]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
Replace enum gfc_try with bool type.
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "langhooks.h" /* For iso-c-bindings.def. */
38 #include "target.h"
39 #include "ggc.h"
40 #include "diagnostic-core.h" /* For fatal_error. */
41 #include "toplev.h" /* For rest_of_decl_compilation. */
42 #include "gfortran.h"
43 #include "trans.h"
44 #include "trans-types.h"
45 #include "trans-const.h"
46 #include "flags.h"
47 #include "dwarf2out.h" /* For struct array_descr_info. */
48 \f
49
50 #if (GFC_MAX_DIMENSIONS < 10)
51 #define GFC_RANK_DIGITS 1
52 #define GFC_RANK_PRINTF_FORMAT "%01d"
53 #elif (GFC_MAX_DIMENSIONS < 100)
54 #define GFC_RANK_DIGITS 2
55 #define GFC_RANK_PRINTF_FORMAT "%02d"
56 #else
57 #error If you really need >99 dimensions, continue the sequence above...
58 #endif
59
60 /* array of structs so we don't have to worry about xmalloc or free */
61 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
62
63 tree gfc_array_index_type;
64 tree gfc_array_range_type;
65 tree gfc_character1_type_node;
66 tree pvoid_type_node;
67 tree prvoid_type_node;
68 tree ppvoid_type_node;
69 tree pchar_type_node;
70 tree pfunc_type_node;
71
72 tree gfc_charlen_type_node;
73
74 tree float128_type_node = NULL_TREE;
75 tree complex_float128_type_node = NULL_TREE;
76
77 bool gfc_real16_is_float128 = false;
78
79 static GTY(()) tree gfc_desc_dim_type;
80 static GTY(()) tree gfc_max_array_element_size;
81 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
82 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
83
84 /* Arrays for all integral and real kinds. We'll fill this in at runtime
85 after the target has a chance to process command-line options. */
86
87 #define MAX_INT_KINDS 5
88 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
89 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
90 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
91 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
92
93 #define MAX_REAL_KINDS 5
94 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
95 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
96 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
97
98 #define MAX_CHARACTER_KINDS 2
99 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
100 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
101 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
102
103 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
104
105 /* The integer kind to use for array indices. This will be set to the
106 proper value based on target information from the backend. */
107
108 int gfc_index_integer_kind;
109
110 /* The default kinds of the various types. */
111
112 int gfc_default_integer_kind;
113 int gfc_max_integer_kind;
114 int gfc_default_real_kind;
115 int gfc_default_double_kind;
116 int gfc_default_character_kind;
117 int gfc_default_logical_kind;
118 int gfc_default_complex_kind;
119 int gfc_c_int_kind;
120 int gfc_atomic_int_kind;
121 int gfc_atomic_logical_kind;
122
123 /* The kind size used for record offsets. If the target system supports
124 kind=8, this will be set to 8, otherwise it is set to 4. */
125 int gfc_intio_kind;
126
127 /* The integer kind used to store character lengths. */
128 int gfc_charlen_int_kind;
129
130 /* The size of the numeric storage unit and character storage unit. */
131 int gfc_numeric_storage_size;
132 int gfc_character_storage_size;
133
134
135 bool
136 gfc_check_any_c_kind (gfc_typespec *ts)
137 {
138 int i;
139
140 for (i = 0; i < ISOCBINDING_NUMBER; i++)
141 {
142 /* Check for any C interoperable kind for the given type/kind in ts.
143 This can be used after verify_c_interop to make sure that the
144 Fortran kind being used exists in at least some form for C. */
145 if (c_interop_kinds_table[i].f90_type == ts->type &&
146 c_interop_kinds_table[i].value == ts->kind)
147 return true;
148 }
149
150 return false;
151 }
152
153
154 static int
155 get_real_kind_from_node (tree type)
156 {
157 int i;
158
159 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
160 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
161 return gfc_real_kinds[i].kind;
162
163 return -4;
164 }
165
166 static int
167 get_int_kind_from_node (tree type)
168 {
169 int i;
170
171 if (!type)
172 return -2;
173
174 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
175 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
176 return gfc_integer_kinds[i].kind;
177
178 return -1;
179 }
180
181 /* Return a typenode for the "standard" C type with a given name. */
182 static tree
183 get_typenode_from_name (const char *name)
184 {
185 if (name == NULL || *name == '\0')
186 return NULL_TREE;
187
188 if (strcmp (name, "char") == 0)
189 return char_type_node;
190 if (strcmp (name, "unsigned char") == 0)
191 return unsigned_char_type_node;
192 if (strcmp (name, "signed char") == 0)
193 return signed_char_type_node;
194
195 if (strcmp (name, "short int") == 0)
196 return short_integer_type_node;
197 if (strcmp (name, "short unsigned int") == 0)
198 return short_unsigned_type_node;
199
200 if (strcmp (name, "int") == 0)
201 return integer_type_node;
202 if (strcmp (name, "unsigned int") == 0)
203 return unsigned_type_node;
204
205 if (strcmp (name, "long int") == 0)
206 return long_integer_type_node;
207 if (strcmp (name, "long unsigned int") == 0)
208 return long_unsigned_type_node;
209
210 if (strcmp (name, "long long int") == 0)
211 return long_long_integer_type_node;
212 if (strcmp (name, "long long unsigned int") == 0)
213 return long_long_unsigned_type_node;
214
215 gcc_unreachable ();
216 }
217
218 static int
219 get_int_kind_from_name (const char *name)
220 {
221 return get_int_kind_from_node (get_typenode_from_name (name));
222 }
223
224
225 /* Get the kind number corresponding to an integer of given size,
226 following the required return values for ISO_FORTRAN_ENV INT* constants:
227 -2 is returned if we support a kind of larger size, -1 otherwise. */
228 int
229 gfc_get_int_kind_from_width_isofortranenv (int size)
230 {
231 int i;
232
233 /* Look for a kind with matching storage size. */
234 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
235 if (gfc_integer_kinds[i].bit_size == size)
236 return gfc_integer_kinds[i].kind;
237
238 /* Look for a kind with larger storage size. */
239 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
240 if (gfc_integer_kinds[i].bit_size > size)
241 return -2;
242
243 return -1;
244 }
245
246 /* Get the kind number corresponding to a real of given storage size,
247 following the required return values for ISO_FORTRAN_ENV REAL* constants:
248 -2 is returned if we support a kind of larger size, -1 otherwise. */
249 int
250 gfc_get_real_kind_from_width_isofortranenv (int size)
251 {
252 int i;
253
254 size /= 8;
255
256 /* Look for a kind with matching storage size. */
257 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
258 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
259 return gfc_real_kinds[i].kind;
260
261 /* Look for a kind with larger storage size. */
262 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
263 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
264 return -2;
265
266 return -1;
267 }
268
269
270
271 static int
272 get_int_kind_from_width (int size)
273 {
274 int i;
275
276 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
277 if (gfc_integer_kinds[i].bit_size == size)
278 return gfc_integer_kinds[i].kind;
279
280 return -2;
281 }
282
283 static int
284 get_int_kind_from_minimal_width (int size)
285 {
286 int i;
287
288 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
289 if (gfc_integer_kinds[i].bit_size >= size)
290 return gfc_integer_kinds[i].kind;
291
292 return -2;
293 }
294
295
296 /* Generate the CInteropKind_t objects for the C interoperable
297 kinds. */
298
299 void
300 gfc_init_c_interop_kinds (void)
301 {
302 int i;
303
304 /* init all pointers in the list to NULL */
305 for (i = 0; i < ISOCBINDING_NUMBER; i++)
306 {
307 /* Initialize the name and value fields. */
308 c_interop_kinds_table[i].name[0] = '\0';
309 c_interop_kinds_table[i].value = -100;
310 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
311 }
312
313 #define NAMED_INTCST(a,b,c,d) \
314 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
315 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
316 c_interop_kinds_table[a].value = c;
317 #define NAMED_REALCST(a,b,c,d) \
318 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
319 c_interop_kinds_table[a].f90_type = BT_REAL; \
320 c_interop_kinds_table[a].value = c;
321 #define NAMED_CMPXCST(a,b,c,d) \
322 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
323 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
324 c_interop_kinds_table[a].value = c;
325 #define NAMED_LOGCST(a,b,c) \
326 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
327 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
328 c_interop_kinds_table[a].value = c;
329 #define NAMED_CHARKNDCST(a,b,c) \
330 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
331 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
332 c_interop_kinds_table[a].value = c;
333 #define NAMED_CHARCST(a,b,c) \
334 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
335 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
336 c_interop_kinds_table[a].value = c;
337 #define DERIVED_TYPE(a,b,c) \
338 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
339 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
340 c_interop_kinds_table[a].value = c;
341 #define NAMED_FUNCTION(a,b,c,d) \
342 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
343 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
344 c_interop_kinds_table[a].value = c;
345 #define NAMED_SUBROUTINE(a,b,c,d) \
346 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
347 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
348 c_interop_kinds_table[a].value = c;
349 #include "iso-c-binding.def"
350 }
351
352
353 /* Query the target to determine which machine modes are available for
354 computation. Choose KIND numbers for them. */
355
356 void
357 gfc_init_kinds (void)
358 {
359 unsigned int mode;
360 int i_index, r_index, kind;
361 bool saw_i4 = false, saw_i8 = false;
362 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
363
364 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
365 {
366 int kind, bitsize;
367
368 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
369 continue;
370
371 /* The middle end doesn't support constants larger than 2*HWI.
372 Perhaps the target hook shouldn't have accepted these either,
373 but just to be safe... */
374 bitsize = GET_MODE_BITSIZE (mode);
375 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
376 continue;
377
378 gcc_assert (i_index != MAX_INT_KINDS);
379
380 /* Let the kind equal the bit size divided by 8. This insulates the
381 programmer from the underlying byte size. */
382 kind = bitsize / 8;
383
384 if (kind == 4)
385 saw_i4 = true;
386 if (kind == 8)
387 saw_i8 = true;
388
389 gfc_integer_kinds[i_index].kind = kind;
390 gfc_integer_kinds[i_index].radix = 2;
391 gfc_integer_kinds[i_index].digits = bitsize - 1;
392 gfc_integer_kinds[i_index].bit_size = bitsize;
393
394 gfc_logical_kinds[i_index].kind = kind;
395 gfc_logical_kinds[i_index].bit_size = bitsize;
396
397 i_index += 1;
398 }
399
400 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
401 used for large file access. */
402
403 if (saw_i8)
404 gfc_intio_kind = 8;
405 else
406 gfc_intio_kind = 4;
407
408 /* If we do not at least have kind = 4, everything is pointless. */
409 gcc_assert(saw_i4);
410
411 /* Set the maximum integer kind. Used with at least BOZ constants. */
412 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
413
414 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
415 {
416 const struct real_format *fmt =
417 REAL_MODE_FORMAT ((enum machine_mode) mode);
418 int kind;
419
420 if (fmt == NULL)
421 continue;
422 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
423 continue;
424
425 /* Only let float, double, long double and __float128 go through.
426 Runtime support for others is not provided, so they would be
427 useless. */
428 if (mode != TYPE_MODE (float_type_node)
429 && (mode != TYPE_MODE (double_type_node))
430 && (mode != TYPE_MODE (long_double_type_node))
431 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
432 && (mode != TFmode)
433 #endif
434 )
435 continue;
436
437 /* Let the kind equal the precision divided by 8, rounding up. Again,
438 this insulates the programmer from the underlying byte size.
