]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/expr.c
re PR fortran/67526 (ICE on missing end parenthesis in substring construct)
[thirdparty/gcc.git] / gcc / fortran / expr.c
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "gfortran.h"
26 #include "arith.h"
27 #include "match.h"
28 #include "target-memory.h" /* for gfc_convert_boz */
29 #include "constructor.h"
30
31
32 /* The following set of functions provide access to gfc_expr* of
33 various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
34
35 There are two functions available elsewhere that provide
36 slightly different flavours of variables. Namely:
37 expr.c (gfc_get_variable_expr)
38 symbol.c (gfc_lval_expr_from_sym)
39 TODO: Merge these functions, if possible. */
40
41 /* Get a new expression node. */
42
43 gfc_expr *
44 gfc_get_expr (void)
45 {
46 gfc_expr *e;
47
48 e = XCNEW (gfc_expr);
49 gfc_clear_ts (&e->ts);
50 e->shape = NULL;
51 e->ref = NULL;
52 e->symtree = NULL;
53 return e;
54 }
55
56
57 /* Get a new expression node that is an array constructor
58 of given type and kind. */
59
60 gfc_expr *
61 gfc_get_array_expr (bt type, int kind, locus *where)
62 {
63 gfc_expr *e;
64
65 e = gfc_get_expr ();
66 e->expr_type = EXPR_ARRAY;
67 e->value.constructor = NULL;
68 e->rank = 1;
69 e->shape = NULL;
70
71 e->ts.type = type;
72 e->ts.kind = kind;
73 if (where)
74 e->where = *where;
75
76 return e;
77 }
78
79
80 /* Get a new expression node that is the NULL expression. */
81
82 gfc_expr *
83 gfc_get_null_expr (locus *where)
84 {
85 gfc_expr *e;
86
87 e = gfc_get_expr ();
88 e->expr_type = EXPR_NULL;
89 e->ts.type = BT_UNKNOWN;
90
91 if (where)
92 e->where = *where;
93
94 return e;
95 }
96
97
98 /* Get a new expression node that is an operator expression node. */
99
100 gfc_expr *
101 gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
102 gfc_expr *op1, gfc_expr *op2)
103 {
104 gfc_expr *e;
105
106 e = gfc_get_expr ();
107 e->expr_type = EXPR_OP;
108 e->value.op.op = op;
109 e->value.op.op1 = op1;
110 e->value.op.op2 = op2;
111
112 if (where)
113 e->where = *where;
114
115 return e;
116 }
117
118
119 /* Get a new expression node that is an structure constructor
120 of given type and kind. */
121
122 gfc_expr *
123 gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
124 {
125 gfc_expr *e;
126
127 e = gfc_get_expr ();
128 e->expr_type = EXPR_STRUCTURE;
129 e->value.constructor = NULL;
130
131 e->ts.type = type;
132 e->ts.kind = kind;
133 if (where)
134 e->where = *where;
135
136 return e;
137 }
138
139
140 /* Get a new expression node that is an constant of given type and kind. */
141
142 gfc_expr *
143 gfc_get_constant_expr (bt type, int kind, locus *where)
144 {
145 gfc_expr *e;
146
147 if (!where)
148 gfc_internal_error ("gfc_get_constant_expr(): locus %<where%> cannot be "
149 "NULL");
150
151 e = gfc_get_expr ();
152
153 e->expr_type = EXPR_CONSTANT;
154 e->ts.type = type;
155 e->ts.kind = kind;
156 e->where = *where;
157
158 switch (type)
159 {
160 case BT_INTEGER:
161 mpz_init (e->value.integer);
162 break;
163
164 case BT_REAL:
165 gfc_set_model_kind (kind);
166 mpfr_init (e->value.real);
167 break;
168
169 case BT_COMPLEX:
170 gfc_set_model_kind (kind);
171 mpc_init2 (e->value.complex, mpfr_get_default_prec());
172 break;
173
174 default:
175 break;
176 }
177
178 return e;
179 }
180
181
182 /* Get a new expression node that is an string constant.
183 If no string is passed, a string of len is allocated,
184 blanked and null-terminated. */
185
186 gfc_expr *
187 gfc_get_character_expr (int kind, locus *where, const char *src, int len)
188 {
189 gfc_expr *e;
190 gfc_char_t *dest;
191
192 if (!src)
193 {
194 dest = gfc_get_wide_string (len + 1);
195 gfc_wide_memset (dest, ' ', len);
196 dest[len] = '\0';
197 }
198 else
199 dest = gfc_char_to_widechar (src);
200
201 e = gfc_get_constant_expr (BT_CHARACTER, kind,
202 where ? where : &gfc_current_locus);
203 e->value.character.string = dest;
204 e->value.character.length = len;
205
206 return e;
207 }
208
209
210 /* Get a new expression node that is an integer constant. */
211
212 gfc_expr *
213 gfc_get_int_expr (int kind, locus *where, int value)
214 {
215 gfc_expr *p;
216 p = gfc_get_constant_expr (BT_INTEGER, kind,
217 where ? where : &gfc_current_locus);
218
219 mpz_set_si (p->value.integer, value);
220
221 return p;
222 }
223
224
225 /* Get a new expression node that is a logical constant. */
226
227 gfc_expr *
228 gfc_get_logical_expr (int kind, locus *where, bool value)
229 {
230 gfc_expr *p;
231 p = gfc_get_constant_expr (BT_LOGICAL, kind,
232 where ? where : &gfc_current_locus);
233
234 p->value.logical = value;
235
236 return p;
237 }
238
239
240 gfc_expr *
241 gfc_get_iokind_expr (locus *where, io_kind k)
242 {
243 gfc_expr *e;
244
245 /* Set the types to something compatible with iokind. This is needed to
246 get through gfc_free_expr later since iokind really has no Basic Type,
247 BT, of its own. */
248
249 e = gfc_get_expr ();
250 e->expr_type = EXPR_CONSTANT;
251 e->ts.type = BT_LOGICAL;
252 e->value.iokind = k;
253 e->where = *where;
254
255 return e;
256 }
257
258
259 /* Given an expression pointer, return a copy of the expression. This
260 subroutine is recursive. */
261
262 gfc_expr *
263 gfc_copy_expr (gfc_expr *p)
264 {
265 gfc_expr *q;
266 gfc_char_t *s;
267 char *c;
268
269 if (p == NULL)
270 return NULL;
271
272 q = gfc_get_expr ();
273 *q = *p;
274
275 switch (q->expr_type)
276 {
277 case EXPR_SUBSTRING:
278 s = gfc_get_wide_string (p->value.character.length + 1);
279 q->value.character.string = s;
280 memcpy (s, p->value.character.string,
281 (p->value.character.length + 1) * sizeof (gfc_char_t));
282 break;
283
284 case EXPR_CONSTANT:
285 /* Copy target representation, if it exists. */
286 if (p->representation.string)
287 {
288 c = XCNEWVEC (char, p->representation.length + 1);
289 q->representation.string = c;
290 memcpy (c, p->representation.string, (p->representation.length + 1));
291 }
292
293 /* Copy the values of any pointer components of p->value. */
294 switch (q->ts.type)
295 {
296 case BT_INTEGER:
297 mpz_init_set (q->value.integer, p->value.integer);
298 break;
299
300 case BT_REAL:
301 gfc_set_model_kind (q->ts.kind);
302 mpfr_init (q->value.real);
303 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
304 break;
305
306 case BT_COMPLEX:
307 gfc_set_model_kind (q->ts.kind);
308 mpc_init2 (q->value.complex, mpfr_get_default_prec());
309 mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
310 break;
311
312 case BT_CHARACTER:
313 if (p->representation.string)
314 q->value.character.string
315 = gfc_char_to_widechar (q->representation.string);
316 else
317 {
318 s = gfc_get_wide_string (p->value.character.length + 1);
319 q->value.character.string = s;
320
321 /* This is the case for the C_NULL_CHAR named constant. */
322 if (p->value.character.length == 0
323 && (p->ts.is_c_interop || p->ts.is_iso_c))
324 {
325 *s = '\0';
326 /* Need to set the length to 1 to make sure the NUL
327 terminator is copied. */
328 q->value.character.length = 1;
329 }
330 else
331 memcpy (s, p->value.character.string,
332 (p->value.character.length + 1) * sizeof (gfc_char_t));
333 }
334 break;
335
336 case BT_HOLLERITH:
337 case BT_LOGICAL:
338 case BT_DERIVED:
339 case BT_CLASS:
340 case BT_ASSUMED:
341 break; /* Already done. */
342
343 case BT_PROCEDURE:
344 case BT_VOID:
345 /* Should never be reached. */
346 case BT_UNKNOWN:
347 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
348 /* Not reached. */
349 }
350
351 break;
352
353 case EXPR_OP:
354 switch (q->value.op.op)
355 {
356 case INTRINSIC_NOT:
357 case INTRINSIC_PARENTHESES:
358 case INTRINSIC_UPLUS:
359 case INTRINSIC_UMINUS:
360 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
361 break;
362
363 default: /* Binary operators. */
364 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
365 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
366 break;
367 }
368
369 break;
370
371 case EXPR_FUNCTION:
372 q->value.function.actual =
373 gfc_copy_actual_arglist (p->value.function.actual);
374 break;
375
376 case EXPR_COMPCALL:
377 case EXPR_PPC:
378 q->value.compcall.actual =
379 gfc_copy_actual_arglist (p->value.compcall.actual);
380 q->value.compcall.tbp = p->value.compcall.tbp;
381 break;
382
383 case EXPR_STRUCTURE:
384 case EXPR_ARRAY:
385 q->value.constructor = gfc_constructor_copy (p->value.constructor);
386 break;
387
388 case EXPR_VARIABLE:
389 case EXPR_NULL:
390 break;
391 }
392
393 q->shape = gfc_copy_shape (p->shape, p->rank);
394
395 q->ref = gfc_copy_ref (p->ref);
396
397 return q;
398 }
399
400
401 void
402 gfc_clear_shape (mpz_t *shape, int rank)
403 {
404 int i;
405
406 for (i = 0; i < rank; i++)
407 mpz_clear (shape[i]);
408 }
409
410
411 void
412 gfc_free_shape (mpz_t **shape, int rank)
413 {
414 if (*shape == NULL)
415 return;
416
417 gfc_clear_shape (*shape, rank);
418 free (*shape);
419 *shape = NULL;
420 }
421
422
423 /* Workhorse function for gfc_free_expr() that frees everything
424 beneath an expression node, but not the node itself. This is
425 useful when we want to simplify a node and replace it with
426 something else or the expression node belongs to another structure. */
427
428 static void
429 free_expr0 (gfc_expr *e)
430 {
431 switch (e->expr_type)
432 {
433 case EXPR_CONSTANT:
434 /* Free any parts of the value that need freeing. */
435 switch (e->ts.type)
436 {
437 case BT_INTEGER:
438 mpz_clear (e->value.integer);
439 break;
440
441 case BT_REAL:
442 mpfr_clear (e->value.real);
443 break;
444
445 case BT_CHARACTER:
446 free (e->value.character.string);
447 break;
448
449 case BT_COMPLEX:
450 mpc_clear (e->value.complex);
451 break;
452
453 default:
454 break;
455 }
456
457 /* Free the representation. */
458 free (e->representation.string);
459
460 break;
461
462 case EXPR_OP:
463 if (e->value.op.op1 != NULL)
464 gfc_free_expr (e->value.op.op1);
465 if (e->value.op.op2 != NULL)
466 gfc_free_expr (e->value.op.op2);
467 break;
468
469 case EXPR_FUNCTION:
470 gfc_free_actual_arglist (e->value.function.actual);
471 break;
472
473 case EXPR_COMPCALL:
474 case EXPR_PPC:
475 gfc_free_actual_arglist (e->value.compcall.actual);
476 break;
477
478 case EXPR_VARIABLE:
479 break;
480
481 case EXPR_ARRAY:
482 case EXPR_STRUCTURE:
483 gfc_constructor_free (e->value.constructor);
484 break;
485
486 case EXPR_SUBSTRING:
487 free (e->value.character.string);
488 break;
489
490 case EXPR_NULL:
491 break;
492
493 default:
494 gfc_internal_error ("free_expr0(): Bad expr type");
495 }
496
497 /* Free a shape array. */
498 gfc_free_shape (&e->shape, e->rank);
499
500 gfc_free_ref_list (e->ref);
501
502 memset (e, '\0', sizeof (gfc_expr));
503 }
504
505
506 /* Free an expression node and everything beneath it. */
507
508 void
509 gfc_free_expr (gfc_expr *e)
510 {
511 if (e == NULL)
512 return;
513 free_expr0 (e);
514 free (e);
515 }
516
517
518 /* Free an argument list and everything below it. */
519
520 void
521 gfc_free_actual_arglist (gfc_actual_arglist *a1)
522 {
523 gfc_actual_arglist *a2;
524
525 while (a1)
526 {
527 a2 = a1->next;
528 gfc_free_expr (a1->expr);
529 free (a1);
530 a1 = a2;
531 }
532 }
533
534
535 /* Copy an arglist structure and all of the arguments. */
536
537 gfc_actual_arglist *
538 gfc_copy_actual_arglist (gfc_actual_arglist *p)
539 {
540 gfc_actual_arglist *head, *tail, *new_arg;
541
542 head = tail = NULL;
543
544 for (; p; p = p->next)
545 {
546 new_arg = gfc_get_actual_arglist ();
547 *new_arg = *p;
548
549 new_arg->expr = gfc_copy_expr (p->expr);
550 new_arg->next = NULL;
551
552 if (head == NULL)
553 head = new_arg;
554 else
555 tail->next = new_arg;
556
557 tail = new_arg;
558 }
559
560 return head;
561 }
562
563
564 /* Free a list of reference structures. */
565
566 void
567 gfc_free_ref_list (gfc_ref *p)
568 {
569 gfc_ref *q;
570 int i;
571
572 for (; p; p = q)
573 {
574 q = p->next;
575
576 switch (p->type)
577 {
578 case REF_ARRAY:
579 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
580 {
581 gfc_free_expr (p->u.ar.start[i]);
582 gfc_free_expr (p->u.ar.end[i]);
583 gfc_free_expr (p->u.ar.stride[i]);
584 }
585
586 break;
587
588 case REF_SUBSTRING:
589 gfc_free_expr (p->u.ss.start);
590 gfc_free_expr (p->u.ss.end);
591 break;
592
593 case REF_COMPONENT:
594 break;
595 }
596
597 free (p);
598 }
599 }
600
601
602 /* Graft the *src expression onto the *dest subexpression. */
603
604 void
605 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
606 {
607 free_expr0 (dest);
608 *dest = *src;
609 free (src);
610 }
611
612
613 /* Try to extract an integer constant from the passed expression node.
614 Returns an error message or NULL if the result is set. It is
615 tempting to generate an error and return true or false, but
616 failure is OK for some callers. */
617
618 const char *
619 gfc_extract_int (gfc_expr *expr, int *result)
620 {
621 if (expr->expr_type != EXPR_CONSTANT)
622 return _("Constant expression required at %C");
623
624 if (expr->ts.type != BT_INTEGER)
625 return _("Integer expression required at %C");
626
627 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
628 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
629 {
630 return _("Integer value too large in expression at %C");
631 }
632
633 *result = (int) mpz_get_si (expr->value.integer);
634
635 return NULL;
636 }
637
638
639 /* Recursively copy a list of reference structures. */
640
641 gfc_ref *
642 gfc_copy_ref (gfc_ref *src)
643 {
644 gfc_array_ref *ar;
645 gfc_ref *dest;
646
647 if (src == NULL)
648 return NULL;
649
650 dest = gfc_get_ref ();
651 dest->type = src->type;
652
653 switch (src->type)
654 {
655 case REF_ARRAY:
656 ar = gfc_copy_array_ref (&src->u.ar);
657 dest->u.ar = *ar;
658 free (ar);
659 break;
660
661 case REF_COMPONENT:
662 dest->u.c = src->u.c;
663 break;
664
665 case REF_SUBSTRING:
666 dest->u.ss = src->u.ss;
667 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
668 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
669 break;
670 }
671
672 dest->next = gfc_copy_ref (src->next);
673
674 return dest;
675 }
676
677
678 /* Detect whether an expression has any vector index array references. */
679
680 int
681 gfc_has_vector_index (gfc_expr *e)
682 {
683 gfc_ref *ref;
684 int i;
685 for (ref = e->ref; ref; ref = ref->next)
686 if (ref->type == REF_ARRAY)
687 for (i = 0; i < ref->u.ar.dimen; i++)
688 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
689 return 1;
690 return 0;
691 }
692
693
694 /* Copy a shape array. */
695
696 mpz_t *
697 gfc_copy_shape (mpz_t *shape, int rank)
698 {
699 mpz_t *new_shape;
700 int n;
701
702 if (shape == NULL)
703 return NULL;
704
705 new_shape = gfc_get_shape (rank);
706
707 for (n = 0; n < rank; n++)
708 mpz_init_set (new_shape[n], shape[n]);
709
710 return new_shape;
711 }
712
713
714 /* Copy a shape array excluding dimension N, where N is an integer
715 constant expression. Dimensions are numbered in Fortran style --
716 starting with ONE.
717
718 So, if the original shape array contains R elements
719 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
720 the result contains R-1 elements:
721 { s1 ... sN-1 sN+1 ... sR-1}
722
723 If anything goes wrong -- N is not a constant, its value is out
724 of range -- or anything else, just returns NULL. */
725
726 mpz_t *
727 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
728 {
729 mpz_t *new_shape, *s;
730 int i, n;
731
732 if (shape == NULL
733 || rank <= 1
734 || dim == NULL
735 || dim->expr_type != EXPR_CONSTANT
736 || dim->ts.type != BT_INTEGER)
737 return NULL;
738
739 n = mpz_get_si (dim->value.integer);
740 n--; /* Convert to zero based index. */
741 if (n < 0 || n >= rank)
742 return NULL;
743
744 s = new_shape = gfc_get_shape (rank - 1);
745
746 for (i = 0; i < rank; i++)
747 {
748 if (i == n)
749 continue;
750 mpz_init_set (*s, shape[i]);
751 s++;
752 }
753
754 return new_shape;
755 }
756
757
758 /* Return the maximum kind of two expressions. In general, higher
759 kind numbers mean more precision for numeric types. */
760
761 int
762 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
763 {
764 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
765 }
766
767
768 /* Returns nonzero if the type is numeric, zero otherwise. */
769
770 static int
771 numeric_type (bt type)
772 {
773 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
774 }
775
776
777 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
778
779 int
780 gfc_numeric_ts (gfc_typespec *ts)
781 {
782 return numeric_type (ts->type);
783 }
784
785
786 /* Return an expression node with an optional argument list attached.
