]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-common.c
Merge with trunk.
[thirdparty/gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Contributed by Canqun Yang <canqun@nudt.edu.cn>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
22 way to build UNION_TYPE is borrowed from Richard Henderson.
23
24 Transform common blocks. An integral part of this is processing
25 equivalence variables. Equivalenced variables that are not in a
26 common block end up in a private block of their own.
27
28 Each common block or local equivalence list is declared as a union.
29 Variables within the block are represented as a field within the
30 block with the proper offset.
31
32 So if two variables are equivalenced, they just point to a common
33 area in memory.
34
35 Mathematically, laying out an equivalence block is equivalent to
36 solving a linear system of equations. The matrix is usually a
37 sparse matrix in which each row contains all zero elements except
38 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
39 matrix is usually block diagonal. The system can be
40 overdetermined, underdetermined or have a unique solution. If the
41 system is inconsistent, the program is not standard conforming.
42 The solution vector is integral, since all of the pivots are +1 or -1.
43
44 How we lay out an equivalence block is a little less complicated.
45 In an equivalence list with n elements, there are n-1 conditions to
46 be satisfied. The conditions partition the variables into what we
47 will call segments. If A and B are equivalenced then A and B are
48 in the same segment. If B and C are equivalenced as well, then A,
49 B and C are in a segment and so on. Each segment is a block of
50 memory that has one or more variables equivalenced in some way. A
51 common block is made up of a series of segments that are joined one
52 after the other. In the linear system, a segment is a block
53 diagonal.
54
55 To lay out a segment we first start with some variable and
56 determine its length. The first variable is assumed to start at
57 offset one and extends to however long it is. We then traverse the
58 list of equivalences to find an unused condition that involves at
59 least one of the variables currently in the segment.
60
61 Each equivalence condition amounts to the condition B+b=C+c where B
62 and C are the offsets of the B and C variables, and b and c are
63 constants which are nonzero for array elements, substrings or
64 structure components. So for
65
66 EQUIVALENCE(B(2), C(3))
67 we have
68 B + 2*size of B's elements = C + 3*size of C's elements.
69
70 If B and C are known we check to see if the condition already
71 holds. If B is known we can solve for C. Since we know the length
72 of C, we can see if the minimum and maximum extents of the segment
73 are affected. Eventually, we make a full pass through the
74 equivalence list without finding any new conditions and the segment
75 is fully specified.
76
77 At this point, the segment is added to the current common block.
78 Since we know the minimum extent of the segment, everything in the
79 segment is translated to its position in the common block. The
80 usual case here is that there are no equivalence statements and the
81 common block is series of segments with one variable each, which is
82 a diagonal matrix in the matrix formulation.
83
84 Each segment is described by a chain of segment_info structures. Each
85 segment_info structure describes the extents of a single variable within
86 the segment. This list is maintained in the order the elements are
87 positioned within the segment. If two elements have the same starting
88 offset the smaller will come first. If they also have the same size their
89 ordering is undefined.
90
91 Once all common blocks have been created, the list of equivalences
92 is examined for still-unused equivalence conditions. We create a
93 block for each merged equivalence list. */
94
95 #include <map>
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "tree.h"
101 #include "gfortran.h"
102 #include "trans.h"
103 #include "trans-types.h"
104 #include "trans-const.h"
105 #include "target-memory.h"
106
107
108 /* Holds a single variable in an equivalence set. */
109 typedef struct segment_info
110 {
111 gfc_symbol *sym;
112 HOST_WIDE_INT offset;
113 HOST_WIDE_INT length;
114 /* This will contain the field type until the field is created. */
115 tree field;
116 struct segment_info *next;
117 } segment_info;
118
119 static segment_info * current_segment;
120
121 /* Store decl of all common blocks in this translation unit; the first
122 tree is the identifier. */
123 static std::map<tree, tree> gfc_map_of_all_commons;
124
125
126 /* Make a segment_info based on a symbol. */
127
128 static segment_info *
129 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
130 {
131 segment_info *s;
