]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE and
35 LONG_DOUBLE_TYPE_SIZE. */
36 #include "alias.h"
37 #include "tree.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "stringpool.h"
41 #include "langhooks.h" /* For iso-c-bindings.def. */
42 #include "target.h"
43 #include "gfortran.h"
44 #include "diagnostic-core.h" /* For fatal_error. */
45 #include "toplev.h" /* For rest_of_decl_compilation. */
46 #include "trans.h"
47 #include "trans-types.h"
48 #include "trans-const.h"
49 #include "flags.h"
50 #include "dwarf2out.h" /* For struct array_descr_info. */
51 \f
52
53 #if (GFC_MAX_DIMENSIONS < 10)
54 #define GFC_RANK_DIGITS 1
55 #define GFC_RANK_PRINTF_FORMAT "%01d"
56 #elif (GFC_MAX_DIMENSIONS < 100)
57 #define GFC_RANK_DIGITS 2
58 #define GFC_RANK_PRINTF_FORMAT "%02d"
59 #else
60 #error If you really need >99 dimensions, continue the sequence above...
61 #endif
62
63 /* array of structs so we don't have to worry about xmalloc or free */
64 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
65
66 tree gfc_array_index_type;
67 tree gfc_array_range_type;
68 tree gfc_character1_type_node;
69 tree pvoid_type_node;
70 tree prvoid_type_node;
71 tree ppvoid_type_node;
72 tree pchar_type_node;
73 tree pfunc_type_node;
74
75 tree gfc_charlen_type_node;
76
77 tree float128_type_node = NULL_TREE;
78 tree complex_float128_type_node = NULL_TREE;
79
80 bool gfc_real16_is_float128 = false;
81
82 static GTY(()) tree gfc_desc_dim_type;
83 static GTY(()) tree gfc_max_array_element_size;
84 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
85 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
86
87 /* Arrays for all integral and real kinds. We'll fill this in at runtime
88 after the target has a chance to process command-line options. */
89
90 #define MAX_INT_KINDS 5
91 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
92 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
94 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
95
96 #define MAX_REAL_KINDS 5
97 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
99 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
100
101 #define MAX_CHARACTER_KINDS 2
102 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
104 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
105
106 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
107
108 /* The integer kind to use for array indices. This will be set to the
109 proper value based on target information from the backend. */
110
111 int gfc_index_integer_kind;
112
113 /* The default kinds of the various types. */
114
115 int gfc_default_integer_kind;
116 int gfc_max_integer_kind;
117 int gfc_default_real_kind;
118 int gfc_default_double_kind;
119 int gfc_default_character_kind;
120 int gfc_default_logical_kind;
121 int gfc_default_complex_kind;
122 int gfc_c_int_kind;
123 int gfc_atomic_int_kind;
124 int gfc_atomic_logical_kind;
125
126 /* The kind size used for record offsets. If the target system supports
127 kind=8, this will be set to 8, otherwise it is set to 4. */
128 int gfc_intio_kind;
129
130 /* The integer kind used to store character lengths. */
131 int gfc_charlen_int_kind;
132
133 /* The size of the numeric storage unit and character storage unit. */
134 int gfc_numeric_storage_size;
135 int gfc_character_storage_size;
136
137
138 bool
139 gfc_check_any_c_kind (gfc_typespec *ts)
140 {
141 int i;
142
143 for (i = 0; i < ISOCBINDING_NUMBER; i++)
144 {
145 /* Check for any C interoperable kind for the given type/kind in ts.
146 This can be used after verify_c_interop to make sure that the
147 Fortran kind being used exists in at least some form for C. */
148 if (c_interop_kinds_table[i].f90_type == ts->type &&
149 c_interop_kinds_table[i].value == ts->kind)
150 return true;
151 }
152
153 return false;
154 }
155
156
157 static int
158 get_real_kind_from_node (tree type)
159 {
160 int i;
161
162 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
163 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
164 return gfc_real_kinds[i].kind;
165
166 return -4;
167 }
168
169 static int
170 get_int_kind_from_node (tree type)
171 {
172 int i;
173
174 if (!type)
175 return -2;
176
177 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
178 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
179 return gfc_integer_kinds[i].kind;
180
181 return -1;
182 }
183
184 /* Return a typenode for the "standard" C type with a given name. */
185 static tree
186 get_typenode_from_name (const char *name)
187 {
188 if (name == NULL || *name == '\0')
189 return NULL_TREE;
190
191 if (strcmp (name, "char") == 0)
192 return char_type_node;
193 if (strcmp (name, "unsigned char") == 0)
194 return unsigned_char_type_node;
195 if (strcmp (name, "signed char") == 0)
196 return signed_char_type_node;
197
198 if (strcmp (name, "short int") == 0)
199 return short_integer_type_node;
200 if (strcmp (name, "short unsigned int") == 0)
201 return short_unsigned_type_node;
202
203 if (strcmp (name, "int") == 0)
204 return integer_type_node;
205 if (strcmp (name, "unsigned int") == 0)
206 return unsigned_type_node;
207
208 if (strcmp (name, "long int") == 0)
209 return long_integer_type_node;
210 if (strcmp (name, "long unsigned int") == 0)
211 return long_unsigned_type_node;
212
213 if (strcmp (name, "long long int") == 0)
214 return long_long_integer_type_node;
215 if (strcmp (name, "long long unsigned int") == 0)
216 return long_long_unsigned_type_node;
217
218 gcc_unreachable ();
219 }
220
221 static int
222 get_int_kind_from_name (const char *name)
223 {
224 return get_int_kind_from_node (get_typenode_from_name (name));
225 }
226
227
228 /* Get the kind number corresponding to an integer of given size,
229 following the required return values for ISO_FORTRAN_ENV INT* constants:
230 -2 is returned if we support a kind of larger size, -1 otherwise. */
231 int
232 gfc_get_int_kind_from_width_isofortranenv (int size)
233 {
234 int i;
235
236 /* Look for a kind with matching storage size. */
237 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
238 if (gfc_integer_kinds[i].bit_size == size)
239 return gfc_integer_kinds[i].kind;
240
241 /* Look for a kind with larger storage size. */
242 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
243 if (gfc_integer_kinds[i].bit_size > size)
244 return -2;
245
246 return -1;
247 }
248
249 /* Get the kind number corresponding to a real of given storage size,
250 following the required return values for ISO_FORTRAN_ENV REAL* constants:
251 -2 is returned if we support a kind of larger size, -1 otherwise. */
252 int
253 gfc_get_real_kind_from_width_isofortranenv (int size)
254 {
255 int i;
256
257 size /= 8;
258
259 /* Look for a kind with matching storage size. */
260 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
261 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
262 return gfc_real_kinds[i].kind;
263
264 /* Look for a kind with larger storage size. */
265 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
266 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
267 return -2;
268
269 return -1;
270 }
271
272
273
274 static int
275 get_int_kind_from_width (int size)
276 {
277 int i;
278
279 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
280 if (gfc_integer_kinds[i].bit_size == size)
281 return gfc_integer_kinds[i].kind;
282
283 return -2;
284 }
285
286 static int
287 get_int_kind_from_minimal_width (int size)
288 {
289 int i;
290
291 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
292 if (gfc_integer_kinds[i].bit_size >= size)
293 return gfc_integer_kinds[i].kind;
294
295 return -2;
296 }
297
298
299 /* Generate the CInteropKind_t objects for the C interoperable
300 kinds. */
301
302 void
303 gfc_init_c_interop_kinds (void)
304 {
305 int i;
306
307 /* init all pointers in the list to NULL */
308 for (i = 0; i < ISOCBINDING_NUMBER; i++)
309 {
310 /* Initialize the name and value fields. */
311 c_interop_kinds_table[i].name[0] = '\0';
312 c_interop_kinds_table[i].value = -100;
313 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
314 }
315
316 #define NAMED_INTCST(a,b,c,d) \
317 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
318 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
319 c_interop_kinds_table[a].value = c;
320 #define NAMED_REALCST(a,b,c,d) \
321 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
322 c_interop_kinds_table[a].f90_type = BT_REAL; \
323 c_interop_kinds_table[a].value = c;
324 #define NAMED_CMPXCST(a,b,c,d) \
325 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
326 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
327 c_interop_kinds_table[a].value = c;
328 #define NAMED_LOGCST(a,b,c) \
329 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
330 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
331 c_interop_kinds_table[a].value = c;
332 #define NAMED_CHARKNDCST(a,b,c) \
333 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
334 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
335 c_interop_kinds_table[a].value = c;
336 #define NAMED_CHARCST(a,b,c) \
337 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
338 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
339 c_interop_kinds_table[a].value = c;
340 #define DERIVED_TYPE(a,b,c) \
341 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
342 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
343 c_interop_kinds_table[a].value = c;
344 #define NAMED_FUNCTION(a,b,c,d) \
345 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
346 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
347 c_interop_kinds_table[a].value = c;
348 #define NAMED_SUBROUTINE(a,b,c,d) \
349 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
350 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
351 c_interop_kinds_table[a].value = c;
352 #include "iso-c-binding.def"
353 }
354
355
356 /* Query the target to determine which machine modes are available for
357 computation. Choose KIND numbers for them. */
358
359 void
360 gfc_init_kinds (void)
361 {
362 unsigned int mode;
363 int i_index, r_index, kind;
364 bool saw_i4 = false, saw_i8 = false;
365 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
366
367 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
368 {
369 int kind, bitsize;
370
371 if (!targetm.scalar_mode_supported_p ((machine_mode) mode))
372 continue;
373
374 /* The middle end doesn't support constants larger than 2*HWI.
