]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/target-memory.c
2013-03-25 Tobias Burnus <burnus@net-b.de>
[thirdparty/gcc.git] / gcc / fortran / target-memory.c
1 /* Simulate storage of variables into target memory.
2 Copyright (C) 2007-2013 Free Software Foundation, Inc.
3 Contributed by Paul Thomas and Brooks Moses
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "flags.h"
25 #include "machmode.h"
26 #include "tree.h"
27 #include "gfortran.h"
28 #include "arith.h"
29 #include "constructor.h"
30 #include "trans.h"
31 #include "trans-const.h"
32 #include "trans-types.h"
33 #include "target-memory.h"
34
35 /* --------------------------------------------------------------- */
36 /* Calculate the size of an expression. */
37
38 static size_t
39 size_array (gfc_expr *e)
40 {
41 mpz_t array_size;
42 gfc_constructor *c = gfc_constructor_first (e->value.constructor);
43 size_t elt_size = gfc_target_expr_size (c->expr);
44
45 gfc_array_size (e, &array_size);
46 return (size_t)mpz_get_ui (array_size) * elt_size;
47 }
48
49 static size_t
50 size_integer (int kind)
51 {
52 return GET_MODE_SIZE (TYPE_MODE (gfc_get_int_type (kind)));;
53 }
54
55
56 static size_t
57 size_float (int kind)
58 {
59 return GET_MODE_SIZE (TYPE_MODE (gfc_get_real_type (kind)));;
60 }
61
62
63 static size_t
64 size_complex (int kind)
65 {
66 return 2 * size_float (kind);
67 }
68
69
70 static size_t
71 size_logical (int kind)
72 {
73 return GET_MODE_SIZE (TYPE_MODE (gfc_get_logical_type (kind)));;
74 }
75
76
77 static size_t
78 size_character (int length, int kind)
79 {
80 int i = gfc_validate_kind (BT_CHARACTER, kind, false);
81 return length * gfc_character_kinds[i].bit_size / 8;
82 }
83
84
85 size_t
86 gfc_target_expr_size (gfc_expr *e)
87 {
88 tree type;
89
90 gcc_assert (e != NULL);
91
92 if (e->expr_type == EXPR_ARRAY)
93 return size_array (e);
94
95 switch (e->ts.type)
96 {
97 case BT_INTEGER:
98 return size_integer (e->ts.kind);
99 case BT_REAL:
100 return size_float (e->ts.kind);
101 case BT_COMPLEX:
102 return size_complex (e->ts.kind);
103 case BT_LOGICAL:
104 return size_logical (e->ts.kind);
105 case BT_CHARACTER:
106 if (e->expr_type == EXPR_CONSTANT)
107 return size_character (e->value.character.length, e->ts.kind);
108 else if (e->ts.u.cl != NULL && e->ts.u.cl->length != NULL
109 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT
110 && e->ts.u.cl->length->ts.type == BT_INTEGER)
111 {
112 int length;
113
114 gfc_extract_int (e->ts.u.cl->length, &length);
115 return size_character (length, e->ts.kind);
116 }
117 else
118 return 0;
119
120 case BT_HOLLERITH:
121 return e->representation.length;
122 case BT_DERIVED:
123 case BT_CLASS:
124 {
125 /* Determine type size without clobbering the typespec for ISO C
126 binding types. */
127 gfc_typespec ts;
128 HOST_WIDE_INT size;
129 ts = e->ts;
130 type = gfc_typenode_for_spec (&ts);
131 size = int_size_in_bytes (type);
132 gcc_assert (size >= 0);
133 return size;
134 }
135 default:
136 gfc_internal_error ("Invalid expression in gfc_target_expr_size.");
137 return 0;
138 }
139 }
140
141
142 /* The encode_* functions export a value into a buffer, and
143 return the number of bytes of the buffer that have been
144 used. */
145
146 static unsigned HOST_WIDE_INT
147 encode_array (gfc_expr *expr, unsigned char *buffer, size_t buffer_size)
148 {
149 mpz_t array_size;
150 int i;
151 int ptr = 0;
152
153 gfc_constructor_base ctor = expr->value.constructor;
154
155 gfc_array_size (expr, &array_size);
156 for (i = 0; i < (int)mpz_get_ui (array_size); i++)
157 {
158 ptr += gfc_target_encode_expr (gfc_constructor_lookup_expr (ctor, i),