132
133 /* Make sure we've got the character length. */
134 if (sym->ts.type == BT_CHARACTER)
135 gfc_conv_const_charlen (sym->ts.u.cl);
136
137 /* Create the segment_info and fill it in. */
138 s = XCNEW (segment_info);
139 s->sym = sym;
140 /* We will use this type when building the segment aggregate type. */
141 s->field = gfc_sym_type (sym);
142 s->length = int_size_in_bytes (s->field);
143 s->offset = offset;
144
145 return s;
146 }
147
148
149 /* Add a copy of a segment list to the namespace. This is specifically for
150 equivalence segments, so that dependency checking can be done on
151 equivalence group members. */
152
153 static void
154 copy_equiv_list_to_ns (segment_info *c)
155 {
156 segment_info *f;
157 gfc_equiv_info *s;
158 gfc_equiv_list *l;
159
160 l = XCNEW (gfc_equiv_list);
161
162 l->next = c->sym->ns->equiv_lists;
163 c->sym->ns->equiv_lists = l;
164
165 for (f = c; f; f = f->next)
166 {
167 s = XCNEW (gfc_equiv_info);
168 s->next = l->equiv;
169 l->equiv = s;
170 s->sym = f->sym;
171 s->offset = f->offset;
172 s->length = f->length;
173 }
174 }
175
176
177 /* Add combine segment V and segment LIST. */
178
179 static segment_info *
180 add_segments (segment_info *list, segment_info *v)
181 {
182 segment_info *s;
183 segment_info *p;
184 segment_info *next;
185
186 p = NULL;
187 s = list;
188
189 while (v)
190 {
191 /* Find the location of the new element. */
192 while (s)
193 {
194 if (v->offset < s->offset)
195 break;
196 if (v->offset == s->offset
197 && v->length <= s->length)
198 break;
199
200 p = s;
201 s = s->next;
202 }
203
204 /* Insert the new element in between p and s. */
205 next = v->next;
206 v->next = s;
207 if (p == NULL)
208 list = v;
209 else
210 p->next = v;
211
212 p = v;
213 v = next;
214 }
215
216 return list;
217 }
218
219
220 /* Construct mangled common block name from symbol name. */
221
222 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
223 name. There are few calls to this function, so few places that this
224 would need to be added. At the moment, there is only one call, in
225 build_common_decl(). We can't attempt to look up the common block
226 because we may be building it for the first time and therefore, it won't
227 be in the common_root. We also need the binding label, if it's bind(c).
228 Therefore, send in the pointer to the common block, so whatever info we
229 have so far can be used. All of the necessary info should be available
230 in the gfc_common_head by now, so it should be accurate to test the
231 isBindC flag and use the binding label given if it is bind(c).
232
233 We may NOT know yet if it's bind(c) or not, but we can try at least.
234 Will have to figure out what to do later if it's labeled bind(c)
235 after this is called. */
236
237 static tree
238 gfc_sym_mangled_common_id (gfc_common_head *com)
239 {
240 int has_underscore;
241 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
242 char name[GFC_MAX_SYMBOL_LEN + 1];
243
244 /* Get the name out of the common block pointer. */
245 strcpy (name, com->name);
246
247 /* If we're suppose to do a bind(c). */
248 if (com->is_bind_c == 1 && com->binding_label)
249 return get_identifier (com->binding_label);
250
251 if (strcmp (name, BLANK_COMMON_NAME) == 0)
252 return get_identifier (name);
253
254 if (gfc_option.flag_underscoring)
255 {
256 has_underscore = strchr (name, '_') != 0;
257 if (gfc_option.flag_second_underscore && has_underscore)
258 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
259 else
260 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
261
262 return get_identifier (mangled_name);
263 }
264 else
265 return get_identifier (name);
266 }
267
268
269 /* Build a field declaration for a common variable or a local equivalence
270 object. */
271
272 static void
273 build_field (segment_info *h, tree union_type, record_layout_info rli)
274 {
275 tree field;
276 tree name;
277 HOST_WIDE_INT offset = h->offset;
278 unsigned HOST_WIDE_INT desired_align, known_align;
279
280 name = get_identifier (h->sym->name);
281 field = build_decl (h->sym->declared_at.lb->location,
282 FIELD_DECL, name, h->field);
283 known_align = (offset & -offset) * BITS_PER_UNIT;
284 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
285 known_align = BIGGEST_ALIGNMENT;
286
287 desired_align = update_alignment_for_field (rli, field, known_align);
288 if (desired_align > known_align)
289 DECL_PACKED (field) = 1;
290
291 DECL_FIELD_CONTEXT (field) = union_type;
292 DECL_FIELD_OFFSET (field) = size_int (offset);
293 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
294 SET_DECL_OFFSET_ALIGN (field, known_align);
295
296 rli->offset = size_binop (MAX_EXPR, rli->offset,
297 size_binop (PLUS_EXPR,
298 DECL_FIELD_OFFSET (field),
299 DECL_SIZE_UNIT (field)));
300 /* If this field is assigned to a label, we create another two variables.