375 Perhaps the target hook shouldn't have accepted these either,
376 but just to be safe... */
377 bitsize = GET_MODE_BITSIZE ((machine_mode) mode);
378 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
379 continue;
380
381 gcc_assert (i_index != MAX_INT_KINDS);
382
383 /* Let the kind equal the bit size divided by 8. This insulates the
384 programmer from the underlying byte size. */
385 kind = bitsize / 8;
386
387 if (kind == 4)
388 saw_i4 = true;
389 if (kind == 8)
390 saw_i8 = true;
391
392 gfc_integer_kinds[i_index].kind = kind;
393 gfc_integer_kinds[i_index].radix = 2;
394 gfc_integer_kinds[i_index].digits = bitsize - 1;
395 gfc_integer_kinds[i_index].bit_size = bitsize;
396
397 gfc_logical_kinds[i_index].kind = kind;
398 gfc_logical_kinds[i_index].bit_size = bitsize;
399
400 i_index += 1;
401 }
402
403 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
404 used for large file access. */
405
406 if (saw_i8)
407 gfc_intio_kind = 8;
408 else
409 gfc_intio_kind = 4;
410
411 /* If we do not at least have kind = 4, everything is pointless. */
412 gcc_assert(saw_i4);
413
414 /* Set the maximum integer kind. Used with at least BOZ constants. */
415 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
416
417 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
418 {
419 const struct real_format *fmt =
420 REAL_MODE_FORMAT ((machine_mode) mode);
421 int kind;
422
423 if (fmt == NULL)
424 continue;
425 if (!targetm.scalar_mode_supported_p ((machine_mode) mode))
426 continue;
427
428 /* Only let float, double, long double and __float128 go through.
429 Runtime support for others is not provided, so they would be
430 useless. */
431 if (!targetm.libgcc_floating_mode_supported_p ((machine_mode)
432 mode))
433 continue;
434 if (mode != TYPE_MODE (float_type_node)
435 && (mode != TYPE_MODE (double_type_node))
436 && (mode != TYPE_MODE (long_double_type_node))
437 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
438 && (mode != TFmode)
439 #endif
440 )
441 continue;
442
443 /* Let the kind equal the precision divided by 8, rounding up. Again,
444 this insulates the programmer from the underlying byte size.
445
446 Also, it effectively deals with IEEE extended formats. There, the
447 total size of the type may equal 16, but it's got 6 bytes of padding
448 and the increased size can get in the way of a real IEEE quad format
449 which may also be supported by the target.
450
451 We round up so as to handle IA-64 __floatreg (RFmode), which is an
452 82 bit type. Not to be confused with __float80 (XFmode), which is
453 an 80 bit type also supported by IA-64. So XFmode should come out
454 to be kind=10, and RFmode should come out to be kind=11. Egads. */
455
456 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
457
458 if (kind == 4)
459 saw_r4 = true;
460 if (kind == 8)
461 saw_r8 = true;
462 if (kind == 10)
463 saw_r10 = true;
464 if (kind == 16)
465 saw_r16 = true;
466
467 /* Careful we don't stumble a weird internal mode. */
468 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
469 /* Or have too many modes for the allocated space. */
470 gcc_assert (r_index != MAX_REAL_KINDS);
471
472 gfc_real_kinds[r_index].kind = kind;
473 gfc_real_kinds[r_index].radix = fmt->b;
474 gfc_real_kinds[r_index].digits = fmt->p;
475 gfc_real_kinds[r_index].min_exponent = fmt->emin;
476 gfc_real_kinds[r_index].max_exponent = fmt->emax;
477 if (fmt->pnan < fmt->p)
478 /* This is an IBM extended double format (or the MIPS variant)
479 made up of two IEEE doubles. The value of the long double is
480 the sum of the values of the two parts. The most significant
481 part is required to be the value of the long double rounded
482 to the nearest double. If we use emax of 1024 then we can't
483 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
484 rounding will make the most significant part overflow. */
485 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
486 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
487 r_index += 1;
488 }
489
490 /* Choose the default integer kind. We choose 4 unless the user directs us
491 otherwise. Even if the user specified that the default integer kind is 8,
492 the numeric storage size is not 64 bits. In this case, a warning will be
493 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
494
495 gfc_numeric_storage_size = 4 * 8;
496
497 if (flag_default_integer)
498 {
499 if (!saw_i8)
500 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
501 "%<-fdefault-integer-8%> option");
502
503 gfc_default_integer_kind = 8;
504
505 }
506 else if (flag_integer4_kind == 8)
507 {
508 if (!saw_i8)
509 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
510 "%<-finteger-4-integer-8%> option");
511
512 gfc_default_integer_kind = 8;
513 }
514 else if (saw_i4)
515 {
516 gfc_default_integer_kind = 4;
517 }
518 else
519 {
520 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
521 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
522 }
523
524 /* Choose the default real kind. Again, we choose 4 when possible. */
525 if (flag_default_real)
526 {
527 if (!saw_r8)
528 gfc_fatal_error ("REAL(KIND=8) is not available for "
529 "%<-fdefault-real-8%> option");
530
531 gfc_default_real_kind = 8;
532 }
533 else if (flag_real4_kind == 8)
534 {
535 if (!saw_r8)
536 gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
537 "option");
538
539 gfc_default_real_kind = 8;
540 }
541 else if (flag_real4_kind == 10)
542 {
543 if (!saw_r10)
544 gfc_fatal_error ("REAL(KIND=10) is not available for "
545 "%<-freal-4-real-10%> option");
546
547 gfc_default_real_kind = 10;
548 }
549 else if (flag_real4_kind == 16)
550 {
551 if (!saw_r16)
552 gfc_fatal_error ("REAL(KIND=16) is not available for "
553 "%<-freal-4-real-16%> option");
554
555 gfc_default_real_kind = 16;
556 }
557 else if (saw_r4)
558 gfc_default_real_kind = 4;
559 else
560 gfc_default_real_kind = gfc_real_kinds[0].kind;
561
562 /* Choose the default double kind. If -fdefault-real and -fdefault-double
563 are specified, we use kind=8, if it's available. If -fdefault-real is
564 specified without -fdefault-double, we use kind=16, if it's available.
565 Otherwise we do not change anything. */
566 if (flag_default_double && !flag_default_real)
567 gfc_fatal_error ("Use of %<-fdefault-double-8%> requires "
568 "%<-fdefault-real-8%>");
569
570 if (flag_default_real && flag_default_double && saw_r8)
571 gfc_default_double_kind = 8;
572 else if (flag_default_real && saw_r16)
573 gfc_default_double_kind = 16;
574 else if (flag_real8_kind == 4)
575 {
576 if (!saw_r4)
577 gfc_fatal_error ("REAL(KIND=4) is not available for "
578 "%<-freal-8-real-4%> option");
579
580 gfc_default_double_kind = 4;
581 }
582 else if (flag_real8_kind == 10 )
583 {
584 if (!saw_r10)
585 gfc_fatal_error ("REAL(KIND=10) is not available for "
586 "%<-freal-8-real-10%> option");
587
588 gfc_default_double_kind = 10;
589 }
590 else if (flag_real8_kind == 16 )
591 {
592 if (!saw_r16)
593 gfc_fatal_error ("REAL(KIND=10) is not available for "
594 "%<-freal-8-real-16%> option");
595
596 gfc_default_double_kind = 16;
597 }
598 else if (saw_r4 && saw_r8)
599 gfc_default_double_kind = 8;
600 else
601 {
602 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
603 real ... occupies two contiguous numeric storage units.
604
605 Therefore we must be supplied a kind twice as large as we chose
606 for single precision. There are loopholes, in that double
607 precision must *occupy* two storage units, though it doesn't have
608 to *use* two storage units. Which means that you can make this
609 kind artificially wide by padding it. But at present there are
610 no GCC targets for which a two-word type does not exist, so we
611 just let gfc_validate_kind abort and tell us if something breaks. */
612
613 gfc_default_double_kind
614 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
615 }
616
617 /* The default logical kind is constrained to be the same as the
618 default integer kind. Similarly with complex and real. */
619 gfc_default_logical_kind = gfc_default_integer_kind;
620 gfc_default_complex_kind = gfc_default_real_kind;
621
622 /* We only have two character kinds: ASCII and UCS-4.
