]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/target-memory.c
2010-12-18 Tobias Burnus <burnus@net-b.de>
[thirdparty/gcc.git] / gcc / fortran / target-memory.c
1 /* Simulate storage of variables into target memory.
2 Copyright (C) 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paul Thomas and Brooks Moses
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "flags.h"
25 #include "machmode.h"
26 #include "tree.h"
27 #include "gfortran.h"
28 #include "arith.h"
29 #include "constructor.h"
30 #include "trans.h"
31 #include "trans-const.h"
32 #include "trans-types.h"
33 #include "target-memory.h"
34
35 /* --------------------------------------------------------------- */
36 /* Calculate the size of an expression. */
37
38 static size_t
39 size_array (gfc_expr *e)
40 {
41 mpz_t array_size;
42 gfc_constructor *c = gfc_constructor_first (e->value.constructor);
43 size_t elt_size = gfc_target_expr_size (c->expr);
44
45 gfc_array_size (e, &array_size);
46 return (size_t)mpz_get_ui (array_size) * elt_size;
47 }
48
49 static size_t
50 size_integer (int kind)
51 {
52 return GET_MODE_SIZE (TYPE_MODE (gfc_get_int_type (kind)));;
53 }
54
55
56 static size_t
57 size_float (int kind)
58 {
59 return GET_MODE_SIZE (TYPE_MODE (gfc_get_real_type (kind)));;
60 }
61
62
63 static size_t
64 size_complex (int kind)
65 {
66 return 2 * size_float (kind);
67 }
68
69
70 static size_t
71 size_logical (int kind)
72 {
73 return GET_MODE_SIZE (TYPE_MODE (gfc_get_logical_type (kind)));;
74 }
75
76
77 static size_t
78 size_character (int length, int kind)
79 {
80 int i = gfc_validate_kind (BT_CHARACTER, kind, false);
81 return length * gfc_character_kinds[i].bit_size / 8;
82 }
83
84
85 size_t
86 gfc_target_expr_size (gfc_expr *e)
87 {
88 tree type;
89
90 gcc_assert (e != NULL);
91
92 if (e->expr_type == EXPR_ARRAY)
93 return size_array (e);
94
95 switch (e->ts.type)
96 {
97 case BT_INTEGER:
98 return size_integer (e->ts.kind);
99 case BT_REAL:
100 return size_float (e->ts.kind);
101 case BT_COMPLEX:
102 return size_complex (e->ts.kind);
103 case BT_LOGICAL:
104 return size_logical (e->ts.kind);
105 case BT_CHARACTER:
106 if (e->expr_type == EXPR_SUBSTRING && e->ref)
107 {
108 int start, end;
109
110 gfc_extract_int (e->ref->u.ss.start, &start);
111 gfc_extract_int (e->ref->u.ss.end, &end);
112 return size_character (MAX(end - start + 1, 0), e->ts.kind);
113 }
114 else
115 return size_character (e->value.character.length, e->ts.kind);
116 case BT_HOLLERITH:
117 return e->representation.length;
118 case BT_DERIVED:
119 type = gfc_typenode_for_spec (&e->ts);
120 return int_size_in_bytes (type);
121 default:
122 gfc_internal_error ("Invalid expression in gfc_target_expr_size.");
123 return 0;
124 }
125 }
126
127
128 /* The encode_* functions export a value into a buffer, and
129 return the number of bytes of the buffer that have been
130 used. */
131
132 static int
133 encode_array (gfc_expr *expr, unsigned char *buffer, size_t buffer_size)
134 {
135 mpz_t array_size;
136 int i;
137 int ptr = 0;
138
139 gfc_constructor_base ctor = expr->value.constructor;
140
141 gfc_array_size (expr, &array_size);
142 for (i = 0; i < (int)mpz_get_ui (array_size); i++)
143 {
144 ptr += gfc_target_encode_expr (gfc_constructor_lookup_expr (ctor, i),
145 &buffer[ptr], buffer_size - ptr);
146 }
147
148 mpz_clear (array_size);
149 return ptr;
150 }
151
152
153 static int
