]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-common.c
Update copyright years.
[thirdparty/gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Canqun Yang <canqun@nudt.edu.cn>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
22 way to build UNION_TYPE is borrowed from Richard Henderson.
23
24 Transform common blocks. An integral part of this is processing
25 equivalence variables. Equivalenced variables that are not in a
26 common block end up in a private block of their own.
27
28 Each common block or local equivalence list is declared as a union.
29 Variables within the block are represented as a field within the
30 block with the proper offset.
31
32 So if two variables are equivalenced, they just point to a common
33 area in memory.
34
35 Mathematically, laying out an equivalence block is equivalent to
36 solving a linear system of equations. The matrix is usually a
37 sparse matrix in which each row contains all zero elements except
38 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
39 matrix is usually block diagonal. The system can be
40 overdetermined, underdetermined or have a unique solution. If the
41 system is inconsistent, the program is not standard conforming.
42 The solution vector is integral, since all of the pivots are +1 or -1.
43
44 How we lay out an equivalence block is a little less complicated.
45 In an equivalence list with n elements, there are n-1 conditions to
46 be satisfied. The conditions partition the variables into what we
47 will call segments. If A and B are equivalenced then A and B are
48 in the same segment. If B and C are equivalenced as well, then A,
49 B and C are in a segment and so on. Each segment is a block of
50 memory that has one or more variables equivalenced in some way. A
51 common block is made up of a series of segments that are joined one
52 after the other. In the linear system, a segment is a block
53 diagonal.
54
55 To lay out a segment we first start with some variable and
56 determine its length. The first variable is assumed to start at
57 offset one and extends to however long it is. We then traverse the
58 list of equivalences to find an unused condition that involves at
59 least one of the variables currently in the segment.
60
61 Each equivalence condition amounts to the condition B+b=C+c where B
62 and C are the offsets of the B and C variables, and b and c are
63 constants which are nonzero for array elements, substrings or
64 structure components. So for
65
66 EQUIVALENCE(B(2), C(3))
67 we have
68 B + 2*size of B's elements = C + 3*size of C's elements.
69
70 If B and C are known we check to see if the condition already
71 holds. If B is known we can solve for C. Since we know the length
72 of C, we can see if the minimum and maximum extents of the segment
73 are affected. Eventually, we make a full pass through the
74 equivalence list without finding any new conditions and the segment
75 is fully specified.
76
77 At this point, the segment is added to the current common block.
78 Since we know the minimum extent of the segment, everything in the
79 segment is translated to its position in the common block. The
80 usual case here is that there are no equivalence statements and the
81 common block is series of segments with one variable each, which is
82 a diagonal matrix in the matrix formulation.
83
84 Each segment is described by a chain of segment_info structures. Each
85 segment_info structure describes the extents of a single variable within
86 the segment. This list is maintained in the order the elements are
87 positioned within the segment. If two elements have the same starting
88 offset the smaller will come first. If they also have the same size their
89 ordering is undefined.
90
91 Once all common blocks have been created, the list of equivalences
92 is examined for still-unused equivalence conditions. We create a
93 block for each merged equivalence list. */
94
95 #include <map>
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "tree.h"
101 #include "stringpool.h"
102 #include "stor-layout.h"
103 #include "varasm.h"
104 #include "gfortran.h"
105 #include "trans.h"
106 #include "trans-types.h"
107 #include "trans-const.h"
108 #include "target-memory.h"
109
110
111 /* Holds a single variable in an equivalence set. */
112 typedef struct segment_info
113 {
114 gfc_symbol *sym;
115 HOST_WIDE_INT offset;
116 HOST_WIDE_INT length;
117 /* This will contain the field type until the field is created. */
118 tree field;
119 struct segment_info *next;
120 } segment_info;
121
122 static segment_info * current_segment;
123
124 /* Store decl of all common blocks in this translation unit; the first
125 tree is the identifier. */
126 static std::map<tree, tree> gfc_map_of_all_commons;
127
128
129 /* Make a segment_info based on a symbol. */
130
131 static segment_info *
132 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
