]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-common.c
2015-06-04 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / fortran / trans-common.c
1 /* Common block and equivalence list handling
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Canqun Yang <canqun@nudt.edu.cn>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The core algorithm is based on Andy Vaught's g95 tree. Also the
22 way to build UNION_TYPE is borrowed from Richard Henderson.
23
24 Transform common blocks. An integral part of this is processing
25 equivalence variables. Equivalenced variables that are not in a
26 common block end up in a private block of their own.
27
28 Each common block or local equivalence list is declared as a union.
29 Variables within the block are represented as a field within the
30 block with the proper offset.
31
32 So if two variables are equivalenced, they just point to a common
33 area in memory.
34
35 Mathematically, laying out an equivalence block is equivalent to
36 solving a linear system of equations. The matrix is usually a
37 sparse matrix in which each row contains all zero elements except
38 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The
39 matrix is usually block diagonal. The system can be
40 overdetermined, underdetermined or have a unique solution. If the
41 system is inconsistent, the program is not standard conforming.
42 The solution vector is integral, since all of the pivots are +1 or -1.
43
44 How we lay out an equivalence block is a little less complicated.
45 In an equivalence list with n elements, there are n-1 conditions to
46 be satisfied. The conditions partition the variables into what we
47 will call segments. If A and B are equivalenced then A and B are
48 in the same segment. If B and C are equivalenced as well, then A,
49 B and C are in a segment and so on. Each segment is a block of
50 memory that has one or more variables equivalenced in some way. A
51 common block is made up of a series of segments that are joined one
52 after the other. In the linear system, a segment is a block
53 diagonal.
54
55 To lay out a segment we first start with some variable and
56 determine its length. The first variable is assumed to start at
57 offset one and extends to however long it is. We then traverse the
58 list of equivalences to find an unused condition that involves at
59 least one of the variables currently in the segment.
60
61 Each equivalence condition amounts to the condition B+b=C+c where B
62 and C are the offsets of the B and C variables, and b and c are
63 constants which are nonzero for array elements, substrings or
64 structure components. So for
65
66 EQUIVALENCE(B(2), C(3))
67 we have
68 B + 2*size of B's elements = C + 3*size of C's elements.
69
70 If B and C are known we check to see if the condition already
71 holds. If B is known we can solve for C. Since we know the length
72 of C, we can see if the minimum and maximum extents of the segment
73 are affected. Eventually, we make a full pass through the
74 equivalence list without finding any new conditions and the segment
75 is fully specified.
76
77 At this point, the segment is added to the current common block.
78 Since we know the minimum extent of the segment, everything in the
79 segment is translated to its position in the common block. The
80 usual case here is that there are no equivalence statements and the
81 common block is series of segments with one variable each, which is
82 a diagonal matrix in the matrix formulation.
83
84 Each segment is described by a chain of segment_info structures. Each
85 segment_info structure describes the extents of a single variable within
86 the segment. This list is maintained in the order the elements are
87 positioned within the segment. If two elements have the same starting
88 offset the smaller will come first. If they also have the same size their
89 ordering is undefined.
90
91 Once all common blocks have been created, the list of equivalences
92 is examined for still-unused equivalence conditions. We create a
93 block for each merged equivalence list. */
94
95 #include <map>
96 #include "config.h"
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "hash-set.h"
101 #include "vec.h"
102 #include "input.h"
103 #include "alias.h"
104 #include "symtab.h"
105 #include "inchash.h"
106 #include "tree.h"
107 #include "fold-const.h"
108 #include "stringpool.h"
109 #include "stor-layout.h"
110 #include "varasm.h"
111 #include "gfortran.h"
112 #include "trans.h"
113 #include "trans-types.h"
114 #include "trans-const.h"
115 #include "target-memory.h"
116
117
118 /* Holds a single variable in an equivalence set. */
119 typedef struct segment_info
120 {
121 gfc_symbol *sym;
122 HOST_WIDE_INT offset;
123 HOST_WIDE_INT length;
124 /* This will contain the field type until the field is created. */
125 tree field;
126 struct segment_info *next;
127 } segment_info;
128
129 static segment_info * current_segment;
130
131 /* Store decl of all common blocks in this translation unit; the first
132 tree is the identifier. */