154 encode_integer (int kind, mpz_t integer, unsigned char *buffer,
155 size_t buffer_size)
156 {
157 return native_encode_expr (gfc_conv_mpz_to_tree (integer, kind),
158 buffer, buffer_size);
159 }
160
161
162 static int
163 encode_float (int kind, mpfr_t real, unsigned char *buffer, size_t buffer_size)
164 {
165 return native_encode_expr (gfc_conv_mpfr_to_tree (real, kind, 0), buffer,
166 buffer_size);
167 }
168
169
170 static int
171 encode_complex (int kind, mpc_t cmplx,
172 unsigned char *buffer, size_t buffer_size)
173 {
174 int size;
175 size = encode_float (kind, mpc_realref (cmplx), &buffer[0], buffer_size);
176 size += encode_float (kind, mpc_imagref (cmplx),
177 &buffer[size], buffer_size - size);
178 return size;
179 }
180
181
182 static int
183 encode_logical (int kind, int logical, unsigned char *buffer, size_t buffer_size)
184 {
185 return native_encode_expr (build_int_cst (gfc_get_logical_type (kind),
186 logical),
187 buffer, buffer_size);
188 }
189
190
191 int
192 gfc_encode_character (int kind, int length, const gfc_char_t *string,
193 unsigned char *buffer, size_t buffer_size)
194 {
195 size_t elsize = size_character (1, kind);
196 tree type = gfc_get_char_type (kind);
197 int i;
198
199 gcc_assert (buffer_size >= size_character (length, kind));
200
201 for (i = 0; i < length; i++)
202 native_encode_expr (build_int_cst (type, string[i]), &buffer[i*elsize],
203 elsize);
204
205 return length;
206 }
207
208
209 static int
210 encode_derived (gfc_expr *source, unsigned char *buffer, size_t buffer_size)
211 {
212 gfc_constructor *c;
213 gfc_component *cmp;
214 int ptr;
215 tree type;
216
217 type = gfc_typenode_for_spec (&source->ts);
218
219 for (c = gfc_constructor_first (source->value.constructor),
220 cmp = source->ts.u.derived->components;
221 c;
222 c = gfc_constructor_next (c), cmp = cmp->next)
223 {
224 gcc_assert (cmp);
225 if (!c->expr)
226 continue;
227 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
228 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
229
230 if (c->expr->expr_type == EXPR_NULL)
231 memset (&buffer[ptr], 0,
232 int_size_in_bytes (TREE_TYPE (cmp->backend_decl)));
233 else
234 gfc_target_encode_expr (c->expr, &buffer[ptr],
235 buffer_size - ptr);
236 }
237
238 return int_size_in_bytes (type);
239 }
240
241
242 /* Write a constant expression in binary form to a buffer. */
243 int
244 gfc_target_encode_expr (gfc_expr *source, unsigned char *buffer,
245 size_t buffer_size)
246 {
247 if (source == NULL)
248 return 0;
249
250 if (source->expr_type == EXPR_ARRAY)
251 return encode_array (source, buffer, buffer_size);
252
253 gcc_assert (source->expr_type == EXPR_CONSTANT
254 || source->expr_type == EXPR_STRUCTURE
255 || source->expr_type == EXPR_SUBSTRING);
256
257 /* If we already have a target-memory representation, we use that rather
258 than recreating one. */
259 if (source->representation.string)
260 {
261 memcpy (buffer, source->representation.string,
262 source->representation.length);
263 return source->representation.length;
264 }
265
266 switch (source->ts.type)
267 {
268 case BT_INTEGER:
269 return encode_integer (source->ts.kind, source->value.integer, buffer,
270 buffer_size);
271 case BT_REAL:
272 return encode_float (source->ts.kind, source->value.real, buffer,
273 buffer_size);
274 case BT_COMPLEX:
275 return encode_complex (source->ts.kind, source->value.complex,
276 buffer, buffer_size);
