]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/target-memory.c
Finish conversion of uses of double_int to the new API.
[thirdparty/gcc.git] / gcc / fortran / target-memory.c
1 /* Simulate storage of variables into target memory.
2 Copyright (C) 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paul Thomas and Brooks Moses
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "flags.h"
26 #include "machmode.h"
27 #include "tree.h"
28 #include "gfortran.h"
29 #include "arith.h"
30 #include "constructor.h"
31 #include "trans.h"
32 #include "trans-const.h"
33 #include "trans-types.h"
34 #include "target-memory.h"
35
36 /* --------------------------------------------------------------- */
37 /* Calculate the size of an expression. */
38
39 static size_t
40 size_array (gfc_expr *e)
41 {
42 mpz_t array_size;
43 gfc_constructor *c = gfc_constructor_first (e->value.constructor);
44 size_t elt_size = gfc_target_expr_size (c->expr);
45
46 gfc_array_size (e, &array_size);
47 return (size_t)mpz_get_ui (array_size) * elt_size;
48 }
49
50 static size_t
51 size_integer (int kind)
52 {
53 return GET_MODE_SIZE (TYPE_MODE (gfc_get_int_type (kind)));;
54 }
55
56
57 static size_t
58 size_float (int kind)
59 {
60 return GET_MODE_SIZE (TYPE_MODE (gfc_get_real_type (kind)));;
61 }
62
63
64 static size_t
65 size_complex (int kind)
66 {
67 return 2 * size_float (kind);
68 }
69
70
71 static size_t
72 size_logical (int kind)
73 {
74 return GET_MODE_SIZE (TYPE_MODE (gfc_get_logical_type (kind)));;
75 }
76
77
78 static size_t
79 size_character (int length, int kind)
80 {
81 int i = gfc_validate_kind (BT_CHARACTER, kind, false);
82 return length * gfc_character_kinds[i].bit_size / 8;
83 }
84
85
86 size_t
87 gfc_target_expr_size (gfc_expr *e)
88 {
89 tree type;
90
91 gcc_assert (e != NULL);
92
93 if (e->expr_type == EXPR_ARRAY)
94 return size_array (e);
95
96 switch (e->ts.type)
97 {
98 case BT_INTEGER:
99 return size_integer (e->ts.kind);
100 case BT_REAL:
101 return size_float (e->ts.kind);
102 case BT_COMPLEX:
103 return size_complex (e->ts.kind);
104 case BT_LOGICAL:
105 return size_logical (e->ts.kind);
106 case BT_CHARACTER:
107 if (e->expr_type == EXPR_CONSTANT)
108 return size_character (e->value.character.length, e->ts.kind);
109 else if (e->ts.u.cl != NULL && e->ts.u.cl->length != NULL
110 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT
111 && e->ts.u.cl->length->ts.type == BT_INTEGER)
112 {
113 int length;
114
115 gfc_extract_int (e->ts.u.cl->length, &length);
116 return size_character (length, e->ts.kind);
117 }
118 else
119 return 0;
120
121 case BT_HOLLERITH:
122 return e->representation.length;
123 case BT_DERIVED:
124 {
125 /* Determine type size without clobbering the typespec for ISO C
126 binding types. */
127 gfc_typespec ts;
128 HOST_WIDE_INT size;
129 ts = e->ts;
130 type = gfc_typenode_for_spec (&ts);
131 size = int_size_in_bytes (type);
132 gcc_assert (size >= 0);
133 return size;
134 }
135 default:
136 gfc_internal_error ("Invalid expression in gfc_target_expr_size.");
137 return 0;
138 }
139 }
140
141
142 /* The encode_* functions export a value into a buffer, and
143 return the number of bytes of the buffer that have been
144 used. */
145
146 static unsigned HOST_WIDE_INT
147 encode_array (gfc_expr *expr, unsigned char *buffer, size_t buffer_size)
148 {
149 mpz_t array_size;
150 int i;
151 int ptr = 0;
152
153 gfc_constructor_base ctor = expr->value.constructor;
154
155 gfc_array_size (expr, &array_size);
156 for (i = 0; i < (int)mpz_get_ui (array_size); i++)