133 static std::map<tree, tree> gfc_map_of_all_commons;
134
135
136 /* Make a segment_info based on a symbol. */
137
138 static segment_info *
139 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
140 {
141 segment_info *s;
142
143 /* Make sure we've got the character length. */
144 if (sym->ts.type == BT_CHARACTER)
145 gfc_conv_const_charlen (sym->ts.u.cl);
146
147 /* Create the segment_info and fill it in. */
148 s = XCNEW (segment_info);
149 s->sym = sym;
150 /* We will use this type when building the segment aggregate type. */
151 s->field = gfc_sym_type (sym);
152 s->length = int_size_in_bytes (s->field);
153 s->offset = offset;
154
155 return s;
156 }
157
158
159 /* Add a copy of a segment list to the namespace. This is specifically for
160 equivalence segments, so that dependency checking can be done on
161 equivalence group members. */
162
163 static void
164 copy_equiv_list_to_ns (segment_info *c)
165 {
166 segment_info *f;
167 gfc_equiv_info *s;
168 gfc_equiv_list *l;
169
170 l = XCNEW (gfc_equiv_list);
171
172 l->next = c->sym->ns->equiv_lists;
173 c->sym->ns->equiv_lists = l;
174
175 for (f = c; f; f = f->next)
176 {
177 s = XCNEW (gfc_equiv_info);
178 s->next = l->equiv;
179 l->equiv = s;
180 s->sym = f->sym;
181 s->offset = f->offset;
182 s->length = f->length;
183 }
184 }
185
186
187 /* Add combine segment V and segment LIST. */
188
189 static segment_info *
190 add_segments (segment_info *list, segment_info *v)
191 {
192 segment_info *s;
193 segment_info *p;
194 segment_info *next;
195
196 p = NULL;
197 s = list;
198
199 while (v)
200 {
201 /* Find the location of the new element. */
202 while (s)
203 {
204 if (v->offset < s->offset)
205 break;
206 if (v->offset == s->offset
207 && v->length <= s->length)
208 break;
209
210 p = s;
211 s = s->next;
212 }
213
214 /* Insert the new element in between p and s. */
215 next = v->next;
216 v->next = s;
217 if (p == NULL)
218 list = v;
219 else
220 p->next = v;
221
222 p = v;
223 v = next;
224 }
225
226 return list;
227 }
228
229
230 /* Construct mangled common block name from symbol name. */
231
232 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
233 name. There are few calls to this function, so few places that this
234 would need to be added. At the moment, there is only one call, in
235 build_common_decl(). We can't attempt to look up the common block
236 because we may be building it for the first time and therefore, it won't
237 be in the common_root. We also need the binding label, if it's bind(c).
238 Therefore, send in the pointer to the common block, so whatever info we
239 have so far can be used. All of the necessary info should be available
240 in the gfc_common_head by now, so it should be accurate to test the
241 isBindC flag and use the binding label given if it is bind(c).
242
243 We may NOT know yet if it's bind(c) or not, but we can try at least.
244 Will have to figure out what to do later if it's labeled bind(c)
245 after this is called. */
246
247 static tree
248 gfc_sym_mangled_common_id (gfc_common_head *com)
249 {
250 int has_underscore;
251 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1];
252 char name[GFC_MAX_SYMBOL_LEN + 1];
253
254 /* Get the name out of the common block pointer. */
255 strcpy (name, com->name);
256
257 /* If we're suppose to do a bind(c). */
258 if (com->is_bind_c == 1 && com->binding_label)
259 return get_identifier (com->binding_label);
260
261 if (strcmp (name, BLANK_COMMON_NAME) == 0)
262 return get_identifier (name);
263
264 if (flag_underscoring)
265 {
266 has_underscore = strchr (name, '_') != 0;
267 if (flag_second_underscore && has_underscore)
268 snprintf (mangled_name, sizeof mangled_name, "%s__", name);
269 else
270 snprintf (mangled_name, sizeof mangled_name, "%s_", name);
271
272 return get_identifier (mangled_name);
273 }
274 else
275 return get_identifier (name);
276 }
277
278
279 /* Build a field declaration for a common variable or a local equivalence
280 object. */
281
282 static void
283 build_field (segment_info *h, tree union_type, record_layout_info rli)
284 {
285 tree field;
286 tree name;
287 HOST_WIDE_INT offset = h->offset;
288 unsigned HOST_WIDE_INT desired_align, known_align;
289
290 name = get_identifier (h->sym->name);
291 field = build_decl (h->sym->declared_at.lb->location,
292 FIELD_DECL, name, h->field);
293 known_align = (offset & -offset) * BITS_PER_UNIT;
294 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
295 known_align = BIGGEST_ALIGNMENT;
296
297 desired_align = update_alignment_for_field (rli, field, known_align);
298 if (desired_align > known_align)
299 DECL_PACKED (field) = 1;
300
301 DECL_FIELD_CONTEXT (field) = union_type;
302 DECL_FIELD_OFFSET (field) = size_int (offset);
303 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
304 SET_DECL_OFFSET_ALIGN (field, known_align);
305
306 rli->offset = size_binop (MAX_EXPR, rli->offset,
307 size_binop (PLUS_EXPR,
308 DECL_FIELD_OFFSET (field),
309 DECL_SIZE_UNIT (field)));
310 /* If this field is assigned to a label, we create another two variables.