439
440 Also, it effectively deals with IEEE extended formats. There, the
441 total size of the type may equal 16, but it's got 6 bytes of padding
442 and the increased size can get in the way of a real IEEE quad format
443 which may also be supported by the target.
444
445 We round up so as to handle IA-64 __floatreg (RFmode), which is an
446 82 bit type. Not to be confused with __float80 (XFmode), which is
447 an 80 bit type also supported by IA-64. So XFmode should come out
448 to be kind=10, and RFmode should come out to be kind=11. Egads. */
449
450 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
451
452 if (kind == 4)
453 saw_r4 = true;
454 if (kind == 8)
455 saw_r8 = true;
456 if (kind == 10)
457 saw_r10 = true;
458 if (kind == 16)
459 saw_r16 = true;
460
461 /* Careful we don't stumble a weird internal mode. */
462 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
463 /* Or have too many modes for the allocated space. */
464 gcc_assert (r_index != MAX_REAL_KINDS);
465
466 gfc_real_kinds[r_index].kind = kind;
467 gfc_real_kinds[r_index].radix = fmt->b;
468 gfc_real_kinds[r_index].digits = fmt->p;
469 gfc_real_kinds[r_index].min_exponent = fmt->emin;
470 gfc_real_kinds[r_index].max_exponent = fmt->emax;
471 if (fmt->pnan < fmt->p)
472 /* This is an IBM extended double format (or the MIPS variant)
473 made up of two IEEE doubles. The value of the long double is
474 the sum of the values of the two parts. The most significant
475 part is required to be the value of the long double rounded
476 to the nearest double. If we use emax of 1024 then we can't
477 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
478 rounding will make the most significant part overflow. */
479 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
480 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
481 r_index += 1;
482 }
483
484 /* Choose the default integer kind. We choose 4 unless the user directs us
485 otherwise. Even if the user specified that the default integer kind is 8,
486 the numeric storage size is not 64 bits. In this case, a warning will be
487 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
488
489 gfc_numeric_storage_size = 4 * 8;
490
491 if (gfc_option.flag_default_integer)
492 {
493 if (!saw_i8)
494 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
495
496 gfc_default_integer_kind = 8;
497
498 }
499 else if (gfc_option.flag_integer4_kind == 8)
500 {
501 if (!saw_i8)
502 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
503
504 gfc_default_integer_kind = 8;
505 }
506 else if (saw_i4)
507 {
508 gfc_default_integer_kind = 4;
509 }
510 else
511 {
512 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
513 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
514 }
515
516 /* Choose the default real kind. Again, we choose 4 when possible. */
517 if (gfc_option.flag_default_real)
518 {
519 if (!saw_r8)
520 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
521
522 gfc_default_real_kind = 8;
523 }
524 else if (gfc_option.flag_real4_kind == 8)
525 {
526 if (!saw_r8)
527 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
528
529 gfc_default_real_kind = 8;
530 }
531 else if (gfc_option.flag_real4_kind == 10)
532 {
533 if (!saw_r10)
534 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
535
536 gfc_default_real_kind = 10;
537 }
538 else if (gfc_option.flag_real4_kind == 16)
539 {
540 if (!saw_r16)
541 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
542
543 gfc_default_real_kind = 16;
544 }
545 else if (saw_r4)
546 gfc_default_real_kind = 4;
547 else
548 gfc_default_real_kind = gfc_real_kinds[0].kind;
549
550 /* Choose the default double kind. If -fdefault-real and -fdefault-double
551 are specified, we use kind=8, if it's available. If -fdefault-real is
552 specified without -fdefault-double, we use kind=16, if it's available.
553 Otherwise we do not change anything. */
554 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
555 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
556
557 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
558 gfc_default_double_kind = 8;
559 else if (gfc_option.flag_default_real && saw_r16)
560 gfc_default_double_kind = 16;
561 else if (gfc_option.flag_real8_kind == 4)
562 {
563 if (!saw_r4)
564 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
565
566 gfc_default_double_kind = 4;
567 }
568 else if (gfc_option.flag_real8_kind == 10 )
569 {
570 if (!saw_r10)
571 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
572
573 gfc_default_double_kind = 10;
574 }
575 else if (gfc_option.flag_real8_kind == 16 )
576 {
577 if (!saw_r16)
578 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
579
580 gfc_default_double_kind = 16;
581 }
582 else if (saw_r4 && saw_r8)
583 gfc_default_double_kind = 8;
584 else
585 {
586 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
587 real ... occupies two contiguous numeric storage units.
588
589 Therefore we must be supplied a kind twice as large as we chose
590 for single precision. There are loopholes, in that double
591 precision must *occupy* two storage units, though it doesn't have
592 to *use* two storage units. Which means that you can make this
593 kind artificially wide by padding it. But at present there are
594 no GCC targets for which a two-word type does not exist, so we
595 just let gfc_validate_kind abort and tell us if something breaks. */
596
597 gfc_default_double_kind
598 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
599 }
600
601 /* The default logical kind is constrained to be the same as the
602 default integer kind. Similarly with complex and real. */
603 gfc_default_logical_kind = gfc_default_integer_kind;
604 gfc_default_complex_kind = gfc_default_real_kind;
605
606 /* We only have two character kinds: ASCII and UCS-4.
607 ASCII corresponds to a 8-bit integer type, if one is available.
608 UCS-4 corresponds to a 32-bit integer type, if one is available. */
609 i_index = 0;
610 if ((kind = get_int_kind_from_width (8)) > 0)
611 {
612 gfc_character_kinds[i_index].kind = kind;
613 gfc_character_kinds[i_index].bit_size = 8;
614 gfc_character_kinds[i_index].name = "ascii";
615 i_index++;
616 }
617 if ((kind = get_int_kind_from_width (32)) > 0)
618 {
619 gfc_character_kinds[i_index].kind = kind;
620 gfc_character_kinds[i_index].bit_size = 32;
621 gfc_character_kinds[i_index].name = "iso_10646";
622 i_index++;
623 }
624
625 /* Choose the smallest integer kind for our default character. */
626 gfc_default_character_kind = gfc_character_kinds[0].kind;
627 gfc_character_storage_size = gfc_default_character_kind * 8;
628
629 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
630
631 /* Pick a kind the same size as the C "int" type. */
632 gfc_c_int_kind = INT_TYPE_SIZE / 8;
633
634 /* Choose atomic kinds to match C's int. */
635 gfc_atomic_int_kind = gfc_c_int_kind;
636 gfc_atomic_logical_kind = gfc_c_int_kind;
637 }
638
639
640 /* Make sure that a valid kind is present. Returns an index into the
641 associated kinds array, -1 if the kind is not present. */
642
643 static int
644 validate_integer (int kind)
645 {
646 int i;
647
648 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
649 if (gfc_integer_kinds[i].kind == kind)
650 return i;
651
652 return -1;
653 }
654
655 static int
656 validate_real (int kind)
657 {
658 int i;
659
660 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
661 if (gfc_real_kinds[i].kind == kind)
662 return i;
663
664 return -1;
665 }
666
667 static int
668 validate_logical (int kind)
669 {
670 int i;
671
672 for (i = 0; gfc_logical_kinds[i].kind; i++)
673 if (gfc_logical_kinds[i].kind == kind)
674 return i;
675
676 return -1;
677 }
678
679 static int
680 validate_character (int kind)
681 {
682 int i;
683
684 for (i = 0; gfc_character_kinds[i].kind; i++)
685 if (gfc_character_kinds[i].kind == kind)
686 return i;
687
688 return -1;
689 }
690
691 /* Validate a kind given a basic type. The return value is the same
692 for the child functions, with -1 indicating nonexistence of the
693 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
694
695 int
696 gfc_validate_kind (bt type, int kind, bool may_fail)
697 {
698 int rc;
699
700 switch (type)
701 {
702 case BT_REAL: /* Fall through */
703 case BT_COMPLEX:
704 rc = validate_real (kind);
705 break;
706 case BT_INTEGER:
707 rc = validate_integer (kind);
708 break;
709 case BT_LOGICAL:
710 rc = validate_logical (kind);
711 break;
712 case BT_CHARACTER:
713 rc = validate_character (kind);
714 break;
715
716 default:
717 gfc_internal_error ("gfc_validate_kind(): Got bad type");
718 }
719
720 if (rc < 0 && !may_fail)
721 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
722
723 return rc;
724 }
725
726
727 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
728 Reuse common type nodes where possible. Recognize if the kind matches up
729 with a C type. This will be used later in determining which routines may
730 be scarfed from libm. */
731
732 static tree
733 gfc_build_int_type (gfc_integer_info *info)
734 {
735 int mode_precision = info->bit_size;
736
737 if (mode_precision == CHAR_TYPE_SIZE)
738 info->c_char = 1;
739 if (mode_precision == SHORT_TYPE_SIZE)
740 info->c_short = 1;
741 if (mode_precision == INT_TYPE_SIZE)
742 info->c_int = 1;
743 if (mode_precision == LONG_TYPE_SIZE)
744 info->c_long = 1;
745 if (mode_precision == LONG_LONG_TYPE_SIZE)
746 info->c_long_long = 1;
747
748 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
749 return intQI_type_node;
750 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
751 return intHI_type_node;
752 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
753 return intSI_type_node;
754 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
755 return intDI_type_node;
756 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
757 return intTI_type_node;
758
759 return make_signed_type (mode_precision);
760 }
761
762 tree
763 gfc_build_uint_type (int size)
764 {
765 if (size == CHAR_TYPE_SIZE)
766 return unsigned_char_type_node;
767 if (size == SHORT_TYPE_SIZE)
768 return short_unsigned_type_node;
769 if (size == INT_TYPE_SIZE)
770 return unsigned_type_node;
771 if (size == LONG_TYPE_SIZE)
772 return long_unsigned_type_node;
773 if (size == LONG_LONG_TYPE_SIZE)
774 return long_long_unsigned_type_node;
775
776 return make_unsigned_type (size);
777 }
778
779
780 static tree
781 gfc_build_real_type (gfc_real_info *info)
782 {
783 int mode_precision = info->mode_precision;
784 tree new_type;
785
786 if (mode_precision == FLOAT_TYPE_SIZE)
787 info->c_float = 1;
788 if (mode_precision == DOUBLE_TYPE_SIZE)
789 info->c_double = 1;
790 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
791 info->c_long_double = 1;
792 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
793 {
794 info->c_float128 = 1;
795 gfc_real16_is_float128 = true;
796 }
797
798 if (TYPE_PRECISION (float_type_node) == mode_precision)
799 return float_type_node;
800 if (TYPE_PRECISION (double_type_node) == mode_precision)
801 return double_type_node;
802 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
803 return long_double_type_node;
804
805 new_type = make_node (REAL_TYPE);
806 TYPE_PRECISION (new_type) = mode_precision;
807 layout_type (new_type);
808 return new_type;
809 }
810
811 static tree
812 gfc_build_complex_type (tree scalar_type)
813 {
814 tree new_type;
815
816 if (scalar_type == NULL)
817 return NULL;
818 if (scalar_type == float_type_node)
819 return complex_float_type_node;
820 if (scalar_type == double_type_node)
821 return complex_double_type_node;
822 if (scalar_type == long_double_type_node)
823 return complex_long_double_type_node;
824
825 new_type = make_node (COMPLEX_TYPE);
826 TREE_TYPE (new_type) = scalar_type;
827 layout_type (new_type);
828 return new_type;
829 }
830
831 static tree
832 gfc_build_logical_type (gfc_logical_info *info)
833 {
834 int bit_size = info->bit_size;
835 tree new_type;
836
837 if (bit_size == BOOL_TYPE_SIZE)
838 {
839 info->c_bool = 1;
840 return boolean_type_node;
841 }
842
843 new_type = make_unsigned_type (bit_size);