301 One will hold the address of target label or format label. The other will
302 hold the length of format label string. */
303 if (h->sym->attr.assign)
304 {
305 tree len;
306 tree addr;
307
308 gfc_allocate_lang_decl (field);
309 GFC_DECL_ASSIGN (field) = 1;
310 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
311 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
312 TREE_STATIC (len) = 1;
313 TREE_STATIC (addr) = 1;
314 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
315 gfc_set_decl_location (len, &h->sym->declared_at);
316 gfc_set_decl_location (addr, &h->sym->declared_at);
317 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
318 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
319 }
320
321 /* If this field is volatile, mark it. */
322 if (h->sym->attr.volatile_)
323 {
324 tree new_type;
325 TREE_THIS_VOLATILE (field) = 1;
326 TREE_SIDE_EFFECTS (field) = 1;
327 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
328 TREE_TYPE (field) = new_type;
329 }
330
331 h->field = field;
332 }
333
334
335 /* Get storage for local equivalence. */
336
337 static tree
338 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
339 {
340 tree decl;
341 char name[15];
342 static int serial = 0;
343
344 if (is_init)
345 {
346 decl = gfc_create_var (union_type, "equiv");
347 TREE_STATIC (decl) = 1;
348 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
349 return decl;
350 }
351
352 snprintf (name, sizeof (name), "equiv.%d", serial++);
353 decl = build_decl (input_location,
354 VAR_DECL, get_identifier (name), union_type);
355 DECL_ARTIFICIAL (decl) = 1;
356 DECL_IGNORED_P (decl) = 1;
357
358 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
359 || is_saved)
360 TREE_STATIC (decl) = 1;
361
362 TREE_ADDRESSABLE (decl) = 1;
363 TREE_USED (decl) = 1;
364 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
365
366 /* The source location has been lost, and doesn't really matter.
367 We need to set it to something though. */
368 gfc_set_decl_location (decl, &gfc_current_locus);
369
370 gfc_add_decl_to_function (decl);
371
372 return decl;
373 }
374
375
376 /* Get storage for common block. */
377
378 static tree
379 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
380 {
381 tree decl, identifier;
382
383 identifier = gfc_sym_mangled_common_id (com);
384 decl = gfc_map_of_all_commons.count(identifier)
385 ? gfc_map_of_all_commons[identifier] : NULL_TREE;
386
387 /* Update the size of this common block as needed. */
388 if (decl != NULL_TREE)
389 {
390 tree size = TYPE_SIZE_UNIT (union_type);
391
392 /* Named common blocks of the same name shall be of the same size
393 in all scoping units of a program in which they appear, but
394 blank common blocks may be of different sizes. */
395 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
396 && strcmp (com->name, BLANK_COMMON_NAME))
397 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
398 "same size as elsewhere (%lu vs %lu bytes)", com->name,
399 &com->where,
400 (unsigned long) tree_to_uhwi (size),
401 (unsigned long) tree_to_uhwi (DECL_SIZE_UNIT (decl)));
402
403 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
404 {
405 DECL_SIZE (decl) = TYPE_SIZE (union_type);
406 DECL_SIZE_UNIT (decl) = size;
407 DECL_MODE (decl) = TYPE_MODE (union_type);
408 TREE_TYPE (decl) = union_type;
409 layout_decl (decl, 0);
410 }
411 }
412
413 /* If this common block has been declared in a previous program unit,
414 and either it is already initialized or there is no new initialization
415 for it, just return. */
416 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
417 return decl;
418
419 /* If there is no backend_decl for the common block, build it. */
420 if (decl == NULL_TREE)
421 {
422 if (com->is_bind_c == 1 && com->binding_label)
423 decl = build_decl (input_location, VAR_DECL, identifier, union_type);
424 else
425 {
426 decl = build_decl (input_location, VAR_DECL, get_identifier (com->name),
427 union_type);
428 gfc_set_decl_assembler_name (decl, identifier);
429 }
430
431 TREE_PUBLIC (decl) = 1;
432 TREE_STATIC (decl) = 1;
433 DECL_IGNORED_P (decl) = 1;
434 if (!com->is_bind_c)
435 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
436 else
437 {
438 /* Do not set the alignment for bind(c) common blocks to
439 BIGGEST_ALIGNMENT because that won't match what C does. Also,
440 for common blocks with one element, the alignment must be
441 that of the field within the common block in order to match
