]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/interface.c
flags.h: Don't include flag-types.h or options.h.
[thirdparty/gcc.git] / gcc / fortran / interface.c
1 /* Deal with interfaces.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
27
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
32
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
35 own head pointer.
36
37 Nameless interfaces:
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
40
41 Generic interfaces:
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
46
47 User operators:
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
51
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
54
55 Implicit interfaces:
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
59
60
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
65
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "options.h"
70 #include "gfortran.h"
71 #include "match.h"
72 #include "arith.h"
73
74 /* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
77
78 gfc_interface_info current_interface;
79
80
81 /* Free a singly linked list of gfc_interface structures. */
82
83 void
84 gfc_free_interface (gfc_interface *intr)
85 {
86 gfc_interface *next;
87
88 for (; intr; intr = next)
89 {
90 next = intr->next;
91 free (intr);
92 }
93 }
94
95
96 /* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
98
99 static gfc_intrinsic_op
100 fold_unary_intrinsic (gfc_intrinsic_op op)
101 {
102 switch (op)
103 {
104 case INTRINSIC_UPLUS:
105 op = INTRINSIC_PLUS;
106 break;
107 case INTRINSIC_UMINUS:
108 op = INTRINSIC_MINUS;
109 break;
110 default:
111 break;
112 }
113
114 return op;
115 }
116
117
118 /* Match a generic specification. Depending on which type of
119 interface is found, the 'name' or 'op' pointers may be set.
120 This subroutine doesn't return MATCH_NO. */
121
122 match
123 gfc_match_generic_spec (interface_type *type,
124 char *name,
125 gfc_intrinsic_op *op)
126 {
127 char buffer[GFC_MAX_SYMBOL_LEN + 1];
128 match m;
129 gfc_intrinsic_op i;
130
131 if (gfc_match (" assignment ( = )") == MATCH_YES)
132 {
133 *type = INTERFACE_INTRINSIC_OP;
134 *op = INTRINSIC_ASSIGN;
135 return MATCH_YES;
136 }
137
138 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
139 { /* Operator i/f */
140 *type = INTERFACE_INTRINSIC_OP;
141 *op = fold_unary_intrinsic (i);
142 return MATCH_YES;
143 }
144
145 *op = INTRINSIC_NONE;
146 if (gfc_match (" operator ( ") == MATCH_YES)
147 {
148 m = gfc_match_defined_op_name (buffer, 1);
149 if (m == MATCH_NO)
150 goto syntax;
151 if (m != MATCH_YES)
152 return MATCH_ERROR;
153
154 m = gfc_match_char (')');
155 if (m == MATCH_NO)
156 goto syntax;
157 if (m != MATCH_YES)
158 return MATCH_ERROR;
159
160 strcpy (name, buffer);
161 *type = INTERFACE_USER_OP;
162 return MATCH_YES;
163 }
164
165 if (gfc_match_name (buffer) == MATCH_YES)
166 {
167 strcpy (name, buffer);
168 *type = INTERFACE_GENERIC;
169 return MATCH_YES;
170 }
171
172 *type = INTERFACE_NAMELESS;
173 return MATCH_YES;
174
175 syntax:
176 gfc_error ("Syntax error in generic specification at %C");
177 return MATCH_ERROR;
178 }
179
180
181 /* Match one of the five F95 forms of an interface statement. The
182 matcher for the abstract interface follows. */
183
184 match
185 gfc_match_interface (void)
186 {
187 char name[GFC_MAX_SYMBOL_LEN + 1];
188 interface_type type;
189 gfc_symbol *sym;
190 gfc_intrinsic_op op;
191 match m;
192
193 m = gfc_match_space ();
194
195 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
196 return MATCH_ERROR;
197
198 /* If we're not looking at the end of the statement now, or if this
199 is not a nameless interface but we did not see a space, punt. */
200 if (gfc_match_eos () != MATCH_YES
201 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
202 {
203 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
204 "at %C");
205 return MATCH_ERROR;
206 }
207
208 current_interface.type = type;
209
210 switch (type)
211 {
212 case INTERFACE_GENERIC:
213 if (gfc_get_symbol (name, NULL, &sym))
214 return MATCH_ERROR;
215
216 if (!sym->attr.generic
217 && !gfc_add_generic (&sym->attr, sym->name, NULL))
218 return MATCH_ERROR;
219
220 if (sym->attr.dummy)
221 {
222 gfc_error ("Dummy procedure %qs at %C cannot have a "
223 "generic interface", sym->name);
224 return MATCH_ERROR;
225 }
226
227 current_interface.sym = gfc_new_block = sym;
228 break;
229
230 case INTERFACE_USER_OP:
231 current_interface.uop = gfc_get_uop (name);
232 break;
233
234 case INTERFACE_INTRINSIC_OP:
235 current_interface.op = op;
236 break;
237
238 case INTERFACE_NAMELESS:
239 case INTERFACE_ABSTRACT:
240 break;
241 }
242
243 return MATCH_YES;
244 }
245
246
247
248 /* Match a F2003 abstract interface. */
249
250 match
251 gfc_match_abstract_interface (void)
252 {
253 match m;
254
255 if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
256 return MATCH_ERROR;
257
258 m = gfc_match_eos ();
259
260 if (m != MATCH_YES)
261 {
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
264 }
265
266 current_interface.type = INTERFACE_ABSTRACT;
267
268 return m;
269 }
270
271
272 /* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
274
275 match
276 gfc_match_end_interface (void)
277 {
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
280 gfc_intrinsic_op op;
281 match m;
282
283 m = gfc_match_space ();
284
285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
286 return MATCH_ERROR;
287
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
292 {
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
295 return MATCH_ERROR;
296 }
297
298 m = MATCH_YES;
299
300 switch (current_interface.type)
301 {
302 case INTERFACE_NAMELESS:
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
305 {
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
308 }
309
310 break;
311
312 case INTERFACE_INTRINSIC_OP:
313 if (type != current_interface.type || op != current_interface.op)
314 {
315
316 if (current_interface.op == INTRINSIC_ASSIGN)
317 {
318 m = MATCH_ERROR;
319 gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
320 }
321 else
322 {
323 const char *s1, *s2;
324 s1 = gfc_op2string (current_interface.op);
325 s2 = gfc_op2string (op);
326
327 /* The following if-statements are used to enforce C1202
328 from F2003. */
329 if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
330 || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
331 break;
332 if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
333 || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
334 break;
335 if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
336 || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
337 break;
338 if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
339 || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
340 break;
341 if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
342 || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
343 break;
344 if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
345 || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
346 break;
347
348 m = MATCH_ERROR;
349 if (strcmp(s2, "none") == 0)
350 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> "
351 "at %C, ", s1);
352 else
353 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
354 "but got %s", s1, s2);
355 }
356
357 }
358
359 break;
360
361 case INTERFACE_USER_OP:
362 /* Comparing the symbol node names is OK because only use-associated
363 symbols can be renamed. */
364 if (type != current_interface.type
365 || strcmp (current_interface.uop->name, name) != 0)
366 {
367 gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
368 current_interface.uop->name);
369 m = MATCH_ERROR;
370 }
371
372 break;
373
374 case INTERFACE_GENERIC:
375 if (type != current_interface.type
376 || strcmp (current_interface.sym->name, name) != 0)
377 {
378 gfc_error ("Expecting %<END INTERFACE %s%> at %C",
379 current_interface.sym->name);
380 m = MATCH_ERROR;
381 }
382
383 break;
384 }
385
386 return m;
387 }
388
389
390 /* Compare two derived types using the criteria in 4.4.2 of the standard,
391 recursing through gfc_compare_types for the components. */
392
393 int
394 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
395 {
396 gfc_component *dt1, *dt2;
397
398 if (derived1 == derived2)
399 return 1;
400
401 gcc_assert (derived1 && derived2);
402
403 /* Special case for comparing derived types across namespaces. If the
404 true names and module names are the same and the module name is
405 nonnull, then they are equal. */
406 if (strcmp (derived1->name, derived2->name) == 0
407 && derived1->module != NULL && derived2->module != NULL
408 && strcmp (derived1->module, derived2->module) == 0)
409 return 1;
410
411 /* Compare type via the rules of the standard. Both types must have
412 the SEQUENCE or BIND(C) attribute to be equal. */
413
414 if (strcmp (derived1->name, derived2->name))
415 return 0;
416
417 if (derived1->component_access == ACCESS_PRIVATE
418 || derived2->component_access == ACCESS_PRIVATE)
419 return 0;
420
421 if (!(derived1->attr.sequence && derived2->attr.sequence)
422 && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
423 return 0;
424
425 dt1 = derived1->components;
426 dt2 = derived2->components;
427
428 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
429 simple test can speed things up. Otherwise, lots of things have to
430 match. */
431 for (;;)
432 {
433 if (strcmp (dt1->name, dt2->name) != 0)
434 return 0;
435
436 if (dt1->attr.access != dt2->attr.access)
437 return 0;
438
439 if (dt1->attr.pointer != dt2->attr.pointer)
440 return 0;
441
442 if (dt1->attr.dimension != dt2->attr.dimension)
443 return 0;
444
445 if (dt1->attr.allocatable != dt2->attr.allocatable)
446 return 0;
447
448 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
449 return 0;
450
451 /* Make sure that link lists do not put this function into an
452 endless recursive loop! */
453 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
454 && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
455 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
456 return 0;
457
458 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
459 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
460 return 0;
461
462 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
463 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
464 return 0;
465
466 dt1 = dt1->next;
467 dt2 = dt2->next;
468
469 if (dt1 == NULL && dt2 == NULL)
470 break;
471 if (dt1 == NULL || dt2 == NULL)
472 return 0;
473 }
474
475 return 1;
476 }
477
478
479 /* Compare two typespecs, recursively if necessary. */
480
481 int
482 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
483 {
484 /* See if one of the typespecs is a BT_VOID, which is what is being used
485 to allow the funcs like c_f_pointer to accept any pointer type.
486 TODO: Possibly should narrow this to just the one typespec coming in
487 that is for the formal arg, but oh well. */
488 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
489 return 1;
490
491 /* The _data component is not always present, therefore check for its
492 presence before assuming, that its derived->attr is available.
493 When the _data component is not present, then nevertheless the
494 unlimited_polymorphic flag may be set in the derived type's attr. */
495 if (ts1->type == BT_CLASS && ts1->u.derived->components
496 && ((ts1->u.derived->attr.is_class
497 && ts1->u.derived->components->ts.u.derived->attr
498 .unlimited_polymorphic)
499 || ts1->u.derived->attr.unlimited_polymorphic))
500 return 1;
501
502 /* F2003: C717 */
503 if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
504 && ts2->u.derived->components
505 && ((ts2->u.derived->attr.is_class
506 && ts2->u.derived->components->ts.u.derived->attr
507 .unlimited_polymorphic)
508 || ts2->u.derived->attr.unlimited_polymorphic)
509 && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
510 return 1;
511
512 if (ts1->type != ts2->type
513 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
514 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
515 return 0;
516 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
517 return (ts1->kind == ts2->kind);
518
519 /* Compare derived types. */
520 if (gfc_type_compatible (ts1, ts2))
521 return 1;
522
523 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
524 }
525
526
527 static int
528 compare_type (gfc_symbol *s1, gfc_symbol *s2)
529 {
530 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
531 return 1;
532
533 /* TYPE and CLASS of the same declared type are type compatible,
534 but have different characteristics. */
535 if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
536 || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
537 return 0;
538
539 return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
540 }
541
542
543 static int
544 compare_rank (gfc_symbol *s1, gfc_symbol *s2)
545 {
546 gfc_array_spec *as1, *as2;
547 int r1, r2;
548
549 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
550 return 1;
551
552 as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
553 as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
554
555 r1 = as1 ? as1->rank : 0;
556 r2 = as2 ? as2->rank : 0;
557
558 if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
559 return 0; /* Ranks differ. */
560
561 return 1;
562 }
563
564
565 /* Given two symbols that are formal arguments, compare their ranks
566 and types. Returns nonzero if they have the same rank and type,
567 zero otherwise. */
568
569 static int
570 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
571 {
572 return compare_type (s1, s2) && compare_rank (s1, s2);
573 }
574
575
576 /* Given two symbols that are formal arguments, compare their types
577 and rank and their formal interfaces if they are both dummy
578 procedures. Returns nonzero if the same, zero if different. */
579
580 static int
581 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
582 {
583 if (s1 == NULL || s2 == NULL)
584 return s1 == s2 ? 1 : 0;
585
586 if (s1 == s2)
587 return 1;
588
589 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
590 return compare_type_rank (s1, s2);
591
592 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
593 return 0;
594
595 /* At this point, both symbols are procedures. It can happen that
596 external procedures are compared, where one is identified by usage
597 to be a function or subroutine but the other is not. Check TKR
598 nonetheless for these cases. */
599 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
600 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
601
602 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
603 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
604
605 /* Now the type of procedure has been identified. */
606 if (s1->attr.function != s2->attr.function
607 || s1->attr.subroutine != s2->attr.subroutine)
608 return 0;
609
610 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
611 return 0;
612
613 /* Originally, gfortran recursed here to check the interfaces of passed
614 procedures. This is explicitly not required by the standard. */
615 return 1;
616 }
617
618
619 /* Given a formal argument list and a keyword name, search the list
620 for that keyword. Returns the correct symbol node if found, NULL
621 if not found. */
622
623 static gfc_symbol *
624 find_keyword_arg (const char *name, gfc_formal_arglist *f)
625 {
626 for (; f; f = f->next)
627 if (strcmp (f->sym->name, name) == 0)
628 return f->sym;
629
630 return NULL;
631 }
632
633
634 /******** Interface checking subroutines **********/
635
636
637 /* Given an operator interface and the operator, make sure that all
638 interfaces for that operator are legal. */
639
640 bool
641 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
642 locus opwhere)
643 {
644 gfc_formal_arglist *formal;
645 sym_intent i1, i2;
646 bt t1, t2;
647 int args, r1, r2, k1, k2;
648
649 gcc_assert (sym);
650
651 args = 0;
652 t1 = t2 = BT_UNKNOWN;
653 i1 = i2 = INTENT_UNKNOWN;
654 r1 = r2 = -1;
655 k1 = k2 = -1;
656
657 for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
658 {
659 gfc_symbol *fsym = formal->sym;
660 if (fsym == NULL)
661 {
662 gfc_error ("Alternate return cannot appear in operator "
663 "interface at %L", &sym->declared_at);
664 return false;
665 }
666 if (args == 0)
667 {
668 t1 = fsym->ts.type;
669 i1 = fsym->attr.intent;
670 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
671 k1 = fsym->ts.kind;
672 }
673 if (args == 1)
674 {
675 t2 = fsym->ts.type;
676 i2 = fsym->attr.intent;
677 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
678 k2 = fsym->ts.kind;
679 }
680 args++;
681 }
682
683 /* Only +, - and .not. can be unary operators.
