]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-common.c
trans-array.c (gfc_trans_array_constructor_value): Use size_int for bounds of range...
[thirdparty/gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Canqun Yang <canqun@nudt.edu.cn>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
23 way to build UNION_TYPE is borrowed from Richard Henderson.
24
25 Transform common blocks. An integral part of this is processing
26 equivalence variables. Equivalenced variables that are not in a
27 common block end up in a private block of their own.
28
29 Each common block or local equivalence list is declared as a union.
30 Variables within the block are represented as a field within the
31 block with the proper offset.
32
33 So if two variables are equivalenced, they just point to a common
34 area in memory.
35
36 Mathematically, laying out an equivalence block is equivalent to
37 solving a linear system of equations. The matrix is usually a
38 sparse matrix in which each row contains all zero elements except
39 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
40 matrix is usually block diagonal. The system can be
41 overdetermined, underdetermined or have a unique solution. If the
42 system is inconsistent, the program is not standard conforming.
43 The solution vector is integral, since all of the pivots are +1 or -1.
44
45 How we lay out an equivalence block is a little less complicated.
46 In an equivalence list with n elements, there are n-1 conditions to
47 be satisfied. The conditions partition the variables into what we
48 will call segments. If A and B are equivalenced then A and B are
49 in the same segment. If B and C are equivalenced as well, then A,
50 B and C are in a segment and so on. Each segment is a block of
51 memory that has one or more variables equivalenced in some way. A
52 common block is made up of a series of segments that are joined one
53 after the other. In the linear system, a segment is a block
54 diagonal.
55
56 To lay out a segment we first start with some variable and
57 determine its length. The first variable is assumed to start at
58 offset one and extends to however long it is. We then traverse the
59 list of equivalences to find an unused condition that involves at
60 least one of the variables currently in the segment.
61
62 Each equivalence condition amounts to the condition B+b=C+c where B
63 and C are the offsets of the B and C variables, and b and c are
64 constants which are nonzero for array elements, substrings or
65 structure components. So for
66
67 EQUIVALENCE(B(2), C(3))
68 we have
69 B + 2*size of B's elements = C + 3*size of C's elements.
70
71 If B and C are known we check to see if the condition already
72 holds. If B is known we can solve for C. Since we know the length
73 of C, we can see if the minimum and maximum extents of the segment
74 are affected. Eventually, we make a full pass through the
75 equivalence list without finding any new conditions and the segment
76 is fully specified.
77
78 At this point, the segment is added to the current common block.
79 Since we know the minimum extent of the segment, everything in the
80 segment is translated to its position in the common block. The
81 usual case here is that there are no equivalence statements and the
82 common block is series of segments with one variable each, which is
83 a diagonal matrix in the matrix formulation.
84
85 Each segment is described by a chain of segment_info structures. Each
86 segment_info structure describes the extents of a single variable within
87 the segment. This list is maintained in the order the elements are
88 positioned withing the segment. If two elements have the same starting
89 offset the smaller will come first. If they also have the same size their
90 ordering is undefined.
91
92 Once all common blocks have been created, the list of equivalences
93 is examined for still-unused equivalence conditions. We create a
94 block for each merged equivalence list. */
95
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "tree.h"
101 #include "output.h" /* For decl_default_tls_model. */
102 #include "gfortran.h"
103 #include "trans.h"
104 #include "trans-types.h"
105 #include "trans-const.h"
106 #include "target-memory.h"
107
108
109 /* Holds a single variable in an equivalence set. */
110 typedef struct segment_info
111 {
112 gfc_symbol *sym;
113 HOST_WIDE_INT offset;
114 HOST_WIDE_INT length;
115 /* This will contain the field type until the field is created. */
116 tree field;
117 struct segment_info *next;
118 } segment_info;
119
120 static segment_info * current_segment;
121 static gfc_namespace *gfc_common_ns = NULL;
122
123
124 /* Make a segment_info based on a symbol. */
125
126 static segment_info *
127 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
128 {
129 segment_info *s;
130
