]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-common.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Contributed by Canqun Yang <canqun@nudt.edu.cn>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
22 way to build UNION_TYPE is borrowed from Richard Henderson.
23
24 Transform common blocks. An integral part of this is processing
25 equivalence variables. Equivalenced variables that are not in a
26 common block end up in a private block of their own.
27
28 Each common block or local equivalence list is declared as a union.
29 Variables within the block are represented as a field within the
30 block with the proper offset.
31
32 So if two variables are equivalenced, they just point to a common
33 area in memory.
34
35 Mathematically, laying out an equivalence block is equivalent to
36 solving a linear system of equations. The matrix is usually a
37 sparse matrix in which each row contains all zero elements except
38 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
39 matrix is usually block diagonal. The system can be
40 overdetermined, underdetermined or have a unique solution. If the
41 system is inconsistent, the program is not standard conforming.
42 The solution vector is integral, since all of the pivots are +1 or -1.
43
44 How we lay out an equivalence block is a little less complicated.
45 In an equivalence list with n elements, there are n-1 conditions to
46 be satisfied. The conditions partition the variables into what we
47 will call segments. If A and B are equivalenced then A and B are
48 in the same segment. If B and C are equivalenced as well, then A,
49 B and C are in a segment and so on. Each segment is a block of
50 memory that has one or more variables equivalenced in some way. A
51 common block is made up of a series of segments that are joined one
52 after the other. In the linear system, a segment is a block
53 diagonal.
54
55 To lay out a segment we first start with some variable and
56 determine its length. The first variable is assumed to start at
57 offset one and extends to however long it is. We then traverse the
58 list of equivalences to find an unused condition that involves at
59 least one of the variables currently in the segment.
60
61 Each equivalence condition amounts to the condition B+b=C+c where B
62 and C are the offsets of the B and C variables, and b and c are
63 constants which are nonzero for array elements, substrings or
64 structure components. So for
65
66 EQUIVALENCE(B(2), C(3))
67 we have
68 B + 2*size of B's elements = C + 3*size of C's elements.
69
70 If B and C are known we check to see if the condition already
71 holds. If B is known we can solve for C. Since we know the length
72 of C, we can see if the minimum and maximum extents of the segment
73 are affected. Eventually, we make a full pass through the
74 equivalence list without finding any new conditions and the segment
75 is fully specified.
76
77 At this point, the segment is added to the current common block.
78 Since we know the minimum extent of the segment, everything in the
79 segment is translated to its position in the common block. The
80 usual case here is that there are no equivalence statements and the
81 common block is series of segments with one variable each, which is
82 a diagonal matrix in the matrix formulation.
83
84 Each segment is described by a chain of segment_info structures. Each
85 segment_info structure describes the extents of a single variable within
86 the segment. This list is maintained in the order the elements are
87 positioned within the segment. If two elements have the same starting
88 offset the smaller will come first. If they also have the same size their
89 ordering is undefined.
90
91 Once all common blocks have been created, the list of equivalences
92 is examined for still-unused equivalence conditions. We create a
93 block for each merged equivalence list. */
94
95 #include "config.h"
96 #include "system.h"
97 #include "coretypes.h"
98 #include "tm.h"
99 #include "tree.h"
100 #include "gfortran.h"
101 #include "trans.h"
102 #include "trans-types.h"
103 #include "trans-const.h"
104 #include "target-memory.h"
105
106
107 /* Holds a single variable in an equivalence set. */
108 typedef struct segment_info
109 {
110 gfc_symbol *sym;
111 HOST_WIDE_INT offset;
112 HOST_WIDE_INT length;
113 /* This will contain the field type until the field is created. */
114 tree field;
115 struct segment_info *next;
116 } segment_info;
117
118 static segment_info * current_segment;
119 static gfc_namespace *gfc_common_ns = NULL;
120
121
122 /* Make a segment_info based on a symbol. */
123
124 static segment_info *
125 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
126 {
127 segment_info *s;
128
129 /* Make sure we've got the character length. */
