]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-common.c
coretypes.h: Include input.h and as-a.h.
[thirdparty/gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Canqun Yang <canqun@nudt.edu.cn>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
22 way to build UNION_TYPE is borrowed from Richard Henderson.
23
24 Transform common blocks. An integral part of this is processing
25 equivalence variables. Equivalenced variables that are not in a
26 common block end up in a private block of their own.
27
28 Each common block or local equivalence list is declared as a union.
29 Variables within the block are represented as a field within the
30 block with the proper offset.
31
32 So if two variables are equivalenced, they just point to a common
33 area in memory.
34
35 Mathematically, laying out an equivalence block is equivalent to
36 solving a linear system of equations. The matrix is usually a
37 sparse matrix in which each row contains all zero elements except
38 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
39 matrix is usually block diagonal. The system can be
40 overdetermined, underdetermined or have a unique solution. If the
41 system is inconsistent, the program is not standard conforming.
42 The solution vector is integral, since all of the pivots are +1 or -1.
43
44 How we lay out an equivalence block is a little less complicated.
45 In an equivalence list with n elements, there are n-1 conditions to
46 be satisfied. The conditions partition the variables into what we
47 will call segments. If A and B are equivalenced then A and B are
48 in the same segment. If B and C are equivalenced as well, then A,
49 B and C are in a segment and so on. Each segment is a block of
50 memory that has one or more variables equivalenced in some way. A
51 common block is made up of a series of segments that are joined one
52 after the other. In the linear system, a segment is a block
53 diagonal.
54
55 To lay out a segment we first start with some variable and
56 determine its length. The first variable is assumed to start at
57 offset one and extends to however long it is. We then traverse the
58 list of equivalences to find an unused condition that involves at
59 least one of the variables currently in the segment.
60
61 Each equivalence condition amounts to the condition B+b=C+c where B
62 and C are the offsets of the B and C variables, and b and c are
63 constants which are nonzero for array elements, substrings or
64 structure components. So for
65
66 EQUIVALENCE(B(2), C(3))
67 we have
68 B + 2*size of B's elements = C + 3*size of C's elements.
69
70 If B and C are known we check to see if the condition already
71 holds. If B is known we can solve for C. Since we know the length
72 of C, we can see if the minimum and maximum extents of the segment
73 are affected. Eventually, we make a full pass through the
74 equivalence list without finding any new conditions and the segment
75 is fully specified.
76
77 At this point, the segment is added to the current common block.
78 Since we know the minimum extent of the segment, everything in the
79 segment is translated to its position in the common block. The
80 usual case here is that there are no equivalence statements and the
81 common block is series of segments with one variable each, which is
82 a diagonal matrix in the matrix formulation.
83
84 Each segment is described by a chain of segment_info structures. Each
85 segment_info structure describes the extents of a single variable within
86 the segment. This list is maintained in the order the elements are
87 positioned within the segment. If two elements have the same starting
88 offset the smaller will come first. If they also have the same size their
89 ordering is undefined.
90
91 Once all common blocks have been created, the list of equivalences
92 is examined for still-unused equivalence conditions. We create a
93 block for each merged equivalence list. */
94
95 #include <map>
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "alias.h"
101 #include "symtab.h"
102 #include "tree.h"
103 #include "fold-const.h"
104 #include "stringpool.h"
105 #include "stor-layout.h"
106 #include "varasm.h"
107 #include "gfortran.h"
108 #include "trans.h"
109 #include "trans-types.h"
110 #include "trans-const.h"
111 #include "target-memory.h"
112
113
114 /* Holds a single variable in an equivalence set. */
115 typedef struct segment_info
116 {
117 gfc_symbol *sym;
118 HOST_WIDE_INT offset;
119 HOST_WIDE_INT length;
120 /* This will contain the field type until the field is created. */
121 tree field;
122 struct segment_info *next;
123 } segment_info;
124
125 static segment_info * current_segment;
126
127 /* Store decl of all common blocks in this translation unit; the first
128 tree is the identifier. */
129 static std::map<tree, tree> gfc_map_of_all_commons;
130
131
132 /* Make a segment_info based on a symbol. */
133