844 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
845 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
846 TYPE_PRECISION (new_type) = 1;
847
848 return new_type;
849 }
850
851
852 /* Create the backend type nodes. We map them to their
853 equivalent C type, at least for now. We also give
854 names to the types here, and we push them in the
855 global binding level context.*/
856
857 void
858 gfc_init_types (void)
859 {
860 char name_buf[18];
861 int index;
862 tree type;
863 unsigned n;
864 unsigned HOST_WIDE_INT hi;
865 unsigned HOST_WIDE_INT lo;
866
867 /* Create and name the types. */
868 #define PUSH_TYPE(name, node) \
869 pushdecl (build_decl (input_location, \
870 TYPE_DECL, get_identifier (name), node))
871
872 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
873 {
874 type = gfc_build_int_type (&gfc_integer_kinds[index]);
875 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
876 if (TYPE_STRING_FLAG (type))
877 type = make_signed_type (gfc_integer_kinds[index].bit_size);
878 gfc_integer_types[index] = type;
879 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
880 gfc_integer_kinds[index].kind);
881 PUSH_TYPE (name_buf, type);
882 }
883
884 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
885 {
886 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
887 gfc_logical_types[index] = type;
888 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
889 gfc_logical_kinds[index].kind);
890 PUSH_TYPE (name_buf, type);
891 }
892
893 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
894 {
895 type = gfc_build_real_type (&gfc_real_kinds[index]);
896 gfc_real_types[index] = type;
897 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
898 gfc_real_kinds[index].kind);
899 PUSH_TYPE (name_buf, type);
900
901 if (gfc_real_kinds[index].c_float128)
902 float128_type_node = type;
903
904 type = gfc_build_complex_type (type);
905 gfc_complex_types[index] = type;
906 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
907 gfc_real_kinds[index].kind);
908 PUSH_TYPE (name_buf, type);
909
910 if (gfc_real_kinds[index].c_float128)
911 complex_float128_type_node = type;
912 }
913
914 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
915 {
916 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
917 type = build_qualified_type (type, TYPE_UNQUALIFIED);
918 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
919 gfc_character_kinds[index].kind);
920 PUSH_TYPE (name_buf, type);
921 gfc_character_types[index] = type;
922 gfc_pcharacter_types[index] = build_pointer_type (type);
923 }
924 gfc_character1_type_node = gfc_character_types[0];
925
926 PUSH_TYPE ("byte", unsigned_char_type_node);
927 PUSH_TYPE ("void", void_type_node);
928
929 /* DBX debugging output gets upset if these aren't set. */
930 if (!TYPE_NAME (integer_type_node))
931 PUSH_TYPE ("c_integer", integer_type_node);
932 if (!TYPE_NAME (char_type_node))
933 PUSH_TYPE ("c_char", char_type_node);
934
935 #undef PUSH_TYPE
936
937 pvoid_type_node = build_pointer_type (void_type_node);
938 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
939 ppvoid_type_node = build_pointer_type (pvoid_type_node);
940 pchar_type_node = build_pointer_type (gfc_character1_type_node);
941 pfunc_type_node
942 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
943
944 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
945 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
946 since this function is called before gfc_init_constants. */
947 gfc_array_range_type
948 = build_range_type (gfc_array_index_type,
949 build_int_cst (gfc_array_index_type, 0),
950 NULL_TREE);
951
952 /* The maximum array element size that can be handled is determined
953 by the number of bits available to store this field in the array
954 descriptor. */
955
956 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
957 lo = ~ (unsigned HOST_WIDE_INT) 0;
958 if (n > HOST_BITS_PER_WIDE_INT)
959 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
960 else
961 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
962 gfc_max_array_element_size
963 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
964
965 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
966 boolean_true_node = build_int_cst (boolean_type_node, 1);
967 boolean_false_node = build_int_cst (boolean_type_node, 0);
968
969 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
970 gfc_charlen_int_kind = 4;
971 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
972 }
973
974 /* Get the type node for the given type and kind. */
975
976 tree
977 gfc_get_int_type (int kind)
978 {
979 int index = gfc_validate_kind (BT_INTEGER, kind, true);
980 return index < 0 ? 0 : gfc_integer_types[index];
981 }
982
983 tree
984 gfc_get_real_type (int kind)
985 {
986 int index = gfc_validate_kind (BT_REAL, kind, true);
987 return index < 0 ? 0 : gfc_real_types[index];
988 }
989
990 tree
991 gfc_get_complex_type (int kind)
992 {
993 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
994 return index < 0 ? 0 : gfc_complex_types[index];
995 }
996
997 tree
998 gfc_get_logical_type (int kind)
999 {
1000 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1001 return index < 0 ? 0 : gfc_logical_types[index];
1002 }
1003
1004 tree
1005 gfc_get_char_type (int kind)
1006 {
1007 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1008 return index < 0 ? 0 : gfc_character_types[index];
1009 }
1010
1011 tree
1012 gfc_get_pchar_type (int kind)
1013 {
1014 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1015 return index < 0 ? 0 : gfc_pcharacter_types[index];
1016 }
1017
1018 \f
1019 /* Create a character type with the given kind and length. */
1020
1021 tree
1022 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1023 {
1024 tree bounds, type;
1025
1026 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1027 type = build_array_type (eltype, bounds);
1028 TYPE_STRING_FLAG (type) = 1;
1029
1030 return type;
1031 }
1032
1033 tree
1034 gfc_get_character_type_len (int kind, tree len)
1035 {
1036 gfc_validate_kind (BT_CHARACTER, kind, false);
1037 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1038 }
1039
1040
1041 /* Get a type node for a character kind. */
1042
1043 tree
1044 gfc_get_character_type (int kind, gfc_charlen * cl)
1045 {
1046 tree len;
1047
1048 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1049
1050 return gfc_get_character_type_len (kind, len);
1051 }
1052 \f
1053 /* Covert a basic type. This will be an array for character types. */
1054
1055 tree
1056 gfc_typenode_for_spec (gfc_typespec * spec)
1057 {
1058 tree basetype;
1059
1060 switch (spec->type)
1061 {
1062 case BT_UNKNOWN:
1063 gcc_unreachable ();
1064
1065 case BT_INTEGER:
1066 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1067 has been resolved. This is done so we can convert C_PTR and
1068 C_FUNPTR to simple variables that get translated to (void *). */
1069 if (spec->f90_type == BT_VOID)
1070 {
1071 if (spec->u.derived
1072 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1073 basetype = ptr_type_node;
1074 else
1075 basetype = pfunc_type_node;
1076 }
1077 else
1078 basetype = gfc_get_int_type (spec->kind);
1079 break;
1080
1081 case BT_REAL:
1082 basetype = gfc_get_real_type (spec->kind);
1083 break;
1084
1085 case BT_COMPLEX:
1086 basetype = gfc_get_complex_type (spec->kind);
1087 break;
1088
1089 case BT_LOGICAL:
1090 basetype = gfc_get_logical_type (spec->kind);
1091 break;
1092
1093 case BT_CHARACTER:
1094 #if 0
1095 if (spec->deferred)
1096 basetype = gfc_get_character_type (spec->kind, NULL);
1097 else
1098 #endif
1099 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1100 break;
1101
1102 case BT_DERIVED:
1103 case BT_CLASS:
1104 basetype = gfc_get_derived_type (spec->u.derived);
1105
1106 if (spec->type == BT_CLASS)
1107 GFC_CLASS_TYPE_P (basetype) = 1;
1108
1109 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1110 type and kind to fit a (void *) and the basetype returned was a
1111 ptr_type_node. We need to pass up this new information to the
1112 symbol that was declared of type C_PTR or C_FUNPTR. */
1113 if (spec->u.derived->ts.f90_type == BT_VOID)
1114 {
1115 spec->type = BT_INTEGER;
1116 spec->kind = gfc_index_integer_kind;
1117 spec->f90_type = BT_VOID;
1118 }
1119 break;
1120 case BT_VOID:
1121 case BT_ASSUMED:
1122 /* This is for the second arg to c_f_pointer and c_f_procpointer
1123 of the iso_c_binding module, to accept any ptr type. */
1124 basetype = ptr_type_node;
1125 if (spec->f90_type == BT_VOID)
1126 {
1127 if (spec->u.derived
1128 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1129 basetype = ptr_type_node;
1130 else
1131 basetype = pfunc_type_node;
1132 }
1133 break;
1134 default:
1135 gcc_unreachable ();
1136 }
1137 return basetype;
1138 }
1139 \f
1140 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1141
1142 static tree
1143 gfc_conv_array_bound (gfc_expr * expr)
1144 {
1145 /* If expr is an integer constant, return that. */
1146 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1147 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1148
1149 /* Otherwise return NULL. */
1150 return NULL_TREE;
1151 }
1152 \f
1153 tree
1154 gfc_get_element_type (tree type)
1155 {
1156 tree element;
1157
1158 if (GFC_ARRAY_TYPE_P (type))
1159 {
1160 if (TREE_CODE (type) == POINTER_TYPE)
1161 type = TREE_TYPE (type);
1162 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1163 {
1164 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1165 element = type;
1166 }
1167 else
1168 {
1169 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1170 element = TREE_TYPE (type);
1171 }
1172 }
1173 else
1174 {
1175 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1176 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1177
1178 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1179 element = TREE_TYPE (element);
1180
1181 /* For arrays, which are not scalar coarrays. */
1182 if (TREE_CODE (element) == ARRAY_TYPE)
1183 element = TREE_TYPE (element);
1184 }
1185
1186 return element;
1187 }
1188 \f
1189 /* Build an array. This function is called from gfc_sym_type().
1190 Actually returns array descriptor type.
1191
1192 Format of array descriptors is as follows:
1193
1194 struct gfc_array_descriptor
1195 {
1196 array *data
1197 index offset;
1198 index dtype;
1199 struct descriptor_dimension dimension[N_DIM];
1200 }
1201
1202 struct descriptor_dimension
1203 {
1204 index stride;
1205 index lbound;
1206 index ubound;
1207 }
1208
1209 Translation code should use gfc_conv_descriptor_* rather than
1210 accessing the descriptor directly. Any changes to the array
1211 descriptor type will require changes in gfc_conv_descriptor_* and
1212 gfc_build_array_initializer.
1213
1214 This is represented internally as a RECORD_TYPE. The index nodes
1215 are gfc_array_index_type and the data node is a pointer to the
1216 data. See below for the handling of character types.
1217
1218 The dtype member is formatted as follows:
1219 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1220 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1221 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1222
1223 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1224 this generated poor code for assumed/deferred size arrays. These
1225 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1226 of the GENERIC grammar. Also, there is no way to explicitly set
1227 the array stride, so all data must be packed(1). I've tried to
1228 mark all the functions which would require modification with a GCC
1229 ARRAYS comment.
1230
1231 The data component points to the first element in the array. The
1232 offset field is the position of the origin of the array (i.e. element
1233 (0, 0 ...)). This may be outside the bounds of the array.
1234
1235 An element is accessed by
1236 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1237 This gives good performance as the computation does not involve the
1238 bounds of the array. For packed arrays, this is optimized further
1239 by substituting the known strides.