131 /* Make sure we've got the character length. */
132 if (sym->ts.type == BT_CHARACTER)
133 gfc_conv_const_charlen (sym->ts.u.cl);
134
135 /* Create the segment_info and fill it in. */
136 s = XCNEW (segment_info);
137 s->sym = sym;
138 /* We will use this type when building the segment aggregate type. */
139 s->field = gfc_sym_type (sym);
140 s->length = int_size_in_bytes (s->field);
141 s->offset = offset;
142
143 return s;
144 }
145
146
147 /* Add a copy of a segment list to the namespace. This is specifically for
148 equivalence segments, so that dependency checking can be done on
149 equivalence group members. */
150
151 static void
152 copy_equiv_list_to_ns (segment_info *c)
153 {
154 segment_info *f;
155 gfc_equiv_info *s;
156 gfc_equiv_list *l;
157
158 l = XCNEW (gfc_equiv_list);
159
160 l->next = c->sym->ns->equiv_lists;
161 c->sym->ns->equiv_lists = l;
162
163 for (f = c; f; f = f->next)
164 {
165 s = XCNEW (gfc_equiv_info);
166 s->next = l->equiv;
167 l->equiv = s;
168 s->sym = f->sym;
169 s->offset = f->offset;
170 s->length = f->length;
171 }
172 }
173
174
175 /* Add combine segment V and segment LIST. */
176
177 static segment_info *
178 add_segments (segment_info *list, segment_info *v)
179 {
180 segment_info *s;
181 segment_info *p;
182 segment_info *next;
183
184 p = NULL;
185 s = list;
186
187 while (v)
188 {
189 /* Find the location of the new element. */
190 while (s)
191 {
192 if (v->offset < s->offset)
193 break;
194 if (v->offset == s->offset
195 && v->length <= s->length)
196 break;
197
198 p = s;
199 s = s->next;
200 }
201
202 /* Insert the new element in between p and s. */
203 next = v->next;
204 v->next = s;
205 if (p == NULL)
206 list = v;
207 else
208 p->next = v;
209
210 p = v;
211 v = next;
212 }
213
214 return list;
215 }
216
217
218 /* Construct mangled common block name from symbol name. */
219
220 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
221 name. There are few calls to this function, so few places that this
222 would need to be added. At the moment, there is only one call, in
223 build_common_decl(). We can't attempt to look up the common block
224 because we may be building it for the first time and therefore, it won't
225 be in the common_root. We also need the binding label, if it's bind(c).
226 Therefore, send in the pointer to the common block, so whatever info we
227 have so far can be used. All of the necessary info should be available
228 in the gfc_common_head by now, so it should be accurate to test the
229 isBindC flag and use the binding label given if it is bind(c).
230
231 We may NOT know yet if it's bind(c) or not, but we can try at least.
232 Will have to figure out what to do later if it's labeled bind(c)
233 after this is called. */
234
235 static tree
236 gfc_sym_mangled_common_id (gfc_common_head *com)
237 {
238 int has_underscore;
239 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
240 char name[GFC_MAX_SYMBOL_LEN + 1];
241
242 /* Get the name out of the common block pointer. */
243 strcpy (name, com->name);
244
245 /* If we're suppose to do a bind(c). */
246 if (com->is_bind_c == 1 && com->binding_label[0] != '\0')
247 return get_identifier (com->binding_label);
248
249 if (strcmp (name, BLANK_COMMON_NAME) == 0)
250 return get_identifier (name);
251
252 if (gfc_option.flag_underscoring)
253 {
254 has_underscore = strchr (name, '_') != 0;
255 if (gfc_option.flag_second_underscore && has_underscore)
256 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
257 else
258 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
259
260 return get_identifier (mangled_name);
261 }
262 else
263 return get_identifier (name);
264 }
265
266
267 /* Build a field declaration for a common variable or a local equivalence
268 object. */
269
270 static void
271 build_field (segment_info *h, tree union_type, record_layout_info rli)
272 {
273 tree field;
274 tree name;
275 HOST_WIDE_INT offset = h->offset;
276 unsigned HOST_WIDE_INT desired_align, known_align;
277
278 name = get_identifier (h->sym->name);
279 field = build_decl (h->sym->declared_at.lb->location,
280 FIELD_DECL, name, h->field);
281 known_align = (offset & -offset) * BITS_PER_UNIT;
282 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
283 known_align = BIGGEST_ALIGNMENT;
284
285 desired_align = update_alignment_for_field (rli, field, known_align);
286 if (desired_align > known_align)
287 DECL_PACKED (field) = 1;
288
289 DECL_FIELD_CONTEXT (field) = union_type;
290 DECL_FIELD_OFFSET (field) = size_int (offset);
291 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
292 SET_DECL_OFFSET_ALIGN (field, known_align);
293
294 rli->offset = size_binop (MAX_EXPR, rli->offset,
295 size_binop (PLUS_EXPR,
296 DECL_FIELD_OFFSET (field),
297 DECL_SIZE_UNIT (field)));
298 /* If this field is assigned to a label, we create another two variables.