134 static segment_info *
135 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
136 {
137 segment_info *s;
138
139 /* Make sure we've got the character length. */
140 if (sym->ts.type == BT_CHARACTER)
141 gfc_conv_const_charlen (sym->ts.u.cl);
142
143 /* Create the segment_info and fill it in. */
144 s = XCNEW (segment_info);
145 s->sym = sym;
146 /* We will use this type when building the segment aggregate type. */
147 s->field = gfc_sym_type (sym);
148 s->length = int_size_in_bytes (s->field);
149 s->offset = offset;
150
151 return s;
152 }
153
154
155 /* Add a copy of a segment list to the namespace. This is specifically for
156 equivalence segments, so that dependency checking can be done on
157 equivalence group members. */
158
159 static void
160 copy_equiv_list_to_ns (segment_info *c)
161 {
162 segment_info *f;
163 gfc_equiv_info *s;
164 gfc_equiv_list *l;
165
166 l = XCNEW (gfc_equiv_list);
167
168 l->next = c->sym->ns->equiv_lists;
169 c->sym->ns->equiv_lists = l;
170
171 for (f = c; f; f = f->next)
172 {
173 s = XCNEW (gfc_equiv_info);
174 s->next = l->equiv;
175 l->equiv = s;
176 s->sym = f->sym;
177 s->offset = f->offset;
178 s->length = f->length;
179 }
180 }
181
182
183 /* Add combine segment V and segment LIST. */
184
185 static segment_info *
186 add_segments (segment_info *list, segment_info *v)
187 {
188 segment_info *s;
189 segment_info *p;
190 segment_info *next;
191
192 p = NULL;
193 s = list;
194
195 while (v)
196 {
197 /* Find the location of the new element. */
198 while (s)
199 {
200 if (v->offset < s->offset)
201 break;
202 if (v->offset == s->offset
203 && v->length <= s->length)
204 break;
205
206 p = s;
207 s = s->next;
208 }
209
210 /* Insert the new element in between p and s. */
211 next = v->next;
212 v->next = s;
213 if (p == NULL)
214 list = v;
215 else
216 p->next = v;
217
218 p = v;
219 v = next;
220 }
221
222 return list;
223 }
224
225
226 /* Construct mangled common block name from symbol name. */
227
228 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
229 name. There are few calls to this function, so few places that this
230 would need to be added. At the moment, there is only one call, in
231 build_common_decl(). We can't attempt to look up the common block
232 because we may be building it for the first time and therefore, it won't
233 be in the common_root. We also need the binding label, if it's bind(c).
234 Therefore, send in the pointer to the common block, so whatever info we
235 have so far can be used. All of the necessary info should be available
236 in the gfc_common_head by now, so it should be accurate to test the
237 isBindC flag and use the binding label given if it is bind(c).
238
239 We may NOT know yet if it's bind(c) or not, but we can try at least.
240 Will have to figure out what to do later if it's labeled bind(c)
241 after this is called. */
242
243 static tree
244 gfc_sym_mangled_common_id (gfc_common_head *com)
245 {
246 int has_underscore;
247 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
248 char name[GFC_MAX_SYMBOL_LEN + 1];
249
250 /* Get the name out of the common block pointer. */
251 strcpy (name, com->name);
252
253 /* If we're suppose to do a bind(c). */
254 if (com->is_bind_c == 1 && com->binding_label)
255 return get_identifier (com->binding_label);
256
257 if (strcmp (name, BLANK_COMMON_NAME) == 0)
258 return get_identifier (name);
259
260 if (flag_underscoring)
261 {
262 has_underscore = strchr (name, '_') != 0;
263 if (flag_second_underscore && has_underscore)
264 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
265 else
266 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
267
268 return get_identifier (mangled_name);
269 }
270 else
271 return get_identifier (name);
272 }
273
274
275 /* Build a field declaration for a common variable or a local equivalence
276 object. */
277
278 static void
279 build_field (segment_info *h, tree union_type, record_layout_info rli)
280 {
281 tree field;
282 tree name;
283 HOST_WIDE_INT offset = h->offset;
284 unsigned HOST_WIDE_INT desired_align, known_align;
285
286 name = get_identifier (h->sym->name);
287 field = build_decl (h->sym->declared_at.lb->location,
288 FIELD_DECL, name, h->field);
289 known_align = (offset & -offset) * BITS_PER_UNIT;
290 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
291 known_align = BIGGEST_ALIGNMENT;
292
293 desired_align = update_alignment_for_field (rli, field, known_align);
294 if (desired_align > known_align)
295 DECL_PACKED (field) = 1;
296
297 DECL_FIELD_CONTEXT (field) = union_type;
298 DECL_FIELD_OFFSET (field) = size_int (offset);
299 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
300 SET_DECL_OFFSET_ALIGN (field, known_align);
301
302 rli->offset = size_binop (MAX_EXPR, rli->offset,
303 size_binop (PLUS_EXPR,
304 DECL_FIELD_OFFSET (field),
305 DECL_SIZE_UNIT (field)));
306 /* If this field is assigned to a label, we create another two variables.