1240
1241 This system has one problem: all array bounds must be within 2^31
1242 elements of the origin (2^63 on 64-bit machines). For example
1243 integer, dimension (80000:90000, 80000:90000, 2) :: array
1244 may not work properly on 32-bit machines because 80000*80000 >
1245 2^31, so the calculation for stride2 would overflow. This may
1246 still work, but I haven't checked, and it relies on the overflow
1247 doing the right thing.
1248
1249 The way to fix this problem is to access elements as follows:
1250 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1251 Obviously this is much slower. I will make this a compile time
1252 option, something like -fsmall-array-offsets. Mixing code compiled
1253 with and without this switch will work.
1254
1255 (1) This can be worked around by modifying the upper bound of the
1256 previous dimension. This requires extra fields in the descriptor
1257 (both real_ubound and fake_ubound). */
1258
1259
1260 /* Returns true if the array sym does not require a descriptor. */
1261
1262 int
1263 gfc_is_nodesc_array (gfc_symbol * sym)
1264 {
1265 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1266
1267 /* We only want local arrays. */
1268 if (sym->attr.pointer || sym->attr.allocatable)
1269 return 0;
1270
1271 /* We want a descriptor for associate-name arrays that do not have an
1272 explicitly known shape already. */
1273 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1274 return 0;
1275
1276 if (sym->attr.dummy)
1277 return sym->as->type != AS_ASSUMED_SHAPE
1278 && sym->as->type != AS_ASSUMED_RANK;
1279
1280 if (sym->attr.result || sym->attr.function)
1281 return 0;
1282
1283 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1284
1285 return 1;
1286 }
1287
1288
1289 /* Create an array descriptor type. */
1290
1291 static tree
1292 gfc_build_array_type (tree type, gfc_array_spec * as,
1293 enum gfc_array_kind akind, bool restricted,
1294 bool contiguous)
1295 {
1296 tree lbound[GFC_MAX_DIMENSIONS];
1297 tree ubound[GFC_MAX_DIMENSIONS];
1298 int n;
1299
1300 if (as->type == AS_ASSUMED_RANK)
1301 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1302 {
1303 lbound[n] = NULL_TREE;
1304 ubound[n] = NULL_TREE;
1305 }
1306
1307 for (n = 0; n < as->rank; n++)
1308 {
1309 /* Create expressions for the known bounds of the array. */
1310 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1311 lbound[n] = gfc_index_one_node;
1312 else
1313 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1314 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1315 }
1316
1317 for (n = as->rank; n < as->rank + as->corank; n++)
1318 {
1319 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1320 lbound[n] = gfc_index_one_node;
1321 else
1322 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1323
1324 if (n < as->rank + as->corank - 1)
1325 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1326 }
1327
1328 if (as->type == AS_ASSUMED_SHAPE)
1329 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1330 : GFC_ARRAY_ASSUMED_SHAPE;
1331 else if (as->type == AS_ASSUMED_RANK)
1332 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1333 : GFC_ARRAY_ASSUMED_RANK;
1334 return gfc_get_array_type_bounds (type, as->rank == -1
1335 ? GFC_MAX_DIMENSIONS : as->rank,
1336 as->corank, lbound,
1337 ubound, 0, akind, restricted);
1338 }
1339 \f
1340 /* Returns the struct descriptor_dimension type. */
1341
1342 static tree
1343 gfc_get_desc_dim_type (void)
1344 {
1345 tree type;
1346 tree decl, *chain = NULL;
1347
1348 if (gfc_desc_dim_type)
1349 return gfc_desc_dim_type;
1350
1351 /* Build the type node. */
1352 type = make_node (RECORD_TYPE);
1353
1354 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1355 TYPE_PACKED (type) = 1;
1356
1357 /* Consists of the stride, lbound and ubound members. */
1358 decl = gfc_add_field_to_struct_1 (type,
1359 get_identifier ("stride"),
1360 gfc_array_index_type, &chain);
1361 TREE_NO_WARNING (decl) = 1;
1362
1363 decl = gfc_add_field_to_struct_1 (type,
1364 get_identifier ("lbound"),
1365 gfc_array_index_type, &chain);
1366 TREE_NO_WARNING (decl) = 1;
1367
1368 decl = gfc_add_field_to_struct_1 (type,
1369 get_identifier ("ubound"),
1370 gfc_array_index_type, &chain);
1371 TREE_NO_WARNING (decl) = 1;
1372
1373 /* Finish off the type. */
1374 gfc_finish_type (type);
1375 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1376
1377 gfc_desc_dim_type = type;
1378 return type;
1379 }
1380
1381
1382 /* Return the DTYPE for an array. This describes the type and type parameters
1383 of the array. */
1384 /* TODO: Only call this when the value is actually used, and make all the
1385 unknown cases abort. */
1386
1387 tree
1388 gfc_get_dtype (tree type)
1389 {
1390 tree size;
1391 int n;
1392 HOST_WIDE_INT i;
1393 tree tmp;
1394 tree dtype;
1395 tree etype;
1396 int rank;
1397
1398 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1399
1400 if (GFC_TYPE_ARRAY_DTYPE (type))
1401 return GFC_TYPE_ARRAY_DTYPE (type);
1402
1403 rank = GFC_TYPE_ARRAY_RANK (type);
1404 etype = gfc_get_element_type (type);
1405
1406 switch (TREE_CODE (etype))
1407 {
1408 case INTEGER_TYPE:
1409 n = BT_INTEGER;
1410 break;
1411
1412 case BOOLEAN_TYPE:
1413 n = BT_LOGICAL;
1414 break;
1415
1416 case REAL_TYPE:
1417 n = BT_REAL;
1418 break;
1419
1420 case COMPLEX_TYPE:
1421 n = BT_COMPLEX;
1422 break;
1423
1424 /* We will never have arrays of arrays. */
1425 case RECORD_TYPE:
1426 n = BT_DERIVED;
1427 break;
1428
1429 case ARRAY_TYPE:
1430 n = BT_CHARACTER;
1431 break;
1432
1433 case POINTER_TYPE:
1434 n = BT_ASSUMED;
1435 break;
1436
1437 default:
1438 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1439 /* We can strange array types for temporary arrays. */
1440 return gfc_index_zero_node;
1441 }
1442
1443 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1444 size = TYPE_SIZE_UNIT (etype);
1445
1446 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1447 if (size && INTEGER_CST_P (size))
1448 {
1449 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1450 gfc_fatal_error ("Array element size too big at %C");
1451
1452 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1453 }
1454 dtype = build_int_cst (gfc_array_index_type, i);
1455
1456 if (size && !INTEGER_CST_P (size))
1457 {
1458 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1459 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1460 gfc_array_index_type,
1461 fold_convert (gfc_array_index_type, size), tmp);
1462 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1463 tmp, dtype);
1464 }
1465 /* If we don't know the size we leave it as zero. This should never happen
1466 for anything that is actually used. */
1467 /* TODO: Check this is actually true, particularly when repacking
1468 assumed size parameters. */
1469
1470 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1471 return dtype;
1472 }
1473
1474
1475 /* Build an array type for use without a descriptor, packed according
1476 to the value of PACKED. */
1477
1478 tree
1479 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1480 bool restricted)
1481 {
1482 tree range;
1483 tree type;
1484 tree tmp;
1485 int n;
1486 int known_stride;
1487 int known_offset;
1488 mpz_t offset;
1489 mpz_t stride;
1490 mpz_t delta;
1491 gfc_expr *expr;
1492
1493 mpz_init_set_ui (offset, 0);
1494 mpz_init_set_ui (stride, 1);
1495 mpz_init (delta);
1496
1497 /* We don't use build_array_type because this does not include include
1498 lang-specific information (i.e. the bounds of the array) when checking
1499 for duplicates. */
1500 if (as->rank)
1501 type = make_node (ARRAY_TYPE);
1502 else
1503 type = build_variant_type_copy (etype);
1504
1505 GFC_ARRAY_TYPE_P (type) = 1;
1506 TYPE_LANG_SPECIFIC (type)
1507 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1508
1509 known_stride = (packed != PACKED_NO);
1510 known_offset = 1;
1511 for (n = 0; n < as->rank; n++)
1512 {
1513 /* Fill in the stride and bound components of the type. */
1514 if (known_stride)
1515 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1516 else
1517 tmp = NULL_TREE;
1518 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1519
1520 expr = as->lower[n];
1521 if (expr->expr_type == EXPR_CONSTANT)
1522 {
1523 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1524 gfc_index_integer_kind);
1525 }
1526 else
1527 {
1528 known_stride = 0;
1529 tmp = NULL_TREE;
1530 }
1531 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1532
1533 if (known_stride)
1534 {
1535 /* Calculate the offset. */
1536 mpz_mul (delta, stride, as->lower[n]->value.integer);
1537 mpz_sub (offset, offset, delta);
1538 }
1539 else
1540 known_offset = 0;
1541
1542 expr = as->upper[n];
1543 if (expr && expr->expr_type == EXPR_CONSTANT)
1544 {
1545 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1546 gfc_index_integer_kind);
1547 }
1548 else
1549 {
1550 tmp = NULL_TREE;
1551 known_stride = 0;
1552 }
1553 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1554
1555 if (known_stride)
1556 {
1557 /* Calculate the stride. */
1558 mpz_sub (delta, as->upper[n]->value.integer,
1559 as->lower[n]->value.integer);
1560 mpz_add_ui (delta, delta, 1);
1561 mpz_mul (stride, stride, delta);
1562 }
1563
1564 /* Only the first stride is known for partial packed arrays. */
1565 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1566 known_stride = 0;
1567 }
1568 for (n = as->rank; n < as->rank + as->corank; n++)
1569 {
1570 expr = as->lower[n];
1571 if (expr->expr_type == EXPR_CONSTANT)
1572 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1573 gfc_index_integer_kind);
1574 else
1575 tmp = NULL_TREE;
1576 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1577
1578 expr = as->upper[n];
1579 if (expr && expr->expr_type == EXPR_CONSTANT)
1580 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1581 gfc_index_integer_kind);
1582 else
1583 tmp = NULL_TREE;
1584 if (n < as->rank + as->corank - 1)
1585 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1586 }
1587
1588 if (known_offset)
1589 {
1590 GFC_TYPE_ARRAY_OFFSET (type) =
1591 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1592 }
1593 else
1594 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1595
1596 if (known_stride)
1597 {
1598 GFC_TYPE_ARRAY_SIZE (type) =
1599 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1600 }
1601 else
1602 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1603
1604 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1605 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1606 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1607 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1608 NULL_TREE);
1609 /* TODO: use main type if it is unbounded. */
1610 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1611 build_pointer_type (build_array_type (etype, range));
1612 if (restricted)
1613 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1614 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1615 TYPE_QUAL_RESTRICT);
1616
1617 if (as->rank == 0)
1618 {
1619 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1620 {
1621 type = build_pointer_type (type);
1622
1623 if (restricted)
1624 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1625
1626 GFC_ARRAY_TYPE_P (type) = 1;
1627 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1628 }
1629
1630 return type;
1631 }
1632
1633 if (known_stride)
1634 {
1635 mpz_sub_ui (stride, stride, 1);
1636 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1637 }
1638 else
1639 range = NULL_TREE;
1640
1641 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1642 TYPE_DOMAIN (type) = range;
1643
1644 build_pointer_type (etype);
1645 TREE_TYPE (type) = etype;
1646
1647 layout_type (type);
1648
1649 mpz_clear (offset);
1650 mpz_clear (stride);
1651 mpz_clear (delta);
1652
1653 /* Represent packed arrays as multi-dimensional if they have rank >
1654 1 and with proper bounds, instead of flat arrays. This makes for
1655 better debug info. */
1656 if (known_offset)
1657 {
1658 tree gtype = etype, rtype, type_decl;
1659
1660 for (n = as->rank - 1; n >= 0; n--)
1661 {
1662 rtype = build_range_type (gfc_array_index_type,
1663 GFC_TYPE_ARRAY_LBOUND (type, n),
