]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/interface.c
Update copyright years.
[thirdparty/gcc.git] / gcc / fortran / interface.c
1 /* Deal with interfaces.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
27
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
32
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
35 own head pointer.
36
37 Nameless interfaces:
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
40
41 Generic interfaces:
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
46
47 User operators:
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
51
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
54
55 Implicit interfaces:
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
59
60
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
65
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "options.h"
70 #include "gfortran.h"
71 #include "match.h"
72 #include "arith.h"
73
74 /* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
77
78 gfc_interface_info current_interface;
79
80
81 /* Free a singly linked list of gfc_interface structures. */
82
83 void
84 gfc_free_interface (gfc_interface *intr)
85 {
86 gfc_interface *next;
87
88 for (; intr; intr = next)
89 {
90 next = intr->next;
91 free (intr);
92 }
93 }
94
95
96 /* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
98
99 static gfc_intrinsic_op
100 fold_unary_intrinsic (gfc_intrinsic_op op)
101 {
102 switch (op)
103 {
104 case INTRINSIC_UPLUS:
105 op = INTRINSIC_PLUS;
106 break;
107 case INTRINSIC_UMINUS:
108 op = INTRINSIC_MINUS;
109 break;
110 default:
111 break;
112 }
113
114 return op;
115 }
116
117
118 /* Match a generic specification. Depending on which type of
119 interface is found, the 'name' or 'op' pointers may be set.
120 This subroutine doesn't return MATCH_NO. */
121
122 match
123 gfc_match_generic_spec (interface_type *type,
124 char *name,
125 gfc_intrinsic_op *op)
126 {
127 char buffer[GFC_MAX_SYMBOL_LEN + 1];
128 match m;
129 gfc_intrinsic_op i;
130
131 if (gfc_match (" assignment ( = )") == MATCH_YES)
132 {
133 *type = INTERFACE_INTRINSIC_OP;
134 *op = INTRINSIC_ASSIGN;
135 return MATCH_YES;
136 }
137
138 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
139 { /* Operator i/f */
140 *type = INTERFACE_INTRINSIC_OP;
141 *op = fold_unary_intrinsic (i);
142 return MATCH_YES;
143 }
144
145 *op = INTRINSIC_NONE;
146 if (gfc_match (" operator ( ") == MATCH_YES)
147 {
148 m = gfc_match_defined_op_name (buffer, 1);
149 if (m == MATCH_NO)
150 goto syntax;
151 if (m != MATCH_YES)
152 return MATCH_ERROR;
153
154 m = gfc_match_char (')');
155 if (m == MATCH_NO)
156 goto syntax;
157 if (m != MATCH_YES)
158 return MATCH_ERROR;
159
160 strcpy (name, buffer);
161 *type = INTERFACE_USER_OP;
162 return MATCH_YES;
163 }
164
165 if (gfc_match_name (buffer) == MATCH_YES)
166 {
167 strcpy (name, buffer);
168 *type = INTERFACE_GENERIC;
169 return MATCH_YES;
170 }
171
172 *type = INTERFACE_NAMELESS;
173 return MATCH_YES;
174
175 syntax:
176 gfc_error ("Syntax error in generic specification at %C");
177 return MATCH_ERROR;
178 }
179
180
181 /* Match one of the five F95 forms of an interface statement. The
182 matcher for the abstract interface follows. */
183
184 match
185 gfc_match_interface (void)
186 {
187 char name[GFC_MAX_SYMBOL_LEN + 1];
188 interface_type type;
189 gfc_symbol *sym;
190 gfc_intrinsic_op op;
191 match m;
192
193 m = gfc_match_space ();
194
195 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
196 return MATCH_ERROR;
197
198 /* If we're not looking at the end of the statement now, or if this
199 is not a nameless interface but we did not see a space, punt. */
200 if (gfc_match_eos () != MATCH_YES
201 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
202 {
203 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
204 "at %C");
205 return MATCH_ERROR;
206 }
207
208 current_interface.type = type;
209
210 switch (type)
211 {
212 case INTERFACE_GENERIC:
213 if (gfc_get_symbol (name, NULL, &sym))
214 return MATCH_ERROR;
215
216 if (!sym->attr.generic
217 && !gfc_add_generic (&sym->attr, sym->name, NULL))
218 return MATCH_ERROR;
219
220 if (sym->attr.dummy)
221 {
222 gfc_error ("Dummy procedure %qs at %C cannot have a "
223 "generic interface", sym->name);
224 return MATCH_ERROR;
225 }
226
227 current_interface.sym = gfc_new_block = sym;
228 break;
229
230 case INTERFACE_USER_OP:
231 current_interface.uop = gfc_get_uop (name);
232 break;
233
234 case INTERFACE_INTRINSIC_OP:
235 current_interface.op = op;
236 break;
237
238 case INTERFACE_NAMELESS:
239 case INTERFACE_ABSTRACT:
240 break;
241 }
242
243 return MATCH_YES;
244 }
245
246
247
248 /* Match a F2003 abstract interface. */
249
250 match
251 gfc_match_abstract_interface (void)
252 {
253 match m;
254
255 if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
256 return MATCH_ERROR;
257
258 m = gfc_match_eos ();
259
260 if (m != MATCH_YES)
261 {
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
264 }
265
266 current_interface.type = INTERFACE_ABSTRACT;
267
268 return m;
269 }
270
271
272 /* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
274
275 match
276 gfc_match_end_interface (void)
277 {
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
280 gfc_intrinsic_op op;
281 match m;
282
283 m = gfc_match_space ();
284
285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
286 return MATCH_ERROR;
287
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
292 {
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
295 return MATCH_ERROR;
296 }
297
298 m = MATCH_YES;
299
300 switch (current_interface.type)
301 {
302 case INTERFACE_NAMELESS:
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
305 {
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
308 }
309
310 break;
311
312 case INTERFACE_INTRINSIC_OP:
313 if (type != current_interface.type || op != current_interface.op)
314 {
315
316 if (current_interface.op == INTRINSIC_ASSIGN)
317 {
318 m = MATCH_ERROR;
319 gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
320 }
321 else
322 {
323 const char *s1, *s2;
324 s1 = gfc_op2string (current_interface.op);
325 s2 = gfc_op2string (op);
326
327 /* The following if-statements are used to enforce C1202
328 from F2003. */
329 if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
330 || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
331 break;
332 if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
333 || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
334 break;
335 if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
336 || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
337 break;
338 if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
339 || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
340 break;
341 if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
342 || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
343 break;
344 if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
345 || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
346 break;
347
348 m = MATCH_ERROR;
349 if (strcmp(s2, "none") == 0)
350 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> "
351 "at %C, ", s1);
352 else
353 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
354 "but got %s", s1, s2);
355 }
356
357 }
358
359 break;
360
361 case INTERFACE_USER_OP:
362 /* Comparing the symbol node names is OK because only use-associated
363 symbols can be renamed. */
364 if (type != current_interface.type
365 || strcmp (current_interface.uop->name, name) != 0)
366 {
367 gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
368 current_interface.uop->name);
369 m = MATCH_ERROR;
370 }
371
372 break;
373
374 case INTERFACE_GENERIC:
375 if (type != current_interface.type
376 || strcmp (current_interface.sym->name, name) != 0)
377 {
378 gfc_error ("Expecting %<END INTERFACE %s%> at %C",
379 current_interface.sym->name);
380 m = MATCH_ERROR;
381 }
382
383 break;
384 }
385
386 return m;
387 }
388
389
390 /* Compare two derived types using the criteria in 4.4.2 of the standard,
391 recursing through gfc_compare_types for the components. */
392
393 int
394 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
395 {
396 gfc_component *dt1, *dt2;
397
398 if (derived1 == derived2)
399 return 1;
400
401 gcc_assert (derived1 && derived2);
402
403 /* Special case for comparing derived types across namespaces. If the
404 true names and module names are the same and the module name is
405 nonnull, then they are equal. */
406 if (strcmp (derived1->name, derived2->name) == 0
407 && derived1->module != NULL && derived2->module != NULL
408 && strcmp (derived1->module, derived2->module) == 0)
409 return 1;
410
411 /* Compare type via the rules of the standard. Both types must have
412 the SEQUENCE or BIND(C) attribute to be equal. */
413
414 if (strcmp (derived1->name, derived2->name))
415 return 0;
416
417 if (derived1->component_access == ACCESS_PRIVATE
418 || derived2->component_access == ACCESS_PRIVATE)
419 return 0;
420
421 if (!(derived1->attr.sequence && derived2->attr.sequence)
422 && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
423 return 0;
424
425 dt1 = derived1->components;
426 dt2 = derived2->components;
427
428 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
429 simple test can speed things up. Otherwise, lots of things have to
430 match. */
431 for (;;)
432 {
433 if (strcmp (dt1->name, dt2->name) != 0)
434 return 0;
435
436 if (dt1->attr.access != dt2->attr.access)
437 return 0;
438
439 if (dt1->attr.pointer != dt2->attr.pointer)
440 return 0;
441
442 if (dt1->attr.dimension != dt2->attr.dimension)
443 return 0;
444
445 if (dt1->attr.allocatable != dt2->attr.allocatable)
446 return 0;
447
448 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
449 return 0;
450
451 /* Make sure that link lists do not put this function into an
452 endless recursive loop! */
453 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
454 && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
455 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
456 return 0;
457
458 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
459 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
460 return 0;
461
462 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
463 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
464 return 0;
465
466 dt1 = dt1->next;
467 dt2 = dt2->next;
468
469 if (dt1 == NULL && dt2 == NULL)
470 break;
471 if (dt1 == NULL || dt2 == NULL)
472 return 0;
473 }
474
475 return 1;
476 }
477
478
479 /* Compare two typespecs, recursively if necessary. */
480
481 int
482 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
483 {
484 /* See if one of the typespecs is a BT_VOID, which is what is being used
485 to allow the funcs like c_f_pointer to accept any pointer type.
486 TODO: Possibly should narrow this to just the one typespec coming in
487 that is for the formal arg, but oh well. */
488 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
489 return 1;
490
491 /* The _data component is not always present, therefore check for its
492 presence before assuming, that its derived->attr is available.
493 When the _data component is not present, then nevertheless the
494 unlimited_polymorphic flag may be set in the derived type's attr. */
495 if (ts1->type == BT_CLASS && ts1->u.derived->components
496 && ((ts1->u.derived->attr.is_class
497 && ts1->u.derived->components->ts.u.derived->attr
498 .unlimited_polymorphic)
499 || ts1->u.derived->attr.unlimited_polymorphic))
500 return 1;
501
502 /* F2003: C717 */
503 if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
504 && ts2->u.derived->components
505 && ((ts2->u.derived->attr.is_class
506 && ts2->u.derived->components->ts.u.derived->attr
507 .unlimited_polymorphic)
508 || ts2->u.derived->attr.unlimited_polymorphic)
509 && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
510 return 1;
511
512 if (ts1->type != ts2->type
513 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
514 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
515 return 0;
516 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
517 return (ts1->kind == ts2->kind);
518
519 /* Compare derived types. */
520 if (gfc_type_compatible (ts1, ts2))
521 return 1;
522
523 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
524 }
525
526
527 static int
528 compare_type (gfc_symbol *s1, gfc_symbol *s2)
529 {
530 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
531 return 1;
532
533 /* TYPE and CLASS of the same declared type are type compatible,
534 but have different characteristics. */
535 if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
536 || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
537 return 0;
538
539 return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
540 }
541
542
543 static int
544 compare_rank (gfc_symbol *s1, gfc_symbol *s2)
545 {
546 gfc_array_spec *as1, *as2;
547 int r1, r2;
548
549 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
550 return 1;
551
552 as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
553 as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
554
555 r1 = as1 ? as1->rank : 0;
556 r2 = as2 ? as2->rank : 0;
557
558 if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
559 return 0; /* Ranks differ. */
560
561 return 1;
562 }
563
564
565 /* Given two symbols that are formal arguments, compare their ranks
566 and types. Returns nonzero if they have the same rank and type,
567 zero otherwise. */
568
569 static int
570 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
571 {
572 return compare_type (s1, s2) && compare_rank (s1, s2);
573 }
574
575
576 /* Given two symbols that are formal arguments, compare their types
577 and rank and their formal interfaces if they are both dummy
578 procedures. Returns nonzero if the same, zero if different. */
579
580 static int
581 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
582 {
583 if (s1 == NULL || s2 == NULL)
584 return s1 == s2 ? 1 : 0;
585
586 if (s1 == s2)
587 return 1;
588
589 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
590 return compare_type_rank (s1, s2);
591
592 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
593 return 0;
594
595 /* At this point, both symbols are procedures. It can happen that
596 external procedures are compared, where one is identified by usage
597 to be a function or subroutine but the other is not. Check TKR
598 nonetheless for these cases. */
599 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
600 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
601
602 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
603 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
604
605 /* Now the type of procedure has been identified. */
606 if (s1->attr.function != s2->attr.function
607 || s1->attr.subroutine != s2->attr.subroutine)
608 return 0;
609
610 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
611 return 0;
612
613 /* Originally, gfortran recursed here to check the interfaces of passed
614 procedures. This is explicitly not required by the standard. */
615 return 1;
616 }
617
618
619 /* Given a formal argument list and a keyword name, search the list
620 for that keyword. Returns the correct symbol node if found, NULL
621 if not found. */
622
623 static gfc_symbol *
624 find_keyword_arg (const char *name, gfc_formal_arglist *f)
625 {
626 for (; f; f = f->next)
627 if (strcmp (f->sym->name, name) == 0)
628 return f->sym;
629
630 return NULL;
631 }
632
633
634 /******** Interface checking subroutines **********/
635
636
637 /* Given an operator interface and the operator, make sure that all
638 interfaces for that operator are legal. */
639
640 bool
641 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
642 locus opwhere)
643 {
644 gfc_formal_arglist *formal;
645 sym_intent i1, i2;
646 bt t1, t2;
647 int args, r1, r2, k1, k2;
648
649 gcc_assert (sym);
650
651 args = 0;
652 t1 = t2 = BT_UNKNOWN;
653 i1 = i2 = INTENT_UNKNOWN;
654 r1 = r2 = -1;
655 k1 = k2 = -1;
656
657 for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
658 {
659 gfc_symbol *fsym = formal->sym;
660 if (fsym == NULL)
661 {
662 gfc_error ("Alternate return cannot appear in operator "
663 "interface at %L", &sym->declared_at);
664 return false;
665 }
666 if (args == 0)
667 {
668 t1 = fsym->ts.type;
669 i1 = fsym->attr.intent;
670 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
671 k1 = fsym->ts.kind;
672 }
673 if (args == 1)
674 {
675 t2 = fsym->ts.type;
676 i2 = fsym->attr.intent;
677 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
678 k2 = fsym->ts.kind;
679 }
680 args++;
681 }
682
683 /* Only +, - and .not. can be unary operators.