133 {
134 segment_info *s;
135
136 /* Make sure we've got the character length. */
137 if (sym->ts.type == BT_CHARACTER)
138 gfc_conv_const_charlen (sym->ts.u.cl);
139
140 /* Create the segment_info and fill it in. */
141 s = XCNEW (segment_info);
142 s->sym = sym;
143 /* We will use this type when building the segment aggregate type. */
144 s->field = gfc_sym_type (sym);
145 s->length = int_size_in_bytes (s->field);
146 s->offset = offset;
147
148 return s;
149 }
150
151
152 /* Add a copy of a segment list to the namespace. This is specifically for
153 equivalence segments, so that dependency checking can be done on
154 equivalence group members. */
155
156 static void
157 copy_equiv_list_to_ns (segment_info *c)
158 {
159 segment_info *f;
160 gfc_equiv_info *s;
161 gfc_equiv_list *l;
162
163 l = XCNEW (gfc_equiv_list);
164
165 l->next = c->sym->ns->equiv_lists;
166 c->sym->ns->equiv_lists = l;
167
168 for (f = c; f; f = f->next)
169 {
170 s = XCNEW (gfc_equiv_info);
171 s->next = l->equiv;
172 l->equiv = s;
173 s->sym = f->sym;
174 s->offset = f->offset;
175 s->length = f->length;
176 }
177 }
178
179
180 /* Add combine segment V and segment LIST. */
181
182 static segment_info *
183 add_segments (segment_info *list, segment_info *v)
184 {
185 segment_info *s;
186 segment_info *p;
187 segment_info *next;
188
189 p = NULL;
190 s = list;
191
192 while (v)
193 {
194 /* Find the location of the new element. */
195 while (s)
196 {
197 if (v->offset < s->offset)
198 break;
199 if (v->offset == s->offset
200 && v->length <= s->length)
201 break;
202
203 p = s;
204 s = s->next;
205 }
206
207 /* Insert the new element in between p and s. */
208 next = v->next;
209 v->next = s;
210 if (p == NULL)
211 list = v;
212 else
213 p->next = v;
214
215 p = v;
216 v = next;
217 }
218
219 return list;
220 }
221
222
223 /* Construct mangled common block name from symbol name. */
224
225 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
226 name. There are few calls to this function, so few places that this
227 would need to be added. At the moment, there is only one call, in
228 build_common_decl(). We can't attempt to look up the common block
229 because we may be building it for the first time and therefore, it won't
230 be in the common_root. We also need the binding label, if it's bind(c).
231 Therefore, send in the pointer to the common block, so whatever info we
232 have so far can be used. All of the necessary info should be available
233 in the gfc_common_head by now, so it should be accurate to test the
234 isBindC flag and use the binding label given if it is bind(c).
235
236 We may NOT know yet if it's bind(c) or not, but we can try at least.
237 Will have to figure out what to do later if it's labeled bind(c)
238 after this is called. */
239
240 static tree
241 gfc_sym_mangled_common_id (gfc_common_head *com)
242 {
243 int has_underscore;
244 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
245 char name[GFC_MAX_SYMBOL_LEN + 1];
246
247 /* Get the name out of the common block pointer. */
248 strcpy (name, com->name);
249
250 /* If we're suppose to do a bind(c). */
251 if (com->is_bind_c == 1 && com->binding_label)
252 return get_identifier (com->binding_label);
253
254 if (strcmp (name, BLANK_COMMON_NAME) == 0)
255 return get_identifier (name);
256
257 if (flag_underscoring)
258 {
259 has_underscore = strchr (name, '_') != 0;
260 if (flag_second_underscore && has_underscore)
261 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
262 else
263 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
264
265 return get_identifier (mangled_name);
266 }
267 else
268 return get_identifier (name);
269 }
270
271
272 /* Build a field declaration for a common variable or a local equivalence
273 object. */
274
275 static void
276 build_field (segment_info *h, tree union_type, record_layout_info rli)
277 {
278 tree field;
279 tree name;
280 HOST_WIDE_INT offset = h->offset;
281 unsigned HOST_WIDE_INT desired_align, known_align;
282
283 name = get_identifier (h->sym->name);
284 field = build_decl (h->sym->declared_at.lb->location,
285 FIELD_DECL, name, h->field);
286 known_align = (offset & -offset) * BITS_PER_UNIT;
287 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
288 known_align = BIGGEST_ALIGNMENT;
289
290 desired_align = update_alignment_for_field (rli, field, known_align);
291 if (desired_align > known_align)
292 DECL_PACKED (field) = 1;
293
294 DECL_FIELD_CONTEXT (field) = union_type;
295 DECL_FIELD_OFFSET (field) = size_int (offset);
296 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
297 SET_DECL_OFFSET_ALIGN (field, known_align);
298
299 rli->offset = size_binop (MAX_EXPR, rli->offset,
300 size_binop (PLUS_EXPR,
301 DECL_FIELD_OFFSET (field),
302 DECL_SIZE_UNIT (field)));
303 /* If this field is assigned to a label, we create another two variables.