787 A variable number of gfc_expr pointers are strung together in an
788 argument list with a NULL pointer terminating the list. */
789
790 gfc_expr *
791 gfc_build_conversion (gfc_expr *e)
792 {
793 gfc_expr *p;
794
795 p = gfc_get_expr ();
796 p->expr_type = EXPR_FUNCTION;
797 p->symtree = NULL;
798 p->value.function.actual = NULL;
799
800 p->value.function.actual = gfc_get_actual_arglist ();
801 p->value.function.actual->expr = e;
802
803 return p;
804 }
805
806
807 /* Given an expression node with some sort of numeric binary
808 expression, insert type conversions required to make the operands
809 have the same type. Conversion warnings are disabled if wconversion
810 is set to 0.
811
812 The exception is that the operands of an exponential don't have to
813 have the same type. If possible, the base is promoted to the type
814 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
815 1.0**2 stays as it is. */
816
817 void
818 gfc_type_convert_binary (gfc_expr *e, int wconversion)
819 {
820 gfc_expr *op1, *op2;
821
822 op1 = e->value.op.op1;
823 op2 = e->value.op.op2;
824
825 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
826 {
827 gfc_clear_ts (&e->ts);
828 return;
829 }
830
831 /* Kind conversions of same type. */
832 if (op1->ts.type == op2->ts.type)
833 {
834 if (op1->ts.kind == op2->ts.kind)
835 {
836 /* No type conversions. */
837 e->ts = op1->ts;
838 goto done;
839 }
840
841 if (op1->ts.kind > op2->ts.kind)
842 gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
843 else
844 gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
845
846 e->ts = op1->ts;
847 goto done;
848 }
849
850 /* Integer combined with real or complex. */
851 if (op2->ts.type == BT_INTEGER)
852 {
853 e->ts = op1->ts;
854
855 /* Special case for ** operator. */
856 if (e->value.op.op == INTRINSIC_POWER)
857 goto done;
858
859 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
860 goto done;
861 }
862
863 if (op1->ts.type == BT_INTEGER)
864 {
865 e->ts = op2->ts;
866 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
867 goto done;
868 }
869
870 /* Real combined with complex. */
871 e->ts.type = BT_COMPLEX;
872 if (op1->ts.kind > op2->ts.kind)
873 e->ts.kind = op1->ts.kind;
874 else
875 e->ts.kind = op2->ts.kind;
876 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
877 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
878 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
879 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
880
881 done:
882 return;
883 }
884
885
886 /* Function to determine if an expression is constant or not. This
887 function expects that the expression has already been simplified. */
888
889 int
890 gfc_is_constant_expr (gfc_expr *e)
891 {
892 gfc_constructor *c;
893 gfc_actual_arglist *arg;
894 gfc_symbol *sym;
895
896 if (e == NULL)
897 return 1;
898
899 switch (e->expr_type)
900 {
901 case EXPR_OP:
902 return (gfc_is_constant_expr (e->value.op.op1)
903 && (e->value.op.op2 == NULL
904 || gfc_is_constant_expr (e->value.op.op2)));
905
906 case EXPR_VARIABLE:
907 return 0;
908
909 case EXPR_FUNCTION:
910 case EXPR_PPC:
911 case EXPR_COMPCALL:
912 gcc_assert (e->symtree || e->value.function.esym
913 || e->value.function.isym);
914
915 /* Call to intrinsic with at least one argument. */
916 if (e->value.function.isym && e->value.function.actual)
917 {
918 for (arg = e->value.function.actual; arg; arg = arg->next)
919 if (!gfc_is_constant_expr (arg->expr))
920 return 0;
921 }
922
923 /* Specification functions are constant. */
924 /* F95, 7.1.6.2; F2003, 7.1.7 */
925 sym = NULL;
926 if (e->symtree)
927 sym = e->symtree->n.sym;
928 if (e->value.function.esym)
929 sym = e->value.function.esym;
930
931 if (sym
932 && sym->attr.function
933 && sym->attr.pure
934 && !sym->attr.intrinsic
935 && !sym->attr.recursive
936 && sym->attr.proc != PROC_INTERNAL
937 && sym->attr.proc != PROC_ST_FUNCTION
938 && sym->attr.proc != PROC_UNKNOWN
939 && gfc_sym_get_dummy_args (sym) == NULL)
940 return 1;
941
942 if (e->value.function.isym
943 && (e->value.function.isym->elemental
944 || e->value.function.isym->pure
945 || e->value.function.isym->inquiry
946 || e->value.function.isym->transformational))
947 return 1;
948
949 return 0;
950
951 case EXPR_CONSTANT:
952 case EXPR_NULL:
953 return 1;
954
955 case EXPR_SUBSTRING:
956 return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
957 && gfc_is_constant_expr (e->ref->u.ss.end));
958
959 case EXPR_ARRAY:
960 case EXPR_STRUCTURE:
961 c = gfc_constructor_first (e->value.constructor);
962 if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
963 return gfc_constant_ac (e);
964
965 for (; c; c = gfc_constructor_next (c))
966 if (!gfc_is_constant_expr (c->expr))
967 return 0;
968
969 return 1;
970
971
972 default:
973 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
974 return 0;
975 }
976 }
977
978
979 /* Is true if an array reference is followed by a component or substring
980 reference. */
981 bool
982 is_subref_array (gfc_expr * e)
983 {
984 gfc_ref * ref;
985 bool seen_array;
986
987 if (e->expr_type != EXPR_VARIABLE)
988 return false;
989
990 if (e->symtree->n.sym->attr.subref_array_pointer)
991 return true;
992
993 seen_array = false;
994 for (ref = e->ref; ref; ref = ref->next)
995 {
996 if (ref->type == REF_ARRAY
997 && ref->u.ar.type != AR_ELEMENT)
998 seen_array = true;
999
1000 if (seen_array
1001 && ref->type != REF_ARRAY)
1002 return seen_array;
1003 }
1004 return false;
1005 }
1006
1007
1008 /* Try to collapse intrinsic expressions. */
1009
1010 static bool
1011 simplify_intrinsic_op (gfc_expr *p, int type)
1012 {
1013 gfc_intrinsic_op op;
1014 gfc_expr *op1, *op2, *result;
1015
1016 if (p->value.op.op == INTRINSIC_USER)
1017 return true;
1018
1019 op1 = p->value.op.op1;
1020 op2 = p->value.op.op2;
1021 op = p->value.op.op;
1022
1023 if (!gfc_simplify_expr (op1, type))
1024 return false;
1025 if (!gfc_simplify_expr (op2, type))
1026 return false;
1027
1028 if (!gfc_is_constant_expr (op1)
1029 || (op2 != NULL && !gfc_is_constant_expr (op2)))
1030 return true;
1031
1032 /* Rip p apart. */
1033 p->value.op.op1 = NULL;
1034 p->value.op.op2 = NULL;
1035
1036 switch (op)
1037 {
1038 case INTRINSIC_PARENTHESES:
1039 result = gfc_parentheses (op1);
1040 break;
1041
1042 case INTRINSIC_UPLUS:
1043 result = gfc_uplus (op1);
1044 break;
1045
1046 case INTRINSIC_UMINUS:
1047 result = gfc_uminus (op1);
1048 break;
1049
1050 case INTRINSIC_PLUS:
1051 result = gfc_add (op1, op2);
1052 break;
1053
1054 case INTRINSIC_MINUS:
1055 result = gfc_subtract (op1, op2);
1056 break;
1057
1058 case INTRINSIC_TIMES:
1059 result = gfc_multiply (op1, op2);
1060 break;
1061
1062 case INTRINSIC_DIVIDE:
1063 result = gfc_divide (op1, op2);
1064 break;
1065
1066 case INTRINSIC_POWER:
1067 result = gfc_power (op1, op2);
1068 break;
1069
1070 case INTRINSIC_CONCAT:
1071 result = gfc_concat (op1, op2);
1072 break;
1073
1074 case INTRINSIC_EQ:
1075 case INTRINSIC_EQ_OS:
1076 result = gfc_eq (op1, op2, op);
1077 break;
1078
1079 case INTRINSIC_NE:
1080 case INTRINSIC_NE_OS:
1081 result = gfc_ne (op1, op2, op);
1082 break;
1083
1084 case INTRINSIC_GT:
1085 case INTRINSIC_GT_OS:
1086 result = gfc_gt (op1, op2, op);
1087 break;
1088
1089 case INTRINSIC_GE:
1090 case INTRINSIC_GE_OS:
1091 result = gfc_ge (op1, op2, op);
1092 break;
1093
1094 case INTRINSIC_LT:
1095 case INTRINSIC_LT_OS:
1096 result = gfc_lt (op1, op2, op);
1097 break;
1098
1099 case INTRINSIC_LE:
1100 case INTRINSIC_LE_OS:
1101 result = gfc_le (op1, op2, op);
1102 break;
1103
1104 case INTRINSIC_NOT:
1105 result = gfc_not (op1);
1106 break;
1107
1108 case INTRINSIC_AND:
1109 result = gfc_and (op1, op2);
1110 break;
1111
1112 case INTRINSIC_OR:
1113 result = gfc_or (op1, op2);
1114 break;
1115
1116 case INTRINSIC_EQV:
1117 result = gfc_eqv (op1, op2);
1118 break;
1119
1120 case INTRINSIC_NEQV:
1121 result = gfc_neqv (op1, op2);
1122 break;
1123
1124 default:
1125 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
1126 }
1127
1128 if (result == NULL)
1129 {
1130 gfc_free_expr (op1);
1131 gfc_free_expr (op2);
1132 return false;
1133 }
1134
1135 result->rank = p->rank;
1136 result->where = p->where;
1137 gfc_replace_expr (p, result);
1138
1139 return true;
1140 }
1141
1142
1143 /* Subroutine to simplify constructor expressions. Mutually recursive
1144 with gfc_simplify_expr(). */
1145
1146 static bool
1147 simplify_constructor (gfc_constructor_base base, int type)
1148 {
1149 gfc_constructor *c;
1150 gfc_expr *p;
1151
1152 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1153 {
1154 if (c->iterator
1155 && (!gfc_simplify_expr(c->iterator->start, type)
1156 || !gfc_simplify_expr (c->iterator->end, type)
1157 || !gfc_simplify_expr (c->iterator->step, type)))
1158 return false;
1159
1160 if (c->expr)
1161 {
1162 /* Try and simplify a copy. Replace the original if successful
1163 but keep going through the constructor at all costs. Not
1164 doing so can make a dog's dinner of complicated things. */
1165 p = gfc_copy_expr (c->expr);
1166
1167 if (!gfc_simplify_expr (p, type))
1168 {
1169 gfc_free_expr (p);
1170 continue;
1171 }
1172
1173 gfc_replace_expr (c->expr, p);
1174 }
1175 }
1176
1177 return true;
1178 }
1179
1180
1181 /* Pull a single array element out of an array constructor. */
1182
1183 static bool
1184 find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
1185 gfc_constructor **rval)
1186 {
1187 unsigned long nelemen;
1188 int i;
1189 mpz_t delta;
1190 mpz_t offset;
1191 mpz_t span;
1192 mpz_t tmp;
1193 gfc_constructor *cons;
1194 gfc_expr *e;
1195 bool t;
1196
1197 t = true;
1198 e = NULL;
1199
1200 mpz_init_set_ui (offset, 0);
1201 mpz_init (delta);
1202 mpz_init (tmp);
1203 mpz_init_set_ui (span, 1);
1204 for (i = 0; i < ar->dimen; i++)
1205 {
1206 if (!gfc_reduce_init_expr (ar->as->lower[i])
1207 || !gfc_reduce_init_expr (ar->as->upper[i]))
1208 {
1209 t = false;
1210 cons = NULL;
1211 goto depart;
1212 }
1213
1214 e = ar->start[i];
1215 if (e->expr_type != EXPR_CONSTANT)
1216 {
1217 cons = NULL;
1218 goto depart;
1219 }
1220
1221 gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
1222 && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
1223
1224 /* Check the bounds. */
1225 if ((ar->as->upper[i]
1226 && mpz_cmp (e->value.integer,
1227 ar->as->upper[i]->value.integer) > 0)
1228 || (mpz_cmp (e->value.integer,
1229 ar->as->lower[i]->value.integer) < 0))
1230 {
1231 gfc_error ("Index in dimension %d is out of bounds "
1232 "at %L", i + 1, &ar->c_where[i]);
1233 cons = NULL;
1234 t = false;
1235 goto depart;
1236 }
1237
1238 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1239 mpz_mul (delta, delta, span);
1240 mpz_add (offset, offset, delta);
1241
1242 mpz_set_ui (tmp, 1);
1243 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1244 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1245 mpz_mul (span, span, tmp);
1246 }
1247
1248 for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
1249 cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
1250 {
1251 if (cons->iterator)
1252 {
1253 cons = NULL;
1254 goto depart;
1255 }
1256 }
1257
1258 depart:
1259 mpz_clear (delta);
1260 mpz_clear (offset);
1261 mpz_clear (span);
1262 mpz_clear (tmp);
1263 *rval = cons;
1264 return t;
1265 }
1266
1267
1268 /* Find a component of a structure constructor. */
1269
1270 static gfc_constructor *
1271 find_component_ref (gfc_constructor_base base, gfc_ref *ref)
1272 {
1273 gfc_component *pick = ref->u.c.component;
1274 gfc_constructor *c = gfc_constructor_first (base);
1275
1276 gfc_symbol *dt = ref->u.c.sym;
1277 int ext = dt->attr.extension;
1278
1279 /* For extended types, check if the desired component is in one of the
1280 * parent types. */
1281 while (ext > 0 && gfc_find_component (dt->components->ts.u.derived,
1282 pick->name, true, true))
1283 {
1284 dt = dt->components->ts.u.derived;
1285 c = gfc_constructor_first (c->expr->value.constructor);
1286 ext--;
1287 }
1288
1289 gfc_component *comp = dt->components;
1290 while (comp != pick)
1291 {
1292 comp = comp->next;
1293 c = gfc_constructor_next (c);
1294 }
1295
1296 return c;
1297 }
1298
1299
1300 /* Replace an expression with the contents of a constructor, removing
1301 the subobject reference in the process. */
1302
1303 static void
1304 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1305 {
1306 gfc_expr *e;
1307
1308 if (cons)
1309 {
1310 e = cons->expr;
1311 cons->expr = NULL;
1312 }
1313 else
1314 e = gfc_copy_expr (p);
1315 e->ref = p->ref->next;
1316 p->ref->next = NULL;
1317 gfc_replace_expr (p, e);
1318 }
1319
1320
1321 /* Pull an array section out of an array constructor. */
1322
1323 static bool
1324 find_array_section (gfc_expr *expr, gfc_ref *ref)
1325 {
1326 int idx;
1327 int rank;
1328 int d;
1329 int shape_i;
1330 int limit;
1331 long unsigned one = 1;
1332 bool incr_ctr;
1333 mpz_t start[GFC_MAX_DIMENSIONS];
1334 mpz_t end[GFC_MAX_DIMENSIONS];
1335 mpz_t stride[GFC_MAX_DIMENSIONS];
1336 mpz_t delta[GFC_MAX_DIMENSIONS];
1337 mpz_t ctr[GFC_MAX_DIMENSIONS];
1338 mpz_t delta_mpz;
1339 mpz_t tmp_mpz;
1340 mpz_t nelts;
1341 mpz_t ptr;
1342 gfc_constructor_base base;
1343 gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
1344 gfc_expr *begin;
1345 gfc_expr *finish;
1346 gfc_expr *step;
1347 gfc_expr *upper;
1348 gfc_expr *lower;
1349 bool t;
1350
1351 t = true;
1352
1353 base = expr->value.constructor;
1354 expr->value.constructor = NULL;
1355
1356 rank = ref->u.ar.as->rank;
1357
1358 if (expr->shape == NULL)
1359 expr->shape = gfc_get_shape (rank);
1360
1361 mpz_init_set_ui (delta_mpz, one);
1362 mpz_init_set_ui (nelts, one);
1363 mpz_init (tmp_mpz);
1364
1365 /* Do the initialization now, so that we can cleanup without
1366 keeping track of where we were. */
1367 for (d = 0; d < rank; d++)
1368 {
1369 mpz_init (delta[d]);
1370 mpz_init (start[d]);
1371 mpz_init (end[d]);
1372 mpz_init (ctr[d]);
1373 mpz_init (stride[d]);
1374 vecsub[d] = NULL;
1375 }
1376
1377 /* Build the counters to clock through the array reference. */
1378 shape_i = 0;
1379 for (d = 0; d < rank; d++)
1380 {
1381 /* Make this stretch of code easier on the eye! */
1382 begin = ref->u.ar.start[d];
1383 finish = ref->u.ar.end[d];
1384 step = ref->u.ar.stride[d];
1385 lower = ref->u.ar.as->lower[d];
1386 upper = ref->u.ar.as->upper[d];
1387
1388 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1389 {
1390 gfc_constructor *ci;
1391 gcc_assert (begin);
1392
1393 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1394 {
1395 t = false;
1396 goto cleanup;
1397 }
1398
1399 gcc_assert (begin->rank == 1);
1400 /* Zero-sized arrays have no shape and no elements, stop early. */
1401 if (!begin->shape)
1402 {
1403 mpz_init_set_ui (nelts, 0);
1404 break;
1405 }
1406
1407 vecsub[d] = gfc_constructor_first (begin->value.constructor);
1408 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1409 mpz_mul (nelts, nelts, begin->shape[0]);
1410 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1411
1412 /* Check bounds. */
1413 for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
1414 {
1415 if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
1416 || mpz_cmp (ci->expr->value.integer,
1417 lower->value.integer) < 0)
1418 {
1419 gfc_error ("index in dimension %d is out of bounds "
1420 "at %L", d + 1, &ref->u.ar.c_where[d]);
1421 t = false;
1422 goto cleanup;
1423 }
1424 }
1425 }
1426 else
1427 {
1428 if ((begin && begin->expr_type != EXPR_CONSTANT)
1429 || (finish && finish->expr_type != EXPR_CONSTANT)
1430 || (step && step->expr_type != EXPR_CONSTANT))
1431 {
1432 t = false;
1433 goto cleanup;
1434 }
1435
1436 /* Obtain the stride. */
1437 if (step)
1438 mpz_set (stride[d], step->value.integer);
1439 else
1440 mpz_set_ui (stride[d], one);
1441
1442 if (mpz_cmp_ui (stride[d], 0) == 0)
1443 mpz_set_ui (stride[d], one);
1444
1445 /* Obtain the start value for the index. */
1446 if (begin)
1447 mpz_set (start[d], begin->value.integer);
1448 else