684 .not. cannot be a binary operator. */
685 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
686 && op != INTRINSIC_MINUS
687 && op != INTRINSIC_NOT)
688 || (args == 2 && op == INTRINSIC_NOT))
689 {
690 if (op == INTRINSIC_ASSIGN)
691 gfc_error ("Assignment operator interface at %L must have "
692 "two arguments", &sym->declared_at);
693 else
694 gfc_error ("Operator interface at %L has the wrong number of arguments",
695 &sym->declared_at);
696 return false;
697 }
698
699 /* Check that intrinsics are mapped to functions, except
700 INTRINSIC_ASSIGN which should map to a subroutine. */
701 if (op == INTRINSIC_ASSIGN)
702 {
703 gfc_formal_arglist *dummy_args;
704
705 if (!sym->attr.subroutine)
706 {
707 gfc_error ("Assignment operator interface at %L must be "
708 "a SUBROUTINE", &sym->declared_at);
709 return false;
710 }
711
712 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
713 - First argument an array with different rank than second,
714 - First argument is a scalar and second an array,
715 - Types and kinds do not conform, or
716 - First argument is of derived type. */
717 dummy_args = gfc_sym_get_dummy_args (sym);
718 if (dummy_args->sym->ts.type != BT_DERIVED
719 && dummy_args->sym->ts.type != BT_CLASS
720 && (r2 == 0 || r1 == r2)
721 && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
722 || (gfc_numeric_ts (&dummy_args->sym->ts)
723 && gfc_numeric_ts (&dummy_args->next->sym->ts))))
724 {
725 gfc_error ("Assignment operator interface at %L must not redefine "
726 "an INTRINSIC type assignment", &sym->declared_at);
727 return false;
728 }
729 }
730 else
731 {
732 if (!sym->attr.function)
733 {
734 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
735 &sym->declared_at);
736 return false;
737 }
738 }
739
740 /* Check intents on operator interfaces. */
741 if (op == INTRINSIC_ASSIGN)
742 {
743 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
744 {
745 gfc_error ("First argument of defined assignment at %L must be "
746 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
747 return false;
748 }
749
750 if (i2 != INTENT_IN)
751 {
752 gfc_error ("Second argument of defined assignment at %L must be "
753 "INTENT(IN)", &sym->declared_at);
754 return false;
755 }
756 }
757 else
758 {
759 if (i1 != INTENT_IN)
760 {
761 gfc_error ("First argument of operator interface at %L must be "
762 "INTENT(IN)", &sym->declared_at);
763 return false;
764 }
765
766 if (args == 2 && i2 != INTENT_IN)
767 {
768 gfc_error ("Second argument of operator interface at %L must be "
769 "INTENT(IN)", &sym->declared_at);
770 return false;
771 }
772 }
773
774 /* From now on, all we have to do is check that the operator definition
775 doesn't conflict with an intrinsic operator. The rules for this
776 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
777 as well as 12.3.2.1.1 of Fortran 2003:
778
779 "If the operator is an intrinsic-operator (R310), the number of
780 function arguments shall be consistent with the intrinsic uses of
781 that operator, and the types, kind type parameters, or ranks of the
782 dummy arguments shall differ from those required for the intrinsic
783 operation (7.1.2)." */
784
785 #define IS_NUMERIC_TYPE(t) \
786 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
787
788 /* Unary ops are easy, do them first. */
789 if (op == INTRINSIC_NOT)
790 {
791 if (t1 == BT_LOGICAL)
792 goto bad_repl;
793 else
794 return true;
795 }
796
797 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
798 {
799 if (IS_NUMERIC_TYPE (t1))
800 goto bad_repl;
801 else
802 return true;
803 }
804
805 /* Character intrinsic operators have same character kind, thus
806 operator definitions with operands of different character kinds
807 are always safe. */
808 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
809 return true;
810
811 /* Intrinsic operators always perform on arguments of same rank,
812 so different ranks is also always safe. (rank == 0) is an exception
813 to that, because all intrinsic operators are elemental. */
814 if (r1 != r2 && r1 != 0 && r2 != 0)
815 return true;
816
817 switch (op)
818 {
819 case INTRINSIC_EQ:
820 case INTRINSIC_EQ_OS:
821 case INTRINSIC_NE:
822 case INTRINSIC_NE_OS:
823 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
824 goto bad_repl;
825 /* Fall through. */
826
827 case INTRINSIC_PLUS:
828 case INTRINSIC_MINUS:
829 case INTRINSIC_TIMES:
830 case INTRINSIC_DIVIDE:
831 case INTRINSIC_POWER:
832 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
833 goto bad_repl;
834 break;
835
836 case INTRINSIC_GT:
837 case INTRINSIC_GT_OS:
838 case INTRINSIC_GE:
839 case INTRINSIC_GE_OS:
840 case INTRINSIC_LT:
841 case INTRINSIC_LT_OS:
842 case INTRINSIC_LE:
843 case INTRINSIC_LE_OS:
844 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
845 goto bad_repl;
846 if ((t1 == BT_INTEGER || t1 == BT_REAL)
847 && (t2 == BT_INTEGER || t2 == BT_REAL))
848 goto bad_repl;
849 break;
850
851 case INTRINSIC_CONCAT:
852 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
853 goto bad_repl;
854 break;
855
856 case INTRINSIC_AND:
857 case INTRINSIC_OR:
858 case INTRINSIC_EQV:
859 case INTRINSIC_NEQV:
860 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
861 goto bad_repl;
862 break;
863
864 default:
865 break;
866 }
867
868 return true;
869
870 #undef IS_NUMERIC_TYPE
871
872 bad_repl:
873 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
874 &opwhere);
875 return false;
876 }
877
878
879 /* Given a pair of formal argument lists, we see if the two lists can
880 be distinguished by counting the number of nonoptional arguments of
881 a given type/rank in f1 and seeing if there are less then that
882 number of those arguments in f2 (including optional arguments).
883 Since this test is asymmetric, it has to be called twice to make it
884 symmetric. Returns nonzero if the argument lists are incompatible
885 by this test. This subroutine implements rule 1 of section F03:16.2.3.
886 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
887
888 static int
889 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
890 const char *p1, const char *p2)
891 {
892 int rc, ac1, ac2, i, j, k, n1;
893 gfc_formal_arglist *f;
894
895 typedef struct
896 {
897 int flag;
898 gfc_symbol *sym;
899 }
900 arginfo;
901
902 arginfo *arg;
903
904 n1 = 0;
905
906 for (f = f1; f; f = f->next)
907 n1++;
908
909 /* Build an array of integers that gives the same integer to
910 arguments of the same type/rank. */
911 arg = XCNEWVEC (arginfo, n1);
912
913 f = f1;
914 for (i = 0; i < n1; i++, f = f->next)
915 {
916 arg[i].flag = -1;
917 arg[i].sym = f->sym;
918 }
919
920 k = 0;
921
922 for (i = 0; i < n1; i++)
923 {
924 if (arg[i].flag != -1)
925 continue;
926
927 if (arg[i].sym && (arg[i].sym->attr.optional
928 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
929 continue; /* Skip OPTIONAL and PASS arguments. */
930
931 arg[i].flag = k;
932
933 /* Find other non-optional, non-pass arguments of the same type/rank. */
934 for (j = i + 1; j < n1; j++)
935 if ((arg[j].sym == NULL
936 || !(arg[j].sym->attr.optional
937 || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
938 && (compare_type_rank_if (arg[i].sym, arg[j].sym)
939 || compare_type_rank_if (arg[j].sym, arg[i].sym)))
940 arg[j].flag = k;
941
942 k++;
943 }
944
945 /* Now loop over each distinct type found in f1. */
946 k = 0;
947 rc = 0;
948
949 for (i = 0; i < n1; i++)
950 {
951 if (arg[i].flag != k)
952 continue;
953
954 ac1 = 1;
955 for (j = i + 1; j < n1; j++)
956 if (arg[j].flag == k)
957 ac1++;
958
959 /* Count the number of non-pass arguments in f2 with that type,
960 including those that are optional. */
961 ac2 = 0;
962
963 for (f = f2; f; f = f->next)
964 if ((!p2 || strcmp (f->sym->name, p2) != 0)
965 && (compare_type_rank_if (arg[i].sym, f->sym)
966 || compare_type_rank_if (f->sym, arg[i].sym)))
967 ac2++;
968
969 if (ac1 > ac2)
970 {
971 rc = 1;
972 break;
973 }
974
975 k++;
976 }
977
978 free (arg);
979
980 return rc;
981 }
982
983
984 /* Perform the correspondence test in rule (3) of F08:C1215.
985 Returns zero if no argument is found that satisfies this rule,
986 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
987 (if applicable).
988
989 This test is also not symmetric in f1 and f2 and must be called
990 twice. This test finds problems caused by sorting the actual
991 argument list with keywords. For example:
992
993 INTERFACE FOO
994 SUBROUTINE F1(A, B)
995 INTEGER :: A ; REAL :: B
996 END SUBROUTINE F1
997
998 SUBROUTINE F2(B, A)
999 INTEGER :: A ; REAL :: B
1000 END SUBROUTINE F1
1001 END INTERFACE FOO
1002
1003 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
1004
1005 static int
1006 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
1007 const char *p1, const char *p2)
1008 {
1009 gfc_formal_arglist *f2_save, *g;
1010 gfc_symbol *sym;
1011
1012 f2_save = f2;
1013
1014 while (f1)
1015 {
1016 if (f1->sym->attr.optional)
1017 goto next;
1018
1019 if (p1 && strcmp (f1->sym->name, p1) == 0)
1020 f1 = f1->next;
1021 if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
1022 f2 = f2->next;
1023
1024 if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
1025 || compare_type_rank (f2->sym, f1->sym))
1026 && !((gfc_option.allow_std & GFC_STD_F2008)
1027 && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
1028 || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
1029 goto next;
1030
1031 /* Now search for a disambiguating keyword argument starting at
1032 the current non-match. */
1033 for (g = f1; g; g = g->next)
1034 {
1035 if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
1036 continue;
1037
1038 sym = find_keyword_arg (g->sym->name, f2_save);
1039 if (sym == NULL || !compare_type_rank (g->sym, sym)
1040 || ((gfc_option.allow_std & GFC_STD_F2008)
1041 && ((sym->attr.allocatable && g->sym->attr.pointer)
1042 || (sym->attr.pointer && g->sym->attr.allocatable))))
1043 return 1;
1044 }
1045
1046 next:
1047 if (f1 != NULL)
1048 f1 = f1->next;
1049 if (f2 != NULL)
1050 f2 = f2->next;
1051 }
1052
1053 return 0;
1054 }
1055
1056
1057 static int
1058 symbol_rank (gfc_symbol *sym)
1059 {
1060 gfc_array_spec *as;
1061 as = (sym->ts.type == BT_CLASS) ? CLASS_DATA (sym)->as : sym->as;
1062 return as ? as->rank : 0;
1063 }
1064
1065
1066 /* Check if the characteristics of two dummy arguments match,
1067 cf. F08:12.3.2. */
1068
1069 bool
1070 gfc_check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1071 bool type_must_agree, char *errmsg,
1072 int err_len)
1073 {
1074 if (s1 == NULL || s2 == NULL)
1075 return s1 == s2 ? true : false;
1076
1077 /* Check type and rank. */
1078 if (type_must_agree)
1079 {
1080 if (!compare_type (s1, s2) || !compare_type (s2, s1))
1081 {
1082 snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
1083 s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
1084 return false;
1085 }
1086 if (!compare_rank (s1, s2))
1087 {
1088 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
1089 s1->name, symbol_rank (s1), symbol_rank (s2));
1090 return false;
1091 }
1092 }
1093
1094 /* Check INTENT. */
1095 if (s1->attr.intent != s2->attr.intent)
1096 {
1097 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1098 s1->name);
1099 return false;
1100 }
1101
1102 /* Check OPTIONAL attribute. */
1103 if (s1->attr.optional != s2->attr.optional)
1104 {
1105 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1106 s1->name);
1107 return false;
1108 }
1109
1110 /* Check ALLOCATABLE attribute. */
1111 if (s1->attr.allocatable != s2->attr.allocatable)
1112 {
1113 snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
1114 s1->name);
1115 return false;
1116 }
1117
1118 /* Check POINTER attribute. */
1119 if (s1->attr.pointer != s2->attr.pointer)
1120 {
1121 snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
1122 s1->name);
1123 return false;
1124 }
1125
1126 /* Check TARGET attribute. */
1127 if (s1->attr.target != s2->attr.target)
1128 {
1129 snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
1130 s1->name);
1131 return false;
1132 }
1133
1134 /* Check ASYNCHRONOUS attribute. */
1135 if (s1->attr.asynchronous != s2->attr.asynchronous)
1136 {
1137 snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
1138 s1->name);
1139 return false;
1140 }
1141
1142 /* Check CONTIGUOUS attribute. */
1143 if (s1->attr.contiguous != s2->attr.contiguous)
1144 {
1145 snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
1146 s1->name);
1147 return false;
1148 }
1149
1150 /* Check VALUE attribute. */
1151 if (s1->attr.value != s2->attr.value)
1152 {
1153 snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
1154 s1->name);
1155 return false;
1156 }
1157
1158 /* Check VOLATILE attribute. */
1159 if (s1->attr.volatile_ != s2->attr.volatile_)
1160 {
1161 snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
1162 s1->name);
1163 return false;
1164 }
1165
1166 /* Check interface of dummy procedures. */
1167 if (s1->attr.flavor == FL_PROCEDURE)
1168 {
1169 char err[200];
1170 if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
1171 NULL, NULL))
1172 {
1173 snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
1174 "'%s': %s", s1->name, err);
1175 return false;
1176 }
1177 }
1178
1179 /* Check string length. */
1180 if (s1->ts.type == BT_CHARACTER
1181 && s1->ts.u.cl && s1->ts.u.cl->length
1182 && s2->ts.u.cl && s2->ts.u.cl->length)
1183 {
1184 int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
1185 s2->ts.u.cl->length);
1186 switch (compval)
1187 {
1188 case -1:
1189 case 1:
1190 case -3:
1191 snprintf (errmsg, err_len, "Character length mismatch "
1192 "in argument '%s'", s1->name);
1193 return false;
1194
1195 case -2:
1196 /* FIXME: Implement a warning for this case.
1197 gfc_warning (0, "Possible character length mismatch in argument %qs",
1198 s1->name);*/
1199 break;
1200
1201 case 0:
1202 break;
1203
1204 default:
1205 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1206 "%i of gfc_dep_compare_expr", compval);
1207 break;
1208 }
1209 }
1210
1211 /* Check array shape. */
1212 if (s1->as && s2->as)
1213 {
1214 int i, compval;
1215 gfc_expr *shape1, *shape2;
1216
1217 if (s1->as->type != s2->as->type)
1218 {
1219 snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
1220 s1->name);
1221 return false;
1222 }
1223
1224 if (s1->as->corank != s2->as->corank)
1225 {
1226 snprintf (errmsg, err_len, "Corank mismatch in argument '%s' (%i/%i)",
1227 s1->name, s1->as->corank, s2->as->corank);
1228 return false;
1229 }
1230
1231 if (s1->as->type == AS_EXPLICIT)
1232 for (i = 0; i < s1->as->rank + MAX (0, s1->as->corank-1); i++)
1233 {
1234 shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
1235 gfc_copy_expr (s1->as->lower[i]));
1236 shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
1237 gfc_copy_expr (s2->as->lower[i]));
1238 compval = gfc_dep_compare_expr (shape1, shape2);
1239 gfc_free_expr (shape1);
1240 gfc_free_expr (shape2);
1241 switch (compval)
1242 {
1243 case -1:
1244 case 1:
1245 case -3:
1246 if (i < s1->as->rank)
1247 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of"
1248 " argument '%s'", i + 1, s1->name);
1249 else
1250 snprintf (errmsg, err_len, "Shape mismatch in codimension %i "
1251 "of argument '%s'", i - s1->as->rank + 1, s1->name);
1252 return false;
1253
1254 case -2:
1255 /* FIXME: Implement a warning for this case.
