]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-common.c
2009-04-04 Paul Thomas <pault@gcc.gnu.org>
[thirdparty/gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Canqun Yang <canqun@nudt.edu.cn>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
23 way to build UNION_TYPE is borrowed from Richard Henderson.
24
25 Transform common blocks. An integral part of this is processing
26 equivalence variables. Equivalenced variables that are not in a
27 common block end up in a private block of their own.
28
29 Each common block or local equivalence list is declared as a union.
30 Variables within the block are represented as a field within the
31 block with the proper offset.
32
33 So if two variables are equivalenced, they just point to a common
34 area in memory.
35
36 Mathematically, laying out an equivalence block is equivalent to
37 solving a linear system of equations. The matrix is usually a
38 sparse matrix in which each row contains all zero elements except
39 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
40 matrix is usually block diagonal. The system can be
41 overdetermined, underdetermined or have a unique solution. If the
42 system is inconsistent, the program is not standard conforming.
43 The solution vector is integral, since all of the pivots are +1 or -1.
44
45 How we lay out an equivalence block is a little less complicated.
46 In an equivalence list with n elements, there are n-1 conditions to
47 be satisfied. The conditions partition the variables into what we
48 will call segments. If A and B are equivalenced then A and B are
49 in the same segment. If B and C are equivalenced as well, then A,
50 B and C are in a segment and so on. Each segment is a block of
51 memory that has one or more variables equivalenced in some way. A
52 common block is made up of a series of segments that are joined one
53 after the other. In the linear system, a segment is a block
54 diagonal.
55
56 To lay out a segment we first start with some variable and
57 determine its length. The first variable is assumed to start at
58 offset one and extends to however long it is. We then traverse the
59 list of equivalences to find an unused condition that involves at
60 least one of the variables currently in the segment.
61
62 Each equivalence condition amounts to the condition B+b=C+c where B
63 and C are the offsets of the B and C variables, and b and c are
64 constants which are nonzero for array elements, substrings or
65 structure components. So for
66
67 EQUIVALENCE(B(2), C(3))
68 we have
69 B + 2*size of B's elements = C + 3*size of C's elements.
70
71 If B and C are known we check to see if the condition already
72 holds. If B is known we can solve for C. Since we know the length
73 of C, we can see if the minimum and maximum extents of the segment
74 are affected. Eventually, we make a full pass through the
75 equivalence list without finding any new conditions and the segment
76 is fully specified.
77
78 At this point, the segment is added to the current common block.
79 Since we know the minimum extent of the segment, everything in the
80 segment is translated to its position in the common block. The
81 usual case here is that there are no equivalence statements and the
82 common block is series of segments with one variable each, which is
83 a diagonal matrix in the matrix formulation.
84
85 Each segment is described by a chain of segment_info structures. Each
86 segment_info structure describes the extents of a single variable within
87 the segment. This list is maintained in the order the elements are
88 positioned withing the segment. If two elements have the same starting
89 offset the smaller will come first. If they also have the same size their
90 ordering is undefined.
91
92 Once all common blocks have been created, the list of equivalences
93 is examined for still-unused equivalence conditions. We create a
94 block for each merged equivalence list. */
95
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "target.h"
100 #include "tree.h"
101 #include "toplev.h"
102 #include "tm.h"
103 #include "rtl.h"
104 #include "gfortran.h"
105 #include "trans.h"
106 #include "trans-types.h"
107 #include "trans-const.h"
108 #include "target-memory.h"
109
110
111 /* Holds a single variable in an equivalence set. */
112 typedef struct segment_info
113 {
114 gfc_symbol *sym;
115 HOST_WIDE_INT offset;
116 HOST_WIDE_INT length;
117 /* This will contain the field type until the field is created. */
118 tree field;
119 struct segment_info *next;
120 } segment_info;
121
122 static segment_info * current_segment;
123 static gfc_namespace *gfc_common_ns = NULL;
124
125
126 /* Make a segment_info based on a symbol. */
127
128 static segment_info *
129 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
130 {
131 segment_info *s;
132
133 /* Make sure we've got the character length. */