442 what C will do. */
443 tree field = NULL_TREE;
444 field = TYPE_FIELDS (TREE_TYPE (decl));
445 if (DECL_CHAIN (field) == NULL_TREE)
446 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
447 }
448 DECL_USER_ALIGN (decl) = 0;
449 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
450
451 gfc_set_decl_location (decl, &com->where);
452
453 if (com->threadprivate)
454 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
455
456 /* Place the back end declaration for this common block in
457 GLOBAL_BINDING_LEVEL. */
458 gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
459 }
460
461 /* Has no initial values. */
462 if (!is_init)
463 {
464 DECL_INITIAL (decl) = NULL_TREE;
465 DECL_COMMON (decl) = 1;
466 DECL_DEFER_OUTPUT (decl) = 1;
467 }
468 else
469 {
470 DECL_INITIAL (decl) = error_mark_node;
471 DECL_COMMON (decl) = 0;
472 DECL_DEFER_OUTPUT (decl) = 0;
473 }
474 return decl;
475 }
476
477
478 /* Return a field that is the size of the union, if an equivalence has
479 overlapping initializers. Merge the initializers into a single
480 initializer for this new field, then free the old ones. */
481
482 static tree
483 get_init_field (segment_info *head, tree union_type, tree *field_init,
484 record_layout_info rli)
485 {
486 segment_info *s;
487 HOST_WIDE_INT length = 0;
488 HOST_WIDE_INT offset = 0;
489 unsigned HOST_WIDE_INT known_align, desired_align;
490 bool overlap = false;
491 tree tmp, field;
492 tree init;
493 unsigned char *data, *chk;
494 vec<constructor_elt, va_gc> *v = NULL;
495
496 tree type = unsigned_char_type_node;
497 int i;
498
499 /* Obtain the size of the union and check if there are any overlapping
500 initializers. */
501 for (s = head; s; s = s->next)
502 {
503 HOST_WIDE_INT slen = s->offset + s->length;
504 if (s->sym->value)
505 {
506 if (s->offset < offset)
507 overlap = true;
508 offset = slen;
509 }
510 length = length < slen ? slen : length;
511 }
512
513 if (!overlap)
514 return NULL_TREE;
515
516 /* Now absorb all the initializer data into a single vector,
517 whilst checking for overlapping, unequal values. */
518 data = XCNEWVEC (unsigned char, (size_t)length);
519 chk = XCNEWVEC (unsigned char, (size_t)length);
520
521 /* TODO - change this when default initialization is implemented. */
522 memset (data, '\0', (size_t)length);
523 memset (chk, '\0', (size_t)length);
524 for (s = head; s; s = s->next)
525 if (s->sym->value)
526 gfc_merge_initializers (s->sym->ts, s->sym->value,
527 &data[s->offset],
528 &chk[s->offset],
529 (size_t)s->length);
530
531 for (i = 0; i < length; i++)
532 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
533
534 free (data);
535 free (chk);
536
537 /* Build a char[length] array to hold the initializers. Much of what
538 follows is borrowed from build_field, above. */
539
540 tmp = build_int_cst (gfc_array_index_type, length - 1);
541 tmp = build_range_type (gfc_array_index_type,
542 gfc_index_zero_node, tmp);
543 tmp = build_array_type (type, tmp);
544 field = build_decl (gfc_current_locus.lb->location,
545 FIELD_DECL, NULL_TREE, tmp);
546
547 known_align = BIGGEST_ALIGNMENT;
548
549 desired_align = update_alignment_for_field (rli, field, known_align);
550 if (desired_align > known_align)
551 DECL_PACKED (field) = 1;
552
553 DECL_FIELD_CONTEXT (field) = union_type;
554 DECL_FIELD_OFFSET (field) = size_int (0);
555 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
556 SET_DECL_OFFSET_ALIGN (field, known_align);
557
558 rli->offset = size_binop (MAX_EXPR, rli->offset,
559 size_binop (PLUS_EXPR,
560 DECL_FIELD_OFFSET (field),
561 DECL_SIZE_UNIT (field)));
562
563 init = build_constructor (TREE_TYPE (field), v);
564 TREE_CONSTANT (init) = 1;
565
566 *field_init = init;
567
568 for (s = head; s; s = s->next)
569 {
570 if (s->sym->value == NULL)
571 continue;
572
573 gfc_free_expr (s->sym->value);
574 s->sym->value = NULL;
575 }
576
577 return field;
578 }
579
580
581 /* Declare memory for the common block or local equivalence, and create
582 backend declarations for all of the elements. */
583
584 static void
585 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
586 {
587 segment_info *s, *next_s;
588 tree union_type;
589 tree *field_link;
590 tree field;
591 tree field_init = NULL_TREE;
592 record_layout_info rli;
593 tree decl;
594 bool is_init = false;
595 bool is_saved = false;
596
597 /* Declare the variables inside the common block.