1664 GFC_TYPE_ARRAY_UBOUND (type, n));
1665 gtype = build_array_type (gtype, rtype);
1666 }
1667 TYPE_NAME (type) = type_decl = build_decl (input_location,
1668 TYPE_DECL, NULL, gtype);
1669 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1670 }
1671
1672 if (packed != PACKED_STATIC || !known_stride
1673 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1674 {
1675 /* For dummy arrays and automatic (heap allocated) arrays we
1676 want a pointer to the array. */
1677 type = build_pointer_type (type);
1678 if (restricted)
1679 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1680 GFC_ARRAY_TYPE_P (type) = 1;
1681 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1682 }
1683 return type;
1684 }
1685
1686
1687 /* Return or create the base type for an array descriptor. */
1688
1689 static tree
1690 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1691 enum gfc_array_kind akind)
1692 {
1693 tree fat_type, decl, arraytype, *chain = NULL;
1694 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1695 int idx;
1696
1697 /* Assumed-rank array. */
1698 if (dimen == -1)
1699 dimen = GFC_MAX_DIMENSIONS;
1700
1701 idx = 2 * (codimen + dimen) + restricted;
1702
1703 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1704
1705 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1706 {
1707 if (gfc_array_descriptor_base_caf[idx])
1708 return gfc_array_descriptor_base_caf[idx];
1709 }
1710 else if (gfc_array_descriptor_base[idx])
1711 return gfc_array_descriptor_base[idx];
1712
1713 /* Build the type node. */
1714 fat_type = make_node (RECORD_TYPE);
1715
1716 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1717 TYPE_NAME (fat_type) = get_identifier (name);
1718 TYPE_NAMELESS (fat_type) = 1;
1719
1720 /* Add the data member as the first element of the descriptor. */
1721 decl = gfc_add_field_to_struct_1 (fat_type,
1722 get_identifier ("data"),
1723 (restricted
1724 ? prvoid_type_node
1725 : ptr_type_node), &chain);
1726
1727 /* Add the base component. */
1728 decl = gfc_add_field_to_struct_1 (fat_type,
1729 get_identifier ("offset"),
1730 gfc_array_index_type, &chain);
1731 TREE_NO_WARNING (decl) = 1;
1732
1733 /* Add the dtype component. */
1734 decl = gfc_add_field_to_struct_1 (fat_type,
1735 get_identifier ("dtype"),
1736 gfc_array_index_type, &chain);
1737 TREE_NO_WARNING (decl) = 1;
1738
1739 /* Build the array type for the stride and bound components. */
1740 if (dimen + codimen > 0)
1741 {
1742 arraytype =
1743 build_array_type (gfc_get_desc_dim_type (),
1744 build_range_type (gfc_array_index_type,
1745 gfc_index_zero_node,
1746 gfc_rank_cst[codimen + dimen - 1]));
1747
1748 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1749 arraytype, &chain);
1750 TREE_NO_WARNING (decl) = 1;
1751 }
1752
1753 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1754 && akind == GFC_ARRAY_ALLOCATABLE)
1755 {
1756 decl = gfc_add_field_to_struct_1 (fat_type,
1757 get_identifier ("token"),
1758 prvoid_type_node, &chain);
1759 TREE_NO_WARNING (decl) = 1;
1760 }
1761
1762 /* Finish off the type. */
1763 gfc_finish_type (fat_type);
1764 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1765
1766 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1767 && akind == GFC_ARRAY_ALLOCATABLE)
1768 gfc_array_descriptor_base_caf[idx] = fat_type;
1769 else
1770 gfc_array_descriptor_base[idx] = fat_type;
1771
1772 return fat_type;
1773 }
1774
1775
1776 /* Build an array (descriptor) type with given bounds. */
1777
1778 tree
1779 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1780 tree * ubound, int packed,
1781 enum gfc_array_kind akind, bool restricted)
1782 {
1783 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1784 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1785 const char *type_name;
1786 int n;
1787
1788 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1789 fat_type = build_distinct_type_copy (base_type);
1790 /* Make sure that nontarget and target array type have the same canonical
1791 type (and same stub decl for debug info). */
1792 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1793 TYPE_CANONICAL (fat_type) = base_type;
1794 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1795
1796 tmp = TYPE_NAME (etype);
1797 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1798 tmp = DECL_NAME (tmp);
1799 if (tmp)
1800 type_name = IDENTIFIER_POINTER (tmp);
1801 else
1802 type_name = "unknown";
1803 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1804 GFC_MAX_SYMBOL_LEN, type_name);
1805 TYPE_NAME (fat_type) = get_identifier (name);
1806 TYPE_NAMELESS (fat_type) = 1;
1807
1808 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1809 TYPE_LANG_SPECIFIC (fat_type)
1810 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1811
1812 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1813 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1814 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1815 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1816
1817 /* Build an array descriptor record type. */
1818 if (packed != 0)
1819 stride = gfc_index_one_node;
1820 else
1821 stride = NULL_TREE;
1822 for (n = 0; n < dimen + codimen; n++)
1823 {
1824 if (n < dimen)
1825 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1826
1827 if (lbound)
1828 lower = lbound[n];
1829 else
1830 lower = NULL_TREE;
1831
1832 if (lower != NULL_TREE)
1833 {
1834 if (INTEGER_CST_P (lower))
1835 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1836 else
1837 lower = NULL_TREE;
1838 }
1839
1840 if (codimen && n == dimen + codimen - 1)
1841 break;
1842
1843 upper = ubound[n];
1844 if (upper != NULL_TREE)
1845 {
1846 if (INTEGER_CST_P (upper))
1847 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1848 else
1849 upper = NULL_TREE;
1850 }
1851
1852 if (n >= dimen)
1853 continue;
1854
1855 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1856 {
1857 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1858 gfc_array_index_type, upper, lower);
1859 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1860 gfc_array_index_type, tmp,
1861 gfc_index_one_node);
1862 stride = fold_build2_loc (input_location, MULT_EXPR,
1863 gfc_array_index_type, tmp, stride);
1864 /* Check the folding worked. */
1865 gcc_assert (INTEGER_CST_P (stride));
1866 }
1867 else
1868 stride = NULL_TREE;
1869 }
1870 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1871
1872 /* TODO: known offsets for descriptors. */
1873 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1874
1875 if (dimen == 0)
1876 {
1877 arraytype = build_pointer_type (etype);
1878 if (restricted)
1879 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1880
1881 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1882 return fat_type;
1883 }
1884
1885 /* We define data as an array with the correct size if possible.
1886 Much better than doing pointer arithmetic. */
1887 if (stride)
1888 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1889 int_const_binop (MINUS_EXPR, stride,
1890 integer_one_node));
1891 else
1892 rtype = gfc_array_range_type;
1893 arraytype = build_array_type (etype, rtype);
1894 arraytype = build_pointer_type (arraytype);
1895 if (restricted)
1896 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1897 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1898
1899 /* This will generate the base declarations we need to emit debug
1900 information for this type. FIXME: there must be a better way to
1901 avoid divergence between compilations with and without debug
1902 information. */
1903 {
1904 struct array_descr_info info;
1905 gfc_get_array_descr_info (fat_type, &info);
1906 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1907 }
1908
1909 return fat_type;
1910 }
1911 \f
1912 /* Build a pointer type. This function is called from gfc_sym_type(). */
1913
1914 static tree
1915 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1916 {
1917 /* Array pointer types aren't actually pointers. */
1918 if (sym->attr.dimension)
1919 return type;
1920 else
1921 return build_pointer_type (type);
1922 }
1923
1924 static tree gfc_nonrestricted_type (tree t);
1925 /* Given two record or union type nodes TO and FROM, ensure
1926 that all fields in FROM have a corresponding field in TO,
1927 their type being nonrestrict variants. This accepts a TO
1928 node that already has a prefix of the fields in FROM. */
1929 static void
1930 mirror_fields (tree to, tree from)
1931 {
1932 tree fto, ffrom;
1933 tree *chain;
1934
1935 /* Forward to the end of TOs fields. */
1936 fto = TYPE_FIELDS (to);
1937 ffrom = TYPE_FIELDS (from);
1938 chain = &TYPE_FIELDS (to);
1939 while (fto)
1940 {
1941 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1942 chain = &DECL_CHAIN (fto);
1943 fto = DECL_CHAIN (fto);
1944 ffrom = DECL_CHAIN (ffrom);
1945 }
1946
1947 /* Now add all fields remaining in FROM (starting with ffrom). */
1948 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1949 {
1950 tree newfield = copy_node (ffrom);
1951 DECL_CONTEXT (newfield) = to;
1952 /* The store to DECL_CHAIN might seem redundant with the
1953 stores to *chain, but not clearing it here would mean
1954 leaving a chain into the old fields. If ever
1955 our called functions would look at them confusion
1956 will arise. */
1957 DECL_CHAIN (newfield) = NULL_TREE;
1958 *chain = newfield;
1959 chain = &DECL_CHAIN (newfield);
1960
1961 if (TREE_CODE (ffrom) == FIELD_DECL)
1962 {
1963 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1964 TREE_TYPE (newfield) = elemtype;
1965 }
1966 }
1967 *chain = NULL_TREE;
1968 }
1969
1970 /* Given a type T, returns a different type of the same structure,
1971 except that all types it refers to (recursively) are always
1972 non-restrict qualified types. */
1973 static tree
1974 gfc_nonrestricted_type (tree t)
1975 {
1976 tree ret = t;
1977
1978 /* If the type isn't laid out yet, don't copy it. If something
1979 needs it for real it should wait until the type got finished. */
1980 if (!TYPE_SIZE (t))
1981 return t;
1982
1983 if (!TYPE_LANG_SPECIFIC (t))
1984 TYPE_LANG_SPECIFIC (t)
1985 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1986 /* If we're dealing with this very node already further up
1987 the call chain (recursion via pointers and struct members)
1988 we haven't yet determined if we really need a new type node.
1989 Assume we don't, return T itself. */
1990 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1991 return t;
1992
1993 /* If we have calculated this all already, just return it. */
1994 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
1995 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
1996
1997 /* Mark this type. */
1998 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
1999
2000 switch (TREE_CODE (t))
2001 {
2002 default:
2003 break;
2004
2005 case POINTER_TYPE:
2006 case REFERENCE_TYPE:
2007 {
2008 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2009 if (totype == TREE_TYPE (t))
2010 ret = t;
2011 else if (TREE_CODE (t) == POINTER_TYPE)
2012 ret = build_pointer_type (totype);
2013 else
2014 ret = build_reference_type (totype);
2015 ret = build_qualified_type (ret,
2016 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2017 }
2018 break;
2019
2020 case ARRAY_TYPE:
2021 {
2022 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2023 if (elemtype == TREE_TYPE (t))
2024 ret = t;
2025 else
2026 {
2027 ret = build_variant_type_copy (t);
2028 TREE_TYPE (ret) = elemtype;
2029 if (TYPE_LANG_SPECIFIC (t)
2030 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2031 {
2032 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2033 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2034 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2035 {
2036 TYPE_LANG_SPECIFIC (ret)
2037 = ggc_alloc_cleared_lang_type (sizeof (struct
2038 lang_type));
2039 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2040 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2041 }
2042 }
2043 }
2044 }
2045 break;
2046
2047 case RECORD_TYPE:
2048 case UNION_TYPE:
2049 case QUAL_UNION_TYPE:
2050 {
2051 tree field;
2052 /* First determine if we need a new type at all.