311 One will hold the address of target label or format label. The other will
312 hold the length of format label string. */
313 if (h->sym->attr.assign)
314 {
315 tree len;
316 tree addr;
317
318 gfc_allocate_lang_decl (field);
319 GFC_DECL_ASSIGN (field) = 1;
320 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
321 addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
322 TREE_STATIC (len) = 1;
323 TREE_STATIC (addr) = 1;
324 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
325 gfc_set_decl_location (len, &h->sym->declared_at);
326 gfc_set_decl_location (addr, &h->sym->declared_at);
327 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
328 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
329 }
330
331 /* If this field is volatile, mark it. */
332 if (h->sym->attr.volatile_)
333 {
334 tree new_type;
335 TREE_THIS_VOLATILE (field) = 1;
336 TREE_SIDE_EFFECTS (field) = 1;
337 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
338 TREE_TYPE (field) = new_type;
339 }
340
341 h->field = field;
342 }
343
344
345 /* Get storage for local equivalence. */
346
347 static tree
348 build_equiv_decl (tree union_type, bool is_init, bool is_saved)
349 {
350 tree decl;
351 char name[15];
352 static int serial = 0;
353
354 if (is_init)
355 {
356 decl = gfc_create_var (union_type, "equiv");
357 TREE_STATIC (decl) = 1;
358 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
359 return decl;
360 }
361
362 snprintf (name, sizeof (name), "equiv.%d", serial++);
363 decl = build_decl (input_location,
364 VAR_DECL, get_identifier (name), union_type);
365 DECL_ARTIFICIAL (decl) = 1;
366 DECL_IGNORED_P (decl) = 1;
367
368 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
369 || is_saved)
370 TREE_STATIC (decl) = 1;
371
372 TREE_ADDRESSABLE (decl) = 1;
373 TREE_USED (decl) = 1;
374 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
375
376 /* The source location has been lost, and doesn't really matter.
377 We need to set it to something though. */
378 gfc_set_decl_location (decl, &gfc_current_locus);
379
380 gfc_add_decl_to_function (decl);
381
382 return decl;
383 }
384
385
386 /* Get storage for common block. */
387
388 static tree
389 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
390 {
391 tree decl, identifier;
392
393 identifier = gfc_sym_mangled_common_id (com);
394 decl = gfc_map_of_all_commons.count(identifier)
395 ? gfc_map_of_all_commons[identifier] : NULL_TREE;
396
397 /* Update the size of this common block as needed. */
398 if (decl != NULL_TREE)
399 {
400 tree size = TYPE_SIZE_UNIT (union_type);
401
402 /* Named common blocks of the same name shall be of the same size
403 in all scoping units of a program in which they appear, but
404 blank common blocks may be of different sizes. */
405 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
406 && strcmp (com->name, BLANK_COMMON_NAME))
407 gfc_warning (0, "Named COMMON block %qs at %L shall be of the "
408 "same size as elsewhere (%lu vs %lu bytes)", com->name,
409 &com->where,
410 (unsigned long) TREE_INT_CST_LOW (size),
411 (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
412
413 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
414 {
415 DECL_SIZE (decl) = TYPE_SIZE (union_type);
416 DECL_SIZE_UNIT (decl) = size;
417 DECL_MODE (decl) = TYPE_MODE (union_type);
418 TREE_TYPE (decl) = union_type;
419 layout_decl (decl, 0);
420 }
421 }
422
423 /* If this common block has been declared in a previous program unit,
424 and either it is already initialized or there is no new initialization
425 for it, just return. */
426 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
427 return decl;
428
429 /* If there is no backend_decl for the common block, build it. */
430 if (decl == NULL_TREE)
431 {
432 if (com->is_bind_c == 1 && com->binding_label)
433 decl = build_decl (input_location, VAR_DECL, identifier, union_type);
434 else
435 {
436 decl = build_decl (input_location, VAR_DECL, get_identifier (com->name),
437 union_type);
438 gfc_set_decl_assembler_name (decl, identifier);
439 }
440
441 TREE_PUBLIC (decl) = 1;
442 TREE_STATIC (decl) = 1;
443 DECL_IGNORED_P (decl) = 1;
444 if (!com->is_bind_c)
445 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
446 else
447 {
448 /* Do not set the alignment for bind(c) common blocks to
449 BIGGEST_ALIGNMENT because that won't match what C does. Also,
450 for common blocks with one element, the alignment must be
451 that of the field within the common block in order to match
452 what C will do. */
453 tree field = NULL_TREE;