684 .not. cannot be a binary operator. */
685 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
686 && op != INTRINSIC_MINUS
687 && op != INTRINSIC_NOT)
688 || (args == 2 && op == INTRINSIC_NOT))
689 {
690 if (op == INTRINSIC_ASSIGN)
691 gfc_error ("Assignment operator interface at %L must have "
692 "two arguments", &sym->declared_at);
693 else
694 gfc_error ("Operator interface at %L has the wrong number of arguments",
695 &sym->declared_at);
696 return false;
697 }
698
699 /* Check that intrinsics are mapped to functions, except
700 INTRINSIC_ASSIGN which should map to a subroutine. */
701 if (op == INTRINSIC_ASSIGN)
702 {
703 gfc_formal_arglist *dummy_args;
704
705 if (!sym->attr.subroutine)
706 {
707 gfc_error ("Assignment operator interface at %L must be "
708 "a SUBROUTINE", &sym->declared_at);
709 return false;
710 }
711
712 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
713 - First argument an array with different rank than second,
714 - First argument is a scalar and second an array,
715 - Types and kinds do not conform, or
716 - First argument is of derived type. */
717 dummy_args = gfc_sym_get_dummy_args (sym);
718 if (dummy_args->sym->ts.type != BT_DERIVED
719 && dummy_args->sym->ts.type != BT_CLASS
720 && (r2 == 0 || r1 == r2)
721 && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
722 || (gfc_numeric_ts (&dummy_args->sym->ts)
723 && gfc_numeric_ts (&dummy_args->next->sym->ts))))
724 {
725 gfc_error ("Assignment operator interface at %L must not redefine "
726 "an INTRINSIC type assignment", &sym->declared_at);
727 return false;
728 }
729 }
730 else
731 {
732 if (!sym->attr.function)
733 {
734 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
735 &sym->declared_at);
736 return false;
737 }
738 }
739
740 /* Check intents on operator interfaces. */
741 if (op == INTRINSIC_ASSIGN)
742 {
743 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
744 {
745 gfc_error ("First argument of defined assignment at %L must be "
746 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
747 return false;
748 }
749
750 if (i2 != INTENT_IN)
751 {
752 gfc_error ("Second argument of defined assignment at %L must be "
753 "INTENT(IN)", &sym->declared_at);
754 return false;
755 }
756 }
757 else
758 {
759 if (i1 != INTENT_IN)
760 {
761 gfc_error ("First argument of operator interface at %L must be "
762 "INTENT(IN)", &sym->declared_at);
763 return false;
764 }
765
766 if (args == 2 && i2 != INTENT_IN)
767 {
768 gfc_error ("Second argument of operator interface at %L must be "
769 "INTENT(IN)", &sym->declared_at);
770 return false;
771 }
772 }
773
774 /* From now on, all we have to do is check that the operator definition
775 doesn't conflict with an intrinsic operator. The rules for this
776 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
777 as well as 12.3.2.1.1 of Fortran 2003:
778
779 "If the operator is an intrinsic-operator (R310), the number of
780 function arguments shall be consistent with the intrinsic uses of
781 that operator, and the types, kind type parameters, or ranks of the
782 dummy arguments shall differ from those required for the intrinsic
783 operation (7.1.2)." */
784
785 #define IS_NUMERIC_TYPE(t) \
786 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
787
788 /* Unary ops are easy, do them first. */
789 if (op == INTRINSIC_NOT)
790 {
791 if (t1 == BT_LOGICAL)
792 goto bad_repl;
793 else
794 return true;
795 }
796
797 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
798 {
799 if (IS_NUMERIC_TYPE (t1))
800 goto bad_repl;
801 else
802 return true;
803 }
804
805 /* Character intrinsic operators have same character kind, thus
806 operator definitions with operands of different character kinds
807 are always safe. */
808 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
809 return true;
810
811 /* Intrinsic operators always perform on arguments of same rank,
812 so different ranks is also always safe. (rank == 0) is an exception
813 to that, because all intrinsic operators are elemental. */
814 if (r1 != r2 && r1 != 0 && r2 != 0)
815 return true;
816
817 switch (op)
818 {
819 case INTRINSIC_EQ:
820 case INTRINSIC_EQ_OS:
821 case INTRINSIC_NE:
822 case INTRINSIC_NE_OS:
823 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
824 goto bad_repl;
825 /* Fall through. */
826
827 case INTRINSIC_PLUS:
828 case INTRINSIC_MINUS:
829 case INTRINSIC_TIMES:
830 case INTRINSIC_DIVIDE:
831 case INTRINSIC_POWER:
832 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
833 goto bad_repl;
834 break;
835
836 case INTRINSIC_GT:
837 case INTRINSIC_GT_OS:
838 case INTRINSIC_GE:
839 case INTRINSIC_GE_OS:
840 case INTRINSIC_LT:
841 case INTRINSIC_LT_OS:
842 case INTRINSIC_LE:
843 case INTRINSIC_LE_OS:
844 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
845 goto bad_repl;
846 if ((t1 == BT_INTEGER || t1 == BT_REAL)
847 && (t2 == BT_INTEGER || t2 == BT_REAL))
848 goto bad_repl;
849 break;
850
851 case INTRINSIC_CONCAT:
852 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
853 goto bad_repl;
854 break;
855
856 case INTRINSIC_AND:
857 case INTRINSIC_OR:
858 case INTRINSIC_EQV:
859 case INTRINSIC_NEQV:
860 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
861 goto bad_repl;
862 break;
863
864 default:
865 break;
866 }
867
868 return true;
869
870 #undef IS_NUMERIC_TYPE
871
872 bad_repl:
873 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
874 &opwhere);
875 return false;
876 }
877
878
879 /* Given a pair of formal argument lists, we see if the two lists can
880 be distinguished by counting the number of nonoptional arguments of
881 a given type/rank in f1 and seeing if there are less then that
882 number of those arguments in f2 (including optional arguments).
883 Since this test is asymmetric, it has to be called twice to make it
884 symmetric. Returns nonzero if the argument lists are incompatible
885 by this test. This subroutine implements rule 1 of section F03:16.2.3.
886 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
887
888 static int
889 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
890 const char *p1, const char *p2)
891 {
892 int rc, ac1, ac2, i, j, k, n1;
893 gfc_formal_arglist *f;
894
895 typedef struct
896 {
897 int flag;
898 gfc_symbol *sym;
899 }
900 arginfo;
901
902 arginfo *arg;
903
904 n1 = 0;
905
906 for (f = f1; f; f = f->next)
907 n1++;
908
909 /* Build an array of integers that gives the same integer to
910 arguments of the same type/rank. */
911 arg = XCNEWVEC (arginfo, n1);
912
913 f = f1;
914 for (i = 0; i < n1; i++, f = f->next)
915 {
916 arg[i].flag = -1;
917 arg[i].sym = f->sym;
918 }
919
920 k = 0;
921
922 for (i = 0; i < n1; i++)
923 {
924 if (arg[i].flag != -1)
925 continue;
926
927 if (arg[i].sym && (arg[i].sym->attr.optional
928 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
929 continue; /* Skip OPTIONAL and PASS arguments. */
930
931 arg[i].flag = k;
932
933 /* Find other non-optional, non-pass arguments of the same type/rank. */
934 for (j = i + 1; j < n1; j++)
935 if ((arg[j].sym == NULL
936 || !(arg[j].sym->attr.optional
937 || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
938 && (compare_type_rank_if (arg[i].sym, arg[j].sym)
939 || compare_type_rank_if (arg[j].sym, arg[i].sym)))
940 arg[j].flag = k;
941
942 k++;
943 }
944
945 /* Now loop over each distinct type found in f1. */
946 k = 0;
947 rc = 0;
948
949 for (i = 0; i < n1; i++)
950 {
951 if (arg[i].flag != k)
952 continue;
953
954 ac1 = 1;
955 for (j = i + 1; j < n1; j++)
956 if (arg[j].flag == k)
957 ac1++;
958
959 /* Count the number of non-pass arguments in f2 with that type,
960 including those that are optional. */
961 ac2 = 0;
962
963 for (f = f2; f; f = f->next)
964 if ((!p2 || strcmp (f->sym->name, p2) != 0)
965 && (compare_type_rank_if (arg[i].sym, f->sym)
966 || compare_type_rank_if (f->sym, arg[i].sym)))
967 ac2++;
968
969 if (ac1 > ac2)
970 {
971 rc = 1;
972 break;
973 }
974
975 k++;
976 }
977
978 free (arg);
979
980 return rc;
981 }
982
983
984 /* Perform the correspondence test in rule (3) of F08:C1215.
985 Returns zero if no argument is found that satisfies this rule,
986 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
987 (if applicable).
988
989 This test is also not symmetric in f1 and f2 and must be called
990 twice. This test finds problems caused by sorting the actual
991 argument list with keywords. For example:
992
993 INTERFACE FOO
994 SUBROUTINE F1(A, B)
995 INTEGER :: A ; REAL :: B
996 END SUBROUTINE F1
997
998 SUBROUTINE F2(B, A)
999 INTEGER :: A ; REAL :: B
1000 END SUBROUTINE F1
1001 END INTERFACE FOO
1002
1003 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
1004
1005 static int
1006 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
1007 const char *p1, const char *p2)
1008 {
1009 gfc_formal_arglist *f2_save, *g;
1010 gfc_symbol *sym;
1011
1012 f2_save = f2;
1013
1014 while (f1)
1015 {
1016 if (f1->sym->attr.optional)
1017 goto next;
1018
1019 if (p1 && strcmp (f1->sym->name, p1) == 0)
1020 f1 = f1->next;
1021 if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
1022 f2 = f2->next;
1023
1024 if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
1025 || compare_type_rank (f2->sym, f1->sym))
1026 && !((gfc_option.allow_std & GFC_STD_F2008)
1027 && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
1028 || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
1029 goto next;
1030
1031 /* Now search for a disambiguating keyword argument starting at
1032 the current non-match. */
1033 for (g = f1; g; g = g->next)
1034 {
1035 if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
1036 continue;
1037
1038 sym = find_keyword_arg (g->sym->name, f2_save);
1039 if (sym == NULL || !compare_type_rank (g->sym, sym)
1040 || ((gfc_option.allow_std & GFC_STD_F2008)
1041 && ((sym->attr.allocatable && g->sym->attr.pointer)
1042 || (sym->attr.pointer && g->sym->attr.allocatable))))
1043 return 1;
1044 }
1045
1046 next:
1047 if (f1 != NULL)
1048 f1 = f1->next;
1049 if (f2 != NULL)
1050 f2 = f2->next;
1051 }
1052
1053 return 0;
1054 }
1055
1056
1057 static int
1058 symbol_rank (gfc_symbol *sym)
1059 {
1060 gfc_array_spec *as;
1061 as = (sym->ts.type == BT_CLASS) ? CLASS_DATA (sym)->as : sym->as;
1062 return as ? as->rank : 0;
1063 }
1064
1065
1066 /* Check if the characteristics of two dummy arguments match,
1067 cf. F08:12.3.2. */
1068
1069 bool
1070 gfc_check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1071 bool type_must_agree, char *errmsg,
1072 int err_len)
1073 {
1074 if (s1 == NULL || s2 == NULL)
1075 return s1 == s2 ? true : false;
1076
1077 /* Check type and rank. */
1078 if (type_must_agree)
1079 {
1080 if (!compare_type (s1, s2) || !compare_type (s2, s1))
1081 {
1082 snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
1083 s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
1084 return false;
1085 }
1086 if (!compare_rank (s1, s2))
1087 {
1088 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
1089 s1->name, symbol_rank (s1), symbol_rank (s2));
1090 return false;
1091 }
1092 }
1093
1094 /* Check INTENT. */
1095 if (s1->attr.intent != s2->attr.intent)
1096 {
1097 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1098 s1->name);
1099 return false;
1100 }
1101
1102 /* Check OPTIONAL attribute. */
1103 if (s1->attr.optional != s2->attr.optional)
1104 {
1105 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1106 s1->name);
1107 return false;
1108 }
1109
1110 /* Check ALLOCATABLE attribute. */
1111 if (s1->attr.allocatable != s2->attr.allocatable)
1112 {
1113 snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
1114 s1->name);
1115 return false;
1116 }
1117
1118 /* Check POINTER attribute. */
1119 if (s1->attr.pointer != s2->attr.pointer)
1120 {
1121 snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
1122 s1->name);
1123 return false;
1124 }
1125
1126 /* Check TARGET attribute. */
1127 if (s1->attr.target != s2->attr.target)
1128 {
1129 snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
1130 s1->name);
1131 return false;
1132 }
1133
1134 /* Check ASYNCHRONOUS attribute. */
1135 if (s1->attr.asynchronous != s2->attr.asynchronous)
1136 {
1137 snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
1138 s1->name);
1139 return false;
1140 }
1141
1142 /* Check CONTIGUOUS attribute. */
1143 if (s1->attr.contiguous != s2->attr.contiguous)
1144 {
1145 snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
1146 s1->name);
1147 return false;
1148 }
1149
1150 /* Check VALUE attribute. */
1151 if (s1->attr.value != s2->attr.value)
1152 {
1153 snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
1154 s1->name);
1155 return false;
1156 }
1157
1158 /* Check VOLATILE attribute. */
1159 if (s1->attr.volatile_ != s2->attr.volatile_)
1160 {
1161 snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
1162 s1->name);
1163 return false;
1164 }
1165
1166 /* Check interface of dummy procedures. */
1167 if (s1->attr.flavor == FL_PROCEDURE)
1168 {
1169 char err[200];
1170 if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
1171 NULL, NULL))
1172 {
1173 snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
1174 "'%s': %s", s1->name, err);
1175 return false;
1176 }
1177 }
1178
1179 /* Check string length. */
1180 if (s1->ts.type == BT_CHARACTER
1181 && s1->ts.u.cl && s1->ts.u.cl->length
1182 && s2->ts.u.cl && s2->ts.u.cl->length)
1183 {
1184 int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
1185 s2->ts.u.cl->length);
1186 switch (compval)
1187 {
1188 case -1:
1189 case 1:
1190 case -3:
1191 snprintf (errmsg, err_len, "Character length mismatch "
1192 "in argument '%s'", s1->name);
1193 return false;
1194
1195 case -2:
1196 /* FIXME: Implement a warning for this case.
1197 gfc_warning (0, "Possible character length mismatch in argument %qs",
1198 s1->name);*/
1199 break;
1200
1201 case 0:
1202 break;
1203
1204 default:
1205 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1206 "%i of gfc_dep_compare_expr", compval);
1207 break;
1208 }
1209 }
1210
1211 /* Check array shape. */
1212 if (s1->as && s2->as)
1213 {
1214 int i, compval;
1215 gfc_expr *shape1, *shape2;
1216
1217 if (s1->as->type != s2->as->type)
1218 {
1219 snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
1220 s1->name);
1221 return false;
1222 }
1223
1224 if (s1->as->corank != s2->as->corank)
1225 {
1226 snprintf (errmsg, err_len, "Corank mismatch in argument '%s' (%i/%i)",
1227 s1->name, s1->as->corank, s2->as->corank);
1228 return false;
1229 }
1230
1231 if (s1->as->type == AS_EXPLICIT)
1232 for (i = 0; i < s1->as->rank + MAX (0, s1->as->corank-1); i++)
1233 {
1234 shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
1235 gfc_copy_expr (s1->as->lower[i]));
1236 shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
1237 gfc_copy_expr (s2->as->lower[i]));
1238 compval = gfc_dep_compare_expr (shape1, shape2);
1239 gfc_free_expr (shape1);
1240 gfc_free_expr (shape2);
1241 switch (compval)
1242 {
1243 case -1:
1244 case 1:
1245 case -3:
1246 if (i < s1->as->rank)
1247 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of"
1248 " argument '%s'", i + 1, s1->name);
1249 else
1250 snprintf (errmsg, err_len, "Shape mismatch in codimension %i "
1251 "of argument '%s'", i - s1->as->rank + 1, s1->name);
1252 return false;
1253
1254 case -2:
1255 /* FIXME: Implement a warning for this case.