130 if (sym->ts.type == BT_CHARACTER)
131 gfc_conv_const_charlen (sym->ts.u.cl);
132
133 /* Create the segment_info and fill it in. */
134 s = XCNEW (segment_info);
135 s->sym = sym;
136 /* We will use this type when building the segment aggregate type. */
137 s->field = gfc_sym_type (sym);
138 s->length = int_size_in_bytes (s->field);
139 s->offset = offset;
140
141 return s;
142 }
143
144
145 /* Add a copy of a segment list to the namespace. This is specifically for
146 equivalence segments, so that dependency checking can be done on
147 equivalence group members. */
148
149 static void
150 copy_equiv_list_to_ns (segment_info *c)
151 {
152 segment_info *f;
153 gfc_equiv_info *s;
154 gfc_equiv_list *l;
155
156 l = XCNEW (gfc_equiv_list);
157
158 l->next = c->sym->ns->equiv_lists;
159 c->sym->ns->equiv_lists = l;
160
161 for (f = c; f; f = f->next)
162 {
163 s = XCNEW (gfc_equiv_info);
164 s->next = l->equiv;
165 l->equiv = s;
166 s->sym = f->sym;
167 s->offset = f->offset;
168 s->length = f->length;
169 }
170 }
171
172
173 /* Add combine segment V and segment LIST. */
174
175 static segment_info *
176 add_segments (segment_info *list, segment_info *v)
177 {
178 segment_info *s;
179 segment_info *p;
180 segment_info *next;
181
182 p = NULL;
183 s = list;
184
185 while (v)
186 {
187 /* Find the location of the new element. */
188 while (s)
189 {
190 if (v->offset < s->offset)
191 break;
192 if (v->offset == s->offset
193 && v->length <= s->length)
194 break;
195
196 p = s;
197 s = s->next;
198 }
199
200 /* Insert the new element in between p and s. */
201 next = v->next;
202 v->next = s;
203 if (p == NULL)
204 list = v;
205 else
206 p->next = v;
207
208 p = v;
209 v = next;
210 }
211
212 return list;
213 }
214
215
216 /* Construct mangled common block name from symbol name. */
217
218 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
219 name. There are few calls to this function, so few places that this
220 would need to be added. At the moment, there is only one call, in
221 build_common_decl(). We can't attempt to look up the common block
222 because we may be building it for the first time and therefore, it won't
223 be in the common_root. We also need the binding label, if it's bind(c).
224 Therefore, send in the pointer to the common block, so whatever info we
225 have so far can be used. All of the necessary info should be available
226 in the gfc_common_head by now, so it should be accurate to test the
227 isBindC flag and use the binding label given if it is bind(c).
228
229 We may NOT know yet if it's bind(c) or not, but we can try at least.
230 Will have to figure out what to do later if it's labeled bind(c)
231 after this is called. */
232
233 static tree
234 gfc_sym_mangled_common_id (gfc_common_head *com)
235 {
236 int has_underscore;
237 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
238 char name[GFC_MAX_SYMBOL_LEN + 1];
239
240 /* Get the name out of the common block pointer. */
241 strcpy (name, com->name);
242
243 /* If we're suppose to do a bind(c). */
244 if (com->is_bind_c == 1 && com->binding_label)
245 return get_identifier (com->binding_label);
246
247 if (strcmp (name, BLANK_COMMON_NAME) == 0)
248 return get_identifier (name);
249
250 if (gfc_option.flag_underscoring)
251 {
252 has_underscore = strchr (name, '_') != 0;
253 if (gfc_option.flag_second_underscore && has_underscore)
254 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
255 else
256 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
257
258 return get_identifier (mangled_name);
259 }
260 else
261 return get_identifier (name);
262 }
263
264
265 /* Build a field declaration for a common variable or a local equivalence
266 object. */
267
268 static void
269 build_field (segment_info *h, tree union_type, record_layout_info rli)
270 {
271 tree field;
272 tree name;
273 HOST_WIDE_INT offset = h->offset;
274 unsigned HOST_WIDE_INT desired_align, known_align;
275
276 name = get_identifier (h->sym->name);
277 field = build_decl (h->sym->declared_at.lb->location,
278 FIELD_DECL, name, h->field);
279 known_align = (offset & -offset) * BITS_PER_UNIT;
280 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
281 known_align = BIGGEST_ALIGNMENT;
282
283 desired_align = update_alignment_for_field (rli, field, known_align);
284 if (desired_align > known_align)
285 DECL_PACKED (field) = 1;
286
287 DECL_FIELD_CONTEXT (field) = union_type;
288 DECL_FIELD_OFFSET (field) = size_int (offset);
289 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
290 SET_DECL_OFFSET_ALIGN (field, known_align);
291
292 rli->offset = size_binop (MAX_EXPR, rli->offset,
293 size_binop (PLUS_EXPR,
294 DECL_FIELD_OFFSET (field),
295 DECL_SIZE_UNIT (field)));
296 /* If this field is assigned to a label, we create another two variables.