454 field = TYPE_FIELDS (TREE_TYPE (decl));
455 if (DECL_CHAIN (field) == NULL_TREE)
456 DECL_ALIGN (decl) = TYPE_ALIGN (TREE_TYPE (field));
457 }
458 DECL_USER_ALIGN (decl) = 0;
459 GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
460
461 gfc_set_decl_location (decl, &com->where);
462
463 if (com->threadprivate)
464 set_decl_tls_model (decl, decl_default_tls_model (decl));
465
466 if (com->omp_declare_target)
467 DECL_ATTRIBUTES (decl)
468 = tree_cons (get_identifier ("omp declare target"),
469 NULL_TREE, DECL_ATTRIBUTES (decl));
470
471 /* Place the back end declaration for this common block in
472 GLOBAL_BINDING_LEVEL. */
473 gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
474 }
475
476 /* Has no initial values. */
477 if (!is_init)
478 {
479 DECL_INITIAL (decl) = NULL_TREE;
480 DECL_COMMON (decl) = 1;
481 DECL_DEFER_OUTPUT (decl) = 1;
482 }
483 else
484 {
485 DECL_INITIAL (decl) = error_mark_node;
486 DECL_COMMON (decl) = 0;
487 DECL_DEFER_OUTPUT (decl) = 0;
488 }
489 return decl;
490 }
491
492
493 /* Return a field that is the size of the union, if an equivalence has
494 overlapping initializers. Merge the initializers into a single
495 initializer for this new field, then free the old ones. */
496
497 static tree
498 get_init_field (segment_info *head, tree union_type, tree *field_init,
499 record_layout_info rli)
500 {
501 segment_info *s;
502 HOST_WIDE_INT length = 0;
503 HOST_WIDE_INT offset = 0;
504 unsigned HOST_WIDE_INT known_align, desired_align;
505 bool overlap = false;
506 tree tmp, field;
507 tree init;
508 unsigned char *data, *chk;
509 vec<constructor_elt, va_gc> *v = NULL;
510
511 tree type = unsigned_char_type_node;
512 int i;
513
514 /* Obtain the size of the union and check if there are any overlapping
515 initializers. */
516 for (s = head; s; s = s->next)
517 {
518 HOST_WIDE_INT slen = s->offset + s->length;
519 if (s->sym->value)
520 {
521 if (s->offset < offset)
522 overlap = true;
523 offset = slen;
524 }
525 length = length < slen ? slen : length;
526 }
527
528 if (!overlap)
529 return NULL_TREE;
530
531 /* Now absorb all the initializer data into a single vector,
532 whilst checking for overlapping, unequal values. */
533 data = XCNEWVEC (unsigned char, (size_t)length);
534 chk = XCNEWVEC (unsigned char, (size_t)length);
535
536 /* TODO - change this when default initialization is implemented. */
537 memset (data, '\0', (size_t)length);
538 memset (chk, '\0', (size_t)length);
539 for (s = head; s; s = s->next)
540 if (s->sym->value)
541 gfc_merge_initializers (s->sym->ts, s->sym->value,
542 &data[s->offset],
543 &chk[s->offset],
544 (size_t)s->length);
545
546 for (i = 0; i < length; i++)
547 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
548
549 free (data);
550 free (chk);
551
552 /* Build a char[length] array to hold the initializers. Much of what
553 follows is borrowed from build_field, above. */
554
555 tmp = build_int_cst (gfc_array_index_type, length - 1);
556 tmp = build_range_type (gfc_array_index_type,
557 gfc_index_zero_node, tmp);
558 tmp = build_array_type (type, tmp);
559 field = build_decl (gfc_current_locus.lb->location,
560 FIELD_DECL, NULL_TREE, tmp);
561
562 known_align = BIGGEST_ALIGNMENT;
563
564 desired_align = update_alignment_for_field (rli, field, known_align);
565 if (desired_align > known_align)
566 DECL_PACKED (field) = 1;
567
568 DECL_FIELD_CONTEXT (field) = union_type;
569 DECL_FIELD_OFFSET (field) = size_int (0);
570 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
571 SET_DECL_OFFSET_ALIGN (field, known_align);
572
573 rli->offset = size_binop (MAX_EXPR, rli->offset,
574 size_binop (PLUS_EXPR,
575 DECL_FIELD_OFFSET (field),
576 DECL_SIZE_UNIT (field)));
577
578 init = build_constructor (TREE_TYPE (field), v);
579 TREE_CONSTANT (init) = 1;
580
581 *field_init = init;
582
583 for (s = head; s; s = s->next)
584 {
585 if (s->sym->value == NULL)
586 continue;
587
588 gfc_free_expr (s->sym->value);
589 s->sym->value = NULL;
590 }
591
592 return field;
593 }
594
595
596 /* Declare memory for the common block or local equivalence, and create
597 backend declarations for all of the elements. */
598
599 static void
600 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
601 {
602 segment_info *s, *next_s;
603 tree union_type;
604 tree *field_link;
605 tree field;
606 tree field_init = NULL_TREE;
607 record_layout_info rli;
608 tree decl;
609 bool is_init = false;
610 bool is_saved = false;
611
612 /* Declare the variables inside the common block.