1449 mpz_set (start[d], lower->value.integer);
1450
1451 mpz_set (ctr[d], start[d]);
1452
1453 /* Obtain the end value for the index. */
1454 if (finish)
1455 mpz_set (end[d], finish->value.integer);
1456 else
1457 mpz_set (end[d], upper->value.integer);
1458
1459 /* Separate 'if' because elements sometimes arrive with
1460 non-null end. */
1461 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1462 mpz_set (end [d], begin->value.integer);
1463
1464 /* Check the bounds. */
1465 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1466 || mpz_cmp (end[d], upper->value.integer) > 0
1467 || mpz_cmp (ctr[d], lower->value.integer) < 0
1468 || mpz_cmp (end[d], lower->value.integer) < 0)
1469 {
1470 gfc_error ("index in dimension %d is out of bounds "
1471 "at %L", d + 1, &ref->u.ar.c_where[d]);
1472 t = false;
1473 goto cleanup;
1474 }
1475
1476 /* Calculate the number of elements and the shape. */
1477 mpz_set (tmp_mpz, stride[d]);
1478 mpz_add (tmp_mpz, end[d], tmp_mpz);
1479 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1480 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1481 mpz_mul (nelts, nelts, tmp_mpz);
1482
1483 /* An element reference reduces the rank of the expression; don't
1484 add anything to the shape array. */
1485 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1486 mpz_set (expr->shape[shape_i++], tmp_mpz);
1487 }
1488
1489 /* Calculate the 'stride' (=delta) for conversion of the
1490 counter values into the index along the constructor. */
1491 mpz_set (delta[d], delta_mpz);
1492 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1493 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1494 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1495 }
1496
1497 mpz_init (ptr);
1498 cons = gfc_constructor_first (base);
1499
1500 /* Now clock through the array reference, calculating the index in
1501 the source constructor and transferring the elements to the new
1502 constructor. */
1503 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1504 {
1505 mpz_init_set_ui (ptr, 0);
1506
1507 incr_ctr = true;
1508 for (d = 0; d < rank; d++)
1509 {
1510 mpz_set (tmp_mpz, ctr[d]);
1511 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1512 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1513 mpz_add (ptr, ptr, tmp_mpz);
1514
1515 if (!incr_ctr) continue;
1516
1517 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1518 {
1519 gcc_assert(vecsub[d]);
1520
1521 if (!gfc_constructor_next (vecsub[d]))
1522 vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
1523 else
1524 {
1525 vecsub[d] = gfc_constructor_next (vecsub[d]);
1526 incr_ctr = false;
1527 }
1528 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1529 }
1530 else
1531 {
1532 mpz_add (ctr[d], ctr[d], stride[d]);
1533
1534 if (mpz_cmp_ui (stride[d], 0) > 0
1535 ? mpz_cmp (ctr[d], end[d]) > 0
1536 : mpz_cmp (ctr[d], end[d]) < 0)
1537 mpz_set (ctr[d], start[d]);
1538 else
1539 incr_ctr = false;
1540 }
1541 }
1542
1543 limit = mpz_get_ui (ptr);
1544 if (limit >= flag_max_array_constructor)
1545 {
1546 gfc_error ("The number of elements in the array constructor "
1547 "at %L requires an increase of the allowed %d "
1548 "upper limit. See -fmax-array-constructor "
1549 "option", &expr->where, flag_max_array_constructor);
1550 return false;
1551 }
1552
1553 cons = gfc_constructor_lookup (base, limit);
1554 gcc_assert (cons);
1555 gfc_constructor_append_expr (&expr->value.constructor,
1556 gfc_copy_expr (cons->expr), NULL);
1557 }
1558
1559 mpz_clear (ptr);
1560
1561 cleanup:
1562
1563 mpz_clear (delta_mpz);
1564 mpz_clear (tmp_mpz);
1565 mpz_clear (nelts);
1566 for (d = 0; d < rank; d++)
1567 {
1568 mpz_clear (delta[d]);
1569 mpz_clear (start[d]);
1570 mpz_clear (end[d]);
1571 mpz_clear (ctr[d]);
1572 mpz_clear (stride[d]);
1573 }
1574 gfc_constructor_free (base);
1575 return t;
1576 }
1577
1578 /* Pull a substring out of an expression. */
1579
1580 static bool
1581 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1582 {
1583 int end;
1584 int start;
1585 int length;
1586 gfc_char_t *chr;
1587
1588 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1589 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1590 return false;
1591
1592 *newp = gfc_copy_expr (p);
1593 free ((*newp)->value.character.string);
1594
1595 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1596 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1597 length = end - start + 1;
1598
1599 chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
1600 (*newp)->value.character.length = length;
1601 memcpy (chr, &p->value.character.string[start - 1],
1602 length * sizeof (gfc_char_t));
1603 chr[length] = '\0';
1604 return true;
1605 }
1606
1607
1608
1609 /* Simplify a subobject reference of a constructor. This occurs when
1610 parameter variable values are substituted. */
1611
1612 static bool
1613 simplify_const_ref (gfc_expr *p)
1614 {
1615 gfc_constructor *cons, *c;
1616 gfc_expr *newp;
1617 gfc_ref *last_ref;
1618
1619 while (p->ref)
1620 {
1621 switch (p->ref->type)
1622 {
1623 case REF_ARRAY:
1624 switch (p->ref->u.ar.type)
1625 {
1626 case AR_ELEMENT:
1627 /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
1628 will generate this. */
1629 if (p->expr_type != EXPR_ARRAY)
1630 {
1631 remove_subobject_ref (p, NULL);
1632 break;
1633 }
1634 if (!find_array_element (p->value.constructor, &p->ref->u.ar, &cons))
1635 return false;
1636
1637 if (!cons)
1638 return true;
1639
1640 remove_subobject_ref (p, cons);
1641 break;
1642
1643 case AR_SECTION:
1644 if (!find_array_section (p, p->ref))
1645 return false;
1646 p->ref->u.ar.type = AR_FULL;
1647
1648 /* Fall through. */
1649
1650 case AR_FULL:
1651 if (p->ref->next != NULL
1652 && (p->ts.type == BT_CHARACTER || p->ts.type == BT_DERIVED))
1653 {
1654 for (c = gfc_constructor_first (p->value.constructor);
1655 c; c = gfc_constructor_next (c))
1656 {
1657 c->expr->ref = gfc_copy_ref (p->ref->next);
1658 if (!simplify_const_ref (c->expr))
1659 return false;
1660 }
1661
1662 if (p->ts.type == BT_DERIVED
1663 && p->ref->next
1664 && (c = gfc_constructor_first (p->value.constructor)))
1665 {
1666 /* There may have been component references. */
1667 p->ts = c->expr->ts;
1668 }
1669
1670 last_ref = p->ref;
1671 for (; last_ref->next; last_ref = last_ref->next) {};
1672
1673 if (p->ts.type == BT_CHARACTER
1674 && last_ref->type == REF_SUBSTRING)
1675 {
1676 /* If this is a CHARACTER array and we possibly took
1677 a substring out of it, update the type-spec's
1678 character length according to the first element
1679 (as all should have the same length). */
1680 int string_len;
1681 if ((c = gfc_constructor_first (p->value.constructor)))
1682 {
1683 const gfc_expr* first = c->expr;
1684 gcc_assert (first->expr_type == EXPR_CONSTANT);
1685 gcc_assert (first->ts.type == BT_CHARACTER);
1686 string_len = first->value.character.length;
1687 }
1688 else
1689 string_len = 0;
1690
1691 if (!p->ts.u.cl)
1692 p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
1693 NULL);
1694 else
1695 gfc_free_expr (p->ts.u.cl->length);
1696
1697 p->ts.u.cl->length
1698 = gfc_get_int_expr (gfc_default_integer_kind,
1699 NULL, string_len);
1700 }
1701 }
1702 gfc_free_ref_list (p->ref);
1703 p->ref = NULL;
1704 break;
1705
1706 default:
1707 return true;
1708 }
1709
1710 break;
1711
1712 case REF_COMPONENT:
1713 cons = find_component_ref (p->value.constructor, p->ref);
1714 remove_subobject_ref (p, cons);
1715 break;
1716
1717 case REF_SUBSTRING:
1718 if (!find_substring_ref (p, &newp))
1719 return false;
1720
1721 gfc_replace_expr (p, newp);
1722 gfc_free_ref_list (p->ref);
1723 p->ref = NULL;
1724 break;
1725 }
1726 }
1727
1728 return true;
1729 }
1730
1731
1732 /* Simplify a chain of references. */
1733
1734 static bool
1735 simplify_ref_chain (gfc_ref *ref, int type)
1736 {
1737 int n;
1738
1739 for (; ref; ref = ref->next)
1740 {
1741 switch (ref->type)
1742 {
1743 case REF_ARRAY:
1744 for (n = 0; n < ref->u.ar.dimen; n++)
1745 {
1746 if (!gfc_simplify_expr (ref->u.ar.start[n], type))
1747 return false;
1748 if (!gfc_simplify_expr (ref->u.ar.end[n], type))
1749 return false;
1750 if (!gfc_simplify_expr (ref->u.ar.stride[n], type))
1751 return false;
1752 }
1753 break;
1754
1755 case REF_SUBSTRING:
1756 if (!gfc_simplify_expr (ref->u.ss.start, type))
1757 return false;
1758 if (!gfc_simplify_expr (ref->u.ss.end, type))
1759 return false;
1760 break;
1761
1762 default:
1763 break;
1764 }
1765 }
1766 return true;
1767 }
1768
1769
1770 /* Try to substitute the value of a parameter variable. */
1771
1772 static bool
1773 simplify_parameter_variable (gfc_expr *p, int type)
1774 {
1775 gfc_expr *e;
1776 bool t;
1777
1778 e = gfc_copy_expr (p->symtree->n.sym->value);
1779 if (e == NULL)
1780 return false;
1781
1782 e->rank = p->rank;
1783
1784 /* Do not copy subobject refs for constant. */
1785 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1786 e->ref = gfc_copy_ref (p->ref);
1787 t = gfc_simplify_expr (e, type);
1788
1789 /* Only use the simplification if it eliminated all subobject references. */
1790 if (t && !e->ref)
1791 gfc_replace_expr (p, e);
1792 else
1793 gfc_free_expr (e);
1794
1795 return t;
1796 }
1797
1798 /* Given an expression, simplify it by collapsing constant
1799 expressions. Most simplification takes place when the expression
1800 tree is being constructed. If an intrinsic function is simplified
1801 at some point, we get called again to collapse the result against
1802 other constants.
1803
1804 We work by recursively simplifying expression nodes, simplifying
1805 intrinsic functions where possible, which can lead to further
1806 constant collapsing. If an operator has constant operand(s), we
1807 rip the expression apart, and rebuild it, hoping that it becomes
1808 something simpler.
1809
1810 The expression type is defined for:
1811 0 Basic expression parsing
1812 1 Simplifying array constructors -- will substitute
1813 iterator values.
1814 Returns false on error, true otherwise.
1815 NOTE: Will return true even if the expression can not be simplified. */
1816
1817 bool
1818 gfc_simplify_expr (gfc_expr *p, int type)
1819 {
1820 gfc_actual_arglist *ap;
1821
1822 if (p == NULL)
1823 return true;
1824
1825 switch (p->expr_type)
1826 {
1827 case EXPR_CONSTANT:
1828 case EXPR_NULL:
1829 break;
1830
1831 case EXPR_FUNCTION:
1832 for (ap = p->value.function.actual; ap; ap = ap->next)
1833 if (!gfc_simplify_expr (ap->expr, type))
1834 return false;
1835
1836 if (p->value.function.isym != NULL
1837 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1838 return false;
1839
1840 break;
1841
1842 case EXPR_SUBSTRING:
1843 if (!simplify_ref_chain (p->ref, type))
1844 return false;
1845
1846 if (gfc_is_constant_expr (p))
1847 {
1848 gfc_char_t *s;
1849 int start, end;
1850
1851 start = 0;
1852 if (p->ref && p->ref->u.ss.start)
1853 {
1854 gfc_extract_int (p->ref->u.ss.start, &start);
1855 start--; /* Convert from one-based to zero-based. */
1856 }
1857
1858 end = p->value.character.length;
1859 if (p->ref && p->ref->u.ss.end)
1860 gfc_extract_int (p->ref->u.ss.end, &end);
1861
1862 if (end < start)
1863 end = start;
1864
1865 s = gfc_get_wide_string (end - start + 2);
1866 memcpy (s, p->value.character.string + start,
1867 (end - start) * sizeof (gfc_char_t));
1868 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1869 free (p->value.character.string);
1870 p->value.character.string = s;
1871 p->value.character.length = end - start;
1872 p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1873 p->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
1874 NULL,
1875 p->value.character.length);
1876 gfc_free_ref_list (p->ref);
1877 p->ref = NULL;
1878 p->expr_type = EXPR_CONSTANT;
1879 }
1880 break;
1881
1882 case EXPR_OP:
1883 if (!simplify_intrinsic_op (p, type))
1884 return false;
1885 break;
1886
1887 case EXPR_VARIABLE:
1888 /* Only substitute array parameter variables if we are in an
1889 initialization expression, or we want a subsection. */
1890 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1891 && (gfc_init_expr_flag || p->ref
1892 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1893 {
1894 if (!simplify_parameter_variable (p, type))
1895 return false;
1896 break;
1897 }
1898
1899 if (type == 1)
1900 {
1901 gfc_simplify_iterator_var (p);
1902 }
1903
1904 /* Simplify subcomponent references. */
1905 if (!simplify_ref_chain (p->ref, type))
1906 return false;
1907
1908 break;
1909
1910 case EXPR_STRUCTURE:
1911 case EXPR_ARRAY:
1912 if (!simplify_ref_chain (p->ref, type))
1913 return false;
1914
1915 if (!simplify_constructor (p->value.constructor, type))
1916 return false;
1917
1918 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1919 && p->ref->u.ar.type == AR_FULL)
1920 gfc_expand_constructor (p, false);
1921
1922 if (!simplify_const_ref (p))
1923 return false;
1924
1925 break;
1926
1927 case EXPR_COMPCALL:
1928 case EXPR_PPC:
1929 break;
1930 }
1931
1932 return true;
1933 }
1934
1935
1936 /* Returns the type of an expression with the exception that iterator
1937 variables are automatically integers no matter what else they may
1938 be declared as. */
1939
1940 static bt
1941 et0 (gfc_expr *e)
1942 {
1943 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e))
1944 return BT_INTEGER;
1945
1946 return e->ts.type;
1947 }
1948
1949
1950 /* Scalarize an expression for an elemental intrinsic call. */
1951
1952 static bool
1953 scalarize_intrinsic_call (gfc_expr *e)
1954 {
1955 gfc_actual_arglist *a, *b;
1956 gfc_constructor_base ctor;
1957 gfc_constructor *args[5];
1958 gfc_constructor *ci, *new_ctor;
1959 gfc_expr *expr, *old;
1960 int n, i, rank[5], array_arg;
1961
1962 /* Find which, if any, arguments are arrays. Assume that the old
1963 expression carries the type information and that the first arg
1964 that is an array expression carries all the shape information.*/
1965 n = array_arg = 0;
1966 a = e->value.function.actual;
1967 for (; a; a = a->next)
1968 {
1969 n++;
1970 if (!a->expr || a->expr->expr_type != EXPR_ARRAY)
1971 continue;
1972 array_arg = n;
1973 expr = gfc_copy_expr (a->expr);
1974 break;
1975 }
1976
1977 if (!array_arg)
1978 return false;
1979
1980 old = gfc_copy_expr (e);
1981
1982 gfc_constructor_free (expr->value.constructor);
1983 expr->value.constructor = NULL;
1984 expr->ts = old->ts;
1985 expr->where = old->where;
1986 expr->expr_type = EXPR_ARRAY;
1987
1988 /* Copy the array argument constructors into an array, with nulls
1989 for the scalars. */
1990 n = 0;
1991 a = old->value.function.actual;
1992 for (; a; a = a->next)
1993 {
1994 /* Check that this is OK for an initialization expression. */
1995 if (a->expr && !gfc_check_init_expr (a->expr))
1996 goto cleanup;
1997
1998 rank[n] = 0;
1999 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
2000 {
2001 rank[n] = a->expr->rank;
2002 ctor = a->expr->symtree->n.sym->value->value.constructor;
2003 args[n] = gfc_constructor_first (ctor);
2004 }
2005 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
2006 {
2007 if (a->expr->rank)
2008 rank[n] = a->expr->rank;
2009 else
2010 rank[n] = 1;
2011 ctor = gfc_constructor_copy (a->expr->value.constructor);
2012 args[n] = gfc_constructor_first (ctor);
2013 }
2014 else
2015 args[n] = NULL;
2016
2017 n++;
2018 }
2019
2020
2021 /* Using the array argument as the master, step through the array
2022 calling the function for each element and advancing the array
2023 constructors together. */
2024 for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
2025 {
2026 new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
2027 gfc_copy_expr (old), NULL);
2028
2029 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
2030 a = NULL;
2031 b = old->value.function.actual;
2032 for (i = 0; i < n; i++)
2033 {
2034 if (a == NULL)
2035 new_ctor->expr->value.function.actual
2036 = a = gfc_get_actual_arglist ();
2037 else
2038 {
2039 a->next = gfc_get_actual_arglist ();
2040 a = a->next;
2041 }
2042
2043 if (args[i])