134 if (sym->ts.type == BT_CHARACTER)
135 gfc_conv_const_charlen (sym->ts.cl);
136
137 /* Create the segment_info and fill it in. */
138 s = (segment_info *) gfc_getmem (sizeof (segment_info));
139 s->sym = sym;
140 /* We will use this type when building the segment aggregate type. */
141 s->field = gfc_sym_type (sym);
142 s->length = int_size_in_bytes (s->field);
143 s->offset = offset;
144
145 return s;
146 }
147
148
149 /* Add a copy of a segment list to the namespace. This is specifically for
150 equivalence segments, so that dependency checking can be done on
151 equivalence group members. */
152
153 static void
154 copy_equiv_list_to_ns (segment_info *c)
155 {
156 segment_info *f;
157 gfc_equiv_info *s;
158 gfc_equiv_list *l;
159
160 l = (gfc_equiv_list *) gfc_getmem (sizeof (gfc_equiv_list));
161
162 l->next = c->sym->ns->equiv_lists;
163 c->sym->ns->equiv_lists = l;
164
165 for (f = c; f; f = f->next)
166 {
167 s = (gfc_equiv_info *) gfc_getmem (sizeof (gfc_equiv_info));
168 s->next = l->equiv;
169 l->equiv = s;
170 s->sym = f->sym;
171 s->offset = f->offset;
172 s->length = f->length;
173 }
174 }
175
176
177 /* Add combine segment V and segment LIST. */
178
179 static segment_info *
180 add_segments (segment_info *list, segment_info *v)
181 {
182 segment_info *s;
183 segment_info *p;
184 segment_info *next;
185
186 p = NULL;
187 s = list;
188
189 while (v)
190 {
191 /* Find the location of the new element. */
192 while (s)
193 {
194 if (v->offset < s->offset)
195 break;
196 if (v->offset == s->offset
197 && v->length <= s->length)
198 break;
199
200 p = s;
201 s = s->next;
202 }
203
204 /* Insert the new element in between p and s. */
205 next = v->next;
206 v->next = s;
207 if (p == NULL)
208 list = v;
209 else
210 p->next = v;
211
212 p = v;
213 v = next;
214 }
215
216 return list;
217 }
218
219
220 /* Construct mangled common block name from symbol name. */
221
222 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
223 name. There are few calls to this function, so few places that this
224 would need to be added. At the moment, there is only one call, in
225 build_common_decl(). We can't attempt to look up the common block
226 because we may be building it for the first time and therefore, it won't
227 be in the common_root. We also need the binding label, if it's bind(c).
228 Therefore, send in the pointer to the common block, so whatever info we
229 have so far can be used. All of the necessary info should be available
230 in the gfc_common_head by now, so it should be accurate to test the
231 isBindC flag and use the binding label given if it is bind(c).
232
233 We may NOT know yet if it's bind(c) or not, but we can try at least.
234 Will have to figure out what to do later if it's labeled bind(c)
235 after this is called. */
236
237 static tree
238 gfc_sym_mangled_common_id (gfc_common_head *com)
239 {
240 int has_underscore;
241 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
242 char name[GFC_MAX_SYMBOL_LEN + 1];
243
244 /* Get the name out of the common block pointer. */
245 strcpy (name, com->name);
246
247 /* If we're suppose to do a bind(c). */
248 if (com->is_bind_c == 1 && com->binding_label[0] != '\0')
249 return get_identifier (com->binding_label);
250
251 if (strcmp (name, BLANK_COMMON_NAME) == 0)
252 return get_identifier (name);
253
254 if (gfc_option.flag_underscoring)
255 {
256 has_underscore = strchr (name, '_') != 0;
257 if (gfc_option.flag_second_underscore && has_underscore)
258 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
259 else
260 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
261
262 return get_identifier (mangled_name);
263 }
264 else
265 return get_identifier (name);
266 }
267
268
269 /* Build a field declaration for a common variable or a local equivalence
270 object. */
271
272 static void
273 build_field (segment_info *h, tree union_type, record_layout_info rli)
274 {
275 tree field;
276 tree name;
277 HOST_WIDE_INT offset = h->offset;
278 unsigned HOST_WIDE_INT desired_align, known_align;
279
280 name = get_identifier (h->sym->name);
281 field = build_decl (FIELD_DECL, name, h->field);
282 gfc_set_decl_location (field, &h->sym->declared_at);
283 known_align = (offset & -offset) * BITS_PER_UNIT;
284 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
285 known_align = BIGGEST_ALIGNMENT;
286
287 desired_align = update_alignment_for_field (rli, field, known_align);
288 if (desired_align > known_align)
289 DECL_PACKED (field) = 1;
290
291 DECL_FIELD_CONTEXT (field) = union_type;
292 DECL_FIELD_OFFSET (field) = size_int (offset);
293 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
294 SET_DECL_OFFSET_ALIGN (field, known_align);
295
296 rli->offset = size_binop (MAX_EXPR, rli->offset,
297 size_binop (PLUS_EXPR,
298 DECL_FIELD_OFFSET (field),
299 DECL_SIZE_UNIT (field)));
300 /* If this field is assigned to a label, we create another two variables.