277 case BT_LOGICAL:
278 return encode_logical (source->ts.kind, source->value.logical, buffer,
279 buffer_size);
280 case BT_CHARACTER:
281 if (source->expr_type == EXPR_CONSTANT || source->ref == NULL)
282 return gfc_encode_character (source->ts.kind,
283 source->value.character.length,
284 source->value.character.string,
285 buffer, buffer_size);
286 else
287 {
288 int start, end;
289
290 gcc_assert (source->expr_type == EXPR_SUBSTRING);
291 gfc_extract_int (source->ref->u.ss.start, &start);
292 gfc_extract_int (source->ref->u.ss.end, &end);
293 return gfc_encode_character (source->ts.kind, MAX(end - start + 1, 0),
294 &source->value.character.string[start-1],
295 buffer, buffer_size);
296 }
297
298 case BT_DERIVED:
299 return encode_derived (source, buffer, buffer_size);
300 default:
301 gfc_internal_error ("Invalid expression in gfc_target_encode_expr.");
302 return 0;
303 }
304 }
305
306
307 static int
308 interpret_array (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
309 {
310 gfc_constructor_base base = NULL;
311 int array_size = 1;
312 int i;
313 int ptr = 0;
314
315 /* Calculate array size from its shape and rank. */
316 gcc_assert (result->rank > 0 && result->shape);
317
318 for (i = 0; i < result->rank; i++)
319 array_size *= (int)mpz_get_ui (result->shape[i]);
320
321 /* Iterate over array elements, producing constructors. */
322 for (i = 0; i < array_size; i++)
323 {
324 gfc_expr *e = gfc_get_constant_expr (result->ts.type, result->ts.kind,
325 &result->where);
326 e->ts = result->ts;
327
328 if (e->ts.type == BT_CHARACTER)
329 e->value.character.length = result->value.character.length;
330
331 gfc_constructor_append_expr (&base, e, &result->where);
332
333 ptr += gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e);
334 }
335
336 result->value.constructor = base;
337 return ptr;
338 }
339
340
341 int
342 gfc_interpret_integer (int kind, unsigned char *buffer, size_t buffer_size,
343 mpz_t integer)
344 {
345 mpz_init (integer);
346 gfc_conv_tree_to_mpz (integer,
347 native_interpret_expr (gfc_get_int_type (kind),
348 buffer, buffer_size));
349 return size_integer (kind);
350 }
351
352
353 int
354 gfc_interpret_float (int kind, unsigned char *buffer, size_t buffer_size,
355 mpfr_t real)
356 {
357 gfc_set_model_kind (kind);
358 mpfr_init (real);
359 gfc_conv_tree_to_mpfr (real,
360 native_interpret_expr (gfc_get_real_type (kind),
361 buffer, buffer_size));
362
363 return size_float (kind);
364 }
365
366
367 int
368 gfc_interpret_complex (int kind, unsigned char *buffer, size_t buffer_size,
369 mpc_t complex)
370 {
371 int size;
372 size = gfc_interpret_float (kind, &buffer[0], buffer_size,
373 mpc_realref (complex));
374 size += gfc_interpret_float (kind, &buffer[size], buffer_size - size,
375 mpc_imagref (complex));
376 return size;
377 }
378
379
380 int
381 gfc_interpret_logical (int kind, unsigned char *buffer, size_t buffer_size,
382 int *logical)
383 {
384 tree t = native_interpret_expr (gfc_get_logical_type (kind), buffer,
385 buffer_size);
386 *logical = double_int_zero_p (tree_to_double_int (t))
387 ? 0 : 1;
388 return size_logical (kind);
389 }
390
391
392 int
393 gfc_interpret_character (unsigned char *buffer, size_t buffer_size,
394 gfc_expr *result)
395 {
396 int i;
397
398 if (result->ts.u.cl && result->ts.u.cl->length)
399 result->value.character.length =
400 (int) mpz_get_ui (result->ts.u.cl->length->value.integer);