297 One will hold the address of target label or format label. The other will
298 hold the length of format label string. */
299 if (h->sym->attr.assign)
300 {
301 tree len;
302 tree addr;
303
304 gfc_allocate_lang_decl (field);
305 GFC_DECL_ASSIGN (field) = 1;
306 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
307 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
308 TREE_STATIC (len) = 1;
309 TREE_STATIC (addr) = 1;
310 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
311 gfc_set_decl_location (len, &h->sym->declared_at);
312 gfc_set_decl_location (addr, &h->sym->declared_at);
313 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
314 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
315 }
316
317 /* If this field is volatile, mark it. */
318 if (h->sym->attr.volatile_)
319 {
320 tree new_type;
321 TREE_THIS_VOLATILE (field) = 1;
322 TREE_SIDE_EFFECTS (field) = 1;
323 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
324 TREE_TYPE (field) = new_type;
325 }
326
327 h->field = field;
328 }
329
330
331 /* Get storage for local equivalence. */
332
333 static tree
334 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
335 {
336 tree decl;
337 char name[15];
338 static int serial = 0;
339
340 if (is_init)
341 {
342 decl = gfc_create_var (union_type, "equiv");
343 TREE_STATIC (decl) = 1;
344 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
345 return decl;
346 }
347
348 snprintf (name, sizeof (name), "equiv.%d", serial++);
349 decl = build_decl (input_location,
350 VAR_DECL, get_identifier (name), union_type);
351 DECL_ARTIFICIAL (decl) = 1;
352 DECL_IGNORED_P (decl) = 1;
353
354 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
355 || is_saved)
356 TREE_STATIC (decl) = 1;
357
358 TREE_ADDRESSABLE (decl) = 1;
359 TREE_USED (decl) = 1;
360 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
361
362 /* The source location has been lost, and doesn't really matter.
363 We need to set it to something though. */
364 gfc_set_decl_location (decl, &gfc_current_locus);
365
366 gfc_add_decl_to_function (decl);
367
368 return decl;
369 }
370
371
372 /* Get storage for common block. */
373
374 static tree
375 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
376 {
377 gfc_symbol *common_sym;
378 tree decl;
379
380 /* Create a namespace to store symbols for common blocks. */
381 if (gfc_common_ns == NULL)
382 gfc_common_ns = gfc_get_namespace (NULL, 0);
383
384 gfc_get_symbol (com->name, gfc_common_ns, &common_sym);
385 decl = common_sym->backend_decl;
386
387 /* Update the size of this common block as needed. */
388 if (decl != NULL_TREE)
389 {
390 tree size = TYPE_SIZE_UNIT (union_type);
391
392 /* Named common blocks of the same name shall be of the same size
393 in all scoping units of a program in which they appear, but
394 blank common blocks may be of different sizes. */
395 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
396 && strcmp (com->name, BLANK_COMMON_NAME))
397 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
398 "same size as elsewhere (%lu vs %lu bytes)", com->name,
399 &com->where,
400 (unsigned long) TREE_INT_CST_LOW (size),
401 (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
402
403 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
404 {
405 DECL_SIZE (decl) = TYPE_SIZE (union_type);
406 DECL_SIZE_UNIT (decl) = size;
407 DECL_MODE (decl) = TYPE_MODE (union_type);
408 TREE_TYPE (decl) = union_type;
409 layout_decl (decl, 0);
410 }
411 }
412
413 /* If this common block has been declared in a previous program unit,
414 and either it is already initialized or there is no new initialization
415 for it, just return. */
416 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
417 return decl;
418
419 /* If there is no backend_decl for the common block, build it. */
420 if (decl == NULL_TREE)
421 {
422 decl = build_decl (input_location,
423 VAR_DECL, get_identifier (com->name), union_type);
424 gfc_set_decl_assembler_name (decl, gfc_sym_mangled_common_id (com));
425 TREE_PUBLIC (decl) = 1;
426 TREE_STATIC (decl) = 1;
427 DECL_IGNORED_P (decl) = 1;
428 if (!com->is_bind_c)
429 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
430 else
431 {
432 /* Do not set the alignment for bind(c) common blocks to
433 BIGGEST_ALIGNMENT because that won't match what C does. Also,
434 for common blocks with one element, the alignment must be
435 that of the field within the common block in order to match