301 One will hold the address of target label or format label. The other will
302 hold the length of format label string. */
303 if (h->sym->attr.assign)
304 {
305 tree len;
306 tree addr;
307
308 gfc_allocate_lang_decl (field);
309 GFC_DECL_ASSIGN (field) = 1;
310 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
311 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
312 TREE_STATIC (len) = 1;
313 TREE_STATIC (addr) = 1;
314 DECL_INITIAL (len) = build_int_cst (NULL_TREE, -2);
315 gfc_set_decl_location (len, &h->sym->declared_at);
316 gfc_set_decl_location (addr, &h->sym->declared_at);
317 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
318 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
319 }
320
321 /* If this field is volatile, mark it. */
322 if (h->sym->attr.volatile_)
323 {
324 tree new_type;
325 TREE_THIS_VOLATILE (field) = 1;
326 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
327 TREE_TYPE (field) = new_type;
328 }
329
330 h->field = field;
331 }
332
333
334 /* Get storage for local equivalence. */
335
336 static tree
337 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
338 {
339 tree decl;
340 char name[15];
341 static int serial = 0;
342
343 if (is_init)
344 {
345 decl = gfc_create_var (union_type, "equiv");
346 TREE_STATIC (decl) = 1;
347 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
348 return decl;
349 }
350
351 snprintf (name, sizeof (name), "equiv.%d", serial++);
352 decl = build_decl (VAR_DECL, get_identifier (name), union_type);
353 DECL_ARTIFICIAL (decl) = 1;
354 DECL_IGNORED_P (decl) = 1;
355
356 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
357 || is_saved)
358 TREE_STATIC (decl) = 1;
359
360 TREE_ADDRESSABLE (decl) = 1;
361 TREE_USED (decl) = 1;
362 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
363
364 /* The source location has been lost, and doesn't really matter.
365 We need to set it to something though. */
366 gfc_set_decl_location (decl, &gfc_current_locus);
367
368 gfc_add_decl_to_function (decl);
369
370 return decl;
371 }
372
373
374 /* Get storage for common block. */
375
376 static tree
377 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
378 {
379 gfc_symbol *common_sym;
380 tree decl;
381
382 /* Create a namespace to store symbols for common blocks. */
383 if (gfc_common_ns == NULL)
384 gfc_common_ns = gfc_get_namespace (NULL, 0);
385
386 gfc_get_symbol (com->name, gfc_common_ns, &common_sym);
387 decl = common_sym->backend_decl;
388
389 /* Update the size of this common block as needed. */
390 if (decl != NULL_TREE)
391 {
392 tree size = TYPE_SIZE_UNIT (union_type);
393 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
394 {
395 /* Named common blocks of the same name shall be of the same size
396 in all scoping units of a program in which they appear, but
397 blank common blocks may be of different sizes. */
398 if (strcmp (com->name, BLANK_COMMON_NAME))
399 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
400 "same size", com->name, &com->where);
401 DECL_SIZE_UNIT (decl) = size;
402 TREE_TYPE (decl) = union_type;
403 }
404 }
405
406 /* If this common block has been declared in a previous program unit,
407 and either it is already initialized or there is no new initialization
408 for it, just return. */
409 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
410 return decl;
411
412 /* If there is no backend_decl for the common block, build it. */
413 if (decl == NULL_TREE)
414 {
415 decl = build_decl (VAR_DECL, get_identifier (com->name), union_type);
416 SET_DECL_ASSEMBLER_NAME (decl, gfc_sym_mangled_common_id (com));
417 TREE_PUBLIC (decl) = 1;
418 TREE_STATIC (decl) = 1;
419 DECL_IGNORED_P (decl) = 1;
420 if (!com->is_bind_c)
421 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
422 else
423 {
424 /* Do not set the alignment for bind(c) common blocks to
425 BIGGEST_ALIGNMENT because that won't match what C does. Also,
426 for common blocks with one element, the alignment must be
427 that of the field within the common block in order to match
428 what C will do. */
429 tree field = NULL_TREE;
430 field = TYPE_FIELDS (TREE_TYPE (decl));
431 if (TREE_CHAIN (field) == NULL_TREE)
432 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
433 }