307 One will hold the address of target label or format label. The other will
308 hold the length of format label string. */
309 if (h->sym->attr.assign)
310 {
311 tree len;
312 tree addr;
313
314 gfc_allocate_lang_decl (field);
315 GFC_DECL_ASSIGN (field) = 1;
316 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
317 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
318 TREE_STATIC (len) = 1;
319 TREE_STATIC (addr) = 1;
320 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
321 gfc_set_decl_location (len, &h->sym->declared_at);
322 gfc_set_decl_location (addr, &h->sym->declared_at);
323 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
324 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
325 }
326
327 /* If this field is volatile, mark it. */
328 if (h->sym->attr.volatile_)
329 {
330 tree new_type;
331 TREE_THIS_VOLATILE (field) = 1;
332 TREE_SIDE_EFFECTS (field) = 1;
333 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
334 TREE_TYPE (field) = new_type;
335 }
336
337 h->field = field;
338 }
339
340
341 /* Get storage for local equivalence. */
342
343 static tree
344 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
345 {
346 tree decl;
347 char name[15];
348 static int serial = 0;
349
350 if (is_init)
351 {
352 decl = gfc_create_var (union_type, "equiv");
353 TREE_STATIC (decl) = 1;
354 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
355 return decl;
356 }
357
358 snprintf (name, sizeof (name), "equiv.%d", serial++);
359 decl = build_decl (input_location,
360 VAR_DECL, get_identifier (name), union_type);
361 DECL_ARTIFICIAL (decl) = 1;
362 DECL_IGNORED_P (decl) = 1;
363
364 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
365 || is_saved)
366 TREE_STATIC (decl) = 1;
367
368 TREE_ADDRESSABLE (decl) = 1;
369 TREE_USED (decl) = 1;
370 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
371
372 /* The source location has been lost, and doesn't really matter.
373 We need to set it to something though. */
374 gfc_set_decl_location (decl, &gfc_current_locus);
375
376 gfc_add_decl_to_function (decl);
377
378 return decl;
379 }
380
381
382 /* Get storage for common block. */
383
384 static tree
385 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
386 {
387 tree decl, identifier;
388
389 identifier = gfc_sym_mangled_common_id (com);
390 decl = gfc_map_of_all_commons.count(identifier)
391 ? gfc_map_of_all_commons[identifier] : NULL_TREE;
392
393 /* Update the size of this common block as needed. */
394 if (decl != NULL_TREE)
395 {
396 tree size = TYPE_SIZE_UNIT (union_type);
397
398 /* Named common blocks of the same name shall be of the same size
399 in all scoping units of a program in which they appear, but
400 blank common blocks may be of different sizes. */
401 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
402 && strcmp (com->name, BLANK_COMMON_NAME))
403 gfc_warning (0, "Named COMMON block %qs at %L shall be of the "
404 "same size as elsewhere (%lu vs %lu bytes)", com->name,
405 &com->where,
406 (unsigned long) TREE_INT_CST_LOW (size),
407 (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
408
409 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
410 {
411 DECL_SIZE (decl) = TYPE_SIZE (union_type);
412 DECL_SIZE_UNIT (decl) = size;
413 DECL_MODE (decl) = TYPE_MODE (union_type);
414 TREE_TYPE (decl) = union_type;
415 layout_decl (decl, 0);
416 }
417 }
418
419 /* If this common block has been declared in a previous program unit,
420 and either it is already initialized or there is no new initialization
421 for it, just return. */
422 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
423 return decl;
424
425 /* If there is no backend_decl for the common block, build it. */
426 if (decl == NULL_TREE)
427 {
428 if (com->is_bind_c == 1 && com->binding_label)
429 decl = build_decl (input_location, VAR_DECL, identifier, union_type);
430 else
431 {
432 decl = build_decl (input_location, VAR_DECL, get_identifier (com->name),
433 union_type);
434 gfc_set_decl_assembler_name (decl, identifier);
435 }
436
437 TREE_PUBLIC (decl) = 1;
438 TREE_STATIC (decl) = 1;
439 DECL_IGNORED_P (decl) = 1;
440 if (!com->is_bind_c)
441 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
442 else
443 {
444 /* Do not set the alignment for bind(c) common blocks to
445 BIGGEST_ALIGNMENT because that won't match what C does. Also,
446 for common blocks with one element, the alignment must be
447 that of the field within the common block in order to match
448 what C will do. */
449 tree field = NULL_TREE;