1256 gfc_warning (0, "Possible shape mismatch in argument %qs",
1257 s1->name);*/
1258 break;
1259
1260 case 0:
1261 break;
1262
1263 default:
1264 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1265 "result %i of gfc_dep_compare_expr",
1266 compval);
1267 break;
1268 }
1269 }
1270 }
1271
1272 return true;
1273 }
1274
1275
1276 /* Check if the characteristics of two function results match,
1277 cf. F08:12.3.3. */
1278
1279 bool
1280 gfc_check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1281 char *errmsg, int err_len)
1282 {
1283 gfc_symbol *r1, *r2;
1284
1285 if (s1->ts.interface && s1->ts.interface->result)
1286 r1 = s1->ts.interface->result;
1287 else
1288 r1 = s1->result ? s1->result : s1;
1289
1290 if (s2->ts.interface && s2->ts.interface->result)
1291 r2 = s2->ts.interface->result;
1292 else
1293 r2 = s2->result ? s2->result : s2;
1294
1295 if (r1->ts.type == BT_UNKNOWN)
1296 return true;
1297
1298 /* Check type and rank. */
1299 if (!compare_type (r1, r2))
1300 {
1301 snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
1302 gfc_typename (&r1->ts), gfc_typename (&r2->ts));
1303 return false;
1304 }
1305 if (!compare_rank (r1, r2))
1306 {
1307 snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
1308 symbol_rank (r1), symbol_rank (r2));
1309 return false;
1310 }
1311
1312 /* Check ALLOCATABLE attribute. */
1313 if (r1->attr.allocatable != r2->attr.allocatable)
1314 {
1315 snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
1316 "function result");
1317 return false;
1318 }
1319
1320 /* Check POINTER attribute. */
1321 if (r1->attr.pointer != r2->attr.pointer)
1322 {
1323 snprintf (errmsg, err_len, "POINTER attribute mismatch in "
1324 "function result");
1325 return false;
1326 }
1327
1328 /* Check CONTIGUOUS attribute. */
1329 if (r1->attr.contiguous != r2->attr.contiguous)
1330 {
1331 snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
1332 "function result");
1333 return false;
1334 }
1335
1336 /* Check PROCEDURE POINTER attribute. */
1337 if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
1338 {
1339 snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
1340 "function result");
1341 return false;
1342 }
1343
1344 /* Check string length. */
1345 if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
1346 {
1347 if (r1->ts.deferred != r2->ts.deferred)
1348 {
1349 snprintf (errmsg, err_len, "Character length mismatch "
1350 "in function result");
1351 return false;
1352 }
1353
1354 if (r1->ts.u.cl->length && r2->ts.u.cl->length)
1355 {
1356 int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
1357 r2->ts.u.cl->length);
1358 switch (compval)
1359 {
1360 case -1:
1361 case 1:
1362 case -3:
1363 snprintf (errmsg, err_len, "Character length mismatch "
1364 "in function result");
1365 return false;
1366
1367 case -2:
1368 /* FIXME: Implement a warning for this case.
1369 snprintf (errmsg, err_len, "Possible character length mismatch "
1370 "in function result");*/
1371 break;
1372
1373 case 0:
1374 break;
1375
1376 default:
1377 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1378 "result %i of gfc_dep_compare_expr", compval);
1379 break;
1380 }
1381 }
1382 }
1383
1384 /* Check array shape. */
1385 if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
1386 {
1387 int i, compval;
1388 gfc_expr *shape1, *shape2;
1389
1390 if (r1->as->type != r2->as->type)
1391 {
1392 snprintf (errmsg, err_len, "Shape mismatch in function result");
1393 return false;
1394 }
1395
1396 if (r1->as->type == AS_EXPLICIT)
1397 for (i = 0; i < r1->as->rank + r1->as->corank; i++)
1398 {
1399 shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
1400 gfc_copy_expr (r1->as->lower[i]));
1401 shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
1402 gfc_copy_expr (r2->as->lower[i]));
1403 compval = gfc_dep_compare_expr (shape1, shape2);
1404 gfc_free_expr (shape1);
1405 gfc_free_expr (shape2);
1406 switch (compval)
1407 {
1408 case -1:
1409 case 1:
1410 case -3:
1411 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1412 "function result", i + 1);
1413 return false;
1414
1415 case -2:
1416 /* FIXME: Implement a warning for this case.
1417 gfc_warning (0, "Possible shape mismatch in return value");*/
1418 break;
1419
1420 case 0:
1421 break;
1422
1423 default:
1424 gfc_internal_error ("check_result_characteristics (2): "
1425 "Unexpected result %i of "
1426 "gfc_dep_compare_expr", compval);
1427 break;
1428 }
1429 }
1430 }
1431
1432 return true;
1433 }
1434
1435
1436 /* 'Compare' two formal interfaces associated with a pair of symbols.
1437 We return nonzero if there exists an actual argument list that
1438 would be ambiguous between the two interfaces, zero otherwise.
1439 'strict_flag' specifies whether all the characteristics are
1440 required to match, which is not the case for ambiguity checks.
1441 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1442
1443 int
1444 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
1445 int generic_flag, int strict_flag,
1446 char *errmsg, int err_len,
1447 const char *p1, const char *p2)
1448 {
1449 gfc_formal_arglist *f1, *f2;
1450
1451 gcc_assert (name2 != NULL);
1452
1453 if (s1->attr.function && (s2->attr.subroutine
1454 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
1455 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
1456 {
1457 if (errmsg != NULL)
1458 snprintf (errmsg, err_len, "'%s' is not a function", name2);
1459 return 0;
1460 }
1461
1462 if (s1->attr.subroutine && s2->attr.function)
1463 {
1464 if (errmsg != NULL)
1465 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
1466 return 0;
1467 }
1468
1469 /* Do strict checks on all characteristics
1470 (for dummy procedures and procedure pointer assignments). */
1471 if (!generic_flag && strict_flag)
1472 {
1473 if (s1->attr.function && s2->attr.function)
1474 {
1475 /* If both are functions, check result characteristics. */
1476 if (!gfc_check_result_characteristics (s1, s2, errmsg, err_len)
1477 || !gfc_check_result_characteristics (s2, s1, errmsg, err_len))
1478 return 0;
1479 }
1480
1481 if (s1->attr.pure && !s2->attr.pure)
1482 {
1483 snprintf (errmsg, err_len, "Mismatch in PURE attribute");
1484 return 0;
1485 }
1486 if (s1->attr.elemental && !s2->attr.elemental)
1487 {
1488 snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
1489 return 0;
1490 }
1491 }
1492
1493 if (s1->attr.if_source == IFSRC_UNKNOWN
1494 || s2->attr.if_source == IFSRC_UNKNOWN)
1495 return 1;
1496
1497 f1 = gfc_sym_get_dummy_args (s1);
1498 f2 = gfc_sym_get_dummy_args (s2);
1499
1500 if (f1 == NULL && f2 == NULL)
1501 return 1; /* Special case: No arguments. */
1502
1503 if (generic_flag)
1504 {
1505 if (count_types_test (f1, f2, p1, p2)
1506 || count_types_test (f2, f1, p2, p1))
1507 return 0;
1508 if (generic_correspondence (f1, f2, p1, p2)
1509 || generic_correspondence (f2, f1, p2, p1))
1510 return 0;
1511 }
1512 else
1513 /* Perform the abbreviated correspondence test for operators (the
1514 arguments cannot be optional and are always ordered correctly).
1515 This is also done when comparing interfaces for dummy procedures and in
1516 procedure pointer assignments. */
1517
1518 for (;;)
1519 {
1520 /* Check existence. */
1521 if (f1 == NULL && f2 == NULL)
1522 break;
1523 if (f1 == NULL || f2 == NULL)
1524 {
1525 if (errmsg != NULL)
1526 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1527 "arguments", name2);
1528 return 0;
1529 }
1530
1531 if (UNLIMITED_POLY (f1->sym))
1532 goto next;
1533
1534 if (strict_flag)
1535 {
1536 /* Check all characteristics. */
1537 if (!gfc_check_dummy_characteristics (f1->sym, f2->sym, true,
1538 errmsg, err_len))
1539 return 0;
1540 }
1541 else
1542 {
1543 /* Only check type and rank. */
1544 if (!compare_type (f2->sym, f1->sym))
1545 {
1546 if (errmsg != NULL)
1547 snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
1548 "(%s/%s)", f1->sym->name,
1549 gfc_typename (&f1->sym->ts),
1550 gfc_typename (&f2->sym->ts));
1551 return 0;
1552 }
1553 if (!compare_rank (f2->sym, f1->sym))
1554 {
1555 if (errmsg != NULL)
1556 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
1557 "(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
1558 symbol_rank (f2->sym));
1559 return 0;
1560 }
1561 }
1562 next:
1563 f1 = f1->next;
1564 f2 = f2->next;
1565 }
1566
1567 return 1;
1568 }
1569
1570
1571 /* Given a pointer to an interface pointer, remove duplicate
1572 interfaces and make sure that all symbols are either functions
1573 or subroutines, and all of the same kind. Returns nonzero if
1574 something goes wrong. */
1575
1576 static int
1577 check_interface0 (gfc_interface *p, const char *interface_name)
1578 {
1579 gfc_interface *psave, *q, *qlast;
1580
1581 psave = p;
1582 for (; p; p = p->next)
1583 {
1584 /* Make sure all symbols in the interface have been defined as
1585 functions or subroutines. */
1586 if (((!p->sym->attr.function && !p->sym->attr.subroutine)
1587 || !p->sym->attr.if_source)
1588 && p->sym->attr.flavor != FL_DERIVED)
1589 {
1590 if (p->sym->attr.external)
1591 gfc_error ("Procedure %qs in %s at %L has no explicit interface",
1592 p->sym->name, interface_name, &p->sym->declared_at);
1593 else
1594 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1595 "subroutine", p->sym->name, interface_name,
1596 &p->sym->declared_at);
1597 return 1;
1598 }
1599
1600 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1601 if ((psave->sym->attr.function && !p->sym->attr.function
1602 && p->sym->attr.flavor != FL_DERIVED)
1603 || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
1604 {
1605 if (p->sym->attr.flavor != FL_DERIVED)
1606 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1607 " or all FUNCTIONs", interface_name,
1608 &p->sym->declared_at);
1609 else
1610 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1611 "generic name is also the name of a derived type",
1612 interface_name, &p->sym->declared_at);
1613 return 1;
1614 }
1615
1616 /* F2003, C1207. F2008, C1207. */
1617 if (p->sym->attr.proc == PROC_INTERNAL
1618 && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
1619 "%qs in %s at %L", p->sym->name,
1620 interface_name, &p->sym->declared_at))
1621 return 1;
1622 }
1623 p = psave;
1624
1625 /* Remove duplicate interfaces in this interface list. */
1626 for (; p; p = p->next)
1627 {
1628 qlast = p;
1629
1630 for (q = p->next; q;)
1631 {
1632 if (p->sym != q->sym)
1633 {
1634 qlast = q;
1635 q = q->next;
1636 }
1637 else
1638 {
1639 /* Duplicate interface. */
1640 qlast->next = q->next;
1641 free (q);
1642 q = qlast->next;
1643 }
1644 }
1645 }
1646
1647 return 0;
1648 }
1649
1650
1651 /* Check lists of interfaces to make sure that no two interfaces are
1652 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1653
1654 static int
1655 check_interface1 (gfc_interface *p, gfc_interface *q0,
1656 int generic_flag, const char *interface_name,
1657 bool referenced)
1658 {
1659 gfc_interface *q;
1660 for (; p; p = p->next)
1661 for (q = q0; q; q = q->next)
1662 {
1663 if (p->sym == q->sym)
1664 continue; /* Duplicates OK here. */
1665
1666 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1667 continue;
1668
1669 if (p->sym->attr.flavor != FL_DERIVED
1670 && q->sym->attr.flavor != FL_DERIVED
1671 && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
1672 generic_flag, 0, NULL, 0, NULL, NULL))
1673 {
1674 if (referenced)
1675 gfc_error ("Ambiguous interfaces %qs and %qs in %s at %L",
1676 p->sym->name, q->sym->name, interface_name,
1677 &p->where);
1678 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1679 gfc_warning (0, "Ambiguous interfaces %qs and %qs in %s at %L",
1680 p->sym->name, q->sym->name, interface_name,
1681 &p->where);
1682 else
1683 gfc_warning (0, "Although not referenced, %qs has ambiguous "
1684 "interfaces at %L", interface_name, &p->where);
1685 return 1;
1686 }
1687 }
1688 return 0;
1689 }
1690
1691
1692 /* Check the generic and operator interfaces of symbols to make sure
1693 that none of the interfaces conflict. The check has to be done
1694 after all of the symbols are actually loaded. */
1695
1696 static void
1697 check_sym_interfaces (gfc_symbol *sym)
1698 {
1699 char interface_name[100];
1700 gfc_interface *p;
1701
1702 if (sym->ns != gfc_current_ns)
1703 return;
1704
1705 if (sym->generic != NULL)
1706 {
1707 sprintf (interface_name, "generic interface '%s'", sym->name);
1708 if (check_interface0 (sym->generic, interface_name))
1709 return;
1710
1711 for (p = sym->generic; p; p = p->next)
1712 {
1713 if (p->sym->attr.mod_proc
1714 && !p->sym->attr.module_procedure
1715 && (p->sym->attr.if_source != IFSRC_DECL
1716 || p->sym->attr.procedure))
1717 {
1718 gfc_error ("%qs at %L is not a module procedure",
1719 p->sym->name, &p->where);
1720 return;
1721 }
1722 }
1723
1724 /* Originally, this test was applied to host interfaces too;
1725 this is incorrect since host associated symbols, from any
1726 source, cannot be ambiguous with local symbols. */
1727 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1728 sym->attr.referenced || !sym->attr.use_assoc);
1729 }
1730 }
1731
1732
1733 static void
1734 check_uop_interfaces (gfc_user_op *uop)
1735 {
1736 char interface_name[100];
1737 gfc_user_op *uop2;
1738 gfc_namespace *ns;
1739
1740 sprintf (interface_name, "operator interface '%s'", uop->name);
1741 if (check_interface0 (uop->op, interface_name))
1742 return;
1743
1744 for (ns = gfc_current_ns; ns; ns = ns->parent)
1745 {
1746 uop2 = gfc_find_uop (uop->name, ns);
1747 if (uop2 == NULL)
1748 continue;
1749
1750 check_interface1 (uop->op, uop2->op, 0,
1751 interface_name, true);
1752 }
1753 }
1754
1755 /* Given an intrinsic op, return an equivalent op if one exists,
1756 or INTRINSIC_NONE otherwise. */
1757
1758 gfc_intrinsic_op
1759 gfc_equivalent_op (gfc_intrinsic_op op)
1760 {
1761 switch(op)
1762 {
1763 case INTRINSIC_EQ:
1764 return INTRINSIC_EQ_OS;
1765
1766 case INTRINSIC_EQ_OS:
1767 return INTRINSIC_EQ;
1768
1769 case INTRINSIC_NE:
1770 return INTRINSIC_NE_OS;
1771
1772 case INTRINSIC_NE_OS:
1773 return INTRINSIC_NE;
1774
1775 case INTRINSIC_GT:
1776 return INTRINSIC_GT_OS;
1777
1778 case INTRINSIC_GT_OS:
1779 return INTRINSIC_GT;
1780
1781 case INTRINSIC_GE:
1782 return INTRINSIC_GE_OS;
1783
1784 case INTRINSIC_GE_OS:
1785 return INTRINSIC_GE;
1786
1787 case INTRINSIC_LT:
1788 return INTRINSIC_LT_OS;
1789
1790 case INTRINSIC_LT_OS:
1791 return INTRINSIC_LT;
1792
1793 case INTRINSIC_LE:
1794 return INTRINSIC_LE_OS;
1795
1796 case INTRINSIC_LE_OS:
1797 return INTRINSIC_LE;
1798
1799 default:
1800 return INTRINSIC_NONE;
1801 }
1802 }
1803
1804 /* For the namespace, check generic, user operator and intrinsic
1805 operator interfaces for consistency and to remove duplicate
1806 interfaces. We traverse the whole namespace, counting on the fact
1807 that most symbols will not have generic or operator interfaces. */
1808
1809 void
1810 gfc_check_interfaces (gfc_namespace *ns)
1811 {
1812 gfc_namespace *old_ns, *ns2;
1813 char interface_name[100];
1814 int i;
1815
1816 old_ns = gfc_current_ns;
1817 gfc_current_ns = ns;
1818
1819 gfc_traverse_ns (ns, check_sym_interfaces);
1820
1821 gfc_traverse_user_op (ns, check_uop_interfaces);
1822
1823 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1824 {
1825 if (i == INTRINSIC_USER)
1826 continue;
1827
1828 if (i == INTRINSIC_ASSIGN)
1829 strcpy (interface_name, "intrinsic assignment operator");
1830 else
1831 sprintf (interface_name, "intrinsic '%s' operator",
1832 gfc_op2string ((gfc_intrinsic_op) i));
1833
1834 if (check_interface0 (ns->op[i], interface_name))
1835 continue;
1836
1837 if (ns->op[i])
1838 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1839 ns->op[i]->where);
1840
1841 for (ns2 = ns; ns2; ns2 = ns2->parent)
1842 {
1843 gfc_intrinsic_op other_op;
1844
1845 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1846 interface_name, true))
1847 goto done;
1848
1849 /* i should be gfc_intrinsic_op, but has to be int with this cast
1850 here for stupid C++ compatibility rules. */
1851 other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
1852 if (other_op != INTRINSIC_NONE
1853 && check_interface1 (ns->op[i], ns2->op[other_op],
1854 0, interface_name, true))
1855 goto done;
1856 }
1857 }
1858
1859 done:
1860 gfc_current_ns = old_ns;
1861 }
1862
1863
1864 /* Given a symbol of a formal argument list and an expression, if the
1865 formal argument is allocatable, check that the actual argument is
1866 allocatable. Returns nonzero if compatible, zero if not compatible. */
1867
1868 static int
1869 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1870 {
1871 symbol_attribute attr;
1872
1873 if (formal->attr.allocatable
1874 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