2044 a->expr = gfc_copy_expr (args[i]->expr);
2045 else
2046 a->expr = gfc_copy_expr (b->expr);
2047
2048 b = b->next;
2049 }
2050
2051 /* Simplify the function calls. If the simplification fails, the
2052 error will be flagged up down-stream or the library will deal
2053 with it. */
2054 gfc_simplify_expr (new_ctor->expr, 0);
2055
2056 for (i = 0; i < n; i++)
2057 if (args[i])
2058 args[i] = gfc_constructor_next (args[i]);
2059
2060 for (i = 1; i < n; i++)
2061 if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
2062 || (args[i] == NULL && args[array_arg - 1] != NULL)))
2063 goto compliance;
2064 }
2065
2066 free_expr0 (e);
2067 *e = *expr;
2068 /* Free "expr" but not the pointers it contains. */
2069 free (expr);
2070 gfc_free_expr (old);
2071 return true;
2072
2073 compliance:
2074 gfc_error_now ("elemental function arguments at %C are not compliant");
2075
2076 cleanup:
2077 gfc_free_expr (expr);
2078 gfc_free_expr (old);
2079 return false;
2080 }
2081
2082
2083 static bool
2084 check_intrinsic_op (gfc_expr *e, bool (*check_function) (gfc_expr *))
2085 {
2086 gfc_expr *op1 = e->value.op.op1;
2087 gfc_expr *op2 = e->value.op.op2;
2088
2089 if (!(*check_function)(op1))
2090 return false;
2091
2092 switch (e->value.op.op)
2093 {
2094 case INTRINSIC_UPLUS:
2095 case INTRINSIC_UMINUS:
2096 if (!numeric_type (et0 (op1)))
2097 goto not_numeric;
2098 break;
2099
2100 case INTRINSIC_EQ:
2101 case INTRINSIC_EQ_OS:
2102 case INTRINSIC_NE:
2103 case INTRINSIC_NE_OS:
2104 case INTRINSIC_GT:
2105 case INTRINSIC_GT_OS:
2106 case INTRINSIC_GE:
2107 case INTRINSIC_GE_OS:
2108 case INTRINSIC_LT:
2109 case INTRINSIC_LT_OS:
2110 case INTRINSIC_LE:
2111 case INTRINSIC_LE_OS:
2112 if (!(*check_function)(op2))
2113 return false;
2114
2115 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
2116 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
2117 {
2118 gfc_error ("Numeric or CHARACTER operands are required in "
2119 "expression at %L", &e->where);
2120 return false;
2121 }
2122 break;
2123
2124 case INTRINSIC_PLUS:
2125 case INTRINSIC_MINUS:
2126 case INTRINSIC_TIMES:
2127 case INTRINSIC_DIVIDE:
2128 case INTRINSIC_POWER:
2129 if (!(*check_function)(op2))
2130 return false;
2131
2132 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
2133 goto not_numeric;
2134
2135 break;
2136
2137 case INTRINSIC_CONCAT:
2138 if (!(*check_function)(op2))
2139 return false;
2140
2141 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
2142 {
2143 gfc_error ("Concatenation operator in expression at %L "
2144 "must have two CHARACTER operands", &op1->where);
2145 return false;
2146 }
2147
2148 if (op1->ts.kind != op2->ts.kind)
2149 {
2150 gfc_error ("Concat operator at %L must concatenate strings of the "
2151 "same kind", &e->where);
2152 return false;
2153 }
2154
2155 break;
2156
2157 case INTRINSIC_NOT:
2158 if (et0 (op1) != BT_LOGICAL)
2159 {
2160 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
2161 "operand", &op1->where);
2162 return false;
2163 }
2164
2165 break;
2166
2167 case INTRINSIC_AND:
2168 case INTRINSIC_OR:
2169 case INTRINSIC_EQV:
2170 case INTRINSIC_NEQV:
2171 if (!(*check_function)(op2))
2172 return false;
2173
2174 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
2175 {
2176 gfc_error ("LOGICAL operands are required in expression at %L",
2177 &e->where);
2178 return false;
2179 }
2180
2181 break;
2182
2183 case INTRINSIC_PARENTHESES:
2184 break;
2185
2186 default:
2187 gfc_error ("Only intrinsic operators can be used in expression at %L",
2188 &e->where);
2189 return false;
2190 }
2191
2192 return true;
2193
2194 not_numeric:
2195 gfc_error ("Numeric operands are required in expression at %L", &e->where);
2196
2197 return false;
2198 }
2199
2200 /* F2003, 7.1.7 (3): In init expression, allocatable components
2201 must not be data-initialized. */
2202 static bool
2203 check_alloc_comp_init (gfc_expr *e)
2204 {
2205 gfc_component *comp;
2206 gfc_constructor *ctor;
2207
2208 gcc_assert (e->expr_type == EXPR_STRUCTURE);
2209 gcc_assert (e->ts.type == BT_DERIVED);
2210
2211 for (comp = e->ts.u.derived->components,
2212 ctor = gfc_constructor_first (e->value.constructor);
2213 comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
2214 {
2215 if (comp->attr.allocatable && ctor->expr
2216 && ctor->expr->expr_type != EXPR_NULL)
2217 {
2218 gfc_error ("Invalid initialization expression for ALLOCATABLE "
2219 "component %qs in structure constructor at %L",
2220 comp->name, &ctor->expr->where);
2221 return false;
2222 }
2223 }
2224
2225 return true;
2226 }
2227
2228 static match
2229 check_init_expr_arguments (gfc_expr *e)
2230 {
2231 gfc_actual_arglist *ap;
2232
2233 for (ap = e->value.function.actual; ap; ap = ap->next)
2234 if (!gfc_check_init_expr (ap->expr))
2235 return MATCH_ERROR;
2236
2237 return MATCH_YES;
2238 }
2239
2240 static bool check_restricted (gfc_expr *);
2241
2242 /* F95, 7.1.6.1, Initialization expressions, (7)
2243 F2003, 7.1.7 Initialization expression, (8) */
2244
2245 static match
2246 check_inquiry (gfc_expr *e, int not_restricted)
2247 {
2248 const char *name;
2249 const char *const *functions;
2250
2251 static const char *const inquiry_func_f95[] = {
2252 "lbound", "shape", "size", "ubound",
2253 "bit_size", "len", "kind",
2254 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2255 "precision", "radix", "range", "tiny",
2256 NULL
2257 };
2258
2259 static const char *const inquiry_func_f2003[] = {
2260 "lbound", "shape", "size", "ubound",
2261 "bit_size", "len", "kind",
2262 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2263 "precision", "radix", "range", "tiny",
2264 "new_line", NULL
2265 };
2266
2267 int i = 0;
2268 gfc_actual_arglist *ap;
2269
2270 if (!e->value.function.isym
2271 || !e->value.function.isym->inquiry)
2272 return MATCH_NO;
2273
2274 /* An undeclared parameter will get us here (PR25018). */
2275 if (e->symtree == NULL)
2276 return MATCH_NO;
2277
2278 if (e->symtree->n.sym->from_intmod)
2279 {
2280 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_FORTRAN_ENV
2281 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_OPTIONS
2282 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_VERSION)
2283 return MATCH_NO;
2284
2285 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_C_BINDING
2286 && e->symtree->n.sym->intmod_sym_id != ISOCBINDING_C_SIZEOF)
2287 return MATCH_NO;
2288 }
2289 else
2290 {
2291 name = e->symtree->n.sym->name;
2292
2293 functions = (gfc_option.warn_std & GFC_STD_F2003)
2294 ? inquiry_func_f2003 : inquiry_func_f95;
2295
2296 for (i = 0; functions[i]; i++)
2297 if (strcmp (functions[i], name) == 0)
2298 break;
2299
2300 if (functions[i] == NULL)
2301 return MATCH_ERROR;
2302 }
2303
2304 /* At this point we have an inquiry function with a variable argument. The
2305 type of the variable might be undefined, but we need it now, because the
2306 arguments of these functions are not allowed to be undefined. */
2307
2308 for (ap = e->value.function.actual; ap; ap = ap->next)
2309 {
2310 if (!ap->expr)
2311 continue;
2312
2313 if (ap->expr->ts.type == BT_UNKNOWN)
2314 {
2315 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2316 && !gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns))
2317 return MATCH_NO;
2318
2319 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2320 }
2321
2322 /* Assumed character length will not reduce to a constant expression
2323 with LEN, as required by the standard. */
2324 if (i == 5 && not_restricted
2325 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2326 && (ap->expr->symtree->n.sym->ts.u.cl->length == NULL
2327 || ap->expr->symtree->n.sym->ts.deferred))
2328 {
2329 gfc_error ("Assumed or deferred character length variable %qs "
2330 " in constant expression at %L",
2331 ap->expr->symtree->n.sym->name,
2332 &ap->expr->where);
2333 return MATCH_ERROR;
2334 }
2335 else if (not_restricted && !gfc_check_init_expr (ap->expr))
2336 return MATCH_ERROR;
2337
2338 if (not_restricted == 0
2339 && ap->expr->expr_type != EXPR_VARIABLE
2340 && !check_restricted (ap->expr))
2341 return MATCH_ERROR;
2342
2343 if (not_restricted == 0
2344 && ap->expr->expr_type == EXPR_VARIABLE
2345 && ap->expr->symtree->n.sym->attr.dummy
2346 && ap->expr->symtree->n.sym->attr.optional)
2347 return MATCH_NO;
2348 }
2349
2350 return MATCH_YES;
2351 }
2352
2353
2354 /* F95, 7.1.6.1, Initialization expressions, (5)
2355 F2003, 7.1.7 Initialization expression, (5) */
2356
2357 static match
2358 check_transformational (gfc_expr *e)
2359 {
2360 static const char * const trans_func_f95[] = {
2361 "repeat", "reshape", "selected_int_kind",
2362 "selected_real_kind", "transfer", "trim", NULL
2363 };
2364
2365 static const char * const trans_func_f2003[] = {
2366 "all", "any", "count", "dot_product", "matmul", "null", "pack",
2367 "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
2368 "selected_real_kind", "spread", "sum", "transfer", "transpose",
2369 "trim", "unpack", NULL
2370 };
2371
2372 int i;
2373 const char *name;
2374 const char *const *functions;
2375
2376 if (!e->value.function.isym
2377 || !e->value.function.isym->transformational)
2378 return MATCH_NO;
2379
2380 name = e->symtree->n.sym->name;
2381
2382 functions = (gfc_option.allow_std & GFC_STD_F2003)
2383 ? trans_func_f2003 : trans_func_f95;
2384
2385 /* NULL() is dealt with below. */
2386 if (strcmp ("null", name) == 0)
2387 return MATCH_NO;
2388
2389 for (i = 0; functions[i]; i++)
2390 if (strcmp (functions[i], name) == 0)
2391 break;
2392
2393 if (functions[i] == NULL)
2394 {
2395 gfc_error ("transformational intrinsic %qs at %L is not permitted "
2396 "in an initialization expression", name, &e->where);
2397 return MATCH_ERROR;
2398 }
2399
2400 return check_init_expr_arguments (e);
2401 }
2402
2403
2404 /* F95, 7.1.6.1, Initialization expressions, (6)
2405 F2003, 7.1.7 Initialization expression, (6) */
2406
2407 static match
2408 check_null (gfc_expr *e)
2409 {
2410 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2411 return MATCH_NO;
2412
2413 return check_init_expr_arguments (e);
2414 }
2415
2416
2417 static match
2418 check_elemental (gfc_expr *e)
2419 {
2420 if (!e->value.function.isym
2421 || !e->value.function.isym->elemental)
2422 return MATCH_NO;
2423
2424 if (e->ts.type != BT_INTEGER
2425 && e->ts.type != BT_CHARACTER
2426 && !gfc_notify_std (GFC_STD_F2003, "Evaluation of nonstandard "
2427 "initialization expression at %L", &e->where))
2428 return MATCH_ERROR;
2429
2430 return check_init_expr_arguments (e);
2431 }
2432
2433
2434 static match
2435 check_conversion (gfc_expr *e)
2436 {
2437 if (!e->value.function.isym
2438 || !e->value.function.isym->conversion)
2439 return MATCH_NO;
2440
2441 return check_init_expr_arguments (e);
2442 }
2443
2444
2445 /* Verify that an expression is an initialization expression. A side
2446 effect is that the expression tree is reduced to a single constant
2447 node if all goes well. This would normally happen when the
2448 expression is constructed but function references are assumed to be
2449 intrinsics in the context of initialization expressions. If
2450 false is returned an error message has been generated. */
2451
2452 bool
2453 gfc_check_init_expr (gfc_expr *e)
2454 {
2455 match m;
2456 bool t;
2457
2458 if (e == NULL)
2459 return true;
2460
2461 switch (e->expr_type)
2462 {
2463 case EXPR_OP:
2464 t = check_intrinsic_op (e, gfc_check_init_expr);
2465 if (t)
2466 t = gfc_simplify_expr (e, 0);
2467
2468 break;
2469
2470 case EXPR_FUNCTION:
2471 t = false;
2472
2473 {
2474 gfc_intrinsic_sym* isym;
2475 gfc_symbol* sym = e->symtree->n.sym;
2476
2477 /* Simplify here the intrinsics from the IEEE_ARITHMETIC and
2478 IEEE_EXCEPTIONS modules. */
2479 int mod = sym->from_intmod;
2480 if (mod == INTMOD_NONE && sym->generic)
2481 mod = sym->generic->sym->from_intmod;
2482 if (mod == INTMOD_IEEE_ARITHMETIC || mod == INTMOD_IEEE_EXCEPTIONS)
2483 {
2484 gfc_expr *new_expr = gfc_simplify_ieee_functions (e);
2485 if (new_expr)
2486 {
2487 gfc_replace_expr (e, new_expr);
2488 t = true;
2489 break;
2490 }
2491 }
2492
2493 if (!gfc_is_intrinsic (sym, 0, e->where)
2494 || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES)
2495 {
2496 gfc_error ("Function %qs in initialization expression at %L "
2497 "must be an intrinsic function",
2498 e->symtree->n.sym->name, &e->where);
2499 break;
2500 }
2501
2502 if ((m = check_conversion (e)) == MATCH_NO
2503 && (m = check_inquiry (e, 1)) == MATCH_NO
2504 && (m = check_null (e)) == MATCH_NO
2505 && (m = check_transformational (e)) == MATCH_NO
2506 && (m = check_elemental (e)) == MATCH_NO)
2507 {
2508 gfc_error ("Intrinsic function %qs at %L is not permitted "
2509 "in an initialization expression",
2510 e->symtree->n.sym->name, &e->where);
2511 m = MATCH_ERROR;
2512 }
2513
2514 if (m == MATCH_ERROR)
2515 return false;
2516
2517 /* Try to scalarize an elemental intrinsic function that has an
2518 array argument. */
2519 isym = gfc_find_function (e->symtree->n.sym->name);
2520 if (isym && isym->elemental
2521 && (t = scalarize_intrinsic_call(e)))
2522 break;
2523 }
2524
2525 if (m == MATCH_YES)
2526 t = gfc_simplify_expr (e, 0);
2527
2528 break;
2529
2530 case EXPR_VARIABLE:
2531 t = true;
2532
2533 if (gfc_check_iter_variable (e))
2534 break;
2535
2536 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2537 {
2538 /* A PARAMETER shall not be used to define itself, i.e.
2539 REAL, PARAMETER :: x = transfer(0, x)
2540 is invalid. */
2541 if (!e->symtree->n.sym->value)
2542 {
2543 gfc_error ("PARAMETER %qs is used at %L before its definition "
2544 "is complete", e->symtree->n.sym->name, &e->where);
2545 t = false;
2546 }
2547 else
2548 t = simplify_parameter_variable (e, 0);
2549
2550 break;
2551 }
2552
2553 if (gfc_in_match_data ())
2554 break;
2555
2556 t = false;
2557
2558 if (e->symtree->n.sym->as)
2559 {
2560 switch (e->symtree->n.sym->as->type)
2561 {
2562 case AS_ASSUMED_SIZE:
2563 gfc_error ("Assumed size array %qs at %L is not permitted "
2564 "in an initialization expression",
2565 e->symtree->n.sym->name, &e->where);
2566 break;
2567
2568 case AS_ASSUMED_SHAPE:
2569 gfc_error ("Assumed shape array %qs at %L is not permitted "
2570 "in an initialization expression",
2571 e->symtree->n.sym->name, &e->where);
2572 break;
2573
2574 case AS_DEFERRED:
2575 gfc_error ("Deferred array %qs at %L is not permitted "
2576 "in an initialization expression",
2577 e->symtree->n.sym->name, &e->where);
2578 break;
2579
2580 case AS_EXPLICIT:
2581 gfc_error ("Array %qs at %L is a variable, which does "
2582 "not reduce to a constant expression",
2583 e->symtree->n.sym->name, &e->where);
2584 break;
2585
2586 default:
2587 gcc_unreachable();
2588 }
2589 }
2590 else
2591 gfc_error ("Parameter %qs at %L has not been declared or is "
2592 "a variable, which does not reduce to a constant "
2593 "expression", e->symtree->n.sym->name, &e->where);
2594
2595 break;
2596
2597 case EXPR_CONSTANT:
2598 case EXPR_NULL:
2599 t = true;
2600 break;
2601
2602 case EXPR_SUBSTRING:
2603 if (e->ref)
2604 {
2605 t = gfc_check_init_expr (e->ref->u.ss.start);
2606 if (!t)
2607 break;
2608
2609 t = gfc_check_init_expr (e->ref->u.ss.end);
2610 if (t)
2611 t = gfc_simplify_expr (e, 0);
2612 }
2613 else
2614 t = false;
2615 break;
2616
2617 case EXPR_STRUCTURE:
2618 t = e->ts.is_iso_c ? true : false;
2619 if (t)
2620 break;
2621
2622 t = check_alloc_comp_init (e);
2623 if (!t)
2624 break;
2625
2626 t = gfc_check_constructor (e, gfc_check_init_expr);
2627 if (!t)
2628 break;
2629
2630 break;
2631
2632 case EXPR_ARRAY:
2633 t = gfc_check_constructor (e, gfc_check_init_expr);
2634 if (!t)
2635 break;
2636
2637 t = gfc_expand_constructor (e, true);
2638 if (!t)
2639 break;
2640
2641 t = gfc_check_constructor_type (e);
2642 break;
2643
2644 default:
2645 gfc_internal_error ("check_init_expr(): Unknown expression type");
2646 }
2647
2648 return t;
2649 }
2650
2651 /* Reduces a general expression to an initialization expression (a constant).