436 what C will do. */
437 tree field = NULL_TREE;
438 field = TYPE_FIELDS (TREE_TYPE (decl));
439 if (DECL_CHAIN (field) == NULL_TREE)
440 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
441 }
442 DECL_USER_ALIGN (decl) = 0;
443 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
444
445 gfc_set_decl_location (decl, &com->where);
446
447 if (com->threadprivate)
448 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
449
450 /* Place the back end declaration for this common block in
451 GLOBAL_BINDING_LEVEL. */
452 common_sym->backend_decl = pushdecl_top_level (decl);
453 }
454
455 /* Has no initial values. */
456 if (!is_init)
457 {
458 DECL_INITIAL (decl) = NULL_TREE;
459 DECL_COMMON (decl) = 1;
460 DECL_DEFER_OUTPUT (decl) = 1;
461 }
462 else
463 {
464 DECL_INITIAL (decl) = error_mark_node;
465 DECL_COMMON (decl) = 0;
466 DECL_DEFER_OUTPUT (decl) = 0;
467 }
468 return decl;
469 }
470
471
472 /* Return a field that is the size of the union, if an equivalence has
473 overlapping initializers. Merge the initializers into a single
474 initializer for this new field, then free the old ones. */
475
476 static tree
477 get_init_field (segment_info *head, tree union_type, tree *field_init,
478 record_layout_info rli)
479 {
480 segment_info *s;
481 HOST_WIDE_INT length = 0;
482 HOST_WIDE_INT offset = 0;
483 unsigned HOST_WIDE_INT known_align, desired_align;
484 bool overlap = false;
485 tree tmp, field;
486 tree init;
487 unsigned char *data, *chk;
488 vec<constructor_elt, va_gc> *v = NULL;
489
490 tree type = unsigned_char_type_node;
491 int i;
492
493 /* Obtain the size of the union and check if there are any overlapping
494 initializers. */
495 for (s = head; s; s = s->next)
496 {
497 HOST_WIDE_INT slen = s->offset + s->length;
498 if (s->sym->value)
499 {
500 if (s->offset < offset)
501 overlap = true;
502 offset = slen;
503 }
504 length = length < slen ? slen : length;
505 }
506
507 if (!overlap)
508 return NULL_TREE;
509
510 /* Now absorb all the initializer data into a single vector,
511 whilst checking for overlapping, unequal values. */
512 data = XCNEWVEC (unsigned char, (size_t)length);
513 chk = XCNEWVEC (unsigned char, (size_t)length);
514
515 /* TODO - change this when default initialization is implemented. */
516 memset (data, '\0', (size_t)length);
517 memset (chk, '\0', (size_t)length);
518 for (s = head; s; s = s->next)
519 if (s->sym->value)
520 gfc_merge_initializers (s->sym->ts, s->sym->value,
521 &data[s->offset],
522 &chk[s->offset],
523 (size_t)s->length);
524
525 for (i = 0; i < length; i++)
526 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
527
528 free (data);
529 free (chk);
530
531 /* Build a char[length] array to hold the initializers. Much of what
532 follows is borrowed from build_field, above. */
533
534 tmp = build_int_cst (gfc_array_index_type, length - 1);
535 tmp = build_range_type (gfc_array_index_type,
536 gfc_index_zero_node, tmp);
537 tmp = build_array_type (type, tmp);
538 field = build_decl (gfc_current_locus.lb->location,
539 FIELD_DECL, NULL_TREE, tmp);
540
541 known_align = BIGGEST_ALIGNMENT;
542
543 desired_align = update_alignment_for_field (rli, field, known_align);
544 if (desired_align > known_align)
545 DECL_PACKED (field) = 1;
546
547 DECL_FIELD_CONTEXT (field) = union_type;
548 DECL_FIELD_OFFSET (field) = size_int (0);
549 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
550 SET_DECL_OFFSET_ALIGN (field, known_align);
551
552 rli->offset = size_binop (MAX_EXPR, rli->offset,
553 size_binop (PLUS_EXPR,
554 DECL_FIELD_OFFSET (field),
555 DECL_SIZE_UNIT (field)));
556
557 init = build_constructor (TREE_TYPE (field), v);
558 TREE_CONSTANT (init) = 1;
559
560 *field_init = init;
561
562 for (s = head; s; s = s->next)
563 {
564 if (s->sym->value == NULL)
565 continue;
566
567 gfc_free_expr (s->sym->value);
568 s->sym->value = NULL;
569 }
570
571 return field;
572 }
573
574
575 /* Declare memory for the common block or local equivalence, and create
576 backend declarations for all of the elements. */
577
578 static void
579 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
580 {
581 segment_info *s, *next_s;
582 tree union_type;
583 tree *field_link;
584 tree field;
585 tree field_init = NULL_TREE;
586 record_layout_info rli;
587 tree decl;
588 bool is_init = false;
589 bool is_saved = false;
590
591 /* Declare the variables inside the common block.