613 If the current common block contains any equivalence object, then
614 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
615 alias analyzer work well when there is no address overlapping for
616 common variables in the current common block. */
617 if (saw_equiv)
618 union_type = make_node (UNION_TYPE);
619 else
620 union_type = make_node (RECORD_TYPE);
621
622 rli = start_record_layout (union_type);
623 field_link = &TYPE_FIELDS (union_type);
624
625 /* Check for overlapping initializers and replace them with a single,
626 artificial field that contains all the data. */
627 if (saw_equiv)
628 field = get_init_field (head, union_type, &field_init, rli);
629 else
630 field = NULL_TREE;
631
632 if (field != NULL_TREE)
633 {
634 is_init = true;
635 *field_link = field;
636 field_link = &DECL_CHAIN (field);
637 }
638
639 for (s = head; s; s = s->next)
640 {
641 build_field (s, union_type, rli);
642
643 /* Link the field into the type. */
644 *field_link = s->field;
645 field_link = &DECL_CHAIN (s->field);
646
647 /* Has initial value. */
648 if (s->sym->value)
649 is_init = true;
650
651 /* Has SAVE attribute. */
652 if (s->sym->attr.save)
653 is_saved = true;
654 }
655
656 finish_record_layout (rli, true);
657
658 if (com)
659 decl = build_common_decl (com, union_type, is_init);
660 else
661 decl = build_equiv_decl (union_type, is_init, is_saved);
662
663 if (is_init)
664 {
665 tree ctor, tmp;
666 vec<constructor_elt, va_gc> *v = NULL;
667
668 if (field != NULL_TREE && field_init != NULL_TREE)
669 CONSTRUCTOR_APPEND_ELT (v, field, field_init);
670 else
671 for (s = head; s; s = s->next)
672 {
673 if (s->sym->value)
674 {
675 /* Add the initializer for this field. */
676 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
677 TREE_TYPE (s->field),
678 s->sym->attr.dimension,
679 s->sym->attr.pointer
680 || s->sym->attr.allocatable, false);
681
682 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
683 }
684 }
685
686 gcc_assert (!v->is_empty ());
687 ctor = build_constructor (union_type, v);
688 TREE_CONSTANT (ctor) = 1;
689 TREE_STATIC (ctor) = 1;
690 DECL_INITIAL (decl) = ctor;
691
692 #ifdef ENABLE_CHECKING
693 {
694 tree field, value;
695 unsigned HOST_WIDE_INT idx;
696 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
697 gcc_assert (TREE_CODE (field) == FIELD_DECL);
698 }
699 #endif
700 }
701
702 /* Build component reference for each variable. */
703 for (s = head; s; s = next_s)
704 {
705 tree var_decl;
706
707 var_decl = build_decl (s->sym->declared_at.lb->location,
708 VAR_DECL, DECL_NAME (s->field),
709 TREE_TYPE (s->field));
710 TREE_STATIC (var_decl) = TREE_STATIC (decl);
711 /* Mark the variable as used in order to avoid warnings about
712 unused variables. */
713 TREE_USED (var_decl) = 1;
714 if (s->sym->attr.use_assoc)
715 DECL_IGNORED_P (var_decl) = 1;
716 if (s->sym->attr.target)
717 TREE_ADDRESSABLE (var_decl) = 1;
718 /* Fake variables are not visible from other translation units. */
719 TREE_PUBLIC (var_decl) = 0;
720 gfc_finish_decl_attrs (var_decl, &s->sym->attr);
721
722 /* To preserve identifier names in COMMON, chain to procedure
723 scope unless at top level in a module definition. */
724 if (com
725 && s->sym->ns->proc_name
726 && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
727 var_decl = pushdecl_top_level (var_decl);
728 else
729 gfc_add_decl_to_function (var_decl);
730
731 SET_DECL_VALUE_EXPR (var_decl,
732 fold_build3_loc (input_location, COMPONENT_REF,
733 TREE_TYPE (s->field),
734 decl, s->field, NULL_TREE));
735 DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
736 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
737
738 if (s->sym->attr.assign)
739 {
740 gfc_allocate_lang_decl (var_decl);
741 GFC_DECL_ASSIGN (var_decl) = 1;
742 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
743 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
744 }
745
746 s->sym->backend_decl = var_decl;
747
748 next_s = s->next;
749 free (s);
750 }
751 }
752
753
754 /* Given a symbol, find it in the current segment list. Returns NULL if
755 not found. */
756
757 static segment_info *
758 find_segment_info (gfc_symbol *symbol)
759 {
760 segment_info *n;
761
762 for (n = current_segment; n; n = n->next)
763 {
764 if (n->sym == symbol)
765 return n;
766 }
767
768 return NULL;
769 }
770
771
772 /* Given an expression node, make sure it is a constant integer and return
773 the mpz_t value. */
774
775 static mpz_t *
776 get_mpz (gfc_expr *e)
777 {
778
779 if (e->expr_type != EXPR_CONSTANT)
780 gfc_internal_error ("get_mpz(): Not an integer constant");
781
782 return &e->value.integer;
783 }
784
785
786 /* Given an array specification and an array reference, figure out the
787 array element number (zero based). Bounds and elements are guaranteed
788 to be constants. If something goes wrong we generate an error and
789 return zero. */
790
791 static HOST_WIDE_INT
792 element_number (gfc_array_ref *ar)
793 {
794 mpz_t multiplier, offset, extent, n;
795 gfc_array_spec *as;
796 HOST_WIDE_INT i, rank;
797
798 as = ar->as;
799 rank = as->rank;
800 mpz_init_set_ui (multiplier, 1);
801 mpz_init_set_ui (offset, 0);
802 mpz_init (extent);
803 mpz_init (n);
804
805 for (i = 0; i < rank; i++)
806 {
807 if (ar->dimen_type[i] != DIMEN_ELEMENT)
808 gfc_internal_error ("element_number(): Bad dimension type");
809
810 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
811
812 mpz_mul (n, n, multiplier);
813 mpz_add (offset, offset, n);
814