159 &buffer[ptr], buffer_size - ptr);
160 }
161
162 mpz_clear (array_size);
163 return ptr;
164 }
165
166
167 static int
168 encode_integer (int kind, mpz_t integer, unsigned char *buffer,
169 size_t buffer_size)
170 {
171 return native_encode_expr (gfc_conv_mpz_to_tree (integer, kind),
172 buffer, buffer_size);
173 }
174
175
176 static int
177 encode_float (int kind, mpfr_t real, unsigned char *buffer, size_t buffer_size)
178 {
179 return native_encode_expr (gfc_conv_mpfr_to_tree (real, kind, 0), buffer,
180 buffer_size);
181 }
182
183
184 static int
185 encode_complex (int kind, mpc_t cmplx,
186 unsigned char *buffer, size_t buffer_size)
187 {
188 int size;
189 size = encode_float (kind, mpc_realref (cmplx), &buffer[0], buffer_size);
190 size += encode_float (kind, mpc_imagref (cmplx),
191 &buffer[size], buffer_size - size);
192 return size;
193 }
194
195
196 static int
197 encode_logical (int kind, int logical, unsigned char *buffer, size_t buffer_size)
198 {
199 return native_encode_expr (build_int_cst (gfc_get_logical_type (kind),
200 logical),
201 buffer, buffer_size);
202 }
203
204
205 int
206 gfc_encode_character (int kind, int length, const gfc_char_t *string,
207 unsigned char *buffer, size_t buffer_size)
208 {
209 size_t elsize = size_character (1, kind);
210 tree type = gfc_get_char_type (kind);
211 int i;
212
213 gcc_assert (buffer_size >= size_character (length, kind));
214
215 for (i = 0; i < length; i++)
216 native_encode_expr (build_int_cst (type, string[i]), &buffer[i*elsize],
217 elsize);
218
219 return length;
220 }
221
222
223 static unsigned HOST_WIDE_INT
224 encode_derived (gfc_expr *source, unsigned char *buffer, size_t buffer_size)
225 {
226 gfc_constructor *c;
227 gfc_component *cmp;
228 int ptr;
229 tree type;
230 HOST_WIDE_INT size;
231
232 type = gfc_typenode_for_spec (&source->ts);
233
234 for (c = gfc_constructor_first (source->value.constructor),
235 cmp = source->ts.u.derived->components;
236 c;
237 c = gfc_constructor_next (c), cmp = cmp->next)
238 {
239 gcc_assert (cmp);
240 if (!c->expr)
241 continue;
242 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
243 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
244
245 if (c->expr->expr_type == EXPR_NULL)
246 {
247 size = int_size_in_bytes (TREE_TYPE (cmp->backend_decl));
248 gcc_assert (size >= 0);
249 memset (&buffer[ptr], 0, size);
250 }
251 else
252 gfc_target_encode_expr (c->expr, &buffer[ptr],
253 buffer_size - ptr);
254 }
255
256 size = int_size_in_bytes (type);
257 gcc_assert (size >= 0);
258 return size;
259 }
260
261
262 /* Write a constant expression in binary form to a buffer. */
263 unsigned HOST_WIDE_INT
264 gfc_target_encode_expr (gfc_expr *source, unsigned char *buffer,
265 size_t buffer_size)
266 {
267 if (source == NULL)
268 return 0;
269
270 if (source->expr_type == EXPR_ARRAY)
271 return encode_array (source, buffer, buffer_size);
272
273 gcc_assert (source->expr_type == EXPR_CONSTANT
274 || source->expr_type == EXPR_STRUCTURE
275 || source->expr_type == EXPR_SUBSTRING);
276
277 /* If we already have a target-memory representation, we use that rather
278 than recreating one. */
279 if (source->representation.string)
280 {
281 memcpy (buffer, source->representation.string,
282 source->representation.length);
283 return source->representation.length;
284 }
285
286 switch (source->ts.type)
287 {
288 case BT_INTEGER:
289 return encode_integer (source->ts.kind, source->value.integer, buffer,
290 buffer_size);
291 case BT_REAL:
292 return encode_float (source->ts.kind, source->value.real, buffer,