598 If the current common block contains any equivalence object, then
599 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
600 alias analyzer work well when there is no address overlapping for
601 common variables in the current common block. */
602 if (saw_equiv)
603 union_type = make_node (UNION_TYPE);
604 else
605 union_type = make_node (RECORD_TYPE);
606
607 rli = start_record_layout (union_type);
608 field_link = &TYPE_FIELDS (union_type);
609
610 /* Check for overlapping initializers and replace them with a single,
611 artificial field that contains all the data. */
612 if (saw_equiv)
613 field = get_init_field (head, union_type, &field_init, rli);
614 else
615 field = NULL_TREE;
616
617 if (field != NULL_TREE)
618 {
619 is_init = true;
620 *field_link = field;
621 field_link = &DECL_CHAIN (field);
622 }
623
624 for (s = head; s; s = s->next)
625 {
626 build_field (s, union_type, rli);
627
628 /* Link the field into the type. */
629 *field_link = s->field;
630 field_link = &DECL_CHAIN (s->field);
631
632 /* Has initial value. */
633 if (s->sym->value)
634 is_init = true;
635
636 /* Has SAVE attribute. */
637 if (s->sym->attr.save)
638 is_saved = true;
639 }
640
641 finish_record_layout (rli, true);
642
643 if (com)
644 decl = build_common_decl (com, union_type, is_init);
645 else
646 decl = build_equiv_decl (union_type, is_init, is_saved);
647
648 if (is_init)
649 {
650 tree ctor, tmp;
651 vec<constructor_elt, va_gc> *v = NULL;
652
653 if (field != NULL_TREE && field_init != NULL_TREE)
654 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
655 else
656 for (s = head; s; s = s->next)
657 {
658 if (s->sym->value)
659 {
660 /* Add the initializer for this field. */
661 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
662 TREE_TYPE (s->field),
663 s->sym->attr.dimension,
664 s->sym->attr.pointer
665 || s->sym->attr.allocatable, false);
666
667 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
668 }
669 }
670
671 gcc_assert (!v->is_empty ());
672 ctor = build_constructor (union_type, v);
673 TREE_CONSTANT (ctor) = 1;
674 TREE_STATIC (ctor) = 1;
675 DECL_INITIAL (decl) = ctor;
676
677 #ifdef ENABLE_CHECKING
678 {
679 tree field, value;
680 unsigned HOST_WIDE_INT idx;
681 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
682 gcc_assert (TREE_CODE (field) == FIELD_DECL);
683 }
684 #endif
685 }
686
687 /* Build component reference for each variable. */
688 for (s = head; s; s = next_s)
689 {
690 tree var_decl;
691
692 var_decl = build_decl (s->sym->declared_at.lb->location,
693 VAR_DECL, DECL_NAME (s->field),
694 TREE_TYPE (s->field));
695 TREE_STATIC (var_decl) = TREE_STATIC (decl);
696 /* Mark the variable as used in order to avoid warnings about
697 unused variables. */
698 TREE_USED (var_decl) = 1;
699 if (s->sym->attr.use_assoc)
700 DECL_IGNORED_P (var_decl) = 1;
701 if (s->sym->attr.target)
702 TREE_ADDRESSABLE (var_decl) = 1;
703 /* Fake variables are not visible from other translation units. */
704 TREE_PUBLIC (var_decl) = 0;
705
706 /* To preserve identifier names in COMMON, chain to procedure
707 scope unless at top level in a module definition. */
708 if (com
709 && s->sym->ns->proc_name
710 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
711 var_decl = pushdecl_top_level (var_decl);
712 else
713 gfc_add_decl_to_function (var_decl);
714
715 SET_DECL_VALUE_EXPR (var_decl,
716 fold_build3_loc (input_location, COMPONENT_REF,
717 TREE_TYPE (s->field),
718 decl, s->field, NULL_TREE));
719 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
720 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
721
722 if (s->sym->attr.assign)
723 {
724 gfc_allocate_lang_decl (var_decl);
725 GFC_DECL_ASSIGN (var_decl) = 1;
726 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
727 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
728 }
729
730 s->sym->backend_decl = var_decl;
731
732 next_s = s->next;
733 free (s);
734 }
735 }
736
737
738 /* Given a symbol, find it in the current segment list. Returns NULL if
739 not found. */
740
741 static segment_info *
742 find_segment_info (gfc_symbol *symbol)
743 {
744 segment_info *n;
745
746 for (n = current_segment; n; n = n->next)
747 {
748 if (n->sym == symbol)
749 return n;
750 }
751
752 return NULL;
753 }
754
755
756 /* Given an expression node, make sure it is a constant integer and return
757 the mpz_t value. */
758
759 static mpz_t *
760 get_mpz (gfc_expr *e)
761 {
762
763 if (e->expr_type != EXPR_CONSTANT)
764 gfc_internal_error ("get_mpz(): Not an integer constant");
765
766 return &e->value.integer;
767 }
768
769
770 /* Given an array specification and an array reference, figure out the
771 array element number (zero based). Bounds and elements are guaranteed
772 to be constants. If something goes wrong we generate an error and
773 return zero. */
774
775 static HOST_WIDE_INT
776 element_number (gfc_array_ref *ar)
777 {
778 mpz_t multiplier, offset, extent, n;
779 gfc_array_spec *as;
780 HOST_WIDE_INT i, rank;
781
782 as = ar->as;
783 rank = as->rank;
784 mpz_init_set_ui (multiplier, 1);
785 mpz_init_set_ui (offset, 0);
786 mpz_init (extent);
787 mpz_init (n);
788
789 for (i = 0; i < rank; i++)
790 {
791 if (ar->dimen_type[i] != DIMEN_ELEMENT)
792 gfc_internal_error ("element_number(): Bad dimension type");
793
794 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
795
796 mpz_mul (n, n, multiplier);
797 mpz_add (offset, offset, n);
798
799 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