2652 This used to be part of gfc_match_init_expr.
2653 Note that this function doesn't free the given expression on false. */
2654
2655 bool
2656 gfc_reduce_init_expr (gfc_expr *expr)
2657 {
2658 bool t;
2659
2660 gfc_init_expr_flag = true;
2661 t = gfc_resolve_expr (expr);
2662 if (t)
2663 t = gfc_check_init_expr (expr);
2664 gfc_init_expr_flag = false;
2665
2666 if (!t)
2667 return false;
2668
2669 if (expr->expr_type == EXPR_ARRAY)
2670 {
2671 if (!gfc_check_constructor_type (expr))
2672 return false;
2673 if (!gfc_expand_constructor (expr, true))
2674 return false;
2675 }
2676
2677 return true;
2678 }
2679
2680
2681 /* Match an initialization expression. We work by first matching an
2682 expression, then reducing it to a constant. */
2683
2684 match
2685 gfc_match_init_expr (gfc_expr **result)
2686 {
2687 gfc_expr *expr;
2688 match m;
2689 bool t;
2690
2691 expr = NULL;
2692
2693 gfc_init_expr_flag = true;
2694
2695 m = gfc_match_expr (&expr);
2696 if (m != MATCH_YES)
2697 {
2698 gfc_init_expr_flag = false;
2699 return m;
2700 }
2701
2702 t = gfc_reduce_init_expr (expr);
2703 if (!t)
2704 {
2705 gfc_free_expr (expr);
2706 gfc_init_expr_flag = false;
2707 return MATCH_ERROR;
2708 }
2709
2710 *result = expr;
2711 gfc_init_expr_flag = false;
2712
2713 return MATCH_YES;
2714 }
2715
2716
2717 /* Given an actual argument list, test to see that each argument is a
2718 restricted expression and optionally if the expression type is
2719 integer or character. */
2720
2721 static bool
2722 restricted_args (gfc_actual_arglist *a)
2723 {
2724 for (; a; a = a->next)
2725 {
2726 if (!check_restricted (a->expr))
2727 return false;
2728 }
2729
2730 return true;
2731 }
2732
2733
2734 /************* Restricted/specification expressions *************/
2735
2736
2737 /* Make sure a non-intrinsic function is a specification function. */
2738
2739 static bool
2740 external_spec_function (gfc_expr *e)
2741 {
2742 gfc_symbol *f;
2743
2744 f = e->value.function.esym;
2745
2746 /* IEEE functions allowed are "a reference to a transformational function
2747 from the intrinsic module IEEE_ARITHMETIC or IEEE_EXCEPTIONS", and
2748 "inquiry function from the intrinsic modules IEEE_ARITHMETIC and
2749 IEEE_EXCEPTIONS". */
2750 if (f->from_intmod == INTMOD_IEEE_ARITHMETIC
2751 || f->from_intmod == INTMOD_IEEE_EXCEPTIONS)
2752 {
2753 if (!strcmp (f->name, "ieee_selected_real_kind")
2754 || !strcmp (f->name, "ieee_support_rounding")
2755 || !strcmp (f->name, "ieee_support_flag")
2756 || !strcmp (f->name, "ieee_support_halting")
2757 || !strcmp (f->name, "ieee_support_datatype")
2758 || !strcmp (f->name, "ieee_support_denormal")
2759 || !strcmp (f->name, "ieee_support_divide")
2760 || !strcmp (f->name, "ieee_support_inf")
2761 || !strcmp (f->name, "ieee_support_io")
2762 || !strcmp (f->name, "ieee_support_nan")
2763 || !strcmp (f->name, "ieee_support_sqrt")
2764 || !strcmp (f->name, "ieee_support_standard")
2765 || !strcmp (f->name, "ieee_support_underflow_control"))
2766 goto function_allowed;
2767 }
2768
2769 if (f->attr.proc == PROC_ST_FUNCTION)
2770 {
2771 gfc_error ("Specification function %qs at %L cannot be a statement "
2772 "function", f->name, &e->where);
2773 return false;
2774 }
2775
2776 if (f->attr.proc == PROC_INTERNAL)
2777 {
2778 gfc_error ("Specification function %qs at %L cannot be an internal "
2779 "function", f->name, &e->where);
2780 return false;
2781 }
2782
2783 if (!f->attr.pure && !f->attr.elemental)
2784 {
2785 gfc_error ("Specification function %qs at %L must be PURE", f->name,
2786 &e->where);
2787 return false;
2788 }
2789
2790 if (f->attr.recursive)
2791 {
2792 gfc_error ("Specification function %qs at %L cannot be RECURSIVE",
2793 f->name, &e->where);
2794 return false;
2795 }
2796
2797 function_allowed:
2798 return restricted_args (e->value.function.actual);
2799 }
2800
2801
2802 /* Check to see that a function reference to an intrinsic is a
2803 restricted expression. */
2804
2805 static bool
2806 restricted_intrinsic (gfc_expr *e)
2807 {
2808 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2809 if (check_inquiry (e, 0) == MATCH_YES)
2810 return true;
2811
2812 return restricted_args (e->value.function.actual);
2813 }
2814
2815
2816 /* Check the expressions of an actual arglist. Used by check_restricted. */
2817
2818 static bool
2819 check_arglist (gfc_actual_arglist* arg, bool (*checker) (gfc_expr*))
2820 {
2821 for (; arg; arg = arg->next)
2822 if (!checker (arg->expr))
2823 return false;
2824
2825 return true;
2826 }
2827
2828
2829 /* Check the subscription expressions of a reference chain with a checking
2830 function; used by check_restricted. */
2831
2832 static bool
2833 check_references (gfc_ref* ref, bool (*checker) (gfc_expr*))
2834 {
2835 int dim;
2836
2837 if (!ref)
2838 return true;
2839
2840 switch (ref->type)
2841 {
2842 case REF_ARRAY:
2843 for (dim = 0; dim != ref->u.ar.dimen; ++dim)
2844 {
2845 if (!checker (ref->u.ar.start[dim]))
2846 return false;
2847 if (!checker (ref->u.ar.end[dim]))
2848 return false;
2849 if (!checker (ref->u.ar.stride[dim]))
2850 return false;
2851 }
2852 break;
2853
2854 case REF_COMPONENT:
2855 /* Nothing needed, just proceed to next reference. */
2856 break;
2857
2858 case REF_SUBSTRING:
2859 if (!checker (ref->u.ss.start))
2860 return false;
2861 if (!checker (ref->u.ss.end))
2862 return false;
2863 break;
2864
2865 default:
2866 gcc_unreachable ();
2867 break;
2868 }
2869
2870 return check_references (ref->next, checker);
2871 }
2872
2873 /* Return true if ns is a parent of the current ns. */
2874
2875 static bool
2876 is_parent_of_current_ns (gfc_namespace *ns)
2877 {
2878 gfc_namespace *p;
2879 for (p = gfc_current_ns->parent; p; p = p->parent)
2880 if (ns == p)
2881 return true;
2882
2883 return false;
2884 }
2885
2886 /* Verify that an expression is a restricted expression. Like its
2887 cousin check_init_expr(), an error message is generated if we
2888 return false. */
2889
2890 static bool
2891 check_restricted (gfc_expr *e)
2892 {
2893 gfc_symbol* sym;
2894 bool t;
2895
2896 if (e == NULL)
2897 return true;
2898
2899 switch (e->expr_type)
2900 {
2901 case EXPR_OP:
2902 t = check_intrinsic_op (e, check_restricted);
2903 if (t)
2904 t = gfc_simplify_expr (e, 0);
2905
2906 break;
2907
2908 case EXPR_FUNCTION:
2909 if (e->value.function.esym)
2910 {
2911 t = check_arglist (e->value.function.actual, &check_restricted);
2912 if (t)
2913 t = external_spec_function (e);
2914 }
2915 else
2916 {
2917 if (e->value.function.isym && e->value.function.isym->inquiry)
2918 t = true;
2919 else
2920 t = check_arglist (e->value.function.actual, &check_restricted);
2921
2922 if (t)
2923 t = restricted_intrinsic (e);
2924 }
2925 break;
2926
2927 case EXPR_VARIABLE:
2928 sym = e->symtree->n.sym;
2929 t = false;
2930
2931 /* If a dummy argument appears in a context that is valid for a
2932 restricted expression in an elemental procedure, it will have
2933 already been simplified away once we get here. Therefore we
2934 don't need to jump through hoops to distinguish valid from
2935 invalid cases. */
2936 if (sym->attr.dummy && sym->ns == gfc_current_ns
2937 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2938 {
2939 gfc_error ("Dummy argument %qs not allowed in expression at %L",
2940 sym->name, &e->where);
2941 break;
2942 }
2943
2944 if (sym->attr.optional)
2945 {
2946 gfc_error ("Dummy argument %qs at %L cannot be OPTIONAL",
2947 sym->name, &e->where);
2948 break;
2949 }
2950
2951 if (sym->attr.intent == INTENT_OUT)
2952 {
2953 gfc_error ("Dummy argument %qs at %L cannot be INTENT(OUT)",
2954 sym->name, &e->where);
2955 break;
2956 }
2957
2958 /* Check reference chain if any. */
2959 if (!check_references (e->ref, &check_restricted))
2960 break;
2961
2962 /* gfc_is_formal_arg broadcasts that a formal argument list is being
2963 processed in resolve.c(resolve_formal_arglist). This is done so
2964 that host associated dummy array indices are accepted (PR23446).
2965 This mechanism also does the same for the specification expressions
2966 of array-valued functions. */
2967 if (e->error
2968 || sym->attr.in_common
2969 || sym->attr.use_assoc
2970 || sym->attr.dummy
2971 || sym->attr.implied_index
2972 || sym->attr.flavor == FL_PARAMETER
2973 || is_parent_of_current_ns (sym->ns)
2974 || (sym->ns->proc_name != NULL
2975 && sym->ns->proc_name->attr.flavor == FL_MODULE)
2976 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
2977 {
2978 t = true;
2979 break;
2980 }
2981
2982 gfc_error ("Variable %qs cannot appear in the expression at %L",
2983 sym->name, &e->where);
2984 /* Prevent a repetition of the error. */
2985 e->error = 1;
2986 break;
2987
2988 case EXPR_NULL:
2989 case EXPR_CONSTANT:
2990 t = true;
2991 break;
2992
2993 case EXPR_SUBSTRING:
2994 t = gfc_specification_expr (e->ref->u.ss.start);
2995 if (!t)
2996 break;
2997
2998 t = gfc_specification_expr (e->ref->u.ss.end);
2999 if (t)
3000 t = gfc_simplify_expr (e, 0);
3001
3002 break;
3003
3004 case EXPR_STRUCTURE:
3005 t = gfc_check_constructor (e, check_restricted);
3006 break;
3007
3008 case EXPR_ARRAY:
3009 t = gfc_check_constructor (e, check_restricted);
3010 break;
3011
3012 default:
3013 gfc_internal_error ("check_restricted(): Unknown expression type");
3014 }
3015
3016 return t;
3017 }
3018
3019
3020 /* Check to see that an expression is a specification expression. If
3021 we return false, an error has been generated. */
3022
3023 bool
3024 gfc_specification_expr (gfc_expr *e)
3025 {
3026 gfc_component *comp;
3027
3028 if (e == NULL)
3029 return true;
3030
3031 if (e->ts.type != BT_INTEGER)
3032 {
3033 gfc_error ("Expression at %L must be of INTEGER type, found %s",
3034 &e->where, gfc_basic_typename (e->ts.type));
3035 return false;
3036 }
3037
3038 comp = gfc_get_proc_ptr_comp (e);
3039 if (e->expr_type == EXPR_FUNCTION
3040 && !e->value.function.isym
3041 && !e->value.function.esym
3042 && !gfc_pure (e->symtree->n.sym)
3043 && (!comp || !comp->attr.pure))
3044 {
3045 gfc_error ("Function %qs at %L must be PURE",
3046 e->symtree->n.sym->name, &e->where);
3047 /* Prevent repeat error messages. */
3048 e->symtree->n.sym->attr.pure = 1;
3049 return false;
3050 }
3051
3052 if (e->rank != 0)
3053 {
3054 gfc_error ("Expression at %L must be scalar", &e->where);
3055 return false;
3056 }
3057
3058 if (!gfc_simplify_expr (e, 0))
3059 return false;
3060
3061 return check_restricted (e);
3062 }
3063
3064
3065 /************** Expression conformance checks. *************/
3066
3067 /* Given two expressions, make sure that the arrays are conformable. */
3068
3069 bool
3070 gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
3071 {
3072 int op1_flag, op2_flag, d;
3073 mpz_t op1_size, op2_size;
3074 bool t;
3075
3076 va_list argp;
3077 char buffer[240];
3078
3079 if (op1->rank == 0 || op2->rank == 0)
3080 return true;
3081
3082 va_start (argp, optype_msgid);
3083 vsnprintf (buffer, 240, optype_msgid, argp);
3084 va_end (argp);
3085
3086 if (op1->rank != op2->rank)
3087 {
3088 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
3089 op1->rank, op2->rank, &op1->where);
3090 return false;
3091 }
3092
3093 t = true;
3094
3095 for (d = 0; d < op1->rank; d++)
3096 {
3097 op1_flag = gfc_array_dimen_size(op1, d, &op1_size);
3098 op2_flag = gfc_array_dimen_size(op2, d, &op2_size);
3099
3100 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
3101 {
3102 gfc_error ("Different shape for %s at %L on dimension %d "
3103 "(%d and %d)", _(buffer), &op1->where, d + 1,
3104 (int) mpz_get_si (op1_size),
3105 (int) mpz_get_si (op2_size));
3106
3107 t = false;
3108 }
3109
3110 if (op1_flag)
3111 mpz_clear (op1_size);
3112 if (op2_flag)
3113 mpz_clear (op2_size);
3114
3115 if (!t)
3116 return false;
3117 }
3118
3119 return true;
3120 }
3121
3122
3123 /* Given an assignable expression and an arbitrary expression, make
3124 sure that the assignment can take place. */
3125
3126 bool
3127 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform)
3128 {
3129 gfc_symbol *sym;
3130 gfc_ref *ref;
3131 int has_pointer;
3132
3133 sym = lvalue->symtree->n.sym;
3134
3135 /* See if this is the component or subcomponent of a pointer. */
3136 has_pointer = sym->attr.pointer;
3137 for (ref = lvalue->ref; ref; ref = ref->next)
3138 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
3139 {
3140 has_pointer = 1;
3141 break;
3142 }
3143
3144 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
3145 variable local to a function subprogram. Its existence begins when
3146 execution of the function is initiated and ends when execution of the
3147 function is terminated...