299 One will hold the address of target label or format label. The other will
300 hold the length of format label string. */
301 if (h->sym->attr.assign)
302 {
303 tree len;
304 tree addr;
305
306 gfc_allocate_lang_decl (field);
307 GFC_DECL_ASSIGN (field) = 1;
308 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
309 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
310 TREE_STATIC (len) = 1;
311 TREE_STATIC (addr) = 1;
312 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
313 gfc_set_decl_location (len, &h->sym->declared_at);
314 gfc_set_decl_location (addr, &h->sym->declared_at);
315 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
316 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
317 }
318
319 /* If this field is volatile, mark it. */
320 if (h->sym->attr.volatile_)
321 {
322 tree new_type;
323 TREE_THIS_VOLATILE (field) = 1;
324 TREE_SIDE_EFFECTS (field) = 1;
325 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
326 TREE_TYPE (field) = new_type;
327 }
328
329 h->field = field;
330 }
331
332
333 /* Get storage for local equivalence. */
334
335 static tree
336 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
337 {
338 tree decl;
339 char name[15];
340 static int serial = 0;
341
342 if (is_init)
343 {
344 decl = gfc_create_var (union_type, "equiv");
345 TREE_STATIC (decl) = 1;
346 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
347 return decl;
348 }
349
350 snprintf (name, sizeof (name), "equiv.%d", serial++);
351 decl = build_decl (input_location,
352 VAR_DECL, get_identifier (name), union_type);
353 DECL_ARTIFICIAL (decl) = 1;
354 DECL_IGNORED_P (decl) = 1;
355
356 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
357 || is_saved)
358 TREE_STATIC (decl) = 1;
359
360 TREE_ADDRESSABLE (decl) = 1;
361 TREE_USED (decl) = 1;
362 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
363
364 /* The source location has been lost, and doesn't really matter.
365 We need to set it to something though. */
366 gfc_set_decl_location (decl, &gfc_current_locus);
367
368 gfc_add_decl_to_function (decl);
369
370 return decl;
371 }
372
373
374 /* Get storage for common block. */
375
376 static tree
377 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
378 {
379 gfc_symbol *common_sym;
380 tree decl;
381
382 /* Create a namespace to store symbols for common blocks. */
383 if (gfc_common_ns == NULL)
384 gfc_common_ns = gfc_get_namespace (NULL, 0);
385
386 gfc_get_symbol (com->name, gfc_common_ns, &common_sym);
387 decl = common_sym->backend_decl;
388
389 /* Update the size of this common block as needed. */
390 if (decl != NULL_TREE)
391 {
392 tree size = TYPE_SIZE_UNIT (union_type);
393 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
394 {
395 /* Named common blocks of the same name shall be of the same size
396 in all scoping units of a program in which they appear, but
397 blank common blocks may be of different sizes. */
398 if (strcmp (com->name, BLANK_COMMON_NAME))
399 gfc_warning ("Named COMMON block '%s' at %L shall be of the "
400 "same size", com->name, &com->where);
401 DECL_SIZE (decl) = TYPE_SIZE (union_type);
402 DECL_SIZE_UNIT (decl) = size;
403 DECL_MODE (decl) = TYPE_MODE (union_type);
404 TREE_TYPE (decl) = union_type;
405 layout_decl (decl, 0);
406 }
407 }
408
409 /* If this common block has been declared in a previous program unit,
410 and either it is already initialized or there is no new initialization
411 for it, just return. */
412 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
413 return decl;
414
415 /* If there is no backend_decl for the common block, build it. */
416 if (decl == NULL_TREE)
417 {
418 decl = build_decl (input_location,
419 VAR_DECL, get_identifier (com->name), union_type);
420 gfc_set_decl_assembler_name (decl, gfc_sym_mangled_common_id (com));
421 TREE_PUBLIC (decl) = 1;
422 TREE_STATIC (decl) = 1;
423 DECL_IGNORED_P (decl) = 1;
424 if (!com->is_bind_c)
425 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
426 else
427 {
428 /* Do not set the alignment for bind(c) common blocks to
429 BIGGEST_ALIGNMENT because that won't match what C does. Also,
430 for common blocks with one element, the alignment must be
431 that of the field within the common block in order to match
432 what C will do. */
433 tree field = NULL_TREE;
434 field = TYPE_FIELDS (TREE_TYPE (decl));