157 {
158 ptr += gfc_target_encode_expr (gfc_constructor_lookup_expr (ctor, i),
159 &buffer[ptr], buffer_size - ptr);
160 }
161
162 mpz_clear (array_size);
163 return ptr;
164 }
165
166
167 static int
168 encode_integer (int kind, mpz_t integer, unsigned char *buffer,
169 size_t buffer_size)
170 {
171 return native_encode_expr (gfc_conv_mpz_to_tree (integer, kind),
172 buffer, buffer_size);
173 }
174
175
176 static int
177 encode_float (int kind, mpfr_t real, unsigned char *buffer, size_t buffer_size)
178 {
179 return native_encode_expr (gfc_conv_mpfr_to_tree (real, kind, 0), buffer,
180 buffer_size);
181 }
182
183
184 static int
185 encode_complex (int kind, mpc_t cmplx,
186 unsigned char *buffer, size_t buffer_size)
187 {
188 int size;
189 size = encode_float (kind, mpc_realref (cmplx), &buffer[0], buffer_size);
190 size += encode_float (kind, mpc_imagref (cmplx),
191 &buffer[size], buffer_size - size);
192 return size;
193 }
194
195
196 static int
197 encode_logical (int kind, int logical, unsigned char *buffer, size_t buffer_size)
198 {
199 return native_encode_expr (build_int_cst (gfc_get_logical_type (kind),
200 logical),
201 buffer, buffer_size);
202 }
203
204
205 int
206 gfc_encode_character (int kind, int length, const gfc_char_t *string,
207 unsigned char *buffer, size_t buffer_size)
208 {
209 size_t elsize = size_character (1, kind);
210 tree type = gfc_get_char_type (kind);
211 int i;
212
213 gcc_assert (buffer_size >= size_character (length, kind));
214
215 for (i = 0; i < length; i++)
216 native_encode_expr (build_int_cst (type, string[i]), &buffer[i*elsize],
217 elsize);
218
219 return length;
220 }
221
222
223 static unsigned HOST_WIDE_INT
224 encode_derived (gfc_expr *source, unsigned char *buffer, size_t buffer_size)
225 {
226 gfc_constructor *c;
227 gfc_component *cmp;
228 int ptr;
229 tree type;
230 HOST_WIDE_INT size;
231
232 type = gfc_typenode_for_spec (&source->ts);
233
234 for (c = gfc_constructor_first (source->value.constructor),
235 cmp = source->ts.u.derived->components;
236 c;
237 c = gfc_constructor_next (c), cmp = cmp->next)
238 {
239 gcc_assert (cmp);
240 if (!c->expr)
241 continue;
242 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
243 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
244
245 if (c->expr->expr_type == EXPR_NULL)
246 {
247 size = int_size_in_bytes (TREE_TYPE (cmp->backend_decl));
248 gcc_assert (size >= 0);
249 memset (&buffer[ptr], 0, size);
250 }
251 else
252 gfc_target_encode_expr (c->expr, &buffer[ptr],
253 buffer_size - ptr);
254 }
255
256 size = int_size_in_bytes (type);
257 gcc_assert (size >= 0);
258 return size;
259 }
260
261
262 /* Write a constant expression in binary form to a buffer. */
263 unsigned HOST_WIDE_INT
264 gfc_target_encode_expr (gfc_expr *source, unsigned char *buffer,
265 size_t buffer_size)
266 {
267 if (source == NULL)
268 return 0;
269
270 if (source->expr_type == EXPR_ARRAY)
271 return encode_array (source, buffer, buffer_size);
272
273 gcc_assert (source->expr_type == EXPR_CONSTANT
274 || source->expr_type == EXPR_STRUCTURE
275 || source->expr_type == EXPR_SUBSTRING);
276
277 /* If we already have a target-memory representation, we use that rather
278 than recreating one. */
279 if (source->representation.string)
280 {
281 memcpy (buffer, source->representation.string,
282 source->representation.length);
283 return source->representation.length;
284 }
285
286 switch (source->ts.type)
287 {
288 case BT_INTEGER:
289 return encode_integer (source->ts.kind, source->value.integer, buffer,
290 buffer_size);
291 case BT_REAL:
292 return encode_float (source->ts.kind, source->value.real, buffer,
293 buffer_size);
294 case BT_COMPLEX:
295 return encode_complex (source->ts.kind, source->value.complex,
296 buffer, buffer_size);
297 case BT_LOGICAL:
298 return encode_logical (source->ts.kind, source->value.logical, buffer,
299 buffer_size);
300 case BT_CHARACTER:
301 if (source->expr_type == EXPR_CONSTANT || source->ref == NULL)
302 return gfc_encode_character (source->ts.kind,
303 source->value.character.length,
304 source->value.character.string,
305 buffer, buffer_size);
306 else
307 {
308 int start, end;
309
310 gcc_assert (source->expr_type == EXPR_SUBSTRING);
311 gfc_extract_int (source->ref->u.ss.start, &start);
312 gfc_extract_int (source->ref->u.ss.end, &end);
313 return gfc_encode_character (source->ts.kind, MAX(end - start + 1, 0),
314 &source->value.character.string[start-1],
315 buffer, buffer_size);
316 }
317
318 case BT_DERIVED:
319 return encode_derived (source, buffer, buffer_size);
320 default:
321 gfc_internal_error ("Invalid expression in gfc_target_encode_expr.");
322 return 0;
323 }
324 }
325
326
327 static int
328 interpret_array (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
329 {
330 gfc_constructor_base base = NULL;
331 int array_size = 1;
332 int i;
333 int ptr = 0;
334
335 /* Calculate array size from its shape and rank. */
336 gcc_assert (result->rank > 0 && result->shape);
337
338 for (i = 0; i < result->rank; i++)
339 array_size *= (int)mpz_get_ui (result->shape[i]);
340
341 /* Iterate over array elements, producing constructors. */
342 for (i = 0; i < array_size; i++)
343 {
344 gfc_expr *e = gfc_get_constant_expr (result->ts.type, result->ts.kind,
345 &result->where);
346 e->ts = result->ts;
347
348 if (e->ts.type == BT_CHARACTER)
349 e->value.character.length = result->value.character.length;
350
351 gfc_constructor_append_expr (&base, e, &result->where);
352
353 ptr += gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e,
354 true);
355 }
356
357 result->value.constructor = base;
358 return ptr;
359 }
360
361
362 int
363 gfc_interpret_integer (int kind, unsigned char *buffer, size_t buffer_size,
364 mpz_t integer)
365 {
366 mpz_init (integer);
367 gfc_conv_tree_to_mpz (integer,
368 native_interpret_expr (gfc_get_int_type (kind),
369 buffer, buffer_size));
370 return size_integer (kind);
371 }
372
373
374 int
375 gfc_interpret_float (int kind, unsigned char *buffer, size_t buffer_size,
376 mpfr_t real)
377 {
378 gfc_set_model_kind (kind);
379 mpfr_init (real);
380 gfc_conv_tree_to_mpfr (real,
381 native_interpret_expr (gfc_get_real_type (kind),
382 buffer, buffer_size));
383
384 return size_float (kind);
385 }
386
387
388 int
389 gfc_interpret_complex (int kind, unsigned char *buffer, size_t buffer_size,
390 mpc_t complex)
391 {
392 int size;
393 size = gfc_interpret_float (kind, &buffer[0], buffer_size,
394 mpc_realref (complex));
395 size += gfc_interpret_float (kind, &buffer[size], buffer_size - size,
396 mpc_imagref (complex));
397 return size;
398 }
399
400
401 int
402 gfc_interpret_logical (int kind, unsigned char *buffer, size_t buffer_size,
403 int *logical)
404 {
405 tree t = native_interpret_expr (gfc_get_logical_type (kind), buffer,
406 buffer_size);
407 *logical = tree_to_double_int (t).is_zero () ? 0 : 1;
408 return size_logical (kind);
409 }
410
411
412 int
413 gfc_interpret_character (unsigned char *buffer, size_t buffer_size,