401
402 gcc_assert (buffer_size >= size_character (result->value.character.length,
403 result->ts.kind));
404 result->value.character.string =
405 gfc_get_wide_string (result->value.character.length + 1);
406
407 if (result->ts.kind == gfc_default_character_kind)
408 for (i = 0; i < result->value.character.length; i++)
409 result->value.character.string[i] = (gfc_char_t) buffer[i];
410 else
411 {
412 mpz_t integer;
413 unsigned bytes = size_character (1, result->ts.kind);
414 mpz_init (integer);
415 gcc_assert (bytes <= sizeof (unsigned long));
416
417 for (i = 0; i < result->value.character.length; i++)
418 {
419 gfc_conv_tree_to_mpz (integer,
420 native_interpret_expr (gfc_get_char_type (result->ts.kind),
421 &buffer[bytes*i], buffer_size-bytes*i));
422 result->value.character.string[i]
423 = (gfc_char_t) mpz_get_ui (integer);
424 }
425
426 mpz_clear (integer);
427 }
428
429 result->value.character.string[result->value.character.length] = '\0';
430
431 return result->value.character.length;
432 }
433
434
435 int
436 gfc_interpret_derived (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
437 {
438 gfc_component *cmp;
439 int ptr;
440 tree type;
441
442 /* The attributes of the derived type need to be bolted to the floor. */
443 result->expr_type = EXPR_STRUCTURE;
444
445 cmp = result->ts.u.derived->components;
446
447 if (result->ts.u.derived->from_intmod == INTMOD_ISO_C_BINDING
448 && (result->ts.u.derived->intmod_sym_id == ISOCBINDING_PTR
449 || result->ts.u.derived->intmod_sym_id == ISOCBINDING_FUNPTR))
450 {
451 gfc_constructor *c;
452 gfc_expr *e;
453 /* Needed as gfc_typenode_for_spec as gfc_typenode_for_spec
454 sets this to BT_INTEGER. */
455 result->ts.type = BT_DERIVED;
456 e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind, &result->where);
457 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL);
458 c->n.component = cmp;
459 gfc_target_interpret_expr (buffer, buffer_size, e);
460 e->ts.is_iso_c = 1;
461 return int_size_in_bytes (ptr_type_node);
462 }
463
464 type = gfc_typenode_for_spec (&result->ts);
465
466 /* Run through the derived type components. */
467 for (;cmp; cmp = cmp->next)
468 {
469 gfc_constructor *c;
470 gfc_expr *e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind,
471 &result->where);
472 e->ts = cmp->ts;
473
474 /* Copy shape, if needed. */
475 if (cmp->as && cmp->as->rank)
476 {
477 int n;
478
479 e->expr_type = EXPR_ARRAY;
480 e->rank = cmp->as->rank;
481
482 e->shape = gfc_get_shape (e->rank);
483 for (n = 0; n < e->rank; n++)
484 {
485 mpz_init_set_ui (e->shape[n], 1);
486 mpz_add (e->shape[n], e->shape[n],
487 cmp->as->upper[n]->value.integer);
488 mpz_sub (e->shape[n], e->shape[n],
489 cmp->as->lower[n]->value.integer);
490 }
491 }
492
493 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL);
494
495 /* The constructor points to the component. */
496 c->n.component = cmp;
497
498 /* Calculate the offset, which consists of the the FIELD_OFFSET in
499 bytes, which appears in multiples of DECL_OFFSET_ALIGN-bit-sized,
500 and additional bits of FIELD_BIT_OFFSET. The code assumes that all
501 sizes of the components are multiples of BITS_PER_UNIT,
502 i.e. there are, e.g., no bit fields. */
503
504 gcc_assert (cmp->backend_decl);
505 ptr = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (cmp->backend_decl));
506 gcc_assert (ptr % 8 == 0);