435 if (DECL_CHAIN (field) == NULL_TREE)
436 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
437 }
438 DECL_USER_ALIGN (decl) = 0;
439 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
440
441 gfc_set_decl_location (decl, &com->where);
442
443 if (com->threadprivate)
444 DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
445
446 /* Place the back end declaration for this common block in
447 GLOBAL_BINDING_LEVEL. */
448 common_sym->backend_decl = pushdecl_top_level (decl);
449 }
450
451 /* Has no initial values. */
452 if (!is_init)
453 {
454 DECL_INITIAL (decl) = NULL_TREE;
455 DECL_COMMON (decl) = 1;
456 DECL_DEFER_OUTPUT (decl) = 1;
457 }
458 else
459 {
460 DECL_INITIAL (decl) = error_mark_node;
461 DECL_COMMON (decl) = 0;
462 DECL_DEFER_OUTPUT (decl) = 0;
463 }
464 return decl;
465 }
466
467
468 /* Return a field that is the size of the union, if an equivalence has
469 overlapping initializers. Merge the initializers into a single
470 initializer for this new field, then free the old ones. */
471
472 static tree
473 get_init_field (segment_info *head, tree union_type, tree *field_init,
474 record_layout_info rli)
475 {
476 segment_info *s;
477 HOST_WIDE_INT length = 0;
478 HOST_WIDE_INT offset = 0;
479 unsigned HOST_WIDE_INT known_align, desired_align;
480 bool overlap = false;
481 tree tmp, field;
482 tree init;
483 unsigned char *data, *chk;
484 VEC(constructor_elt,gc) *v = NULL;
485
486 tree type = unsigned_char_type_node;
487 int i;
488
489 /* Obtain the size of the union and check if there are any overlapping
490 initializers. */
491 for (s = head; s; s = s->next)
492 {
493 HOST_WIDE_INT slen = s->offset + s->length;
494 if (s->sym->value)
495 {
496 if (s->offset < offset)
497 overlap = true;
498 offset = slen;
499 }
500 length = length < slen ? slen : length;
501 }
502
503 if (!overlap)
504 return NULL_TREE;
505
506 /* Now absorb all the initializer data into a single vector,
507 whilst checking for overlapping, unequal values. */
508 data = XCNEWVEC (unsigned char, (size_t)length);
509 chk = XCNEWVEC (unsigned char, (size_t)length);
510
511 /* TODO - change this when default initialization is implemented. */
512 memset (data, '\0', (size_t)length);
513 memset (chk, '\0', (size_t)length);
514 for (s = head; s; s = s->next)
515 if (s->sym->value)
516 gfc_merge_initializers (s->sym->ts, s->sym->value,
517 &data[s->offset],
518 &chk[s->offset],
519 (size_t)s->length);
520
521 for (i = 0; i < length; i++)
522 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
523
524 free (data);
525 free (chk);
526
527 /* Build a char[length] array to hold the initializers. Much of what
528 follows is borrowed from build_field, above. */
529
530 tmp = build_int_cst (gfc_array_index_type, length - 1);
531 tmp = build_range_type (gfc_array_index_type,
532 gfc_index_zero_node, tmp);
533 tmp = build_array_type (type, tmp);
534 field = build_decl (gfc_current_locus.lb->location,
535 FIELD_DECL, NULL_TREE, tmp);
536
537 known_align = BIGGEST_ALIGNMENT;
538
539 desired_align = update_alignment_for_field (rli, field, known_align);
540 if (desired_align > known_align)
541 DECL_PACKED (field) = 1;
542
543 DECL_FIELD_CONTEXT (field) = union_type;
544 DECL_FIELD_OFFSET (field) = size_int (0);
545 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
546 SET_DECL_OFFSET_ALIGN (field, known_align);
547
548 rli->offset = size_binop (MAX_EXPR, rli->offset,
549 size_binop (PLUS_EXPR,
550 DECL_FIELD_OFFSET (field),
551 DECL_SIZE_UNIT (field)));
552
553 init = build_constructor (TREE_TYPE (field), v);
554 TREE_CONSTANT (init) = 1;
555
556 *field_init = init;
557
558 for (s = head; s; s = s->next)
559 {
560 if (s->sym->value == NULL)
561 continue;
562
563 gfc_free_expr (s->sym->value);
564 s->sym->value = NULL;
565 }
566
567 return field;
568 }
569
570
571 /* Declare memory for the common block or local equivalence, and create
572 backend declarations for all of the elements. */
573
574 static void
575 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
576 {
577 segment_info *s, *next_s;
578 tree union_type;
579 tree *field_link;
580 tree field;
581 tree field_init = NULL_TREE;
582 record_layout_info rli;
583 tree decl;
584 bool is_init = false;
585 bool is_saved = false;
586
587 /* Declare the variables inside the common block.