434 DECL_USER_ALIGN (decl) = 0;
435 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
436
437 gfc_set_decl_location (decl, &com->where);
438
439 if (com->threadprivate)
440 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
441
442 /* Place the back end declaration for this common block in
443 GLOBAL_BINDING_LEVEL. */
444 common_sym->backend_decl = pushdecl_top_level (decl);
445 }
446
447 /* Has no initial values. */
448 if (!is_init)
449 {
450 DECL_INITIAL (decl) = NULL_TREE;
451 DECL_COMMON (decl) = 1;
452 DECL_DEFER_OUTPUT (decl) = 1;
453 }
454 else
455 {
456 DECL_INITIAL (decl) = error_mark_node;
457 DECL_COMMON (decl) = 0;
458 DECL_DEFER_OUTPUT (decl) = 0;
459 }
460 return decl;
461 }
462
463
464 /* Return a field that is the size of the union, if an equivalence has
465 overlapping initializers. Merge the initializers into a single
466 initializer for this new field, then free the old ones. */
467
468 static tree
469 get_init_field (segment_info *head, tree union_type, tree *field_init,
470 record_layout_info rli)
471 {
472 segment_info *s;
473 HOST_WIDE_INT length = 0;
474 HOST_WIDE_INT offset = 0;
475 unsigned HOST_WIDE_INT known_align, desired_align;
476 bool overlap = false;
477 tree tmp, field;
478 tree init;
479 unsigned char *data, *chk;
480 VEC(constructor_elt,gc) *v = NULL;
481
482 tree type = unsigned_char_type_node;
483 int i;
484
485 /* Obtain the size of the union and check if there are any overlapping
486 initializers. */
487 for (s = head; s; s = s->next)
488 {
489 HOST_WIDE_INT slen = s->offset + s->length;
490 if (s->sym->value)
491 {
492 if (s->offset < offset)
493 overlap = true;
494 offset = slen;
495 }
496 length = length < slen ? slen : length;
497 }
498
499 if (!overlap)
500 return NULL_TREE;
501
502 /* Now absorb all the initializer data into a single vector,
503 whilst checking for overlapping, unequal values. */
504 data = (unsigned char*)gfc_getmem ((size_t)length);
505 chk = (unsigned char*)gfc_getmem ((size_t)length);
506
507 /* TODO - change this when default initialization is implemented. */
508 memset (data, '\0', (size_t)length);
509 memset (chk, '\0', (size_t)length);
510 for (s = head; s; s = s->next)
511 if (s->sym->value)
512 gfc_merge_initializers (s->sym->ts, s->sym->value,
513 &data[s->offset],
514 &chk[s->offset],
515 (size_t)s->length);
516
517 for (i = 0; i < length; i++)
518 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
519
520 gfc_free (data);
521 gfc_free (chk);
522
523 /* Build a char[length] array to hold the initializers. Much of what
524 follows is borrowed from build_field, above. */
525
526 tmp = build_int_cst (gfc_array_index_type, length - 1);
527 tmp = build_range_type (gfc_array_index_type,
528 gfc_index_zero_node, tmp);
529 tmp = build_array_type (type, tmp);
530 field = build_decl (FIELD_DECL, NULL_TREE, tmp);
531 gfc_set_decl_location (field, &gfc_current_locus);
532
533 known_align = BIGGEST_ALIGNMENT;
534
535 desired_align = update_alignment_for_field (rli, field, known_align);
536 if (desired_align > known_align)
537 DECL_PACKED (field) = 1;
538
539 DECL_FIELD_CONTEXT (field) = union_type;
540 DECL_FIELD_OFFSET (field) = size_int (0);
541 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
542 SET_DECL_OFFSET_ALIGN (field, known_align);
543
544 rli->offset = size_binop (MAX_EXPR, rli->offset,
545 size_binop (PLUS_EXPR,
546 DECL_FIELD_OFFSET (field),
547 DECL_SIZE_UNIT (field)));
548
549 init = build_constructor (TREE_TYPE (field), v);
550 TREE_CONSTANT (init) = 1;
551
552 *field_init = init;
553
554 for (s = head; s; s = s->next)
555 {
556 if (s->sym->value == NULL)
557 continue;
558
559 gfc_free_expr (s->sym->value);
560 s->sym->value = NULL;
561 }
562
563 return field;
564 }
565
566
567 /* Declare memory for the common block or local equivalence, and create
568 backend declarations for all of the elements. */
569
570 static void
571 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
572 {
573 segment_info *s, *next_s;
574 tree union_type;
575 tree *field_link;
576 tree field;
577 tree field_init = NULL_TREE;
578 record_layout_info rli;
579 tree decl;
580 bool is_init = false;
581 bool is_saved = false;
582
583 /* Declare the variables inside the common block.