293 buffer_size);
294 case BT_COMPLEX:
295 return encode_complex (source->ts.kind, source->value.complex,
296 buffer, buffer_size);
297 case BT_LOGICAL:
298 return encode_logical (source->ts.kind, source->value.logical, buffer,
299 buffer_size);
300 case BT_CHARACTER:
301 if (source->expr_type == EXPR_CONSTANT || source->ref == NULL)
302 return gfc_encode_character (source->ts.kind,
303 source->value.character.length,
304 source->value.character.string,
305 buffer, buffer_size);
306 else
307 {
308 int start, end;
309
310 gcc_assert (source->expr_type == EXPR_SUBSTRING);
311 gfc_extract_int (source->ref->u.ss.start, &start);
312 gfc_extract_int (source->ref->u.ss.end, &end);
313 return gfc_encode_character (source->ts.kind, MAX(end - start + 1, 0),
314 &source->value.character.string[start-1],
315 buffer, buffer_size);
316 }
317
318 case BT_DERIVED:
319 if (source->ts.u.derived->ts.f90_type == BT_VOID)
320 {
321 gfc_constructor *c;
322 gcc_assert (source->expr_type == EXPR_STRUCTURE);
323 c = gfc_constructor_first (source->value.constructor);
324 gcc_assert (c->expr->expr_type == EXPR_CONSTANT
325 && c->expr->ts.type == BT_INTEGER);
326 return encode_integer (gfc_index_integer_kind, c->expr->value.integer,
327 buffer, buffer_size);
328 }
329
330 return encode_derived (source, buffer, buffer_size);
331 default:
332 gfc_internal_error ("Invalid expression in gfc_target_encode_expr.");
333 return 0;
334 }
335 }
336
337
338 static int
339 interpret_array (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
340 {
341 gfc_constructor_base base = NULL;
342 int array_size = 1;
343 int i;
344 int ptr = 0;
345
346 /* Calculate array size from its shape and rank. */
347 gcc_assert (result->rank > 0 && result->shape);
348
349 for (i = 0; i < result->rank; i++)
350 array_size *= (int)mpz_get_ui (result->shape[i]);
351
352 /* Iterate over array elements, producing constructors. */
353 for (i = 0; i < array_size; i++)
354 {
355 gfc_expr *e = gfc_get_constant_expr (result->ts.type, result->ts.kind,
356 &result->where);
357 e->ts = result->ts;
358
359 if (e->ts.type == BT_CHARACTER)
360 e->value.character.length = result->value.character.length;
361
362 gfc_constructor_append_expr (&base, e, &result->where);
363
364 ptr += gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e,
365 true);
366 }
367
368 result->value.constructor = base;
369 return ptr;
370 }
371
372
373 int
374 gfc_interpret_integer (int kind, unsigned char *buffer, size_t buffer_size,
375 mpz_t integer)
376 {
377 mpz_init (integer);
378 gfc_conv_tree_to_mpz (integer,
379 native_interpret_expr (gfc_get_int_type (kind),
380 buffer, buffer_size));
381 return size_integer (kind);
382 }
383
384
385 int
386 gfc_interpret_float (int kind, unsigned char *buffer, size_t buffer_size,
387 mpfr_t real)
388 {
389 gfc_set_model_kind (kind);
390 mpfr_init (real);
391 gfc_conv_tree_to_mpfr (real,
392 native_interpret_expr (gfc_get_real_type (kind),
393 buffer, buffer_size));
394
395 return size_float (kind);
396 }
397
398
399 int
400 gfc_interpret_complex (int kind, unsigned char *buffer, size_t buffer_size,
401 mpc_t complex)
402 {
403 int size;
404 size = gfc_interpret_float (kind, &buffer[0], buffer_size,
405 mpc_realref (complex));
406 size += gfc_interpret_float (kind, &buffer[size], buffer_size - size,
407 mpc_imagref (complex));
408 return size;
409 }
410
411
412 int
413 gfc_interpret_logical (int kind, unsigned char *buffer, size_t buffer_size,
414 int *logical)
415 {
416 tree t = native_interpret_expr (gfc_get_logical_type (kind), buffer,
417 buffer_size);