588 If the current common block contains any equivalence object, then
589 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
590 alias analyzer work well when there is no address overlapping for
591 common variables in the current common block. */
592 if (saw_equiv)
593 union_type = make_node (UNION_TYPE);
594 else
595 union_type = make_node (RECORD_TYPE);
596
597 rli = start_record_layout (union_type);
598 field_link = &TYPE_FIELDS (union_type);
599
600 /* Check for overlapping initializers and replace them with a single,
601 artificial field that contains all the data. */
602 if (saw_equiv)
603 field = get_init_field (head, union_type, &field_init, rli);
604 else
605 field = NULL_TREE;
606
607 if (field != NULL_TREE)
608 {
609 is_init = true;
610 *field_link = field;
611 field_link = &DECL_CHAIN (field);
612 }
613
614 for (s = head; s; s = s->next)
615 {
616 build_field (s, union_type, rli);
617
618 /* Link the field into the type. */
619 *field_link = s->field;
620 field_link = &DECL_CHAIN (s->field);
621
622 /* Has initial value. */
623 if (s->sym->value)
624 is_init = true;
625
626 /* Has SAVE attribute. */
627 if (s->sym->attr.save)
628 is_saved = true;
629 }
630
631 finish_record_layout (rli, true);
632
633 if (com)
634 decl = build_common_decl (com, union_type, is_init);
635 else
636 decl = build_equiv_decl (union_type, is_init, is_saved);
637
638 if (is_init)
639 {
640 tree ctor, tmp;
641 VEC(constructor_elt,gc) *v = NULL;
642
643 if (field != NULL_TREE && field_init != NULL_TREE)
644 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
645 else
646 for (s = head; s; s = s->next)
647 {
648 if (s->sym->value)
649 {
650 /* Add the initializer for this field. */
651 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
652 TREE_TYPE (s->field),
653 s->sym->attr.dimension,
654 s->sym->attr.pointer
655 || s->sym->attr.allocatable, false);
656
657 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
658 }
659 }
660
661 gcc_assert (!VEC_empty (constructor_elt, v));
662 ctor = build_constructor (union_type, v);
663 TREE_CONSTANT (ctor) = 1;
664 TREE_STATIC (ctor) = 1;
665 DECL_INITIAL (decl) = ctor;
666
667 #ifdef ENABLE_CHECKING
668 {
669 tree field, value;
670 unsigned HOST_WIDE_INT idx;
671 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
672 gcc_assert (TREE_CODE (field) == FIELD_DECL);
673 }
674 #endif
675 }
676
677 /* Build component reference for each variable. */
678 for (s = head; s; s = next_s)
679 {
680 tree var_decl;
681
682 var_decl = build_decl (s->sym->declared_at.lb->location,
683 VAR_DECL, DECL_NAME (s->field),
684 TREE_TYPE (s->field));
685 TREE_STATIC (var_decl) = TREE_STATIC (decl);
686 TREE_USED (var_decl) = TREE_USED (decl);
687 if (s->sym->attr.use_assoc)
688 DECL_IGNORED_P (var_decl) = 1;
689 if (s->sym->attr.target)
690 TREE_ADDRESSABLE (var_decl) = 1;
691 /* This is a fake variable just for debugging purposes. */
692 TREE_ASM_WRITTEN (var_decl) = 1;
693 /* Fake variables are not visible from other translation units. */
694 TREE_PUBLIC (var_decl) = 0;
695
696 /* To preserve identifier names in COMMON, chain to procedure
697 scope unless at top level in a module definition. */
698 if (com
699 && s->sym->ns->proc_name
700 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
701 var_decl = pushdecl_top_level (var_decl);
702 else
703 gfc_add_decl_to_function (var_decl);
704
705 SET_DECL_VALUE_EXPR (var_decl,
706 fold_build3_loc (input_location, COMPONENT_REF,
707 TREE_TYPE (s->field),
708 decl, s->field, NULL_TREE));
709 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
710 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
711
712 if (s->sym->attr.assign)
713 {
714 gfc_allocate_lang_decl (var_decl);
715 GFC_DECL_ASSIGN (var_decl) = 1;
716 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
717 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
718 }
719
720 s->sym->backend_decl = var_decl;
721
722 next_s = s->next;
723 free (s);
724 }
725 }
726
727
728 /* Given a symbol, find it in the current segment list. Returns NULL if
729 not found. */
730
731 static segment_info *
732 find_segment_info (gfc_symbol *symbol)
733 {
734 segment_info *n;
735
736 for (n = current_segment; n; n = n->next)
737 {
738 if (n->sym == symbol)
739 return n;
740 }
741
742 return NULL;
743 }
744
745
746 /* Given an expression node, make sure it is a constant integer and return
747 the mpz_t value. */
748
749 static mpz_t *
750 get_mpz (gfc_expr *e)
751 {
752
753 if (e->expr_type != EXPR_CONSTANT)
754 gfc_internal_error ("get_mpz(): Not an integer constant");
755
756 return &e->value.integer;
757 }
758
759
760 /* Given an array specification and an array reference, figure out the
761 array element number (zero based). Bounds and elements are guaranteed
762 to be constants. If something goes wrong we generate an error and
763 return zero. */
764
765 static HOST_WIDE_INT
766 element_number (gfc_array_ref *ar)
767 {
768 mpz_t multiplier, offset, extent, n;
769 gfc_array_spec *as;
770 HOST_WIDE_INT i, rank;
771
772 as = ar->as;
773 rank = as->rank;
774 mpz_init_set_ui (multiplier, 1);
775 mpz_init_set_ui (offset, 0);
776 mpz_init (extent);
777 mpz_init (n);
778
779 for (i = 0; i < rank; i++)
780 {
781 if (ar->dimen_type[i] != DIMEN_ELEMENT)
782 gfc_internal_error ("element_number(): Bad dimension type");
783
784 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
785
786 mpz_mul (n, n, multiplier);
787 mpz_add (offset, offset, n);
788