623 ASCII corresponds to a 8-bit integer type, if one is available.
624 UCS-4 corresponds to a 32-bit integer type, if one is available. */
625 i_index = 0;
626 if ((kind = get_int_kind_from_width (8)) > 0)
627 {
628 gfc_character_kinds[i_index].kind = kind;
629 gfc_character_kinds[i_index].bit_size = 8;
630 gfc_character_kinds[i_index].name = "ascii";
631 i_index++;
632 }
633 if ((kind = get_int_kind_from_width (32)) > 0)
634 {
635 gfc_character_kinds[i_index].kind = kind;
636 gfc_character_kinds[i_index].bit_size = 32;
637 gfc_character_kinds[i_index].name = "iso_10646";
638 i_index++;
639 }
640
641 /* Choose the smallest integer kind for our default character. */
642 gfc_default_character_kind = gfc_character_kinds[0].kind;
643 gfc_character_storage_size = gfc_default_character_kind * 8;
644
645 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
646
647 /* Pick a kind the same size as the C "int" type. */
648 gfc_c_int_kind = INT_TYPE_SIZE / 8;
649
650 /* Choose atomic kinds to match C's int. */
651 gfc_atomic_int_kind = gfc_c_int_kind;
652 gfc_atomic_logical_kind = gfc_c_int_kind;
653 }
654
655
656 /* Make sure that a valid kind is present. Returns an index into the
657 associated kinds array, -1 if the kind is not present. */
658
659 static int
660 validate_integer (int kind)
661 {
662 int i;
663
664 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
665 if (gfc_integer_kinds[i].kind == kind)
666 return i;
667
668 return -1;
669 }
670
671 static int
672 validate_real (int kind)
673 {
674 int i;
675
676 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
677 if (gfc_real_kinds[i].kind == kind)
678 return i;
679
680 return -1;
681 }
682
683 static int
684 validate_logical (int kind)
685 {
686 int i;
687
688 for (i = 0; gfc_logical_kinds[i].kind; i++)
689 if (gfc_logical_kinds[i].kind == kind)
690 return i;
691
692 return -1;
693 }
694
695 static int
696 validate_character (int kind)
697 {
698 int i;
699
700 for (i = 0; gfc_character_kinds[i].kind; i++)
701 if (gfc_character_kinds[i].kind == kind)
702 return i;
703
704 return -1;
705 }
706
707 /* Validate a kind given a basic type. The return value is the same
708 for the child functions, with -1 indicating nonexistence of the
709 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
710
711 int
712 gfc_validate_kind (bt type, int kind, bool may_fail)
713 {
714 int rc;
715
716 switch (type)
717 {
718 case BT_REAL: /* Fall through */
719 case BT_COMPLEX:
720 rc = validate_real (kind);
721 break;
722 case BT_INTEGER:
723 rc = validate_integer (kind);
724 break;
725 case BT_LOGICAL:
726 rc = validate_logical (kind);
727 break;
728 case BT_CHARACTER:
729 rc = validate_character (kind);
730 break;
731
732 default:
733 gfc_internal_error ("gfc_validate_kind(): Got bad type");
734 }
735
736 if (rc < 0 && !may_fail)
737 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
738
739 return rc;
740 }
741
742
743 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
744 Reuse common type nodes where possible. Recognize if the kind matches up
745 with a C type. This will be used later in determining which routines may
746 be scarfed from libm. */
747
748 static tree
749 gfc_build_int_type (gfc_integer_info *info)
750 {
751 int mode_precision = info->bit_size;
752
753 if (mode_precision == CHAR_TYPE_SIZE)
754 info->c_char = 1;
755 if (mode_precision == SHORT_TYPE_SIZE)
756 info->c_short = 1;
757 if (mode_precision == INT_TYPE_SIZE)
758 info->c_int = 1;
759 if (mode_precision == LONG_TYPE_SIZE)
760 info->c_long = 1;
761 if (mode_precision == LONG_LONG_TYPE_SIZE)
762 info->c_long_long = 1;
763
764 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
765 return intQI_type_node;
766 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
767 return intHI_type_node;
768 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
769 return intSI_type_node;
770 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
771 return intDI_type_node;
772 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
773 return intTI_type_node;
774
775 return make_signed_type (mode_precision);
776 }
777
778 tree
779 gfc_build_uint_type (int size)
780 {
781 if (size == CHAR_TYPE_SIZE)
782 return unsigned_char_type_node;
783 if (size == SHORT_TYPE_SIZE)
784 return short_unsigned_type_node;
785 if (size == INT_TYPE_SIZE)
786 return unsigned_type_node;
787 if (size == LONG_TYPE_SIZE)
788 return long_unsigned_type_node;
789 if (size == LONG_LONG_TYPE_SIZE)
790 return long_long_unsigned_type_node;
791
792 return make_unsigned_type (size);
793 }
794
795
796 static tree
797 gfc_build_real_type (gfc_real_info *info)
798 {
799 int mode_precision = info->mode_precision;
800 tree new_type;
801
802 if (mode_precision == FLOAT_TYPE_SIZE)
803 info->c_float = 1;
804 if (mode_precision == DOUBLE_TYPE_SIZE)
805 info->c_double = 1;
806 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
807 info->c_long_double = 1;
808 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
809 {
810 info->c_float128 = 1;
811 gfc_real16_is_float128 = true;
812 }
813
814 if (TYPE_PRECISION (float_type_node) == mode_precision)
815 return float_type_node;
816 if (TYPE_PRECISION (double_type_node) == mode_precision)
817 return double_type_node;
818 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
819 return long_double_type_node;
820
821 new_type = make_node (REAL_TYPE);
822 TYPE_PRECISION (new_type) = mode_precision;
823 layout_type (new_type);
824 return new_type;
825 }
826
827 static tree
828 gfc_build_complex_type (tree scalar_type)
829 {
830 tree new_type;
831
832 if (scalar_type == NULL)
833 return NULL;
834 if (scalar_type == float_type_node)
835 return complex_float_type_node;
836 if (scalar_type == double_type_node)
837 return complex_double_type_node;
838 if (scalar_type == long_double_type_node)
839 return complex_long_double_type_node;
840
841 new_type = make_node (COMPLEX_TYPE);
842 TREE_TYPE (new_type) = scalar_type;
843 layout_type (new_type);
844 return new_type;
845 }
846
847 static tree
848 gfc_build_logical_type (gfc_logical_info *info)
849 {
850 int bit_size = info->bit_size;
851 tree new_type;
852
853 if (bit_size == BOOL_TYPE_SIZE)
854 {
855 info->c_bool = 1;
856 return boolean_type_node;
857 }
858
859 new_type = make_unsigned_type (bit_size);
860 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
861 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
862 TYPE_PRECISION (new_type) = 1;
863
864 return new_type;
865 }
866
867
868 /* Create the backend type nodes. We map them to their
869 equivalent C type, at least for now. We also give
870 names to the types here, and we push them in the
871 global binding level context.*/
872
873 void
874 gfc_init_types (void)
875 {
876 char name_buf[18];
877 int index;
878 tree type;
879 unsigned n;
880
881 /* Create and name the types. */
882 #define PUSH_TYPE(name, node) \
883 pushdecl (build_decl (input_location, \
884 TYPE_DECL, get_identifier (name), node))
885
886 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
887 {
888 type = gfc_build_int_type (&gfc_integer_kinds[index]);
889 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
890 if (TYPE_STRING_FLAG (type))
891 type = make_signed_type (gfc_integer_kinds[index].bit_size);
892 gfc_integer_types[index] = type;
893 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
894 gfc_integer_kinds[index].kind);
895 PUSH_TYPE (name_buf, type);
896 }
897
898 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
899 {
900 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
901 gfc_logical_types[index] = type;
902 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
903 gfc_logical_kinds[index].kind);
904 PUSH_TYPE (name_buf, type);
905 }
906
907 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
908 {
909 type = gfc_build_real_type (&gfc_real_kinds[index]);
910 gfc_real_types[index] = type;
911 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
912 gfc_real_kinds[index].kind);
913 PUSH_TYPE (name_buf, type);
914
915 if (gfc_real_kinds[index].c_float128)
916 float128_type_node = type;
917
918 type = gfc_build_complex_type (type);
919 gfc_complex_types[index] = type;
920 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
921 gfc_real_kinds[index].kind);
922 PUSH_TYPE (name_buf, type);
923
924 if (gfc_real_kinds[index].c_float128)
925 complex_float128_type_node = type;
926 }
927
928 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
929 {
930 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
931 type = build_qualified_type (type, TYPE_UNQUALIFIED);
932 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
933 gfc_character_kinds[index].kind);
934 PUSH_TYPE (name_buf, type);
935 gfc_character_types[index] = type;
936 gfc_pcharacter_types[index] = build_pointer_type (type);
937 }
938 gfc_character1_type_node = gfc_character_types[0];
939
940 PUSH_TYPE ("byte", unsigned_char_type_node);
941 PUSH_TYPE ("void", void_type_node);
942
943 /* DBX debugging output gets upset if these aren't set. */
944 if (!TYPE_NAME (integer_type_node))
945 PUSH_TYPE ("c_integer", integer_type_node);
946 if (!TYPE_NAME (char_type_node))
947 PUSH_TYPE ("c_char", char_type_node);
948
949 #undef PUSH_TYPE
950
951 pvoid_type_node = build_pointer_type (void_type_node);
952 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
953 ppvoid_type_node = build_pointer_type (pvoid_type_node);
954 pchar_type_node = build_pointer_type (gfc_character1_type_node);
955 pfunc_type_node
956 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
957
958 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