418 *logical = tree_to_double_int (t).is_zero () ? 0 : 1;
419 return size_logical (kind);
420 }
421
422
423 int
424 gfc_interpret_character (unsigned char *buffer, size_t buffer_size,
425 gfc_expr *result)
426 {
427 int i;
428
429 if (result->ts.u.cl && result->ts.u.cl->length)
430 result->value.character.length =
431 (int) mpz_get_ui (result->ts.u.cl->length->value.integer);
432
433 gcc_assert (buffer_size >= size_character (result->value.character.length,
434 result->ts.kind));
435 result->value.character.string =
436 gfc_get_wide_string (result->value.character.length + 1);
437
438 if (result->ts.kind == gfc_default_character_kind)
439 for (i = 0; i < result->value.character.length; i++)
440 result->value.character.string[i] = (gfc_char_t) buffer[i];
441 else
442 {
443 mpz_t integer;
444 unsigned bytes = size_character (1, result->ts.kind);
445 mpz_init (integer);
446 gcc_assert (bytes <= sizeof (unsigned long));
447
448 for (i = 0; i < result->value.character.length; i++)
449 {
450 gfc_conv_tree_to_mpz (integer,
451 native_interpret_expr (gfc_get_char_type (result->ts.kind),
452 &buffer[bytes*i], buffer_size-bytes*i));
453 result->value.character.string[i]
454 = (gfc_char_t) mpz_get_ui (integer);
455 }
456
457 mpz_clear (integer);
458 }
459
460 result->value.character.string[result->value.character.length] = '\0';
461
462 return result->value.character.length;
463 }
464
465
466 int
467 gfc_interpret_derived (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
468 {
469 gfc_component *cmp;
470 int ptr;
471 tree type;
472
473 /* The attributes of the derived type need to be bolted to the floor. */
474 result->expr_type = EXPR_STRUCTURE;
475
476 cmp = result->ts.u.derived->components;
477
478 if (result->ts.u.derived->from_intmod == INTMOD_ISO_C_BINDING
479 && (result->ts.u.derived->intmod_sym_id == ISOCBINDING_PTR
480 || result->ts.u.derived->intmod_sym_id == ISOCBINDING_FUNPTR))
481 {
482 gfc_constructor *c;
483 gfc_expr *e;
484 /* Needed as gfc_typenode_for_spec as gfc_typenode_for_spec
485 sets this to BT_INTEGER. */
486 result->ts.type = BT_DERIVED;
487 e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind, &result->where);
488 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL);
489 c->n.component = cmp;
490 gfc_target_interpret_expr (buffer, buffer_size, e, true);
491 e->ts.is_iso_c = 1;
492 return int_size_in_bytes (ptr_type_node);
493 }
494
495 type = gfc_typenode_for_spec (&result->ts);
496
497 /* Run through the derived type components. */
498 for (;cmp; cmp = cmp->next)
499 {
500 gfc_constructor *c;
501 gfc_expr *e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind,
502 &result->where);
503 e->ts = cmp->ts;
504
505 /* Copy shape, if needed. */
506 if (cmp->as && cmp->as->rank)
507 {
508 int n;
509
510 e->expr_type = EXPR_ARRAY;
511 e->rank = cmp->as->rank;
512
513 e->shape = gfc_get_shape (e->rank);
514 for (n = 0; n < e->rank; n++)
515 {
516 mpz_init_set_ui (e->shape[n], 1);
517 mpz_add (e->shape[n], e->shape[n],
518 cmp->as->upper[n]->value.integer);
519 mpz_sub (e->shape[n], e->shape[n],
520 cmp->as->lower[n]->value.integer);
521 }
522 }
523
524 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL);
525
526 /* The constructor points to the component. */
527 c->n.component = cmp;
528
529 /* Calculate the offset, which consists of the FIELD_OFFSET in
530 bytes, which appears in multiples of DECL_OFFSET_ALIGN-bit-sized,
531 and additional bits of FIELD_BIT_OFFSET. The code assumes that all
532 sizes of the components are multiples of BITS_PER_UNIT,
533 i.e. there are, e.g., no bit fields. */
534