1256 gfc_warning (0, "Possible shape mismatch in argument %qs",
1257 s1->name);*/
1258 break;
1259
1260 case 0:
1261 break;
1262
1263 default:
1264 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1265 "result %i of gfc_dep_compare_expr",
1266 compval);
1267 break;
1268 }
1269 }
1270 }
1271
1272 return true;
1273 }
1274
1275
1276 /* Check if the characteristics of two function results match,
1277 cf. F08:12.3.3. */
1278
1279 bool
1280 gfc_check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1281 char *errmsg, int err_len)
1282 {
1283 gfc_symbol *r1, *r2;
1284
1285 if (s1->ts.interface && s1->ts.interface->result)
1286 r1 = s1->ts.interface->result;
1287 else
1288 r1 = s1->result ? s1->result : s1;
1289
1290 if (s2->ts.interface && s2->ts.interface->result)
1291 r2 = s2->ts.interface->result;
1292 else
1293 r2 = s2->result ? s2->result : s2;
1294
1295 if (r1->ts.type == BT_UNKNOWN)
1296 return true;
1297
1298 /* Check type and rank. */
1299 if (!compare_type (r1, r2))
1300 {
1301 snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
1302 gfc_typename (&r1->ts), gfc_typename (&r2->ts));
1303 return false;
1304 }
1305 if (!compare_rank (r1, r2))
1306 {
1307 snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
1308 symbol_rank (r1), symbol_rank (r2));
1309 return false;
1310 }
1311
1312 /* Check ALLOCATABLE attribute. */
1313 if (r1->attr.allocatable != r2->attr.allocatable)
1314 {
1315 snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
1316 "function result");
1317 return false;
1318 }
1319
1320 /* Check POINTER attribute. */
1321 if (r1->attr.pointer != r2->attr.pointer)
1322 {
1323 snprintf (errmsg, err_len, "POINTER attribute mismatch in "
1324 "function result");
1325 return false;
1326 }
1327
1328 /* Check CONTIGUOUS attribute. */
1329 if (r1->attr.contiguous != r2->attr.contiguous)
1330 {
1331 snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
1332 "function result");
1333 return false;
1334 }
1335
1336 /* Check PROCEDURE POINTER attribute. */
1337 if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
1338 {
1339 snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
1340 "function result");
1341 return false;
1342 }
1343
1344 /* Check string length. */
1345 if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
1346 {
1347 if (r1->ts.deferred != r2->ts.deferred)
1348 {
1349 snprintf (errmsg, err_len, "Character length mismatch "
1350 "in function result");
1351 return false;
1352 }
1353
1354 if (r1->ts.u.cl->length && r2->ts.u.cl->length)
1355 {
1356 int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
1357 r2->ts.u.cl->length);
1358 switch (compval)
1359 {
1360 case -1:
1361 case 1:
1362 case -3:
1363 snprintf (errmsg, err_len, "Character length mismatch "
1364 "in function result");
1365 return false;
1366
1367 case -2:
1368 /* FIXME: Implement a warning for this case.
1369 snprintf (errmsg, err_len, "Possible character length mismatch "
1370 "in function result");*/
1371 break;
1372
1373 case 0:
1374 break;
1375
1376 default:
1377 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1378 "result %i of gfc_dep_compare_expr", compval);
1379 break;
1380 }
1381 }
1382 }
1383
1384 /* Check array shape. */
1385 if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
1386 {
1387 int i, compval;
1388 gfc_expr *shape1, *shape2;
1389
1390 if (r1->as->type != r2->as->type)
1391 {
1392 snprintf (errmsg, err_len, "Shape mismatch in function result");
1393 return false;
1394 }
1395
1396 if (r1->as->type == AS_EXPLICIT)
1397 for (i = 0; i < r1->as->rank + r1->as->corank; i++)
1398 {
1399 shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
1400 gfc_copy_expr (r1->as->lower[i]));
1401 shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
1402 gfc_copy_expr (r2->as->lower[i]));
1403 compval = gfc_dep_compare_expr (shape1, shape2);
1404 gfc_free_expr (shape1);
1405 gfc_free_expr (shape2);
1406 switch (compval)
1407 {
1408 case -1:
1409 case 1:
1410 case -3:
1411 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1412 "function result", i + 1);
1413 return false;
1414
1415 case -2:
1416 /* FIXME: Implement a warning for this case.
1417 gfc_warning (0, "Possible shape mismatch in return value");*/
1418 break;
1419
1420 case 0:
1421 break;
1422
1423 default:
1424 gfc_internal_error ("check_result_characteristics (2): "
1425 "Unexpected result %i of "
1426 "gfc_dep_compare_expr", compval);
1427 break;
1428 }
1429 }
1430 }
1431
1432 return true;
1433 }
1434
1435
1436 /* 'Compare' two formal interfaces associated with a pair of symbols.
1437 We return nonzero if there exists an actual argument list that
1438 would be ambiguous between the two interfaces, zero otherwise.
1439 'strict_flag' specifies whether all the characteristics are
1440 required to match, which is not the case for ambiguity checks.
1441 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1442
1443 int
1444 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
1445 int generic_flag, int strict_flag,
1446 char *errmsg, int err_len,
1447 const char *p1, const char *p2)
1448 {
1449 gfc_formal_arglist *f1, *f2;
1450
1451 gcc_assert (name2 != NULL);
1452
1453 if (s1->attr.function && (s2->attr.subroutine
1454 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
1455 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
1456 {
1457 if (errmsg != NULL)
1458 snprintf (errmsg, err_len, "'%s' is not a function", name2);
1459 return 0;
1460 }
1461
1462 if (s1->attr.subroutine && s2->attr.function)
1463 {
1464 if (errmsg != NULL)
1465 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
1466 return 0;
1467 }
1468
1469 /* Do strict checks on all characteristics
1470 (for dummy procedures and procedure pointer assignments). */
1471 if (!generic_flag && strict_flag)
1472 {
1473 if (s1->attr.function && s2->attr.function)
1474 {
1475 /* If both are functions, check result characteristics. */
1476 if (!gfc_check_result_characteristics (s1, s2, errmsg, err_len)
1477 || !gfc_check_result_characteristics (s2, s1, errmsg, err_len))
1478 return 0;
1479 }
1480
1481 if (s1->attr.pure && !s2->attr.pure)
1482 {
1483 snprintf (errmsg, err_len, "Mismatch in PURE attribute");
1484 return 0;
1485 }
1486 if (s1->attr.elemental && !s2->attr.elemental)
1487 {
1488 snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
1489 return 0;
1490 }
1491 }
1492
1493 if (s1->attr.if_source == IFSRC_UNKNOWN
1494 || s2->attr.if_source == IFSRC_UNKNOWN)
1495 return 1;
1496
1497 f1 = gfc_sym_get_dummy_args (s1);
1498 f2 = gfc_sym_get_dummy_args (s2);
1499
1500 if (f1 == NULL && f2 == NULL)
1501 return 1; /* Special case: No arguments. */
1502
1503 if (generic_flag)
1504 {
1505 if (count_types_test (f1, f2, p1, p2)
1506 || count_types_test (f2, f1, p2, p1))
1507 return 0;
1508 if (generic_correspondence (f1, f2, p1, p2)
1509 || generic_correspondence (f2, f1, p2, p1))
1510 return 0;
1511 }
1512 else
1513 /* Perform the abbreviated correspondence test for operators (the
1514 arguments cannot be optional and are always ordered correctly).
1515 This is also done when comparing interfaces for dummy procedures and in
1516 procedure pointer assignments. */
1517
1518 for (;;)
1519 {
1520 /* Check existence. */
1521 if (f1 == NULL && f2 == NULL)
1522 break;
1523 if (f1 == NULL || f2 == NULL)
1524 {
1525 if (errmsg != NULL)
1526 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1527 "arguments", name2);
1528 return 0;
1529 }
1530
1531 if (UNLIMITED_POLY (f1->sym))
1532 goto next;
1533
1534 if (strict_flag)
1535 {
1536 /* Check all characteristics. */
1537 if (!gfc_check_dummy_characteristics (f1->sym, f2->sym, true,
1538 errmsg, err_len))
1539 return 0;
1540 }
1541 else
1542 {
1543 /* Only check type and rank. */
1544 if (!compare_type (f2->sym, f1->sym))
1545 {
1546 if (errmsg != NULL)
1547 snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
1548 "(%s/%s)", f1->sym->name,
1549 gfc_typename (&f1->sym->ts),
1550 gfc_typename (&f2->sym->ts));
1551 return 0;
1552 }
1553 if (!compare_rank (f2->sym, f1->sym))
1554 {
1555 if (errmsg != NULL)
1556 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
1557 "(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
1558 symbol_rank (f2->sym));
1559 return 0;
1560 }
1561 }
1562 next:
1563 f1 = f1->next;
1564 f2 = f2->next;
1565 }
1566
1567 return 1;
1568 }
1569
1570
1571 /* Given a pointer to an interface pointer, remove duplicate
1572 interfaces and make sure that all symbols are either functions
1573 or subroutines, and all of the same kind. Returns nonzero if
1574 something goes wrong. */
1575
1576 static int
1577 check_interface0 (gfc_interface *p, const char *interface_name)
1578 {
1579 gfc_interface *psave, *q, *qlast;
1580
1581 psave = p;
1582 for (; p; p = p->next)
1583 {
1584 /* Make sure all symbols in the interface have been defined as
1585 functions or subroutines. */
1586 if (((!p->sym->attr.function && !p->sym->attr.subroutine)
1587 || !p->sym->attr.if_source)
1588 && p->sym->attr.flavor != FL_DERIVED)
1589 {
1590 if (p->sym->attr.external)
1591 gfc_error ("Procedure %qs in %s at %L has no explicit interface",
1592 p->sym->name, interface_name, &p->sym->declared_at);
1593 else
1594 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1595 "subroutine", p->sym->name, interface_name,
1596 &p->sym->declared_at);
1597 return 1;
1598 }
1599
1600 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1601 if ((psave->sym->attr.function && !p->sym->attr.function
1602 && p->sym->attr.flavor != FL_DERIVED)
1603 || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
1604 {
1605 if (p->sym->attr.flavor != FL_DERIVED)
1606 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1607 " or all FUNCTIONs", interface_name,
1608 &p->sym->declared_at);
1609 else
1610 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1611 "generic name is also the name of a derived type",
1612 interface_name, &p->sym->declared_at);
1613 return 1;
1614 }
1615
1616 /* F2003, C1207. F2008, C1207. */
1617 if (p->sym->attr.proc == PROC_INTERNAL
1618 && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
1619 "%qs in %s at %L", p->sym->name,
1620 interface_name, &p->sym->declared_at))
1621 return 1;
1622 }
1623 p = psave;
1624
1625 /* Remove duplicate interfaces in this interface list. */
1626 for (; p; p = p->next)
1627 {
1628 qlast = p;
1629
1630 for (q = p->next; q;)
1631 {
1632 if (p->sym != q->sym)
1633 {
1634 qlast = q;
1635 q = q->next;
1636 }
1637 else
1638 {
1639 /* Duplicate interface. */
1640 qlast->next = q->next;
1641 free (q);
1642 q = qlast->next;
1643 }
1644 }
1645 }
1646
1647 return 0;
1648 }
1649
1650
1651 /* Check lists of interfaces to make sure that no two interfaces are
1652 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1653
1654 static int
1655 check_interface1 (gfc_interface *p, gfc_interface *q0,
1656 int generic_flag, const char *interface_name,
1657 bool referenced)
1658 {
1659 gfc_interface *q;
1660 for (; p; p = p->next)
1661 for (q = q0; q; q = q->next)
1662 {
1663 if (p->sym == q->sym)
1664 continue; /* Duplicates OK here. */
1665
1666 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1667 continue;
1668
1669 if (p->sym->attr.flavor != FL_DERIVED
1670 && q->sym->attr.flavor != FL_DERIVED
1671 && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
1672 generic_flag, 0, NULL, 0, NULL, NULL))
1673 {
1674 if (referenced)
1675 gfc_error ("Ambiguous interfaces %qs and %qs in %s at %L",
1676 p->sym->name, q->sym->name, interface_name,
1677 &p->where);
1678 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1679 gfc_warning (0, "Ambiguous interfaces %qs and %qs in %s at %L",
1680 p->sym->name, q->sym->name, interface_name,
1681 &p->where);
1682 else
1683 gfc_warning (0, "Although not referenced, %qs has ambiguous "
1684 "interfaces at %L", interface_name, &p->where);
1685 return 1;
1686 }
1687 }
1688 return 0;
1689 }
1690
1691
1692 /* Check the generic and operator interfaces of symbols to make sure
1693 that none of the interfaces conflict. The check has to be done
1694 after all of the symbols are actually loaded. */
1695
1696 static void
1697 check_sym_interfaces (gfc_symbol *sym)
1698 {
1699 char interface_name[100];
1700 gfc_interface *p;
1701
1702 if (sym->ns != gfc_current_ns)
1703 return;
1704
1705 if (sym->generic != NULL)
1706 {
1707 sprintf (interface_name, "generic interface '%s'", sym->name);
1708 if (check_interface0 (sym->generic, interface_name))
1709 return;
1710
1711 for (p = sym->generic; p; p = p->next)
1712 {
1713 if (p->sym->attr.mod_proc
1714 && !p->sym->attr.module_procedure
1715 && (p->sym->attr.if_source != IFSRC_DECL
1716 || p->sym->attr.procedure))
1717 {
1718 gfc_error ("%qs at %L is not a module procedure",
1719 p->sym->name, &p->where);
1720 return;
1721 }
1722 }
1723
1724 /* Originally, this test was applied to host interfaces too;
1725 this is incorrect since host associated symbols, from any
1726 source, cannot be ambiguous with local symbols. */
1727 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1728 sym->attr.referenced || !sym->attr.use_assoc);
1729 }
1730 }
1731
1732
1733 static void
1734 check_uop_interfaces (gfc_user_op *uop)
1735 {
1736 char interface_name[100];
1737 gfc_user_op *uop2;
1738 gfc_namespace *ns;
1739
1740 sprintf (interface_name, "operator interface '%s'", uop->name);
1741 if (check_interface0 (uop->op, interface_name))
1742 return;
1743
1744 for (ns = gfc_current_ns; ns; ns = ns->parent)
1745 {
1746 uop2 = gfc_find_uop (uop->name, ns);
1747 if (uop2 == NULL)
1748 continue;
1749
1750 check_interface1 (uop->op, uop2->op, 0,
1751 interface_name, true);
1752 }
1753 }
1754
1755 /* Given an intrinsic op, return an equivalent op if one exists,
1756 or INTRINSIC_NONE otherwise. */
1757
1758 gfc_intrinsic_op
1759 gfc_equivalent_op (gfc_intrinsic_op op)
1760 {
1761 switch(op)
1762 {
1763 case INTRINSIC_EQ:
1764 return INTRINSIC_EQ_OS;
1765
1766 case INTRINSIC_EQ_OS:
1767 return INTRINSIC_EQ;
1768
1769 case INTRINSIC_NE:
1770 return INTRINSIC_NE_OS;
1771
1772 case INTRINSIC_NE_OS:
1773 return INTRINSIC_NE;
1774
1775 case INTRINSIC_GT:
1776 return INTRINSIC_GT_OS;
1777
1778 case INTRINSIC_GT_OS:
1779 return INTRINSIC_GT;
1780
1781 case INTRINSIC_GE:
1782 return INTRINSIC_GE_OS;
1783
1784 case INTRINSIC_GE_OS:
1785 return INTRINSIC_GE;
1786
1787 case INTRINSIC_LT:
1788 return INTRINSIC_LT_OS;
1789
1790 case INTRINSIC_LT_OS:
1791 return INTRINSIC_LT;
1792
1793 case INTRINSIC_LE:
1794 return INTRINSIC_LE_OS;
1795
1796 case INTRINSIC_LE_OS:
1797 return INTRINSIC_LE;
1798
1799 default:
1800 return INTRINSIC_NONE;
1801 }
1802 }
1803
1804 /* For the namespace, check generic, user operator and intrinsic
1805 operator interfaces for consistency and to remove duplicate
1806 interfaces. We traverse the whole namespace, counting on the fact
1807 that most symbols will not have generic or operator interfaces. */
1808
1809 void
1810 gfc_check_interfaces (gfc_namespace *ns)
1811 {
1812 gfc_namespace *old_ns, *ns2;
1813 char interface_name[100];
1814 int i;
1815
1816 old_ns = gfc_current_ns;
1817 gfc_current_ns = ns;
1818
1819 gfc_traverse_ns (ns, check_sym_interfaces);
1820
1821 gfc_traverse_user_op (ns, check_uop_interfaces);
1822
1823 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1824 {
1825 if (i == INTRINSIC_USER)
1826 continue;
1827
1828 if (i == INTRINSIC_ASSIGN)
1829 strcpy (interface_name, "intrinsic assignment operator");
1830 else
1831 sprintf (interface_name, "intrinsic '%s' operator",
1832 gfc_op2string ((gfc_intrinsic_op) i));
1833
1834 if (check_interface0 (ns->op[i], interface_name))
1835 continue;
1836
1837 if (ns->op[i])
1838 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1839 ns->op[i]->where);
1840
1841 for (ns2 = ns; ns2; ns2 = ns2->parent)
1842 {
1843 gfc_intrinsic_op other_op;
1844
1845 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1846 interface_name, true))
1847 goto done;
1848
1849 /* i should be gfc_intrinsic_op, but has to be int with this cast
1850 here for stupid C++ compatibility rules. */
1851 other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
1852 if (other_op != INTRINSIC_NONE
1853 && check_interface1 (ns->op[i], ns2->op[other_op],
1854 0, interface_name, true))
1855 goto done;
1856 }
1857 }
1858
1859 done:
1860 gfc_current_ns = old_ns;
1861 }
1862
1863
1864 /* Given a symbol of a formal argument list and an expression, if the
1865 formal argument is allocatable, check that the actual argument is