450 field = TYPE_FIELDS (TREE_TYPE (decl));
451 if (DECL_CHAIN (field) == NULL_TREE)
452 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
453 }
454 DECL_USER_ALIGN (decl) = 0;
455 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
456
457 gfc_set_decl_location (decl, &com->where);
458
459 if (com->threadprivate)
460 set_decl_tls_model (decl, decl_default_tls_model (decl));
461
462 if (com->omp_declare_target)
463 DECL_ATTRIBUTES (decl)
464 = tree_cons (get_identifier ("omp declare target"),
465 NULL_TREE, DECL_ATTRIBUTES (decl));
466
467 /* Place the back end declaration for this common block in
468 GLOBAL_BINDING_LEVEL. */
469 gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
470 }
471
472 /* Has no initial values. */
473 if (!is_init)
474 {
475 DECL_INITIAL (decl) = NULL_TREE;
476 DECL_COMMON (decl) = 1;
477 DECL_DEFER_OUTPUT (decl) = 1;
478 }
479 else
480 {
481 DECL_INITIAL (decl) = error_mark_node;
482 DECL_COMMON (decl) = 0;
483 DECL_DEFER_OUTPUT (decl) = 0;
484 }
485 return decl;
486 }
487
488
489 /* Return a field that is the size of the union, if an equivalence has
490 overlapping initializers. Merge the initializers into a single
491 initializer for this new field, then free the old ones. */
492
493 static tree
494 get_init_field (segment_info *head, tree union_type, tree *field_init,
495 record_layout_info rli)
496 {
497 segment_info *s;
498 HOST_WIDE_INT length = 0;
499 HOST_WIDE_INT offset = 0;
500 unsigned HOST_WIDE_INT known_align, desired_align;
501 bool overlap = false;
502 tree tmp, field;
503 tree init;
504 unsigned char *data, *chk;
505 vec<constructor_elt, va_gc> *v = NULL;
506
507 tree type = unsigned_char_type_node;
508 int i;
509
510 /* Obtain the size of the union and check if there are any overlapping
511 initializers. */
512 for (s = head; s; s = s->next)
513 {
514 HOST_WIDE_INT slen = s->offset + s->length;
515 if (s->sym->value)
516 {
517 if (s->offset < offset)
518 overlap = true;
519 offset = slen;
520 }
521 length = length < slen ? slen : length;
522 }
523
524 if (!overlap)
525 return NULL_TREE;
526
527 /* Now absorb all the initializer data into a single vector,
528 whilst checking for overlapping, unequal values. */
529 data = XCNEWVEC (unsigned char, (size_t)length);
530 chk = XCNEWVEC (unsigned char, (size_t)length);
531
532 /* TODO - change this when default initialization is implemented. */
533 memset (data, '\0', (size_t)length);
534 memset (chk, '\0', (size_t)length);
535 for (s = head; s; s = s->next)
536 if (s->sym->value)
537 gfc_merge_initializers (s->sym->ts, s->sym->value,
538 &data[s->offset],
539 &chk[s->offset],
540 (size_t)s->length);
541
542 for (i = 0; i < length; i++)
543 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
544
545 free (data);
546 free (chk);
547
548 /* Build a char[length] array to hold the initializers. Much of what
549 follows is borrowed from build_field, above. */
550
551 tmp = build_int_cst (gfc_array_index_type, length - 1);
552 tmp = build_range_type (gfc_array_index_type,
553 gfc_index_zero_node, tmp);
554 tmp = build_array_type (type, tmp);
555 field = build_decl (gfc_current_locus.lb->location,
556 FIELD_DECL, NULL_TREE, tmp);
557
558 known_align = BIGGEST_ALIGNMENT;
559
560 desired_align = update_alignment_for_field (rli, field, known_align);
561 if (desired_align > known_align)
562 DECL_PACKED (field) = 1;
563
564 DECL_FIELD_CONTEXT (field) = union_type;
565 DECL_FIELD_OFFSET (field) = size_int (0);
566 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
567 SET_DECL_OFFSET_ALIGN (field, known_align);
568
569 rli->offset = size_binop (MAX_EXPR, rli->offset,
570 size_binop (PLUS_EXPR,
571 DECL_FIELD_OFFSET (field),
572 DECL_SIZE_UNIT (field)));
573
574 init = build_constructor (TREE_TYPE (field), v);
575 TREE_CONSTANT (init) = 1;
576
577 *field_init = init;
578
579 for (s = head; s; s = s->next)
580 {
581 if (s->sym->value == NULL)
582 continue;
583
584 gfc_free_expr (s->sym->value);
585 s->sym->value = NULL;
586 }
587
588 return field;
589 }
590
591
592 /* Declare memory for the common block or local equivalence, and create
593 backend declarations for all of the elements. */
594
595 static void
596 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
597 {
598 segment_info *s, *next_s;
599 tree union_type;
600 tree *field_link;
601 tree field;
602 tree field_init = NULL_TREE;
603 record_layout_info rli;
604 tree decl;
605 bool is_init = false;
606 bool is_saved = false;
607
608 /* Declare the variables inside the common block.