584 If the current common block contains any equivalence object, then
585 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
586 alias analyzer work well when there is no address overlapping for
587 common variables in the current common block. */
588 if (saw_equiv)
589 union_type = make_node (UNION_TYPE);
590 else
591 union_type = make_node (RECORD_TYPE);
592
593 rli = start_record_layout (union_type);
594 field_link = &TYPE_FIELDS (union_type);
595
596 /* Check for overlapping initializers and replace them with a single,
597 artificial field that contains all the data. */
598 if (saw_equiv)
599 field = get_init_field (head, union_type, &field_init, rli);
600 else
601 field = NULL_TREE;
602
603 if (field != NULL_TREE)
604 {
605 is_init = true;
606 *field_link = field;
607 field_link = &TREE_CHAIN (field);
608 }
609
610 for (s = head; s; s = s->next)
611 {
612 build_field (s, union_type, rli);
613
614 /* Link the field into the type. */
615 *field_link = s->field;
616 field_link = &TREE_CHAIN (s->field);
617
618 /* Has initial value. */
619 if (s->sym->value)
620 is_init = true;
621
622 /* Has SAVE attribute. */
623 if (s->sym->attr.save)
624 is_saved = true;
625 }
626
627 finish_record_layout (rli, true);
628
629 if (com)
630 decl = build_common_decl (com, union_type, is_init);
631 else
632 decl = build_equiv_decl (union_type, is_init, is_saved);
633
634 if (is_init)
635 {
636 tree ctor, tmp;
637 HOST_WIDE_INT offset = 0;
638 VEC(constructor_elt,gc) *v = NULL;
639
640 if (field != NULL_TREE && field_init != NULL_TREE)
641 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
642 else
643 for (s = head; s; s = s->next)
644 {
645 if (s->sym->value)
646 {
647 /* Add the initializer for this field. */
648 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
649 TREE_TYPE (s->field), s->sym->attr.dimension,
650 s->sym->attr.pointer || s->sym->attr.allocatable);
651
652 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
653 offset = s->offset + s->length;
654 }
655 }
656
657 gcc_assert (!VEC_empty (constructor_elt, v));
658 ctor = build_constructor (union_type, v);
659 TREE_CONSTANT (ctor) = 1;
660 TREE_STATIC (ctor) = 1;
661 DECL_INITIAL (decl) = ctor;
662
663 #ifdef ENABLE_CHECKING
664 {
665 tree field, value;
666 unsigned HOST_WIDE_INT idx;
667 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
668 gcc_assert (TREE_CODE (field) == FIELD_DECL);
669 }
670 #endif
671 }
672
673 /* Build component reference for each variable. */
674 for (s = head; s; s = next_s)
675 {
676 tree var_decl;
677
678 var_decl = build_decl (VAR_DECL, DECL_NAME (s->field),
679 TREE_TYPE (s->field));
680 gfc_set_decl_location (var_decl, &s->sym->declared_at);
681 TREE_PUBLIC (var_decl) = TREE_PUBLIC (decl);
682 TREE_STATIC (var_decl) = TREE_STATIC (decl);
683 TREE_USED (var_decl) = TREE_USED (decl);
684 if (s->sym->attr.use_assoc)
685 DECL_IGNORED_P (var_decl) = 1;
686 if (s->sym->attr.target)
687 TREE_ADDRESSABLE (var_decl) = 1;
688 /* This is a fake variable just for debugging purposes. */
689 TREE_ASM_WRITTEN (var_decl) = 1;
690
691 /* To preserve identifier names in COMMON, chain to procedure
692 scope unless at top level in a module definition. */
693 if (com
694 && s->sym->ns->proc_name
695 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
696 var_decl = pushdecl_top_level (var_decl);
697 else
698 gfc_add_decl_to_function (var_decl);
699
700 SET_DECL_VALUE_EXPR (var_decl,
701 fold_build3 (COMPONENT_REF, TREE_TYPE (s->field),
702 decl, s->field, NULL_TREE));
703 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
704 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
705
706 if (s->sym->attr.assign)
707 {
708 gfc_allocate_lang_decl (var_decl);
709 GFC_DECL_ASSIGN (var_decl) = 1;
710 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
711 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
712 }
713
714 s->sym->backend_decl = var_decl;
715
716 next_s = s->next;
717 gfc_free (s);
718 }
719 }
720
721
722 /* Given a symbol, find it in the current segment list. Returns NULL if
723 not found. */
724
725 static segment_info *
726 find_segment_info (gfc_symbol *symbol)
727 {
728 segment_info *n;
729
730 for (n = current_segment; n; n = n->next)
731 {
732 if (n->sym == symbol)
733 return n;
734 }
735
736 return NULL;
737 }
738
739
740 /* Given an expression node, make sure it is a constant integer and return
741 the mpz_t value. */
742
743 static mpz_t *
744 get_mpz (gfc_expr *e)
745 {
746
747 if (e->expr_type != EXPR_CONSTANT)
748 gfc_internal_error ("get_mpz(): Not an integer constant");
749
750 return &e->value.integer;
751 }
752
753
754 /* Given an array specification and an array reference, figure out the
755 array element number (zero based). Bounds and elements are guaranteed
756 to be constants. If something goes wrong we generate an error and
757 return zero. */
758
759 static HOST_WIDE_INT
760 element_number (gfc_array_ref *ar)
761 {
762 mpz_t multiplier, offset, extent, n;
763 gfc_array_spec *as;
764 HOST_WIDE_INT i, rank;
765
766 as = ar->as;
767 rank = as->rank;
768 mpz_init_set_ui (multiplier, 1);
769 mpz_init_set_ui (offset, 0);
770 mpz_init (extent);
771 mpz_init (n);
772
773 for (i = 0; i < rank; i++)
774 {
775 if (ar->dimen_type[i] != DIMEN_ELEMENT)
776 gfc_internal_error ("element_number(): Bad dimension type");
777
778 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
779
780 mpz_mul (n, n, multiplier);
781 mpz_add (offset, offset, n);
782