414 gfc_expr *result)
415 {
416 int i;
417
418 if (result->ts.u.cl && result->ts.u.cl->length)
419 result->value.character.length =
420 (int) mpz_get_ui (result->ts.u.cl->length->value.integer);
421
422 gcc_assert (buffer_size >= size_character (result->value.character.length,
423 result->ts.kind));
424 result->value.character.string =
425 gfc_get_wide_string (result->value.character.length + 1);
426
427 if (result->ts.kind == gfc_default_character_kind)
428 for (i = 0; i < result->value.character.length; i++)
429 result->value.character.string[i] = (gfc_char_t) buffer[i];
430 else
431 {
432 mpz_t integer;
433 unsigned bytes = size_character (1, result->ts.kind);
434 mpz_init (integer);
435 gcc_assert (bytes <= sizeof (unsigned long));
436
437 for (i = 0; i < result->value.character.length; i++)
438 {
439 gfc_conv_tree_to_mpz (integer,
440 native_interpret_expr (gfc_get_char_type (result->ts.kind),
441 &buffer[bytes*i], buffer_size-bytes*i));
442 result->value.character.string[i]
443 = (gfc_char_t) mpz_get_ui (integer);
444 }
445
446 mpz_clear (integer);
447 }
448
449 result->value.character.string[result->value.character.length] = '\0';
450
451 return result->value.character.length;
452 }
453
454
455 int
456 gfc_interpret_derived (unsigned char *buffer, size_t buffer_size, gfc_expr *result)
457 {
458 gfc_component *cmp;
459 int ptr;
460 tree type;
461
462 /* The attributes of the derived type need to be bolted to the floor. */
463 result->expr_type = EXPR_STRUCTURE;
464
465 cmp = result->ts.u.derived->components;
466
467 if (result->ts.u.derived->from_intmod == INTMOD_ISO_C_BINDING
468 && (result->ts.u.derived->intmod_sym_id == ISOCBINDING_PTR
469 || result->ts.u.derived->intmod_sym_id == ISOCBINDING_FUNPTR))
470 {
471 gfc_constructor *c;
472 gfc_expr *e;
473 /* Needed as gfc_typenode_for_spec as gfc_typenode_for_spec
474 sets this to BT_INTEGER. */
475 result->ts.type = BT_DERIVED;
476 e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind, &result->where);
477 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL);
478 c->n.component = cmp;
479 gfc_target_interpret_expr (buffer, buffer_size, e, true);
480 e->ts.is_iso_c = 1;
481 return int_size_in_bytes (ptr_type_node);
482 }
483
484 type = gfc_typenode_for_spec (&result->ts);
485
486 /* Run through the derived type components. */
487 for (;cmp; cmp = cmp->next)
488 {
489 gfc_constructor *c;
490 gfc_expr *e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind,
491 &result->where);
492 e->ts = cmp->ts;
493
494 /* Copy shape, if needed. */
495 if (cmp->as && cmp->as->rank)
496 {
497 int n;
498
499 e->expr_type = EXPR_ARRAY;
500 e->rank = cmp->as->rank;
501
502 e->shape = gfc_get_shape (e->rank);
503 for (n = 0; n < e->rank; n++)
504 {
505 mpz_init_set_ui (e->shape[n], 1);
506 mpz_add (e->shape[n], e->shape[n],
507 cmp->as->upper[n]->value.integer);
508 mpz_sub (e->shape[n], e->shape[n],
509 cmp->as->lower[n]->value.integer);
510 }
511 }
512
513 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL);
514
515 /* The constructor points to the component. */
516 c->n.component = cmp;
517
518 /* Calculate the offset, which consists of the FIELD_OFFSET in
519 bytes, which appears in multiples of DECL_OFFSET_ALIGN-bit-sized,
520 and additional bits of FIELD_BIT_OFFSET. The code assumes that all
521 sizes of the components are multiples of BITS_PER_UNIT,
522 i.e. there are, e.g., no bit fields. */
523
524 gcc_assert (cmp->backend_decl);
525 ptr = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (cmp->backend_decl));