304 One will hold the address of target label or format label. The other will
305 hold the length of format label string. */
306 if (h->sym->attr.assign)
307 {
308 tree len;
309 tree addr;
310
311 gfc_allocate_lang_decl (field);
312 GFC_DECL_ASSIGN (field) = 1;
313 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
314 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
315 TREE_STATIC (len) = 1;
316 TREE_STATIC (addr) = 1;
317 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
318 gfc_set_decl_location (len, &h->sym->declared_at);
319 gfc_set_decl_location (addr, &h->sym->declared_at);
320 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
321 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
322 }
323
324 /* If this field is volatile, mark it. */
325 if (h->sym->attr.volatile_)
326 {
327 tree new_type;
328 TREE_THIS_VOLATILE (field) = 1;
329 TREE_SIDE_EFFECTS (field) = 1;
330 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
331 TREE_TYPE (field) = new_type;
332 }
333
334 h->field = field;
335 }
336
337
338 /* Get storage for local equivalence. */
339
340 static tree
341 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
342 {
343 tree decl;
344 char name[15];
345 static int serial = 0;
346
347 if (is_init)
348 {
349 decl = gfc_create_var (union_type, "equiv");
350 TREE_STATIC (decl) = 1;
351 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
352 return decl;
353 }
354
355 snprintf (name, sizeof (name), "equiv.%d", serial++);
356 decl = build_decl (input_location,
357 VAR_DECL, get_identifier (name), union_type);
358 DECL_ARTIFICIAL (decl) = 1;
359 DECL_IGNORED_P (decl) = 1;
360
361 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
362 || is_saved)
363 TREE_STATIC (decl) = 1;
364
365 TREE_ADDRESSABLE (decl) = 1;
366 TREE_USED (decl) = 1;
367 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
368
369 /* The source location has been lost, and doesn't really matter.
370 We need to set it to something though. */
371 gfc_set_decl_location (decl, &gfc_current_locus);
372
373 gfc_add_decl_to_function (decl);
374
375 return decl;
376 }
377
378
379 /* Get storage for common block. */
380
381 static tree
382 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
383 {
384 tree decl, identifier;
385
386 identifier = gfc_sym_mangled_common_id (com);
387 decl = gfc_map_of_all_commons.count(identifier)
388 ? gfc_map_of_all_commons[identifier] : NULL_TREE;
389
390 /* Update the size of this common block as needed. */
391 if (decl != NULL_TREE)
392 {
393 tree size = TYPE_SIZE_UNIT (union_type);
394
395 /* Named common blocks of the same name shall be of the same size
396 in all scoping units of a program in which they appear, but
397 blank common blocks may be of different sizes. */
398 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
399 && strcmp (com->name, BLANK_COMMON_NAME))
400 gfc_warning ("Named COMMON block %qs at %L shall be of the "
401 "same size as elsewhere (%lu vs %lu bytes)", com->name,
402 &com->where,
403 (unsigned long) TREE_INT_CST_LOW (size),
404 (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
405
406 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
407 {
408 DECL_SIZE (decl) = TYPE_SIZE (union_type);
409 DECL_SIZE_UNIT (decl) = size;
410 DECL_MODE (decl) = TYPE_MODE (union_type);
411 TREE_TYPE (decl) = union_type;
412 layout_decl (decl, 0);
413 }
414 }
415
416 /* If this common block has been declared in a previous program unit,
417 and either it is already initialized or there is no new initialization
418 for it, just return. */
419 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
420 return decl;
421
422 /* If there is no backend_decl for the common block, build it. */
423 if (decl == NULL_TREE)
424 {
425 if (com->is_bind_c == 1 && com->binding_label)
426 decl = build_decl (input_location, VAR_DECL, identifier, union_type);
427 else
428 {
429 decl = build_decl (input_location, VAR_DECL, get_identifier (com->name),
430 union_type);
431 gfc_set_decl_assembler_name (decl, identifier);
432 }
433
434 TREE_PUBLIC (decl) = 1;
435 TREE_STATIC (decl) = 1;
436 DECL_IGNORED_P (decl) = 1;
437 if (!com->is_bind_c)
438 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
439 else
440 {
441 /* Do not set the alignment for bind(c) common blocks to
442 BIGGEST_ALIGNMENT because that won't match what C does. Also,
443 for common blocks with one element, the alignment must be
444 that of the field within the common block in order to match
445 what C will do. */
446 tree field = NULL_TREE;