535 gcc_assert (cmp->backend_decl);
536 ptr = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (cmp->backend_decl));
537 gcc_assert (ptr % 8 == 0);
538 ptr = ptr/8 + TREE_INT_CST_LOW (DECL_FIELD_OFFSET (cmp->backend_decl));
539
540 gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e, true);
541 }
542
543 return int_size_in_bytes (type);
544 }
545
546
547 /* Read a binary buffer to a constant expression. */
548 int
549 gfc_target_interpret_expr (unsigned char *buffer, size_t buffer_size,
550 gfc_expr *result, bool convert_widechar)
551 {
552 if (result->expr_type == EXPR_ARRAY)
553 return interpret_array (buffer, buffer_size, result);
554
555 switch (result->ts.type)
556 {
557 case BT_INTEGER:
558 result->representation.length =
559 gfc_interpret_integer (result->ts.kind, buffer, buffer_size,
560 result->value.integer);
561 break;
562
563 case BT_REAL:
564 result->representation.length =
565 gfc_interpret_float (result->ts.kind, buffer, buffer_size,
566 result->value.real);
567 break;
568
569 case BT_COMPLEX:
570 result->representation.length =
571 gfc_interpret_complex (result->ts.kind, buffer, buffer_size,
572 result->value.complex);
573 break;
574
575 case BT_LOGICAL:
576 result->representation.length =
577 gfc_interpret_logical (result->ts.kind, buffer, buffer_size,
578 &result->value.logical);
579 break;
580
581 case BT_CHARACTER:
582 result->representation.length =
583 gfc_interpret_character (buffer, buffer_size, result);
584 break;
585
586 case BT_CLASS:
587 result->ts = CLASS_DATA (result)->ts;
588 /* Fall through. */
589 case BT_DERIVED:
590 result->representation.length =
591 gfc_interpret_derived (buffer, buffer_size, result);
592 gcc_assert (result->representation.length >= 0);
593 break;
594
595 default:
596 gfc_internal_error ("Invalid expression in gfc_target_interpret_expr.");
597 break;
598 }
599
600 if (result->ts.type == BT_CHARACTER && convert_widechar)
601 result->representation.string
602 = gfc_widechar_to_char (result->value.character.string,
603 result->value.character.length);
604 else
605 {
606 result->representation.string =
607 XCNEWVEC (char, result->representation.length + 1);
608 memcpy (result->representation.string, buffer,
609 result->representation.length);
610 result->representation.string[result->representation.length] = '\0';
611 }
612
613 return result->representation.length;
614 }
615
616
617 /* --------------------------------------------------------------- */
618 /* Two functions used by trans-common.c to write overlapping
619 equivalence initializers to a buffer. This is added to the union
620 and the original initializers freed. */
621
622
623 /* Writes the values of a constant expression to a char buffer. If another
624 unequal initializer has already been written to the buffer, this is an
625 error. */
626
627 static size_t
628 expr_to_char (gfc_expr *e, unsigned char *data, unsigned char *chk, size_t len)
629 {
630 int i;
631 int ptr;
632 gfc_constructor *c;
633 gfc_component *cmp;
634 unsigned char *buffer;
635
636 if (e == NULL)
637 return 0;
638
639 /* Take a derived type, one component at a time, using the offsets from the backend
640 declaration. */
641 if (e->ts.type == BT_DERIVED)
642 {
643 for (c = gfc_constructor_first (e->value.constructor),
644 cmp = e->ts.u.derived->components;
645 c; c = gfc_constructor_next (c), cmp = cmp->next)
646 {
647 gcc_assert (cmp && cmp->backend_decl);
648 if (!c->expr)
649 continue;
650 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
651 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
652 expr_to_char (c->expr, &data[ptr], &chk[ptr], len);