800 mpz_add_ui (extent, extent, 1);
801
802 if (mpz_sgn (extent) < 0)
803 mpz_set_ui (extent, 0);
804
805 mpz_mul (multiplier, multiplier, extent);
806 }
807
808 i = mpz_get_ui (offset);
809
810 mpz_clear (multiplier);
811 mpz_clear (offset);
812 mpz_clear (extent);
813 mpz_clear (n);
814
815 return i;
816 }
817
818
819 /* Given a single element of an equivalence list, figure out the offset
820 from the base symbol. For simple variables or full arrays, this is
821 simply zero. For an array element we have to calculate the array
822 element number and multiply by the element size. For a substring we
823 have to calculate the further reference. */
824
825 static HOST_WIDE_INT
826 calculate_offset (gfc_expr *e)
827 {
828 HOST_WIDE_INT n, element_size, offset;
829 gfc_typespec *element_type;
830 gfc_ref *reference;
831
832 offset = 0;
833 element_type = &e->symtree->n.sym->ts;
834
835 for (reference = e->ref; reference; reference = reference->next)
836 switch (reference->type)
837 {
838 case REF_ARRAY:
839 switch (reference->u.ar.type)
840 {
841 case AR_FULL:
842 break;
843
844 case AR_ELEMENT:
845 n = element_number (&reference->u.ar);
846 if (element_type->type == BT_CHARACTER)
847 gfc_conv_const_charlen (element_type->u.cl);
848 element_size =
849 int_size_in_bytes (gfc_typenode_for_spec (element_type));
850 offset += n * element_size;
851 break;
852
853 default:
854 gfc_error ("Bad array reference at %L", &e->where);
855 }
856 break;
857 case REF_SUBSTRING:
858 if (reference->u.ss.start != NULL)
859 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
860 break;
861 default:
862 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
863 &e->where);
864 }
865 return offset;
866 }
867
868
869 /* Add a new segment_info structure to the current segment. eq1 is already
870 in the list, eq2 is not. */
871
872 static void
873 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
874 {
875 HOST_WIDE_INT offset1, offset2;
876 segment_info *a;
877
878 offset1 = calculate_offset (eq1->expr);
879 offset2 = calculate_offset (eq2->expr);
880
881 a = get_segment_info (eq2->expr->symtree->n.sym,
882 v->offset + offset1 - offset2);
883
884 current_segment = add_segments (current_segment, a);
885 }
886
887
888 /* Given two equivalence structures that are both already in the list, make
889 sure that this new condition is not violated, generating an error if it
890 is. */
891
892 static void
893 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
894 gfc_equiv *eq2)
895 {
896 HOST_WIDE_INT offset1, offset2;
897
898 offset1 = calculate_offset (eq1->expr);
899 offset2 = calculate_offset (eq2->expr);
900
901 if (s1->offset + offset1 != s2->offset + offset2)
902 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
903 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
904 s2->sym->name, &s2->sym->declared_at);
905 }
906
907
908 /* Process a new equivalence condition. eq1 is know to be in segment f.
909 If eq2 is also present then confirm that the condition holds.
910 Otherwise add a new variable to the segment list. */
911
912 static void
913 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
914 {
915 segment_info *n;
916
917 n = find_segment_info (eq2->expr->symtree->n.sym);
918
919 if (n == NULL)
920 new_condition (f, eq1, eq2);
921 else
922 confirm_condition (f, eq1, n, eq2);
923 }
924
925
926 /* Given a segment element, search through the equivalence lists for unused
927 conditions that involve the symbol. Add these rules to the segment. */
928
929 static bool
930 find_equivalence (segment_info *n)
931 {
932 gfc_equiv *e1, *e2, *eq;
933 bool found;
934
935 found = FALSE;
936
937 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
938 {
939 eq = NULL;
940
941 /* Search the equivalence list, including the root (first) element
942 for the symbol that owns the segment. */
943 for (e2 = e1; e2; e2 = e2->eq)
944 {
945 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
946 {
947 eq = e2;
948 break;
949 }
950 }
951
952 /* Go to the next root element. */
953 if (eq == NULL)
954 continue;
955
956 eq->used = 1;
957
958 /* Now traverse the equivalence list matching the offsets. */
959 for (e2 = e1; e2; e2 = e2->eq)
960 {
961 if (!e2->used && e2 != eq)
962 {
963 add_condition (n, eq, e2);
964 e2->used = 1;
965 found = TRUE;
966 }
967 }
968 }
969 return found;
970 }
971
972
973 /* Add all symbols equivalenced within a segment. We need to scan the
974 segment list multiple times to include indirect equivalences. Since
975 a new segment_info can inserted at the beginning of the segment list,
976 depending on its offset, we have to force a final pass through the
977 loop by demanding that completion sees a pass with no matches; i.e.,
978 all symbols with equiv_built set and no new equivalences found. */
979
980 static void
981 add_equivalences (bool *saw_equiv)
982 {
983 segment_info *f;
984 bool seen_one, more;
985
986 seen_one = false;
987 more = TRUE;
988 while (more)
989 {
990 more = FALSE;
991 for (f = current_segment; f; f = f->next)
992 {
993 if (!f->sym->equiv_built)
994 {
995 f->sym->equiv_built = 1;
996 seen_one = find_equivalence (f);
997 if (seen_one)
998 {
999 *saw_equiv = true;
1000 more = true;
1001 }
1002 }
1003 }
1004 }
1005
1006 /* Add a copy of this segment list to the namespace. */
1007 copy_equiv_list_to_ns (current_segment);
1008 }
1009
1010
1011 /* Returns the offset necessary to properly align the current equivalence.