783 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
784 mpz_add_ui (extent, extent, 1);
785
786 if (mpz_sgn (extent) < 0)
787 mpz_set_ui (extent, 0);
788
789 mpz_mul (multiplier, multiplier, extent);
790 }
791
792 i = mpz_get_ui (offset);
793
794 mpz_clear (multiplier);
795 mpz_clear (offset);
796 mpz_clear (extent);
797 mpz_clear (n);
798
799 return i;
800 }
801
802
803 /* Given a single element of an equivalence list, figure out the offset
804 from the base symbol. For simple variables or full arrays, this is
805 simply zero. For an array element we have to calculate the array
806 element number and multiply by the element size. For a substring we
807 have to calculate the further reference. */
808
809 static HOST_WIDE_INT
810 calculate_offset (gfc_expr *e)
811 {
812 HOST_WIDE_INT n, element_size, offset;
813 gfc_typespec *element_type;
814 gfc_ref *reference;
815
816 offset = 0;
817 element_type = &e->symtree->n.sym->ts;
818
819 for (reference = e->ref; reference; reference = reference->next)
820 switch (reference->type)
821 {
822 case REF_ARRAY:
823 switch (reference->u.ar.type)
824 {
825 case AR_FULL:
826 break;
827
828 case AR_ELEMENT:
829 n = element_number (&reference->u.ar);
830 if (element_type->type == BT_CHARACTER)
831 gfc_conv_const_charlen (element_type->cl);
832 element_size =
833 int_size_in_bytes (gfc_typenode_for_spec (element_type));
834 offset += n * element_size;
835 break;
836
837 default:
838 gfc_error ("Bad array reference at %L", &e->where);
839 }
840 break;
841 case REF_SUBSTRING:
842 if (reference->u.ss.start != NULL)
843 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
844 break;
845 default:
846 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
847 &e->where);
848 }
849 return offset;
850 }
851
852
853 /* Add a new segment_info structure to the current segment. eq1 is already
854 in the list, eq2 is not. */
855
856 static void
857 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
858 {
859 HOST_WIDE_INT offset1, offset2;
860 segment_info *a;
861
862 offset1 = calculate_offset (eq1->expr);
863 offset2 = calculate_offset (eq2->expr);
864
865 a = get_segment_info (eq2->expr->symtree->n.sym,
866 v->offset + offset1 - offset2);
867
868 current_segment = add_segments (current_segment, a);
869 }
870
871
872 /* Given two equivalence structures that are both already in the list, make
873 sure that this new condition is not violated, generating an error if it
874 is. */
875
876 static void
877 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
878 gfc_equiv *eq2)
879 {
880 HOST_WIDE_INT offset1, offset2;
881
882 offset1 = calculate_offset (eq1->expr);
883 offset2 = calculate_offset (eq2->expr);
884
885 if (s1->offset + offset1 != s2->offset + offset2)
886 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
887 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
888 s2->sym->name, &s2->sym->declared_at);
889 }
890
891
892 /* Process a new equivalence condition. eq1 is know to be in segment f.
893 If eq2 is also present then confirm that the condition holds.
894 Otherwise add a new variable to the segment list. */
895
896 static void
897 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
898 {
899 segment_info *n;
900
901 n = find_segment_info (eq2->expr->symtree->n.sym);
902
903 if (n == NULL)
904 new_condition (f, eq1, eq2);
905 else
906 confirm_condition (f, eq1, n, eq2);
907 }
908
909
910 /* Given a segment element, search through the equivalence lists for unused
911 conditions that involve the symbol. Add these rules to the segment. */
912
913 static bool
914 find_equivalence (segment_info *n)
915 {
916 gfc_equiv *e1, *e2, *eq;
917 bool found;
918
919 found = FALSE;
920
921 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
922 {
923 eq = NULL;
924
925 /* Search the equivalence list, including the root (first) element
926 for the symbol that owns the segment. */
927 for (e2 = e1; e2; e2 = e2->eq)
928 {
929 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
930 {
931 eq = e2;
932 break;
933 }
934 }
935
936 /* Go to the next root element. */
937 if (eq == NULL)
938 continue;
939
940 eq->used = 1;
941
942 /* Now traverse the equivalence list matching the offsets. */
943 for (e2 = e1; e2; e2 = e2->eq)
944 {
945 if (!e2->used && e2 != eq)
946 {
947 add_condition (n, eq, e2);
948 e2->used = 1;
949 found = TRUE;
950 }
951 }
952 }
953 return found;
954 }
955
956
957 /* Add all symbols equivalenced within a segment. We need to scan the
958 segment list multiple times to include indirect equivalences. Since
959 a new segment_info can inserted at the beginning of the segment list,
960 depending on its offset, we have to force a final pass through the
961 loop by demanding that completion sees a pass with no matches; i.e.,
962 all symbols with equiv_built set and no new equivalences found. */
963
964 static void
965 add_equivalences (bool *saw_equiv)
966 {
967 segment_info *f;
968 bool seen_one, more;
969
970 seen_one = false;
971 more = TRUE;
972 while (more)
973 {
974 more = FALSE;
975 for (f = current_segment; f; f = f->next)
976 {
977 if (!f->sym->equiv_built)
978 {
979 f->sym->equiv_built = 1;
980 seen_one = find_equivalence (f);
981 if (seen_one)
982 {
983 *saw_equiv = true;
984 more = true;
985 }
986 }
987 }
988 }
989
990 /* Add a copy of this segment list to the namespace. */
991 copy_equiv_list_to_ns (current_segment);
992 }
993
994
995 /* Returns the offset necessary to properly align the current equivalence.