526 gcc_assert (ptr % 8 == 0);
527 ptr = ptr/8 + TREE_INT_CST_LOW (DECL_FIELD_OFFSET (cmp->backend_decl));
528
529 gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e, true);
530 }
531
532 return int_size_in_bytes (type);
533 }
534
535
536 /* Read a binary buffer to a constant expression. */
537 int
538 gfc_target_interpret_expr (unsigned char *buffer, size_t buffer_size,
539 gfc_expr *result, bool convert_widechar)
540 {
541 if (result->expr_type == EXPR_ARRAY)
542 return interpret_array (buffer, buffer_size, result);
543
544 switch (result->ts.type)
545 {
546 case BT_INTEGER:
547 result->representation.length =
548 gfc_interpret_integer (result->ts.kind, buffer, buffer_size,
549 result->value.integer);
550 break;
551
552 case BT_REAL:
553 result->representation.length =
554 gfc_interpret_float (result->ts.kind, buffer, buffer_size,
555 result->value.real);
556 break;
557
558 case BT_COMPLEX:
559 result->representation.length =
560 gfc_interpret_complex (result->ts.kind, buffer, buffer_size,
561 result->value.complex);
562 break;
563
564 case BT_LOGICAL:
565 result->representation.length =
566 gfc_interpret_logical (result->ts.kind, buffer, buffer_size,
567 &result->value.logical);
568 break;
569
570 case BT_CHARACTER:
571 result->representation.length =
572 gfc_interpret_character (buffer, buffer_size, result);
573 break;
574
575 case BT_DERIVED:
576 result->representation.length =
577 gfc_interpret_derived (buffer, buffer_size, result);
578 gcc_assert (result->representation.length >= 0);
579 break;
580
581 default:
582 gfc_internal_error ("Invalid expression in gfc_target_interpret_expr.");
583 break;
584 }
585
586 if (result->ts.type == BT_CHARACTER && convert_widechar)
587 result->representation.string
588 = gfc_widechar_to_char (result->value.character.string,
589 result->value.character.length);
590 else
591 {
592 result->representation.string =
593 XCNEWVEC (char, result->representation.length + 1);
594 memcpy (result->representation.string, buffer,
595 result->representation.length);
596 result->representation.string[result->representation.length] = '\0';
597 }
598
599 return result->representation.length;
600 }
601
602
603 /* --------------------------------------------------------------- */
604 /* Two functions used by trans-common.c to write overlapping
605 equivalence initializers to a buffer. This is added to the union
606 and the original initializers freed. */
607
608
609 /* Writes the values of a constant expression to a char buffer. If another
610 unequal initializer has already been written to the buffer, this is an
611 error. */
612
613 static size_t
614 expr_to_char (gfc_expr *e, unsigned char *data, unsigned char *chk, size_t len)
615 {
616 int i;
617 int ptr;
618 gfc_constructor *c;
619 gfc_component *cmp;
620 unsigned char *buffer;
621
622 if (e == NULL)
623 return 0;
624
625 /* Take a derived type, one component at a time, using the offsets from the backend
626 declaration. */
627 if (e->ts.type == BT_DERIVED)
628 {
629 for (c = gfc_constructor_first (e->value.constructor),
630 cmp = e->ts.u.derived->components;
631 c; c = gfc_constructor_next (c), cmp = cmp->next)
632 {
633 gcc_assert (cmp && cmp->backend_decl);
634 if (!c->expr)
635 continue;
636 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl))
637 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8;
638 expr_to_char (c->expr, &data[ptr], &chk[ptr], len);
639 }
640 return len;
641 }
642
643 /* Otherwise, use the target-memory machinery to write a bitwise image, appropriate