2053 Careful, the two calls to gfc_nonrestricted_type per field
2054 might return different values. That happens exactly when
2055 one of the fields reaches back to this very record type
2056 (via pointers). The first calls will assume that we don't
2057 need to copy T (see the error_mark_node marking). If there
2058 are any reasons for copying T apart from having to copy T,
2059 we'll indeed copy it, and the second calls to
2060 gfc_nonrestricted_type will use that new node if they
2061 reach back to T. */
2062 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2063 if (TREE_CODE (field) == FIELD_DECL)
2064 {
2065 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2066 if (elemtype != TREE_TYPE (field))
2067 break;
2068 }
2069 if (!field)
2070 break;
2071 ret = build_variant_type_copy (t);
2072 TYPE_FIELDS (ret) = NULL_TREE;
2073
2074 /* Here we make sure that as soon as we know we have to copy
2075 T, that also fields reaching back to us will use the new
2076 copy. It's okay if that copy still contains the old fields,
2077 we won't look at them. */
2078 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2079 mirror_fields (ret, t);
2080 }
2081 break;
2082 }
2083
2084 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2085 return ret;
2086 }
2087
2088 \f
2089 /* Return the type for a symbol. Special handling is required for character
2090 types to get the correct level of indirection.
2091 For functions return the return type.
2092 For subroutines return void_type_node.
2093 Calling this multiple times for the same symbol should be avoided,
2094 especially for character and array types. */
2095
2096 tree
2097 gfc_sym_type (gfc_symbol * sym)
2098 {
2099 tree type;
2100 int byref;
2101 bool restricted;
2102
2103 /* Procedure Pointers inside COMMON blocks. */
2104 if (sym->attr.proc_pointer && sym->attr.in_common)
2105 {
2106 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2107 sym->attr.proc_pointer = 0;
2108 type = build_pointer_type (gfc_get_function_type (sym));
2109 sym->attr.proc_pointer = 1;
2110 return type;
2111 }
2112
2113 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2114 return void_type_node;
2115
2116 /* In the case of a function the fake result variable may have a
2117 type different from the function type, so don't return early in
2118 that case. */
2119 if (sym->backend_decl && !sym->attr.function)
2120 return TREE_TYPE (sym->backend_decl);
2121
2122 if (sym->ts.type == BT_CHARACTER
2123 && ((sym->attr.function && sym->attr.is_bind_c)
2124 || (sym->attr.result
2125 && sym->ns->proc_name
2126 && sym->ns->proc_name->attr.is_bind_c)))
2127 type = gfc_character1_type_node;
2128 else
2129 type = gfc_typenode_for_spec (&sym->ts);
2130
2131 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2132 byref = 1;
2133 else
2134 byref = 0;
2135
2136 restricted = !sym->attr.target && !sym->attr.pointer
2137 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2138 if (!restricted)
2139 type = gfc_nonrestricted_type (type);
2140
2141 if (sym->attr.dimension || sym->attr.codimension)
2142 {
2143 if (gfc_is_nodesc_array (sym))
2144 {
2145 /* If this is a character argument of unknown length, just use the
2146 base type. */
2147 if (sym->ts.type != BT_CHARACTER
2148 || !(sym->attr.dummy || sym->attr.function)
2149 || sym->ts.u.cl->backend_decl)
2150 {
2151 type = gfc_get_nodesc_array_type (type, sym->as,
2152 byref ? PACKED_FULL
2153 : PACKED_STATIC,
2154 restricted);
2155 byref = 0;
2156 }
2157
2158 if (sym->attr.cray_pointee)
2159 GFC_POINTER_TYPE_P (type) = 1;
2160 }
2161 else
2162 {
2163 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2164 if (sym->attr.pointer)
2165 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2166 : GFC_ARRAY_POINTER;
2167 else if (sym->attr.allocatable)
2168 akind = GFC_ARRAY_ALLOCATABLE;
2169 type = gfc_build_array_type (type, sym->as, akind, restricted,
2170 sym->attr.contiguous);
2171 }
2172 }
2173 else
2174 {
2175 if (sym->attr.allocatable || sym->attr.pointer
2176 || gfc_is_associate_pointer (sym))
2177 type = gfc_build_pointer_type (sym, type);
2178 if (sym->attr.pointer || sym->attr.cray_pointee)
2179 GFC_POINTER_TYPE_P (type) = 1;
2180 }
2181
2182 /* We currently pass all parameters by reference.
2183 See f95_get_function_decl. For dummy function parameters return the
2184 function type. */
2185 if (byref)
2186 {
2187 /* We must use pointer types for potentially absent variables. The
2188 optimizers assume a reference type argument is never NULL. */
2189 if (sym->attr.optional
2190 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2191 type = build_pointer_type (type);
2192 else
2193 {
2194 type = build_reference_type (type);
2195 if (restricted)
2196 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2197 }
2198 }
2199
2200 return (type);
2201 }
2202 \f
2203 /* Layout and output debug info for a record type. */
2204
2205 void
2206 gfc_finish_type (tree type)
2207 {
2208 tree decl;
2209
2210 decl = build_decl (input_location,
2211 TYPE_DECL, NULL_TREE, type);
2212 TYPE_STUB_DECL (type) = decl;
2213 layout_type (type);
2214 rest_of_type_compilation (type, 1);
2215 rest_of_decl_compilation (decl, 1, 0);
2216 }
2217 \f
2218 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2219 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2220 to the end of the field list pointed to by *CHAIN.
2221
2222 Returns a pointer to the new field. */
2223
2224 static tree
2225 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2226 {
2227 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2228
2229 DECL_CONTEXT (decl) = context;
2230 DECL_CHAIN (decl) = NULL_TREE;
2231 if (TYPE_FIELDS (context) == NULL_TREE)
2232 TYPE_FIELDS (context) = decl;
2233 if (chain != NULL)
2234 {
2235 if (*chain != NULL)
2236 **chain = decl;
2237 *chain = &DECL_CHAIN (decl);
2238 }
2239
2240 return decl;
2241 }
2242
2243 /* Like `gfc_add_field_to_struct_1', but adds alignment
2244 information. */
2245
2246 tree
2247 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2248 {
2249 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2250
2251 DECL_INITIAL (decl) = 0;
2252 DECL_ALIGN (decl) = 0;
2253 DECL_USER_ALIGN (decl) = 0;
2254
2255 return decl;
2256 }
2257
2258
2259 /* Copy the backend_decl and component backend_decls if
2260 the two derived type symbols are "equal", as described
2261 in 4.4.2 and resolved by gfc_compare_derived_types. */
2262
2263 int
2264 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2265 bool from_gsym)
2266 {
2267 gfc_component *to_cm;
2268 gfc_component *from_cm;
2269
2270 if (from == to)
2271 return 1;
2272
2273 if (from->backend_decl == NULL
2274 || !gfc_compare_derived_types (from, to))
2275 return 0;
2276
2277 to->backend_decl = from->backend_decl;
2278
2279 to_cm = to->components;
2280 from_cm = from->components;
2281
2282 /* Copy the component declarations. If a component is itself
2283 a derived type, we need a copy of its component declarations.
2284 This is done by recursing into gfc_get_derived_type and
2285 ensures that the component's component declarations have
2286 been built. If it is a character, we need the character
2287 length, as well. */
2288 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2289 {
2290 to_cm->backend_decl = from_cm->backend_decl;
2291 if (from_cm->ts.type == BT_DERIVED
2292 && (!from_cm->attr.pointer || from_gsym))
2293 gfc_get_derived_type (to_cm->ts.u.derived);
2294 else if (from_cm->ts.type == BT_CLASS
2295 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2296 gfc_get_derived_type (to_cm->ts.u.derived);
2297 else if (from_cm->ts.type == BT_CHARACTER)
2298 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2299 }
2300
2301 return 1;
2302 }
2303
2304
2305 /* Build a tree node for a procedure pointer component. */
2306
2307 tree
2308 gfc_get_ppc_type (gfc_component* c)
2309 {
2310 tree t;
2311
2312 /* Explicit interface. */
2313 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2314 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2315
2316 /* Implicit interface (only return value may be known). */
2317 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2318 t = gfc_typenode_for_spec (&c->ts);
2319 else
2320 t = void_type_node;
2321
2322 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2323 }
2324
2325
2326 /* Build a tree node for a derived type. If there are equal
2327 derived types, with different local names, these are built
2328 at the same time. If an equal derived type has been built
2329 in a parent namespace, this is used. */
2330
2331 tree
2332 gfc_get_derived_type (gfc_symbol * derived)
2333 {
2334 tree typenode = NULL, field = NULL, field_type = NULL;
2335 tree canonical = NULL_TREE;
2336 tree *chain = NULL;
2337 bool got_canonical = false;
2338 bool unlimited_entity = false;
2339 gfc_component *c;
2340 gfc_dt_list *dt;
2341 gfc_namespace *ns;
2342
2343 if (derived->attr.unlimited_polymorphic)
2344 return ptr_type_node;
2345
2346 if (derived && derived->attr.flavor == FL_PROCEDURE
2347 && derived->attr.generic)
2348 derived = gfc_find_dt_in_generic (derived);
2349
2350 /* See if it's one of the iso_c_binding derived types. */
2351 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2352 {
2353 if (derived->backend_decl)
2354 return derived->backend_decl;
2355
2356 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2357 derived->backend_decl = ptr_type_node;
2358 else
2359 derived->backend_decl = pfunc_type_node;
2360
2361 derived->ts.kind = gfc_index_integer_kind;
2362 derived->ts.type = BT_INTEGER;
2363 /* Set the f90_type to BT_VOID as a way to recognize something of type
2364 BT_INTEGER that needs to fit a void * for the purpose of the
2365 iso_c_binding derived types. */
2366 derived->ts.f90_type = BT_VOID;
2367
2368 return derived->backend_decl;
2369 }
2370
2371 /* If use associated, use the module type for this one. */
2372 if (derived->backend_decl == NULL
2373 && derived->attr.use_assoc
2374 && derived->module
2375 && gfc_get_module_backend_decl (derived))
2376 goto copy_derived_types;
2377
2378 /* The derived types from an earlier namespace can be used as the
2379 canonical type. */
2380 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2381 && gfc_global_ns_list)
2382 {
2383 for (ns = gfc_global_ns_list;
2384 ns->translated && !got_canonical;
2385 ns = ns->sibling)
2386 {
2387 dt = ns->derived_types;
2388 for (; dt && !canonical; dt = dt->next)
2389 {
2390 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2391 if (derived->backend_decl)
2392 got_canonical = true;
2393 }
2394 }
2395 }
2396
2397 /* Store up the canonical type to be added to this one. */
2398 if (got_canonical)
2399 {
2400 if (TYPE_CANONICAL (derived->backend_decl))
2401 canonical = TYPE_CANONICAL (derived->backend_decl);
2402 else
2403 canonical = derived->backend_decl;
2404
2405 derived->backend_decl = NULL_TREE;
2406 }
2407
2408 /* derived->backend_decl != 0 means we saw it before, but its
2409 components' backend_decl may have not been built. */
2410 if (derived->backend_decl)
2411 {
2412 /* Its components' backend_decl have been built or we are
2413 seeing recursion through the formal arglist of a procedure
2414 pointer component. */
2415 if (TYPE_FIELDS (derived->backend_decl)
2416 || derived->attr.proc_pointer_comp)
2417 return derived->backend_decl;
2418 else
2419 typenode = derived->backend_decl;
2420 }
2421 else
2422 {
2423 /* We see this derived type first time, so build the type node. */
2424 typenode = make_node (RECORD_TYPE);
2425 TYPE_NAME (typenode) = get_identifier (derived->name);