447 field = TYPE_FIELDS (TREE_TYPE (decl));
448 if (DECL_CHAIN (field) == NULL_TREE)
449 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
450 }
451 DECL_USER_ALIGN (decl) = 0;
452 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
453
454 gfc_set_decl_location (decl, &com->where);
455
456 if (com->threadprivate)
457 set_decl_tls_model (decl, decl_default_tls_model (decl));
458
459 if (com->omp_declare_target)
460 DECL_ATTRIBUTES (decl)
461 = tree_cons (get_identifier ("omp declare target"),
462 NULL_TREE, DECL_ATTRIBUTES (decl));
463
464 /* Place the back end declaration for this common block in
465 GLOBAL_BINDING_LEVEL. */
466 gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
467 }
468
469 /* Has no initial values. */
470 if (!is_init)
471 {
472 DECL_INITIAL (decl) = NULL_TREE;
473 DECL_COMMON (decl) = 1;
474 DECL_DEFER_OUTPUT (decl) = 1;
475 }
476 else
477 {
478 DECL_INITIAL (decl) = error_mark_node;
479 DECL_COMMON (decl) = 0;
480 DECL_DEFER_OUTPUT (decl) = 0;
481 }
482 return decl;
483 }
484
485
486 /* Return a field that is the size of the union, if an equivalence has
487 overlapping initializers. Merge the initializers into a single
488 initializer for this new field, then free the old ones. */
489
490 static tree
491 get_init_field (segment_info *head, tree union_type, tree *field_init,
492 record_layout_info rli)
493 {
494 segment_info *s;
495 HOST_WIDE_INT length = 0;
496 HOST_WIDE_INT offset = 0;
497 unsigned HOST_WIDE_INT known_align, desired_align;
498 bool overlap = false;
499 tree tmp, field;
500 tree init;
501 unsigned char *data, *chk;
502 vec<constructor_elt, va_gc> *v = NULL;
503
504 tree type = unsigned_char_type_node;
505 int i;
506
507 /* Obtain the size of the union and check if there are any overlapping
508 initializers. */
509 for (s = head; s; s = s->next)
510 {
511 HOST_WIDE_INT slen = s->offset + s->length;
512 if (s->sym->value)
513 {
514 if (s->offset < offset)
515 overlap = true;
516 offset = slen;
517 }
518 length = length < slen ? slen : length;
519 }
520
521 if (!overlap)
522 return NULL_TREE;
523
524 /* Now absorb all the initializer data into a single vector,
525 whilst checking for overlapping, unequal values. */
526 data = XCNEWVEC (unsigned char, (size_t)length);
527 chk = XCNEWVEC (unsigned char, (size_t)length);
528
529 /* TODO - change this when default initialization is implemented. */
530 memset (data, '\0', (size_t)length);
531 memset (chk, '\0', (size_t)length);
532 for (s = head; s; s = s->next)
533 if (s->sym->value)
534 gfc_merge_initializers (s->sym->ts, s->sym->value,
535 &data[s->offset],
536 &chk[s->offset],
537 (size_t)s->length);
538
539 for (i = 0; i < length; i++)
540 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
541
542 free (data);
543 free (chk);
544
545 /* Build a char[length] array to hold the initializers. Much of what
546 follows is borrowed from build_field, above. */
547
548 tmp = build_int_cst (gfc_array_index_type, length - 1);
549 tmp = build_range_type (gfc_array_index_type,
550 gfc_index_zero_node, tmp);
551 tmp = build_array_type (type, tmp);
552 field = build_decl (gfc_current_locus.lb->location,
553 FIELD_DECL, NULL_TREE, tmp);
554
555 known_align = BIGGEST_ALIGNMENT;
556
557 desired_align = update_alignment_for_field (rli, field, known_align);
558 if (desired_align > known_align)
559 DECL_PACKED (field) = 1;
560
561 DECL_FIELD_CONTEXT (field) = union_type;
562 DECL_FIELD_OFFSET (field) = size_int (0);
563 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
564 SET_DECL_OFFSET_ALIGN (field, known_align);
565
566 rli->offset = size_binop (MAX_EXPR, rli->offset,
567 size_binop (PLUS_EXPR,
568 DECL_FIELD_OFFSET (field),
569 DECL_SIZE_UNIT (field)));
570
571 init = build_constructor (TREE_TYPE (field), v);
572 TREE_CONSTANT (init) = 1;
573
574 *field_init = init;
575
576 for (s = head; s; s = s->next)
577 {
578 if (s->sym->value == NULL)
579 continue;
580
581 gfc_free_expr (s->sym->value);
582 s->sym->value = NULL;
583 }
584
585 return field;
586 }
587
588
589 /* Declare memory for the common block or local equivalence, and create
590 backend declarations for all of the elements. */
591
592 static void
593 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
594 {
595 segment_info *s, *next_s;
596 tree union_type;
597 tree *field_link;
598 tree field;
599 tree field_init = NULL_TREE;
600 record_layout_info rli;
601 tree decl;
602 bool is_init = false;
603 bool is_saved = false;
604
605 /* Declare the variables inside the common block.