1875 {
1876 attr = gfc_expr_attr (actual);
1877 if (!attr.allocatable)
1878 return 0;
1879 }
1880
1881 return 1;
1882 }
1883
1884
1885 /* Given a symbol of a formal argument list and an expression, if the
1886 formal argument is a pointer, see if the actual argument is a
1887 pointer. Returns nonzero if compatible, zero if not compatible. */
1888
1889 static int
1890 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1891 {
1892 symbol_attribute attr;
1893
1894 if (formal->attr.pointer
1895 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
1896 && CLASS_DATA (formal)->attr.class_pointer))
1897 {
1898 attr = gfc_expr_attr (actual);
1899
1900 /* Fortran 2008 allows non-pointer actual arguments. */
1901 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
1902 return 2;
1903
1904 if (!attr.pointer)
1905 return 0;
1906 }
1907
1908 return 1;
1909 }
1910
1911
1912 /* Emit clear error messages for rank mismatch. */
1913
1914 static void
1915 argument_rank_mismatch (const char *name, locus *where,
1916 int rank1, int rank2)
1917 {
1918
1919 /* TS 29113, C407b. */
1920 if (rank2 == -1)
1921 {
1922 gfc_error ("The assumed-rank array at %L requires that the dummy argument"
1923 " %qs has assumed-rank", where, name);
1924 }
1925 else if (rank1 == 0)
1926 {
1927 gfc_error ("Rank mismatch in argument %qs at %L "
1928 "(scalar and rank-%d)", name, where, rank2);
1929 }
1930 else if (rank2 == 0)
1931 {
1932 gfc_error ("Rank mismatch in argument %qs at %L "
1933 "(rank-%d and scalar)", name, where, rank1);
1934 }
1935 else
1936 {
1937 gfc_error ("Rank mismatch in argument %qs at %L "
1938 "(rank-%d and rank-%d)", name, where, rank1, rank2);
1939 }
1940 }
1941
1942
1943 /* Given a symbol of a formal argument list and an expression, see if
1944 the two are compatible as arguments. Returns nonzero if
1945 compatible, zero if not compatible. */
1946
1947 static int
1948 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1949 int ranks_must_agree, int is_elemental, locus *where)
1950 {
1951 gfc_ref *ref;
1952 bool rank_check, is_pointer;
1953 char err[200];
1954 gfc_component *ppc;
1955
1956 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1957 procs c_f_pointer or c_f_procpointer, and we need to accept most
1958 pointers the user could give us. This should allow that. */
1959 if (formal->ts.type == BT_VOID)
1960 return 1;
1961
1962 if (formal->ts.type == BT_DERIVED
1963 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1964 && actual->ts.type == BT_DERIVED
1965 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1966 return 1;
1967
1968 if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
1969 /* Make sure the vtab symbol is present when
1970 the module variables are generated. */
1971 gfc_find_derived_vtab (actual->ts.u.derived);
1972
1973 if (actual->ts.type == BT_PROCEDURE)
1974 {
1975 gfc_symbol *act_sym = actual->symtree->n.sym;
1976
1977 if (formal->attr.flavor != FL_PROCEDURE)
1978 {
1979 if (where)
1980 gfc_error ("Invalid procedure argument at %L", &actual->where);
1981 return 0;
1982 }
1983
1984 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1985 sizeof(err), NULL, NULL))
1986 {
1987 if (where)
1988 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
1989 formal->name, &actual->where, err);
1990 return 0;
1991 }
1992
1993 if (formal->attr.function && !act_sym->attr.function)
1994 {
1995 gfc_add_function (&act_sym->attr, act_sym->name,
1996 &act_sym->declared_at);
1997 if (act_sym->ts.type == BT_UNKNOWN
1998 && !gfc_set_default_type (act_sym, 1, act_sym->ns))
1999 return 0;
2000 }
2001 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
2002 gfc_add_subroutine (&act_sym->attr, act_sym->name,
2003 &act_sym->declared_at);
2004
2005 return 1;
2006 }
2007
2008 ppc = gfc_get_proc_ptr_comp (actual);
2009 if (ppc)
2010 {
2011 if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1,
2012 err, sizeof(err), NULL, NULL))
2013 {
2014 if (where)
2015 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
2016 formal->name, &actual->where, err);
2017 return 0;
2018 }
2019 }
2020
2021 /* F2008, C1241. */
2022 if (formal->attr.pointer && formal->attr.contiguous
2023 && !gfc_is_simply_contiguous (actual, true, false))
2024 {
2025 if (where)
2026 gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
2027 "must be simply contiguous", formal->name, &actual->where);
2028 return 0;
2029 }
2030
2031 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
2032 && actual->ts.type != BT_HOLLERITH
2033 && formal->ts.type != BT_ASSUMED
2034 && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2035 && !gfc_compare_types (&formal->ts, &actual->ts)
2036 && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
2037 && gfc_compare_derived_types (formal->ts.u.derived,
2038 CLASS_DATA (actual)->ts.u.derived)))
2039 {
2040 if (where)
2041 gfc_error ("Type mismatch in argument %qs at %L; passed %s to %s",
2042 formal->name, &actual->where, gfc_typename (&actual->ts),
2043 gfc_typename (&formal->ts));
2044 return 0;
2045 }
2046
2047 if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
2048 {
2049 if (where)
2050 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2051 "argument %qs is of assumed type", &actual->where,
2052 formal->name);
2053 return 0;
2054 }
2055
2056 /* F2008, 12.5.2.5; IR F08/0073. */
2057 if (formal->ts.type == BT_CLASS && formal->attr.class_ok
2058 && actual->expr_type != EXPR_NULL
2059 && ((CLASS_DATA (formal)->attr.class_pointer
2060 && formal->attr.intent != INTENT_IN)
2061 || CLASS_DATA (formal)->attr.allocatable))
2062 {
2063 if (actual->ts.type != BT_CLASS)
2064 {
2065 if (where)
2066 gfc_error ("Actual argument to %qs at %L must be polymorphic",
2067 formal->name, &actual->where);
2068 return 0;
2069 }
2070
2071 if (!gfc_expr_attr (actual).class_ok)
2072 return 0;
2073
2074 if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
2075 && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
2076 CLASS_DATA (formal)->ts.u.derived))
2077 {
2078 if (where)
2079 gfc_error ("Actual argument to %qs at %L must have the same "
2080 "declared type", formal->name, &actual->where);
2081 return 0;
2082 }
2083 }
2084
2085 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2086 is necessary also for F03, so retain error for both.
2087 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2088 compatible, no attempt has been made to channel to this one. */
2089 if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
2090 && (CLASS_DATA (formal)->attr.allocatable
2091 ||CLASS_DATA (formal)->attr.class_pointer))
2092 {
2093 if (where)
2094 gfc_error ("Actual argument to %qs at %L must be unlimited "
2095 "polymorphic since the formal argument is a "
2096 "pointer or allocatable unlimited polymorphic "
2097 "entity [F2008: 12.5.2.5]", formal->name,
2098 &actual->where);
2099 return 0;
2100 }
2101
2102 if (formal->attr.codimension && !gfc_is_coarray (actual))
2103 {
2104 if (where)
2105 gfc_error ("Actual argument to %qs at %L must be a coarray",
2106 formal->name, &actual->where);
2107 return 0;
2108 }
2109
2110 if (formal->attr.codimension && formal->attr.allocatable)
2111 {
2112 gfc_ref *last = NULL;
2113
2114 for (ref = actual->ref; ref; ref = ref->next)
2115 if (ref->type == REF_COMPONENT)
2116 last = ref;
2117
2118 /* F2008, 12.5.2.6. */
2119 if ((last && last->u.c.component->as->corank != formal->as->corank)
2120 || (!last
2121 && actual->symtree->n.sym->as->corank != formal->as->corank))
2122 {
2123 if (where)
2124 gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
2125 formal->name, &actual->where, formal->as->corank,
2126 last ? last->u.c.component->as->corank
2127 : actual->symtree->n.sym->as->corank);
2128 return 0;
2129 }
2130 }
2131
2132 if (formal->attr.codimension)
2133 {
2134 /* F2008, 12.5.2.8 + Corrig 2 (IR F08/0048). */
2135 /* F2015, 12.5.2.8. */
2136 if (formal->attr.dimension
2137 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
2138 && gfc_expr_attr (actual).dimension
2139 && !gfc_is_simply_contiguous (actual, true, true))
2140 {
2141 if (where)
2142 gfc_error ("Actual argument to %qs at %L must be simply "
2143 "contiguous or an element of such an array",
2144 formal->name, &actual->where);
2145 return 0;
2146 }
2147
2148 /* F2008, C1303 and C1304. */
2149 if (formal->attr.intent != INTENT_INOUT
2150 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2151 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2152 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
2153 || formal->attr.lock_comp))
2154
2155 {
2156 if (where)
2157 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2158 "which is LOCK_TYPE or has a LOCK_TYPE component",
2159 formal->name, &actual->where);
2160 return 0;
2161 }
2162
2163 /* TS18508, C702/C703. */
2164 if (formal->attr.intent != INTENT_INOUT
2165 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2166 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2167 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
2168 || formal->attr.event_comp))
2169
2170 {
2171 if (where)
2172 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2173 "which is EVENT_TYPE or has a EVENT_TYPE component",
2174 formal->name, &actual->where);
2175 return 0;
2176 }
2177 }
2178
2179 /* F2008, C1239/C1240. */
2180 if (actual->expr_type == EXPR_VARIABLE
2181 && (actual->symtree->n.sym->attr.asynchronous
2182 || actual->symtree->n.sym->attr.volatile_)
2183 && (formal->attr.asynchronous || formal->attr.volatile_)
2184 && actual->rank && formal->as
2185 && !gfc_is_simply_contiguous (actual, true, false)
2186 && ((formal->as->type != AS_ASSUMED_SHAPE
2187 && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
2188 || formal->attr.contiguous))
2189 {
2190 if (where)
2191 gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
2192 "assumed-rank array without CONTIGUOUS attribute - as actual"
2193 " argument at %L is not simply contiguous and both are "
2194 "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
2195 return 0;
2196 }
2197
2198 if (formal->attr.allocatable && !formal->attr.codimension
2199 && gfc_expr_attr (actual).codimension)
2200 {
2201 if (formal->attr.intent == INTENT_OUT)
2202 {
2203 if (where)
2204 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2205 "INTENT(OUT) dummy argument %qs", &actual->where,
2206 formal->name);
2207 return 0;
2208 }
2209 else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
2210 gfc_warning (OPT_Wsurprising,
2211 "Passing coarray at %L to allocatable, noncoarray dummy "
2212 "argument %qs, which is invalid if the allocation status"
2213 " is modified", &actual->where, formal->name);
2214 }
2215
2216 /* If the rank is the same or the formal argument has assumed-rank. */
2217 if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
2218 return 1;
2219
2220 rank_check = where != NULL && !is_elemental && formal->as
2221 && (formal->as->type == AS_ASSUMED_SHAPE
2222 || formal->as->type == AS_DEFERRED)
2223 && actual->expr_type != EXPR_NULL;
2224
2225 /* Skip rank checks for NO_ARG_CHECK. */
2226 if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2227 return 1;
2228
2229 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2230 if (rank_check || ranks_must_agree
2231 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
2232 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
2233 || (actual->rank == 0
2234 && ((formal->ts.type == BT_CLASS
2235 && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
2236 || (formal->ts.type != BT_CLASS
2237 && formal->as->type == AS_ASSUMED_SHAPE))
2238 && actual->expr_type != EXPR_NULL)
2239 || (actual->rank == 0 && formal->attr.dimension
2240 && gfc_is_coindexed (actual)))
2241 {
2242 if (where)
2243 argument_rank_mismatch (formal->name, &actual->where,
2244 symbol_rank (formal), actual->rank);
2245 return 0;
2246 }
2247 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
2248 return 1;
2249
2250 /* At this point, we are considering a scalar passed to an array. This
2251 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2252 - if the actual argument is (a substring of) an element of a
2253 non-assumed-shape/non-pointer/non-polymorphic array; or
2254 - (F2003) if the actual argument is of type character of default/c_char
2255 kind. */
2256
2257 is_pointer = actual->expr_type == EXPR_VARIABLE
2258 ? actual->symtree->n.sym->attr.pointer : false;
2259
2260 for (ref = actual->ref; ref; ref = ref->next)
2261 {
2262 if (ref->type == REF_COMPONENT)
2263 is_pointer = ref->u.c.component->attr.pointer;
2264 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2265 && ref->u.ar.dimen > 0
2266 && (!ref->next
2267 || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
2268 break;
2269 }
2270
2271 if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
2272 {
2273 if (where)
2274 gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
2275 "at %L", formal->name, &actual->where);
2276 return 0;
2277 }
2278
2279 if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
2280 && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2281 {
2282 if (where)
2283 gfc_error ("Element of assumed-shaped or pointer "
2284 "array passed to array dummy argument %qs at %L",
2285 formal->name, &actual->where);
2286 return 0;
2287 }
2288
2289 if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
2290 && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2291 {
2292 if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
2293 {
2294 if (where)
2295 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2296 "CHARACTER actual argument with array dummy argument "
2297 "%qs at %L", formal->name, &actual->where);
2298 return 0;
2299 }
2300
2301 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
2302 {
2303 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2304 "array dummy argument %qs at %L",
2305 formal->name, &actual->where);
2306 return 0;
2307 }
2308 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
2309 return 0;
2310 else
2311 return 1;
2312 }
2313
2314 if (ref == NULL && actual->expr_type != EXPR_NULL)
2315 {
2316 if (where)
2317 argument_rank_mismatch (formal->name, &actual->where,
2318 symbol_rank (formal), actual->rank);
2319 return 0;
2320 }
2321
2322 return 1;
2323 }
2324
2325
2326 /* Returns the storage size of a symbol (formal argument) or
2327 zero if it cannot be determined. */
2328
2329 static unsigned long
2330 get_sym_storage_size (gfc_symbol *sym)
2331 {
2332 int i;
2333 unsigned long strlen, elements;
2334
2335 if (sym->ts.type == BT_CHARACTER)
2336 {
2337 if (sym->ts.u.cl && sym->ts.u.cl->length
2338 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2339 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2340 else
2341 return 0;
2342 }
2343 else
2344 strlen = 1;
2345
2346 if (symbol_rank (sym) == 0)
2347 return strlen;
2348
2349 elements = 1;
2350 if (sym->as->type != AS_EXPLICIT)
2351 return 0;
2352 for (i = 0; i < sym->as->rank; i++)
2353 {
2354 if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
2355 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
2356 return 0;
2357
2358 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
2359 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2360 }
2361
2362 return strlen*elements;
2363 }
2364
2365
2366 /* Returns the storage size of an expression (actual argument) or
2367 zero if it cannot be determined. For an array element, it returns
2368 the remaining size as the element sequence consists of all storage
2369 units of the actual argument up to the end of the array. */
2370
2371 static unsigned long
2372 get_expr_storage_size (gfc_expr *e)
2373 {
2374 int i;
2375 long int strlen, elements;
2376 long int substrlen = 0;
2377 bool is_str_storage = false;
2378 gfc_ref *ref;
2379
2380 if (e == NULL)
2381 return 0;
2382
2383 if (e->ts.type == BT_CHARACTER)
2384 {
2385 if (e->ts.u.cl && e->ts.u.cl->length
2386 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2387 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2388 else if (e->expr_type == EXPR_CONSTANT
2389 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2390 strlen = e->value.character.length;
2391 else
2392 return 0;
2393 }
2394 else
2395 strlen = 1; /* Length per element. */
2396
2397 if (e->rank == 0 && !e->ref)
2398 return strlen;
2399
2400 elements = 1;
2401 if (!e->ref)
2402 {
2403 if (!e->shape)
2404 return 0;
2405 for (i = 0; i < e->rank; i++)
2406 elements *= mpz_get_si (e->shape[i]);
2407 return elements*strlen;
2408 }
2409
2410 for (ref = e->ref; ref; ref = ref->next)
2411 {
2412 if (ref->type == REF_SUBSTRING && ref->u.ss.start
2413 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
2414 {
2415 if (is_str_storage)
2416 {
2417 /* The string length is the substring length.