507 ptr = ptr/8 + TREE_INT_CST_LOW (DECL_FIELD_OFFSET (cmp->backend_decl));
508
509 gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e);
510 }
511
512 return int_size_in_bytes (type);
513 }
514
515
516 /* Read a binary buffer to a constant expression. */
517 int
518 gfc_target_interpret_expr (unsigned char *buffer, size_t buffer_size,
519 gfc_expr *result)
520 {
521 if (result->expr_type == EXPR_ARRAY)
522 return interpret_array (buffer, buffer_size, result);
523
524 switch (result->ts.type)
525 {
526 case BT_INTEGER:
527 result->representation.length =
528 gfc_interpret_integer (result->ts.kind, buffer, buffer_size,
529 result->value.integer);
530 break;
531
532 case BT_REAL:
533 result->representation.length =
534 gfc_interpret_float (result->ts.kind, buffer, buffer_size,
535 result->value.real);
536 break;
537
538 case BT_COMPLEX:
539 result->representation.length =
540 gfc_interpret_complex (result->ts.kind, buffer, buffer_size,
541 result->value.complex);
542 break;
543
544 case BT_LOGICAL:
545 result->representation.length =
546 gfc_interpret_logical (result->ts.kind, buffer, buffer_size,
547 &result->value.logical);
548 break;
549
550 case BT_CHARACTER:
551 result->representation.length =
552 gfc_interpret_character (buffer, buffer_size, result);
553 break;
554
555 case BT_DERIVED:
556 result->representation.length =
557 gfc_interpret_derived (buffer, buffer_size, result);
558 break;
559
560 default:
561 gfc_internal_error ("Invalid expression in gfc_target_interpret_expr.");
562 break;
563 }
564
565 if (result->ts.type == BT_CHARACTER)
566 result->representation.string
567 = gfc_widechar_to_char (result->value.character.string,
568 result->value.character.length);
569 else
570 {
571 result->representation.string =
572 (char *) gfc_getmem (result->representation.length + 1);
573 memcpy (result->representation.string, buffer,
574 result->representation.length);
575 result->representation.string[result->representation.length] = '\0';
576 }
577
578 return result->representation.length;
579 }
580
581
582 /* --------------------------------------------------------------- */
583 /* Two functions used by trans-common.c to write overlapping
584 equivalence initializers to a buffer. This is added to the union
585 and the original initializers freed. */
586
587
588 /* Writes the values of a constant expression to a char buffer. If another
589 unequal initializer has already been written to the buffer, this is an
590 error. */
591
592 static size_t
593 expr_to_char (gfc_expr *e, unsigned char *data, unsigned char *chk, size_t len)
594 {
595 int i;
596 int ptr;
597 gfc_constructor *c;
598 gfc_component *cmp;
599 unsigned char *buffer;
600
601 if (e == NULL)
602 return 0;
603
604 /* Take a derived type, one component at a time, using the offsets from the backend
605 declaration. */
606 if (e->ts.type == BT_DERIVED)
607 {
608 for (c = gfc_constructor_first (e->value.constructor),
609 cmp = e->ts.u.derived->components;
610 c; c = gfc_constructor_next (c), cmp = cmp->next)
611 {
612 gcc_assert (cmp && cmp->backend_decl);
613 if (!c->expr)
614 continue;
615 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
616 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
617 expr_to_char (c->expr, &data[ptr], &chk[ptr], len);
618 }
619 return len;
620 }
621
622 /* Otherwise, use the target-memory machinery to write a bitwise image, appropriate
623 to the target, in a buffer and check off the initialized part of the buffer. */