606 If the current common block contains any equivalence object, then
607 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
608 alias analyzer work well when there is no address overlapping for
609 common variables in the current common block. */
610 if (saw_equiv)
611 union_type = make_node (UNION_TYPE);
612 else
613 union_type = make_node (RECORD_TYPE);
614
615 rli = start_record_layout (union_type);
616 field_link = &TYPE_FIELDS (union_type);
617
618 /* Check for overlapping initializers and replace them with a single,
619 artificial field that contains all the data. */
620 if (saw_equiv)
621 field = get_init_field (head, union_type, &field_init, rli);
622 else
623 field = NULL_TREE;
624
625 if (field != NULL_TREE)
626 {
627 is_init = true;
628 *field_link = field;
629 field_link = &DECL_CHAIN (field);
630 }
631
632 for (s = head; s; s = s->next)
633 {
634 build_field (s, union_type, rli);
635
636 /* Link the field into the type. */
637 *field_link = s->field;
638 field_link = &DECL_CHAIN (s->field);
639
640 /* Has initial value. */
641 if (s->sym->value)
642 is_init = true;
643
644 /* Has SAVE attribute. */
645 if (s->sym->attr.save)
646 is_saved = true;
647 }
648
649 finish_record_layout (rli, true);
650
651 if (com)
652 decl = build_common_decl (com, union_type, is_init);
653 else
654 decl = build_equiv_decl (union_type, is_init, is_saved);
655
656 if (is_init)
657 {
658 tree ctor, tmp;
659 vec<constructor_elt, va_gc> *v = NULL;
660
661 if (field != NULL_TREE && field_init != NULL_TREE)
662 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
663 else
664 for (s = head; s; s = s->next)
665 {
666 if (s->sym->value)
667 {
668 /* Add the initializer for this field. */
669 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
670 TREE_TYPE (s->field),
671 s->sym->attr.dimension,
672 s->sym->attr.pointer
673 || s->sym->attr.allocatable, false);
674
675 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
676 }
677 }
678
679 gcc_assert (!v->is_empty ());
680 ctor = build_constructor (union_type, v);
681 TREE_CONSTANT (ctor) = 1;
682 TREE_STATIC (ctor) = 1;
683 DECL_INITIAL (decl) = ctor;
684
685 #ifdef ENABLE_CHECKING
686 {
687 tree field, value;
688 unsigned HOST_WIDE_INT idx;
689 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
690 gcc_assert (TREE_CODE (field) == FIELD_DECL);
691 }
692 #endif
693 }
694
695 /* Build component reference for each variable. */
696 for (s = head; s; s = next_s)
697 {
698 tree var_decl;
699
700 var_decl = build_decl (s->sym->declared_at.lb->location,
701 VAR_DECL, DECL_NAME (s->field),
702 TREE_TYPE (s->field));
703 TREE_STATIC (var_decl) = TREE_STATIC (decl);
704 /* Mark the variable as used in order to avoid warnings about
705 unused variables. */
706 TREE_USED (var_decl) = 1;
707 if (s->sym->attr.use_assoc)
708 DECL_IGNORED_P (var_decl) = 1;
709 if (s->sym->attr.target)
710 TREE_ADDRESSABLE (var_decl) = 1;
711 /* Fake variables are not visible from other translation units. */
712 TREE_PUBLIC (var_decl) = 0;
713 gfc_finish_decl_attrs (var_decl, &s->sym->attr);
714
715 /* To preserve identifier names in COMMON, chain to procedure
716 scope unless at top level in a module definition. */
717 if (com
718 && s->sym->ns->proc_name
719 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
720 var_decl = pushdecl_top_level (var_decl);
721 else
722 gfc_add_decl_to_function (var_decl);
723
724 SET_DECL_VALUE_EXPR (var_decl,
725 fold_build3_loc (input_location, COMPONENT_REF,
726 TREE_TYPE (s->field),
727 decl, s->field, NULL_TREE));
728 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
729 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
730
731 if (s->sym->attr.assign)
732 {
733 gfc_allocate_lang_decl (var_decl);
734 GFC_DECL_ASSIGN (var_decl) = 1;
735 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
736 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
737 }
738
739 s->sym->backend_decl = var_decl;
740
741 next_s = s->next;
742 free (s);
743 }
744 }
745
746
747 /* Given a symbol, find it in the current segment list. Returns NULL if
748 not found. */
749
750 static segment_info *
751 find_segment_info (gfc_symbol *symbol)
752 {
753 segment_info *n;
754
755 for (n = current_segment; n; n = n->next)
756 {
757 if (n->sym == symbol)
758 return n;
759 }
760
761 return NULL;
762 }
763
764
765 /* Given an expression node, make sure it is a constant integer and return
766 the mpz_t value. */
767
768 static mpz_t *
769 get_mpz (gfc_expr *e)
770 {
771
772 if (e->expr_type != EXPR_CONSTANT)
773 gfc_internal_error ("get_mpz(): Not an integer constant");
774
775 return &e->value.integer;
776 }
777
778
779 /* Given an array specification and an array reference, figure out the
780 array element number (zero based). Bounds and elements are guaranteed
781 to be constants. If something goes wrong we generate an error and
782 return zero. */
783
784 static HOST_WIDE_INT
785 element_number (gfc_array_ref *ar)
786 {
787 mpz_t multiplier, offset, extent, n;
788 gfc_array_spec *as;
789 HOST_WIDE_INT i, rank;
790
791 as = ar->as;
792 rank = as->rank;
793 mpz_init_set_ui (multiplier, 1);
794 mpz_init_set_ui (offset, 0);
795 mpz_init (extent);
796 mpz_init (n);
797
798 for (i = 0; i < rank; i++)
799 {
800 if (ar->dimen_type[i] != DIMEN_ELEMENT)
801 gfc_internal_error ("element_number(): Bad dimension type");
802
803 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
804
805 mpz_mul (n, n, multiplier);
806 mpz_add (offset, offset, n);
807