815 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
816 mpz_add_ui (extent, extent, 1);
817
818 if (mpz_sgn (extent) < 0)
819 mpz_set_ui (extent, 0);
820
821 mpz_mul (multiplier, multiplier, extent);
822 }
823
824 i = mpz_get_ui (offset);
825
826 mpz_clear (multiplier);
827 mpz_clear (offset);
828 mpz_clear (extent);
829 mpz_clear (n);
830
831 return i;
832 }
833
834
835 /* Given a single element of an equivalence list, figure out the offset
836 from the base symbol. For simple variables or full arrays, this is
837 simply zero. For an array element we have to calculate the array
838 element number and multiply by the element size. For a substring we
839 have to calculate the further reference. */
840
841 static HOST_WIDE_INT
842 calculate_offset (gfc_expr *e)
843 {
844 HOST_WIDE_INT n, element_size, offset;
845 gfc_typespec *element_type;
846 gfc_ref *reference;
847
848 offset = 0;
849 element_type = &e->symtree->n.sym->ts;
850
851 for (reference = e->ref; reference; reference = reference->next)
852 switch (reference->type)
853 {
854 case REF_ARRAY:
855 switch (reference->u.ar.type)
856 {
857 case AR_FULL:
858 break;
859
860 case AR_ELEMENT:
861 n = element_number (&reference->u.ar);
862 if (element_type->type == BT_CHARACTER)
863 gfc_conv_const_charlen (element_type->u.cl);
864 element_size =
865 int_size_in_bytes (gfc_typenode_for_spec (element_type));
866 offset += n * element_size;
867 break;
868
869 default:
870 gfc_error ("Bad array reference at %L", &e->where);
871 }
872 break;
873 case REF_SUBSTRING:
874 if (reference->u.ss.start != NULL)
875 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
876 break;
877 default:
878 gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
879 &e->where);
880 }
881 return offset;
882 }
883
884
885 /* Add a new segment_info structure to the current segment. eq1 is already
886 in the list, eq2 is not. */
887
888 static void
889 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
890 {
891 HOST_WIDE_INT offset1, offset2;
892 segment_info *a;
893
894 offset1 = calculate_offset (eq1->expr);
895 offset2 = calculate_offset (eq2->expr);
896
897 a = get_segment_info (eq2->expr->symtree->n.sym,
898 v->offset + offset1 - offset2);
899
900 current_segment = add_segments (current_segment, a);
901 }
902
903
904 /* Given two equivalence structures that are both already in the list, make
905 sure that this new condition is not violated, generating an error if it
906 is. */
907
908 static void
909 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
910 gfc_equiv *eq2)
911 {
912 HOST_WIDE_INT offset1, offset2;
913
914 offset1 = calculate_offset (eq1->expr);
915 offset2 = calculate_offset (eq2->expr);
916
917 if (s1->offset + offset1 != s2->offset + offset2)
918 gfc_error ("Inconsistent equivalence rules involving %qs at %L and "
919 "%qs at %L", s1->sym->name, &s1->sym->declared_at,
920 s2->sym->name, &s2->sym->declared_at);
921 }
922
923
924 /* Process a new equivalence condition. eq1 is know to be in segment f.
925 If eq2 is also present then confirm that the condition holds.
926 Otherwise add a new variable to the segment list. */
927
928 static void
929 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
930 {
931 segment_info *n;
932
933 n = find_segment_info (eq2->expr->symtree->n.sym);
934
935 if (n == NULL)
936 new_condition (f, eq1, eq2);
937 else
938 confirm_condition (f, eq1, n, eq2);
939 }
940
941
942 /* Given a segment element, search through the equivalence lists for unused
943 conditions that involve the symbol. Add these rules to the segment. */
944
945 static bool
946 find_equivalence (segment_info *n)
947 {
948 gfc_equiv *e1, *e2, *eq;
949 bool found;
950
951 found = FALSE;
952
953 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
954 {
955 eq = NULL;
956
957 /* Search the equivalence list, including the root (first) element
958 for the symbol that owns the segment. */
959 for (e2 = e1; e2; e2 = e2->eq)
960 {
961 if (!e2->used && e2->expr->symtree->n.sym == n->sym)
962 {
963 eq = e2;
964 break;
965 }
966 }
967
968 /* Go to the next root element. */
969 if (eq == NULL)
970 continue;
971
972 eq->used = 1;
973
974 /* Now traverse the equivalence list matching the offsets. */
975 for (e2 = e1; e2; e2 = e2->eq)
976 {
977 if (!e2->used && e2 != eq)
978 {
979 add_condition (n, eq, e2);
980 e2->used = 1;
981 found = TRUE;
982 }
983 }
984 }
985 return found;
986 }
987
988
989 /* Add all symbols equivalenced within a segment. We need to scan the
990 segment list multiple times to include indirect equivalences. Since
991 a new segment_info can inserted at the beginning of the segment list,
992 depending on its offset, we have to force a final pass through the
993 loop by demanding that completion sees a pass with no matches; i.e.,
994 all symbols with equiv_built set and no new equivalences found. */
995
996 static void
997 add_equivalences (bool *saw_equiv)
998 {
999 segment_info *f;
1000 bool seen_one, more;
1001
1002 seen_one = false;
1003 more = TRUE;
1004 while (more)
1005 {
1006 more = FALSE;
1007 for (f = current_segment; f; f = f->next)
1008 {
1009 if (!f->sym->equiv_built)
1010 {
1011 f->sym->equiv_built = 1;
1012 seen_one = find_equivalence (f);
1013 if (seen_one)
1014 {
1015 *saw_equiv = true;
1016 more = true;
1017 }
1018 }
1019 }
1020 }
1021
1022 /* Add a copy of this segment list to the namespace. */
1023 copy_equiv_list_to_ns (current_segment);
1024 }
1025
1026
1027 /* Returns the offset necessary to properly align the current equivalence.