592 If the current common block contains any equivalence object, then
593 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
594 alias analyzer work well when there is no address overlapping for
595 common variables in the current common block. */
596 if (saw_equiv)
597 union_type = make_node (UNION_TYPE);
598 else
599 union_type = make_node (RECORD_TYPE);
600
601 rli = start_record_layout (union_type);
602 field_link = &TYPE_FIELDS (union_type);
603
604 /* Check for overlapping initializers and replace them with a single,
605 artificial field that contains all the data. */
606 if (saw_equiv)
607 field = get_init_field (head, union_type, &field_init, rli);
608 else
609 field = NULL_TREE;
610
611 if (field != NULL_TREE)
612 {
613 is_init = true;
614 *field_link = field;
615 field_link = &DECL_CHAIN (field);
616 }
617
618 for (s = head; s; s = s->next)
619 {
620 build_field (s, union_type, rli);
621
622 /* Link the field into the type. */
623 *field_link = s->field;
624 field_link = &DECL_CHAIN (s->field);
625
626 /* Has initial value. */
627 if (s->sym->value)
628 is_init = true;
629
630 /* Has SAVE attribute. */
631 if (s->sym->attr.save)
632 is_saved = true;
633 }
634
635 finish_record_layout (rli, true);
636
637 if (com)
638 decl = build_common_decl (com, union_type, is_init);
639 else
640 decl = build_equiv_decl (union_type, is_init, is_saved);
641
642 if (is_init)
643 {
644 tree ctor, tmp;
645 vec<constructor_elt, va_gc> *v = NULL;
646
647 if (field != NULL_TREE && field_init != NULL_TREE)
648 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
649 else
650 for (s = head; s; s = s->next)
651 {
652 if (s->sym->value)
653 {
654 /* Add the initializer for this field. */
655 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
656 TREE_TYPE (s->field),
657 s->sym->attr.dimension,
658 s->sym->attr.pointer
659 || s->sym->attr.allocatable, false);
660
661 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
662 }
663 }
664
665 gcc_assert (!v->is_empty ());
666 ctor = build_constructor (union_type, v);
667 TREE_CONSTANT (ctor) = 1;
668 TREE_STATIC (ctor) = 1;
669 DECL_INITIAL (decl) = ctor;
670
671 #ifdef ENABLE_CHECKING
672 {
673 tree field, value;
674 unsigned HOST_WIDE_INT idx;
675 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
676 gcc_assert (TREE_CODE (field) == FIELD_DECL);
677 }
678 #endif
679 }
680
681 /* Build component reference for each variable. */
682 for (s = head; s; s = next_s)
683 {
684 tree var_decl;
685
686 var_decl = build_decl (s->sym->declared_at.lb->location,
687 VAR_DECL, DECL_NAME (s->field),
688 TREE_TYPE (s->field));
689 TREE_STATIC (var_decl) = TREE_STATIC (decl);
690 /* Mark the variable as used in order to avoid warnings about
691 unused variables. */
692 TREE_USED (var_decl) = 1;
693 if (s->sym->attr.use_assoc)
694 DECL_IGNORED_P (var_decl) = 1;
695 if (s->sym->attr.target)
696 TREE_ADDRESSABLE (var_decl) = 1;
697 /* Fake variables are not visible from other translation units. */
698 TREE_PUBLIC (var_decl) = 0;
699
700 /* To preserve identifier names in COMMON, chain to procedure
701 scope unless at top level in a module definition. */
702 if (com
703 && s->sym->ns->proc_name
704 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
705 var_decl = pushdecl_top_level (var_decl);
706 else
707 gfc_add_decl_to_function (var_decl);
708
709 SET_DECL_VALUE_EXPR (var_decl,
710 fold_build3_loc (input_location, COMPONENT_REF,
711 TREE_TYPE (s->field),
712 decl, s->field, NULL_TREE));
713 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
714 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
715
716 if (s->sym->attr.assign)
717 {
718 gfc_allocate_lang_decl (var_decl);
719 GFC_DECL_ASSIGN (var_decl) = 1;
720 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
721 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
722 }
723
724 s->sym->backend_decl = var_decl;
725
726 next_s = s->next;
727 free (s);
728 }
729 }
730
731
732 /* Given a symbol, find it in the current segment list. Returns NULL if
733 not found. */
734
735 static segment_info *
736 find_segment_info (gfc_symbol *symbol)
737 {
738 segment_info *n;
739
740 for (n = current_segment; n; n = n->next)
741 {
742 if (n->sym == symbol)
743 return n;
744 }
745
746 return NULL;
747 }
748
749
750 /* Given an expression node, make sure it is a constant integer and return
751 the mpz_t value. */
752
753 static mpz_t *
754 get_mpz (gfc_expr *e)
755 {
756
757 if (e->expr_type != EXPR_CONSTANT)
758 gfc_internal_error ("get_mpz(): Not an integer constant");
759
760 return &e->value.integer;
761 }
762
763
764 /* Given an array specification and an array reference, figure out the
765 array element number (zero based). Bounds and elements are guaranteed
766 to be constants. If something goes wrong we generate an error and
767 return zero. */
768
769 static HOST_WIDE_INT
770 element_number (gfc_array_ref *ar)
771 {
772 mpz_t multiplier, offset, extent, n;
773 gfc_array_spec *as;
774 HOST_WIDE_INT i, rank;
775
776 as = ar->as;
777 rank = as->rank;
778 mpz_init_set_ui (multiplier, 1);
779 mpz_init_set_ui (offset, 0);
780 mpz_init (extent);
781 mpz_init (n);
782
783 for (i = 0; i < rank; i++)
784 {
785 if (ar->dimen_type[i] != DIMEN_ELEMENT)
786 gfc_internal_error ("element_number(): Bad dimension type");
787
788 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
789
790 mpz_mul (n, n, multiplier);
791 mpz_add (offset, offset, n);
792