808 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
809 mpz_add_ui (extent, extent, 1);
810
811 if (mpz_sgn (extent) < 0)
812 mpz_set_ui (extent, 0);
813
814 mpz_mul (multiplier, multiplier, extent);
815 }
816
817 i = mpz_get_ui (offset);
818
819 mpz_clear (multiplier);
820 mpz_clear (offset);
821 mpz_clear (extent);
822 mpz_clear (n);
823
824 return i;
825 }
826
827
828 /* Given a single element of an equivalence list, figure out the offset
829 from the base symbol. For simple variables or full arrays, this is
830 simply zero. For an array element we have to calculate the array
831 element number and multiply by the element size. For a substring we
832 have to calculate the further reference. */
833
834 static HOST_WIDE_INT
835 calculate_offset (gfc_expr *e)
836 {
837 HOST_WIDE_INT n, element_size, offset;
838 gfc_typespec *element_type;
839 gfc_ref *reference;
840
841 offset = 0;
842 element_type = &e->symtree->n.sym->ts;
843
844 for (reference = e->ref; reference; reference = reference->next)
845 switch (reference->type)
846 {
847 case REF_ARRAY:
848 switch (reference->u.ar.type)
849 {
850 case AR_FULL:
851 break;
852
853 case AR_ELEMENT:
854 n = element_number (&reference->u.ar);
855 if (element_type->type == BT_CHARACTER)
856 gfc_conv_const_charlen (element_type->u.cl);
857 element_size =
858 int_size_in_bytes (gfc_typenode_for_spec (element_type));
859 offset += n * element_size;
860 break;
861
862 default:
863 gfc_error ("Bad array reference at %L", &e->where);
864 }
865 break;
866 case REF_SUBSTRING:
867 if (reference->u.ss.start != NULL)
868 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
869 break;
870 default:
871 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
872 &e->where);
873 }
874 return offset;
875 }
876
877
878 /* Add a new segment_info structure to the current segment. eq1 is already
879 in the list, eq2 is not. */
880
881 static void
882 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
883 {
884 HOST_WIDE_INT offset1, offset2;
885 segment_info *a;
886
887 offset1 = calculate_offset (eq1->expr);
888 offset2 = calculate_offset (eq2->expr);
889
890 a = get_segment_info (eq2->expr->symtree->n.sym,
891 v->offset + offset1 - offset2);
892
893 current_segment = add_segments (current_segment, a);
894 }
895
896
897 /* Given two equivalence structures that are both already in the list, make
898 sure that this new condition is not violated, generating an error if it
899 is. */
900
901 static void
902 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
903 gfc_equiv *eq2)
904 {
905 HOST_WIDE_INT offset1, offset2;
906
907 offset1 = calculate_offset (eq1->expr);
908 offset2 = calculate_offset (eq2->expr);
909
910 if (s1->offset + offset1 != s2->offset + offset2)
911 gfc_error_1 ("Inconsistent equivalence rules involving '%s' at %L and "
912 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
913 s2->sym->name, &s2->sym->declared_at);
914 }
915
916
917 /* Process a new equivalence condition. eq1 is know to be in segment f.
918 If eq2 is also present then confirm that the condition holds.
919 Otherwise add a new variable to the segment list. */
920
921 static void
922 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
923 {
924 segment_info *n;
925
926 n = find_segment_info (eq2->expr->symtree->n.sym);
927
928 if (n == NULL)
929 new_condition (f, eq1, eq2);
930 else
931 confirm_condition (f, eq1, n, eq2);
932 }
933
934
935 /* Given a segment element, search through the equivalence lists for unused
936 conditions that involve the symbol. Add these rules to the segment. */
937
938 static bool
939 find_equivalence (segment_info *n)
940 {
941 gfc_equiv *e1, *e2, *eq;
942 bool found;
943
944 found = FALSE;
945
946 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
947 {
948 eq = NULL;
949
950 /* Search the equivalence list, including the root (first) element
951 for the symbol that owns the segment. */
952 for (e2 = e1; e2; e2 = e2->eq)
953 {
954 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
955 {
956 eq = e2;
957 break;
958 }
959 }
960
961 /* Go to the next root element. */
962 if (eq == NULL)
963 continue;
964
965 eq->used = 1;
966
967 /* Now traverse the equivalence list matching the offsets. */
968 for (e2 = e1; e2; e2 = e2->eq)
969 {
970 if (!e2->used && e2 != eq)
971 {
972 add_condition (n, eq, e2);
973 e2->used = 1;
974 found = TRUE;
975 }
976 }
977 }
978 return found;
979 }
980
981
982 /* Add all symbols equivalenced within a segment. We need to scan the
983 segment list multiple times to include indirect equivalences. Since
984 a new segment_info can inserted at the beginning of the segment list,
985 depending on its offset, we have to force a final pass through the
986 loop by demanding that completion sees a pass with no matches; i.e.,
987 all symbols with equiv_built set and no new equivalences found. */
988
989 static void
990 add_equivalences (bool *saw_equiv)
991 {
992 segment_info *f;
993 bool seen_one, more;
994
995 seen_one = false;
996 more = TRUE;
997 while (more)
998 {
999 more = FALSE;
1000 for (f = current_segment; f; f = f->next)
1001 {
1002 if (!f->sym->equiv_built)
1003 {
1004 f->sym->equiv_built = 1;
1005 seen_one = find_equivalence (f);
1006 if (seen_one)
1007 {
1008 *saw_equiv = true;
1009 more = true;
1010 }
1011 }
1012 }
1013 }
1014
1015 /* Add a copy of this segment list to the namespace. */
1016 copy_equiv_list_to_ns (current_segment);
1017 }
1018
1019
1020 /* Returns the offset necessary to properly align the current equivalence.