1028 Sets *palign to the required alignment. */
1029
1030 static HOST_WIDE_INT
1031 align_segment (unsigned HOST_WIDE_INT *palign)
1032 {
1033 segment_info *s;
1034 unsigned HOST_WIDE_INT offset;
1035 unsigned HOST_WIDE_INT max_align;
1036 unsigned HOST_WIDE_INT this_align;
1037 unsigned HOST_WIDE_INT this_offset;
1038
1039 max_align = 1;
1040 offset = 0;
1041 for (s = current_segment; s; s = s->next)
1042 {
1043 this_align = TYPE_ALIGN_UNIT (s->field);
1044 if (s->offset & (this_align - 1))
1045 {
1046 /* Field is misaligned. */
1047 this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1048 if (this_offset & (max_align - 1))
1049 {
1050 /* Aligning this field would misalign a previous field. */
1051 gfc_error ("The equivalence set for variable %qs "
1052 "declared at %L violates alignment requirements",
1053 s->sym->name, &s->sym->declared_at);
1054 }
1055 offset += this_offset;
1056 }
1057 max_align = this_align;
1058 }
1059 if (palign)
1060 *palign = max_align;
1061 return offset;
1062 }
1063
1064
1065 /* Adjust segment offsets by the given amount. */
1066
1067 static void
1068 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1069 {
1070 for (; s; s = s->next)
1071 s->offset += offset;
1072 }
1073
1074
1075 /* Lay out a symbol in a common block. If the symbol has already been seen
1076 then check the location is consistent. Otherwise create segments
1077 for that symbol and all the symbols equivalenced with it. */
1078
1079 /* Translate a single common block. */
1080
1081 static void
1082 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1083 {
1084 gfc_symbol *sym;
1085 segment_info *s;
1086 segment_info *common_segment;
1087 HOST_WIDE_INT offset;
1088 HOST_WIDE_INT current_offset;
1089 unsigned HOST_WIDE_INT align;
1090 bool saw_equiv;
1091
1092 common_segment = NULL;
1093 offset = 0;
1094 current_offset = 0;
1095 align = 1;
1096 saw_equiv = false;
1097
1098 /* Add symbols to the segment. */
1099 for (sym = var_list; sym; sym = sym->common_next)
1100 {
1101 current_segment = common_segment;
1102 s = find_segment_info (sym);
1103
1104 /* Symbol has already been added via an equivalence. Multiple
1105 use associations of the same common block result in equiv_built
1106 being set but no information about the symbol in the segment. */
1107 if (s && sym->equiv_built)
1108 {
1109 /* Ensure the current location is properly aligned. */
1110 align = TYPE_ALIGN_UNIT (s->field);
1111 current_offset = (current_offset + align - 1) &~ (align - 1);
1112
1113 /* Verify that it ended up where we expect it. */
1114 if (s->offset != current_offset)
1115 {
1116 gfc_error ("Equivalence for %qs does not match ordering of "
1117 "COMMON %qs at %L", sym->name,
1118 common->name, &common->where);
1119 }
1120 }
1121 else
1122 {
1123 /* A symbol we haven't seen before. */
1124 s = current_segment = get_segment_info (sym, current_offset);
1125
1126 /* Add all objects directly or indirectly equivalenced with this
1127 symbol. */
1128 add_equivalences (&saw_equiv);
1129
1130 if (current_segment->offset < 0)
1131 gfc_error ("The equivalence set for %qs cause an invalid "
1132 "extension to COMMON %qs at %L", sym->name,
1133 common->name, &common->where);
1134
1135 if (flag_align_commons)
1136 offset = align_segment (&align);
1137
1138 if (offset)
1139 {
1140 /* The required offset conflicts with previous alignment
1141 requirements. Insert padding immediately before this
1142 segment. */
1143 if (warn_align_commons)
1144 {
1145 if (strcmp (common->name, BLANK_COMMON_NAME))
1146 gfc_warning (0,
1147 "Padding of %d bytes required before %qs in "
1148 "COMMON %qs at %L; reorder elements or use "
1149 "-fno-align-commons", (int)offset,
1150 s->sym->name, common->name, &common->where);
1151 else
1152 gfc_warning (0,
1153 "Padding of %d bytes required before %qs in "
1154 "COMMON at %L; reorder elements or use "