959 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
960 since this function is called before gfc_init_constants. */
961 gfc_array_range_type
962 = build_range_type (gfc_array_index_type,
963 build_int_cst (gfc_array_index_type, 0),
964 NULL_TREE);
965
966 /* The maximum array element size that can be handled is determined
967 by the number of bits available to store this field in the array
968 descriptor. */
969
970 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
971 gfc_max_array_element_size
972 = wide_int_to_tree (size_type_node,
973 wi::mask (n, UNSIGNED,
974 TYPE_PRECISION (size_type_node)));
975
976 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
977 boolean_true_node = build_int_cst (boolean_type_node, 1);
978 boolean_false_node = build_int_cst (boolean_type_node, 0);
979
980 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
981 gfc_charlen_int_kind = 4;
982 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
983 }
984
985 /* Get the type node for the given type and kind. */
986
987 tree
988 gfc_get_int_type (int kind)
989 {
990 int index = gfc_validate_kind (BT_INTEGER, kind, true);
991 return index < 0 ? 0 : gfc_integer_types[index];
992 }
993
994 tree
995 gfc_get_real_type (int kind)
996 {
997 int index = gfc_validate_kind (BT_REAL, kind, true);
998 return index < 0 ? 0 : gfc_real_types[index];
999 }
1000
1001 tree
1002 gfc_get_complex_type (int kind)
1003 {
1004 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
1005 return index < 0 ? 0 : gfc_complex_types[index];
1006 }
1007
1008 tree
1009 gfc_get_logical_type (int kind)
1010 {
1011 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1012 return index < 0 ? 0 : gfc_logical_types[index];
1013 }
1014
1015 tree
1016 gfc_get_char_type (int kind)
1017 {
1018 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1019 return index < 0 ? 0 : gfc_character_types[index];
1020 }
1021
1022 tree
1023 gfc_get_pchar_type (int kind)
1024 {
1025 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1026 return index < 0 ? 0 : gfc_pcharacter_types[index];
1027 }
1028
1029 \f
1030 /* Create a character type with the given kind and length. */
1031
1032 tree
1033 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1034 {
1035 tree bounds, type;
1036
1037 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1038 type = build_array_type (eltype, bounds);
1039 TYPE_STRING_FLAG (type) = 1;
1040
1041 return type;
1042 }
1043
1044 tree
1045 gfc_get_character_type_len (int kind, tree len)
1046 {
1047 gfc_validate_kind (BT_CHARACTER, kind, false);
1048 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1049 }
1050
1051
1052 /* Get a type node for a character kind. */
1053
1054 tree
1055 gfc_get_character_type (int kind, gfc_charlen * cl)
1056 {
1057 tree len;
1058
1059 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1060
1061 return gfc_get_character_type_len (kind, len);
1062 }
1063 \f
1064 /* Covert a basic type. This will be an array for character types. */
1065
1066 tree
1067 gfc_typenode_for_spec (gfc_typespec * spec)
1068 {
1069 tree basetype;
1070
1071 switch (spec->type)
1072 {
1073 case BT_UNKNOWN:
1074 gcc_unreachable ();
1075
1076 case BT_INTEGER:
1077 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1078 has been resolved. This is done so we can convert C_PTR and
1079 C_FUNPTR to simple variables that get translated to (void *). */
1080 if (spec->f90_type == BT_VOID)
1081 {
1082 if (spec->u.derived
1083 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1084 basetype = ptr_type_node;
1085 else
1086 basetype = pfunc_type_node;
1087 }
1088 else
1089 basetype = gfc_get_int_type (spec->kind);
1090 break;
1091
1092 case BT_REAL:
1093 basetype = gfc_get_real_type (spec->kind);
1094 break;
1095
1096 case BT_COMPLEX:
1097 basetype = gfc_get_complex_type (spec->kind);
1098 break;
1099
1100 case BT_LOGICAL:
1101 basetype = gfc_get_logical_type (spec->kind);
1102 break;
1103
1104 case BT_CHARACTER:
1105 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1106 break;
1107
1108 case BT_HOLLERITH:
1109 /* Since this cannot be used, return a length one character. */
1110 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1111 gfc_index_one_node);
1112 break;
1113
1114 case BT_DERIVED:
1115 case BT_CLASS:
1116 basetype = gfc_get_derived_type (spec->u.derived);
1117
1118 if (spec->type == BT_CLASS)
1119 GFC_CLASS_TYPE_P (basetype) = 1;
1120
1121 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1122 type and kind to fit a (void *) and the basetype returned was a
1123 ptr_type_node. We need to pass up this new information to the
1124 symbol that was declared of type C_PTR or C_FUNPTR. */
1125 if (spec->u.derived->ts.f90_type == BT_VOID)
1126 {
1127 spec->type = BT_INTEGER;
1128 spec->kind = gfc_index_integer_kind;
1129 spec->f90_type = BT_VOID;
1130 }
1131 break;
1132 case BT_VOID:
1133 case BT_ASSUMED:
1134 /* This is for the second arg to c_f_pointer and c_f_procpointer
1135 of the iso_c_binding module, to accept any ptr type. */
1136 basetype = ptr_type_node;
1137 if (spec->f90_type == BT_VOID)
1138 {
1139 if (spec->u.derived
1140 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1141 basetype = ptr_type_node;
1142 else
1143 basetype = pfunc_type_node;
1144 }
1145 break;
1146 default:
1147 gcc_unreachable ();
1148 }
1149 return basetype;
1150 }
1151 \f
1152 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1153
1154 static tree
1155 gfc_conv_array_bound (gfc_expr * expr)
1156 {
1157 /* If expr is an integer constant, return that. */
1158 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1159 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1160
1161 /* Otherwise return NULL. */
1162 return NULL_TREE;
1163 }
1164 \f
1165 /* Return the type of an element of the array. Note that scalar coarrays
1166 are special. In particular, for GFC_ARRAY_TYPE_P, the original argument
1167 (with POINTER_TYPE stripped) is returned. */
1168
1169 tree
1170 gfc_get_element_type (tree type)
1171 {
1172 tree element;
1173
1174 if (GFC_ARRAY_TYPE_P (type))
1175 {
1176 if (TREE_CODE (type) == POINTER_TYPE)
1177 type = TREE_TYPE (type);
1178 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1179 {
1180 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1181 element = type;
1182 }
1183 else
1184 {
1185 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1186 element = TREE_TYPE (type);
1187 }
1188 }
1189 else
1190 {
1191 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1192 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1193
1194 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1195 element = TREE_TYPE (element);
1196
1197 /* For arrays, which are not scalar coarrays. */
1198 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1199 element = TREE_TYPE (element);
1200 }
1201
1202 return element;
1203 }
1204 \f
1205 /* Build an array. This function is called from gfc_sym_type().
1206 Actually returns array descriptor type.
1207
1208 Format of array descriptors is as follows:
1209
1210 struct gfc_array_descriptor
1211 {
1212 array *data
1213 index offset;
1214 index dtype;
1215 struct descriptor_dimension dimension[N_DIM];
1216 }
1217
1218 struct descriptor_dimension
1219 {
1220 index stride;
1221 index lbound;
1222 index ubound;
1223 }
1224
1225 Translation code should use gfc_conv_descriptor_* rather than
1226 accessing the descriptor directly. Any changes to the array
1227 descriptor type will require changes in gfc_conv_descriptor_* and
1228 gfc_build_array_initializer.
1229
1230 This is represented internally as a RECORD_TYPE. The index nodes
1231 are gfc_array_index_type and the data node is a pointer to the
1232 data. See below for the handling of character types.
1233
1234 The dtype member is formatted as follows:
1235 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1236 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1237 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1238
1239 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1240 this generated poor code for assumed/deferred size arrays. These
1241 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1242 of the GENERIC grammar. Also, there is no way to explicitly set
1243 the array stride, so all data must be packed(1). I've tried to
1244 mark all the functions which would require modification with a GCC
1245 ARRAYS comment.
1246
1247 The data component points to the first element in the array. The
1248 offset field is the position of the origin of the array (i.e. element
1249 (0, 0 ...)). This may be outside the bounds of the array.
1250
1251 An element is accessed by
1252 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1253 This gives good performance as the computation does not involve the
1254 bounds of the array. For packed arrays, this is optimized further
1255 by substituting the known strides.
1256
1257 This system has one problem: all array bounds must be within 2^31
1258 elements of the origin (2^63 on 64-bit machines). For example
1259 integer, dimension (80000:90000, 80000:90000, 2) :: array
1260 may not work properly on 32-bit machines because 80000*80000 >
1261 2^31, so the calculation for stride2 would overflow. This may
1262 still work, but I haven't checked, and it relies on the overflow
1263 doing the right thing.
1264
1265 The way to fix this problem is to access elements as follows:
1266 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1267 Obviously this is much slower. I will make this a compile time
1268 option, something like -fsmall-array-offsets. Mixing code compiled
1269 with and without this switch will work.