789 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
790 mpz_add_ui (extent, extent, 1);
791
792 if (mpz_sgn (extent) < 0)
793 mpz_set_ui (extent, 0);
794
795 mpz_mul (multiplier, multiplier, extent);
796 }
797
798 i = mpz_get_ui (offset);
799
800 mpz_clear (multiplier);
801 mpz_clear (offset);
802 mpz_clear (extent);
803 mpz_clear (n);
804
805 return i;
806 }
807
808
809 /* Given a single element of an equivalence list, figure out the offset
810 from the base symbol. For simple variables or full arrays, this is
811 simply zero. For an array element we have to calculate the array
812 element number and multiply by the element size. For a substring we
813 have to calculate the further reference. */
814
815 static HOST_WIDE_INT
816 calculate_offset (gfc_expr *e)
817 {
818 HOST_WIDE_INT n, element_size, offset;
819 gfc_typespec *element_type;
820 gfc_ref *reference;
821
822 offset = 0;
823 element_type = &e->symtree->n.sym->ts;
824
825 for (reference = e->ref; reference; reference = reference->next)
826 switch (reference->type)
827 {
828 case REF_ARRAY:
829 switch (reference->u.ar.type)
830 {
831 case AR_FULL:
832 break;
833
834 case AR_ELEMENT:
835 n = element_number (&reference->u.ar);
836 if (element_type->type == BT_CHARACTER)
837 gfc_conv_const_charlen (element_type->u.cl);
838 element_size =
839 int_size_in_bytes (gfc_typenode_for_spec (element_type));
840 offset += n * element_size;
841 break;
842
843 default:
844 gfc_error ("Bad array reference at %L", &e->where);
845 }
846 break;
847 case REF_SUBSTRING:
848 if (reference->u.ss.start != NULL)
849 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
850 break;
851 default:
852 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
853 &e->where);
854 }
855 return offset;
856 }
857
858
859 /* Add a new segment_info structure to the current segment. eq1 is already
860 in the list, eq2 is not. */
861
862 static void
863 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
864 {
865 HOST_WIDE_INT offset1, offset2;
866 segment_info *a;
867
868 offset1 = calculate_offset (eq1->expr);
869 offset2 = calculate_offset (eq2->expr);
870
871 a = get_segment_info (eq2->expr->symtree->n.sym,
872 v->offset + offset1 - offset2);
873
874 current_segment = add_segments (current_segment, a);
875 }
876
877
878 /* Given two equivalence structures that are both already in the list, make
879 sure that this new condition is not violated, generating an error if it
880 is. */
881
882 static void
883 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
884 gfc_equiv *eq2)
885 {
886 HOST_WIDE_INT offset1, offset2;
887
888 offset1 = calculate_offset (eq1->expr);
889 offset2 = calculate_offset (eq2->expr);
890
891 if (s1->offset + offset1 != s2->offset + offset2)
892 gfc_error ("Inconsistent equivalence rules involving '%s' at %L and "
893 "'%s' at %L", s1->sym->name, &s1->sym->declared_at,
894 s2->sym->name, &s2->sym->declared_at);
895 }
896
897
898 /* Process a new equivalence condition. eq1 is know to be in segment f.
899 If eq2 is also present then confirm that the condition holds.
900 Otherwise add a new variable to the segment list. */
901
902 static void
903 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
904 {
905 segment_info *n;
906
907 n = find_segment_info (eq2->expr->symtree->n.sym);
908
909 if (n == NULL)
910 new_condition (f, eq1, eq2);
911 else
912 confirm_condition (f, eq1, n, eq2);
913 }
914
915
916 /* Given a segment element, search through the equivalence lists for unused
917 conditions that involve the symbol. Add these rules to the segment. */
918
919 static bool
920 find_equivalence (segment_info *n)
921 {
922 gfc_equiv *e1, *e2, *eq;
923 bool found;
924
925 found = FALSE;
926
927 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
928 {
929 eq = NULL;
930
931 /* Search the equivalence list, including the root (first) element
932 for the symbol that owns the segment. */
933 for (e2 = e1; e2; e2 = e2->eq)
934 {
935 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
936 {
937 eq = e2;
938 break;
939 }
940 }
941
942 /* Go to the next root element. */
943 if (eq == NULL)
944 continue;
945
946 eq->used = 1;
947
948 /* Now traverse the equivalence list matching the offsets. */
949 for (e2 = e1; e2; e2 = e2->eq)
950 {
951 if (!e2->used && e2 != eq)
952 {
953 add_condition (n, eq, e2);
954 e2->used = 1;
955 found = TRUE;
956 }
957 }
958 }
959 return found;
960 }
961
962
963 /* Add all symbols equivalenced within a segment. We need to scan the
964 segment list multiple times to include indirect equivalences. Since
965 a new segment_info can inserted at the beginning of the segment list,
966 depending on its offset, we have to force a final pass through the
967 loop by demanding that completion sees a pass with no matches; i.e.,
968 all symbols with equiv_built set and no new equivalences found. */
969
970 static void
971 add_equivalences (bool *saw_equiv)
972 {
973 segment_info *f;
974 bool seen_one, more;
975
976 seen_one = false;
977 more = TRUE;
978 while (more)
979 {
980 more = FALSE;
981 for (f = current_segment; f; f = f->next)
982 {
983 if (!f->sym->equiv_built)
984 {
985 f->sym->equiv_built = 1;
986 seen_one = find_equivalence (f);
987 if (seen_one)
988 {
989 *saw_equiv = true;
990 more = true;
991 }
992 }
993 }
994 }
995
996 /* Add a copy of this segment list to the namespace. */
997 copy_equiv_list_to_ns (current_segment);
998 }
999
1000
1001 /* Returns the offset necessary to properly align the current equivalence.