793 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
794 mpz_add_ui (extent, extent, 1);
795
796 if (mpz_sgn (extent) < 0)
797 mpz_set_ui (extent, 0);
798
799 mpz_mul (multiplier, multiplier, extent);
800 }
801
802 i = mpz_get_ui (offset);
803
804 mpz_clear (multiplier);
805 mpz_clear (offset);
806 mpz_clear (extent);
807 mpz_clear (n);
808
809 return i;
810 }
811
812
813 /* Given a single element of an equivalence list, figure out the offset
814 from the base symbol. For simple variables or full arrays, this is
815 simply zero. For an array element we have to calculate the array
816 element number and multiply by the element size. For a substring we
817 have to calculate the further reference. */
818
819 static HOST_WIDE_INT
820 calculate_offset (gfc_expr *e)
821 {
822 HOST_WIDE_INT n, element_size, offset;
823 gfc_typespec *element_type;
824 gfc_ref *reference;
825
826 offset = 0;
827 element_type = &e->symtree->n.sym->ts;
828
829 for (reference = e->ref; reference; reference = reference->next)
830 switch (reference->type)
831 {
832 case REF_ARRAY:
833 switch (reference->u.ar.type)
834 {
835 case AR_FULL:
836 break;
837
838 case AR_ELEMENT:
839 n = element_number (&reference->u.ar);
840 if (element_type->type == BT_CHARACTER)
841 gfc_conv_const_charlen (element_type->u.cl);
842 element_size =
843 int_size_in_bytes (gfc_typenode_for_spec (element_type));
844 offset += n * element_size;
845 break;
846
847 default:
848 gfc_error ("Bad array reference at %L", &e->where);
849 }
850 break;
851 case REF_SUBSTRING:
852 if (reference->u.ss.start != NULL)
853 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
854 break;
855 default:
856 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
857 &e->where);
858 }
859 return offset;
860 }
861
862
863 /* Add a new segment_info structure to the current segment. eq1 is already
864 in the list, eq2 is not. */
865
866 static void
867 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
868 {
869 HOST_WIDE_INT offset1, offset2;
870 segment_info *a;
871
872 offset1 = calculate_offset (eq1->expr);
873 offset2 = calculate_offset (eq2->expr);
874
875 a = get_segment_info (eq2->expr->symtree->n.sym,
876 v->offset + offset1 - offset2);
877
878 current_segment = add_segments (current_segment, a);
879 }
880
881
882 /* Given two equivalence structures that are both already in the list, make
883 sure that this new condition is not violated, generating an error if it
884 is. */
885
886 static void
887 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
888 gfc_equiv *eq2)
889 {
890 HOST_WIDE_INT offset1, offset2;
891
892 offset1 = calculate_offset (eq1->expr);
893 offset2 = calculate_offset (eq2->expr);
894
895 if (s1->offset + offset1 != s2->offset + offset2)
896 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
897 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
898 s2->sym->name, &s2->sym->declared_at);
899 }
900
901
902 /* Process a new equivalence condition. eq1 is know to be in segment f.
903 If eq2 is also present then confirm that the condition holds.
904 Otherwise add a new variable to the segment list. */
905
906 static void
907 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
908 {
909 segment_info *n;
910
911 n = find_segment_info (eq2->expr->symtree->n.sym);
912
913 if (n == NULL)
914 new_condition (f, eq1, eq2);
915 else
916 confirm_condition (f, eq1, n, eq2);
917 }
918
919
920 /* Given a segment element, search through the equivalence lists for unused
921 conditions that involve the symbol. Add these rules to the segment. */
922
923 static bool
924 find_equivalence (segment_info *n)
925 {
926 gfc_equiv *e1, *e2, *eq;
927 bool found;
928
929 found = FALSE;
930
931 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
932 {
933 eq = NULL;
934
935 /* Search the equivalence list, including the root (first) element
936 for the symbol that owns the segment. */
937 for (e2 = e1; e2; e2 = e2->eq)
938 {
939 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
940 {
941 eq = e2;
942 break;
943 }
944 }
945
946 /* Go to the next root element. */
947 if (eq == NULL)
948 continue;
949
950 eq->used = 1;
951
952 /* Now traverse the equivalence list matching the offsets. */
953 for (e2 = e1; e2; e2 = e2->eq)
954 {
955 if (!e2->used && e2 != eq)
956 {
957 add_condition (n, eq, e2);
958 e2->used = 1;
959 found = TRUE;
960 }
961 }
962 }
963 return found;
964 }
965
966
967 /* Add all symbols equivalenced within a segment. We need to scan the
968 segment list multiple times to include indirect equivalences. Since
969 a new segment_info can inserted at the beginning of the segment list,
970 depending on its offset, we have to force a final pass through the
971 loop by demanding that completion sees a pass with no matches; i.e.,
972 all symbols with equiv_built set and no new equivalences found. */
973
974 static void
975 add_equivalences (bool *saw_equiv)
976 {
977 segment_info *f;
978 bool seen_one, more;
979
980 seen_one = false;
981 more = TRUE;
982 while (more)
983 {
984 more = FALSE;
985 for (f = current_segment; f; f = f->next)
986 {
987 if (!f->sym->equiv_built)
988 {
989 f->sym->equiv_built = 1;
990 seen_one = find_equivalence (f);
991 if (seen_one)
992 {
993 *saw_equiv = true;
994 more = true;
995 }
996 }
997 }
998 }
999
1000 /* Add a copy of this segment list to the namespace. */
1001 copy_equiv_list_to_ns (current_segment);
1002 }
1003
1004
1005 /* Returns the offset necessary to properly align the current equivalence.