1270
1271 (1) This can be worked around by modifying the upper bound of the
1272 previous dimension. This requires extra fields in the descriptor
1273 (both real_ubound and fake_ubound). */
1274
1275
1276 /* Returns true if the array sym does not require a descriptor. */
1277
1278 int
1279 gfc_is_nodesc_array (gfc_symbol * sym)
1280 {
1281 symbol_attribute *array_attr;
1282 gfc_array_spec *as;
1283 bool is_classarray = IS_CLASS_ARRAY (sym);
1284
1285 array_attr = is_classarray ? &CLASS_DATA (sym)->attr : &sym->attr;
1286 as = is_classarray ? CLASS_DATA (sym)->as : sym->as;
1287
1288 gcc_assert (array_attr->dimension || array_attr->codimension);
1289
1290 /* We only want local arrays. */
1291 if ((sym->ts.type != BT_CLASS && sym->attr.pointer)
1292 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer)
1293 || array_attr->allocatable)
1294 return 0;
1295
1296 /* We want a descriptor for associate-name arrays that do not have an
1297 explicitly known shape already. */
1298 if (sym->assoc && as->type != AS_EXPLICIT)
1299 return 0;
1300
1301 /* The dummy is stored in sym and not in the component. */
1302 if (sym->attr.dummy)
1303 return as->type != AS_ASSUMED_SHAPE
1304 && as->type != AS_ASSUMED_RANK;
1305
1306 if (sym->attr.result || sym->attr.function)
1307 return 0;
1308
1309 gcc_assert (as->type == AS_EXPLICIT || as->cp_was_assumed);
1310
1311 return 1;
1312 }
1313
1314
1315 /* Create an array descriptor type. */
1316
1317 static tree
1318 gfc_build_array_type (tree type, gfc_array_spec * as,
1319 enum gfc_array_kind akind, bool restricted,
1320 bool contiguous)
1321 {
1322 tree lbound[GFC_MAX_DIMENSIONS];
1323 tree ubound[GFC_MAX_DIMENSIONS];
1324 int n, corank;
1325
1326 /* Assumed-shape arrays do not have codimension information stored in the
1327 descriptor. */
1328 corank = as->corank;
1329 if (as->type == AS_ASSUMED_SHAPE ||
1330 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1331 corank = 0;
1332
1333 if (as->type == AS_ASSUMED_RANK)
1334 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1335 {
1336 lbound[n] = NULL_TREE;
1337 ubound[n] = NULL_TREE;
1338 }
1339
1340 for (n = 0; n < as->rank; n++)
1341 {
1342 /* Create expressions for the known bounds of the array. */
1343 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1344 lbound[n] = gfc_index_one_node;
1345 else
1346 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1347 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1348 }
1349
1350 for (n = as->rank; n < as->rank + corank; n++)
1351 {
1352 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1353 lbound[n] = gfc_index_one_node;
1354 else
1355 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1356
1357 if (n < as->rank + corank - 1)
1358 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1359 }
1360
1361 if (as->type == AS_ASSUMED_SHAPE)
1362 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1363 : GFC_ARRAY_ASSUMED_SHAPE;
1364 else if (as->type == AS_ASSUMED_RANK)
1365 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1366 : GFC_ARRAY_ASSUMED_RANK;
1367 return gfc_get_array_type_bounds (type, as->rank == -1
1368 ? GFC_MAX_DIMENSIONS : as->rank,
1369 corank, lbound,
1370 ubound, 0, akind, restricted);
1371 }
1372 \f
1373 /* Returns the struct descriptor_dimension type. */
1374
1375 static tree
1376 gfc_get_desc_dim_type (void)
1377 {
1378 tree type;
1379 tree decl, *chain = NULL;
1380
1381 if (gfc_desc_dim_type)
1382 return gfc_desc_dim_type;
1383
1384 /* Build the type node. */
1385 type = make_node (RECORD_TYPE);
1386
1387 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1388 TYPE_PACKED (type) = 1;
1389
1390 /* Consists of the stride, lbound and ubound members. */
1391 decl = gfc_add_field_to_struct_1 (type,
1392 get_identifier ("stride"),
1393 gfc_array_index_type, &chain);
1394 TREE_NO_WARNING (decl) = 1;
1395
1396 decl = gfc_add_field_to_struct_1 (type,
1397 get_identifier ("lbound"),
1398 gfc_array_index_type, &chain);
1399 TREE_NO_WARNING (decl) = 1;
1400
1401 decl = gfc_add_field_to_struct_1 (type,
1402 get_identifier ("ubound"),
1403 gfc_array_index_type, &chain);
1404 TREE_NO_WARNING (decl) = 1;
1405
1406 /* Finish off the type. */
1407 gfc_finish_type (type);
1408 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1409
1410 gfc_desc_dim_type = type;
1411 return type;
1412 }
1413
1414
1415 /* Return the DTYPE for an array. This describes the type and type parameters
1416 of the array. */
1417 /* TODO: Only call this when the value is actually used, and make all the
1418 unknown cases abort. */
1419
1420 tree
1421 gfc_get_dtype_rank_type (int rank, tree etype)
1422 {
1423 tree size;
1424 int n;
1425 HOST_WIDE_INT i;
1426 tree tmp;
1427 tree dtype;
1428
1429 switch (TREE_CODE (etype))
1430 {
1431 case INTEGER_TYPE:
1432 n = BT_INTEGER;
1433 break;
1434
1435 case BOOLEAN_TYPE:
1436 n = BT_LOGICAL;
1437 break;
1438
1439 case REAL_TYPE:
1440 n = BT_REAL;
1441 break;
1442
1443 case COMPLEX_TYPE:
1444 n = BT_COMPLEX;
1445 break;
1446
1447 /* We will never have arrays of arrays. */
1448 case RECORD_TYPE:
1449 n = BT_DERIVED;
1450 break;
1451
1452 case ARRAY_TYPE:
1453 n = BT_CHARACTER;
1454 break;
1455
1456 case POINTER_TYPE:
1457 n = BT_ASSUMED;
1458 break;
1459
1460 default:
1461 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1462 /* We can strange array types for temporary arrays. */
1463 return gfc_index_zero_node;
1464 }
1465
1466 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1467 size = TYPE_SIZE_UNIT (etype);
1468
1469 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1470 if (size && INTEGER_CST_P (size))
1471 {
1472 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1473 gfc_fatal_error ("Array element size too big at %C");
1474
1475 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1476 }
1477 dtype = build_int_cst (gfc_array_index_type, i);
1478
1479 if (size && !INTEGER_CST_P (size))
1480 {
1481 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1482 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1483 gfc_array_index_type,
1484 fold_convert (gfc_array_index_type, size), tmp);
1485 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1486 tmp, dtype);
1487 }
1488 /* If we don't know the size we leave it as zero. This should never happen
1489 for anything that is actually used. */
1490 /* TODO: Check this is actually true, particularly when repacking
1491 assumed size parameters. */
1492
1493 return dtype;
1494 }
1495
1496
1497 tree
1498 gfc_get_dtype (tree type)
1499 {
1500 tree dtype;
1501 tree etype;
1502 int rank;
1503
1504 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1505
1506 if (GFC_TYPE_ARRAY_DTYPE (type))
1507 return GFC_TYPE_ARRAY_DTYPE (type);
1508
1509 rank = GFC_TYPE_ARRAY_RANK (type);
1510 etype = gfc_get_element_type (type);
1511 dtype = gfc_get_dtype_rank_type (rank, etype);
1512
1513 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1514 return dtype;
1515 }
1516
1517
1518 /* Build an array type for use without a descriptor, packed according
1519 to the value of PACKED. */
1520
1521 tree
1522 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1523 bool restricted)
1524 {
1525 tree range;
1526 tree type;
1527 tree tmp;
1528 int n;
1529 int known_stride;
1530 int known_offset;
1531 mpz_t offset;
1532 mpz_t stride;
1533 mpz_t delta;
1534 gfc_expr *expr;
1535
1536 mpz_init_set_ui (offset, 0);
1537 mpz_init_set_ui (stride, 1);
1538 mpz_init (delta);
1539
1540 /* We don't use build_array_type because this does not include include
1541 lang-specific information (i.e. the bounds of the array) when checking
1542 for duplicates. */
1543 if (as->rank)
1544 type = make_node (ARRAY_TYPE);
1545 else
1546 type = build_variant_type_copy (etype);
1547
1548 GFC_ARRAY_TYPE_P (type) = 1;
1549 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1550
1551 known_stride = (packed != PACKED_NO);
1552 known_offset = 1;
1553 for (n = 0; n < as->rank; n++)
1554 {
1555 /* Fill in the stride and bound components of the type. */
1556 if (known_stride)
1557 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1558 else
1559 tmp = NULL_TREE;
1560 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1561
1562 expr = as->lower[n];
1563 if (expr->expr_type == EXPR_CONSTANT)
1564 {
1565 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1566 gfc_index_integer_kind);
1567 }
1568 else
1569 {
1570 known_stride = 0;
1571 tmp = NULL_TREE;
1572 }
1573 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1574
1575 if (known_stride)
1576 {
1577 /* Calculate the offset. */
1578 mpz_mul (delta, stride, as->lower[n]->value.integer);
1579 mpz_sub (offset, offset, delta);
1580 }
1581 else
1582 known_offset = 0;
1583
1584 expr = as->upper[n];
1585 if (expr && expr->expr_type == EXPR_CONSTANT)
1586 {
1587 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1588 gfc_index_integer_kind);
1589 }
1590 else
1591 {
1592 tmp = NULL_TREE;
1593 known_stride = 0;
1594 }
1595 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1596
1597 if (known_stride)
1598 {
1599 /* Calculate the stride. */
1600 mpz_sub (delta, as->upper[n]->value.integer,
1601 as->lower[n]->value.integer);
1602 mpz_add_ui (delta, delta, 1);
1603 mpz_mul (stride, stride, delta);
1604 }
1605
1606 /* Only the first stride is known for partial packed arrays. */
1607 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1608 known_stride = 0;
1609 }
1610 for (n = as->rank; n < as->rank + as->corank; n++)
1611 {
1612 expr = as->lower[n];
1613 if (expr->expr_type == EXPR_CONSTANT)