1002 Sets *palign to the required alignment. */
1003
1004 static HOST_WIDE_INT
1005 align_segment (unsigned HOST_WIDE_INT *palign)
1006 {
1007 segment_info *s;
1008 unsigned HOST_WIDE_INT offset;
1009 unsigned HOST_WIDE_INT max_align;
1010 unsigned HOST_WIDE_INT this_align;
1011 unsigned HOST_WIDE_INT this_offset;
1012
1013 max_align = 1;
1014 offset = 0;
1015 for (s = current_segment; s; s = s->next)
1016 {
1017 this_align = TYPE_ALIGN_UNIT (s->field);
1018 if (s->offset & (this_align - 1))
1019 {
1020 /* Field is misaligned. */
1021 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1022 if (this_offset & (max_align - 1))
1023 {
1024 /* Aligning this field would misalign a previous field. */
1025 gfc_error ("The equivalence set for variable '%s' "
1026 "declared at %L violates alignment requirements",
1027 s->sym->name, &s->sym->declared_at);
1028 }
1029 offset += this_offset;
1030 }
1031 max_align = this_align;
1032 }
1033 if (palign)
1034 *palign = max_align;
1035 return offset;
1036 }
1037
1038
1039 /* Adjust segment offsets by the given amount. */
1040
1041 static void
1042 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1043 {
1044 for (; s; s = s->next)
1045 s->offset += offset;
1046 }
1047
1048
1049 /* Lay out a symbol in a common block. If the symbol has already been seen
1050 then check the location is consistent. Otherwise create segments
1051 for that symbol and all the symbols equivalenced with it. */
1052
1053 /* Translate a single common block. */
1054
1055 static void
1056 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1057 {
1058 gfc_symbol *sym;
1059 segment_info *s;
1060 segment_info *common_segment;
1061 HOST_WIDE_INT offset;
1062 HOST_WIDE_INT current_offset;
1063 unsigned HOST_WIDE_INT align;
1064 unsigned HOST_WIDE_INT max_align;
1065 bool saw_equiv;
1066
1067 common_segment = NULL;
1068 offset = 0;
1069 current_offset = 0;
1070 align = 1;
1071 max_align = 1;
1072 saw_equiv = false;
1073
1074 /* Add symbols to the segment. */
1075 for (sym = var_list; sym; sym = sym->common_next)
1076 {
1077 current_segment = common_segment;
1078 s = find_segment_info (sym);
1079
1080 /* Symbol has already been added via an equivalence. Multiple
1081 use associations of the same common block result in equiv_built
1082 being set but no information about the symbol in the segment. */
1083 if (s && sym->equiv_built)
1084 {
1085 /* Ensure the current location is properly aligned. */
1086 align = TYPE_ALIGN_UNIT (s->field);
1087 current_offset = (current_offset + align - 1) &~ (align - 1);
1088
1089 /* Verify that it ended up where we expect it. */
1090 if (s->offset != current_offset)
1091 {
1092 gfc_error ("Equivalence for '%s' does not match ordering of "
1093 "COMMON '%s' at %L", sym->name,
1094 common->name, &common->where);
1095 }
1096 }
1097 else
1098 {
1099 /* A symbol we haven't seen before. */
1100 s = current_segment = get_segment_info (sym, current_offset);
1101
1102 /* Add all objects directly or indirectly equivalenced with this
1103 symbol. */
1104 add_equivalences (&saw_equiv);
1105
1106 if (current_segment->offset < 0)
1107 gfc_error ("The equivalence set for '%s' cause an invalid "
1108 "extension to COMMON '%s' at %L", sym->name,
1109 common->name, &common->where);
1110
1111 if (gfc_option.flag_align_commons)
1112 offset = align_segment (&align);
1113
1114 if (offset & (max_align - 1))
1115 {
1116 /* The required offset conflicts with previous alignment
1117 requirements. Insert padding immediately before this
1118 segment. */
1119 if (gfc_option.warn_align_commons)
1120 {
1121 if (strcmp (common->name, BLANK_COMMON_NAME))
1122 gfc_warning ("Padding of %d bytes required before '%s' in "
1123 "COMMON '%s' at %L; reorder elements or use "
1124 "-fno-align-commons", (int)offset,
1125 s->sym->name, common->name, &common->where);
1126 else
1127 gfc_warning ("Padding of %d bytes required before '%s' in "