2418 Set now to full string length. */
2419 if (!ref->u.ss.length || !ref->u.ss.length->length
2420 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
2421 return 0;
2422
2423 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
2424 }
2425 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
2426 continue;
2427 }
2428
2429 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2430 for (i = 0; i < ref->u.ar.dimen; i++)
2431 {
2432 long int start, end, stride;
2433 stride = 1;
2434
2435 if (ref->u.ar.stride[i])
2436 {
2437 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
2438 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
2439 else
2440 return 0;
2441 }
2442
2443 if (ref->u.ar.start[i])
2444 {
2445 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
2446 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
2447 else
2448 return 0;
2449 }
2450 else if (ref->u.ar.as->lower[i]
2451 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
2452 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
2453 else
2454 return 0;
2455
2456 if (ref->u.ar.end[i])
2457 {
2458 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
2459 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
2460 else
2461 return 0;
2462 }
2463 else if (ref->u.ar.as->upper[i]
2464 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2465 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
2466 else
2467 return 0;
2468
2469 elements *= (end - start)/stride + 1L;
2470 }
2471 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
2472 for (i = 0; i < ref->u.ar.as->rank; i++)
2473 {
2474 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
2475 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
2476 && ref->u.ar.as->lower[i]->ts.type == BT_INTEGER
2477 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT
2478 && ref->u.ar.as->upper[i]->ts.type == BT_INTEGER)
2479 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2480 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2481 + 1L;
2482 else
2483 return 0;
2484 }
2485 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2486 && e->expr_type == EXPR_VARIABLE)
2487 {
2488 if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
2489 || e->symtree->n.sym->attr.pointer)
2490 {
2491 elements = 1;
2492 continue;
2493 }
2494
2495 /* Determine the number of remaining elements in the element
2496 sequence for array element designators. */
2497 is_str_storage = true;
2498 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
2499 {
2500 if (ref->u.ar.start[i] == NULL
2501 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
2502 || ref->u.ar.as->upper[i] == NULL
2503 || ref->u.ar.as->lower[i] == NULL
2504 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
2505 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
2506 return 0;
2507
2508 elements
2509 = elements
2510 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2511 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2512 + 1L)
2513 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
2514 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
2515 }
2516 }
2517 else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
2518 && ref->u.c.component->attr.proc_pointer
2519 && ref->u.c.component->attr.dimension)
2520 {
2521 /* Array-valued procedure-pointer components. */
2522 gfc_array_spec *as = ref->u.c.component->as;
2523 for (i = 0; i < as->rank; i++)
2524 {
2525 if (!as->upper[i] || !as->lower[i]
2526 || as->upper[i]->expr_type != EXPR_CONSTANT
2527 || as->lower[i]->expr_type != EXPR_CONSTANT)
2528 return 0;
2529
2530 elements = elements
2531 * (mpz_get_si (as->upper[i]->value.integer)
2532 - mpz_get_si (as->lower[i]->value.integer) + 1L);
2533 }
2534 }
2535 }
2536
2537 if (substrlen)
2538 return (is_str_storage) ? substrlen + (elements-1)*strlen
2539 : elements*strlen;
2540 else
2541 return elements*strlen;
2542 }
2543
2544
2545 /* Given an expression, check whether it is an array section
2546 which has a vector subscript. If it has, one is returned,
2547 otherwise zero. */
2548
2549 int
2550 gfc_has_vector_subscript (gfc_expr *e)
2551 {
2552 int i;
2553 gfc_ref *ref;
2554
2555 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
2556 return 0;
2557
2558 for (ref = e->ref; ref; ref = ref->next)
2559 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2560 for (i = 0; i < ref->u.ar.dimen; i++)
2561 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
2562 return 1;
2563
2564 return 0;
2565 }
2566
2567
2568 static bool
2569 is_procptr_result (gfc_expr *expr)
2570 {
2571 gfc_component *c = gfc_get_proc_ptr_comp (expr);
2572 if (c)
2573 return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1));
2574 else
2575 return ((expr->symtree->n.sym->result != expr->symtree->n.sym)
2576 && (expr->symtree->n.sym->result->attr.proc_pointer == 1));
2577 }
2578
2579
2580 /* Given formal and actual argument lists, see if they are compatible.
2581 If they are compatible, the actual argument list is sorted to
2582 correspond with the formal list, and elements for missing optional
2583 arguments are inserted. If WHERE pointer is nonnull, then we issue
2584 errors when things don't match instead of just returning the status
2585 code. */
2586
2587 static int
2588 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
2589 int ranks_must_agree, int is_elemental, locus *where)
2590 {
2591 gfc_actual_arglist **new_arg, *a, *actual;
2592 gfc_formal_arglist *f;
2593 int i, n, na;
2594 unsigned long actual_size, formal_size;
2595 bool full_array = false;
2596
2597 actual = *ap;
2598
2599 if (actual == NULL && formal == NULL)
2600 return 1;
2601
2602 n = 0;
2603 for (f = formal; f; f = f->next)
2604 n++;
2605
2606 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
2607
2608 for (i = 0; i < n; i++)
2609 new_arg[i] = NULL;
2610
2611 na = 0;
2612 f = formal;
2613 i = 0;
2614
2615 for (a = actual; a; a = a->next, f = f->next)
2616 {
2617 /* Look for keywords but ignore g77 extensions like %VAL. */
2618 if (a->name != NULL && a->name[0] != '%')
2619 {
2620 i = 0;
2621 for (f = formal; f; f = f->next, i++)
2622 {
2623 if (f->sym == NULL)
2624 continue;
2625 if (strcmp (f->sym->name, a->name) == 0)
2626 break;
2627 }
2628
2629 if (f == NULL)
2630 {
2631 if (where)
2632 gfc_error ("Keyword argument %qs at %L is not in "
2633 "the procedure", a->name, &a->expr->where);
2634 return 0;
2635 }
2636
2637 if (new_arg[i] != NULL)
2638 {
2639 if (where)
2640 gfc_error ("Keyword argument %qs at %L is already associated "
2641 "with another actual argument", a->name,
2642 &a->expr->where);
2643 return 0;
2644 }
2645 }
2646
2647 if (f == NULL)
2648 {
2649 if (where)
2650 gfc_error ("More actual than formal arguments in procedure "
2651 "call at %L", where);
2652
2653 return 0;
2654 }
2655
2656 if (f->sym == NULL && a->expr == NULL)
2657 goto match;
2658
2659 if (f->sym == NULL)
2660 {
2661 if (where)
2662 gfc_error ("Missing alternate return spec in subroutine call "
2663 "at %L", where);
2664 return 0;
2665 }
2666
2667 if (a->expr == NULL)
2668 {
2669 if (where)
2670 gfc_error ("Unexpected alternate return spec in subroutine "
2671 "call at %L", where);
2672 return 0;
2673 }
2674
2675 /* Make sure that intrinsic vtables exist for calls to unlimited
2676 polymorphic formal arguments. */
2677 if (UNLIMITED_POLY (f->sym)
2678 && a->expr->ts.type != BT_DERIVED
2679 && a->expr->ts.type != BT_CLASS)
2680 gfc_find_vtab (&a->expr->ts);
2681
2682 if (a->expr->expr_type == EXPR_NULL
2683 && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
2684 && (f->sym->attr.allocatable || !f->sym->attr.optional
2685 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2686 || (f->sym->ts.type == BT_CLASS
2687 && !CLASS_DATA (f->sym)->attr.class_pointer
2688 && (CLASS_DATA (f->sym)->attr.allocatable
2689 || !f->sym->attr.optional
2690 || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
2691 {
2692 if (where
2693 && (!f->sym->attr.optional
2694 || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
2695 || (f->sym->ts.type == BT_CLASS
2696 && CLASS_DATA (f->sym)->attr.allocatable)))
2697 gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
2698 where, f->sym->name);
2699 else if (where)
2700 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2701 "dummy %qs", where, f->sym->name);
2702
2703 return 0;
2704 }
2705
2706 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2707 is_elemental, where))
2708 return 0;
2709
2710 /* TS 29113, 6.3p2. */
2711 if (f->sym->ts.type == BT_ASSUMED
2712 && (a->expr->ts.type == BT_DERIVED
2713 || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
2714 {
2715 gfc_namespace *f2k_derived;
2716
2717 f2k_derived = a->expr->ts.type == BT_DERIVED
2718 ? a->expr->ts.u.derived->f2k_derived
2719 : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
2720
2721 if (f2k_derived
2722 && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
2723 {
2724 gfc_error ("Actual argument at %L to assumed-type dummy is of "
2725 "derived type with type-bound or FINAL procedures",
2726 &a->expr->where);
2727 return false;
2728 }
2729 }
2730
2731 /* Special case for character arguments. For allocatable, pointer
2732 and assumed-shape dummies, the string length needs to match
2733 exactly. */
2734 if (a->expr->ts.type == BT_CHARACTER
2735 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2736 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2737 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
2738 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2739 && (f->sym->attr.pointer || f->sym->attr.allocatable
2740 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2741 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2742 f->sym->ts.u.cl->length->value.integer) != 0))
2743 {
2744 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2745 gfc_warning (0,
2746 "Character length mismatch (%ld/%ld) between actual "
2747 "argument and pointer or allocatable dummy argument "
2748 "%qs at %L",
2749 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2750 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2751 f->sym->name, &a->expr->where);
2752 else if (where)
2753 gfc_warning (0,
2754 "Character length mismatch (%ld/%ld) between actual "
2755 "argument and assumed-shape dummy argument %qs "
2756 "at %L",
2757 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2758 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2759 f->sym->name, &a->expr->where);
2760 return 0;
2761 }
2762
2763 if ((f->sym->attr.pointer || f->sym->attr.allocatable)
2764 && f->sym->ts.deferred != a->expr->ts.deferred
2765 && a->expr->ts.type == BT_CHARACTER)
2766 {
2767 if (where)
2768 gfc_error ("Actual argument at %L to allocatable or "
2769 "pointer dummy argument %qs must have a deferred "
2770 "length type parameter if and only if the dummy has one",
2771 &a->expr->where, f->sym->name);
2772 return 0;
2773 }
2774
2775 if (f->sym->ts.type == BT_CLASS)
2776 goto skip_size_check;
2777
2778 actual_size = get_expr_storage_size (a->expr);
2779 formal_size = get_sym_storage_size (f->sym);
2780 if (actual_size != 0 && actual_size < formal_size
2781 && a->expr->ts.type != BT_PROCEDURE
2782 && f->sym->attr.flavor != FL_PROCEDURE)
2783 {
2784 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
2785 gfc_warning (0, "Character length of actual argument shorter "
2786 "than of dummy argument %qs (%lu/%lu) at %L",
2787 f->sym->name, actual_size, formal_size,
2788 &a->expr->where);
2789 else if (where)
2790 gfc_warning (0, "Actual argument contains too few "
2791 "elements for dummy argument %qs (%lu/%lu) at %L",
2792 f->sym->name, actual_size, formal_size,
2793 &a->expr->where);
2794 return 0;
2795 }
2796
2797 skip_size_check:
2798
2799 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
2800 argument is provided for a procedure pointer formal argument. */
2801 if (f->sym->attr.proc_pointer
2802 && !((a->expr->expr_type == EXPR_VARIABLE
2803 && (a->expr->symtree->n.sym->attr.proc_pointer
2804 || gfc_is_proc_ptr_comp (a->expr)))
2805 || (a->expr->expr_type == EXPR_FUNCTION
2806 && is_procptr_result (a->expr))))
2807 {
2808 if (where)
2809 gfc_error ("Expected a procedure pointer for argument %qs at %L",
2810 f->sym->name, &a->expr->where);
2811 return 0;
2812 }
2813
2814 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
2815 provided for a procedure formal argument. */
2816 if (f->sym->attr.flavor == FL_PROCEDURE
2817 && !((a->expr->expr_type == EXPR_VARIABLE
2818 && (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE
2819 || a->expr->symtree->n.sym->attr.proc_pointer
2820 || gfc_is_proc_ptr_comp (a->expr)))
2821 || (a->expr->expr_type == EXPR_FUNCTION
2822 && is_procptr_result (a->expr))))
2823 {
2824 if (where)
2825 gfc_error ("Expected a procedure for argument %qs at %L",
2826 f->sym->name, &a->expr->where);
2827 return 0;
2828 }
2829
2830 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2831 && a->expr->expr_type == EXPR_VARIABLE
2832 && a->expr->symtree->n.sym->as
2833 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2834 && (a->expr->ref == NULL
2835 || (a->expr->ref->type == REF_ARRAY
2836 && a->expr->ref->u.ar.type == AR_FULL)))
2837 {
2838 if (where)
2839 gfc_error ("Actual argument for %qs cannot be an assumed-size"
2840 " array at %L", f->sym->name, where);
2841 return 0;
2842 }
2843
2844 if (a->expr->expr_type != EXPR_NULL
2845 && compare_pointer (f->sym, a->expr) == 0)
2846 {
2847 if (where)
2848 gfc_error ("Actual argument for %qs must be a pointer at %L",
2849 f->sym->name, &a->expr->where);
2850 return 0;
2851 }
2852
2853 if (a->expr->expr_type != EXPR_NULL
2854 && (gfc_option.allow_std & GFC_STD_F2008) == 0
2855 && compare_pointer (f->sym, a->expr) == 2)
2856 {
2857 if (where)
2858 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
2859 "pointer dummy %qs", &a->expr->where,f->sym->name);
2860 return 0;
2861 }
2862
2863
2864 /* Fortran 2008, C1242. */
2865 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2866 {
2867 if (where)
2868 gfc_error ("Coindexed actual argument at %L to pointer "
2869 "dummy %qs",
2870 &a->expr->where, f->sym->name);
2871 return 0;
2872 }
2873
2874 /* Fortran 2008, 12.5.2.5 (no constraint). */
2875 if (a->expr->expr_type == EXPR_VARIABLE
2876 && f->sym->attr.intent != INTENT_IN
2877 && f->sym->attr.allocatable
2878 && gfc_is_coindexed (a->expr))
2879 {
2880 if (where)
2881 gfc_error ("Coindexed actual argument at %L to allocatable "
2882 "dummy %qs requires INTENT(IN)",
2883 &a->expr->where, f->sym->name);
2884 return 0;
2885 }
2886
2887 /* Fortran 2008, C1237. */
2888 if (a->expr->expr_type == EXPR_VARIABLE
2889 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2890 && gfc_is_coindexed (a->expr)
2891 && (a->expr->symtree->n.sym->attr.volatile_
2892 || a->expr->symtree->n.sym->attr.asynchronous))
2893 {
2894 if (where)
2895 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2896 "%L requires that dummy %qs has neither "
2897 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2898 f->sym->name);
2899 return 0;
2900 }
2901
2902 /* Fortran 2008, 12.5.2.4 (no constraint). */
2903 if (a->expr->expr_type == EXPR_VARIABLE
2904 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2905 && gfc_is_coindexed (a->expr)
2906 && gfc_has_ultimate_allocatable (a->expr))
2907 {
2908 if (where)
2909 gfc_error ("Coindexed actual argument at %L with allocatable "
2910 "ultimate component to dummy %qs requires either VALUE "
2911 "or INTENT(IN)", &a->expr->where, f->sym->name);
2912 return 0;
2913 }
2914
2915 if (f->sym->ts.type == BT_CLASS
2916 && CLASS_DATA (f->sym)->attr.allocatable
2917 && gfc_is_class_array_ref (a->expr, &full_array)