609 If the current common block contains any equivalence object, then
610 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
611 alias analyzer work well when there is no address overlapping for
612 common variables in the current common block. */
613 if (saw_equiv)
614 union_type = make_node (UNION_TYPE);
615 else
616 union_type = make_node (RECORD_TYPE);
617
618 rli = start_record_layout (union_type);
619 field_link = &TYPE_FIELDS (union_type);
620
621 /* Check for overlapping initializers and replace them with a single,
622 artificial field that contains all the data. */
623 if (saw_equiv)
624 field = get_init_field (head, union_type, &field_init, rli);
625 else
626 field = NULL_TREE;
627
628 if (field != NULL_TREE)
629 {
630 is_init = true;
631 *field_link = field;
632 field_link = &DECL_CHAIN (field);
633 }
634
635 for (s = head; s; s = s->next)
636 {
637 build_field (s, union_type, rli);
638
639 /* Link the field into the type. */
640 *field_link = s->field;
641 field_link = &DECL_CHAIN (s->field);
642
643 /* Has initial value. */
644 if (s->sym->value)
645 is_init = true;
646
647 /* Has SAVE attribute. */
648 if (s->sym->attr.save)
649 is_saved = true;
650 }
651
652 finish_record_layout (rli, true);
653
654 if (com)
655 decl = build_common_decl (com, union_type, is_init);
656 else
657 decl = build_equiv_decl (union_type, is_init, is_saved);
658
659 if (is_init)
660 {
661 tree ctor, tmp;
662 vec<constructor_elt, va_gc> *v = NULL;
663
664 if (field != NULL_TREE && field_init != NULL_TREE)
665 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
666 else
667 for (s = head; s; s = s->next)
668 {
669 if (s->sym->value)
670 {
671 /* Add the initializer for this field. */
672 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
673 TREE_TYPE (s->field),
674 s->sym->attr.dimension,
675 s->sym->attr.pointer
676 || s->sym->attr.allocatable, false);
677
678 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
679 }
680 }
681
682 gcc_assert (!v->is_empty ());
683 ctor = build_constructor (union_type, v);
684 TREE_CONSTANT (ctor) = 1;
685 TREE_STATIC (ctor) = 1;
686 DECL_INITIAL (decl) = ctor;
687
688 #ifdef ENABLE_CHECKING
689 {
690 tree field, value;
691 unsigned HOST_WIDE_INT idx;
692 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
693 gcc_assert (TREE_CODE (field) == FIELD_DECL);
694 }
695 #endif
696 }
697
698 /* Build component reference for each variable. */
699 for (s = head; s; s = next_s)
700 {
701 tree var_decl;
702
703 var_decl = build_decl (s->sym->declared_at.lb->location,
704 VAR_DECL, DECL_NAME (s->field),
705 TREE_TYPE (s->field));
706 TREE_STATIC (var_decl) = TREE_STATIC (decl);
707 /* Mark the variable as used in order to avoid warnings about
708 unused variables. */
709 TREE_USED (var_decl) = 1;
710 if (s->sym->attr.use_assoc)
711 DECL_IGNORED_P (var_decl) = 1;
712 if (s->sym->attr.target)
713 TREE_ADDRESSABLE (var_decl) = 1;
714 /* Fake variables are not visible from other translation units. */
715 TREE_PUBLIC (var_decl) = 0;
716 gfc_finish_decl_attrs (var_decl, &s->sym->attr);
717
718 /* To preserve identifier names in COMMON, chain to procedure
719 scope unless at top level in a module definition. */
720 if (com
721 && s->sym->ns->proc_name
722 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
723 var_decl = pushdecl_top_level (var_decl);
724 else
725 gfc_add_decl_to_function (var_decl);
726
727 SET_DECL_VALUE_EXPR (var_decl,
728 fold_build3_loc (input_location, COMPONENT_REF,
729 TREE_TYPE (s->field),
730 decl, s->field, NULL_TREE));
731 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
732 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
733
734 if (s->sym->attr.assign)
735 {
736 gfc_allocate_lang_decl (var_decl);
737 GFC_DECL_ASSIGN (var_decl) = 1;
738 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
739 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
740 }
741
742 s->sym->backend_decl = var_decl;
743
744 next_s = s->next;
745 free (s);
746 }
747 }
748
749
750 /* Given a symbol, find it in the current segment list. Returns NULL if
751 not found. */
752
753 static segment_info *
754 find_segment_info (gfc_symbol *symbol)
755 {
756 segment_info *n;
757
758 for (n = current_segment; n; n = n->next)
759 {
760 if (n->sym == symbol)
761 return n;
762 }
763
764 return NULL;
765 }
766
767
768 /* Given an expression node, make sure it is a constant integer and return
769 the mpz_t value. */
770
771 static mpz_t *
772 get_mpz (gfc_expr *e)
773 {
774
775 if (e->expr_type != EXPR_CONSTANT)
776 gfc_internal_error ("get_mpz(): Not an integer constant");
777
778 return &e->value.integer;
779 }
780
781
782 /* Given an array specification and an array reference, figure out the
783 array element number (zero based). Bounds and elements are guaranteed
784 to be constants. If something goes wrong we generate an error and
785 return zero. */
786
787 static HOST_WIDE_INT
788 element_number (gfc_array_ref *ar)
789 {
790 mpz_t multiplier, offset, extent, n;
791 gfc_array_spec *as;
792 HOST_WIDE_INT i, rank;
793
794 as = ar->as;
795 rank = as->rank;
796 mpz_init_set_ui (multiplier, 1);
797 mpz_init_set_ui (offset, 0);
798 mpz_init (extent);
799 mpz_init (n);
800
801 for (i = 0; i < rank; i++)
802 {
803 if (ar->dimen_type[i] != DIMEN_ELEMENT)
804 gfc_internal_error ("element_number(): Bad dimension type");
805
806 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
807
808 mpz_mul (n, n, multiplier);
809 mpz_add (offset, offset, n);
810