3148 Therefore, the left hand side is no longer a variable, when it is: */
3149 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
3150 && !sym->attr.external)
3151 {
3152 bool bad_proc;
3153 bad_proc = false;
3154
3155 /* (i) Use associated; */
3156 if (sym->attr.use_assoc)
3157 bad_proc = true;
3158
3159 /* (ii) The assignment is in the main program; or */
3160 if (gfc_current_ns->proc_name
3161 && gfc_current_ns->proc_name->attr.is_main_program)
3162 bad_proc = true;
3163
3164 /* (iii) A module or internal procedure... */
3165 if (gfc_current_ns->proc_name
3166 && (gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
3167 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
3168 && gfc_current_ns->parent
3169 && (!(gfc_current_ns->parent->proc_name->attr.function
3170 || gfc_current_ns->parent->proc_name->attr.subroutine)
3171 || gfc_current_ns->parent->proc_name->attr.is_main_program))
3172 {
3173 /* ... that is not a function... */
3174 if (gfc_current_ns->proc_name
3175 && !gfc_current_ns->proc_name->attr.function)
3176 bad_proc = true;
3177
3178 /* ... or is not an entry and has a different name. */
3179 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
3180 bad_proc = true;
3181 }
3182
3183 /* (iv) Host associated and not the function symbol or the
3184 parent result. This picks up sibling references, which
3185 cannot be entries. */
3186 if (!sym->attr.entry
3187 && sym->ns == gfc_current_ns->parent
3188 && sym != gfc_current_ns->proc_name
3189 && sym != gfc_current_ns->parent->proc_name->result)
3190 bad_proc = true;
3191
3192 if (bad_proc)
3193 {
3194 gfc_error ("%qs at %L is not a VALUE", sym->name, &lvalue->where);
3195 return false;
3196 }
3197 }
3198
3199 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
3200 {
3201 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
3202 lvalue->rank, rvalue->rank, &lvalue->where);
3203 return false;
3204 }
3205
3206 if (lvalue->ts.type == BT_UNKNOWN)
3207 {
3208 gfc_error ("Variable type is UNKNOWN in assignment at %L",
3209 &lvalue->where);
3210 return false;
3211 }
3212
3213 if (rvalue->expr_type == EXPR_NULL)
3214 {
3215 if (has_pointer && (ref == NULL || ref->next == NULL)
3216 && lvalue->symtree->n.sym->attr.data)
3217 return true;
3218 else
3219 {
3220 gfc_error ("NULL appears on right-hand side in assignment at %L",
3221 &rvalue->where);
3222 return false;
3223 }
3224 }
3225
3226 /* This is possibly a typo: x = f() instead of x => f(). */
3227 if (warn_surprising
3228 && rvalue->expr_type == EXPR_FUNCTION && gfc_expr_attr (rvalue).pointer)
3229 gfc_warning (OPT_Wsurprising,
3230 "POINTER-valued function appears on right-hand side of "
3231 "assignment at %L", &rvalue->where);
3232
3233 /* Check size of array assignments. */
3234 if (lvalue->rank != 0 && rvalue->rank != 0
3235 && !gfc_check_conformance (lvalue, rvalue, "array assignment"))
3236 return false;
3237
3238 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
3239 && lvalue->symtree->n.sym->attr.data
3240 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L used to "
3241 "initialize non-integer variable %qs",
3242 &rvalue->where, lvalue->symtree->n.sym->name))
3243 return false;
3244 else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
3245 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
3246 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
3247 &rvalue->where))
3248 return false;
3249
3250 /* Handle the case of a BOZ literal on the RHS. */
3251 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
3252 {
3253 int rc;
3254 if (warn_surprising)
3255 gfc_warning (OPT_Wsurprising,
3256 "BOZ literal at %L is bitwise transferred "
3257 "non-integer symbol %qs", &rvalue->where,
3258 lvalue->symtree->n.sym->name);
3259 if (!gfc_convert_boz (rvalue, &lvalue->ts))
3260 return false;
3261 if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
3262 {
3263 if (rc == ARITH_UNDERFLOW)
3264 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
3265 ". This check can be disabled with the option "
3266 "%<-fno-range-check%>", &rvalue->where);
3267 else if (rc == ARITH_OVERFLOW)
3268 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
3269 ". This check can be disabled with the option "
3270 "%<-fno-range-check%>", &rvalue->where);
3271 else if (rc == ARITH_NAN)
3272 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
3273 ". This check can be disabled with the option "
3274 "%<-fno-range-check%>", &rvalue->where);
3275 return false;
3276 }
3277 }
3278
3279 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
3280 return true;
3281
3282 /* Only DATA Statements come here. */
3283 if (!conform)
3284 {
3285 /* Numeric can be converted to any other numeric. And Hollerith can be
3286 converted to any other type. */
3287 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
3288 || rvalue->ts.type == BT_HOLLERITH)
3289 return true;
3290
3291 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
3292 return true;
3293
3294 gfc_error ("Incompatible types in DATA statement at %L; attempted "
3295 "conversion of %s to %s", &lvalue->where,
3296 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3297
3298 return false;
3299 }
3300
3301 /* Assignment is the only case where character variables of different
3302 kind values can be converted into one another. */
3303 if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
3304 {
3305 if (lvalue->ts.kind != rvalue->ts.kind)
3306 gfc_convert_chartype (rvalue, &lvalue->ts);
3307
3308 return true;
3309 }
3310
3311 return gfc_convert_type (rvalue, &lvalue->ts, 1);
3312 }
3313
3314
3315 /* Check that a pointer assignment is OK. We first check lvalue, and
3316 we only check rvalue if it's not an assignment to NULL() or a
3317 NULLIFY statement. */
3318
3319 bool
3320 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
3321 {
3322 symbol_attribute attr, lhs_attr;
3323 gfc_ref *ref;
3324 bool is_pure, is_implicit_pure, rank_remap;
3325 int proc_pointer;
3326
3327 lhs_attr = gfc_expr_attr (lvalue);
3328 if (lvalue->ts.type == BT_UNKNOWN && !lhs_attr.proc_pointer)
3329 {
3330 gfc_error ("Pointer assignment target is not a POINTER at %L",
3331 &lvalue->where);
3332 return false;
3333 }
3334
3335 if (lhs_attr.flavor == FL_PROCEDURE && lhs_attr.use_assoc
3336 && !lhs_attr.proc_pointer)
3337 {
3338 gfc_error ("%qs in the pointer assignment at %L cannot be an "
3339 "l-value since it is a procedure",
3340 lvalue->symtree->n.sym->name, &lvalue->where);
3341 return false;
3342 }
3343
3344 proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
3345
3346 rank_remap = false;
3347 for (ref = lvalue->ref; ref; ref = ref->next)
3348 {
3349 if (ref->type == REF_COMPONENT)
3350 proc_pointer = ref->u.c.component->attr.proc_pointer;
3351
3352 if (ref->type == REF_ARRAY && ref->next == NULL)
3353 {
3354 int dim;
3355
3356 if (ref->u.ar.type == AR_FULL)
3357 break;
3358
3359 if (ref->u.ar.type != AR_SECTION)
3360 {
3361 gfc_error ("Expected bounds specification for %qs at %L",
3362 lvalue->symtree->n.sym->name, &lvalue->where);
3363 return false;
3364 }
3365
3366 if (!gfc_notify_std (GFC_STD_F2003, "Bounds specification "
3367 "for %qs in pointer assignment at %L",
3368 lvalue->symtree->n.sym->name, &lvalue->where))
3369 return false;
3370
3371 /* When bounds are given, all lbounds are necessary and either all
3372 or none of the upper bounds; no strides are allowed. If the
3373 upper bounds are present, we may do rank remapping. */
3374 for (dim = 0; dim < ref->u.ar.dimen; ++dim)
3375 {
3376 if (!ref->u.ar.start[dim]
3377 || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3378 {
3379 gfc_error ("Lower bound has to be present at %L",
3380 &lvalue->where);
3381 return false;
3382 }
3383 if (ref->u.ar.stride[dim])
3384 {
3385 gfc_error ("Stride must not be present at %L",
3386 &lvalue->where);
3387 return false;
3388 }
3389
3390 if (dim == 0)
3391 rank_remap = (ref->u.ar.end[dim] != NULL);
3392 else
3393 {
3394 if ((rank_remap && !ref->u.ar.end[dim])
3395 || (!rank_remap && ref->u.ar.end[dim]))
3396 {
3397 gfc_error ("Either all or none of the upper bounds"
3398 " must be specified at %L", &lvalue->where);
3399 return false;
3400 }
3401 }
3402 }
3403 }
3404 }
3405
3406 is_pure = gfc_pure (NULL);
3407 is_implicit_pure = gfc_implicit_pure (NULL);
3408
3409 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
3410 kind, etc for lvalue and rvalue must match, and rvalue must be a
3411 pure variable if we're in a pure function. */
3412 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
3413 return true;
3414
3415 /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
3416 if (lvalue->expr_type == EXPR_VARIABLE
3417 && gfc_is_coindexed (lvalue))
3418 {
3419 gfc_ref *ref;
3420 for (ref = lvalue->ref; ref; ref = ref->next)
3421 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3422 {
3423 gfc_error ("Pointer object at %L shall not have a coindex",
3424 &lvalue->where);
3425 return false;
3426 }
3427 }
3428
3429 /* Checks on rvalue for procedure pointer assignments. */
3430 if (proc_pointer)
3431 {
3432 char err[200];
3433 gfc_symbol *s1,*s2;
3434 gfc_component *comp;
3435 const char *name;
3436
3437 attr = gfc_expr_attr (rvalue);
3438 if (!((rvalue->expr_type == EXPR_NULL)
3439 || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
3440 || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
3441 || (rvalue->expr_type == EXPR_VARIABLE
3442 && attr.flavor == FL_PROCEDURE)))
3443 {
3444 gfc_error ("Invalid procedure pointer assignment at %L",
3445 &rvalue->where);
3446 return false;
3447 }
3448 if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
3449 {
3450 /* Check for intrinsics. */
3451 gfc_symbol *sym = rvalue->symtree->n.sym;
3452 if (!sym->attr.intrinsic
3453 && (gfc_is_intrinsic (sym, 0, sym->declared_at)
3454 || gfc_is_intrinsic (sym, 1, sym->declared_at)))
3455 {
3456 sym->attr.intrinsic = 1;
3457 gfc_resolve_intrinsic (sym, &rvalue->where);
3458 attr = gfc_expr_attr (rvalue);
3459 }
3460 /* Check for result of embracing function. */
3461 if (sym->attr.function && sym->result == sym)
3462 {
3463 gfc_namespace *ns;
3464
3465 for (ns = gfc_current_ns; ns; ns = ns->parent)
3466 if (sym == ns->proc_name)
3467 {
3468 gfc_error ("Function result %qs is invalid as proc-target "
3469 "in procedure pointer assignment at %L",
3470 sym->name, &rvalue->where);
3471 return false;
3472 }
3473 }
3474 }
3475 if (attr.abstract)
3476 {
3477 gfc_error ("Abstract interface %qs is invalid "
3478 "in procedure pointer assignment at %L",
3479 rvalue->symtree->name, &rvalue->where);
3480 return false;
3481 }
3482 /* Check for F08:C729. */
3483 if (attr.flavor == FL_PROCEDURE)
3484 {
3485 if (attr.proc == PROC_ST_FUNCTION)
3486 {
3487 gfc_error ("Statement function %qs is invalid "
3488 "in procedure pointer assignment at %L",
3489 rvalue->symtree->name, &rvalue->where);
3490 return false;
3491 }
3492 if (attr.proc == PROC_INTERNAL &&
3493 !gfc_notify_std(GFC_STD_F2008, "Internal procedure %qs "
3494 "is invalid in procedure pointer assignment "
3495 "at %L", rvalue->symtree->name, &rvalue->where))
3496 return false;
3497 if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
3498 attr.subroutine) == 0)
3499 {
3500 gfc_error ("Intrinsic %qs at %L is invalid in procedure pointer "
3501 "assignment", rvalue->symtree->name, &rvalue->where);
3502 return false;
3503 }
3504 }
3505 /* Check for F08:C730. */
3506 if (attr.elemental && !attr.intrinsic)
3507 {
3508 gfc_error ("Nonintrinsic elemental procedure %qs is invalid "
3509 "in procedure pointer assignment at %L",
3510 rvalue->symtree->name, &rvalue->where);
3511 return false;
3512 }
3513
3514 /* Ensure that the calling convention is the same. As other attributes
3515 such as DLLEXPORT may differ, one explicitly only tests for the
3516 calling conventions. */
3517 if (rvalue->expr_type == EXPR_VARIABLE
3518 && lvalue->symtree->n.sym->attr.ext_attr
3519 != rvalue->symtree->n.sym->attr.ext_attr)
3520 {
3521 symbol_attribute calls;
3522
3523 calls.ext_attr = 0;
3524 gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
3525 gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
3526 gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
3527
3528 if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
3529 != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
3530 {
3531 gfc_error ("Mismatch in the procedure pointer assignment "
3532 "at %L: mismatch in the calling convention",
3533 &rvalue->where);
3534 return false;
3535 }
3536 }
3537
3538 comp = gfc_get_proc_ptr_comp (lvalue);
3539 if (comp)
3540 s1 = comp->ts.interface;
3541 else
3542 {
3543 s1 = lvalue->symtree->n.sym;
3544 if (s1->ts.interface)
3545 s1 = s1->ts.interface;
3546 }
3547
3548 comp = gfc_get_proc_ptr_comp (rvalue);
3549 if (comp)
3550 {
3551 if (rvalue->expr_type == EXPR_FUNCTION)
3552 {
3553 s2 = comp->ts.interface->result;
3554 name = s2->name;
3555 }
3556 else
3557 {
3558 s2 = comp->ts.interface;
3559 name = comp->name;
3560 }
3561 }
3562 else if (rvalue->expr_type == EXPR_FUNCTION)
3563 {
3564 if (rvalue->value.function.esym)
3565 s2 = rvalue->value.function.esym->result;
3566 else
3567 s2 = rvalue->symtree->n.sym->result;
3568
3569 name = s2->name;
3570 }
3571 else
3572 {
3573 s2 = rvalue->symtree->n.sym;
3574 name = s2->name;
3575 }
3576
3577 if (s2 && s2->attr.proc_pointer && s2->ts.interface)
3578 s2 = s2->ts.interface;
3579
3580 if (s1 == s2 || !s1 || !s2)
3581 return true;
3582
3583 /* F08:7.2.2.4 (4) */
3584 if (s1->attr.if_source == IFSRC_UNKNOWN
3585 && gfc_explicit_interface_required (s2, err, sizeof(err)))
3586 {
3587 gfc_error ("Explicit interface required for %qs at %L: %s",
3588 s1->name, &lvalue->where, err);
3589 return false;
3590 }
3591 if (s2->attr.if_source == IFSRC_UNKNOWN
3592 && gfc_explicit_interface_required (s1, err, sizeof(err)))
3593 {
3594 gfc_error ("Explicit interface required for %qs at %L: %s",
3595 s2->name, &rvalue->where, err);
3596 return false;
3597 }
3598
3599 if (!gfc_compare_interfaces (s1, s2, name, 0, 1,
3600 err, sizeof(err), NULL, NULL))
3601 {
3602 gfc_error ("Interface mismatch in procedure pointer assignment "
3603 "at %L: %s", &rvalue->where, err);
3604 return false;
3605 }
3606
3607 /* Check F2008Cor2, C729. */
3608 if (!s2->attr.intrinsic && s2->attr.if_source == IFSRC_UNKNOWN
3609 && !s2->attr.external && !s2->attr.subroutine && !s2->attr.function)
3610 {
3611 gfc_error ("Procedure pointer target %qs at %L must be either an "
3612 "intrinsic, host or use associated, referenced or have "
3613 "the EXTERNAL attribute", s2->name, &rvalue->where);
3614 return false;
3615 }
3616
3617 return true;
3618 }
3619
3620 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
3621 {
3622 /* Check for F03:C717. */
3623 if (UNLIMITED_POLY (rvalue)
3624 && !(UNLIMITED_POLY (lvalue)
3625 || (lvalue->ts.type == BT_DERIVED
3626 && (lvalue->ts.u.derived->attr.is_bind_c
3627 || lvalue->ts.u.derived->attr.sequence))))
3628 gfc_error ("Data-pointer-object &L must be unlimited "
3629 "polymorphic, a sequence derived type or of a "
3630 "type with the BIND attribute assignment at %L "
3631 "to be compatible with an unlimited polymorphic "
3632 "target", &lvalue->where);
3633 else
3634 gfc_error ("Different types in pointer assignment at %L; "
3635 "attempted assignment of %s to %s", &lvalue->where,
3636 gfc_typename (&rvalue->ts),
3637 gfc_typename (&lvalue->ts));
3638 return false;
3639 }
3640
3641 if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
3642 {
3643 gfc_error ("Different kind type parameters in pointer "
3644 "assignment at %L", &lvalue->where);
3645 return false;
3646 }
3647
3648 if (lvalue->rank != rvalue->rank && !rank_remap)
3649 {
3650 gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
3651 return false;
3652 }
3653
3654 /* Make sure the vtab is present. */
3655 if (lvalue->ts.type == BT_CLASS && !UNLIMITED_POLY (rvalue))
3656 gfc_find_vtab (&rvalue->ts);
3657
3658 /* Check rank remapping. */
3659 if (rank_remap)
3660 {
3661 mpz_t lsize, rsize;
3662
3663 /* If this can be determined, check that the target must be at least as
3664 large as the pointer assigned to it is. */
3665 if (gfc_array_size (lvalue, &lsize)
3666 && gfc_array_size (rvalue, &rsize)
3667 && mpz_cmp (rsize, lsize) < 0)
3668 {
3669 gfc_error ("Rank remapping target is smaller than size of the"
3670 " pointer (%ld < %ld) at %L",
3671 mpz_get_si (rsize), mpz_get_si (lsize),
3672 &lvalue->where);
3673 return false;
3674 }
3675
3676 /* The target must be either rank one or it must be simply contiguous
3677 and F2008 must be allowed. */
3678 if (rvalue->rank != 1)
3679 {
3680 if (!gfc_is_simply_contiguous (rvalue, true))
3681 {
3682 gfc_error ("Rank remapping target must be rank 1 or"
3683 " simply contiguous at %L", &rvalue->where);
3684 return false;
3685 }
3686 if (!gfc_notify_std (GFC_STD_F2008, "Rank remapping target is not "
3687 "rank 1 at %L", &rvalue->where))
3688 return false;
3689 }
3690 }
3691
3692 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
3693 if (rvalue->expr_type == EXPR_NULL)
3694 return true;
3695
3696 if (lvalue->ts.type == BT_CHARACTER)
3697 {
3698 bool t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
3699 if (!t)
3700 return false;
3701 }
3702
3703 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
3704 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
3705
3706 attr = gfc_expr_attr (rvalue);
3707
3708 if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
3709 {
3710 gfc_error ("Target expression in pointer assignment "
3711 "at %L must deliver a pointer result",
3712 &rvalue->where);
3713 return false;
3714 }
3715
3716 if (!attr.target && !attr.pointer)
3717 {
3718 gfc_error ("Pointer assignment target is neither TARGET "
3719 "nor POINTER at %L", &rvalue->where);
3720 return false;
3721 }
3722
3723 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3724 {
3725 gfc_error ("Bad target in pointer assignment in PURE "
3726 "procedure at %L", &rvalue->where);
3727 }
3728
3729 if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3730 gfc_unset_implicit_pure (gfc_current_ns->proc_name);
3731
3732 if (gfc_has_vector_index (rvalue))
3733 {
3734 gfc_error ("Pointer assignment with vector subscript "
3735 "on rhs at %L", &rvalue->where);
3736 return false;
3737 }
3738
3739 if (attr.is_protected && attr.use_assoc
3740 && !(attr.pointer || attr.proc_pointer))
3741 {
3742 gfc_error ("Pointer assignment target has PROTECTED "
3743 "attribute at %L", &rvalue->where);
3744 return false;
3745 }
3746
3747 /* F2008, C725. For PURE also C1283. */
3748 if (rvalue->expr_type == EXPR_VARIABLE
3749 && gfc_is_coindexed (rvalue))
3750 {
3751 gfc_ref *ref;
3752 for (ref = rvalue->ref; ref; ref = ref->next)
3753 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3754 {
3755 gfc_error ("Data target at %L shall not have a coindex",
3756 &rvalue->where);
3757 return false;
3758 }
3759 }
3760
3761 /* Warn if it is the LHS pointer may lives longer than the RHS target. */
3762 if (warn_target_lifetime
3763 && rvalue->expr_type == EXPR_VARIABLE
3764 && !rvalue->symtree->n.sym->attr.save
3765 && !attr.pointer && !rvalue->symtree->n.sym->attr.host_assoc
3766 && !rvalue->symtree->n.sym->attr.in_common
3767 && !rvalue->symtree->n.sym->attr.use_assoc
3768 && !rvalue->symtree->n.sym->attr.dummy)
3769 {
3770 bool warn;
3771 gfc_namespace *ns;
3772