1006 Sets *palign to the required alignment. */
1007
1008 static HOST_WIDE_INT
1009 align_segment (unsigned HOST_WIDE_INT *palign)
1010 {
1011 segment_info *s;
1012 unsigned HOST_WIDE_INT offset;
1013 unsigned HOST_WIDE_INT max_align;
1014 unsigned HOST_WIDE_INT this_align;
1015 unsigned HOST_WIDE_INT this_offset;
1016
1017 max_align = 1;
1018 offset = 0;
1019 for (s = current_segment; s; s = s->next)
1020 {
1021 this_align = TYPE_ALIGN_UNIT (s->field);
1022 if (s->offset & (this_align - 1))
1023 {
1024 /* Field is misaligned. */
1025 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1026 if (this_offset & (max_align - 1))
1027 {
1028 /* Aligning this field would misalign a previous field. */
1029 gfc_error ("The equivalence set for variable '%s' "
1030 "declared at %L violates alignment requirements",
1031 s->sym->name, &s->sym->declared_at);
1032 }
1033 offset += this_offset;
1034 }
1035 max_align = this_align;
1036 }
1037 if (palign)
1038 *palign = max_align;
1039 return offset;
1040 }
1041
1042
1043 /* Adjust segment offsets by the given amount. */
1044
1045 static void
1046 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1047 {
1048 for (; s; s = s->next)
1049 s->offset += offset;
1050 }
1051
1052
1053 /* Lay out a symbol in a common block. If the symbol has already been seen
1054 then check the location is consistent. Otherwise create segments
1055 for that symbol and all the symbols equivalenced with it. */
1056
1057 /* Translate a single common block. */
1058
1059 static void
1060 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1061 {
1062 gfc_symbol *sym;
1063 segment_info *s;
1064 segment_info *common_segment;
1065 HOST_WIDE_INT offset;
1066 HOST_WIDE_INT current_offset;
1067 unsigned HOST_WIDE_INT align;
1068 bool saw_equiv;
1069
1070 common_segment = NULL;
1071 offset = 0;
1072 current_offset = 0;
1073 align = 1;
1074 saw_equiv = false;
1075
1076 /* Add symbols to the segment. */
1077 for (sym = var_list; sym; sym = sym->common_next)
1078 {
1079 current_segment = common_segment;
1080 s = find_segment_info (sym);
1081
1082 /* Symbol has already been added via an equivalence. Multiple
1083 use associations of the same common block result in equiv_built
1084 being set but no information about the symbol in the segment. */
1085 if (s && sym->equiv_built)
1086 {
1087 /* Ensure the current location is properly aligned. */
1088 align = TYPE_ALIGN_UNIT (s->field);
1089 current_offset = (current_offset + align - 1) &~ (align - 1);
1090
1091 /* Verify that it ended up where we expect it. */
1092 if (s->offset != current_offset)
1093 {
1094 gfc_error ("Equivalence for '%s' does not match ordering of "
1095 "COMMON '%s' at %L", sym->name,
1096 common->name, &common->where);
1097 }
1098 }
1099 else
1100 {
1101 /* A symbol we haven't seen before. */
1102 s = current_segment = get_segment_info (sym, current_offset);
1103
1104 /* Add all objects directly or indirectly equivalenced with this
1105 symbol. */
1106 add_equivalences (&saw_equiv);
1107
1108 if (current_segment->offset < 0)
1109 gfc_error ("The equivalence set for '%s' cause an invalid "
1110 "extension to COMMON '%s' at %L", sym->name,
1111 common->name, &common->where);
1112
1113 if (gfc_option.flag_align_commons)
1114 offset = align_segment (&align);
1115
1116 if (offset)
1117 {
1118 /* The required offset conflicts with previous alignment
1119 requirements. Insert padding immediately before this
1120 segment. */
1121 if (gfc_option.warn_align_commons)
1122 {
1123 if (strcmp (common->name, BLANK_COMMON_NAME))
1124 gfc_warning ("Padding of %d bytes required before '%s' in "
1125 "COMMON '%s' at %L; reorder elements or use "
1126 "-fno-align-commons", (int)offset,
1127 s->sym->name, common->name, &common->where);
1128 else
1129 gfc_warning ("Padding of %d bytes required before '%s' in "