811 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
812 mpz_add_ui (extent, extent, 1);
813
814 if (mpz_sgn (extent) < 0)
815 mpz_set_ui (extent, 0);
816
817 mpz_mul (multiplier, multiplier, extent);
818 }
819
820 i = mpz_get_ui (offset);
821
822 mpz_clear (multiplier);
823 mpz_clear (offset);
824 mpz_clear (extent);
825 mpz_clear (n);
826
827 return i;
828 }
829
830
831 /* Given a single element of an equivalence list, figure out the offset
832 from the base symbol. For simple variables or full arrays, this is
833 simply zero. For an array element we have to calculate the array
834 element number and multiply by the element size. For a substring we
835 have to calculate the further reference. */
836
837 static HOST_WIDE_INT
838 calculate_offset (gfc_expr *e)
839 {
840 HOST_WIDE_INT n, element_size, offset;
841 gfc_typespec *element_type;
842 gfc_ref *reference;
843
844 offset = 0;
845 element_type = &e->symtree->n.sym->ts;
846
847 for (reference = e->ref; reference; reference = reference->next)
848 switch (reference->type)
849 {
850 case REF_ARRAY:
851 switch (reference->u.ar.type)
852 {
853 case AR_FULL:
854 break;
855
856 case AR_ELEMENT:
857 n = element_number (&reference->u.ar);
858 if (element_type->type == BT_CHARACTER)
859 gfc_conv_const_charlen (element_type->u.cl);
860 element_size =
861 int_size_in_bytes (gfc_typenode_for_spec (element_type));
862 offset += n * element_size;
863 break;
864
865 default:
866 gfc_error ("Bad array reference at %L", &e->where);
867 }
868 break;
869 case REF_SUBSTRING:
870 if (reference->u.ss.start != NULL)
871 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
872 break;
873 default:
874 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
875 &e->where);
876 }
877 return offset;
878 }
879
880
881 /* Add a new segment_info structure to the current segment. eq1 is already
882 in the list, eq2 is not. */
883
884 static void
885 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
886 {
887 HOST_WIDE_INT offset1, offset2;
888 segment_info *a;
889
890 offset1 = calculate_offset (eq1->expr);
891 offset2 = calculate_offset (eq2->expr);
892
893 a = get_segment_info (eq2->expr->symtree->n.sym,
894 v->offset + offset1 - offset2);
895
896 current_segment = add_segments (current_segment, a);
897 }
898
899
900 /* Given two equivalence structures that are both already in the list, make
901 sure that this new condition is not violated, generating an error if it
902 is. */
903
904 static void
905 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
906 gfc_equiv *eq2)
907 {
908 HOST_WIDE_INT offset1, offset2;
909
910 offset1 = calculate_offset (eq1->expr);
911 offset2 = calculate_offset (eq2->expr);
912
913 if (s1->offset + offset1 != s2->offset + offset2)
914 gfc_error ("Inconsistent equivalence rules involving %qs at %L and "
915 "%qs at %L", s1->sym->name, &s1->sym->declared_at,
916 s2->sym->name, &s2->sym->declared_at);
917 }
918
919
920 /* Process a new equivalence condition. eq1 is know to be in segment f.
921 If eq2 is also present then confirm that the condition holds.
922 Otherwise add a new variable to the segment list. */
923
924 static void
925 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
926 {
927 segment_info *n;
928
929 n = find_segment_info (eq2->expr->symtree->n.sym);
930
931 if (n == NULL)
932 new_condition (f, eq1, eq2);
933 else
934 confirm_condition (f, eq1, n, eq2);
935 }
936
937
938 /* Given a segment element, search through the equivalence lists for unused
939 conditions that involve the symbol. Add these rules to the segment. */
940
941 static bool
942 find_equivalence (segment_info *n)
943 {
944 gfc_equiv *e1, *e2, *eq;
945 bool found;
946
947 found = FALSE;
948
949 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
950 {
951 eq = NULL;
952
953 /* Search the equivalence list, including the root (first) element
954 for the symbol that owns the segment. */
955 for (e2 = e1; e2; e2 = e2->eq)
956 {
957 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
958 {
959 eq = e2;
960 break;
961 }
962 }
963
964 /* Go to the next root element. */
965 if (eq == NULL)
966 continue;
967
968 eq->used = 1;
969
970 /* Now traverse the equivalence list matching the offsets. */
971 for (e2 = e1; e2; e2 = e2->eq)
972 {
973 if (!e2->used && e2 != eq)
974 {
975 add_condition (n, eq, e2);
976 e2->used = 1;
977 found = TRUE;
978 }
979 }
980 }
981 return found;
982 }
983
984
985 /* Add all symbols equivalenced within a segment. We need to scan the
986 segment list multiple times to include indirect equivalences. Since
987 a new segment_info can inserted at the beginning of the segment list,
988 depending on its offset, we have to force a final pass through the
989 loop by demanding that completion sees a pass with no matches; i.e.,
990 all symbols with equiv_built set and no new equivalences found. */
991
992 static void
993 add_equivalences (bool *saw_equiv)
994 {
995 segment_info *f;
996 bool seen_one, more;
997
998 seen_one = false;
999 more = TRUE;
1000 while (more)
1001 {
1002 more = FALSE;
1003 for (f = current_segment; f; f = f->next)
1004 {
1005 if (!f->sym->equiv_built)
1006 {
1007 f->sym->equiv_built = 1;
1008 seen_one = find_equivalence (f);
1009 if (seen_one)
1010 {
1011 *saw_equiv = true;
1012 more = true;
1013 }
1014 }
1015 }
1016 }
1017
1018 /* Add a copy of this segment list to the namespace. */
1019 copy_equiv_list_to_ns (current_segment);
1020 }
1021
1022
1023 /* Returns the offset necessary to properly align the current equivalence.