3773 warn = lvalue->symtree->n.sym->attr.dummy
3774 || lvalue->symtree->n.sym->attr.result
3775 || lvalue->symtree->n.sym->attr.function
3776 || (lvalue->symtree->n.sym->attr.host_assoc
3777 && lvalue->symtree->n.sym->ns
3778 != rvalue->symtree->n.sym->ns)
3779 || lvalue->symtree->n.sym->attr.use_assoc
3780 || lvalue->symtree->n.sym->attr.in_common;
3781
3782 if (rvalue->symtree->n.sym->ns->proc_name
3783 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE
3784 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM)
3785 for (ns = rvalue->symtree->n.sym->ns;
3786 ns && ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE;
3787 ns = ns->parent)
3788 if (ns->parent == lvalue->symtree->n.sym->ns)
3789 {
3790 warn = true;
3791 break;
3792 }
3793
3794 if (warn)
3795 gfc_warning (OPT_Wtarget_lifetime,
3796 "Pointer at %L in pointer assignment might outlive the "
3797 "pointer target", &lvalue->where);
3798 }
3799
3800 return true;
3801 }
3802
3803
3804 /* Relative of gfc_check_assign() except that the lvalue is a single
3805 symbol. Used for initialization assignments. */
3806
3807 bool
3808 gfc_check_assign_symbol (gfc_symbol *sym, gfc_component *comp, gfc_expr *rvalue)
3809 {
3810 gfc_expr lvalue;
3811 bool r;
3812 bool pointer, proc_pointer;
3813
3814 memset (&lvalue, '\0', sizeof (gfc_expr));
3815
3816 lvalue.expr_type = EXPR_VARIABLE;
3817 lvalue.ts = sym->ts;
3818 if (sym->as)
3819 lvalue.rank = sym->as->rank;
3820 lvalue.symtree = XCNEW (gfc_symtree);
3821 lvalue.symtree->n.sym = sym;
3822 lvalue.where = sym->declared_at;
3823
3824 if (comp)
3825 {
3826 lvalue.ref = gfc_get_ref ();
3827 lvalue.ref->type = REF_COMPONENT;
3828 lvalue.ref->u.c.component = comp;
3829 lvalue.ref->u.c.sym = sym;
3830 lvalue.ts = comp->ts;
3831 lvalue.rank = comp->as ? comp->as->rank : 0;
3832 lvalue.where = comp->loc;
3833 pointer = comp->ts.type == BT_CLASS && CLASS_DATA (comp)
3834 ? CLASS_DATA (comp)->attr.class_pointer : comp->attr.pointer;
3835 proc_pointer = comp->attr.proc_pointer;
3836 }
3837 else
3838 {
3839 pointer = sym->ts.type == BT_CLASS && CLASS_DATA (sym)
3840 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
3841 proc_pointer = sym->attr.proc_pointer;
3842 }
3843
3844 if (pointer || proc_pointer)
3845 r = gfc_check_pointer_assign (&lvalue, rvalue);
3846 else
3847 r = gfc_check_assign (&lvalue, rvalue, 1);
3848
3849 free (lvalue.symtree);
3850 free (lvalue.ref);
3851
3852 if (!r)
3853 return r;
3854
3855 if (pointer && rvalue->expr_type != EXPR_NULL)
3856 {
3857 /* F08:C461. Additional checks for pointer initialization. */
3858 symbol_attribute attr;
3859 attr = gfc_expr_attr (rvalue);
3860 if (attr.allocatable)
3861 {
3862 gfc_error ("Pointer initialization target at %L "
3863 "must not be ALLOCATABLE", &rvalue->where);
3864 return false;
3865 }
3866 if (!attr.target || attr.pointer)
3867 {
3868 gfc_error ("Pointer initialization target at %L "
3869 "must have the TARGET attribute", &rvalue->where);
3870 return false;
3871 }
3872
3873 if (!attr.save && rvalue->expr_type == EXPR_VARIABLE
3874 && rvalue->symtree->n.sym->ns->proc_name
3875 && rvalue->symtree->n.sym->ns->proc_name->attr.is_main_program)
3876 {
3877 rvalue->symtree->n.sym->ns->proc_name->attr.save = SAVE_IMPLICIT;
3878 attr.save = SAVE_IMPLICIT;
3879 }
3880
3881 if (!attr.save)
3882 {
3883 gfc_error ("Pointer initialization target at %L "
3884 "must have the SAVE attribute", &rvalue->where);
3885 return false;
3886 }
3887 }
3888
3889 if (proc_pointer && rvalue->expr_type != EXPR_NULL)
3890 {
3891 /* F08:C1220. Additional checks for procedure pointer initialization. */
3892 symbol_attribute attr = gfc_expr_attr (rvalue);
3893 if (attr.proc_pointer)
3894 {
3895 gfc_error ("Procedure pointer initialization target at %L "
3896 "may not be a procedure pointer", &rvalue->where);
3897 return false;
3898 }
3899 }
3900
3901 return true;
3902 }
3903
3904
3905 /* Check for default initializer; sym->value is not enough
3906 as it is also set for EXPR_NULL of allocatables. */
3907
3908 bool
3909 gfc_has_default_initializer (gfc_symbol *der)
3910 {
3911 gfc_component *c;
3912
3913 gcc_assert (der->attr.flavor == FL_DERIVED);
3914 for (c = der->components; c; c = c->next)
3915 if (c->ts.type == BT_DERIVED)
3916 {
3917 if (!c->attr.pointer
3918 && gfc_has_default_initializer (c->ts.u.derived))
3919 return true;
3920 if (c->attr.pointer && c->initializer)
3921 return true;
3922 }
3923 else
3924 {
3925 if (c->initializer)
3926 return true;
3927 }
3928
3929 return false;
3930 }
3931
3932
3933 /* Get an expression for a default initializer. */
3934
3935 gfc_expr *
3936 gfc_default_initializer (gfc_typespec *ts)
3937 {
3938 gfc_expr *init;
3939 gfc_component *comp;
3940
3941 /* See if we have a default initializer in this, but not in nested
3942 types (otherwise we could use gfc_has_default_initializer()). */
3943 for (comp = ts->u.derived->components; comp; comp = comp->next)
3944 if (comp->initializer || comp->attr.allocatable
3945 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
3946 && CLASS_DATA (comp)->attr.allocatable))
3947 break;
3948
3949 if (!comp)
3950 return NULL;
3951
3952 init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
3953 &ts->u.derived->declared_at);
3954 init->ts = *ts;
3955
3956 for (comp = ts->u.derived->components; comp; comp = comp->next)
3957 {
3958 gfc_constructor *ctor = gfc_constructor_get();
3959
3960 if (comp->initializer)
3961 {
3962 ctor->expr = gfc_copy_expr (comp->initializer);
3963 if ((comp->ts.type != comp->initializer->ts.type
3964 || comp->ts.kind != comp->initializer->ts.kind)
3965 && !comp->attr.pointer && !comp->attr.proc_pointer)
3966 gfc_convert_type_warn (ctor->expr, &comp->ts, 2, false);
3967 }
3968
3969 if (comp->attr.allocatable
3970 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
3971 {
3972 ctor->expr = gfc_get_expr ();
3973 ctor->expr->expr_type = EXPR_NULL;
3974 ctor->expr->ts = comp->ts;
3975 }
3976
3977 gfc_constructor_append (&init->value.constructor, ctor);
3978 }
3979
3980 return init;
3981 }
3982
3983
3984 /* Given a symbol, create an expression node with that symbol as a
3985 variable. If the symbol is array valued, setup a reference of the
3986 whole array. */
3987
3988 gfc_expr *
3989 gfc_get_variable_expr (gfc_symtree *var)
3990 {
3991 gfc_expr *e;
3992
3993 e = gfc_get_expr ();
3994 e->expr_type = EXPR_VARIABLE;
3995 e->symtree = var;
3996 e->ts = var->n.sym->ts;
3997
3998 if (var->n.sym->attr.flavor != FL_PROCEDURE
3999 && ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
4000 || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)
4001 && CLASS_DATA (var->n.sym)->as)))
4002 {
4003 e->rank = var->n.sym->ts.type == BT_CLASS
4004 ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
4005 e->ref = gfc_get_ref ();
4006 e->ref->type = REF_ARRAY;
4007 e->ref->u.ar.type = AR_FULL;
4008 e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
4009 ? CLASS_DATA (var->n.sym)->as
4010 : var->n.sym->as);
4011 }
4012
4013 return e;
4014 }
4015
4016
4017 /* Adds a full array reference to an expression, as needed. */
4018
4019 void
4020 gfc_add_full_array_ref (gfc_expr *e, gfc_array_spec *as)
4021 {
4022 gfc_ref *ref;
4023 for (ref = e->ref; ref; ref = ref->next)
4024 if (!ref->next)
4025 break;
4026 if (ref)
4027 {
4028 ref->next = gfc_get_ref ();
4029 ref = ref->next;
4030 }
4031 else
4032 {
4033 e->ref = gfc_get_ref ();
4034 ref = e->ref;
4035 }
4036 ref->type = REF_ARRAY;
4037 ref->u.ar.type = AR_FULL;
4038 ref->u.ar.dimen = e->rank;
4039 ref->u.ar.where = e->where;
4040 ref->u.ar.as = as;
4041 }
4042
4043
4044 gfc_expr *
4045 gfc_lval_expr_from_sym (gfc_symbol *sym)
4046 {
4047 gfc_expr *lval;
4048 gfc_array_spec *as;
4049 lval = gfc_get_expr ();
4050 lval->expr_type = EXPR_VARIABLE;
4051 lval->where = sym->declared_at;
4052 lval->ts = sym->ts;
4053 lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
4054
4055 /* It will always be a full array. */
4056 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
4057 lval->rank = as ? as->rank : 0;
4058 if (lval->rank)
4059 gfc_add_full_array_ref (lval, as);
4060 return lval;
4061 }
4062
4063
4064 /* Returns the array_spec of a full array expression. A NULL is
4065 returned otherwise. */
4066 gfc_array_spec *
4067 gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
4068 {
4069 gfc_array_spec *as;
4070 gfc_ref *ref;
4071
4072 if (expr->rank == 0)
4073 return NULL;
4074
4075 /* Follow any component references. */
4076 if (expr->expr_type == EXPR_VARIABLE
4077 || expr->expr_type == EXPR_CONSTANT)
4078 {
4079 as = expr->symtree->n.sym->as;
4080 for (ref = expr->ref; ref; ref = ref->next)
4081 {
4082 switch (ref->type)
4083 {
4084 case REF_COMPONENT:
4085 as = ref->u.c.component->as;
4086 continue;
4087
4088 case REF_SUBSTRING:
4089 continue;
4090
4091 case REF_ARRAY:
4092 {
4093 switch (ref->u.ar.type)
4094 {
4095 case AR_ELEMENT:
4096 case AR_SECTION:
4097 case AR_UNKNOWN:
4098 as = NULL;
4099 continue;
4100
4101 case AR_FULL:
4102 break;
4103 }
4104 break;
4105 }
4106 }
4107 }
4108 }
4109 else
4110 as = NULL;
4111
4112 return as;
4113 }
4114
4115
4116 /* General expression traversal function. */
4117
4118 bool
4119 gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
4120 bool (*func)(gfc_expr *, gfc_symbol *, int*),
4121 int f)
4122 {
4123 gfc_array_ref ar;
4124 gfc_ref *ref;
4125 gfc_actual_arglist *args;
4126 gfc_constructor *c;
4127 int i;
4128
4129 if (!expr)
4130 return false;
4131
4132 if ((*func) (expr, sym, &f))
4133 return true;
4134
4135 if (expr->ts.type == BT_CHARACTER
4136 && expr->ts.u.cl
4137 && expr->ts.u.cl->length
4138 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
4139 && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
4140 return true;
4141
4142 switch (expr->expr_type)
4143 {
4144 case EXPR_PPC:
4145 case EXPR_COMPCALL:
4146 case EXPR_FUNCTION:
4147 for (args = expr->value.function.actual; args; args = args->next)
4148 {
4149 if (gfc_traverse_expr (args->expr, sym, func, f))
4150 return true;
4151 }
4152 break;
4153
4154 case EXPR_VARIABLE:
4155 case EXPR_CONSTANT:
4156 case EXPR_NULL:
4157 case EXPR_SUBSTRING:
4158 break;
4159
4160 case EXPR_STRUCTURE:
4161 case EXPR_ARRAY:
4162 for (c = gfc_constructor_first (expr->value.constructor);
4163 c; c = gfc_constructor_next (c))
4164 {
4165 if (gfc_traverse_expr (c->expr, sym, func, f))
4166 return true;
4167 if (c->iterator)
4168 {
4169 if (gfc_traverse_expr (c->iterator->var, sym, func, f))
4170 return true;
4171 if (gfc_traverse_expr (c->iterator->start, sym, func, f))
4172 return true;
4173 if (gfc_traverse_expr (c->iterator->end, sym, func, f))
4174 return true;
4175 if (gfc_traverse_expr (c->iterator->step, sym, func, f))
4176 return true;
4177 }
4178 }
4179 break;
4180
4181 case EXPR_OP:
4182 if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
4183 return true;
4184 if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
4185 return true;
4186 break;
4187
4188 default:
4189 gcc_unreachable ();
4190 break;
4191 }
4192
4193 ref = expr->ref;
4194 while (ref != NULL)
4195 {
4196 switch (ref->type)
4197 {
4198 case REF_ARRAY:
4199 ar = ref->u.ar;
4200 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
4201 {
4202 if (gfc_traverse_expr (ar.start[i], sym, func, f))
4203 return true;
4204 if (gfc_traverse_expr (ar.end[i], sym, func, f))
4205 return true;
4206 if (gfc_traverse_expr (ar.stride[i], sym, func, f))
4207 return true;
4208 }
4209 break;
4210
4211 case REF_SUBSTRING:
4212 if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
4213 return true;
4214 if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
4215 return true;
4216 break;
4217
4218 case REF_COMPONENT:
4219 if (ref->u.c.component->ts.type == BT_CHARACTER
4220 && ref->u.c.component->ts.u.cl
4221 && ref->u.c.component->ts.u.cl->length
4222 && ref->u.c.component->ts.u.cl->length->expr_type
4223 != EXPR_CONSTANT
4224 && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
4225 sym, func, f))
4226 return true;
4227
4228 if (ref->u.c.component->as)
4229 for (i = 0; i < ref->u.c.component->as->rank
4230 + ref->u.c.component->as->corank; i++)
4231 {
4232 if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
4233 sym, func, f))
4234 return true;
4235 if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
4236 sym, func, f))
4237 return true;
4238 }
4239 break;
4240
4241 default:
4242 gcc_unreachable ();
4243 }
4244 ref = ref->next;
4245 }
4246 return false;
4247 }
4248
4249 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
4250
4251 static bool
4252 expr_set_symbols_referenced (gfc_expr *expr,
4253 gfc_symbol *sym ATTRIBUTE_UNUSED,
4254 int *f ATTRIBUTE_UNUSED)
4255 {
4256 if (expr->expr_type != EXPR_VARIABLE)
4257 return false;
4258 gfc_set_sym_referenced (expr->symtree->n.sym);
4259 return false;
4260 }
4261
4262 void
4263 gfc_expr_set_symbols_referenced (gfc_expr *expr)
4264 {
4265 gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
4266 }
4267
4268
4269 /* Determine if an expression is a procedure pointer component and return
4270 the component in that case. Otherwise return NULL. */
4271
4272 gfc_component *
4273 gfc_get_proc_ptr_comp (gfc_expr *expr)
4274 {
4275 gfc_ref *ref;
4276
4277 if (!expr || !expr->ref)
4278 return NULL;
4279
4280 ref = expr->ref;
4281 while (ref->next)
4282 ref = ref->next;
4283
4284 if (ref->type == REF_COMPONENT
4285 && ref->u.c.component->attr.proc_pointer)
4286 return ref->u.c.component;
4287
4288 return NULL;
4289 }
4290
4291
4292 /* Determine if an expression is a procedure pointer component. */
4293
4294 bool
4295 gfc_is_proc_ptr_comp (gfc_expr *expr)
4296 {
4297 return (gfc_get_proc_ptr_comp (expr) != NULL);
4298 }
4299
4300
4301 /* Determine if an expression is a function with an allocatable class scalar
4302 result. */
4303 bool
4304 gfc_is_alloc_class_scalar_function (gfc_expr *expr)
4305 {
4306 if (expr->expr_type == EXPR_FUNCTION
4307 && expr->value.function.esym
4308 && expr->value.function.esym->result
4309 && expr->value.function.esym->result->ts.type == BT_CLASS
4310 && !CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4311 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4312 return true;
4313
4314 return false;
4315 }
4316
4317
4318 /* Determine if an expression is a function with an allocatable class array
4319 result. */
4320 bool
4321 gfc_is_alloc_class_array_function (gfc_expr *expr)
4322 {
4323 if (expr->expr_type == EXPR_FUNCTION
4324 && expr->value.function.esym
4325 && expr->value.function.esym->result
4326 && expr->value.function.esym->result->ts.type == BT_CLASS
4327 && CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4328 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4329 return true;
4330
4331 return false;
4332 }
4333
4334
4335 /* Walk an expression tree and check each variable encountered for being typed.
4336 If strict is not set, a top-level variable is tolerated untyped in -std=gnu
4337 mode as is a basic arithmetic expression using those; this is for things in
4338 legacy-code like:
4339
4340 INTEGER :: arr(n), n
4341 INTEGER :: arr(n + 1), n
4342
4343 The namespace is needed for IMPLICIT typing. */
4344
4345 static gfc_namespace* check_typed_ns;
4346
4347 static bool
4348 expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
4349 int* f ATTRIBUTE_UNUSED)
4350 {
4351 bool t;
4352
4353 if (e->expr_type != EXPR_VARIABLE)
4354 return false;
4355
4356 gcc_assert (e->symtree);
4357 t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
4358 true, e->where);
4359
4360 return (!t);
4361 }
4362
4363 bool
4364 gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
4365 {
4366 bool error_found;
4367
4368 /* If this is a top-level variable or EXPR_OP, do the check with strict given
4369 to us. */
4370 if (!strict)
4371 {
4372 if (e->expr_type == EXPR_VARIABLE && !e->ref)
4373 return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
4374
4375 if (e->expr_type == EXPR_OP)
4376 {
4377 bool t = true;
4378
4379 gcc_assert (e->value.op.op1);
4380 t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
4381
4382 if (t && e->value.op.op2)
4383 t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
4384
4385 return t;
4386 }
4387 }
4388
4389 /* Otherwise, walk the expression and do it strictly. */
4390 check_typed_ns = ns;
4391 error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
4392
4393 return error_found ? false : true;
4394 }
4395
4396
4397 bool
4398 gfc_ref_this_image (gfc_ref *ref)
4399 {
4400 int n;
4401
4402 gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
4403
4404 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
4405 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
4406 return false;
4407
4408 return true;
4409 }
4410
4411
4412 bool
4413 gfc_is_coindexed (gfc_expr *e)
4414 {
4415 gfc_ref *ref;
4416
4417 for (ref = e->ref; ref; ref = ref->next)
4418 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4419 return !gfc_ref_this_image (ref);
4420
4421 return false;
4422 }
4423
4424
4425 /* Coarrays are variables with a corank but not being coindexed. However, also
4426 the following is a coarray: A subobject of a coarray is a coarray if it does
4427 not have any cosubscripts, vector subscripts, allocatable component
4428 selection, or pointer component selection. (F2008, 2.4.7) */
4429
4430 bool
4431 gfc_is_coarray (gfc_expr *e)
4432 {
4433 gfc_ref *ref;
4434 gfc_symbol *sym;
4435 gfc_component *comp;
4436 bool coindexed;
4437 bool coarray;
4438 int i;
4439
4440 if (e->expr_type != EXPR_VARIABLE)
4441 return false;
4442
4443 coindexed = false;
4444 sym = e->symtree->n.sym;
4445
4446 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
4447 coarray = CLASS_DATA (sym)->attr.codimension;
4448 else
4449 coarray = sym->attr.codimension;
4450
4451 for (ref = e->ref; ref; ref = ref->next)
4452 switch (ref->type)
4453 {
4454 case REF_COMPONENT:
4455 comp = ref->u.c.component;
4456 if (comp->ts.type == BT_CLASS && comp->attr.class_ok
4457 && (CLASS_DATA (comp)->attr.class_pointer
4458 || CLASS_DATA (comp)->attr.allocatable))
4459 {
4460 coindexed = false;
4461 coarray = CLASS_DATA (comp)->attr.codimension;
4462 }
4463 else if (comp->attr.pointer || comp->attr.allocatable)
4464 {
4465 coindexed = false;
4466 coarray = comp->attr.codimension;
4467 }
4468 break;
4469
4470 case REF_ARRAY:
4471 if (!coarray)
4472 break;
4473
4474 if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
4475 {
4476 coindexed = true;
4477 break;
4478 }
4479
4480 for (i = 0; i < ref->u.ar.dimen; i++)
4481 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
4482 {
4483 coarray = false;
4484 break;
4485 }
4486 break;
4487
4488 case REF_SUBSTRING:
4489 break;
4490 }
4491
4492 return coarray && !coindexed;
4493 }
4494
4495
4496 int
4497 gfc_get_corank (gfc_expr *e)
4498 {
4499 int corank;
4500 gfc_ref *ref;
4501
4502 if (!gfc_is_coarray (e))
4503 return 0;
4504
4505 if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
4506 corank = e->ts.u.derived->components->as
4507 ? e->ts.u.derived->components->as->corank : 0;
4508 else
4509 corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
4510
4511 for (ref = e->ref; ref; ref = ref->next)
4512 {
4513 if (ref->type == REF_ARRAY)
4514 corank = ref->u.ar.as->corank;
4515 gcc_assert (ref->type != REF_SUBSTRING);
4516 }
4517
4518 return corank;
4519 }
4520
4521
4522 /* Check whether the expression has an ultimate allocatable component.