1614 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1615 gfc_index_integer_kind);
1616 else
1617 tmp = NULL_TREE;
1618 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1619
1620 expr = as->upper[n];
1621 if (expr && expr->expr_type == EXPR_CONSTANT)
1622 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1623 gfc_index_integer_kind);
1624 else
1625 tmp = NULL_TREE;
1626 if (n < as->rank + as->corank - 1)
1627 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1628 }
1629
1630 if (known_offset)
1631 {
1632 GFC_TYPE_ARRAY_OFFSET (type) =
1633 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1634 }
1635 else
1636 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1637
1638 if (known_stride)
1639 {
1640 GFC_TYPE_ARRAY_SIZE (type) =
1641 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1642 }
1643 else
1644 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1645
1646 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1647 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1648 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1649 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1650 NULL_TREE);
1651 /* TODO: use main type if it is unbounded. */
1652 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1653 build_pointer_type (build_array_type (etype, range));
1654 if (restricted)
1655 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1656 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1657 TYPE_QUAL_RESTRICT);
1658
1659 if (as->rank == 0)
1660 {
1661 if (packed != PACKED_STATIC || flag_coarray == GFC_FCOARRAY_LIB)
1662 {
1663 type = build_pointer_type (type);
1664
1665 if (restricted)
1666 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1667
1668 GFC_ARRAY_TYPE_P (type) = 1;
1669 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1670 }
1671
1672 return type;
1673 }
1674
1675 if (known_stride)
1676 {
1677 mpz_sub_ui (stride, stride, 1);
1678 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1679 }
1680 else
1681 range = NULL_TREE;
1682
1683 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1684 TYPE_DOMAIN (type) = range;
1685
1686 build_pointer_type (etype);
1687 TREE_TYPE (type) = etype;
1688
1689 layout_type (type);
1690
1691 mpz_clear (offset);
1692 mpz_clear (stride);
1693 mpz_clear (delta);
1694
1695 /* Represent packed arrays as multi-dimensional if they have rank >
1696 1 and with proper bounds, instead of flat arrays. This makes for
1697 better debug info. */
1698 if (known_offset)
1699 {
1700 tree gtype = etype, rtype, type_decl;
1701
1702 for (n = as->rank - 1; n >= 0; n--)
1703 {
1704 rtype = build_range_type (gfc_array_index_type,
1705 GFC_TYPE_ARRAY_LBOUND (type, n),
1706 GFC_TYPE_ARRAY_UBOUND (type, n));
1707 gtype = build_array_type (gtype, rtype);
1708 }
1709 TYPE_NAME (type) = type_decl = build_decl (input_location,
1710 TYPE_DECL, NULL, gtype);
1711 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1712 }
1713
1714 if (packed != PACKED_STATIC || !known_stride
1715 || (as->corank && flag_coarray == GFC_FCOARRAY_LIB))
1716 {
1717 /* For dummy arrays and automatic (heap allocated) arrays we
1718 want a pointer to the array. */
1719 type = build_pointer_type (type);
1720 if (restricted)
1721 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1722 GFC_ARRAY_TYPE_P (type) = 1;
1723 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1724 }
1725 return type;
1726 }
1727
1728
1729 /* Return or create the base type for an array descriptor. */
1730
1731 static tree
1732 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1733 enum gfc_array_kind akind)
1734 {
1735 tree fat_type, decl, arraytype, *chain = NULL;
1736 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1737 int idx;
1738
1739 /* Assumed-rank array. */
1740 if (dimen == -1)
1741 dimen = GFC_MAX_DIMENSIONS;
1742
1743 idx = 2 * (codimen + dimen) + restricted;
1744
1745 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1746
1747 if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1748 {
1749 if (gfc_array_descriptor_base_caf[idx])
1750 return gfc_array_descriptor_base_caf[idx];
1751 }
1752 else if (gfc_array_descriptor_base[idx])
1753 return gfc_array_descriptor_base[idx];
1754
1755 /* Build the type node. */
1756 fat_type = make_node (RECORD_TYPE);
1757
1758 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1759 TYPE_NAME (fat_type) = get_identifier (name);
1760 TYPE_NAMELESS (fat_type) = 1;
1761
1762 /* Add the data member as the first element of the descriptor. */
1763 decl = gfc_add_field_to_struct_1 (fat_type,
1764 get_identifier ("data"),
1765 (restricted
1766 ? prvoid_type_node
1767 : ptr_type_node), &chain);
1768
1769 /* Add the base component. */
1770 decl = gfc_add_field_to_struct_1 (fat_type,
1771 get_identifier ("offset"),
1772 gfc_array_index_type, &chain);
1773 TREE_NO_WARNING (decl) = 1;
1774
1775 /* Add the dtype component. */
1776 decl = gfc_add_field_to_struct_1 (fat_type,
1777 get_identifier ("dtype"),
1778 gfc_array_index_type, &chain);
1779 TREE_NO_WARNING (decl) = 1;
1780
1781 /* Build the array type for the stride and bound components. */
1782 if (dimen + codimen > 0)
1783 {
1784 arraytype =
1785 build_array_type (gfc_get_desc_dim_type (),
1786 build_range_type (gfc_array_index_type,
1787 gfc_index_zero_node,
1788 gfc_rank_cst[codimen + dimen - 1]));
1789
1790 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1791 arraytype, &chain);
1792 TREE_NO_WARNING (decl) = 1;
1793 }
1794
1795 if (flag_coarray == GFC_FCOARRAY_LIB && codimen
1796 && akind == GFC_ARRAY_ALLOCATABLE)
1797 {
1798 decl = gfc_add_field_to_struct_1 (fat_type,
1799 get_identifier ("token"),
1800 prvoid_type_node, &chain);
1801 TREE_NO_WARNING (decl) = 1;
1802 }
1803
1804 /* Finish off the type. */
1805 gfc_finish_type (fat_type);
1806 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1807
1808 if (flag_coarray == GFC_FCOARRAY_LIB && codimen
1809 && akind == GFC_ARRAY_ALLOCATABLE)
1810 gfc_array_descriptor_base_caf[idx] = fat_type;
1811 else
1812 gfc_array_descriptor_base[idx] = fat_type;
1813
1814 return fat_type;
1815 }
1816
1817
1818 /* Build an array (descriptor) type with given bounds. */
1819
1820 tree
1821 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1822 tree * ubound, int packed,
1823 enum gfc_array_kind akind, bool restricted)
1824 {
1825 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1826 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1827 const char *type_name;
1828 int n;
1829
1830 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1831 fat_type = build_distinct_type_copy (base_type);
1832 /* Make sure that nontarget and target array type have the same canonical
1833 type (and same stub decl for debug info). */
1834 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1835 TYPE_CANONICAL (fat_type) = base_type;
1836 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1837
1838 tmp = TYPE_NAME (etype);
1839 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1840 tmp = DECL_NAME (tmp);
1841 if (tmp)
1842 type_name = IDENTIFIER_POINTER (tmp);
1843 else
1844 type_name = "unknown";
1845 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1846 GFC_MAX_SYMBOL_LEN, type_name);
1847 TYPE_NAME (fat_type) = get_identifier (name);
1848 TYPE_NAMELESS (fat_type) = 1;
1849
1850 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1851 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1852
1853 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1854 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1855 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1856 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1857
1858 /* Build an array descriptor record type. */
1859 if (packed != 0)
1860 stride = gfc_index_one_node;
1861 else
1862 stride = NULL_TREE;
1863 for (n = 0; n < dimen + codimen; n++)
1864 {
1865 if (n < dimen)
1866 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1867
1868 if (lbound)
1869 lower = lbound[n];
1870 else
1871 lower = NULL_TREE;
1872
1873 if (lower != NULL_TREE)
1874 {
1875 if (INTEGER_CST_P (lower))
1876 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1877 else
1878 lower = NULL_TREE;
1879 }
1880
1881 if (codimen && n == dimen + codimen - 1)
1882 break;
1883
1884 upper = ubound[n];
1885 if (upper != NULL_TREE)
1886 {
1887 if (INTEGER_CST_P (upper))
1888 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1889 else
1890 upper = NULL_TREE;
1891 }
1892
1893 if (n >= dimen)
1894 continue;
1895
1896 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1897 {
1898 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1899 gfc_array_index_type, upper, lower);
1900 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1901 gfc_array_index_type, tmp,
1902 gfc_index_one_node);
1903 stride = fold_build2_loc (input_location, MULT_EXPR,
1904 gfc_array_index_type, tmp, stride);
1905 /* Check the folding worked. */
1906 gcc_assert (INTEGER_CST_P (stride));
1907 }
1908 else
1909 stride = NULL_TREE;
1910 }
1911 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1912
1913 /* TODO: known offsets for descriptors. */
1914 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1915
1916 if (dimen == 0)
1917 {
1918 arraytype = build_pointer_type (etype);
1919 if (restricted)
1920 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1921
1922 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1923 return fat_type;
1924 }
1925
1926 /* We define data as an array with the correct size if possible.