1024 Sets *palign to the required alignment. */
1025
1026 static HOST_WIDE_INT
1027 align_segment (unsigned HOST_WIDE_INT *palign)
1028 {
1029 segment_info *s;
1030 unsigned HOST_WIDE_INT offset;
1031 unsigned HOST_WIDE_INT max_align;
1032 unsigned HOST_WIDE_INT this_align;
1033 unsigned HOST_WIDE_INT this_offset;
1034
1035 max_align = 1;
1036 offset = 0;
1037 for (s = current_segment; s; s = s->next)
1038 {
1039 this_align = TYPE_ALIGN_UNIT (s->field);
1040 if (s->offset & (this_align - 1))
1041 {
1042 /* Field is misaligned. */
1043 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1044 if (this_offset & (max_align - 1))
1045 {
1046 /* Aligning this field would misalign a previous field. */
1047 gfc_error ("The equivalence set for variable %qs "
1048 "declared at %L violates alignment requirements",
1049 s->sym->name, &s->sym->declared_at);
1050 }
1051 offset += this_offset;
1052 }
1053 max_align = this_align;
1054 }
1055 if (palign)
1056 *palign = max_align;
1057 return offset;
1058 }
1059
1060
1061 /* Adjust segment offsets by the given amount. */
1062
1063 static void
1064 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1065 {
1066 for (; s; s = s->next)
1067 s->offset += offset;
1068 }
1069
1070
1071 /* Lay out a symbol in a common block. If the symbol has already been seen
1072 then check the location is consistent. Otherwise create segments
1073 for that symbol and all the symbols equivalenced with it. */
1074
1075 /* Translate a single common block. */
1076
1077 static void
1078 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1079 {
1080 gfc_symbol *sym;
1081 segment_info *s;
1082 segment_info *common_segment;
1083 HOST_WIDE_INT offset;
1084 HOST_WIDE_INT current_offset;
1085 unsigned HOST_WIDE_INT align;
1086 bool saw_equiv;
1087
1088 common_segment = NULL;
1089 offset = 0;
1090 current_offset = 0;
1091 align = 1;
1092 saw_equiv = false;
1093
1094 /* Add symbols to the segment. */
1095 for (sym = var_list; sym; sym = sym->common_next)
1096 {
1097 current_segment = common_segment;
1098 s = find_segment_info (sym);
1099
1100 /* Symbol has already been added via an equivalence. Multiple
1101 use associations of the same common block result in equiv_built
1102 being set but no information about the symbol in the segment. */
1103 if (s && sym->equiv_built)
1104 {
1105 /* Ensure the current location is properly aligned. */
1106 align = TYPE_ALIGN_UNIT (s->field);
1107 current_offset = (current_offset + align - 1) &~ (align - 1);
1108
1109 /* Verify that it ended up where we expect it. */
1110 if (s->offset != current_offset)
1111 {
1112 gfc_error ("Equivalence for %qs does not match ordering of "
1113 "COMMON %qs at %L", sym->name,
1114 common->name, &common->where);
1115 }
1116 }
1117 else
1118 {
1119 /* A symbol we haven't seen before. */
1120 s = current_segment = get_segment_info (sym, current_offset);
1121
1122 /* Add all objects directly or indirectly equivalenced with this
1123 symbol. */
1124 add_equivalences (&saw_equiv);
1125
1126 if (current_segment->offset < 0)
1127 gfc_error ("The equivalence set for %qs cause an invalid "
1128 "extension to COMMON %qs at %L", sym->name,
1129 common->name, &common->where);
1130
1131 if (flag_align_commons)
1132 offset = align_segment (&align);
1133
1134 if (offset)
1135 {
1136 /* The required offset conflicts with previous alignment
1137 requirements. Insert padding immediately before this
1138 segment. */
1139 if (warn_align_commons)
1140 {
1141 if (strcmp (common->name, BLANK_COMMON_NAME))
1142 gfc_warning (0,
1143 "Padding of %d bytes required before %qs in "
1144 "COMMON %qs at %L; reorder elements or use "
1145 "-fno-align-commons", (int)offset,
1146 s->sym->name, common->name, &common->where);
1147 else
1148 gfc_warning (0,
1149 "Padding of %d bytes required before %qs in "
1150 "COMMON at %L; reorder elements or use "