1866 allocatable. Returns nonzero if compatible, zero if not compatible. */
1867
1868 static int
1869 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1870 {
1871 symbol_attribute attr;
1872
1873 if (formal->attr.allocatable
1874 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
1875 {
1876 attr = gfc_expr_attr (actual);
1877 if (!attr.allocatable)
1878 return 0;
1879 }
1880
1881 return 1;
1882 }
1883
1884
1885 /* Given a symbol of a formal argument list and an expression, if the
1886 formal argument is a pointer, see if the actual argument is a
1887 pointer. Returns nonzero if compatible, zero if not compatible. */
1888
1889 static int
1890 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1891 {
1892 symbol_attribute attr;
1893
1894 if (formal->attr.pointer
1895 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
1896 && CLASS_DATA (formal)->attr.class_pointer))
1897 {
1898 attr = gfc_expr_attr (actual);
1899
1900 /* Fortran 2008 allows non-pointer actual arguments. */
1901 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
1902 return 2;
1903
1904 if (!attr.pointer)
1905 return 0;
1906 }
1907
1908 return 1;
1909 }
1910
1911
1912 /* Emit clear error messages for rank mismatch. */
1913
1914 static void
1915 argument_rank_mismatch (const char *name, locus *where,
1916 int rank1, int rank2)
1917 {
1918
1919 /* TS 29113, C407b. */
1920 if (rank2 == -1)
1921 {
1922 gfc_error ("The assumed-rank array at %L requires that the dummy argument"
1923 " %qs has assumed-rank", where, name);
1924 }
1925 else if (rank1 == 0)
1926 {
1927 gfc_error ("Rank mismatch in argument %qs at %L "
1928 "(scalar and rank-%d)", name, where, rank2);
1929 }
1930 else if (rank2 == 0)
1931 {
1932 gfc_error ("Rank mismatch in argument %qs at %L "
1933 "(rank-%d and scalar)", name, where, rank1);
1934 }
1935 else
1936 {
1937 gfc_error ("Rank mismatch in argument %qs at %L "
1938 "(rank-%d and rank-%d)", name, where, rank1, rank2);
1939 }
1940 }
1941
1942
1943 /* Given a symbol of a formal argument list and an expression, see if
1944 the two are compatible as arguments. Returns nonzero if
1945 compatible, zero if not compatible. */
1946
1947 static int
1948 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1949 int ranks_must_agree, int is_elemental, locus *where)
1950 {
1951 gfc_ref *ref;
1952 bool rank_check, is_pointer;
1953 char err[200];
1954 gfc_component *ppc;
1955
1956 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1957 procs c_f_pointer or c_f_procpointer, and we need to accept most
1958 pointers the user could give us. This should allow that. */
1959 if (formal->ts.type == BT_VOID)
1960 return 1;
1961
1962 if (formal->ts.type == BT_DERIVED
1963 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1964 && actual->ts.type == BT_DERIVED
1965 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1966 return 1;
1967
1968 if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
1969 /* Make sure the vtab symbol is present when
1970 the module variables are generated. */
1971 gfc_find_derived_vtab (actual->ts.u.derived);
1972
1973 if (actual->ts.type == BT_PROCEDURE)
1974 {
1975 gfc_symbol *act_sym = actual->symtree->n.sym;
1976
1977 if (formal->attr.flavor != FL_PROCEDURE)
1978 {
1979 if (where)
1980 gfc_error ("Invalid procedure argument at %L", &actual->where);
1981 return 0;
1982 }
1983
1984 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1985 sizeof(err), NULL, NULL))
1986 {
1987 if (where)
1988 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
1989 formal->name, &actual->where, err);
1990 return 0;
1991 }
1992
1993 if (formal->attr.function && !act_sym->attr.function)
1994 {
1995 gfc_add_function (&act_sym->attr, act_sym->name,
1996 &act_sym->declared_at);
1997 if (act_sym->ts.type == BT_UNKNOWN
1998 && !gfc_set_default_type (act_sym, 1, act_sym->ns))
1999 return 0;
2000 }
2001 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
2002 gfc_add_subroutine (&act_sym->attr, act_sym->name,
2003 &act_sym->declared_at);
2004
2005 return 1;
2006 }
2007
2008 ppc = gfc_get_proc_ptr_comp (actual);
2009 if (ppc)
2010 {
2011 if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1,
2012 err, sizeof(err), NULL, NULL))
2013 {
2014 if (where)
2015 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
2016 formal->name, &actual->where, err);
2017 return 0;
2018 }
2019 }
2020
2021 /* F2008, C1241. */
2022 if (formal->attr.pointer && formal->attr.contiguous
2023 && !gfc_is_simply_contiguous (actual, true))
2024 {
2025 if (where)
2026 gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
2027 "must be simply contiguous", formal->name, &actual->where);
2028 return 0;
2029 }
2030
2031 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
2032 && actual->ts.type != BT_HOLLERITH
2033 && formal->ts.type != BT_ASSUMED
2034 && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2035 && !gfc_compare_types (&formal->ts, &actual->ts)
2036 && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
2037 && gfc_compare_derived_types (formal->ts.u.derived,
2038 CLASS_DATA (actual)->ts.u.derived)))
2039 {
2040 if (where)
2041 gfc_error ("Type mismatch in argument %qs at %L; passed %s to %s",
2042 formal->name, &actual->where, gfc_typename (&actual->ts),
2043 gfc_typename (&formal->ts));
2044 return 0;
2045 }
2046
2047 if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
2048 {
2049 if (where)
2050 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2051 "argument %qs is of assumed type", &actual->where,
2052 formal->name);
2053 return 0;
2054 }
2055
2056 /* F2008, 12.5.2.5; IR F08/0073. */
2057 if (formal->ts.type == BT_CLASS && formal->attr.class_ok
2058 && actual->expr_type != EXPR_NULL
2059 && ((CLASS_DATA (formal)->attr.class_pointer
2060 && formal->attr.intent != INTENT_IN)
2061 || CLASS_DATA (formal)->attr.allocatable))
2062 {
2063 if (actual->ts.type != BT_CLASS)
2064 {
2065 if (where)
2066 gfc_error ("Actual argument to %qs at %L must be polymorphic",
2067 formal->name, &actual->where);
2068 return 0;
2069 }
2070
2071 if (!gfc_expr_attr (actual).class_ok)
2072 return 0;
2073
2074 if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
2075 && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
2076 CLASS_DATA (formal)->ts.u.derived))
2077 {
2078 if (where)
2079 gfc_error ("Actual argument to %qs at %L must have the same "
2080 "declared type", formal->name, &actual->where);
2081 return 0;
2082 }
2083 }
2084
2085 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2086 is necessary also for F03, so retain error for both.
2087 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2088 compatible, no attempt has been made to channel to this one. */
2089 if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
2090 && (CLASS_DATA (formal)->attr.allocatable
2091 ||CLASS_DATA (formal)->attr.class_pointer))
2092 {
2093 if (where)
2094 gfc_error ("Actual argument to %qs at %L must be unlimited "
2095 "polymorphic since the formal argument is a "
2096 "pointer or allocatable unlimited polymorphic "
2097 "entity [F2008: 12.5.2.5]", formal->name,
2098 &actual->where);
2099 return 0;
2100 }
2101
2102 if (formal->attr.codimension && !gfc_is_coarray (actual))
2103 {
2104 if (where)
2105 gfc_error ("Actual argument to %qs at %L must be a coarray",
2106 formal->name, &actual->where);
2107 return 0;
2108 }
2109
2110 if (formal->attr.codimension && formal->attr.allocatable)
2111 {
2112 gfc_ref *last = NULL;
2113
2114 for (ref = actual->ref; ref; ref = ref->next)
2115 if (ref->type == REF_COMPONENT)
2116 last = ref;
2117
2118 /* F2008, 12.5.2.6. */
2119 if ((last && last->u.c.component->as->corank != formal->as->corank)
2120 || (!last
2121 && actual->symtree->n.sym->as->corank != formal->as->corank))
2122 {
2123 if (where)
2124 gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
2125 formal->name, &actual->where, formal->as->corank,
2126 last ? last->u.c.component->as->corank
2127 : actual->symtree->n.sym->as->corank);
2128 return 0;
2129 }
2130 }
2131
2132 if (formal->attr.codimension)
2133 {
2134 /* F2008, 12.5.2.8. */
2135 if (formal->attr.dimension
2136 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
2137 && gfc_expr_attr (actual).dimension
2138 && !gfc_is_simply_contiguous (actual, true))
2139 {
2140 if (where)
2141 gfc_error ("Actual argument to %qs at %L must be simply "
2142 "contiguous", formal->name, &actual->where);
2143 return 0;
2144 }
2145
2146 /* F2008, C1303 and C1304. */
2147 if (formal->attr.intent != INTENT_INOUT
2148 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2149 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2150 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
2151 || formal->attr.lock_comp))
2152
2153 {
2154 if (where)
2155 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2156 "which is LOCK_TYPE or has a LOCK_TYPE component",
2157 formal->name, &actual->where);
2158 return 0;
2159 }
2160 }
2161
2162 /* F2008, C1239/C1240. */
2163 if (actual->expr_type == EXPR_VARIABLE
2164 && (actual->symtree->n.sym->attr.asynchronous
2165 || actual->symtree->n.sym->attr.volatile_)
2166 && (formal->attr.asynchronous || formal->attr.volatile_)
2167 && actual->rank && formal->as && !gfc_is_simply_contiguous (actual, true)
2168 && ((formal->as->type != AS_ASSUMED_SHAPE
2169 && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
2170 || formal->attr.contiguous))
2171 {
2172 if (where)
2173 gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
2174 "assumed-rank array without CONTIGUOUS attribute - as actual"
2175 " argument at %L is not simply contiguous and both are "
2176 "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
2177 return 0;
2178 }
2179
2180 if (formal->attr.allocatable && !formal->attr.codimension
2181 && gfc_expr_attr (actual).codimension)
2182 {
2183 if (formal->attr.intent == INTENT_OUT)
2184 {
2185 if (where)
2186 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2187 "INTENT(OUT) dummy argument %qs", &actual->where,
2188 formal->name);
2189 return 0;
2190 }
2191 else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
2192 gfc_warning (OPT_Wsurprising,
2193 "Passing coarray at %L to allocatable, noncoarray dummy "
2194 "argument %qs, which is invalid if the allocation status"
2195 " is modified", &actual->where, formal->name);
2196 }
2197
2198 /* If the rank is the same or the formal argument has assumed-rank. */
2199 if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
2200 return 1;
2201
2202 rank_check = where != NULL && !is_elemental && formal->as
2203 && (formal->as->type == AS_ASSUMED_SHAPE
2204 || formal->as->type == AS_DEFERRED)
2205 && actual->expr_type != EXPR_NULL;
2206
2207 /* Skip rank checks for NO_ARG_CHECK. */
2208 if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2209 return 1;
2210
2211 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2212 if (rank_check || ranks_must_agree
2213 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
2214 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
2215 || (actual->rank == 0
2216 && ((formal->ts.type == BT_CLASS
2217 && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
2218 || (formal->ts.type != BT_CLASS
2219 && formal->as->type == AS_ASSUMED_SHAPE))
2220 && actual->expr_type != EXPR_NULL)
2221 || (actual->rank == 0 && formal->attr.dimension
2222 && gfc_is_coindexed (actual)))
2223 {
2224 if (where)
2225 argument_rank_mismatch (formal->name, &actual->where,
2226 symbol_rank (formal), actual->rank);
2227 return 0;
2228 }
2229 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
2230 return 1;
2231
2232 /* At this point, we are considering a scalar passed to an array. This
2233 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2234 - if the actual argument is (a substring of) an element of a
2235 non-assumed-shape/non-pointer/non-polymorphic array; or
2236 - (F2003) if the actual argument is of type character of default/c_char
2237 kind. */
2238
2239 is_pointer = actual->expr_type == EXPR_VARIABLE
2240 ? actual->symtree->n.sym->attr.pointer : false;
2241
2242 for (ref = actual->ref; ref; ref = ref->next)
2243 {
2244 if (ref->type == REF_COMPONENT)
2245 is_pointer = ref->u.c.component->attr.pointer;
2246 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2247 && ref->u.ar.dimen > 0
2248 && (!ref->next
2249 || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
2250 break;
2251 }
2252
2253 if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
2254 {
2255 if (where)
2256 gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
2257 "at %L", formal->name, &actual->where);
2258 return 0;
2259 }
2260
2261 if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
2262 && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2263 {
2264 if (where)
2265 gfc_error ("Element of assumed-shaped or pointer "
2266 "array passed to array dummy argument %qs at %L",
2267 formal->name, &actual->where);
2268 return 0;
2269 }
2270
2271 if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
2272 && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2273 {
2274 if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
2275 {
2276 if (where)
2277 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2278 "CHARACTER actual argument with array dummy argument "
2279 "%qs at %L", formal->name, &actual->where);
2280 return 0;
2281 }
2282
2283 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
2284 {
2285 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2286 "array dummy argument %qs at %L",
2287 formal->name, &actual->where);
2288 return 0;
2289 }
2290 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
2291 return 0;
2292 else
2293 return 1;
2294 }
2295
2296 if (ref == NULL && actual->expr_type != EXPR_NULL)
2297 {
2298 if (where)
2299 argument_rank_mismatch (formal->name, &actual->where,
2300 symbol_rank (formal), actual->rank);
2301 return 0;
2302 }
2303
2304 return 1;
2305 }
2306
2307
2308 /* Returns the storage size of a symbol (formal argument) or
2309 zero if it cannot be determined. */
2310
2311 static unsigned long
2312 get_sym_storage_size (gfc_symbol *sym)
2313 {
2314 int i;
2315 unsigned long strlen, elements;
2316
2317 if (sym->ts.type == BT_CHARACTER)
2318 {
2319 if (sym->ts.u.cl && sym->ts.u.cl->length
2320 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2321 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2322 else
2323 return 0;
2324 }
2325 else
2326 strlen = 1;
2327
2328 if (symbol_rank (sym) == 0)
2329 return strlen;
2330
2331 elements = 1;
2332 if (sym->as->type != AS_EXPLICIT)
2333 return 0;
2334 for (i = 0; i < sym->as->rank; i++)
2335 {
2336 if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
2337 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
2338 return 0;
2339
2340 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
2341 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2342 }
2343
2344 return strlen*elements;
2345 }
2346
2347
2348 /* Returns the storage size of an expression (actual argument) or
2349 zero if it cannot be determined. For an array element, it returns
2350 the remaining size as the element sequence consists of all storage
2351 units of the actual argument up to the end of the array. */
2352
2353 static unsigned long
2354 get_expr_storage_size (gfc_expr *e)
2355 {
2356 int i;
2357 long int strlen, elements;
2358 long int substrlen = 0;
2359 bool is_str_storage = false;
2360 gfc_ref *ref;
2361
2362 if (e == NULL)
2363 return 0;
2364
2365 if (e->ts.type == BT_CHARACTER)
2366 {
2367 if (e->ts.u.cl && e->ts.u.cl->length
2368 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2369 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2370 else if (e->expr_type == EXPR_CONSTANT
2371 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2372 strlen = e->value.character.length;
2373 else
2374 return 0;
2375 }
2376 else
2377 strlen = 1; /* Length per element. */
2378
2379 if (e->rank == 0 && !e->ref)
2380 return strlen;
2381
2382 elements = 1;
2383 if (!e->ref)
2384 {
2385 if (!e->shape)
2386 return 0;
2387 for (i = 0; i < e->rank; i++)
2388 elements *= mpz_get_si (e->shape[i]);
2389 return elements*strlen;
2390 }
2391
2392 for (ref = e->ref; ref; ref = ref->next)
2393 {
2394 if (ref->type == REF_SUBSTRING && ref->u.ss.start
2395 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
2396 {
2397 if (is_str_storage)
2398 {
2399 /* The string length is the substring length.