1927 Much better than doing pointer arithmetic. */
1928 if (stride)
1929 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1930 int_const_binop (MINUS_EXPR, stride,
1931 build_int_cst (TREE_TYPE (stride), 1)));
1932 else
1933 rtype = gfc_array_range_type;
1934 arraytype = build_array_type (etype, rtype);
1935 arraytype = build_pointer_type (arraytype);
1936 if (restricted)
1937 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1938 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1939
1940 /* This will generate the base declarations we need to emit debug
1941 information for this type. FIXME: there must be a better way to
1942 avoid divergence between compilations with and without debug
1943 information. */
1944 {
1945 struct array_descr_info info;
1946 gfc_get_array_descr_info (fat_type, &info);
1947 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1948 }
1949
1950 return fat_type;
1951 }
1952 \f
1953 /* Build a pointer type. This function is called from gfc_sym_type(). */
1954
1955 static tree
1956 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1957 {
1958 /* Array pointer types aren't actually pointers. */
1959 if (sym->attr.dimension)
1960 return type;
1961 else
1962 return build_pointer_type (type);
1963 }
1964
1965 static tree gfc_nonrestricted_type (tree t);
1966 /* Given two record or union type nodes TO and FROM, ensure
1967 that all fields in FROM have a corresponding field in TO,
1968 their type being nonrestrict variants. This accepts a TO
1969 node that already has a prefix of the fields in FROM. */
1970 static void
1971 mirror_fields (tree to, tree from)
1972 {
1973 tree fto, ffrom;
1974 tree *chain;
1975
1976 /* Forward to the end of TOs fields. */
1977 fto = TYPE_FIELDS (to);
1978 ffrom = TYPE_FIELDS (from);
1979 chain = &TYPE_FIELDS (to);
1980 while (fto)
1981 {
1982 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1983 chain = &DECL_CHAIN (fto);
1984 fto = DECL_CHAIN (fto);
1985 ffrom = DECL_CHAIN (ffrom);
1986 }
1987
1988 /* Now add all fields remaining in FROM (starting with ffrom). */
1989 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1990 {
1991 tree newfield = copy_node (ffrom);
1992 DECL_CONTEXT (newfield) = to;
1993 /* The store to DECL_CHAIN might seem redundant with the
1994 stores to *chain, but not clearing it here would mean
1995 leaving a chain into the old fields. If ever
1996 our called functions would look at them confusion
1997 will arise. */
1998 DECL_CHAIN (newfield) = NULL_TREE;
1999 *chain = newfield;
2000 chain = &DECL_CHAIN (newfield);
2001
2002 if (TREE_CODE (ffrom) == FIELD_DECL)
2003 {
2004 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
2005 TREE_TYPE (newfield) = elemtype;
2006 }
2007 }
2008 *chain = NULL_TREE;
2009 }
2010
2011 /* Given a type T, returns a different type of the same structure,
2012 except that all types it refers to (recursively) are always
2013 non-restrict qualified types. */
2014 static tree
2015 gfc_nonrestricted_type (tree t)
2016 {
2017 tree ret = t;
2018
2019 /* If the type isn't laid out yet, don't copy it. If something
2020 needs it for real it should wait until the type got finished. */
2021 if (!TYPE_SIZE (t))
2022 return t;
2023
2024 if (!TYPE_LANG_SPECIFIC (t))
2025 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
2026 /* If we're dealing with this very node already further up
2027 the call chain (recursion via pointers and struct members)
2028 we haven't yet determined if we really need a new type node.
2029 Assume we don't, return T itself. */
2030 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2031 return t;
2032
2033 /* If we have calculated this all already, just return it. */
2034 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2035 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2036
2037 /* Mark this type. */
2038 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2039
2040 switch (TREE_CODE (t))
2041 {
2042 default:
2043 break;
2044
2045 case POINTER_TYPE:
2046 case REFERENCE_TYPE:
2047 {
2048 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2049 if (totype == TREE_TYPE (t))
2050 ret = t;
2051 else if (TREE_CODE (t) == POINTER_TYPE)
2052 ret = build_pointer_type (totype);
2053 else
2054 ret = build_reference_type (totype);
2055 ret = build_qualified_type (ret,
2056 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2057 }
2058 break;
2059
2060 case ARRAY_TYPE:
2061 {
2062 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2063 if (elemtype == TREE_TYPE (t))
2064 ret = t;
2065 else
2066 {
2067 ret = build_variant_type_copy (t);
2068 TREE_TYPE (ret) = elemtype;
2069 if (TYPE_LANG_SPECIFIC (t)
2070 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2071 {
2072 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2073 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2074 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2075 {
2076 TYPE_LANG_SPECIFIC (ret)
2077 = ggc_cleared_alloc<struct lang_type> ();
2078 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2079 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2080 }
2081 }
2082 }
2083 }
2084 break;
2085
2086 case RECORD_TYPE:
2087 case UNION_TYPE:
2088 case QUAL_UNION_TYPE:
2089 {
2090 tree field;
2091 /* First determine if we need a new type at all.
2092 Careful, the two calls to gfc_nonrestricted_type per field
2093 might return different values. That happens exactly when
2094 one of the fields reaches back to this very record type
2095 (via pointers). The first calls will assume that we don't
2096 need to copy T (see the error_mark_node marking). If there
2097 are any reasons for copying T apart from having to copy T,
2098 we'll indeed copy it, and the second calls to
2099 gfc_nonrestricted_type will use that new node if they
2100 reach back to T. */
2101 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2102 if (TREE_CODE (field) == FIELD_DECL)
2103 {
2104 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2105 if (elemtype != TREE_TYPE (field))
2106 break;
2107 }
2108 if (!field)
2109 break;
2110 ret = build_variant_type_copy (t);
2111 TYPE_FIELDS (ret) = NULL_TREE;
2112
2113 /* Here we make sure that as soon as we know we have to copy
2114 T, that also fields reaching back to us will use the new
2115 copy. It's okay if that copy still contains the old fields,
2116 we won't look at them. */
2117 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2118 mirror_fields (ret, t);
2119 }
2120 break;
2121 }
2122
2123 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2124 return ret;
2125 }
2126
2127 \f
2128 /* Return the type for a symbol. Special handling is required for character
2129 types to get the correct level of indirection.
2130 For functions return the return type.
2131 For subroutines return void_type_node.
2132 Calling this multiple times for the same symbol should be avoided,
2133 especially for character and array types. */
2134
2135 tree
2136 gfc_sym_type (gfc_symbol * sym)
2137 {
2138 tree type;
2139 int byref;
2140 bool restricted;
2141
2142 /* Procedure Pointers inside COMMON blocks. */
2143 if (sym->attr.proc_pointer && sym->attr.in_common)
2144 {
2145 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2146 sym->attr.proc_pointer = 0;
2147 type = build_pointer_type (gfc_get_function_type (sym));
2148 sym->attr.proc_pointer = 1;
2149 return type;
2150 }
2151
2152 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2153 return void_type_node;
2154
2155 /* In the case of a function the fake result variable may have a
2156 type different from the function type, so don't return early in
2157 that case. */
2158 if (sym->backend_decl && !sym->attr.function)
2159 return TREE_TYPE (sym->backend_decl);
2160
2161 if (sym->ts.type == BT_CHARACTER
2162 && ((sym->attr.function && sym->attr.is_bind_c)
2163 || (sym->attr.result
2164 && sym->ns->proc_name
2165 && sym->ns->proc_name->attr.is_bind_c)
2166 || (sym->ts.deferred && (!sym->ts.u.cl
2167 || !sym->ts.u.cl->backend_decl))))
2168 type = gfc_character1_type_node;
2169 else
2170 type = gfc_typenode_for_spec (&sym->ts);
2171
2172 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2173 byref = 1;
2174 else
2175 byref = 0;
2176
2177 restricted = !sym->attr.target && !sym->attr.pointer
2178 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2179 if (!restricted)
2180 type = gfc_nonrestricted_type (type);
2181
2182 if (sym->attr.dimension || sym->attr.codimension)
2183 {
2184 if (gfc_is_nodesc_array (sym))
2185 {
2186 /* If this is a character argument of unknown length, just use the
2187 base type. */
2188 if (sym->ts.type != BT_CHARACTER
2189 || !(sym->attr.dummy || sym->attr.function)
2190 || sym->ts.u.cl->backend_decl)
2191 {
2192 type = gfc_get_nodesc_array_type (type, sym->as,
2193 byref ? PACKED_FULL
2194 : PACKED_STATIC,
2195 restricted);
2196 byref = 0;
2197 }
2198 }
2199 else
2200 {
2201 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2202 if (sym->attr.pointer)
2203 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2204 : GFC_ARRAY_POINTER;
2205 else if (sym->attr.allocatable)
2206 akind = GFC_ARRAY_ALLOCATABLE;
2207 type = gfc_build_array_type (type, sym->as, akind, restricted,
2208 sym->attr.contiguous);
2209 }
2210 }
2211 else
2212 {
2213 if (sym->attr.allocatable || sym->attr.pointer
2214 || gfc_is_associate_pointer (sym))
2215 type = gfc_build_pointer_type (sym, type);
2216 }
2217
2218 /* We currently pass all parameters by reference.