1151 "-fno-align-commons", (int)offset,
1152 s->sym->name, &common->where);
1153 }
1154 }
1155
1156 /* Apply the offset to the new segments. */
1157 apply_segment_offset (current_segment, offset);
1158 current_offset += offset;
1159
1160 /* Add the new segments to the common block. */
1161 common_segment = add_segments (common_segment, current_segment);
1162 }
1163
1164 /* The offset of the next common variable. */
1165 current_offset += s->length;
1166 }
1167
1168 if (common_segment == NULL)
1169 {
1170 gfc_error ("COMMON '%s' at %L does not exist",
1171 common->name, &common->where);
1172 return;
1173 }
1174
1175 if (common_segment->offset != 0 && warn_align_commons)
1176 {
1177 if (strcmp (common->name, BLANK_COMMON_NAME))
1178 gfc_warning (OPT_Walign_commons,
1179 "COMMON %qs at %L requires %d bytes of padding; "
1180 "reorder elements or use %<-fno-align-commons%>",
1181 common->name, &common->where, (int)common_segment->offset);
1182 else
1183 gfc_warning (OPT_Walign_commons,
1184 "COMMON at %L requires %d bytes of padding; "
1185 "reorder elements or use %<-fno-align-commons%>",
1186 &common->where, (int)common_segment->offset);
1187 }
1188
1189 create_common (common, common_segment, saw_equiv);
1190 }
1191
1192
1193 /* Create a new block for each merged equivalence list. */
1194
1195 static void
1196 finish_equivalences (gfc_namespace *ns)
1197 {
1198 gfc_equiv *z, *y;
1199 gfc_symbol *sym;
1200 gfc_common_head * c;
1201 HOST_WIDE_INT offset;
1202 unsigned HOST_WIDE_INT align;
1203 bool dummy;
1204
1205 for (z = ns->equiv; z; z = z->next)
1206 for (y = z->eq; y; y = y->eq)
1207 {
1208 if (y->used)
1209 continue;
1210 sym = z->expr->symtree->n.sym;
1211 current_segment = get_segment_info (sym, 0);
1212
1213 /* All objects directly or indirectly equivalenced with this
1214 symbol. */
1215 add_equivalences (&dummy);
1216
1217 /* Align the block. */
1218 offset = align_segment (&align);
1219
1220 /* Ensure all offsets are positive. */
1221 offset -= current_segment->offset & ~(align - 1);
1222
1223 apply_segment_offset (current_segment, offset);
1224
1225 /* Create the decl. If this is a module equivalence, it has a
1226 unique name, pointed to by z->module. This is written to a
1227 gfc_common_header to push create_common into using
1228 build_common_decl, so that the equivalence appears as an
1229 external symbol. Otherwise, a local declaration is built using
1230 build_equiv_decl. */
1231 if (z->module)
1232 {
1233 c = gfc_get_common_head ();
1234 /* We've lost the real location, so use the location of the
1235 enclosing procedure. */
1236 c->where = ns->proc_name->declared_at;
1237 strcpy (c->name, z->module);
1238 }
1239 else
1240 c = NULL;
1241
1242 create_common (c, current_segment, true);
1243 break;
1244 }
1245 }
1246
1247
1248 /* Work function for translating a named common block. */
1249
1250 static void
1251 named_common (gfc_symtree *st)
1252 {
1253 translate_common (st->n.common, st->n.common->head);
1254 }
1255
1256
1257 /* Translate the common blocks in a namespace. Unlike other variables,
1258 these have to be created before code, because the backend_decl depends
1259 on the rest of the common block. */
1260
1261 void
1262 gfc_trans_common (gfc_namespace *ns)
1263 {
1264 gfc_common_head *c;
1265
1266 /* Translate the blank common block. */
1267 if (ns->blank_common.head != NULL)
1268 {
1269 c = gfc_get_common_head ();
1270 c->where = ns->blank_common.head->common_head->where;
1271 strcpy (c->name, BLANK_COMMON_NAME);
1272 translate_common (c, ns->blank_common.head);
1273 }
1274
1275 /* Translate all named common blocks. */
1276 gfc_traverse_symtree (ns->common_root, named_common);
1277
1278 /* Translate local equivalence. */
1279 finish_equivalences (ns);
1280
1281 /* Commit the newly created symbols for common blocks and module
1282 equivalences. */
1283 gfc_commit_symbols ();
1284 }