1012 Sets *palign to the required alignment. */
1013
1014 static HOST_WIDE_INT
1015 align_segment (unsigned HOST_WIDE_INT *palign)
1016 {
1017 segment_info *s;
1018 unsigned HOST_WIDE_INT offset;
1019 unsigned HOST_WIDE_INT max_align;
1020 unsigned HOST_WIDE_INT this_align;
1021 unsigned HOST_WIDE_INT this_offset;
1022
1023 max_align = 1;
1024 offset = 0;
1025 for (s = current_segment; s; s = s->next)
1026 {
1027 this_align = TYPE_ALIGN_UNIT (s->field);
1028 if (s->offset & (this_align - 1))
1029 {
1030 /* Field is misaligned. */
1031 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1032 if (this_offset & (max_align - 1))
1033 {
1034 /* Aligning this field would misalign a previous field. */
1035 gfc_error ("The equivalence set for variable '%s' "
1036 "declared at %L violates alignment requirements",
1037 s->sym->name, &s->sym->declared_at);
1038 }
1039 offset += this_offset;
1040 }
1041 max_align = this_align;
1042 }
1043 if (palign)
1044 *palign = max_align;
1045 return offset;
1046 }
1047
1048
1049 /* Adjust segment offsets by the given amount. */
1050
1051 static void
1052 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1053 {
1054 for (; s; s = s->next)
1055 s->offset += offset;
1056 }
1057
1058
1059 /* Lay out a symbol in a common block. If the symbol has already been seen
1060 then check the location is consistent. Otherwise create segments
1061 for that symbol and all the symbols equivalenced with it. */
1062
1063 /* Translate a single common block. */
1064
1065 static void
1066 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1067 {
1068 gfc_symbol *sym;
1069 segment_info *s;
1070 segment_info *common_segment;
1071 HOST_WIDE_INT offset;
1072 HOST_WIDE_INT current_offset;
1073 unsigned HOST_WIDE_INT align;
1074 bool saw_equiv;
1075
1076 common_segment = NULL;
1077 offset = 0;
1078 current_offset = 0;
1079 align = 1;
1080 saw_equiv = false;
1081
1082 /* Add symbols to the segment. */
1083 for (sym = var_list; sym; sym = sym->common_next)
1084 {
1085 current_segment = common_segment;
1086 s = find_segment_info (sym);
1087
1088 /* Symbol has already been added via an equivalence. Multiple
1089 use associations of the same common block result in equiv_built
1090 being set but no information about the symbol in the segment. */
1091 if (s && sym->equiv_built)
1092 {
1093 /* Ensure the current location is properly aligned. */
1094 align = TYPE_ALIGN_UNIT (s->field);
1095 current_offset = (current_offset + align - 1) &~ (align - 1);
1096
1097 /* Verify that it ended up where we expect it. */
1098 if (s->offset != current_offset)
1099 {
1100 gfc_error ("Equivalence for '%s' does not match ordering of "
1101 "COMMON '%s' at %L", sym->name,
1102 common->name, &common->where);
1103 }
1104 }
1105 else
1106 {
1107 /* A symbol we haven't seen before. */
1108 s = current_segment = get_segment_info (sym, current_offset);
1109
1110 /* Add all objects directly or indirectly equivalenced with this
1111 symbol. */
1112 add_equivalences (&saw_equiv);
1113
1114 if (current_segment->offset < 0)
1115 gfc_error ("The equivalence set for '%s' cause an invalid "
1116 "extension to COMMON '%s' at %L", sym->name,
1117 common->name, &common->where);
1118
1119 if (gfc_option.flag_align_commons)
1120 offset = align_segment (&align);
1121
1122 if (offset)
1123 {
1124 /* The required offset conflicts with previous alignment
1125 requirements. Insert padding immediately before this
1126 segment. */
1127 if (gfc_option.warn_align_commons)
1128 {
1129 if (strcmp (common->name, BLANK_COMMON_NAME))
1130 gfc_warning ("Padding of %d bytes required before '%s' in "
1131 "COMMON '%s' at %L; reorder elements or use "
1132 "-fno-align-commons", (int)offset,
1133 s->sym->name, common->name, &common->where);
1134 else
1135 gfc_warning ("Padding of %d bytes required before '%s' in "