1021 Sets *palign to the required alignment. */
1022
1023 static HOST_WIDE_INT
1024 align_segment (unsigned HOST_WIDE_INT *palign)
1025 {
1026 segment_info *s;
1027 unsigned HOST_WIDE_INT offset;
1028 unsigned HOST_WIDE_INT max_align;
1029 unsigned HOST_WIDE_INT this_align;
1030 unsigned HOST_WIDE_INT this_offset;
1031
1032 max_align = 1;
1033 offset = 0;
1034 for (s = current_segment; s; s = s->next)
1035 {
1036 this_align = TYPE_ALIGN_UNIT (s->field);
1037 if (s->offset & (this_align - 1))
1038 {
1039 /* Field is misaligned. */
1040 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1041 if (this_offset & (max_align - 1))
1042 {
1043 /* Aligning this field would misalign a previous field. */
1044 gfc_error ("The equivalence set for variable %qs "
1045 "declared at %L violates alignment requirements",
1046 s->sym->name, &s->sym->declared_at);
1047 }
1048 offset += this_offset;
1049 }
1050 max_align = this_align;
1051 }
1052 if (palign)
1053 *palign = max_align;
1054 return offset;
1055 }
1056
1057
1058 /* Adjust segment offsets by the given amount. */
1059
1060 static void
1061 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1062 {
1063 for (; s; s = s->next)
1064 s->offset += offset;
1065 }
1066
1067
1068 /* Lay out a symbol in a common block. If the symbol has already been seen
1069 then check the location is consistent. Otherwise create segments
1070 for that symbol and all the symbols equivalenced with it. */
1071
1072 /* Translate a single common block. */
1073
1074 static void
1075 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1076 {
1077 gfc_symbol *sym;
1078 segment_info *s;
1079 segment_info *common_segment;
1080 HOST_WIDE_INT offset;
1081 HOST_WIDE_INT current_offset;
1082 unsigned HOST_WIDE_INT align;
1083 bool saw_equiv;
1084
1085 common_segment = NULL;
1086 offset = 0;
1087 current_offset = 0;
1088 align = 1;
1089 saw_equiv = false;
1090
1091 /* Add symbols to the segment. */
1092 for (sym = var_list; sym; sym = sym->common_next)
1093 {
1094 current_segment = common_segment;
1095 s = find_segment_info (sym);
1096
1097 /* Symbol has already been added via an equivalence. Multiple
1098 use associations of the same common block result in equiv_built
1099 being set but no information about the symbol in the segment. */
1100 if (s && sym->equiv_built)
1101 {
1102 /* Ensure the current location is properly aligned. */
1103 align = TYPE_ALIGN_UNIT (s->field);
1104 current_offset = (current_offset + align - 1) &~ (align - 1);
1105
1106 /* Verify that it ended up where we expect it. */
1107 if (s->offset != current_offset)
1108 {
1109 gfc_error ("Equivalence for %qs does not match ordering of "
1110 "COMMON %qs at %L", sym->name,
1111 common->name, &common->where);
1112 }
1113 }
1114 else
1115 {
1116 /* A symbol we haven't seen before. */
1117 s = current_segment = get_segment_info (sym, current_offset);
1118
1119 /* Add all objects directly or indirectly equivalenced with this
1120 symbol. */
1121 add_equivalences (&saw_equiv);
1122
1123 if (current_segment->offset < 0)
1124 gfc_error ("The equivalence set for %qs cause an invalid "
1125 "extension to COMMON %qs at %L", sym->name,
1126 common->name, &common->where);
1127
1128 if (flag_align_commons)
1129 offset = align_segment (&align);
1130
1131 if (offset)
1132 {
1133 /* The required offset conflicts with previous alignment
1134 requirements. Insert padding immediately before this
1135 segment. */
1136 if (warn_align_commons)
1137 {
1138 if (strcmp (common->name, BLANK_COMMON_NAME))
1139 gfc_warning ("Padding of %d bytes required before %qs in "
1140 "COMMON %qs at %L; reorder elements or use "
1141 "-fno-align-commons", (int)offset,
1142 s->sym->name, common->name, &common->where);
1143 else
1144 gfc_warning ("Padding of %d bytes required before %qs in "
1145 "COMMON at %L; reorder elements or use "