4523 Being itself allocatable does not count. */
4524 bool
4525 gfc_has_ultimate_allocatable (gfc_expr *e)
4526 {
4527 gfc_ref *ref, *last = NULL;
4528
4529 if (e->expr_type != EXPR_VARIABLE)
4530 return false;
4531
4532 for (ref = e->ref; ref; ref = ref->next)
4533 if (ref->type == REF_COMPONENT)
4534 last = ref;
4535
4536 if (last && last->u.c.component->ts.type == BT_CLASS)
4537 return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
4538 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4539 return last->u.c.component->ts.u.derived->attr.alloc_comp;
4540 else if (last)
4541 return false;
4542
4543 if (e->ts.type == BT_CLASS)
4544 return CLASS_DATA (e)->attr.alloc_comp;
4545 else if (e->ts.type == BT_DERIVED)
4546 return e->ts.u.derived->attr.alloc_comp;
4547 else
4548 return false;
4549 }
4550
4551
4552 /* Check whether the expression has an pointer component.
4553 Being itself a pointer does not count. */
4554 bool
4555 gfc_has_ultimate_pointer (gfc_expr *e)
4556 {
4557 gfc_ref *ref, *last = NULL;
4558
4559 if (e->expr_type != EXPR_VARIABLE)
4560 return false;
4561
4562 for (ref = e->ref; ref; ref = ref->next)
4563 if (ref->type == REF_COMPONENT)
4564 last = ref;
4565
4566 if (last && last->u.c.component->ts.type == BT_CLASS)
4567 return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
4568 else if (last && last->u.c.component->ts.type == BT_DERIVED)
4569 return last->u.c.component->ts.u.derived->attr.pointer_comp;
4570 else if (last)
4571 return false;
4572
4573 if (e->ts.type == BT_CLASS)
4574 return CLASS_DATA (e)->attr.pointer_comp;
4575 else if (e->ts.type == BT_DERIVED)
4576 return e->ts.u.derived->attr.pointer_comp;
4577 else
4578 return false;
4579 }
4580
4581
4582 /* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
4583 Note: A scalar is not regarded as "simply contiguous" by the standard.
4584 if bool is not strict, some further checks are done - for instance,
4585 a "(::1)" is accepted. */
4586
4587 bool
4588 gfc_is_simply_contiguous (gfc_expr *expr, bool strict)
4589 {
4590 bool colon;
4591 int i;
4592 gfc_array_ref *ar = NULL;
4593 gfc_ref *ref, *part_ref = NULL;
4594 gfc_symbol *sym;
4595
4596 if (expr->expr_type == EXPR_FUNCTION)
4597 return expr->value.function.esym
4598 ? expr->value.function.esym->result->attr.contiguous : false;
4599 else if (expr->expr_type != EXPR_VARIABLE)
4600 return false;
4601
4602 if (expr->rank == 0)
4603 return false;
4604
4605 for (ref = expr->ref; ref; ref = ref->next)
4606 {
4607 if (ar)
4608 return false; /* Array shall be last part-ref. */
4609
4610 if (ref->type == REF_COMPONENT)
4611 part_ref = ref;
4612 else if (ref->type == REF_SUBSTRING)
4613 return false;
4614 else if (ref->u.ar.type != AR_ELEMENT)
4615 ar = &ref->u.ar;
4616 }
4617
4618 sym = expr->symtree->n.sym;
4619 if (expr->ts.type != BT_CLASS
4620 && ((part_ref
4621 && !part_ref->u.c.component->attr.contiguous
4622 && part_ref->u.c.component->attr.pointer)
4623 || (!part_ref
4624 && !sym->attr.contiguous
4625 && (sym->attr.pointer
4626 || sym->as->type == AS_ASSUMED_RANK
4627 || sym->as->type == AS_ASSUMED_SHAPE))))
4628 return false;
4629
4630 if (!ar || ar->type == AR_FULL)
4631 return true;
4632
4633 gcc_assert (ar->type == AR_SECTION);
4634
4635 /* Check for simply contiguous array */
4636 colon = true;
4637 for (i = 0; i < ar->dimen; i++)
4638 {
4639 if (ar->dimen_type[i] == DIMEN_VECTOR)
4640 return false;
4641
4642 if (ar->dimen_type[i] == DIMEN_ELEMENT)
4643 {
4644 colon = false;
4645 continue;
4646 }
4647
4648 gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
4649
4650
4651 /* If the previous section was not contiguous, that's an error,
4652 unless we have effective only one element and checking is not
4653 strict. */
4654 if (!colon && (strict || !ar->start[i] || !ar->end[i]
4655 || ar->start[i]->expr_type != EXPR_CONSTANT
4656 || ar->end[i]->expr_type != EXPR_CONSTANT
4657 || mpz_cmp (ar->start[i]->value.integer,
4658 ar->end[i]->value.integer) != 0))
4659 return false;
4660
4661 /* Following the standard, "(::1)" or - if known at compile time -
4662 "(lbound:ubound)" are not simply contiguous; if strict
4663 is false, they are regarded as simply contiguous. */
4664 if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
4665 || ar->stride[i]->ts.type != BT_INTEGER
4666 || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
4667 return false;
4668
4669 if (ar->start[i]
4670 && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
4671 || !ar->as->lower[i]
4672 || ar->as->lower[i]->expr_type != EXPR_CONSTANT
4673 || mpz_cmp (ar->start[i]->value.integer,
4674 ar->as->lower[i]->value.integer) != 0))
4675 colon = false;
4676
4677 if (ar->end[i]
4678 && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
4679 || !ar->as->upper[i]
4680 || ar->as->upper[i]->expr_type != EXPR_CONSTANT
4681 || mpz_cmp (ar->end[i]->value.integer,
4682 ar->as->upper[i]->value.integer) != 0))
4683 colon = false;
4684 }
4685
4686 return true;
4687 }
4688
4689
4690 /* Build call to an intrinsic procedure. The number of arguments has to be
4691 passed (rather than ending the list with a NULL value) because we may
4692 want to add arguments but with a NULL-expression. */
4693
4694 gfc_expr*
4695 gfc_build_intrinsic_call (gfc_namespace *ns, gfc_isym_id id, const char* name,
4696 locus where, unsigned numarg, ...)
4697 {
4698 gfc_expr* result;
4699 gfc_actual_arglist* atail;
4700 gfc_intrinsic_sym* isym;
4701 va_list ap;
4702 unsigned i;
4703 const char *mangled_name = gfc_get_string (GFC_PREFIX ("%s"), name);
4704
4705 isym = gfc_intrinsic_function_by_id (id);
4706 gcc_assert (isym);
4707
4708 result = gfc_get_expr ();
4709 result->expr_type = EXPR_FUNCTION;
4710 result->ts = isym->ts;
4711 result->where = where;
4712 result->value.function.name = mangled_name;
4713 result->value.function.isym = isym;
4714
4715 gfc_get_sym_tree (mangled_name, ns, &result->symtree, false);
4716 gfc_commit_symbol (result->symtree->n.sym);
4717 gcc_assert (result->symtree
4718 && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
4719 || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
4720 result->symtree->n.sym->intmod_sym_id = id;
4721 result->symtree->n.sym->attr.flavor = FL_PROCEDURE;
4722 result->symtree->n.sym->attr.intrinsic = 1;
4723 result->symtree->n.sym->attr.artificial = 1;
4724
4725 va_start (ap, numarg);
4726 atail = NULL;
4727 for (i = 0; i < numarg; ++i)
4728 {
4729 if (atail)
4730 {
4731 atail->next = gfc_get_actual_arglist ();
4732 atail = atail->next;
4733 }
4734 else
4735 atail = result->value.function.actual = gfc_get_actual_arglist ();
4736
4737 atail->expr = va_arg (ap, gfc_expr*);
4738 }
4739 va_end (ap);
4740
4741 return result;
4742 }
4743
4744
4745 /* Check if an expression may appear in a variable definition context
4746 (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
4747 This is called from the various places when resolving
4748 the pieces that make up such a context.
4749 If own_scope is true (applies to, e.g., ac-implied-do/data-implied-do
4750 variables), some checks are not performed.
4751
4752 Optionally, a possible error message can be suppressed if context is NULL
4753 and just the return status (true / false) be requested. */
4754
4755 bool
4756 gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
4757 bool own_scope, const char* context)
4758 {
4759 gfc_symbol* sym = NULL;
4760 bool is_pointer;
4761 bool check_intentin;
4762 bool ptr_component;
4763 symbol_attribute attr;
4764 gfc_ref* ref;
4765 int i;
4766
4767 if (e->expr_type == EXPR_VARIABLE)
4768 {
4769 gcc_assert (e->symtree);
4770 sym = e->symtree->n.sym;
4771 }
4772 else if (e->expr_type == EXPR_FUNCTION)
4773 {
4774 gcc_assert (e->symtree);
4775 sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
4776 }
4777
4778 attr = gfc_expr_attr (e);
4779 if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
4780 {
4781 if (!(gfc_option.allow_std & GFC_STD_F2008))
4782 {
4783 if (context)
4784 gfc_error ("Fortran 2008: Pointer functions in variable definition"
4785 " context (%s) at %L", context, &e->where);
4786 return false;
4787 }
4788 }
4789 else if (e->expr_type != EXPR_VARIABLE)
4790 {
4791 if (context)
4792 gfc_error ("Non-variable expression in variable definition context (%s)"
4793 " at %L", context, &e->where);
4794 return false;
4795 }
4796
4797 if (!pointer && sym->attr.flavor == FL_PARAMETER)
4798 {
4799 if (context)
4800 gfc_error ("Named constant %qs in variable definition context (%s)"
4801 " at %L", sym->name, context, &e->where);
4802 return false;
4803 }
4804 if (!pointer && sym->attr.flavor != FL_VARIABLE
4805 && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
4806 && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer))
4807 {
4808 if (context)
4809 gfc_error ("%qs in variable definition context (%s) at %L is not"
4810 " a variable", sym->name, context, &e->where);
4811 return false;
4812 }
4813
4814 /* Find out whether the expr is a pointer; this also means following
4815 component references to the last one. */
4816 is_pointer = (attr.pointer || attr.proc_pointer);
4817 if (pointer && !is_pointer)
4818 {
4819 if (context)
4820 gfc_error ("Non-POINTER in pointer association context (%s)"
4821 " at %L", context, &e->where);
4822 return false;
4823 }
4824
4825 /* F2008, C1303. */
4826 if (!alloc_obj
4827 && (attr.lock_comp
4828 || (e->ts.type == BT_DERIVED
4829 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
4830 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
4831 {
4832 if (context)
4833 gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
4834 context, &e->where);
4835 return false;
4836 }
4837
4838 /* INTENT(IN) dummy argument. Check this, unless the object itself is the
4839 component of sub-component of a pointer; we need to distinguish
4840 assignment to a pointer component from pointer-assignment to a pointer
4841 component. Note that (normal) assignment to procedure pointers is not
4842 possible. */
4843 check_intentin = !own_scope;
4844 ptr_component = (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
4845 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
4846 for (ref = e->ref; ref && check_intentin; ref = ref->next)
4847 {
4848 if (ptr_component && ref->type == REF_COMPONENT)
4849 check_intentin = false;
4850 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
4851 {
4852 ptr_component = true;
4853 if (!pointer)
4854 check_intentin = false;
4855 }
4856 }
4857 if (check_intentin && sym->attr.intent == INTENT_IN)
4858 {
4859 if (pointer && is_pointer)
4860 {
4861 if (context)
4862 gfc_error ("Dummy argument %qs with INTENT(IN) in pointer"
4863 " association context (%s) at %L",
4864 sym->name, context, &e->where);
4865 return false;
4866 }
4867 if (!pointer && !is_pointer && !sym->attr.pointer)
4868 {
4869 if (context)
4870 gfc_error ("Dummy argument %qs with INTENT(IN) in variable"
4871 " definition context (%s) at %L",
4872 sym->name, context, &e->where);
4873 return false;
4874 }
4875 }
4876
4877 /* PROTECTED and use-associated. */
4878 if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
4879 {
4880 if (pointer && is_pointer)
4881 {
4882 if (context)
4883 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
4884 " pointer association context (%s) at %L",
4885 sym->name, context, &e->where);
4886 return false;
4887 }
4888 if (!pointer && !is_pointer)
4889 {
4890 if (context)
4891 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
4892 " variable definition context (%s) at %L",
4893 sym->name, context, &e->where);
4894 return false;
4895 }
4896 }
4897
4898 /* Variable not assignable from a PURE procedure but appears in
4899 variable definition context. */
4900 if (!pointer && !own_scope && gfc_pure (NULL) && gfc_impure_variable (sym))
4901 {
4902 if (context)
4903 gfc_error ("Variable %qs can not appear in a variable definition"
4904 " context (%s) at %L in PURE procedure",
4905 sym->name, context, &e->where);
4906 return false;
4907 }
4908
4909 if (!pointer && context && gfc_implicit_pure (NULL)
4910 && gfc_impure_variable (sym))
4911 {
4912 gfc_namespace *ns;
4913 gfc_symbol *sym;
4914
4915 for (ns = gfc_current_ns; ns; ns = ns->parent)
4916 {
4917 sym = ns->proc_name;
4918 if (sym == NULL)
4919 break;
4920 if (sym->attr.flavor == FL_PROCEDURE)
4921 {
4922 sym->attr.implicit_pure = 0;
4923 break;
4924 }
4925 }
4926 }
4927 /* Check variable definition context for associate-names. */
4928 if (!pointer && sym->assoc)
4929 {
4930 const char* name;
4931 gfc_association_list* assoc;
4932
4933 gcc_assert (sym->assoc->target);
4934
4935 /* If this is a SELECT TYPE temporary (the association is used internally
4936 for SELECT TYPE), silently go over to the target. */
4937 if (sym->attr.select_type_temporary)
4938 {
4939 gfc_expr* t = sym->assoc->target;
4940
4941 gcc_assert (t->expr_type == EXPR_VARIABLE);
4942 name = t->symtree->name;
4943
4944 if (t->symtree->n.sym->assoc)
4945 assoc = t->symtree->n.sym->assoc;
4946 else
4947 assoc = sym->assoc;
4948 }
4949 else
4950 {
4951 name = sym->name;
4952 assoc = sym->assoc;
4953 }
4954 gcc_assert (name && assoc);
4955
4956 /* Is association to a valid variable? */
4957 if (!assoc->variable)
4958 {
4959 if (context)
4960 {
4961 if (assoc->target->expr_type == EXPR_VARIABLE)
4962 gfc_error ("%qs at %L associated to vector-indexed target can"
4963 " not be used in a variable definition context (%s)",
4964 name, &e->where, context);
4965 else
4966 gfc_error ("%qs at %L associated to expression can"
4967 " not be used in a variable definition context (%s)",
4968 name, &e->where, context);
4969 }
4970 return false;
4971 }
4972
4973 /* Target must be allowed to appear in a variable definition context. */
4974 if (!gfc_check_vardef_context (assoc->target, pointer, false, false, NULL))
4975 {
4976 if (context)
4977 gfc_error ("Associate-name %qs can not appear in a variable"
4978 " definition context (%s) at %L because its target"
4979 " at %L can not, either",
4980 name, context, &e->where,
4981 &assoc->target->where);
4982 return false;
4983 }
4984 }
4985
4986 /* Check for same value in vector expression subscript. */
4987
4988 if (e->rank > 0)
4989 for (ref = e->ref; ref != NULL; ref = ref->next)
4990 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
4991 for (i = 0; i < GFC_MAX_DIMENSIONS
4992 && ref->u.ar.dimen_type[i] != 0; i++)
4993 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
4994 {
4995 gfc_expr *arr = ref->u.ar.start[i];
4996 if (arr->expr_type == EXPR_ARRAY)
4997 {
4998 gfc_constructor *c, *n;
4999 gfc_expr *ec, *en;
5000
5001 for (c = gfc_constructor_first (arr->value.constructor);
5002 c != NULL; c = gfc_constructor_next (c))
5003 {
5004 if (c == NULL || c->iterator != NULL)
5005 continue;
5006
5007 ec = c->expr;
5008
5009 for (n = gfc_constructor_next (c); n != NULL;
5010 n = gfc_constructor_next (n))
5011 {
5012 if (n->iterator != NULL)
5013 continue;
5014
5015 en = n->expr;
5016 if (gfc_dep_compare_expr (ec, en) == 0)
5017 {
5018 if (context)
5019 gfc_error_now ("Elements with the same value "
5020 "at %L and %L in vector "
5021 "subscript in a variable "
5022 "definition context (%s)",
5023 &(ec->where), &(en->where),
5024 context);
5025 return false;
5026 }
5027 }
5028 }
5029 }
5030 }
5031
5032 return true;
5033 }