1136 "COMMON at %L; reorder elements or use "
1137 "-fno-align-commons", (int)offset,
1138 s->sym->name, &common->where);
1139 }
1140 }
1141
1142 /* Apply the offset to the new segments. */
1143 apply_segment_offset (current_segment, offset);
1144 current_offset += offset;
1145
1146 /* Add the new segments to the common block. */
1147 common_segment = add_segments (common_segment, current_segment);
1148 }
1149
1150 /* The offset of the next common variable. */
1151 current_offset += s->length;
1152 }
1153
1154 if (common_segment == NULL)
1155 {
1156 gfc_error ("COMMON '%s' at %L does not exist",
1157 common->name, &common->where);
1158 return;
1159 }
1160
1161 if (common_segment->offset != 0 && gfc_option.warn_align_commons)
1162 {
1163 if (strcmp (common->name, BLANK_COMMON_NAME))
1164 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding; "
1165 "reorder elements or use -fno-align-commons",
1166 common->name, &common->where, (int)common_segment->offset);
1167 else
1168 gfc_warning ("COMMON at %L requires %d bytes of padding; "
1169 "reorder elements or use -fno-align-commons",
1170 &common->where, (int)common_segment->offset);
1171 }
1172
1173 create_common (common, common_segment, saw_equiv);
1174 }
1175
1176
1177 /* Create a new block for each merged equivalence list. */
1178
1179 static void
1180 finish_equivalences (gfc_namespace *ns)
1181 {
1182 gfc_equiv *z, *y;
1183 gfc_symbol *sym;
1184 gfc_common_head * c;
1185 HOST_WIDE_INT offset;
1186 unsigned HOST_WIDE_INT align;
1187 bool dummy;
1188
1189 for (z = ns->equiv; z; z = z->next)
1190 for (y = z->eq; y; y = y->eq)
1191 {
1192 if (y->used)
1193 continue;
1194 sym = z->expr->symtree->n.sym;
1195 current_segment = get_segment_info (sym, 0);
1196
1197 /* All objects directly or indirectly equivalenced with this
1198 symbol. */
1199 add_equivalences (&dummy);
1200
1201 /* Align the block. */
1202 offset = align_segment (&align);
1203
1204 /* Ensure all offsets are positive. */
1205 offset -= current_segment->offset & ~(align - 1);
1206
1207 apply_segment_offset (current_segment, offset);
1208
1209 /* Create the decl. If this is a module equivalence, it has a
1210 unique name, pointed to by z->module. This is written to a
1211 gfc_common_header to push create_common into using
1212 build_common_decl, so that the equivalence appears as an
1213 external symbol. Otherwise, a local declaration is built using
1214 build_equiv_decl. */
1215 if (z->module)
1216 {
1217 c = gfc_get_common_head ();
1218 /* We've lost the real location, so use the location of the
1219 enclosing procedure. */
1220 c->where = ns->proc_name->declared_at;
1221 strcpy (c->name, z->module);
1222 }
1223 else
1224 c = NULL;
1225
1226 create_common (c, current_segment, true);
1227 break;
1228 }
1229 }
1230
1231
1232 /* Work function for translating a named common block. */
1233
1234 static void
1235 named_common (gfc_symtree *st)
1236 {
1237 translate_common (st->n.common, st->n.common->head);
1238 }
1239
1240
1241 /* Translate the common blocks in a namespace. Unlike other variables,
1242 these have to be created before code, because the backend_decl depends
1243 on the rest of the common block. */
1244
1245 void
1246 gfc_trans_common (gfc_namespace *ns)
1247 {
1248 gfc_common_head *c;
1249
1250 /* Translate the blank common block. */
1251 if (ns->blank_common.head != NULL)
1252 {
1253 c = gfc_get_common_head ();
1254 c->where = ns->blank_common.head->common_head->where;
1255 strcpy (c->name, BLANK_COMMON_NAME);
1256 translate_common (c, ns->blank_common.head);
1257 }
1258
1259 /* Translate all named common blocks. */
1260 gfc_traverse_symtree (ns->common_root, named_common);
1261
1262 /* Translate local equivalence. */
1263 finish_equivalences (ns);
1264
1265 /* Commit the newly created symbols for common blocks and module
1266 equivalences. */
1267 gfc_commit_symbols ();
1268 }