653 }
654 return len;
655 }
656
657 /* Otherwise, use the target-memory machinery to write a bitwise image, appropriate
658 to the target, in a buffer and check off the initialized part of the buffer. */
659 len = gfc_target_expr_size (e);
660 buffer = (unsigned char*)alloca (len);
661 len = gfc_target_encode_expr (e, buffer, len);
662
663 for (i = 0; i < (int)len; i++)
664 {
665 if (chk[i] && (buffer[i] != data[i]))
666 {
667 gfc_error ("Overlapping unequal initializers in EQUIVALENCE "
668 "at %L", &e->where);
669 return 0;
670 }
671 chk[i] = 0xFF;
672 }
673
674 memcpy (data, buffer, len);
675 return len;
676 }
677
678
679 /* Writes the values from the equivalence initializers to a char* array
680 that will be written to the constructor to make the initializer for
681 the union declaration. */
682
683 size_t
684 gfc_merge_initializers (gfc_typespec ts, gfc_expr *e, unsigned char *data,
685 unsigned char *chk, size_t length)
686 {
687 size_t len = 0;
688 gfc_constructor * c;
689
690 switch (e->expr_type)
691 {
692 case EXPR_CONSTANT:
693 case EXPR_STRUCTURE:
694 len = expr_to_char (e, &data[0], &chk[0], length);
695
696 break;
697
698 case EXPR_ARRAY:
699 for (c = gfc_constructor_first (e->value.constructor);
700 c; c = gfc_constructor_next (c))
701 {
702 size_t elt_size = gfc_target_expr_size (c->expr);
703
704 if (mpz_cmp_si (c->offset, 0) != 0)
705 len = elt_size * (size_t)mpz_get_si (c->offset);
706
707 len = len + gfc_merge_initializers (ts, c->expr, &data[len],
708 &chk[len], length - len);
709 }
710 break;
711
712 default:
713 return 0;
714 }
715
716 return len;
717 }
718
719
720 /* Transfer the bitpattern of a (integer) BOZ to real or complex variables.
721 When successful, no BOZ or nothing to do, true is returned. */
722
723 bool
724 gfc_convert_boz (gfc_expr *expr, gfc_typespec *ts)
725 {
726 size_t buffer_size, boz_bit_size, ts_bit_size;
727 int index;
728 unsigned char *buffer;
729
730 if (!expr->is_boz)
731 return true;
732
733 gcc_assert (expr->expr_type == EXPR_CONSTANT
734 && expr->ts.type == BT_INTEGER);
735
736 /* Don't convert BOZ to logical, character, derived etc. */
737 if (ts->type == BT_REAL)
738 {
739 buffer_size = size_float (ts->kind);
740 ts_bit_size = buffer_size * 8;
741 }
742 else if (ts->type == BT_COMPLEX)
743 {
744 buffer_size = size_complex (ts->kind);
745 ts_bit_size = buffer_size * 8 / 2;
746 }
747 else
748 return true;
749
750 /* Convert BOZ to the smallest possible integer kind. */
751 boz_bit_size = mpz_sizeinbase (expr->value.integer, 2);
752
753 if (boz_bit_size > ts_bit_size)
754 {
755 gfc_error_now ("BOZ constant at %L is too large (%ld vs %ld bits)",
756 &expr->where, (long) boz_bit_size, (long) ts_bit_size);
757 return false;
758 }
759
760 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
761 if ((unsigned) gfc_integer_kinds[index].bit_size >= ts_bit_size)
762 break;
763
764 expr->ts.kind = gfc_integer_kinds[index].kind;
765 buffer_size = MAX (buffer_size, size_integer (expr->ts.kind));
766
767 buffer = (unsigned char*)alloca (buffer_size);
768 encode_integer (expr->ts.kind, expr->value.integer, buffer, buffer_size);
769 mpz_clear (expr->value.integer);
770
771 if (ts->type == BT_REAL)
772 {
773 mpfr_init (expr->value.real);
774 gfc_interpret_float (ts->kind, buffer, buffer_size, expr->value.real);
775 }
776 else
777 {
778 mpc_init2 (expr->value.complex, mpfr_get_default_prec());
779 gfc_interpret_complex (ts->kind, buffer, buffer_size,
780 expr->value.complex);
781 }
782 expr->is_boz = 0;
783 expr->ts.type = ts->type;
784 expr->ts.kind = ts->kind;
785
786 return true;
787 }