1130 "COMMON at %L; reorder elements or use "
1131 "-fno-align-commons", (int)offset,
1132 s->sym->name, &common->where);
1133 }
1134 }
1135
1136 /* Apply the offset to the new segments. */
1137 apply_segment_offset (current_segment, offset);
1138 current_offset += offset;
1139
1140 /* Add the new segments to the common block. */
1141 common_segment = add_segments (common_segment, current_segment);
1142 }
1143
1144 /* The offset of the next common variable. */
1145 current_offset += s->length;
1146 }
1147
1148 if (common_segment == NULL)
1149 {
1150 gfc_error ("COMMON '%s' at %L does not exist",
1151 common->name, &common->where);
1152 return;
1153 }
1154
1155 if (common_segment->offset != 0 && gfc_option.warn_align_commons)
1156 {
1157 if (strcmp (common->name, BLANK_COMMON_NAME))
1158 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding; "
1159 "reorder elements or use -fno-align-commons",
1160 common->name, &common->where, (int)common_segment->offset);
1161 else
1162 gfc_warning ("COMMON at %L requires %d bytes of padding; "
1163 "reorder elements or use -fno-align-commons",
1164 &common->where, (int)common_segment->offset);
1165 }
1166
1167 create_common (common, common_segment, saw_equiv);
1168 }
1169
1170
1171 /* Create a new block for each merged equivalence list. */
1172
1173 static void
1174 finish_equivalences (gfc_namespace *ns)
1175 {
1176 gfc_equiv *z, *y;
1177 gfc_symbol *sym;
1178 gfc_common_head * c;
1179 HOST_WIDE_INT offset;
1180 unsigned HOST_WIDE_INT align;
1181 bool dummy;
1182
1183 for (z = ns->equiv; z; z = z->next)
1184 for (y = z->eq; y; y = y->eq)
1185 {
1186 if (y->used)
1187 continue;
1188 sym = z->expr->symtree->n.sym;
1189 current_segment = get_segment_info (sym, 0);
1190
1191 /* All objects directly or indirectly equivalenced with this
1192 symbol. */
1193 add_equivalences (&dummy);
1194
1195 /* Align the block. */
1196 offset = align_segment (&align);
1197
1198 /* Ensure all offsets are positive. */
1199 offset -= current_segment->offset & ~(align - 1);
1200
1201 apply_segment_offset (current_segment, offset);
1202
1203 /* Create the decl. If this is a module equivalence, it has a
1204 unique name, pointed to by z->module. This is written to a
1205 gfc_common_header to push create_common into using
1206 build_common_decl, so that the equivalence appears as an
1207 external symbol. Otherwise, a local declaration is built using
1208 build_equiv_decl. */
1209 if (z->module)
1210 {
1211 c = gfc_get_common_head ();
1212 /* We've lost the real location, so use the location of the
1213 enclosing procedure. */
1214 c->where = ns->proc_name->declared_at;
1215 strcpy (c->name, z->module);
1216 }
1217 else
1218 c = NULL;
1219
1220 create_common (c, current_segment, true);
1221 break;
1222 }
1223 }
1224
1225
1226 /* Work function for translating a named common block. */
1227
1228 static void
1229 named_common (gfc_symtree *st)
1230 {
1231 translate_common (st->n.common, st->n.common->head);
1232 }
1233
1234
1235 /* Translate the common blocks in a namespace. Unlike other variables,
1236 these have to be created before code, because the backend_decl depends
1237 on the rest of the common block. */
1238
1239 void
1240 gfc_trans_common (gfc_namespace *ns)
1241 {
1242 gfc_common_head *c;
1243
1244 /* Translate the blank common block. */
1245 if (ns->blank_common.head != NULL)
1246 {
1247 c = gfc_get_common_head ();
1248 c->where = ns->blank_common.head->common_head->where;
1249 strcpy (c->name, BLANK_COMMON_NAME);
1250 translate_common (c, ns->blank_common.head);
1251 }
1252
1253 /* Translate all named common blocks. */
1254 gfc_traverse_symtree (ns->common_root, named_common);
1255
1256 /* Translate local equivalence. */
1257 finish_equivalences (ns);
1258
1259 /* Commit the newly created symbols for common blocks and module
1260 equivalences. */
1261 gfc_commit_symbols ();
1262 }