996 Sets *palign to the required alignment. */
997
998 static HOST_WIDE_INT
999 align_segment (unsigned HOST_WIDE_INT *palign)
1000 {
1001 segment_info *s;
1002 unsigned HOST_WIDE_INT offset;
1003 unsigned HOST_WIDE_INT max_align;
1004 unsigned HOST_WIDE_INT this_align;
1005 unsigned HOST_WIDE_INT this_offset;
1006
1007 max_align = 1;
1008 offset = 0;
1009 for (s = current_segment; s; s = s->next)
1010 {
1011 this_align = TYPE_ALIGN_UNIT (s->field);
1012 if (s->offset & (this_align - 1))
1013 {
1014 /* Field is misaligned. */
1015 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1016 if (this_offset & (max_align - 1))
1017 {
1018 /* Aligning this field would misalign a previous field. */
1019 gfc_error ("The equivalence set for variable '%s' "
1020 "declared at %L violates alignment requirements",
1021 s->sym->name, &s->sym->declared_at);
1022 }
1023 offset += this_offset;
1024 }
1025 max_align = this_align;
1026 }
1027 if (palign)
1028 *palign = max_align;
1029 return offset;
1030 }
1031
1032
1033 /* Adjust segment offsets by the given amount. */
1034
1035 static void
1036 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1037 {
1038 for (; s; s = s->next)
1039 s->offset += offset;
1040 }
1041
1042
1043 /* Lay out a symbol in a common block. If the symbol has already been seen
1044 then check the location is consistent. Otherwise create segments
1045 for that symbol and all the symbols equivalenced with it. */
1046
1047 /* Translate a single common block. */
1048
1049 static void
1050 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1051 {
1052 gfc_symbol *sym;
1053 segment_info *s;
1054 segment_info *common_segment;
1055 HOST_WIDE_INT offset;
1056 HOST_WIDE_INT current_offset;
1057 unsigned HOST_WIDE_INT align;
1058 unsigned HOST_WIDE_INT max_align;
1059 bool saw_equiv;
1060
1061 common_segment = NULL;
1062 offset = 0;
1063 current_offset = 0;
1064 align = 1;
1065 max_align = 1;
1066 saw_equiv = false;
1067
1068 /* Add symbols to the segment. */
1069 for (sym = var_list; sym; sym = sym->common_next)
1070 {
1071 current_segment = common_segment;
1072 s = find_segment_info (sym);
1073
1074 /* Symbol has already been added via an equivalence. Multiple
1075 use associations of the same common block result in equiv_built
1076 being set but no information about the symbol in the segment. */
1077 if (s && sym->equiv_built)
1078 {
1079 /* Ensure the current location is properly aligned. */
1080 align = TYPE_ALIGN_UNIT (s->field);
1081 current_offset = (current_offset + align - 1) &~ (align - 1);
1082
1083 /* Verify that it ended up where we expect it. */
1084 if (s->offset != current_offset)
1085 {
1086 gfc_error ("Equivalence for '%s' does not match ordering of "
1087 "COMMON '%s' at %L", sym->name,
1088 common->name, &common->where);
1089 }
1090 }
1091 else
1092 {
1093 /* A symbol we haven't seen before. */
1094 s = current_segment = get_segment_info (sym, current_offset);
1095
1096 /* Add all objects directly or indirectly equivalenced with this
1097 symbol. */
1098 add_equivalences (&saw_equiv);
1099
1100 if (current_segment->offset < 0)
1101 gfc_error ("The equivalence set for '%s' cause an invalid "
1102 "extension to COMMON '%s' at %L", sym->name,
1103 common->name, &common->where);
1104
1105 if (gfc_option.flag_align_commons)
1106 offset = align_segment (&align);
1107
1108 if (offset & (max_align - 1))
1109 {
1110 /* The required offset conflicts with previous alignment
1111 requirements. Insert padding immediately before this
1112 segment. */
1113 if (gfc_option.warn_align_commons)
1114 {
1115 if (strcmp (common->name, BLANK_COMMON_NAME))
1116 gfc_warning ("Padding of %d bytes required before '%s' in "
1117 "COMMON '%s' at %L; reorder elements or use "
1118 "-fno-align-commons", (int)offset,
1119 s->sym->name, common->name, &common->where);
1120 else
1121 gfc_warning ("Padding of %d bytes required before '%s' in "