2918 && !full_array)
2919 {
2920 if (where)
2921 gfc_error ("Actual CLASS array argument for %qs must be a full "
2922 "array at %L", f->sym->name, &a->expr->where);
2923 return 0;
2924 }
2925
2926
2927 if (a->expr->expr_type != EXPR_NULL
2928 && compare_allocatable (f->sym, a->expr) == 0)
2929 {
2930 if (where)
2931 gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
2932 f->sym->name, &a->expr->where);
2933 return 0;
2934 }
2935
2936 /* Check intent = OUT/INOUT for definable actual argument. */
2937 if ((f->sym->attr.intent == INTENT_OUT
2938 || f->sym->attr.intent == INTENT_INOUT))
2939 {
2940 const char* context = (where
2941 ? _("actual argument to INTENT = OUT/INOUT")
2942 : NULL);
2943
2944 if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
2945 && CLASS_DATA (f->sym)->attr.class_pointer)
2946 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
2947 && !gfc_check_vardef_context (a->expr, true, false, false, context))
2948 return 0;
2949 if (!gfc_check_vardef_context (a->expr, false, false, false, context))
2950 return 0;
2951 }
2952
2953 if ((f->sym->attr.intent == INTENT_OUT
2954 || f->sym->attr.intent == INTENT_INOUT
2955 || f->sym->attr.volatile_
2956 || f->sym->attr.asynchronous)
2957 && gfc_has_vector_subscript (a->expr))
2958 {
2959 if (where)
2960 gfc_error ("Array-section actual argument with vector "
2961 "subscripts at %L is incompatible with INTENT(OUT), "
2962 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
2963 "of the dummy argument %qs",
2964 &a->expr->where, f->sym->name);
2965 return 0;
2966 }
2967
2968 /* C1232 (R1221) For an actual argument which is an array section or
2969 an assumed-shape array, the dummy argument shall be an assumed-
2970 shape array, if the dummy argument has the VOLATILE attribute. */
2971
2972 if (f->sym->attr.volatile_
2973 && a->expr->symtree->n.sym->as
2974 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2975 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2976 {
2977 if (where)
2978 gfc_error ("Assumed-shape actual argument at %L is "
2979 "incompatible with the non-assumed-shape "
2980 "dummy argument %qs due to VOLATILE attribute",
2981 &a->expr->where,f->sym->name);
2982 return 0;
2983 }
2984
2985 if (f->sym->attr.volatile_
2986 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2987 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2988 {
2989 if (where)
2990 gfc_error ("Array-section actual argument at %L is "
2991 "incompatible with the non-assumed-shape "
2992 "dummy argument %qs due to VOLATILE attribute",
2993 &a->expr->where,f->sym->name);
2994 return 0;
2995 }
2996
2997 /* C1233 (R1221) For an actual argument which is a pointer array, the
2998 dummy argument shall be an assumed-shape or pointer array, if the
2999 dummy argument has the VOLATILE attribute. */
3000
3001 if (f->sym->attr.volatile_
3002 && a->expr->symtree->n.sym->attr.pointer
3003 && a->expr->symtree->n.sym->as
3004 && !(f->sym->as
3005 && (f->sym->as->type == AS_ASSUMED_SHAPE
3006 || f->sym->attr.pointer)))
3007 {
3008 if (where)
3009 gfc_error ("Pointer-array actual argument at %L requires "
3010 "an assumed-shape or pointer-array dummy "
3011 "argument %qs due to VOLATILE attribute",
3012 &a->expr->where,f->sym->name);
3013 return 0;
3014 }
3015
3016 match:
3017 if (a == actual)
3018 na = i;
3019
3020 new_arg[i++] = a;
3021 }
3022
3023 /* Make sure missing actual arguments are optional. */
3024 i = 0;
3025 for (f = formal; f; f = f->next, i++)
3026 {
3027 if (new_arg[i] != NULL)
3028 continue;
3029 if (f->sym == NULL)
3030 {
3031 if (where)
3032 gfc_error ("Missing alternate return spec in subroutine call "
3033 "at %L", where);
3034 return 0;
3035 }
3036 if (!f->sym->attr.optional)
3037 {
3038 if (where)
3039 gfc_error ("Missing actual argument for argument %qs at %L",
3040 f->sym->name, where);
3041 return 0;
3042 }
3043 }
3044
3045 /* The argument lists are compatible. We now relink a new actual
3046 argument list with null arguments in the right places. The head
3047 of the list remains the head. */
3048 for (i = 0; i < n; i++)
3049 if (new_arg[i] == NULL)
3050 new_arg[i] = gfc_get_actual_arglist ();
3051
3052 if (na != 0)
3053 {
3054 std::swap (*new_arg[0], *actual);
3055 std::swap (new_arg[0], new_arg[na]);
3056 }
3057
3058 for (i = 0; i < n - 1; i++)
3059 new_arg[i]->next = new_arg[i + 1];
3060
3061 new_arg[i]->next = NULL;
3062
3063 if (*ap == NULL && n > 0)
3064 *ap = new_arg[0];
3065
3066 /* Note the types of omitted optional arguments. */
3067 for (a = *ap, f = formal; a; a = a->next, f = f->next)
3068 if (a->expr == NULL && a->label == NULL)
3069 a->missing_arg_type = f->sym->ts.type;
3070
3071 return 1;
3072 }
3073
3074
3075 typedef struct
3076 {
3077 gfc_formal_arglist *f;
3078 gfc_actual_arglist *a;
3079 }
3080 argpair;
3081
3082 /* qsort comparison function for argument pairs, with the following
3083 order:
3084 - p->a->expr == NULL
3085 - p->a->expr->expr_type != EXPR_VARIABLE
3086 - growing p->a->expr->symbol. */
3087
3088 static int
3089 pair_cmp (const void *p1, const void *p2)
3090 {
3091 const gfc_actual_arglist *a1, *a2;
3092
3093 /* *p1 and *p2 are elements of the to-be-sorted array. */
3094 a1 = ((const argpair *) p1)->a;
3095 a2 = ((const argpair *) p2)->a;
3096 if (!a1->expr)
3097 {
3098 if (!a2->expr)
3099 return 0;
3100 return -1;
3101 }
3102 if (!a2->expr)
3103 return 1;
3104 if (a1->expr->expr_type != EXPR_VARIABLE)
3105 {
3106 if (a2->expr->expr_type != EXPR_VARIABLE)
3107 return 0;
3108 return -1;
3109 }
3110 if (a2->expr->expr_type != EXPR_VARIABLE)
3111 return 1;
3112 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
3113 }
3114
3115
3116 /* Given two expressions from some actual arguments, test whether they
3117 refer to the same expression. The analysis is conservative.
3118 Returning false will produce no warning. */
3119
3120 static bool
3121 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
3122 {
3123 const gfc_ref *r1, *r2;
3124
3125 if (!e1 || !e2
3126 || e1->expr_type != EXPR_VARIABLE
3127 || e2->expr_type != EXPR_VARIABLE
3128 || e1->symtree->n.sym != e2->symtree->n.sym)
3129 return false;
3130
3131 /* TODO: improve comparison, see expr.c:show_ref(). */
3132 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
3133 {
3134 if (r1->type != r2->type)
3135 return false;
3136 switch (r1->type)
3137 {
3138 case REF_ARRAY:
3139 if (r1->u.ar.type != r2->u.ar.type)
3140 return false;
3141 /* TODO: At the moment, consider only full arrays;
3142 we could do better. */
3143 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
3144 return false;
3145 break;
3146
3147 case REF_COMPONENT:
3148 if (r1->u.c.component != r2->u.c.component)
3149 return false;
3150 break;
3151
3152 case REF_SUBSTRING:
3153 return false;
3154
3155 default:
3156 gfc_internal_error ("compare_actual_expr(): Bad component code");
3157 }
3158 }
3159 if (!r1 && !r2)
3160 return true;
3161 return false;
3162 }
3163
3164
3165 /* Given formal and actual argument lists that correspond to one
3166 another, check that identical actual arguments aren't not
3167 associated with some incompatible INTENTs. */
3168
3169 static bool
3170 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
3171 {
3172 sym_intent f1_intent, f2_intent;
3173 gfc_formal_arglist *f1;
3174 gfc_actual_arglist *a1;
3175 size_t n, i, j;
3176 argpair *p;
3177 bool t = true;
3178
3179 n = 0;
3180 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
3181 {
3182 if (f1 == NULL && a1 == NULL)
3183 break;
3184 if (f1 == NULL || a1 == NULL)
3185 gfc_internal_error ("check_some_aliasing(): List mismatch");
3186 n++;
3187 }
3188 if (n == 0)
3189 return t;
3190 p = XALLOCAVEC (argpair, n);
3191
3192 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
3193 {
3194 p[i].f = f1;
3195 p[i].a = a1;
3196 }
3197
3198 qsort (p, n, sizeof (argpair), pair_cmp);
3199
3200 for (i = 0; i < n; i++)
3201 {
3202 if (!p[i].a->expr
3203 || p[i].a->expr->expr_type != EXPR_VARIABLE
3204 || p[i].a->expr->ts.type == BT_PROCEDURE)
3205 continue;
3206 f1_intent = p[i].f->sym->attr.intent;
3207 for (j = i + 1; j < n; j++)
3208 {
3209 /* Expected order after the sort. */
3210 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
3211 gfc_internal_error ("check_some_aliasing(): corrupted data");
3212
3213 /* Are the expression the same? */
3214 if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
3215 break;
3216 f2_intent = p[j].f->sym->attr.intent;
3217 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
3218 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
3219 || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
3220 {
3221 gfc_warning (0, "Same actual argument associated with INTENT(%s) "
3222 "argument %qs and INTENT(%s) argument %qs at %L",
3223 gfc_intent_string (f1_intent), p[i].f->sym->name,
3224 gfc_intent_string (f2_intent), p[j].f->sym->name,
3225 &p[i].a->expr->where);
3226 t = false;
3227 }
3228 }
3229 }
3230
3231 return t;
3232 }
3233
3234
3235 /* Given formal and actual argument lists that correspond to one
3236 another, check that they are compatible in the sense that intents
3237 are not mismatched. */
3238
3239 static bool
3240 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
3241 {
3242 sym_intent f_intent;
3243
3244 for (;; f = f->next, a = a->next)
3245 {
3246 gfc_expr *expr;
3247
3248 if (f == NULL && a == NULL)
3249 break;
3250 if (f == NULL || a == NULL)
3251 gfc_internal_error ("check_intents(): List mismatch");
3252
3253 if (a->expr && a->expr->expr_type == EXPR_FUNCTION
3254 && a->expr->value.function.isym
3255 && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
3256 expr = a->expr->value.function.actual->expr;
3257 else
3258 expr = a->expr;
3259
3260 if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
3261 continue;
3262
3263 f_intent = f->sym->attr.intent;
3264
3265 if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
3266 {
3267 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3268 && CLASS_DATA (f->sym)->attr.class_pointer)
3269 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3270 {
3271 gfc_error ("Procedure argument at %L is local to a PURE "
3272 "procedure and has the POINTER attribute",
3273 &expr->where);
3274 return false;
3275 }
3276 }
3277
3278 /* Fortran 2008, C1283. */
3279 if (gfc_pure (NULL) && gfc_is_coindexed (expr))
3280 {
3281 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
3282 {
3283 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3284 "is passed to an INTENT(%s) argument",
3285 &expr->where, gfc_intent_string (f_intent));
3286 return false;
3287 }
3288
3289 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3290 && CLASS_DATA (f->sym)->attr.class_pointer)
3291 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3292 {
3293 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3294 "is passed to a POINTER dummy argument",
3295 &expr->where);
3296 return false;
3297 }
3298 }
3299
3300 /* F2008, Section 12.5.2.4. */
3301 if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
3302 && gfc_is_coindexed (expr))
3303 {
3304 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3305 "polymorphic dummy argument %qs",
3306 &expr->where, f->sym->name);
3307 return false;
3308 }
3309 }
3310
3311 return true;
3312 }
3313
3314
3315 /* Check how a procedure is used against its interface. If all goes
3316 well, the actual argument list will also end up being properly
3317 sorted. */
3318
3319 bool
3320 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
3321 {
3322 gfc_formal_arglist *dummy_args;
3323
3324 /* Warn about calls with an implicit interface. Special case
3325 for calling a ISO_C_BINDING because c_loc and c_funloc
3326 are pseudo-unknown. Additionally, warn about procedures not
3327 explicitly declared at all if requested. */
3328 if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
3329 {
3330 if (sym->ns->has_implicit_none_export && sym->attr.proc == PROC_UNKNOWN)
3331 {
3332 gfc_error ("Procedure %qs called at %L is not explicitly declared",
3333 sym->name, where);
3334 return false;
3335 }
3336 if (warn_implicit_interface)
3337 gfc_warning (OPT_Wimplicit_interface,
3338 "Procedure %qs called with an implicit interface at %L",
3339 sym->name, where);
3340 else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
3341 gfc_warning (OPT_Wimplicit_procedure,
3342 "Procedure %qs called at %L is not explicitly declared",
3343 sym->name, where);
3344 }
3345
3346 if (sym->attr.if_source == IFSRC_UNKNOWN)
3347 {
3348 gfc_actual_arglist *a;
3349
3350 if (sym->attr.pointer)
3351 {
3352 gfc_error ("The pointer object %qs at %L must have an explicit "
3353 "function interface or be declared as array",
3354 sym->name, where);
3355 return false;
3356 }
3357
3358 if (sym->attr.allocatable && !sym->attr.external)
3359 {
3360 gfc_error ("The allocatable object %qs at %L must have an explicit "
3361 "function interface or be declared as array",
3362 sym->name, where);
3363 return false;
3364 }
3365
3366 if (sym->attr.allocatable)
3367 {
3368 gfc_error ("Allocatable function %qs at %L must have an explicit "
3369 "function interface", sym->name, where);
3370 return false;
3371 }
3372
3373 for (a = *ap; a; a = a->next)
3374 {
3375 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3376 if (a->name != NULL && a->name[0] != '%')
3377 {
3378 gfc_error ("Keyword argument requires explicit interface "
3379 "for procedure %qs at %L", sym->name, &a->expr->where);
3380 break;
3381 }
3382
3383 /* TS 29113, 6.2. */
3384 if (a->expr && a->expr->ts.type == BT_ASSUMED
3385 && sym->intmod_sym_id != ISOCBINDING_LOC)
3386 {
3387 gfc_error ("Assumed-type argument %s at %L requires an explicit "
3388 "interface", a->expr->symtree->n.sym->name,
3389 &a->expr->where);
3390 break;
3391 }
3392
3393 /* F2008, C1303 and C1304. */
3394 if (a->expr
3395 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3396 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3397 && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
3398 || gfc_expr_attr (a->expr).lock_comp))
3399 {
3400 gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
3401 "component at %L requires an explicit interface for "
3402 "procedure %qs", &a->expr->where, sym->name);
3403 break;
3404 }
3405
3406 if (a->expr
3407 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3408 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3409 && a->expr->ts.u.derived->intmod_sym_id
3410 == ISOFORTRAN_EVENT_TYPE)
3411 || gfc_expr_attr (a->expr).event_comp))
3412 {
3413 gfc_error ("Actual argument of EVENT_TYPE or with EVENT_TYPE "
3414 "component at %L requires an explicit interface for "
3415 "procedure %qs", &a->expr->where, sym->name);
3416 break;
3417 }
3418
3419 if (a->expr && a->expr->expr_type == EXPR_NULL
3420 && a->expr->ts.type == BT_UNKNOWN)
3421 {
3422 gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
3423 return false;
3424 }
3425
3426 /* TS 29113, C407b. */
3427 if (a->expr && a->expr->expr_type == EXPR_VARIABLE
3428 && symbol_rank (a->expr->symtree->n.sym) == -1)
3429 {
3430 gfc_error ("Assumed-rank argument requires an explicit interface "
3431 "at %L", &a->expr->where);
3432 return false;
3433 }
3434 }
3435
3436 return true;
3437 }
3438
3439 dummy_args = gfc_sym_get_dummy_args (sym);
3440
3441 if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
3442 return false;
3443
3444 if (!check_intents (dummy_args, *ap))
3445 return false;
3446
3447 if (warn_aliasing)
3448 check_some_aliasing (dummy_args, *ap);
3449
3450 return true;
3451 }
3452
3453
3454 /* Check how a procedure pointer component is used against its interface.