2426 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2427 derived->backend_decl = typenode;
2428 }
2429
2430 if (derived->components
2431 && derived->components->ts.type == BT_DERIVED
2432 && strcmp (derived->components->name, "_data") == 0
2433 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2434 unlimited_entity = true;
2435
2436 /* Go through the derived type components, building them as
2437 necessary. The reason for doing this now is that it is
2438 possible to recurse back to this derived type through a
2439 pointer component (PR24092). If this happens, the fields
2440 will be built and so we can return the type. */
2441 for (c = derived->components; c; c = c->next)
2442 {
2443 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2444 continue;
2445
2446 if ((!c->attr.pointer && !c->attr.proc_pointer)
2447 || c->ts.u.derived->backend_decl == NULL)
2448 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2449
2450 if (c->ts.u.derived->attr.is_iso_c)
2451 {
2452 /* Need to copy the modified ts from the derived type. The
2453 typespec was modified because C_PTR/C_FUNPTR are translated
2454 into (void *) from derived types. */
2455 c->ts.type = c->ts.u.derived->ts.type;
2456 c->ts.kind = c->ts.u.derived->ts.kind;
2457 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2458 if (c->initializer)
2459 {
2460 c->initializer->ts.type = c->ts.type;
2461 c->initializer->ts.kind = c->ts.kind;
2462 c->initializer->ts.f90_type = c->ts.f90_type;
2463 c->initializer->expr_type = EXPR_NULL;
2464 }
2465 }
2466 }
2467
2468 if (TYPE_FIELDS (derived->backend_decl))
2469 return derived->backend_decl;
2470
2471 /* Build the type member list. Install the newly created RECORD_TYPE
2472 node as DECL_CONTEXT of each FIELD_DECL. */
2473 for (c = derived->components; c; c = c->next)
2474 {
2475 if (c->attr.proc_pointer)
2476 field_type = gfc_get_ppc_type (c);
2477 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2478 field_type = c->ts.u.derived->backend_decl;
2479 else
2480 {
2481 if (c->ts.type == BT_CHARACTER)
2482 {
2483 /* Evaluate the string length. */
2484 gfc_conv_const_charlen (c->ts.u.cl);
2485 gcc_assert (c->ts.u.cl->backend_decl);
2486 }
2487
2488 field_type = gfc_typenode_for_spec (&c->ts);
2489 }
2490
2491 /* This returns an array descriptor type. Initialization may be
2492 required. */
2493 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2494 {
2495 if (c->attr.pointer || c->attr.allocatable)
2496 {
2497 enum gfc_array_kind akind;
2498 if (c->attr.pointer)
2499 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2500 : GFC_ARRAY_POINTER;
2501 else
2502 akind = GFC_ARRAY_ALLOCATABLE;
2503 /* Pointers to arrays aren't actually pointer types. The
2504 descriptors are separate, but the data is common. */
2505 field_type = gfc_build_array_type (field_type, c->as, akind,
2506 !c->attr.target
2507 && !c->attr.pointer,
2508 c->attr.contiguous);
2509 }
2510 else
2511 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2512 PACKED_STATIC,
2513 !c->attr.target);
2514 }
2515 else if ((c->attr.pointer || c->attr.allocatable)
2516 && !c->attr.proc_pointer
2517 && !(unlimited_entity && c == derived->components))
2518 field_type = build_pointer_type (field_type);
2519
2520 if (c->attr.pointer)
2521 field_type = gfc_nonrestricted_type (field_type);
2522
2523 /* vtype fields can point to different types to the base type. */
2524 if (c->ts.type == BT_DERIVED
2525 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2526 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2527 ptr_mode, true);
2528
2529 /* Ensure that the CLASS language specific flag is set. */
2530 if (c->ts.type == BT_CLASS)
2531 {
2532 if (POINTER_TYPE_P (field_type))
2533 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2534 else
2535 GFC_CLASS_TYPE_P (field_type) = 1;
2536 }
2537
2538 field = gfc_add_field_to_struct (typenode,
2539 get_identifier (c->name),
2540 field_type, &chain);
2541 if (c->loc.lb)
2542 gfc_set_decl_location (field, &c->loc);
2543 else if (derived->declared_at.lb)
2544 gfc_set_decl_location (field, &derived->declared_at);
2545
2546 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2547
2548 gcc_assert (field);
2549 if (!c->backend_decl)
2550 c->backend_decl = field;
2551 }
2552
2553 /* Now lay out the derived type, including the fields. */
2554 if (canonical)
2555 TYPE_CANONICAL (typenode) = canonical;
2556
2557 gfc_finish_type (typenode);
2558 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2559 if (derived->module && derived->ns->proc_name
2560 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2561 {
2562 if (derived->ns->proc_name->backend_decl
2563 && TREE_CODE (derived->ns->proc_name->backend_decl)
2564 == NAMESPACE_DECL)
2565 {
2566 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2567 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2568 = derived->ns->proc_name->backend_decl;
2569 }
2570 }
2571
2572 derived->backend_decl = typenode;
2573
2574 copy_derived_types:
2575
2576 for (dt = gfc_derived_types; dt; dt = dt->next)
2577 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2578
2579 return derived->backend_decl;
2580 }
2581
2582
2583 int
2584 gfc_return_by_reference (gfc_symbol * sym)
2585 {
2586 if (!sym->attr.function)
2587 return 0;
2588
2589 if (sym->attr.dimension)
2590 return 1;
2591
2592 if (sym->ts.type == BT_CHARACTER
2593 && !sym->attr.is_bind_c
2594 && (!sym->attr.result
2595 || !sym->ns->proc_name
2596 || !sym->ns->proc_name->attr.is_bind_c))
2597 return 1;
2598
2599 /* Possibly return complex numbers by reference for g77 compatibility.
2600 We don't do this for calls to intrinsics (as the library uses the
2601 -fno-f2c calling convention), nor for calls to functions which always
2602 require an explicit interface, as no compatibility problems can
2603 arise there. */
2604 if (gfc_option.flag_f2c
2605 && sym->ts.type == BT_COMPLEX
2606 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2607 return 1;
2608
2609 return 0;
2610 }
2611 \f
2612 static tree
2613 gfc_get_mixed_entry_union (gfc_namespace *ns)
2614 {
2615 tree type;
2616 tree *chain = NULL;
2617 char name[GFC_MAX_SYMBOL_LEN + 1];
2618 gfc_entry_list *el, *el2;
2619
2620 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2621 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2622
2623 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2624
2625 /* Build the type node. */
2626 type = make_node (UNION_TYPE);
2627
2628 TYPE_NAME (type) = get_identifier (name);
2629
2630 for (el = ns->entries; el; el = el->next)
2631 {
2632 /* Search for duplicates. */
2633 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2634 if (el2->sym->result == el->sym->result)
2635 break;
2636
2637 if (el == el2)
2638 gfc_add_field_to_struct_1 (type,
2639 get_identifier (el->sym->result->name),
2640 gfc_sym_type (el->sym->result), &chain);
2641 }
2642
2643 /* Finish off the type. */
2644 gfc_finish_type (type);
2645 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2646 return type;
2647 }
2648 \f
2649 /* Create a "fn spec" based on the formal arguments;
2650 cf. create_function_arglist. */
2651
2652 static tree
2653 create_fn_spec (gfc_symbol *sym, tree fntype)
2654 {
2655 char spec[150];
2656 size_t spec_len;
2657 gfc_formal_arglist *f;
2658 tree tmp;
2659
2660 memset (&spec, 0, sizeof (spec));
2661 spec[0] = '.';
2662 spec_len = 1;
2663
2664 if (sym->attr.entry_master)
2665 spec[spec_len++] = 'R';
2666 if (gfc_return_by_reference (sym))
2667 {
2668 gfc_symbol *result = sym->result ? sym->result : sym;
2669
2670 if (result->attr.pointer || sym->attr.proc_pointer)
2671 spec[spec_len++] = '.';
2672 else
2673 spec[spec_len++] = 'w';
2674 if (sym->ts.type == BT_CHARACTER)
2675 spec[spec_len++] = 'R';
2676 }
2677
2678 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2679 if (spec_len < sizeof (spec))
2680 {
2681 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2682 || f->sym->attr.external || f->sym->attr.cray_pointer
2683 || (f->sym->ts.type == BT_DERIVED
2684 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2685 || f->sym->ts.u.derived->attr.pointer_comp))
2686 || (f->sym->ts.type == BT_CLASS
2687 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2688 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2689 spec[spec_len++] = '.';
2690 else if (f->sym->attr.intent == INTENT_IN)
2691 spec[spec_len++] = 'r';
2692 else if (f->sym)
2693 spec[spec_len++] = 'w';
2694 }
2695
2696 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2697 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2698 return build_type_attribute_variant (fntype, tmp);
2699 }
2700
2701
2702 tree
2703 gfc_get_function_type (gfc_symbol * sym)
2704 {
2705 tree type;
2706 vec<tree, va_gc> *typelist;
2707 gfc_formal_arglist *f;
2708 gfc_symbol *arg;
2709 int alternate_return;
2710 bool is_varargs = true, recursive_type = false;
2711
2712 /* Make sure this symbol is a function, a subroutine or the main
2713 program. */
2714 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2715 || sym->attr.flavor == FL_PROGRAM);
2716
2717 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2718 so that they can be detected here and handled further down. */
2719 if (sym->backend_decl == NULL)
2720 sym->backend_decl = error_mark_node;
2721 else if (sym->backend_decl == error_mark_node)
2722 recursive_type = true;
2723 else if (sym->attr.proc_pointer)
2724 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2725 else
2726 return TREE_TYPE (sym->backend_decl);
2727
2728 alternate_return = 0;
2729 typelist = NULL;
2730
2731 if (sym->attr.entry_master)
2732 /* Additional parameter for selecting an entry point. */
2733 vec_safe_push (typelist, gfc_array_index_type);
2734
2735 if (sym->result)
2736 arg = sym->result;
2737 else
2738 arg = sym;
2739
2740 if (arg->ts.type == BT_CHARACTER)
2741 gfc_conv_const_charlen (arg->ts.u.cl);
2742
2743 /* Some functions we use an extra parameter for the return value. */
2744 if (gfc_return_by_reference (sym))
2745 {
2746 type = gfc_sym_type (arg);
2747 if (arg->ts.type == BT_COMPLEX
2748 || arg->attr.dimension
2749 || arg->ts.type == BT_CHARACTER)
2750 type = build_reference_type (type);
2751
2752 vec_safe_push (typelist, type);
2753 if (arg->ts.type == BT_CHARACTER)
2754 {
2755 if (!arg->ts.deferred)
2756 /* Transfer by value. */
2757 vec_safe_push (typelist, gfc_charlen_type_node);
2758 else
2759 /* Deferred character lengths are transferred by reference
2760 so that the value can be returned. */
2761 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2762 }
2763 }
2764
2765 /* Build the argument types for the function. */
2766 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2767 {
2768 arg = f->sym;
2769 if (arg)
2770 {
2771 /* Evaluate constant character lengths here so that they can be
2772 included in the type. */
2773 if (arg->ts.type == BT_CHARACTER)
2774 gfc_conv_const_charlen (arg->ts.u.cl);
2775
2776 if (arg->attr.flavor == FL_PROCEDURE)
2777 {
2778 /* We don't know in the general case which argument causes
2779 recursion. But we know that it is a procedure. So we give up
2780 creating the procedure argument type list at the first
2781 procedure argument. */
2782 if (recursive_type)
2783 goto arg_type_list_done;
2784
2785 type = gfc_get_function_type (arg);
2786 type = build_pointer_type (type);
2787 }
2788 else
2789 type = gfc_sym_type (arg);
2790
2791 /* Parameter Passing Convention
2792
2793 We currently pass all parameters by reference.
2794 Parameters with INTENT(IN) could be passed by value.
2795 The problem arises if a function is called via an implicit
2796 prototype. In this situation the INTENT is not known.