1122 "COMMON at %L; reorder elements or use "
1123 "-fno-align-commons", (int)offset,
1124 s->sym->name, &common->where);
1125 }
1126 }
1127
1128 /* Apply the offset to the new segments. */
1129 apply_segment_offset (current_segment, offset);
1130 current_offset += offset;
1131 if (max_align < align)
1132 max_align = align;
1133
1134 /* Add the new segments to the common block. */
1135 common_segment = add_segments (common_segment, current_segment);
1136 }
1137
1138 /* The offset of the next common variable. */
1139 current_offset += s->length;
1140 }
1141
1142 if (common_segment == NULL)
1143 {
1144 gfc_error ("COMMON '%s' at %L does not exist",
1145 common->name, &common->where);
1146 return;
1147 }
1148
1149 if (common_segment->offset != 0 && gfc_option.warn_align_commons)
1150 {
1151 if (strcmp (common->name, BLANK_COMMON_NAME))
1152 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding at start; "
1153 "reorder elements or use -fno-align-commons",
1154 common->name, &common->where, (int)common_segment->offset);
1155 else
1156 gfc_warning ("COMMON at %L requires %d bytes of padding at start; "
1157 "reorder elements or use -fno-align-commons",
1158 &common->where, (int)common_segment->offset);
1159 }
1160
1161 create_common (common, common_segment, saw_equiv);
1162 }
1163
1164
1165 /* Create a new block for each merged equivalence list. */
1166
1167 static void
1168 finish_equivalences (gfc_namespace *ns)
1169 {
1170 gfc_equiv *z, *y;
1171 gfc_symbol *sym;
1172 gfc_common_head * c;
1173 HOST_WIDE_INT offset;
1174 unsigned HOST_WIDE_INT align;
1175 bool dummy;
1176
1177 for (z = ns->equiv; z; z = z->next)
1178 for (y = z->eq; y; y = y->eq)
1179 {
1180 if (y->used)
1181 continue;
1182 sym = z->expr->symtree->n.sym;
1183 current_segment = get_segment_info (sym, 0);
1184
1185 /* All objects directly or indirectly equivalenced with this
1186 symbol. */
1187 add_equivalences (&dummy);
1188
1189 /* Align the block. */
1190 offset = align_segment (&align);
1191
1192 /* Ensure all offsets are positive. */
1193 offset -= current_segment->offset & ~(align - 1);
1194
1195 apply_segment_offset (current_segment, offset);
1196
1197 /* Create the decl. If this is a module equivalence, it has a
1198 unique name, pointed to by z->module. This is written to a
1199 gfc_common_header to push create_common into using
1200 build_common_decl, so that the equivalence appears as an
1201 external symbol. Otherwise, a local declaration is built using
1202 build_equiv_decl. */
1203 if (z->module)
1204 {
1205 c = gfc_get_common_head ();
1206 /* We've lost the real location, so use the location of the
1207 enclosing procedure. */
1208 c->where = ns->proc_name->declared_at;
1209 strcpy (c->name, z->module);
1210 }
1211 else
1212 c = NULL;
1213
1214 create_common (c, current_segment, true);
1215 break;
1216 }
1217 }
1218
1219
1220 /* Work function for translating a named common block. */
1221
1222 static void
1223 named_common (gfc_symtree *st)
1224 {
1225 translate_common (st->n.common, st->n.common->head);
1226 }
1227
1228
1229 /* Translate the common blocks in a namespace. Unlike other variables,
1230 these have to be created before code, because the backend_decl depends
1231 on the rest of the common block. */
1232
1233 void
1234 gfc_trans_common (gfc_namespace *ns)
1235 {
1236 gfc_common_head *c;
1237
1238 /* Translate the blank common block. */
1239 if (ns->blank_common.head != NULL)
1240 {
1241 c = gfc_get_common_head ();
1242 c->where = ns->blank_common.head->common_head->where;
1243 strcpy (c->name, BLANK_COMMON_NAME);
1244 translate_common (c, ns->blank_common.head);
1245 }
1246
1247 /* Translate all named common blocks. */
1248 gfc_traverse_symtree (ns->common_root, named_common);
1249
1250 /* Translate local equivalence. */
1251 finish_equivalences (ns);
1252
1253 /* Commit the newly created symbols for common blocks and module
1254 equivalences. */
1255 gfc_commit_symbols ();
1256 }