3455 If all goes well, the actual argument list will also end up being properly
3456 sorted. Completely analogous to gfc_procedure_use. */
3457
3458 void
3459 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
3460 {
3461 /* Warn about calls with an implicit interface. Special case
3462 for calling a ISO_C_BINDING because c_loc and c_funloc
3463 are pseudo-unknown. */
3464 if (warn_implicit_interface
3465 && comp->attr.if_source == IFSRC_UNKNOWN
3466 && !comp->attr.is_iso_c)
3467 gfc_warning (OPT_Wimplicit_interface,
3468 "Procedure pointer component %qs called with an implicit "
3469 "interface at %L", comp->name, where);
3470
3471 if (comp->attr.if_source == IFSRC_UNKNOWN)
3472 {
3473 gfc_actual_arglist *a;
3474 for (a = *ap; a; a = a->next)
3475 {
3476 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3477 if (a->name != NULL && a->name[0] != '%')
3478 {
3479 gfc_error ("Keyword argument requires explicit interface "
3480 "for procedure pointer component %qs at %L",
3481 comp->name, &a->expr->where);
3482 break;
3483 }
3484 }
3485
3486 return;
3487 }
3488
3489 if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
3490 comp->attr.elemental, where))
3491 return;
3492
3493 check_intents (comp->ts.interface->formal, *ap);
3494 if (warn_aliasing)
3495 check_some_aliasing (comp->ts.interface->formal, *ap);
3496 }
3497
3498
3499 /* Try if an actual argument list matches the formal list of a symbol,
3500 respecting the symbol's attributes like ELEMENTAL. This is used for
3501 GENERIC resolution. */
3502
3503 bool
3504 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
3505 {
3506 gfc_formal_arglist *dummy_args;
3507 bool r;
3508
3509 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
3510
3511 dummy_args = gfc_sym_get_dummy_args (sym);
3512
3513 r = !sym->attr.elemental;
3514 if (compare_actual_formal (args, dummy_args, r, !r, NULL))
3515 {
3516 check_intents (dummy_args, *args);
3517 if (warn_aliasing)
3518 check_some_aliasing (dummy_args, *args);
3519 return true;
3520 }
3521
3522 return false;
3523 }
3524
3525
3526 /* Given an interface pointer and an actual argument list, search for
3527 a formal argument list that matches the actual. If found, returns
3528 a pointer to the symbol of the correct interface. Returns NULL if
3529 not found. */
3530
3531 gfc_symbol *
3532 gfc_search_interface (gfc_interface *intr, int sub_flag,
3533 gfc_actual_arglist **ap)
3534 {
3535 gfc_symbol *elem_sym = NULL;
3536 gfc_symbol *null_sym = NULL;
3537 locus null_expr_loc;
3538 gfc_actual_arglist *a;
3539 bool has_null_arg = false;
3540
3541 for (a = *ap; a; a = a->next)
3542 if (a->expr && a->expr->expr_type == EXPR_NULL
3543 && a->expr->ts.type == BT_UNKNOWN)
3544 {
3545 has_null_arg = true;
3546 null_expr_loc = a->expr->where;
3547 break;
3548 }
3549
3550 for (; intr; intr = intr->next)
3551 {
3552 if (intr->sym->attr.flavor == FL_DERIVED)
3553 continue;
3554 if (sub_flag && intr->sym->attr.function)
3555 continue;
3556 if (!sub_flag && intr->sym->attr.subroutine)
3557 continue;
3558
3559 if (gfc_arglist_matches_symbol (ap, intr->sym))
3560 {
3561 if (has_null_arg && null_sym)
3562 {
3563 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
3564 "between specific functions %s and %s",
3565 &null_expr_loc, null_sym->name, intr->sym->name);
3566 return NULL;
3567 }
3568 else if (has_null_arg)
3569 {
3570 null_sym = intr->sym;
3571 continue;
3572 }
3573
3574 /* Satisfy 12.4.4.1 such that an elemental match has lower
3575 weight than a non-elemental match. */
3576 if (intr->sym->attr.elemental)
3577 {
3578 elem_sym = intr->sym;
3579 continue;
3580 }
3581 return intr->sym;
3582 }
3583 }
3584
3585 if (null_sym)
3586 return null_sym;
3587
3588 return elem_sym ? elem_sym : NULL;
3589 }
3590
3591
3592 /* Do a brute force recursive search for a symbol. */
3593
3594 static gfc_symtree *
3595 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
3596 {
3597 gfc_symtree * st;
3598
3599 if (root->n.sym == sym)
3600 return root;
3601
3602 st = NULL;
3603 if (root->left)
3604 st = find_symtree0 (root->left, sym);
3605 if (root->right && ! st)
3606 st = find_symtree0 (root->right, sym);
3607 return st;
3608 }
3609
3610
3611 /* Find a symtree for a symbol. */
3612
3613 gfc_symtree *
3614 gfc_find_sym_in_symtree (gfc_symbol *sym)
3615 {
3616 gfc_symtree *st;
3617 gfc_namespace *ns;
3618
3619 /* First try to find it by name. */
3620 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
3621 if (st && st->n.sym == sym)
3622 return st;
3623
3624 /* If it's been renamed, resort to a brute-force search. */
3625 /* TODO: avoid having to do this search. If the symbol doesn't exist
3626 in the symtree for the current namespace, it should probably be added. */
3627 for (ns = gfc_current_ns; ns; ns = ns->parent)
3628 {
3629 st = find_symtree0 (ns->sym_root, sym);
3630 if (st)
3631 return st;
3632 }
3633 gfc_internal_error ("Unable to find symbol %qs", sym->name);
3634 /* Not reached. */
3635 }
3636
3637
3638 /* See if the arglist to an operator-call contains a derived-type argument
3639 with a matching type-bound operator. If so, return the matching specific
3640 procedure defined as operator-target as well as the base-object to use
3641 (which is the found derived-type argument with operator). The generic
3642 name, if any, is transmitted to the final expression via 'gname'. */
3643
3644 static gfc_typebound_proc*
3645 matching_typebound_op (gfc_expr** tb_base,
3646 gfc_actual_arglist* args,
3647 gfc_intrinsic_op op, const char* uop,
3648 const char ** gname)
3649 {
3650 gfc_actual_arglist* base;
3651
3652 for (base = args; base; base = base->next)
3653 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
3654 {
3655 gfc_typebound_proc* tb;
3656 gfc_symbol* derived;
3657 bool result;
3658
3659 while (base->expr->expr_type == EXPR_OP
3660 && base->expr->value.op.op == INTRINSIC_PARENTHESES)
3661 base->expr = base->expr->value.op.op1;
3662
3663 if (base->expr->ts.type == BT_CLASS)
3664 {
3665 if (CLASS_DATA (base->expr) == NULL
3666 || !gfc_expr_attr (base->expr).class_ok)
3667 continue;
3668 derived = CLASS_DATA (base->expr)->ts.u.derived;
3669 }
3670 else
3671 derived = base->expr->ts.u.derived;
3672
3673 if (op == INTRINSIC_USER)
3674 {
3675 gfc_symtree* tb_uop;
3676
3677 gcc_assert (uop);
3678 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
3679 false, NULL);
3680
3681 if (tb_uop)
3682 tb = tb_uop->n.tb;
3683 else
3684 tb = NULL;
3685 }
3686 else
3687 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
3688 false, NULL);
3689
3690 /* This means we hit a PRIVATE operator which is use-associated and
3691 should thus not be seen. */
3692 if (!result)
3693 tb = NULL;
3694
3695 /* Look through the super-type hierarchy for a matching specific
3696 binding. */
3697 for (; tb; tb = tb->overridden)
3698 {
3699 gfc_tbp_generic* g;
3700
3701 gcc_assert (tb->is_generic);
3702 for (g = tb->u.generic; g; g = g->next)
3703 {
3704 gfc_symbol* target;
3705 gfc_actual_arglist* argcopy;
3706 bool matches;
3707
3708 gcc_assert (g->specific);
3709 if (g->specific->error)
3710 continue;
3711
3712 target = g->specific->u.specific->n.sym;
3713
3714 /* Check if this arglist matches the formal. */
3715 argcopy = gfc_copy_actual_arglist (args);
3716 matches = gfc_arglist_matches_symbol (&argcopy, target);
3717 gfc_free_actual_arglist (argcopy);
3718
3719 /* Return if we found a match. */
3720 if (matches)
3721 {
3722 *tb_base = base->expr;
3723 *gname = g->specific_st->name;
3724 return g->specific;
3725 }
3726 }
3727 }
3728 }
3729
3730 return NULL;
3731 }
3732
3733
3734 /* For the 'actual arglist' of an operator call and a specific typebound
3735 procedure that has been found the target of a type-bound operator, build the
3736 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
3737 type-bound procedures rather than resolving type-bound operators 'directly'
3738 so that we can reuse the existing logic. */
3739
3740 static void
3741 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
3742 gfc_expr* base, gfc_typebound_proc* target,
3743 const char *gname)
3744 {
3745 e->expr_type = EXPR_COMPCALL;
3746 e->value.compcall.tbp = target;
3747 e->value.compcall.name = gname ? gname : "$op";
3748 e->value.compcall.actual = actual;
3749 e->value.compcall.base_object = base;
3750 e->value.compcall.ignore_pass = 1;
3751 e->value.compcall.assign = 0;
3752 if (e->ts.type == BT_UNKNOWN
3753 && target->function)
3754 {
3755 if (target->is_generic)
3756 e->ts = target->u.generic->specific->u.specific->n.sym->ts;
3757 else
3758 e->ts = target->u.specific->n.sym->ts;
3759 }
3760 }
3761
3762
3763 /* This subroutine is called when an expression is being resolved.