624 len = gfc_target_expr_size (e);
625 buffer = (unsigned char*)alloca (len);
626 len = gfc_target_encode_expr (e, buffer, len);
627
628 for (i = 0; i < (int)len; i++)
629 {
630 if (chk[i] && (buffer[i] != data[i]))
631 {
632 gfc_error ("Overlapping unequal initializers in EQUIVALENCE "
633 "at %L", &e->where);
634 return 0;
635 }
636 chk[i] = 0xFF;
637 }
638
639 memcpy (data, buffer, len);
640 return len;
641 }
642
643
644 /* Writes the values from the equivalence initializers to a char* array
645 that will be written to the constructor to make the initializer for
646 the union declaration. */
647
648 size_t
649 gfc_merge_initializers (gfc_typespec ts, gfc_expr *e, unsigned char *data,
650 unsigned char *chk, size_t length)
651 {
652 size_t len = 0;
653 gfc_constructor * c;
654
655 switch (e->expr_type)
656 {
657 case EXPR_CONSTANT:
658 case EXPR_STRUCTURE:
659 len = expr_to_char (e, &data[0], &chk[0], length);
660
661 break;
662
663 case EXPR_ARRAY:
664 for (c = gfc_constructor_first (e->value.constructor);
665 c; c = gfc_constructor_next (c))
666 {
667 size_t elt_size = gfc_target_expr_size (c->expr);
668
669 if (c->offset)
670 len = elt_size * (size_t)mpz_get_si (c->offset);
671
672 len = len + gfc_merge_initializers (ts, c->expr, &data[len],
673 &chk[len], length - len);
674 }
675 break;
676
677 default:
678 return 0;
679 }
680
681 return len;
682 }
683
684
685 /* Transfer the bitpattern of a (integer) BOZ to real or complex variables.
686 When successful, no BOZ or nothing to do, true is returned. */
687
688 bool
689 gfc_convert_boz (gfc_expr *expr, gfc_typespec *ts)
690 {
691 size_t buffer_size, boz_bit_size, ts_bit_size;
692 int index;
693 unsigned char *buffer;
694
695 if (!expr->is_boz)
696 return true;
697
698 gcc_assert (expr->expr_type == EXPR_CONSTANT
699 && expr->ts.type == BT_INTEGER);
700
701 /* Don't convert BOZ to logical, character, derived etc. */
702 if (ts->type == BT_REAL)
703 {
704 buffer_size = size_float (ts->kind);
705 ts_bit_size = buffer_size * 8;
706 }
707 else if (ts->type == BT_COMPLEX)
708 {
709 buffer_size = size_complex (ts->kind);
710 ts_bit_size = buffer_size * 8 / 2;
711 }
712 else
713 return true;
714
715 /* Convert BOZ to the smallest possible integer kind. */
716 boz_bit_size = mpz_sizeinbase (expr->value.integer, 2);
717
718 if (boz_bit_size > ts_bit_size)
719 {
720 gfc_error_now ("BOZ constant at %L is too large (%ld vs %ld bits)",
721 &expr->where, (long) boz_bit_size, (long) ts_bit_size);
722 return false;
723 }
724
725 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
726 if ((unsigned) gfc_integer_kinds[index].bit_size >= ts_bit_size)
727 break;
728
729 expr->ts.kind = gfc_integer_kinds[index].kind;
730 buffer_size = MAX (buffer_size, size_integer (expr->ts.kind));
731
732 buffer = (unsigned char*)alloca (buffer_size);
733 encode_integer (expr->ts.kind, expr->value.integer, buffer, buffer_size);
734 mpz_clear (expr->value.integer);
735
736 if (ts->type == BT_REAL)
737 {
738 mpfr_init (expr->value.real);
739 gfc_interpret_float (ts->kind, buffer, buffer_size, expr->value.real);
740 }
741 else
742 {
743 mpc_init2 (expr->value.complex, mpfr_get_default_prec());
744 gfc_interpret_complex (ts->kind, buffer, buffer_size,
745 expr->value.complex);
746 }
747 expr->is_boz = 0;
748 expr->ts.type = ts->type;
749 expr->ts.kind = ts->kind;
750
751 return true;
752 }