2400 Set now to full string length. */
2401 if (!ref->u.ss.length || !ref->u.ss.length->length
2402 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
2403 return 0;
2404
2405 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
2406 }
2407 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
2408 continue;
2409 }
2410
2411 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2412 for (i = 0; i < ref->u.ar.dimen; i++)
2413 {
2414 long int start, end, stride;
2415 stride = 1;
2416
2417 if (ref->u.ar.stride[i])
2418 {
2419 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
2420 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
2421 else
2422 return 0;
2423 }
2424
2425 if (ref->u.ar.start[i])
2426 {
2427 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
2428 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
2429 else
2430 return 0;
2431 }
2432 else if (ref->u.ar.as->lower[i]
2433 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
2434 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
2435 else
2436 return 0;
2437
2438 if (ref->u.ar.end[i])
2439 {
2440 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
2441 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
2442 else
2443 return 0;
2444 }
2445 else if (ref->u.ar.as->upper[i]
2446 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2447 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
2448 else
2449 return 0;
2450
2451 elements *= (end - start)/stride + 1L;
2452 }
2453 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
2454 for (i = 0; i < ref->u.ar.as->rank; i++)
2455 {
2456 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
2457 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
2458 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2459 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2460 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2461 + 1L;
2462 else
2463 return 0;
2464 }
2465 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2466 && e->expr_type == EXPR_VARIABLE)
2467 {
2468 if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
2469 || e->symtree->n.sym->attr.pointer)
2470 {
2471 elements = 1;
2472 continue;
2473 }
2474
2475 /* Determine the number of remaining elements in the element
2476 sequence for array element designators. */
2477 is_str_storage = true;
2478 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
2479 {
2480 if (ref->u.ar.start[i] == NULL
2481 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
2482 || ref->u.ar.as->upper[i] == NULL
2483 || ref->u.ar.as->lower[i] == NULL
2484 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
2485 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
2486 return 0;
2487
2488 elements
2489 = elements
2490 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2491 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2492 + 1L)
2493 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
2494 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
2495 }
2496 }
2497 else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
2498 && ref->u.c.component->attr.proc_pointer
2499 && ref->u.c.component->attr.dimension)
2500 {
2501 /* Array-valued procedure-pointer components. */
2502 gfc_array_spec *as = ref->u.c.component->as;
2503 for (i = 0; i < as->rank; i++)
2504 {
2505 if (!as->upper[i] || !as->lower[i]
2506 || as->upper[i]->expr_type != EXPR_CONSTANT
2507 || as->lower[i]->expr_type != EXPR_CONSTANT)
2508 return 0;
2509
2510 elements = elements
2511 * (mpz_get_si (as->upper[i]->value.integer)
2512 - mpz_get_si (as->lower[i]->value.integer) + 1L);
2513 }
2514 }
2515 }
2516
2517 if (substrlen)
2518 return (is_str_storage) ? substrlen + (elements-1)*strlen
2519 : elements*strlen;
2520 else
2521 return elements*strlen;
2522 }
2523
2524
2525 /* Given an expression, check whether it is an array section
2526 which has a vector subscript. If it has, one is returned,
2527 otherwise zero. */
2528
2529 int
2530 gfc_has_vector_subscript (gfc_expr *e)
2531 {
2532 int i;
2533 gfc_ref *ref;
2534
2535 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
2536 return 0;
2537
2538 for (ref = e->ref; ref; ref = ref->next)
2539 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2540 for (i = 0; i < ref->u.ar.dimen; i++)
2541 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
2542 return 1;
2543
2544 return 0;
2545 }
2546
2547
2548 static bool
2549 is_procptr_result (gfc_expr *expr)
2550 {
2551 gfc_component *c = gfc_get_proc_ptr_comp (expr);
2552 if (c)
2553 return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1));
2554 else
2555 return ((expr->symtree->n.sym->result != expr->symtree->n.sym)
2556 && (expr->symtree->n.sym->result->attr.proc_pointer == 1));
2557 }
2558
2559
2560 /* Given formal and actual argument lists, see if they are compatible.
2561 If they are compatible, the actual argument list is sorted to
2562 correspond with the formal list, and elements for missing optional
2563 arguments are inserted. If WHERE pointer is nonnull, then we issue
2564 errors when things don't match instead of just returning the status
2565 code. */
2566
2567 static int
2568 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
2569 int ranks_must_agree, int is_elemental, locus *where)
2570 {
2571 gfc_actual_arglist **new_arg, *a, *actual;
2572 gfc_formal_arglist *f;
2573 int i, n, na;
2574 unsigned long actual_size, formal_size;
2575 bool full_array = false;
2576
2577 actual = *ap;
2578
2579 if (actual == NULL && formal == NULL)
2580 return 1;
2581
2582 n = 0;
2583 for (f = formal; f; f = f->next)
2584 n++;
2585
2586 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
2587
2588 for (i = 0; i < n; i++)
2589 new_arg[i] = NULL;
2590
2591 na = 0;
2592 f = formal;
2593 i = 0;
2594
2595 for (a = actual; a; a = a->next, f = f->next)
2596 {
2597 /* Look for keywords but ignore g77 extensions like %VAL. */
2598 if (a->name != NULL && a->name[0] != '%')
2599 {
2600 i = 0;
2601 for (f = formal; f; f = f->next, i++)
2602 {
2603 if (f->sym == NULL)
2604 continue;
2605 if (strcmp (f->sym->name, a->name) == 0)
2606 break;
2607 }
2608
2609 if (f == NULL)
2610 {
2611 if (where)
2612 gfc_error ("Keyword argument %qs at %L is not in "
2613 "the procedure", a->name, &a->expr->where);
2614 return 0;
2615 }
2616
2617 if (new_arg[i] != NULL)
2618 {
2619 if (where)
2620 gfc_error ("Keyword argument %qs at %L is already associated "
2621 "with another actual argument", a->name,
2622 &a->expr->where);
2623 return 0;
2624 }
2625 }
2626
2627 if (f == NULL)
2628 {
2629 if (where)
2630 gfc_error ("More actual than formal arguments in procedure "
2631 "call at %L", where);
2632
2633 return 0;
2634 }
2635
2636 if (f->sym == NULL && a->expr == NULL)
2637 goto match;
2638
2639 if (f->sym == NULL)
2640 {
2641 if (where)
2642 gfc_error ("Missing alternate return spec in subroutine call "
2643 "at %L", where);
2644 return 0;
2645 }
2646
2647 if (a->expr == NULL)
2648 {
2649 if (where)
2650 gfc_error ("Unexpected alternate return spec in subroutine "
2651 "call at %L", where);
2652 return 0;
2653 }
2654
2655 /* Make sure that intrinsic vtables exist for calls to unlimited
2656 polymorphic formal arguments. */
2657 if (UNLIMITED_POLY (f->sym)
2658 && a->expr->ts.type != BT_DERIVED
2659 && a->expr->ts.type != BT_CLASS)
2660 gfc_find_vtab (&a->expr->ts);
2661
2662 if (a->expr->expr_type == EXPR_NULL
2663 && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
2664 && (f->sym->attr.allocatable || !f->sym->attr.optional
2665 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2666 || (f->sym->ts.type == BT_CLASS
2667 && !CLASS_DATA (f->sym)->attr.class_pointer
2668 && (CLASS_DATA (f->sym)->attr.allocatable
2669 || !f->sym->attr.optional
2670 || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
2671 {
2672 if (where
2673 && (!f->sym->attr.optional
2674 || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
2675 || (f->sym->ts.type == BT_CLASS
2676 && CLASS_DATA (f->sym)->attr.allocatable)))
2677 gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
2678 where, f->sym->name);
2679 else if (where)
2680 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2681 "dummy %qs", where, f->sym->name);
2682
2683 return 0;
2684 }
2685
2686 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2687 is_elemental, where))
2688 return 0;
2689
2690 /* TS 29113, 6.3p2. */
2691 if (f->sym->ts.type == BT_ASSUMED
2692 && (a->expr->ts.type == BT_DERIVED
2693 || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
2694 {
2695 gfc_namespace *f2k_derived;
2696
2697 f2k_derived = a->expr->ts.type == BT_DERIVED
2698 ? a->expr->ts.u.derived->f2k_derived
2699 : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
2700
2701 if (f2k_derived
2702 && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
2703 {
2704 gfc_error ("Actual argument at %L to assumed-type dummy is of "
2705 "derived type with type-bound or FINAL procedures",
2706 &a->expr->where);
2707 return false;
2708 }
2709 }
2710
2711 /* Special case for character arguments. For allocatable, pointer
2712 and assumed-shape dummies, the string length needs to match
2713 exactly. */
2714 if (a->expr->ts.type == BT_CHARACTER
2715 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2716 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2717 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
2718 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2719 && (f->sym->attr.pointer || f->sym->attr.allocatable
2720 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2721 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2722 f->sym->ts.u.cl->length->value.integer) != 0))
2723 {
2724 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2725 gfc_warning (0,
2726 "Character length mismatch (%ld/%ld) between actual "
2727 "argument and pointer or allocatable dummy argument "
2728 "%qs at %L",
2729 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2730 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2731 f->sym->name, &a->expr->where);
2732 else if (where)
2733 gfc_warning (0,
2734 "Character length mismatch (%ld/%ld) between actual "
2735 "argument and assumed-shape dummy argument %qs "
2736 "at %L",
2737 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2738 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2739 f->sym->name, &a->expr->where);
2740 return 0;
2741 }
2742
2743 if ((f->sym->attr.pointer || f->sym->attr.allocatable)
2744 && f->sym->ts.deferred != a->expr->ts.deferred
2745 && a->expr->ts.type == BT_CHARACTER)
2746 {
2747 if (where)
2748 gfc_error ("Actual argument at %L to allocatable or "
2749 "pointer dummy argument %qs must have a deferred "
2750 "length type parameter if and only if the dummy has one",
2751 &a->expr->where, f->sym->name);
2752 return 0;
2753 }
2754
2755 if (f->sym->ts.type == BT_CLASS)
2756 goto skip_size_check;
2757
2758 actual_size = get_expr_storage_size (a->expr);
2759 formal_size = get_sym_storage_size (f->sym);
2760 if (actual_size != 0 && actual_size < formal_size
2761 && a->expr->ts.type != BT_PROCEDURE
2762 && f->sym->attr.flavor != FL_PROCEDURE)
2763 {
2764 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
2765 gfc_warning (0, "Character length of actual argument shorter "
2766 "than of dummy argument %qs (%lu/%lu) at %L",
2767 f->sym->name, actual_size, formal_size,
2768 &a->expr->where);
2769 else if (where)
2770 gfc_warning (0, "Actual argument contains too few "
2771 "elements for dummy argument %qs (%lu/%lu) at %L",
2772 f->sym->name, actual_size, formal_size,
2773 &a->expr->where);
2774 return 0;
2775 }
2776
2777 skip_size_check:
2778
2779 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
2780 argument is provided for a procedure pointer formal argument. */
2781 if (f->sym->attr.proc_pointer
2782 && !((a->expr->expr_type == EXPR_VARIABLE
2783 && (a->expr->symtree->n.sym->attr.proc_pointer
2784 || gfc_is_proc_ptr_comp (a->expr)))
2785 || (a->expr->expr_type == EXPR_FUNCTION
2786 && is_procptr_result (a->expr))))
2787 {
2788 if (where)
2789 gfc_error ("Expected a procedure pointer for argument %qs at %L",
2790 f->sym->name, &a->expr->where);
2791 return 0;
2792 }
2793
2794 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
2795 provided for a procedure formal argument. */
2796 if (f->sym->attr.flavor == FL_PROCEDURE
2797 && !((a->expr->expr_type == EXPR_VARIABLE
2798 && (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE
2799 || a->expr->symtree->n.sym->attr.proc_pointer
2800 || gfc_is_proc_ptr_comp (a->expr)))
2801 || (a->expr->expr_type == EXPR_FUNCTION
2802 && is_procptr_result (a->expr))))
2803 {
2804 if (where)
2805 gfc_error ("Expected a procedure for argument %qs at %L",
2806 f->sym->name, &a->expr->where);
2807 return 0;
2808 }
2809
2810 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2811 && a->expr->expr_type == EXPR_VARIABLE
2812 && a->expr->symtree->n.sym->as
2813 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2814 && (a->expr->ref == NULL
2815 || (a->expr->ref->type == REF_ARRAY
2816 && a->expr->ref->u.ar.type == AR_FULL)))
2817 {
2818 if (where)
2819 gfc_error ("Actual argument for %qs cannot be an assumed-size"
2820 " array at %L", f->sym->name, where);
2821 return 0;
2822 }
2823
2824 if (a->expr->expr_type != EXPR_NULL
2825 && compare_pointer (f->sym, a->expr) == 0)
2826 {
2827 if (where)
2828 gfc_error ("Actual argument for %qs must be a pointer at %L",
2829 f->sym->name, &a->expr->where);
2830 return 0;
2831 }
2832
2833 if (a->expr->expr_type != EXPR_NULL
2834 && (gfc_option.allow_std & GFC_STD_F2008) == 0
2835 && compare_pointer (f->sym, a->expr) == 2)
2836 {
2837 if (where)
2838 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
2839 "pointer dummy %qs", &a->expr->where,f->sym->name);
2840 return 0;
2841 }
2842
2843
2844 /* Fortran 2008, C1242. */
2845 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2846 {
2847 if (where)
2848 gfc_error ("Coindexed actual argument at %L to pointer "
2849 "dummy %qs",
2850 &a->expr->where, f->sym->name);
2851 return 0;
2852 }
2853
2854 /* Fortran 2008, 12.5.2.5 (no constraint). */
2855 if (a->expr->expr_type == EXPR_VARIABLE
2856 && f->sym->attr.intent != INTENT_IN
2857 && f->sym->attr.allocatable
2858 && gfc_is_coindexed (a->expr))
2859 {
2860 if (where)
2861 gfc_error ("Coindexed actual argument at %L to allocatable "
2862 "dummy %qs requires INTENT(IN)",
2863 &a->expr->where, f->sym->name);
2864 return 0;
2865 }
2866
2867 /* Fortran 2008, C1237. */
2868 if (a->expr->expr_type == EXPR_VARIABLE
2869 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2870 && gfc_is_coindexed (a->expr)
2871 && (a->expr->symtree->n.sym->attr.volatile_
2872 || a->expr->symtree->n.sym->attr.asynchronous))
2873 {
2874 if (where)
2875 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2876 "%L requires that dummy %qs has neither "
2877 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2878 f->sym->name);
2879 return 0;
2880 }
2881
2882 /* Fortran 2008, 12.5.2.4 (no constraint). */
2883 if (a->expr->expr_type == EXPR_VARIABLE
2884 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2885 && gfc_is_coindexed (a->expr)
2886 && gfc_has_ultimate_allocatable (a->expr))
2887 {
2888 if (where)
2889 gfc_error ("Coindexed actual argument at %L with allocatable "
2890 "ultimate component to dummy %qs requires either VALUE "