1155 "-fno-align-commons", (int)offset,
1156 s->sym->name, &common->where);
1157 }
1158 }
1159
1160 /* Apply the offset to the new segments. */
1161 apply_segment_offset (current_segment, offset);
1162 current_offset += offset;
1163
1164 /* Add the new segments to the common block. */
1165 common_segment = add_segments (common_segment, current_segment);
1166 }
1167
1168 /* The offset of the next common variable. */
1169 current_offset += s->length;
1170 }
1171
1172 if (common_segment == NULL)
1173 {
1174 gfc_error ("COMMON '%s' at %L does not exist",
1175 common->name, &common->where);
1176 return;
1177 }
1178
1179 if (common_segment->offset != 0 && warn_align_commons)
1180 {
1181 if (strcmp (common->name, BLANK_COMMON_NAME))
1182 gfc_warning (OPT_Walign_commons,
1183 "COMMON %qs at %L requires %d bytes of padding; "
1184 "reorder elements or use %<-fno-align-commons%>",
1185 common->name, &common->where, (int)common_segment->offset);
1186 else
1187 gfc_warning (OPT_Walign_commons,
1188 "COMMON at %L requires %d bytes of padding; "
1189 "reorder elements or use %<-fno-align-commons%>",
1190 &common->where, (int)common_segment->offset);
1191 }
1192
1193 create_common (common, common_segment, saw_equiv);
1194 }
1195
1196
1197 /* Create a new block for each merged equivalence list. */
1198
1199 static void
1200 finish_equivalences (gfc_namespace *ns)
1201 {
1202 gfc_equiv *z, *y;
1203 gfc_symbol *sym;
1204 gfc_common_head * c;
1205 HOST_WIDE_INT offset;
1206 unsigned HOST_WIDE_INT align;
1207 bool dummy;
1208
1209 for (z = ns->equiv; z; z = z->next)
1210 for (y = z->eq; y; y = y->eq)
1211 {
1212 if (y->used)
1213 continue;
1214 sym = z->expr->symtree->n.sym;
1215 current_segment = get_segment_info (sym, 0);
1216
1217 /* All objects directly or indirectly equivalenced with this
1218 symbol. */
1219 add_equivalences (&dummy);
1220
1221 /* Align the block. */
1222 offset = align_segment (&align);
1223
1224 /* Ensure all offsets are positive. */
1225 offset -= current_segment->offset & ~(align - 1);
1226
1227 apply_segment_offset (current_segment, offset);
1228
1229 /* Create the decl. If this is a module equivalence, it has a
1230 unique name, pointed to by z->module. This is written to a
1231 gfc_common_header to push create_common into using
1232 build_common_decl, so that the equivalence appears as an
1233 external symbol. Otherwise, a local declaration is built using
1234 build_equiv_decl. */
1235 if (z->module)
1236 {
1237 c = gfc_get_common_head ();
1238 /* We've lost the real location, so use the location of the
1239 enclosing procedure. */
1240 c->where = ns->proc_name->declared_at;
1241 strcpy (c->name, z->module);
1242 }
1243 else
1244 c = NULL;
1245
1246 create_common (c, current_segment, true);
1247 break;
1248 }
1249 }
1250
1251
1252 /* Work function for translating a named common block. */
1253
1254 static void
1255 named_common (gfc_symtree *st)
1256 {
1257 translate_common (st->n.common, st->n.common->head);
1258 }
1259
1260
1261 /* Translate the common blocks in a namespace. Unlike other variables,
1262 these have to be created before code, because the backend_decl depends
1263 on the rest of the common block. */
1264
1265 void
1266 gfc_trans_common (gfc_namespace *ns)
1267 {
1268 gfc_common_head *c;
1269
1270 /* Translate the blank common block. */
1271 if (ns->blank_common.head != NULL)
1272 {
1273 c = gfc_get_common_head ();
1274 c->where = ns->blank_common.head->common_head->where;
1275 strcpy (c->name, BLANK_COMMON_NAME);
1276 translate_common (c, ns->blank_common.head);
1277 }
1278
1279 /* Translate all named common blocks. */
1280 gfc_traverse_symtree (ns->common_root, named_common);
1281
1282 /* Translate local equivalence. */
1283 finish_equivalences (ns);
1284
1285 /* Commit the newly created symbols for common blocks and module
1286 equivalences. */
1287 gfc_commit_symbols ();
1288 }