644 to the target, in a buffer and check off the initialized part of the buffer. */
645 len = gfc_target_expr_size (e);
646 buffer = (unsigned char*)alloca (len);
647 len = gfc_target_encode_expr (e, buffer, len);
648
649 for (i = 0; i < (int)len; i++)
650 {
651 if (chk[i] && (buffer[i] != data[i]))
652 {
653 gfc_error ("Overlapping unequal initializers in EQUIVALENCE "
654 "at %L", &e->where);
655 return 0;
656 }
657 chk[i] = 0xFF;
658 }
659
660 memcpy (data, buffer, len);
661 return len;
662 }
663
664
665 /* Writes the values from the equivalence initializers to a char* array
666 that will be written to the constructor to make the initializer for
667 the union declaration. */
668
669 size_t
670 gfc_merge_initializers (gfc_typespec ts, gfc_expr *e, unsigned char *data,
671 unsigned char *chk, size_t length)
672 {
673 size_t len = 0;
674 gfc_constructor * c;
675
676 switch (e->expr_type)
677 {
678 case EXPR_CONSTANT:
679 case EXPR_STRUCTURE:
680 len = expr_to_char (e, &data[0], &chk[0], length);
681
682 break;
683
684 case EXPR_ARRAY:
685 for (c = gfc_constructor_first (e->value.constructor);
686 c; c = gfc_constructor_next (c))
687 {
688 size_t elt_size = gfc_target_expr_size (c->expr);
689
690 if (mpz_cmp_si (c->offset, 0) != 0)
691 len = elt_size * (size_t)mpz_get_si (c->offset);
692
693 len = len + gfc_merge_initializers (ts, c->expr, &data[len],
694 &chk[len], length - len);
695 }
696 break;
697
698 default:
699 return 0;
700 }
701
702 return len;
703 }
704
705
706 /* Transfer the bitpattern of a (integer) BOZ to real or complex variables.
707 When successful, no BOZ or nothing to do, true is returned. */
708
709 bool
710 gfc_convert_boz (gfc_expr *expr, gfc_typespec *ts)
711 {
712 size_t buffer_size, boz_bit_size, ts_bit_size;
713 int index;
714 unsigned char *buffer;
715
716 if (!expr->is_boz)
717 return true;
718
719 gcc_assert (expr->expr_type == EXPR_CONSTANT
720 && expr->ts.type == BT_INTEGER);
721
722 /* Don't convert BOZ to logical, character, derived etc. */
723 if (ts->type == BT_REAL)
724 {
725 buffer_size = size_float (ts->kind);
726 ts_bit_size = buffer_size * 8;
727 }
728 else if (ts->type == BT_COMPLEX)
729 {
730 buffer_size = size_complex (ts->kind);
731 ts_bit_size = buffer_size * 8 / 2;
732 }
733 else
734 return true;
735
736 /* Convert BOZ to the smallest possible integer kind. */
737 boz_bit_size = mpz_sizeinbase (expr->value.integer, 2);
738
739 if (boz_bit_size > ts_bit_size)
740 {
741 gfc_error_now ("BOZ constant at %L is too large (%ld vs %ld bits)",
742 &expr->where, (long) boz_bit_size, (long) ts_bit_size);
743 return false;
744 }
745
746 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
747 if ((unsigned) gfc_integer_kinds[index].bit_size >= ts_bit_size)
748 break;
749
750 expr->ts.kind = gfc_integer_kinds[index].kind;
751 buffer_size = MAX (buffer_size, size_integer (expr->ts.kind));
752
753 buffer = (unsigned char*)alloca (buffer_size);
754 encode_integer (expr->ts.kind, expr->value.integer, buffer, buffer_size);
755 mpz_clear (expr->value.integer);
756
757 if (ts->type == BT_REAL)
758 {
759 mpfr_init (expr->value.real);
760 gfc_interpret_float (ts->kind, buffer, buffer_size, expr->value.real);
761 }
762 else
763 {
764 mpc_init2 (expr->value.complex, mpfr_get_default_prec());
765 gfc_interpret_complex (ts->kind, buffer, buffer_size,
766 expr->value.complex);
767 }
768 expr->is_boz = 0;
769 expr->ts.type = ts->type;
770 expr->ts.kind = ts->kind;
771
772 return true;
773 }