1146 "-fno-align-commons", (int)offset,
1147 s->sym->name, &common->where);
1148 }
1149 }
1150
1151 /* Apply the offset to the new segments. */
1152 apply_segment_offset (current_segment, offset);
1153 current_offset += offset;
1154
1155 /* Add the new segments to the common block. */
1156 common_segment = add_segments (common_segment, current_segment);
1157 }
1158
1159 /* The offset of the next common variable. */
1160 current_offset += s->length;
1161 }
1162
1163 if (common_segment == NULL)
1164 {
1165 gfc_error ("COMMON '%s' at %L does not exist",
1166 common->name, &common->where);
1167 return;
1168 }
1169
1170 if (common_segment->offset != 0 && warn_align_commons)
1171 {
1172 if (strcmp (common->name, BLANK_COMMON_NAME))
1173 gfc_warning (OPT_Walign_commons,
1174 "COMMON %qs at %L requires %d bytes of padding; "
1175 "reorder elements or use %<-fno-align-commons%>",
1176 common->name, &common->where, (int)common_segment->offset);
1177 else
1178 gfc_warning (OPT_Walign_commons,
1179 "COMMON at %L requires %d bytes of padding; "
1180 "reorder elements or use %<-fno-align-commons%>",
1181 &common->where, (int)common_segment->offset);
1182 }
1183
1184 create_common (common, common_segment, saw_equiv);
1185 }
1186
1187
1188 /* Create a new block for each merged equivalence list. */
1189
1190 static void
1191 finish_equivalences (gfc_namespace *ns)
1192 {
1193 gfc_equiv *z, *y;
1194 gfc_symbol *sym;
1195 gfc_common_head * c;
1196 HOST_WIDE_INT offset;
1197 unsigned HOST_WIDE_INT align;
1198 bool dummy;
1199
1200 for (z = ns->equiv; z; z = z->next)
1201 for (y = z->eq; y; y = y->eq)
1202 {
1203 if (y->used)
1204 continue;
1205 sym = z->expr->symtree->n.sym;
1206 current_segment = get_segment_info (sym, 0);
1207
1208 /* All objects directly or indirectly equivalenced with this
1209 symbol. */
1210 add_equivalences (&dummy);
1211
1212 /* Align the block. */
1213 offset = align_segment (&align);
1214
1215 /* Ensure all offsets are positive. */
1216 offset -= current_segment->offset & ~(align - 1);
1217
1218 apply_segment_offset (current_segment, offset);
1219
1220 /* Create the decl. If this is a module equivalence, it has a
1221 unique name, pointed to by z->module. This is written to a
1222 gfc_common_header to push create_common into using
1223 build_common_decl, so that the equivalence appears as an
1224 external symbol. Otherwise, a local declaration is built using
1225 build_equiv_decl. */
1226 if (z->module)
1227 {
1228 c = gfc_get_common_head ();
1229 /* We've lost the real location, so use the location of the
1230 enclosing procedure. */
1231 c->where = ns->proc_name->declared_at;
1232 strcpy (c->name, z->module);
1233 }
1234 else
1235 c = NULL;
1236
1237 create_common (c, current_segment, true);
1238 break;
1239 }
1240 }
1241
1242
1243 /* Work function for translating a named common block. */
1244
1245 static void
1246 named_common (gfc_symtree *st)
1247 {
1248 translate_common (st->n.common, st->n.common->head);
1249 }
1250
1251
1252 /* Translate the common blocks in a namespace. Unlike other variables,
1253 these have to be created before code, because the backend_decl depends
1254 on the rest of the common block. */
1255
1256 void
1257 gfc_trans_common (gfc_namespace *ns)
1258 {
1259 gfc_common_head *c;
1260
1261 /* Translate the blank common block. */
1262 if (ns->blank_common.head != NULL)
1263 {
1264 c = gfc_get_common_head ();
1265 c->where = ns->blank_common.head->common_head->where;
1266 strcpy (c->name, BLANK_COMMON_NAME);
1267 translate_common (c, ns->blank_common.head);
1268 }
1269
1270 /* Translate all named common blocks. */
1271 gfc_traverse_symtree (ns->common_root, named_common);
1272
1273 /* Translate local equivalence. */
1274 finish_equivalences (ns);
1275
1276 /* Commit the newly created symbols for common blocks and module
1277 equivalences. */
1278 gfc_commit_symbols ();
1279 }