2891 "or INTENT(IN)", &a->expr->where, f->sym->name);
2892 return 0;
2893 }
2894
2895 if (f->sym->ts.type == BT_CLASS
2896 && CLASS_DATA (f->sym)->attr.allocatable
2897 && gfc_is_class_array_ref (a->expr, &full_array)
2898 && !full_array)
2899 {
2900 if (where)
2901 gfc_error ("Actual CLASS array argument for %qs must be a full "
2902 "array at %L", f->sym->name, &a->expr->where);
2903 return 0;
2904 }
2905
2906
2907 if (a->expr->expr_type != EXPR_NULL
2908 && compare_allocatable (f->sym, a->expr) == 0)
2909 {
2910 if (where)
2911 gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
2912 f->sym->name, &a->expr->where);
2913 return 0;
2914 }
2915
2916 /* Check intent = OUT/INOUT for definable actual argument. */
2917 if ((f->sym->attr.intent == INTENT_OUT
2918 || f->sym->attr.intent == INTENT_INOUT))
2919 {
2920 const char* context = (where
2921 ? _("actual argument to INTENT = OUT/INOUT")
2922 : NULL);
2923
2924 if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
2925 && CLASS_DATA (f->sym)->attr.class_pointer)
2926 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
2927 && !gfc_check_vardef_context (a->expr, true, false, false, context))
2928 return 0;
2929 if (!gfc_check_vardef_context (a->expr, false, false, false, context))
2930 return 0;
2931 }
2932
2933 if ((f->sym->attr.intent == INTENT_OUT
2934 || f->sym->attr.intent == INTENT_INOUT
2935 || f->sym->attr.volatile_
2936 || f->sym->attr.asynchronous)
2937 && gfc_has_vector_subscript (a->expr))
2938 {
2939 if (where)
2940 gfc_error ("Array-section actual argument with vector "
2941 "subscripts at %L is incompatible with INTENT(OUT), "
2942 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
2943 "of the dummy argument %qs",
2944 &a->expr->where, f->sym->name);
2945 return 0;
2946 }
2947
2948 /* C1232 (R1221) For an actual argument which is an array section or
2949 an assumed-shape array, the dummy argument shall be an assumed-
2950 shape array, if the dummy argument has the VOLATILE attribute. */
2951
2952 if (f->sym->attr.volatile_
2953 && a->expr->symtree->n.sym->as
2954 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2955 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2956 {
2957 if (where)
2958 gfc_error ("Assumed-shape actual argument at %L is "
2959 "incompatible with the non-assumed-shape "
2960 "dummy argument %qs due to VOLATILE attribute",
2961 &a->expr->where,f->sym->name);
2962 return 0;
2963 }
2964
2965 if (f->sym->attr.volatile_
2966 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2967 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2968 {
2969 if (where)
2970 gfc_error ("Array-section actual argument at %L is "
2971 "incompatible with the non-assumed-shape "
2972 "dummy argument %qs due to VOLATILE attribute",
2973 &a->expr->where,f->sym->name);
2974 return 0;
2975 }
2976
2977 /* C1233 (R1221) For an actual argument which is a pointer array, the
2978 dummy argument shall be an assumed-shape or pointer array, if the
2979 dummy argument has the VOLATILE attribute. */
2980
2981 if (f->sym->attr.volatile_
2982 && a->expr->symtree->n.sym->attr.pointer
2983 && a->expr->symtree->n.sym->as
2984 && !(f->sym->as
2985 && (f->sym->as->type == AS_ASSUMED_SHAPE
2986 || f->sym->attr.pointer)))
2987 {
2988 if (where)
2989 gfc_error ("Pointer-array actual argument at %L requires "
2990 "an assumed-shape or pointer-array dummy "
2991 "argument %qs due to VOLATILE attribute",
2992 &a->expr->where,f->sym->name);
2993 return 0;
2994 }
2995
2996 match:
2997 if (a == actual)
2998 na = i;
2999
3000 new_arg[i++] = a;
3001 }
3002
3003 /* Make sure missing actual arguments are optional. */
3004 i = 0;
3005 for (f = formal; f; f = f->next, i++)
3006 {
3007 if (new_arg[i] != NULL)
3008 continue;
3009 if (f->sym == NULL)
3010 {
3011 if (where)
3012 gfc_error ("Missing alternate return spec in subroutine call "
3013 "at %L", where);
3014 return 0;
3015 }
3016 if (!f->sym->attr.optional)
3017 {
3018 if (where)
3019 gfc_error ("Missing actual argument for argument %qs at %L",
3020 f->sym->name, where);
3021 return 0;
3022 }
3023 }
3024
3025 /* The argument lists are compatible. We now relink a new actual
3026 argument list with null arguments in the right places. The head
3027 of the list remains the head. */
3028 for (i = 0; i < n; i++)
3029 if (new_arg[i] == NULL)
3030 new_arg[i] = gfc_get_actual_arglist ();
3031
3032 if (na != 0)
3033 {
3034 std::swap (*new_arg[0], *actual);
3035 std::swap (new_arg[0], new_arg[na]);
3036 }
3037
3038 for (i = 0; i < n - 1; i++)
3039 new_arg[i]->next = new_arg[i + 1];
3040
3041 new_arg[i]->next = NULL;
3042
3043 if (*ap == NULL && n > 0)
3044 *ap = new_arg[0];
3045
3046 /* Note the types of omitted optional arguments. */
3047 for (a = *ap, f = formal; a; a = a->next, f = f->next)
3048 if (a->expr == NULL && a->label == NULL)
3049 a->missing_arg_type = f->sym->ts.type;
3050
3051 return 1;
3052 }
3053
3054
3055 typedef struct
3056 {
3057 gfc_formal_arglist *f;
3058 gfc_actual_arglist *a;
3059 }
3060 argpair;
3061
3062 /* qsort comparison function for argument pairs, with the following
3063 order:
3064 - p->a->expr == NULL
3065 - p->a->expr->expr_type != EXPR_VARIABLE
3066 - growing p->a->expr->symbol. */
3067
3068 static int
3069 pair_cmp (const void *p1, const void *p2)
3070 {
3071 const gfc_actual_arglist *a1, *a2;
3072
3073 /* *p1 and *p2 are elements of the to-be-sorted array. */
3074 a1 = ((const argpair *) p1)->a;
3075 a2 = ((const argpair *) p2)->a;
3076 if (!a1->expr)
3077 {
3078 if (!a2->expr)
3079 return 0;
3080 return -1;
3081 }
3082 if (!a2->expr)
3083 return 1;
3084 if (a1->expr->expr_type != EXPR_VARIABLE)
3085 {
3086 if (a2->expr->expr_type != EXPR_VARIABLE)
3087 return 0;
3088 return -1;
3089 }
3090 if (a2->expr->expr_type != EXPR_VARIABLE)
3091 return 1;
3092 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
3093 }
3094
3095
3096 /* Given two expressions from some actual arguments, test whether they
3097 refer to the same expression. The analysis is conservative.
3098 Returning false will produce no warning. */
3099
3100 static bool
3101 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
3102 {
3103 const gfc_ref *r1, *r2;
3104
3105 if (!e1 || !e2
3106 || e1->expr_type != EXPR_VARIABLE
3107 || e2->expr_type != EXPR_VARIABLE
3108 || e1->symtree->n.sym != e2->symtree->n.sym)
3109 return false;
3110
3111 /* TODO: improve comparison, see expr.c:show_ref(). */
3112 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
3113 {
3114 if (r1->type != r2->type)
3115 return false;
3116 switch (r1->type)
3117 {
3118 case REF_ARRAY:
3119 if (r1->u.ar.type != r2->u.ar.type)
3120 return false;
3121 /* TODO: At the moment, consider only full arrays;
3122 we could do better. */
3123 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
3124 return false;
3125 break;
3126
3127 case REF_COMPONENT:
3128 if (r1->u.c.component != r2->u.c.component)
3129 return false;
3130 break;
3131
3132 case REF_SUBSTRING:
3133 return false;
3134
3135 default:
3136 gfc_internal_error ("compare_actual_expr(): Bad component code");
3137 }
3138 }
3139 if (!r1 && !r2)
3140 return true;
3141 return false;
3142 }
3143
3144
3145 /* Given formal and actual argument lists that correspond to one
3146 another, check that identical actual arguments aren't not
3147 associated with some incompatible INTENTs. */
3148
3149 static bool
3150 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
3151 {
3152 sym_intent f1_intent, f2_intent;
3153 gfc_formal_arglist *f1;
3154 gfc_actual_arglist *a1;
3155 size_t n, i, j;
3156 argpair *p;
3157 bool t = true;
3158
3159 n = 0;
3160 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
3161 {
3162 if (f1 == NULL && a1 == NULL)
3163 break;
3164 if (f1 == NULL || a1 == NULL)
3165 gfc_internal_error ("check_some_aliasing(): List mismatch");
3166 n++;
3167 }
3168 if (n == 0)
3169 return t;
3170 p = XALLOCAVEC (argpair, n);
3171
3172 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
3173 {
3174 p[i].f = f1;
3175 p[i].a = a1;
3176 }
3177
3178 qsort (p, n, sizeof (argpair), pair_cmp);
3179
3180 for (i = 0; i < n; i++)
3181 {
3182 if (!p[i].a->expr
3183 || p[i].a->expr->expr_type != EXPR_VARIABLE
3184 || p[i].a->expr->ts.type == BT_PROCEDURE)
3185 continue;
3186 f1_intent = p[i].f->sym->attr.intent;
3187 for (j = i + 1; j < n; j++)
3188 {
3189 /* Expected order after the sort. */
3190 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
3191 gfc_internal_error ("check_some_aliasing(): corrupted data");
3192
3193 /* Are the expression the same? */
3194 if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
3195 break;
3196 f2_intent = p[j].f->sym->attr.intent;
3197 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
3198 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
3199 || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
3200 {
3201 gfc_warning (0, "Same actual argument associated with INTENT(%s) "
3202 "argument %qs and INTENT(%s) argument %qs at %L",
3203 gfc_intent_string (f1_intent), p[i].f->sym->name,
3204 gfc_intent_string (f2_intent), p[j].f->sym->name,
3205 &p[i].a->expr->where);
3206 t = false;
3207 }
3208 }
3209 }
3210
3211 return t;
3212 }
3213
3214
3215 /* Given formal and actual argument lists that correspond to one
3216 another, check that they are compatible in the sense that intents
3217 are not mismatched. */
3218
3219 static bool
3220 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
3221 {
3222 sym_intent f_intent;
3223
3224 for (;; f = f->next, a = a->next)
3225 {
3226 gfc_expr *expr;
3227
3228 if (f == NULL && a == NULL)
3229 break;
3230 if (f == NULL || a == NULL)
3231 gfc_internal_error ("check_intents(): List mismatch");
3232
3233 if (a->expr && a->expr->expr_type == EXPR_FUNCTION
3234 && a->expr->value.function.isym
3235 && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
3236 expr = a->expr->value.function.actual->expr;
3237 else
3238 expr = a->expr;
3239
3240 if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
3241 continue;
3242
3243 f_intent = f->sym->attr.intent;
3244
3245 if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
3246 {
3247 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3248 && CLASS_DATA (f->sym)->attr.class_pointer)
3249 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3250 {
3251 gfc_error ("Procedure argument at %L is local to a PURE "
3252 "procedure and has the POINTER attribute",
3253 &expr->where);
3254 return false;
3255 }
3256 }
3257
3258 /* Fortran 2008, C1283. */
3259 if (gfc_pure (NULL) && gfc_is_coindexed (expr))
3260 {
3261 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
3262 {
3263 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3264 "is passed to an INTENT(%s) argument",
3265 &expr->where, gfc_intent_string (f_intent));
3266 return false;
3267 }
3268
3269 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3270 && CLASS_DATA (f->sym)->attr.class_pointer)
3271 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3272 {
3273 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3274 "is passed to a POINTER dummy argument",
3275 &expr->where);
3276 return false;
3277 }
3278 }
3279
3280 /* F2008, Section 12.5.2.4. */
3281 if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
3282 && gfc_is_coindexed (expr))
3283 {
3284 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3285 "polymorphic dummy argument %qs",
3286 &expr->where, f->sym->name);
3287 return false;
3288 }
3289 }
3290
3291 return true;
3292 }
3293
3294
3295 /* Check how a procedure is used against its interface. If all goes
3296 well, the actual argument list will also end up being properly
3297 sorted. */
3298
3299 bool
3300 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
3301 {
3302 gfc_formal_arglist *dummy_args;
3303
3304 /* Warn about calls with an implicit interface. Special case
3305 for calling a ISO_C_BINDING because c_loc and c_funloc
3306 are pseudo-unknown. Additionally, warn about procedures not
3307 explicitly declared at all if requested. */
3308 if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
3309 {
3310 if (sym->ns->has_implicit_none_export && sym->attr.proc == PROC_UNKNOWN)
3311 {
3312 gfc_error ("Procedure %qs called at %L is not explicitly declared",
3313 sym->name, where);
3314 return false;
3315 }
3316 if (warn_implicit_interface)
3317 gfc_warning (OPT_Wimplicit_interface,
3318 "Procedure %qs called with an implicit interface at %L",
3319 sym->name, where);
3320 else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
3321 gfc_warning (OPT_Wimplicit_procedure,
3322 "Procedure %qs called at %L is not explicitly declared",
3323 sym->name, where);
3324 }
3325
3326 if (sym->attr.if_source == IFSRC_UNKNOWN)
3327 {
3328 gfc_actual_arglist *a;
3329
3330 if (sym->attr.pointer)
3331 {
3332 gfc_error ("The pointer object %qs at %L must have an explicit "
3333 "function interface or be declared as array",
3334 sym->name, where);
3335 return false;
3336 }
3337
3338 if (sym->attr.allocatable && !sym->attr.external)
3339 {
3340 gfc_error ("The allocatable object %qs at %L must have an explicit "
3341 "function interface or be declared as array",
3342 sym->name, where);
3343 return false;
3344 }
3345
3346 if (sym->attr.allocatable)
3347 {
3348 gfc_error ("Allocatable function %qs at %L must have an explicit "
3349 "function interface", sym->name, where);
3350 return false;
3351 }
3352
3353 for (a = *ap; a; a = a->next)
3354 {
3355 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3356 if (a->name != NULL && a->name[0] != '%')
3357 {
3358 gfc_error ("Keyword argument requires explicit interface "
3359 "for procedure %qs at %L", sym->name, &a->expr->where);
3360 break;
3361 }
3362
3363 /* TS 29113, 6.2. */
3364 if (a->expr && a->expr->ts.type == BT_ASSUMED
3365 && sym->intmod_sym_id != ISOCBINDING_LOC)
3366 {
3367 gfc_error ("Assumed-type argument %s at %L requires an explicit "
3368 "interface", a->expr->symtree->n.sym->name,
3369 &a->expr->where);
3370 break;
3371 }
3372
3373 /* F2008, C1303 and C1304. */
3374 if (a->expr
3375 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3376 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3377 && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
3378 || gfc_expr_attr (a->expr).lock_comp))
3379 {
3380 gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
3381 "component at %L requires an explicit interface for "
3382 "procedure %qs", &a->expr->where, sym->name);
3383 break;
3384 }
3385
3386 if (a->expr && a->expr->expr_type == EXPR_NULL
3387 && a->expr->ts.type == BT_UNKNOWN)
3388 {
3389 gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
3390 return false;
3391 }
3392
3393 /* TS 29113, C407b. */
3394 if (a->expr && a->expr->expr_type == EXPR_VARIABLE
3395 && symbol_rank (a->expr->symtree->n.sym) == -1)
3396 {
3397 gfc_error ("Assumed-rank argument requires an explicit interface "
3398 "at %L", &a->expr->where);
3399 return false;
3400 }
3401 }
3402
3403 return true;
3404 }
3405
3406 dummy_args = gfc_sym_get_dummy_args (sym);
3407
3408 if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
3409 return false;
3410
3411 if (!check_intents (dummy_args, *ap))
3412 return false;
3413
3414 if (warn_aliasing)
3415 check_some_aliasing (dummy_args, *ap);
3416
3417 return true;
3418 }
3419
3420
3421 /* Check how a procedure pointer component is used against its interface.