1128 "COMMON at %L; reorder elements or use "
1129 "-fno-align-commons", (int)offset,
1130 s->sym->name, &common->where);
1131 }
1132 }
1133
1134 /* Apply the offset to the new segments. */
1135 apply_segment_offset (current_segment, offset);
1136 current_offset += offset;
1137 if (max_align < align)
1138 max_align = align;
1139
1140 /* Add the new segments to the common block. */
1141 common_segment = add_segments (common_segment, current_segment);
1142 }
1143
1144 /* The offset of the next common variable. */
1145 current_offset += s->length;
1146 }
1147
1148 if (common_segment == NULL)
1149 {
1150 gfc_error ("COMMON '%s' at %L does not exist",
1151 common->name, &common->where);
1152 return;
1153 }
1154
1155 if (common_segment->offset != 0 && gfc_option.warn_align_commons)
1156 {
1157 if (strcmp (common->name, BLANK_COMMON_NAME))
1158 gfc_warning ("COMMON '%s' at %L requires %d bytes of padding at start; "
1159 "reorder elements or use -fno-align-commons",
1160 common->name, &common->where, (int)common_segment->offset);
1161 else
1162 gfc_warning ("COMMON at %L requires %d bytes of padding at start; "
1163 "reorder elements or use -fno-align-commons",
1164 &common->where, (int)common_segment->offset);
1165 }
1166
1167 create_common (common, common_segment, saw_equiv);
1168 }
1169
1170
1171 /* Create a new block for each merged equivalence list. */
1172
1173 static void
1174 finish_equivalences (gfc_namespace *ns)
1175 {
1176 gfc_equiv *z, *y;
1177 gfc_symbol *sym;
1178 gfc_common_head * c;
1179 HOST_WIDE_INT offset;
1180 unsigned HOST_WIDE_INT align;
1181 bool dummy;
1182
1183 for (z = ns->equiv; z; z = z->next)
1184 for (y = z->eq; y; y = y->eq)
1185 {
1186 if (y->used)
1187 continue;
1188 sym = z->expr->symtree->n.sym;
1189 current_segment = get_segment_info (sym, 0);
1190
1191 /* All objects directly or indirectly equivalenced with this
1192 symbol. */
1193 add_equivalences (&dummy);
1194
1195 /* Align the block. */
1196 offset = align_segment (&align);
1197
1198 /* Ensure all offsets are positive. */
1199 offset -= current_segment->offset & ~(align - 1);
1200
1201 apply_segment_offset (current_segment, offset);
1202
1203 /* Create the decl. If this is a module equivalence, it has a
1204 unique name, pointed to by z->module. This is written to a
1205 gfc_common_header to push create_common into using
1206 build_common_decl, so that the equivalence appears as an
1207 external symbol. Otherwise, a local declaration is built using
1208 build_equiv_decl. */
1209 if (z->module)
1210 {
1211 c = gfc_get_common_head ();
1212 /* We've lost the real location, so use the location of the
1213 enclosing procedure. */
1214 c->where = ns->proc_name->declared_at;
1215 strcpy (c->name, z->module);
1216 }
1217 else
1218 c = NULL;
1219
1220 create_common (c, current_segment, true);
1221 break;
1222 }
1223 }
1224
1225
1226 /* Work function for translating a named common block. */
1227
1228 static void
1229 named_common (gfc_symtree *st)
1230 {
1231 translate_common (st->n.common, st->n.common->head);
1232 }
1233
1234
1235 /* Translate the common blocks in a namespace. Unlike other variables,
1236 these have to be created before code, because the backend_decl depends
1237 on the rest of the common block. */
1238
1239 void
1240 gfc_trans_common (gfc_namespace *ns)
1241 {
1242 gfc_common_head *c;
1243
1244 /* Translate the blank common block. */
1245 if (ns->blank_common.head != NULL)
1246 {
1247 c = gfc_get_common_head ();
1248 c->where = ns->blank_common.head->common_head->where;
1249 strcpy (c->name, BLANK_COMMON_NAME);
1250 translate_common (c, ns->blank_common.head);
1251 }
1252
1253 /* Translate all named common blocks. */
1254 gfc_traverse_symtree (ns->common_root, named_common);
1255
1256 /* Translate local equivalence. */
1257 finish_equivalences (ns);
1258
1259 /* Commit the newly created symbols for common blocks and module
1260 equivalences. */
1261 gfc_commit_symbols ();
1262 }