_LENGTH is the size of the string literal, including any
15169 embedded NULs. STRING_SIZE is the size of the array the string
15170 literal is stored in. */
15171 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
15172 unsigned HOST_WIDE_INT string_size = tree_to_uhwi (mem_size);
15173
15174 /* Ideally this would turn into a gcc_checking_assert over time. */
15175 if (string_length > string_size)
15176 string_length = string_size;
15177
15178 const char *string = TREE_STRING_POINTER (src);
15179
15180 /* Ideally this would turn into a gcc_checking_assert over time. */
15181 if (string_length > string_size)
15182 string_length = string_size;
15183
15184 if (string_length == 0
15185 || offset >= string_size)
15186 return NULL;
15187
15188 if (strlen)
15189 {
15190 /* Compute and store the length of the substring at OFFSET.
15191 All offsets past the initial length refer to null strings. */
15192 if (offset < string_length)
15193 *strlen = string_length - offset;
15194 else
15195 *strlen = 1;
15196 }
15197 else
15198 {
15199 tree eltype = TREE_TYPE (TREE_TYPE (src));
15200 /* Support only properly NUL-terminated single byte strings. */
15201 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype)) != 1)
15202 return NULL;
15203 if (string[string_length - 1] != '\0')
15204 return NULL;
15205 }
15206
15207 return offset < string_length ? string + offset : "";
15208 }
15209
15210 /* Given a tree T, compute which bits in T may be nonzero. */
15211
15212 wide_int
15213 tree_nonzero_bits (const_tree t)
15214 {
15215 switch (TREE_CODE (t))
15216 {
15217 case INTEGER_CST:
15218 return wi::to_wide (t);
15219 case SSA_NAME:
15220 return get_nonzero_bits (t);
15221 case NON_LVALUE_EXPR:
15222 case SAVE_EXPR:
15223 return tree_nonzero_bits (TREE_OPERAND (t, 0));
15224 case BIT_AND_EXPR:
15225 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t, 0)),
15226 tree_nonzero_bits (TREE_OPERAND (t, 1)));
15227 case BIT_IOR_EXPR:
15228 case BIT_XOR_EXPR:
15229 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 0)),
15230 tree_nonzero_bits (TREE_OPERAND (t, 1)));
15231 case COND_EXPR:
15232 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 1)),
15233 tree_nonzero_bits (TREE_OPERAND (t, 2)));
15234 CASE_CONVERT:
15235 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t, 0)),
15236 TYPE_PRECISION (TREE_TYPE (t)),
15237 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0))));
15238 case PLUS_EXPR:
15239 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
15240 {
15241 wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0));
15242 wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1));
15243 if (wi::bit_and (nzbits1, nzbits2) == 0)
15244 return wi::bit_or (nzbits1, nzbits2);
15245 }
15246 break;
15247 case LSHIFT_EXPR:
15248 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
15249 {
15250 tree type = TREE_TYPE (t);
15251 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
15252 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
15253 TYPE_PRECISION (type));
15254 return wi::neg_p (arg1)
15255 ? wi::rshift (nzbits, -arg1, TYPE_SIGN (type))
15256 : wi::lshift (nzbits, arg1);
15257 }
15258 break;
15259 case RSHIFT_EXPR:
15260 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
15261 {
15262 tree type = TREE_TYPE (t);
15263 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
15264 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
15265 TYPE_PRECISION (type));
15266 return wi::neg_p (arg1)
15267 ? wi::lshift (nzbits, -arg1)
15268 : wi::rshift (nzbits, arg1, TYPE_SIGN (type));
15269 }
15270 break;
15271 default:
15272 break;
15273 }
15274
15275 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t)));
15276 }
15277
15278 #if CHECKING_P
15279
15280 namespace selftest {
15281
15282 /* Helper functions for writing tests of folding trees. */
15283
15284 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
15285
15286 static void
15287 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
15288 tree constant)
15289 {
15290 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
15291 }
15292
15293 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
15294 wrapping WRAPPED_EXPR. */
15295
15296 static void
15297 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
15298 tree wrapped_expr)
15299 {
15300 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
15301 ASSERT_NE (wrapped_expr, result);
15302 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
15303 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
15304 }
15305
15306 /* Verify that various arithmetic binary operations are folded
15307 correctly. */
15308
15309 static void
15310 test_arithmetic_folding ()
15311 {
15312 tree type = integer_type_node;
15313 tree x = create_tmp_var_raw (type, "x");
15314 tree zero = build_zero_cst (type);
15315 tree one = build_int_cst (type, 1);
15316
15317 /* Addition. */
15318 /* 1 <-- (0 + 1) */
15319 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
15320 one);
15321 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
15322 one);
15323
15324 /* (nonlvalue)x <-- (x + 0) */
15325 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
15326 x);
15327
15328 /* Subtraction. */
15329 /* 0 <-- (x - x) */
15330 assert_binop_folds_to_const (x, MINUS_EXPR, x,
15331 zero);
15332 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
15333 x);
15334
15335 /* Multiplication. */
15336 /* 0 <-- (x * 0) */
15337 assert_binop_folds_to_const (x, MULT_EXPR, zero,
15338 zero);
15339
15340 /* (nonlvalue)x <-- (x * 1) */
15341 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
15342 x);
15343 }
15344
15345 /* Verify that various binary operations on vectors are folded
15346 correctly. */
15347
15348 static void
15349 test_vector_folding ()
15350 {
15351 tree inner_type = integer_type_node;
15352 tree type = build_vector_type (inner_type, 4);
15353 tree zero = build_zero_cst (type);
15354 tree one = build_one_cst (type);
15355 tree index = build_index_vector (type, 0, 1);
15356
15357 /* Verify equality tests that return a scalar boolean result. */
15358 tree res_type = boolean_type_node;
15359 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
15360 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
15361 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
15362 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
15363 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, index, one)));
15364 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
15365 index, one)));
15366 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type,
15367 index, index)));
15368 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
15369 index, index)));
15370 }
15371
15372 /* Verify folding of VEC_DUPLICATE_EXPRs. */
15373
15374 static void
15375 test_vec_duplicate_folding ()
15376 {
15377 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype);
15378 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode);
15379 /* This will be 1 if VEC_MODE isn't a vector mode. */
15380 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode);
15381
15382 tree type = build_vector_type (ssizetype, nunits);
15383 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5));
15384 tree dup5_cst = build_vector_from_val (type, ssize_int (5));
15385 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
15386 }
15387
15388 /* Run all of the selftests within this file. */
15389
15390 void
15391 fold_const_c_tests ()
15392 {
15393 test_arithmetic_folding ();
15394 test_vector_folding ();
15395 test_vec_duplicate_folding ();
15396 }
15397
15398 } // namespace selftest
15399
15400 #endif /* CHECKING_P */