3422 If all goes well, the actual argument list will also end up being properly
3423 sorted. Completely analogous to gfc_procedure_use. */
3424
3425 void
3426 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
3427 {
3428 /* Warn about calls with an implicit interface. Special case
3429 for calling a ISO_C_BINDING because c_loc and c_funloc
3430 are pseudo-unknown. */
3431 if (warn_implicit_interface
3432 && comp->attr.if_source == IFSRC_UNKNOWN
3433 && !comp->attr.is_iso_c)
3434 gfc_warning (OPT_Wimplicit_interface,
3435 "Procedure pointer component %qs called with an implicit "
3436 "interface at %L", comp->name, where);
3437
3438 if (comp->attr.if_source == IFSRC_UNKNOWN)
3439 {
3440 gfc_actual_arglist *a;
3441 for (a = *ap; a; a = a->next)
3442 {
3443 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3444 if (a->name != NULL && a->name[0] != '%')
3445 {
3446 gfc_error ("Keyword argument requires explicit interface "
3447 "for procedure pointer component %qs at %L",
3448 comp->name, &a->expr->where);
3449 break;
3450 }
3451 }
3452
3453 return;
3454 }
3455
3456 if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
3457 comp->attr.elemental, where))
3458 return;
3459
3460 check_intents (comp->ts.interface->formal, *ap);
3461 if (warn_aliasing)
3462 check_some_aliasing (comp->ts.interface->formal, *ap);
3463 }
3464
3465
3466 /* Try if an actual argument list matches the formal list of a symbol,
3467 respecting the symbol's attributes like ELEMENTAL. This is used for
3468 GENERIC resolution. */
3469
3470 bool
3471 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
3472 {
3473 gfc_formal_arglist *dummy_args;
3474 bool r;
3475
3476 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
3477
3478 dummy_args = gfc_sym_get_dummy_args (sym);
3479
3480 r = !sym->attr.elemental;
3481 if (compare_actual_formal (args, dummy_args, r, !r, NULL))
3482 {
3483 check_intents (dummy_args, *args);
3484 if (warn_aliasing)
3485 check_some_aliasing (dummy_args, *args);
3486 return true;
3487 }
3488
3489 return false;
3490 }
3491
3492
3493 /* Given an interface pointer and an actual argument list, search for
3494 a formal argument list that matches the actual. If found, returns
3495 a pointer to the symbol of the correct interface. Returns NULL if
3496 not found. */
3497
3498 gfc_symbol *
3499 gfc_search_interface (gfc_interface *intr, int sub_flag,
3500 gfc_actual_arglist **ap)
3501 {
3502 gfc_symbol *elem_sym = NULL;
3503 gfc_symbol *null_sym = NULL;
3504 locus null_expr_loc;
3505 gfc_actual_arglist *a;
3506 bool has_null_arg = false;
3507
3508 for (a = *ap; a; a = a->next)
3509 if (a->expr && a->expr->expr_type == EXPR_NULL
3510 && a->expr->ts.type == BT_UNKNOWN)
3511 {
3512 has_null_arg = true;
3513 null_expr_loc = a->expr->where;
3514 break;
3515 }
3516
3517 for (; intr; intr = intr->next)
3518 {
3519 if (intr->sym->attr.flavor == FL_DERIVED)
3520 continue;
3521 if (sub_flag && intr->sym->attr.function)
3522 continue;
3523 if (!sub_flag && intr->sym->attr.subroutine)
3524 continue;
3525
3526 if (gfc_arglist_matches_symbol (ap, intr->sym))
3527 {
3528 if (has_null_arg && null_sym)
3529 {
3530 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
3531 "between specific functions %s and %s",
3532 &null_expr_loc, null_sym->name, intr->sym->name);
3533 return NULL;
3534 }
3535 else if (has_null_arg)
3536 {
3537 null_sym = intr->sym;
3538 continue;
3539 }
3540
3541 /* Satisfy 12.4.4.1 such that an elemental match has lower
3542 weight than a non-elemental match. */
3543 if (intr->sym->attr.elemental)
3544 {
3545 elem_sym = intr->sym;
3546 continue;
3547 }
3548 return intr->sym;
3549 }
3550 }
3551
3552 if (null_sym)
3553 return null_sym;
3554
3555 return elem_sym ? elem_sym : NULL;
3556 }
3557
3558
3559 /* Do a brute force recursive search for a symbol. */
3560
3561 static gfc_symtree *
3562 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
3563 {
3564 gfc_symtree * st;
3565
3566 if (root->n.sym == sym)
3567 return root;
3568
3569 st = NULL;
3570 if (root->left)
3571 st = find_symtree0 (root->left, sym);
3572 if (root->right && ! st)
3573 st = find_symtree0 (root->right, sym);
3574 return st;
3575 }
3576
3577
3578 /* Find a symtree for a symbol. */
3579
3580 gfc_symtree *
3581 gfc_find_sym_in_symtree (gfc_symbol *sym)
3582 {
3583 gfc_symtree *st;
3584 gfc_namespace *ns;
3585
3586 /* First try to find it by name. */
3587 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
3588 if (st && st->n.sym == sym)
3589 return st;
3590
3591 /* If it's been renamed, resort to a brute-force search. */
3592 /* TODO: avoid having to do this search. If the symbol doesn't exist
3593 in the symtree for the current namespace, it should probably be added. */
3594 for (ns = gfc_current_ns; ns; ns = ns->parent)
3595 {
3596 st = find_symtree0 (ns->sym_root, sym);
3597 if (st)
3598 return st;
3599 }
3600 gfc_internal_error ("Unable to find symbol %qs", sym->name);
3601 /* Not reached. */
3602 }
3603
3604
3605 /* See if the arglist to an operator-call contains a derived-type argument
3606 with a matching type-bound operator. If so, return the matching specific
3607 procedure defined as operator-target as well as the base-object to use
3608 (which is the found derived-type argument with operator). The generic
3609 name, if any, is transmitted to the final expression via 'gname'. */
3610
3611 static gfc_typebound_proc*
3612 matching_typebound_op (gfc_expr** tb_base,
3613 gfc_actual_arglist* args,
3614 gfc_intrinsic_op op, const char* uop,
3615 const char ** gname)
3616 {
3617 gfc_actual_arglist* base;
3618
3619 for (base = args; base; base = base->next)
3620 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
3621 {
3622 gfc_typebound_proc* tb;
3623 gfc_symbol* derived;
3624 bool result;
3625
3626 while (base->expr->expr_type == EXPR_OP
3627 && base->expr->value.op.op == INTRINSIC_PARENTHESES)
3628 base->expr = base->expr->value.op.op1;
3629
3630 if (base->expr->ts.type == BT_CLASS)
3631 {
3632 if (CLASS_DATA (base->expr) == NULL
3633 || !gfc_expr_attr (base->expr).class_ok)
3634 continue;
3635 derived = CLASS_DATA (base->expr)->ts.u.derived;
3636 }
3637 else
3638 derived = base->expr->ts.u.derived;
3639
3640 if (op == INTRINSIC_USER)
3641 {
3642 gfc_symtree* tb_uop;
3643
3644 gcc_assert (uop);
3645 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
3646 false, NULL);
3647
3648 if (tb_uop)
3649 tb = tb_uop->n.tb;
3650 else
3651 tb = NULL;
3652 }
3653 else
3654 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
3655 false, NULL);
3656
3657 /* This means we hit a PRIVATE operator which is use-associated and
3658 should thus not be seen. */
3659 if (!result)
3660 tb = NULL;
3661
3662 /* Look through the super-type hierarchy for a matching specific
3663 binding. */
3664 for (; tb; tb = tb->overridden)
3665 {
3666 gfc_tbp_generic* g;
3667
3668 gcc_assert (tb->is_generic);
3669 for (g = tb->u.generic; g; g = g->next)
3670 {
3671 gfc_symbol* target;
3672 gfc_actual_arglist* argcopy;
3673 bool matches;
3674
3675 gcc_assert (g->specific);
3676 if (g->specific->error)
3677 continue;
3678
3679 target = g->specific->u.specific->n.sym;
3680
3681 /* Check if this arglist matches the formal. */
3682 argcopy = gfc_copy_actual_arglist (args);
3683 matches = gfc_arglist_matches_symbol (&argcopy, target);
3684 gfc_free_actual_arglist (argcopy);
3685
3686 /* Return if we found a match. */
3687 if (matches)
3688 {
3689 *tb_base = base->expr;
3690 *gname = g->specific_st->name;
3691 return g->specific;
3692 }
3693 }
3694 }
3695 }
3696
3697 return NULL;
3698 }
3699
3700
3701 /* For the 'actual arglist' of an operator call and a specific typebound
3702 procedure that has been found the target of a type-bound operator, build the
3703 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
3704 type-bound procedures rather than resolving type-bound operators 'directly'
3705 so that we can reuse the existing logic. */
3706
3707 static void
3708 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
3709 gfc_expr* base, gfc_typebound_proc* target,
3710 const char *gname)
3711 {
3712 e->expr_type = EXPR_COMPCALL;
3713 e->value.compcall.tbp = target;
3714 e->value.compcall.name = gname ? gname : "$op";
3715 e->value.compcall.actual = actual;
3716 e->value.compcall.base_object = base;
3717 e->value.compcall.ignore_pass = 1;
3718 e->value.compcall.assign = 0;
3719 if (e->ts.type == BT_UNKNOWN
3720 && target->function)
3721 {
3722 if (target->is_generic)
3723 e->ts = target->u.generic->specific->u.specific->n.sym->ts;
3724 else
3725 e->ts = target->u.specific->n.sym->ts;
3726 }
3727 }
3728
3729
3730 /* This subroutine is called when an expression is being resolved.