2797 For this reason all parameters to global functions must be
2798 passed by reference. Passing by value would potentially
2799 generate bad code. Worse there would be no way of telling that
2800 this code was bad, except that it would give incorrect results.
2801
2802 Contained procedures could pass by value as these are never
2803 used without an explicit interface, and cannot be passed as
2804 actual parameters for a dummy procedure. */
2805
2806 vec_safe_push (typelist, type);
2807 }
2808 else
2809 {
2810 if (sym->attr.subroutine)
2811 alternate_return = 1;
2812 }
2813 }
2814
2815 /* Add hidden string length parameters. */
2816 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2817 {
2818 arg = f->sym;
2819 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2820 {
2821 if (!arg->ts.deferred)
2822 /* Transfer by value. */
2823 type = gfc_charlen_type_node;
2824 else
2825 /* Deferred character lengths are transferred by reference
2826 so that the value can be returned. */
2827 type = build_pointer_type (gfc_charlen_type_node);
2828
2829 vec_safe_push (typelist, type);
2830 }
2831 }
2832
2833 if (!vec_safe_is_empty (typelist)
2834 || sym->attr.is_main_program
2835 || sym->attr.if_source != IFSRC_UNKNOWN)
2836 is_varargs = false;
2837
2838 arg_type_list_done:
2839
2840 if (!recursive_type && sym->backend_decl == error_mark_node)
2841 sym->backend_decl = NULL_TREE;
2842
2843 if (alternate_return)
2844 type = integer_type_node;
2845 else if (!sym->attr.function || gfc_return_by_reference (sym))
2846 type = void_type_node;
2847 else if (sym->attr.mixed_entry_master)
2848 type = gfc_get_mixed_entry_union (sym->ns);
2849 else if (gfc_option.flag_f2c
2850 && sym->ts.type == BT_REAL
2851 && sym->ts.kind == gfc_default_real_kind
2852 && !sym->attr.always_explicit)
2853 {
2854 /* Special case: f2c calling conventions require that (scalar)
2855 default REAL functions return the C type double instead. f2c
2856 compatibility is only an issue with functions that don't
2857 require an explicit interface, as only these could be
2858 implemented in Fortran 77. */
2859 sym->ts.kind = gfc_default_double_kind;
2860 type = gfc_typenode_for_spec (&sym->ts);
2861 sym->ts.kind = gfc_default_real_kind;
2862 }
2863 else if (sym->result && sym->result->attr.proc_pointer)
2864 /* Procedure pointer return values. */
2865 {
2866 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2867 {
2868 /* Unset proc_pointer as gfc_get_function_type
2869 is called recursively. */
2870 sym->result->attr.proc_pointer = 0;
2871 type = build_pointer_type (gfc_get_function_type (sym->result));
2872 sym->result->attr.proc_pointer = 1;
2873 }
2874 else
2875 type = gfc_sym_type (sym->result);
2876 }
2877 else
2878 type = gfc_sym_type (sym);
2879
2880 if (is_varargs || recursive_type)
2881 type = build_varargs_function_type_vec (type, typelist);
2882 else
2883 type = build_function_type_vec (type, typelist);
2884 type = create_fn_spec (sym, type);
2885
2886 return type;
2887 }
2888 \f
2889 /* Language hooks for middle-end access to type nodes. */
2890
2891 /* Return an integer type with BITS bits of precision,
2892 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2893
2894 tree
2895 gfc_type_for_size (unsigned bits, int unsignedp)
2896 {
2897 if (!unsignedp)
2898 {
2899 int i;
2900 for (i = 0; i <= MAX_INT_KINDS; ++i)
2901 {
2902 tree type = gfc_integer_types[i];
2903 if (type && bits == TYPE_PRECISION (type))
2904 return type;
2905 }
2906
2907 /* Handle TImode as a special case because it is used by some backends
2908 (e.g. ARM) even though it is not available for normal use. */
2909 #if HOST_BITS_PER_WIDE_INT >= 64
2910 if (bits == TYPE_PRECISION (intTI_type_node))
2911 return intTI_type_node;
2912 #endif
2913
2914 if (bits <= TYPE_PRECISION (intQI_type_node))
2915 return intQI_type_node;
2916 if (bits <= TYPE_PRECISION (intHI_type_node))
2917 return intHI_type_node;
2918 if (bits <= TYPE_PRECISION (intSI_type_node))
2919 return intSI_type_node;
2920 if (bits <= TYPE_PRECISION (intDI_type_node))
2921 return intDI_type_node;
2922 if (bits <= TYPE_PRECISION (intTI_type_node))
2923 return intTI_type_node;
2924 }
2925 else
2926 {
2927 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2928 return unsigned_intQI_type_node;
2929 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2930 return unsigned_intHI_type_node;
2931 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2932 return unsigned_intSI_type_node;
2933 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2934 return unsigned_intDI_type_node;
2935 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2936 return unsigned_intTI_type_node;
2937 }
2938
2939 return NULL_TREE;
2940 }
2941
2942 /* Return a data type that has machine mode MODE. If the mode is an
2943 integer, then UNSIGNEDP selects between signed and unsigned types. */
2944
2945 tree
2946 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2947 {
2948 int i;
2949 tree *base;
2950
2951 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2952 base = gfc_real_types;
2953 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2954 base = gfc_complex_types;
2955 else if (SCALAR_INT_MODE_P (mode))
2956 {
2957 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2958 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2959 }
2960 else if (VECTOR_MODE_P (mode))
2961 {
2962 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2963 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2964 if (inner_type != NULL_TREE)
2965 return build_vector_type_for_mode (inner_type, mode);
2966 return NULL_TREE;
2967 }
2968 else
2969 return NULL_TREE;
2970
2971 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2972 {
2973 tree type = base[i];
2974 if (type && mode == TYPE_MODE (type))
2975 return type;
2976 }
2977
2978 return NULL_TREE;
2979 }
2980
2981 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2982 in that case. */
2983
2984 bool
2985 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2986 {
2987 int rank, dim;
2988 bool indirect = false;
2989 tree etype, ptype, field, t, base_decl;
2990 tree data_off, dim_off, dim_size, elem_size;
2991 tree lower_suboff, upper_suboff, stride_suboff;
2992
2993 if (! GFC_DESCRIPTOR_TYPE_P (type))
2994 {
2995 if (! POINTER_TYPE_P (type))
2996 return false;
2997 type = TREE_TYPE (type);
2998 if (! GFC_DESCRIPTOR_TYPE_P (type))
2999 return false;
3000 indirect = true;
3001 }
3002
3003 rank = GFC_TYPE_ARRAY_RANK (type);
3004 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3005 return false;
3006
3007 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3008 gcc_assert (POINTER_TYPE_P (etype));
3009 etype = TREE_TYPE (etype);
3010
3011 /* If the type is not a scalar coarray. */
3012 if (TREE_CODE (etype) == ARRAY_TYPE)
3013 etype = TREE_TYPE (etype);
3014
3015 /* Can't handle variable sized elements yet. */
3016 if (int_size_in_bytes (etype) <= 0)
3017 return false;
3018 /* Nor non-constant lower bounds in assumed shape arrays. */
3019 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3020 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3021 {
3022 for (dim = 0; dim < rank; dim++)
3023 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3024 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3025 return false;
3026 }
3027
3028 memset (info, '\0', sizeof (*info));
3029 info->ndimensions = rank;
3030 info->element_type = etype;
3031 ptype = build_pointer_type (gfc_array_index_type);
3032 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3033 if (!base_decl)
3034 {
3035 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3036 indirect ? build_pointer_type (ptype) : ptype);
3037 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3038 }
3039 info->base_decl = base_decl;
3040 if (indirect)
3041 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3042
3043 if (GFC_TYPE_ARRAY_SPAN (type))
3044 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3045 else
3046 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3047 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3048 data_off = byte_position (field);
3049 field = DECL_CHAIN (field);
3050 field = DECL_CHAIN (field);
3051 field = DECL_CHAIN (field);
3052 dim_off = byte_position (field);
3053 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3054 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3055 stride_suboff = byte_position (field);
3056 field = DECL_CHAIN (field);
3057 lower_suboff = byte_position (field);
3058 field = DECL_CHAIN (field);
3059 upper_suboff = byte_position (field);
3060
3061 t = base_decl;
3062 if (!integer_zerop (data_off))
3063 t = fold_build_pointer_plus (t, data_off);
3064 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3065 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3066 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3067 info->allocated = build2 (NE_EXPR, boolean_type_node,
3068 info->data_location, null_pointer_node);
3069 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3070 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3071 info->associated = build2 (NE_EXPR, boolean_type_node,
3072 info->data_location, null_pointer_node);
3073
3074 for (dim = 0; dim < rank; dim++)
3075 {
3076 t = fold_build_pointer_plus (base_decl,
3077 size_binop (PLUS_EXPR,
3078 dim_off, lower_suboff));
3079 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3080 info->dimen[dim].lower_bound = t;
3081 t = fold_build_pointer_plus (base_decl,
3082 size_binop (PLUS_EXPR,
3083 dim_off, upper_suboff));
3084 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3085 info->dimen[dim].upper_bound = t;
3086 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3087 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3088 {
3089 /* Assumed shape arrays have known lower bounds. */
3090 info->dimen[dim].upper_bound
3091 = build2 (MINUS_EXPR, gfc_array_index_type,
3092 info->dimen[dim].upper_bound,
3093 info->dimen[dim].lower_bound);
3094 info->dimen[dim].lower_bound
3095 = fold_convert (gfc_array_index_type,
3096 GFC_TYPE_ARRAY_LBOUND (type, dim));
3097 info->dimen[dim].upper_bound
3098 = build2 (PLUS_EXPR, gfc_array_index_type,
3099 info->dimen[dim].lower_bound,
3100 info->dimen[dim].upper_bound);
3101 }
3102 t = fold_build_pointer_plus (base_decl,
3103 size_binop (PLUS_EXPR,
3104 dim_off, stride_suboff));
3105 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3106 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3107 info->dimen[dim].stride = t;
3108 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3109 }
3110
3111 return true;
3112 }
3113
3114 #include "gt-fortran-trans-types.h"