3764 The expression node in question is either a user defined operator
3765 or an intrinsic operator with arguments that aren't compatible
3766 with the operator. This subroutine builds an actual argument list
3767 corresponding to the operands, then searches for a compatible
3768 interface. If one is found, the expression node is replaced with
3769 the appropriate function call. We use the 'match' enum to specify
3770 whether a replacement has been made or not, or if an error occurred. */
3771
3772 match
3773 gfc_extend_expr (gfc_expr *e)
3774 {
3775 gfc_actual_arglist *actual;
3776 gfc_symbol *sym;
3777 gfc_namespace *ns;
3778 gfc_user_op *uop;
3779 gfc_intrinsic_op i;
3780 const char *gname;
3781 gfc_typebound_proc* tbo;
3782 gfc_expr* tb_base;
3783
3784 sym = NULL;
3785
3786 actual = gfc_get_actual_arglist ();
3787 actual->expr = e->value.op.op1;
3788
3789 gname = NULL;
3790
3791 if (e->value.op.op2 != NULL)
3792 {
3793 actual->next = gfc_get_actual_arglist ();
3794 actual->next->expr = e->value.op.op2;
3795 }
3796
3797 i = fold_unary_intrinsic (e->value.op.op);
3798
3799 /* See if we find a matching type-bound operator. */
3800 if (i == INTRINSIC_USER)
3801 tbo = matching_typebound_op (&tb_base, actual,
3802 i, e->value.op.uop->name, &gname);
3803 else
3804 switch (i)
3805 {
3806 #define CHECK_OS_COMPARISON(comp) \
3807 case INTRINSIC_##comp: \
3808 case INTRINSIC_##comp##_OS: \
3809 tbo = matching_typebound_op (&tb_base, actual, \
3810 INTRINSIC_##comp, NULL, &gname); \
3811 if (!tbo) \
3812 tbo = matching_typebound_op (&tb_base, actual, \
3813 INTRINSIC_##comp##_OS, NULL, &gname); \
3814 break;
3815 CHECK_OS_COMPARISON(EQ)
3816 CHECK_OS_COMPARISON(NE)
3817 CHECK_OS_COMPARISON(GT)
3818 CHECK_OS_COMPARISON(GE)
3819 CHECK_OS_COMPARISON(LT)
3820 CHECK_OS_COMPARISON(LE)
3821 #undef CHECK_OS_COMPARISON
3822
3823 default:
3824 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
3825 break;
3826 }
3827
3828 /* If there is a matching typebound-operator, replace the expression with
3829 a call to it and succeed. */
3830 if (tbo)
3831 {
3832 gcc_assert (tb_base);
3833 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
3834
3835 if (!gfc_resolve_expr (e))
3836 return MATCH_ERROR;
3837 else
3838 return MATCH_YES;
3839 }
3840
3841 if (i == INTRINSIC_USER)
3842 {
3843 for (ns = gfc_current_ns; ns; ns = ns->parent)
3844 {
3845 uop = gfc_find_uop (e->value.op.uop->name, ns);
3846 if (uop == NULL)
3847 continue;
3848
3849 sym = gfc_search_interface (uop->op, 0, &actual);
3850 if (sym != NULL)
3851 break;
3852 }
3853 }
3854 else
3855 {
3856 for (ns = gfc_current_ns; ns; ns = ns->parent)
3857 {
3858 /* Due to the distinction between '==' and '.eq.' and friends, one has
3859 to check if either is defined. */
3860 switch (i)
3861 {
3862 #define CHECK_OS_COMPARISON(comp) \
3863 case INTRINSIC_##comp: \
3864 case INTRINSIC_##comp##_OS: \
3865 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
3866 if (!sym) \
3867 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
3868 break;
3869 CHECK_OS_COMPARISON(EQ)
3870 CHECK_OS_COMPARISON(NE)
3871 CHECK_OS_COMPARISON(GT)
3872 CHECK_OS_COMPARISON(GE)
3873 CHECK_OS_COMPARISON(LT)
3874 CHECK_OS_COMPARISON(LE)
3875 #undef CHECK_OS_COMPARISON
3876
3877 default:
3878 sym = gfc_search_interface (ns->op[i], 0, &actual);
3879 }
3880
3881 if (sym != NULL)
3882 break;
3883 }
3884 }
3885
3886 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
3887 found rather than just taking the first one and not checking further. */
3888
3889 if (sym == NULL)
3890 {
3891 /* Don't use gfc_free_actual_arglist(). */
3892 free (actual->next);
3893 free (actual);
3894 return MATCH_NO;
3895 }
3896
3897 /* Change the expression node to a function call. */
3898 e->expr_type = EXPR_FUNCTION;
3899 e->symtree = gfc_find_sym_in_symtree (sym);
3900 e->value.function.actual = actual;
3901 e->value.function.esym = NULL;
3902 e->value.function.isym = NULL;
3903 e->value.function.name = NULL;
3904 e->user_operator = 1;
3905
3906 if (!gfc_resolve_expr (e))
3907 return MATCH_ERROR;
3908
3909 return MATCH_YES;
3910 }
3911
3912
3913 /* Tries to replace an assignment code node with a subroutine call to the
3914 subroutine associated with the assignment operator. Return true if the node
3915 was replaced. On false, no error is generated. */
3916
3917 bool
3918 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
3919 {
3920 gfc_actual_arglist *actual;
3921 gfc_expr *lhs, *rhs, *tb_base;
3922 gfc_symbol *sym = NULL;
3923 const char *gname = NULL;
3924 gfc_typebound_proc* tbo;
3925
3926 lhs = c->expr1;
3927 rhs = c->expr2;
3928
3929 /* Don't allow an intrinsic assignment to be replaced. */
3930 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
3931 && (rhs->rank == 0 || rhs->rank == lhs->rank)
3932 && (lhs->ts.type == rhs->ts.type
3933 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3934 return false;
3935
3936 actual = gfc_get_actual_arglist ();
3937 actual->expr = lhs;
3938
3939 actual->next = gfc_get_actual_arglist ();
3940 actual->next->expr = rhs;
3941
3942 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3943
3944 /* See if we find a matching type-bound assignment. */
3945 tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
3946 NULL, &gname);
3947
3948 if (tbo)
3949 {
3950 /* Success: Replace the expression with a type-bound call. */
3951 gcc_assert (tb_base);
3952 c->expr1 = gfc_get_expr ();
3953 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
3954 c->expr1->value.compcall.assign = 1;
3955 c->expr1->where = c->loc;
3956 c->expr2 = NULL;
3957 c->op = EXEC_COMPCALL;
3958 return true;
3959 }
3960
3961 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
3962 for (; ns; ns = ns->parent)
3963 {
3964 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3965 if (sym != NULL)
3966 break;
3967 }
3968
3969 if (sym)
3970 {
3971 /* Success: Replace the assignment with the call. */
3972 c->op = EXEC_ASSIGN_CALL;
3973 c->symtree = gfc_find_sym_in_symtree (sym);
3974 c->expr1 = NULL;
3975 c->expr2 = NULL;
3976 c->ext.actual = actual;
3977 return true;
3978 }
3979
3980 /* Failure: No assignment procedure found. */
3981 free (actual->next);
3982 free (actual);
3983 return false;
3984 }
3985
3986
3987 /* Make sure that the interface just parsed is not already present in
3988 the given interface list. Ambiguity isn't checked yet since module
3989 procedures can be present without interfaces. */
3990
3991 bool
3992 gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
3993 {
3994 gfc_interface *ip;
3995
3996 for (ip = base; ip; ip = ip->next)
3997 {
3998 if (ip->sym == new_sym)
3999 {
4000 gfc_error ("Entity %qs at %L is already present in the interface",
4001 new_sym->name, &loc);
4002 return false;
4003 }
4004 }
4005
4006 return true;
4007 }
4008
4009
4010 /* Add a symbol to the current interface. */
4011
4012 bool
4013 gfc_add_interface (gfc_symbol *new_sym)
4014 {
4015 gfc_interface **head, *intr;
4016 gfc_namespace *ns;
4017 gfc_symbol *sym;
4018
4019 switch (current_interface.type)
4020 {
4021 case INTERFACE_NAMELESS:
4022 case INTERFACE_ABSTRACT:
4023 return true;
4024
4025 case INTERFACE_INTRINSIC_OP:
4026 for (ns = current_interface.ns; ns; ns = ns->parent)
4027 switch (current_interface.op)
4028 {
4029 case INTRINSIC_EQ:
4030 case INTRINSIC_EQ_OS:
4031 if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
4032 gfc_current_locus)
4033 || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
4034 new_sym, gfc_current_locus))
4035 return false;
4036 break;
4037
4038 case INTRINSIC_NE:
4039 case INTRINSIC_NE_OS:
4040 if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
4041 gfc_current_locus)
4042 || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
4043 new_sym, gfc_current_locus))
4044 return false;
4045 break;
4046
4047 case INTRINSIC_GT:
4048 case INTRINSIC_GT_OS:
4049 if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
4050 new_sym, gfc_current_locus)
4051 || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
4052 new_sym, gfc_current_locus))
4053 return false;
4054 break;
4055
4056 case INTRINSIC_GE:
4057 case INTRINSIC_GE_OS:
4058 if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
4059 new_sym, gfc_current_locus)
4060 || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
4061 new_sym, gfc_current_locus))
4062 return false;
4063 break;
4064
4065 case INTRINSIC_LT:
4066 case INTRINSIC_LT_OS:
4067 if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
4068 new_sym, gfc_current_locus)
4069 || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
4070 new_sym, gfc_current_locus))
4071 return false;
4072 break;
4073
4074 case INTRINSIC_LE:
4075 case INTRINSIC_LE_OS:
4076 if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
4077 new_sym, gfc_current_locus)
4078 || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
4079 new_sym, gfc_current_locus))
4080 return false;
4081 break;
4082
4083 default:
4084 if (!gfc_check_new_interface (ns->op[current_interface.op],
4085 new_sym, gfc_current_locus))
4086 return false;
4087 }
4088
4089 head = &current_interface.ns->op[current_interface.op];
4090 break;
4091
4092 case INTERFACE_GENERIC:
4093 for (ns = current_interface.ns; ns; ns = ns->parent)
4094 {
4095 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
4096 if (sym == NULL)
4097 continue;
4098
4099 if (!gfc_check_new_interface (sym->generic,
4100 new_sym, gfc_current_locus))
4101 return false;
4102 }
4103
4104 head = &current_interface.sym->generic;
4105 break;
4106
4107 case INTERFACE_USER_OP:
4108 if (!gfc_check_new_interface (current_interface.uop->op,
4109 new_sym, gfc_current_locus))
4110 return false;
4111
4112 head = &current_interface.uop->op;
4113 break;
4114
4115 default:
4116 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4117 }
4118
4119 intr = gfc_get_interface ();
4120 intr->sym = new_sym;
4121 intr->where = gfc_current_locus;
4122
4123 intr->next = *head;
4124 *head = intr;
4125
4126 return true;
4127 }
4128
4129
4130 gfc_interface *
4131 gfc_current_interface_head (void)
4132 {
4133 switch (current_interface.type)
4134 {
4135 case INTERFACE_INTRINSIC_OP:
4136 return current_interface.ns->op[current_interface.op];
4137 break;
4138
4139 case INTERFACE_GENERIC:
4140 return current_interface.sym->generic;
4141 break;
4142
4143 case INTERFACE_USER_OP:
4144 return current_interface.uop->op;
4145 break;
4146
4147 default:
4148 gcc_unreachable ();
4149 }
4150 }
4151
4152
4153 void
4154 gfc_set_current_interface_head (gfc_interface *i)
4155 {
4156 switch (current_interface.type)
4157 {
4158 case INTERFACE_INTRINSIC_OP:
4159 current_interface.ns->op[current_interface.op] = i;
4160 break;
4161
4162 case INTERFACE_GENERIC:
4163 current_interface.sym->generic = i;
4164 break;
4165
4166 case INTERFACE_USER_OP:
4167 current_interface.uop->op = i;
4168 break;
4169
4170 default:
4171 gcc_unreachable ();
4172 }
4173 }
4174
4175
4176 /* Gets rid of a formal argument list. We do not free symbols.
4177 Symbols are freed when a namespace is freed. */
4178
4179 void
4180 gfc_free_formal_arglist (gfc_formal_arglist *p)
4181 {
4182 gfc_formal_arglist *q;
4183
4184 for (; p; p = q)
4185 {
4186 q = p->next;
4187 free (p);
4188 }
4189 }
4190
4191
4192 /* Check that it is ok for the type-bound procedure 'proc' to override the
4193 procedure 'old', cf. F08:4.5.7.3. */
4194
4195 bool
4196 gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
4197 {
4198 locus where;
4199 gfc_symbol *proc_target, *old_target;
4200 unsigned proc_pass_arg, old_pass_arg, argpos;
4201 gfc_formal_arglist *proc_formal, *old_formal;
4202 bool check_type;
4203 char err[200];
4204
4205 /* This procedure should only be called for non-GENERIC proc. */
4206 gcc_assert (!proc->n.tb->is_generic);
4207
4208 /* If the overwritten procedure is GENERIC, this is an error. */
4209 if (old->n.tb->is_generic)
4210 {
4211 gfc_error ("Can't overwrite GENERIC %qs at %L",
4212 old->name, &proc->n.tb->where);
4213 return false;
4214 }
4215
4216 where = proc->n.tb->where;
4217 proc_target = proc->n.tb->u.specific->n.sym;
4218 old_target = old->n.tb->u.specific->n.sym;
4219
4220 /* Check that overridden binding is not NON_OVERRIDABLE. */
4221 if (old->n.tb->non_overridable)
4222 {
4223 gfc_error ("%qs at %L overrides a procedure binding declared"
4224 " NON_OVERRIDABLE", proc->name, &where);
4225 return false;
4226 }
4227
4228 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4229 if (!old->n.tb->deferred && proc->n.tb->deferred)
4230 {
4231 gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
4232 " non-DEFERRED binding", proc->name, &where);
4233 return false;
4234 }
4235
4236 /* If the overridden binding is PURE, the overriding must be, too. */
4237 if (old_target->attr.pure && !proc_target->attr.pure)
4238 {
4239 gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
4240 proc->name, &where);
4241 return false;
4242 }
4243
4244 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4245 is not, the overriding must not be either. */
4246 if (old_target->attr.elemental && !proc_target->attr.elemental)
4247 {
4248 gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
4249 " ELEMENTAL", proc->name, &where);
4250 return false;
4251 }
4252 if (!old_target->attr.elemental && proc_target->attr.elemental)
4253 {
4254 gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
4255 " be ELEMENTAL, either", proc->name, &where);
4256 return false;
4257 }
4258
4259 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4260 SUBROUTINE. */
4261 if (old_target->attr.subroutine && !proc_target->attr.subroutine)
4262 {
4263 gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
4264 " SUBROUTINE", proc->name, &where);
4265 return false;
4266 }
4267
4268 /* If the overridden binding is a FUNCTION, the overriding must also be a
4269 FUNCTION and have the same characteristics. */
4270 if (old_target->attr.function)
4271 {
4272 if (!proc_target->attr.function)
4273 {
4274 gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
4275 " FUNCTION", proc->name, &where);
4276 return false;
4277 }
4278
4279 if (!gfc_check_result_characteristics (proc_target, old_target,
4280 err, sizeof(err)))
4281 {
4282 gfc_error ("Result mismatch for the overriding procedure "
4283 "%qs at %L: %s", proc->name, &where, err);
4284 return false;
4285 }
4286 }
4287
4288 /* If the overridden binding is PUBLIC, the overriding one must not be
4289 PRIVATE. */
4290 if (old->n.tb->access == ACCESS_PUBLIC
4291 && proc->n.tb->access == ACCESS_PRIVATE)
4292 {
4293 gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
4294 " PRIVATE", proc->name, &where);
4295 return false;
4296 }
4297
4298 /* Compare the formal argument lists of both procedures. This is also abused
4299 to find the position of the passed-object dummy arguments of both
4300 bindings as at least the overridden one might not yet be resolved and we
4301 need those positions in the check below. */
4302 proc_pass_arg = old_pass_arg = 0;
4303 if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
4304 proc_pass_arg = 1;
4305 if (!old->n.tb->nopass && !old->n.tb->pass_arg)
4306 old_pass_arg = 1;
4307 argpos = 1;
4308 proc_formal = gfc_sym_get_dummy_args (proc_target);
4309 old_formal = gfc_sym_get_dummy_args (old_target);
4310 for ( ; proc_formal && old_formal;
4311 proc_formal = proc_formal->next, old_formal = old_formal->next)
4312 {
4313 if (proc->n.tb->pass_arg
4314 && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
4315 proc_pass_arg = argpos;
4316 if (old->n.tb->pass_arg
4317 && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
4318 old_pass_arg = argpos;
4319
4320 /* Check that the names correspond. */
4321 if (strcmp (proc_formal->sym->name, old_formal->sym->name))
4322 {
4323 gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
4324 " to match the corresponding argument of the overridden"
4325 " procedure", proc_formal->sym->name, proc->name, &where,
4326 old_formal->sym->name);
4327 return false;
4328 }
4329
4330 check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
4331 if (!gfc_check_dummy_characteristics (proc_formal->sym, old_formal->sym,
4332 check_type, err, sizeof(err)))
4333 {
4334 gfc_error ("Argument mismatch for the overriding procedure "
4335 "%qs at %L: %s", proc->name, &where, err);
4336 return false;
4337 }
4338
4339 ++argpos;
4340 }
4341 if (proc_formal || old_formal)
4342 {
4343 gfc_error ("%qs at %L must have the same number of formal arguments as"
4344 " the overridden procedure", proc->name, &where);
4345 return false;
4346 }
4347
4348 /* If the overridden binding is NOPASS, the overriding one must also be
4349 NOPASS. */
4350 if (old->n.tb->nopass && !proc->n.tb->nopass)
4351 {
4352 gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
4353 " NOPASS", proc->name, &where);
4354 return false;
4355 }
4356
4357 /* If the overridden binding is PASS(x), the overriding one must also be
4358 PASS and the passed-object dummy arguments must correspond. */
4359 if (!old->n.tb->nopass)
4360 {
4361 if (proc->n.tb->nopass)
4362 {
4363 gfc_error ("%qs at %L overrides a binding with PASS and must also be"
4364 " PASS", proc->name, &where);
4365 return false;
4366 }
4367
4368 if (proc_pass_arg != old_pass_arg)
4369 {
4370 gfc_error ("Passed-object dummy argument of %qs at %L must be at"
4371 " the same position as the passed-object dummy argument of"
4372 " the overridden procedure", proc->name, &where);
4373 return false;
4374 }
4375 }
4376
4377 return true;
4378 }