3731 The expression node in question is either a user defined operator
3732 or an intrinsic operator with arguments that aren't compatible
3733 with the operator. This subroutine builds an actual argument list
3734 corresponding to the operands, then searches for a compatible
3735 interface. If one is found, the expression node is replaced with
3736 the appropriate function call. We use the 'match' enum to specify
3737 whether a replacement has been made or not, or if an error occurred. */
3738
3739 match
3740 gfc_extend_expr (gfc_expr *e)
3741 {
3742 gfc_actual_arglist *actual;
3743 gfc_symbol *sym;
3744 gfc_namespace *ns;
3745 gfc_user_op *uop;
3746 gfc_intrinsic_op i;
3747 const char *gname;
3748 gfc_typebound_proc* tbo;
3749 gfc_expr* tb_base;
3750
3751 sym = NULL;
3752
3753 actual = gfc_get_actual_arglist ();
3754 actual->expr = e->value.op.op1;
3755
3756 gname = NULL;
3757
3758 if (e->value.op.op2 != NULL)
3759 {
3760 actual->next = gfc_get_actual_arglist ();
3761 actual->next->expr = e->value.op.op2;
3762 }
3763
3764 i = fold_unary_intrinsic (e->value.op.op);
3765
3766 /* See if we find a matching type-bound operator. */
3767 if (i == INTRINSIC_USER)
3768 tbo = matching_typebound_op (&tb_base, actual,
3769 i, e->value.op.uop->name, &gname);
3770 else
3771 switch (i)
3772 {
3773 #define CHECK_OS_COMPARISON(comp) \
3774 case INTRINSIC_##comp: \
3775 case INTRINSIC_##comp##_OS: \
3776 tbo = matching_typebound_op (&tb_base, actual, \
3777 INTRINSIC_##comp, NULL, &gname); \
3778 if (!tbo) \
3779 tbo = matching_typebound_op (&tb_base, actual, \
3780 INTRINSIC_##comp##_OS, NULL, &gname); \
3781 break;
3782 CHECK_OS_COMPARISON(EQ)
3783 CHECK_OS_COMPARISON(NE)
3784 CHECK_OS_COMPARISON(GT)
3785 CHECK_OS_COMPARISON(GE)
3786 CHECK_OS_COMPARISON(LT)
3787 CHECK_OS_COMPARISON(LE)
3788 #undef CHECK_OS_COMPARISON
3789
3790 default:
3791 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
3792 break;
3793 }
3794
3795 /* If there is a matching typebound-operator, replace the expression with
3796 a call to it and succeed. */
3797 if (tbo)
3798 {
3799 gcc_assert (tb_base);
3800 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
3801
3802 if (!gfc_resolve_expr (e))
3803 return MATCH_ERROR;
3804 else
3805 return MATCH_YES;
3806 }
3807
3808 if (i == INTRINSIC_USER)
3809 {
3810 for (ns = gfc_current_ns; ns; ns = ns->parent)
3811 {
3812 uop = gfc_find_uop (e->value.op.uop->name, ns);
3813 if (uop == NULL)
3814 continue;
3815
3816 sym = gfc_search_interface (uop->op, 0, &actual);
3817 if (sym != NULL)
3818 break;
3819 }
3820 }
3821 else
3822 {
3823 for (ns = gfc_current_ns; ns; ns = ns->parent)
3824 {
3825 /* Due to the distinction between '==' and '.eq.' and friends, one has
3826 to check if either is defined. */
3827 switch (i)
3828 {
3829 #define CHECK_OS_COMPARISON(comp) \
3830 case INTRINSIC_##comp: \
3831 case INTRINSIC_##comp##_OS: \
3832 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
3833 if (!sym) \
3834 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
3835 break;
3836 CHECK_OS_COMPARISON(EQ)
3837 CHECK_OS_COMPARISON(NE)
3838 CHECK_OS_COMPARISON(GT)
3839 CHECK_OS_COMPARISON(GE)
3840 CHECK_OS_COMPARISON(LT)
3841 CHECK_OS_COMPARISON(LE)
3842 #undef CHECK_OS_COMPARISON
3843
3844 default:
3845 sym = gfc_search_interface (ns->op[i], 0, &actual);
3846 }
3847
3848 if (sym != NULL)
3849 break;
3850 }
3851 }
3852
3853 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
3854 found rather than just taking the first one and not checking further. */
3855
3856 if (sym == NULL)
3857 {
3858 /* Don't use gfc_free_actual_arglist(). */
3859 free (actual->next);
3860 free (actual);
3861 return MATCH_NO;
3862 }
3863
3864 /* Change the expression node to a function call. */
3865 e->expr_type = EXPR_FUNCTION;
3866 e->symtree = gfc_find_sym_in_symtree (sym);
3867 e->value.function.actual = actual;
3868 e->value.function.esym = NULL;
3869 e->value.function.isym = NULL;
3870 e->value.function.name = NULL;
3871 e->user_operator = 1;
3872
3873 if (!gfc_resolve_expr (e))
3874 return MATCH_ERROR;
3875
3876 return MATCH_YES;
3877 }
3878
3879
3880 /* Tries to replace an assignment code node with a subroutine call to the
3881 subroutine associated with the assignment operator. Return true if the node
3882 was replaced. On false, no error is generated. */
3883
3884 bool
3885 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
3886 {
3887 gfc_actual_arglist *actual;
3888 gfc_expr *lhs, *rhs, *tb_base;
3889 gfc_symbol *sym = NULL;
3890 const char *gname = NULL;
3891 gfc_typebound_proc* tbo;
3892
3893 lhs = c->expr1;
3894 rhs = c->expr2;
3895
3896 /* Don't allow an intrinsic assignment to be replaced. */
3897 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
3898 && (rhs->rank == 0 || rhs->rank == lhs->rank)
3899 && (lhs->ts.type == rhs->ts.type
3900 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3901 return false;
3902
3903 actual = gfc_get_actual_arglist ();
3904 actual->expr = lhs;
3905
3906 actual->next = gfc_get_actual_arglist ();
3907 actual->next->expr = rhs;
3908
3909 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3910
3911 /* See if we find a matching type-bound assignment. */
3912 tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
3913 NULL, &gname);
3914
3915 if (tbo)
3916 {
3917 /* Success: Replace the expression with a type-bound call. */
3918 gcc_assert (tb_base);
3919 c->expr1 = gfc_get_expr ();
3920 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
3921 c->expr1->value.compcall.assign = 1;
3922 c->expr1->where = c->loc;
3923 c->expr2 = NULL;
3924 c->op = EXEC_COMPCALL;
3925 return true;
3926 }
3927
3928 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
3929 for (; ns; ns = ns->parent)
3930 {
3931 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3932 if (sym != NULL)
3933 break;
3934 }
3935
3936 if (sym)
3937 {
3938 /* Success: Replace the assignment with the call. */
3939 c->op = EXEC_ASSIGN_CALL;
3940 c->symtree = gfc_find_sym_in_symtree (sym);
3941 c->expr1 = NULL;
3942 c->expr2 = NULL;
3943 c->ext.actual = actual;
3944 return true;
3945 }
3946
3947 /* Failure: No assignment procedure found. */
3948 free (actual->next);
3949 free (actual);
3950 return false;
3951 }
3952
3953
3954 /* Make sure that the interface just parsed is not already present in
3955 the given interface list. Ambiguity isn't checked yet since module
3956 procedures can be present without interfaces. */
3957
3958 bool
3959 gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
3960 {
3961 gfc_interface *ip;
3962
3963 for (ip = base; ip; ip = ip->next)
3964 {
3965 if (ip->sym == new_sym)
3966 {
3967 gfc_error ("Entity %qs at %L is already present in the interface",
3968 new_sym->name, &loc);
3969 return false;
3970 }
3971 }
3972
3973 return true;
3974 }
3975
3976
3977 /* Add a symbol to the current interface. */
3978
3979 bool
3980 gfc_add_interface (gfc_symbol *new_sym)
3981 {
3982 gfc_interface **head, *intr;
3983 gfc_namespace *ns;
3984 gfc_symbol *sym;
3985
3986 switch (current_interface.type)
3987 {
3988 case INTERFACE_NAMELESS:
3989 case INTERFACE_ABSTRACT:
3990 return true;
3991
3992 case INTERFACE_INTRINSIC_OP:
3993 for (ns = current_interface.ns; ns; ns = ns->parent)
3994 switch (current_interface.op)
3995 {
3996 case INTRINSIC_EQ:
3997 case INTRINSIC_EQ_OS:
3998 if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
3999 gfc_current_locus)
4000 || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
4001 new_sym, gfc_current_locus))
4002 return false;
4003 break;
4004
4005 case INTRINSIC_NE:
4006 case INTRINSIC_NE_OS:
4007 if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
4008 gfc_current_locus)
4009 || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
4010 new_sym, gfc_current_locus))
4011 return false;
4012 break;
4013
4014 case INTRINSIC_GT:
4015 case INTRINSIC_GT_OS:
4016 if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
4017 new_sym, gfc_current_locus)
4018 || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
4019 new_sym, gfc_current_locus))
4020 return false;
4021 break;
4022
4023 case INTRINSIC_GE:
4024 case INTRINSIC_GE_OS:
4025 if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
4026 new_sym, gfc_current_locus)
4027 || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
4028 new_sym, gfc_current_locus))
4029 return false;
4030 break;
4031
4032 case INTRINSIC_LT:
4033 case INTRINSIC_LT_OS:
4034 if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
4035 new_sym, gfc_current_locus)
4036 || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
4037 new_sym, gfc_current_locus))
4038 return false;
4039 break;
4040
4041 case INTRINSIC_LE:
4042 case INTRINSIC_LE_OS:
4043 if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
4044 new_sym, gfc_current_locus)
4045 || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
4046 new_sym, gfc_current_locus))
4047 return false;
4048 break;
4049
4050 default:
4051 if (!gfc_check_new_interface (ns->op[current_interface.op],
4052 new_sym, gfc_current_locus))
4053 return false;
4054 }
4055
4056 head = &current_interface.ns->op[current_interface.op];
4057 break;
4058
4059 case INTERFACE_GENERIC:
4060 for (ns = current_interface.ns; ns; ns = ns->parent)
4061 {
4062 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
4063 if (sym == NULL)
4064 continue;
4065
4066 if (!gfc_check_new_interface (sym->generic,
4067 new_sym, gfc_current_locus))
4068 return false;
4069 }
4070
4071 head = &current_interface.sym->generic;
4072 break;
4073
4074 case INTERFACE_USER_OP:
4075 if (!gfc_check_new_interface (current_interface.uop->op,
4076 new_sym, gfc_current_locus))
4077 return false;
4078
4079 head = &current_interface.uop->op;
4080 break;
4081
4082 default:
4083 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4084 }
4085
4086 intr = gfc_get_interface ();
4087 intr->sym = new_sym;
4088 intr->where = gfc_current_locus;
4089
4090 intr->next = *head;
4091 *head = intr;
4092
4093 return true;
4094 }
4095
4096
4097 gfc_interface *
4098 gfc_current_interface_head (void)
4099 {
4100 switch (current_interface.type)
4101 {
4102 case INTERFACE_INTRINSIC_OP:
4103 return current_interface.ns->op[current_interface.op];
4104 break;
4105
4106 case INTERFACE_GENERIC:
4107 return current_interface.sym->generic;
4108 break;
4109
4110 case INTERFACE_USER_OP:
4111 return current_interface.uop->op;
4112 break;
4113
4114 default:
4115 gcc_unreachable ();
4116 }
4117 }
4118
4119
4120 void
4121 gfc_set_current_interface_head (gfc_interface *i)
4122 {
4123 switch (current_interface.type)
4124 {
4125 case INTERFACE_INTRINSIC_OP:
4126 current_interface.ns->op[current_interface.op] = i;
4127 break;
4128
4129 case INTERFACE_GENERIC:
4130 current_interface.sym->generic = i;
4131 break;
4132
4133 case INTERFACE_USER_OP:
4134 current_interface.uop->op = i;
4135 break;
4136
4137 default:
4138 gcc_unreachable ();
4139 }
4140 }
4141
4142
4143 /* Gets rid of a formal argument list. We do not free symbols.
4144 Symbols are freed when a namespace is freed. */
4145
4146 void
4147 gfc_free_formal_arglist (gfc_formal_arglist *p)
4148 {
4149 gfc_formal_arglist *q;
4150
4151 for (; p; p = q)
4152 {
4153 q = p->next;
4154 free (p);
4155 }
4156 }
4157
4158
4159 /* Check that it is ok for the type-bound procedure 'proc' to override the
4160 procedure 'old', cf. F08:4.5.7.3. */
4161
4162 bool
4163 gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
4164 {
4165 locus where;
4166 gfc_symbol *proc_target, *old_target;
4167 unsigned proc_pass_arg, old_pass_arg, argpos;
4168 gfc_formal_arglist *proc_formal, *old_formal;
4169 bool check_type;
4170 char err[200];
4171
4172 /* This procedure should only be called for non-GENERIC proc. */
4173 gcc_assert (!proc->n.tb->is_generic);
4174
4175 /* If the overwritten procedure is GENERIC, this is an error. */
4176 if (old->n.tb->is_generic)
4177 {
4178 gfc_error ("Can't overwrite GENERIC %qs at %L",
4179 old->name, &proc->n.tb->where);
4180 return false;
4181 }
4182
4183 where = proc->n.tb->where;
4184 proc_target = proc->n.tb->u.specific->n.sym;
4185 old_target = old->n.tb->u.specific->n.sym;
4186
4187 /* Check that overridden binding is not NON_OVERRIDABLE. */
4188 if (old->n.tb->non_overridable)
4189 {
4190 gfc_error ("%qs at %L overrides a procedure binding declared"
4191 " NON_OVERRIDABLE", proc->name, &where);
4192 return false;
4193 }
4194
4195 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4196 if (!old->n.tb->deferred && proc->n.tb->deferred)
4197 {
4198 gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
4199 " non-DEFERRED binding", proc->name, &where);
4200 return false;
4201 }
4202
4203 /* If the overridden binding is PURE, the overriding must be, too. */
4204 if (old_target->attr.pure && !proc_target->attr.pure)
4205 {
4206 gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
4207 proc->name, &where);
4208 return false;
4209 }
4210
4211 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4212 is not, the overriding must not be either. */
4213 if (old_target->attr.elemental && !proc_target->attr.elemental)
4214 {
4215 gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
4216 " ELEMENTAL", proc->name, &where);
4217 return false;
4218 }
4219 if (!old_target->attr.elemental && proc_target->attr.elemental)
4220 {
4221 gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
4222 " be ELEMENTAL, either", proc->name, &where);
4223 return false;
4224 }
4225
4226 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4227 SUBROUTINE. */
4228 if (old_target->attr.subroutine && !proc_target->attr.subroutine)
4229 {
4230 gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
4231 " SUBROUTINE", proc->name, &where);
4232 return false;
4233 }
4234
4235 /* If the overridden binding is a FUNCTION, the overriding must also be a
4236 FUNCTION and have the same characteristics. */
4237 if (old_target->attr.function)
4238 {
4239 if (!proc_target->attr.function)
4240 {
4241 gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
4242 " FUNCTION", proc->name, &where);
4243 return false;
4244 }
4245
4246 if (!gfc_check_result_characteristics (proc_target, old_target,
4247 err, sizeof(err)))
4248 {
4249 gfc_error ("Result mismatch for the overriding procedure "
4250 "%qs at %L: %s", proc->name, &where, err);
4251 return false;
4252 }
4253 }
4254
4255 /* If the overridden binding is PUBLIC, the overriding one must not be
4256 PRIVATE. */
4257 if (old->n.tb->access == ACCESS_PUBLIC
4258 && proc->n.tb->access == ACCESS_PRIVATE)
4259 {
4260 gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
4261 " PRIVATE", proc->name, &where);
4262 return false;
4263 }
4264
4265 /* Compare the formal argument lists of both procedures. This is also abused
4266 to find the position of the passed-object dummy arguments of both
4267 bindings as at least the overridden one might not yet be resolved and we
4268 need those positions in the check below. */
4269 proc_pass_arg = old_pass_arg = 0;
4270 if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
4271 proc_pass_arg = 1;
4272 if (!old->n.tb->nopass && !old->n.tb->pass_arg)
4273 old_pass_arg = 1;
4274 argpos = 1;
4275 proc_formal = gfc_sym_get_dummy_args (proc_target);
4276 old_formal = gfc_sym_get_dummy_args (old_target);
4277 for ( ; proc_formal && old_formal;
4278 proc_formal = proc_formal->next, old_formal = old_formal->next)
4279 {
4280 if (proc->n.tb->pass_arg
4281 && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
4282 proc_pass_arg = argpos;
4283 if (old->n.tb->pass_arg
4284 && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
4285 old_pass_arg = argpos;
4286
4287 /* Check that the names correspond. */
4288 if (strcmp (proc_formal->sym->name, old_formal->sym->name))
4289 {
4290 gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
4291 " to match the corresponding argument of the overridden"
4292 " procedure", proc_formal->sym->name, proc->name, &where,
4293 old_formal->sym->name);
4294 return false;
4295 }
4296
4297 check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
4298 if (!gfc_check_dummy_characteristics (proc_formal->sym, old_formal->sym,
4299 check_type, err, sizeof(err)))
4300 {
4301 gfc_error ("Argument mismatch for the overriding procedure "
4302 "%qs at %L: %s", proc->name, &where, err);
4303 return false;
4304 }
4305
4306 ++argpos;
4307 }
4308 if (proc_formal || old_formal)
4309 {
4310 gfc_error ("%qs at %L must have the same number of formal arguments as"
4311 " the overridden procedure", proc->name, &where);
4312 return false;
4313 }
4314
4315 /* If the overridden binding is NOPASS, the overriding one must also be
4316 NOPASS. */
4317 if (old->n.tb->nopass && !proc->n.tb->nopass)
4318 {
4319 gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
4320 " NOPASS", proc->name, &where);
4321 return false;
4322 }
4323
4324 /* If the overridden binding is PASS(x), the overriding one must also be
4325 PASS and the passed-object dummy arguments must correspond. */
4326 if (!old->n.tb->nopass)
4327 {
4328 if (proc->n.tb->nopass)
4329 {
4330 gfc_error ("%qs at %L overrides a binding with PASS and must also be"
4331 " PASS", proc->name, &where);
4332 return false;
4333 }
4334
4335 if (proc_pass_arg != old_pass_arg)
4336 {
4337 gfc_error ("Passed-object dummy argument of %qs at %L must be at"
4338 " the same position as the passed-object dummy argument of"
4339 " the overridden procedure", proc->name, &where);
4340 return false;
4341 }
4342 }
4343
4344 return true;
4345 }