2219 See f95_get_function_decl. For dummy function parameters return the
2220 function type. */
2221 if (byref)
2222 {
2223 /* We must use pointer types for potentially absent variables. The
2224 optimizers assume a reference type argument is never NULL. */
2225 if (sym->attr.optional
2226 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2227 type = build_pointer_type (type);
2228 else
2229 {
2230 type = build_reference_type (type);
2231 if (restricted)
2232 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2233 }
2234 }
2235
2236 return (type);
2237 }
2238 \f
2239 /* Layout and output debug info for a record type. */
2240
2241 void
2242 gfc_finish_type (tree type)
2243 {
2244 tree decl;
2245
2246 decl = build_decl (input_location,
2247 TYPE_DECL, NULL_TREE, type);
2248 TYPE_STUB_DECL (type) = decl;
2249 layout_type (type);
2250 rest_of_type_compilation (type, 1);
2251 rest_of_decl_compilation (decl, 1, 0);
2252 }
2253 \f
2254 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2255 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2256 to the end of the field list pointed to by *CHAIN.
2257
2258 Returns a pointer to the new field. */
2259
2260 static tree
2261 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2262 {
2263 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2264
2265 DECL_CONTEXT (decl) = context;
2266 DECL_CHAIN (decl) = NULL_TREE;
2267 if (TYPE_FIELDS (context) == NULL_TREE)
2268 TYPE_FIELDS (context) = decl;
2269 if (chain != NULL)
2270 {
2271 if (*chain != NULL)
2272 **chain = decl;
2273 *chain = &DECL_CHAIN (decl);
2274 }
2275
2276 return decl;
2277 }
2278
2279 /* Like `gfc_add_field_to_struct_1', but adds alignment
2280 information. */
2281
2282 tree
2283 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2284 {
2285 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2286
2287 DECL_INITIAL (decl) = 0;
2288 DECL_ALIGN (decl) = 0;
2289 DECL_USER_ALIGN (decl) = 0;
2290
2291 return decl;
2292 }
2293
2294
2295 /* Copy the backend_decl and component backend_decls if
2296 the two derived type symbols are "equal", as described
2297 in 4.4.2 and resolved by gfc_compare_derived_types. */
2298
2299 int
2300 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2301 bool from_gsym)
2302 {
2303 gfc_component *to_cm;
2304 gfc_component *from_cm;
2305
2306 if (from == to)
2307 return 1;
2308
2309 if (from->backend_decl == NULL
2310 || !gfc_compare_derived_types (from, to))
2311 return 0;
2312
2313 to->backend_decl = from->backend_decl;
2314
2315 to_cm = to->components;
2316 from_cm = from->components;
2317
2318 /* Copy the component declarations. If a component is itself
2319 a derived type, we need a copy of its component declarations.
2320 This is done by recursing into gfc_get_derived_type and
2321 ensures that the component's component declarations have
2322 been built. If it is a character, we need the character
2323 length, as well. */
2324 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2325 {
2326 to_cm->backend_decl = from_cm->backend_decl;
2327 if (from_cm->ts.type == BT_DERIVED
2328 && (!from_cm->attr.pointer || from_gsym))
2329 gfc_get_derived_type (to_cm->ts.u.derived);
2330 else if (from_cm->ts.type == BT_CLASS
2331 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2332 gfc_get_derived_type (to_cm->ts.u.derived);
2333 else if (from_cm->ts.type == BT_CHARACTER)
2334 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2335 }
2336
2337 return 1;
2338 }
2339
2340
2341 /* Build a tree node for a procedure pointer component. */
2342
2343 tree
2344 gfc_get_ppc_type (gfc_component* c)
2345 {
2346 tree t;
2347
2348 /* Explicit interface. */
2349 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2350 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2351
2352 /* Implicit interface (only return value may be known). */
2353 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2354 t = gfc_typenode_for_spec (&c->ts);
2355 else
2356 t = void_type_node;
2357
2358 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2359 }
2360
2361
2362 /* Build a tree node for a derived type. If there are equal
2363 derived types, with different local names, these are built
2364 at the same time. If an equal derived type has been built
2365 in a parent namespace, this is used. */
2366
2367 tree
2368 gfc_get_derived_type (gfc_symbol * derived)
2369 {
2370 tree typenode = NULL, field = NULL, field_type = NULL;
2371 tree canonical = NULL_TREE;
2372 tree *chain = NULL;
2373 bool got_canonical = false;
2374 bool unlimited_entity = false;
2375 gfc_component *c;
2376 gfc_dt_list *dt;
2377 gfc_namespace *ns;
2378
2379 if (derived->attr.unlimited_polymorphic
2380 || (flag_coarray == GFC_FCOARRAY_LIB
2381 && derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2382 && derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE))
2383 return ptr_type_node;
2384
2385 if (derived && derived->attr.flavor == FL_PROCEDURE
2386 && derived->attr.generic)
2387 derived = gfc_find_dt_in_generic (derived);
2388
2389 /* See if it's one of the iso_c_binding derived types. */
2390 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2391 {
2392 if (derived->backend_decl)
2393 return derived->backend_decl;
2394
2395 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2396 derived->backend_decl = ptr_type_node;
2397 else
2398 derived->backend_decl = pfunc_type_node;
2399
2400 derived->ts.kind = gfc_index_integer_kind;
2401 derived->ts.type = BT_INTEGER;
2402 /* Set the f90_type to BT_VOID as a way to recognize something of type
2403 BT_INTEGER that needs to fit a void * for the purpose of the
2404 iso_c_binding derived types. */
2405 derived->ts.f90_type = BT_VOID;
2406
2407 return derived->backend_decl;
2408 }
2409
2410 /* If use associated, use the module type for this one. */
2411 if (derived->backend_decl == NULL
2412 && derived->attr.use_assoc
2413 && derived->module
2414 && gfc_get_module_backend_decl (derived))
2415 goto copy_derived_types;
2416
2417 /* The derived types from an earlier namespace can be used as the
2418 canonical type. */
2419 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2420 && gfc_global_ns_list)
2421 {
2422 for (ns = gfc_global_ns_list;
2423 ns->translated && !got_canonical;
2424 ns = ns->sibling)
2425 {
2426 dt = ns->derived_types;
2427 for (; dt && !canonical; dt = dt->next)
2428 {
2429 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2430 if (derived->backend_decl)
2431 got_canonical = true;
2432 }
2433 }
2434 }
2435
2436 /* Store up the canonical type to be added to this one. */
2437 if (got_canonical)
2438 {
2439 if (TYPE_CANONICAL (derived->backend_decl))
2440 canonical = TYPE_CANONICAL (derived->backend_decl);
2441 else
2442 canonical = derived->backend_decl;
2443
2444 derived->backend_decl = NULL_TREE;
2445 }
2446
2447 /* derived->backend_decl != 0 means we saw it before, but its
2448 components' backend_decl may have not been built. */
2449 if (derived->backend_decl)
2450 {
2451 /* Its components' backend_decl have been built or we are
2452 seeing recursion through the formal arglist of a procedure
2453 pointer component. */
2454 if (TYPE_FIELDS (derived->backend_decl))
2455 return derived->backend_decl;
2456 else if (derived->attr.abstract
2457 && derived->attr.proc_pointer_comp)
2458 {
2459 /* If an abstract derived type with procedure pointer
2460 components has no other type of component, return the
2461 backend_decl. Otherwise build the components if any of the
2462 non-procedure pointer components have no backend_decl. */
2463 for (c = derived->components; c; c = c->next)
2464 {
2465 if (!c->attr.proc_pointer && c->backend_decl == NULL)
2466 break;
2467 else if (c->next == NULL)
2468 return derived->backend_decl;
2469 }
2470 typenode = derived->backend_decl;
2471 }
2472 else
2473 typenode = derived->backend_decl;
2474 }
2475 else
2476 {
2477 /* We see this derived type first time, so build the type node. */
2478 typenode = make_node (RECORD_TYPE);
2479 TYPE_NAME (typenode) = get_identifier (derived->name);
2480 TYPE_PACKED (typenode) = flag_pack_derived;
2481 derived->backend_decl = typenode;
2482 }
2483
2484 if (derived->components
2485 && derived->components->ts.type == BT_DERIVED
2486 && strcmp (derived->components->name, "_data") == 0
2487 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2488 unlimited_entity = true;
2489
2490 /* Go through the derived type components, building them as
2491 necessary. The reason for doing this now is that it is
2492 possible to recurse back to this derived type through a
2493 pointer component (PR24092). If this happens, the fields
2494 will be built and so we can return the type. */
2495 for (c = derived->components; c; c = c->next)
2496 {
2497 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2498 continue;
2499
2500 if ((!c->attr.pointer && !c->attr.proc_pointer)
2501 || c->ts.u.derived->backend_decl == NULL)
2502 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2503
2504 if (c->ts.u.derived->attr.is_iso_c)
2505 {
2506 /* Need to copy the modified ts from the derived type. The
2507 typespec was modified because C_PTR/C_FUNPTR are translated
2508 into (void *) from derived types. */
2509 c->ts.type = c->ts.u.derived->ts.type;
2510 c->ts.kind = c->ts.u.derived->ts.kind;
2511 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2512 if (c->initializer)
2513 {
2514 c->initializer->ts.type = c->ts.type;
2515 c->initializer->ts.kind = c->ts.kind;
2516 c->initializer->ts.f90_type = c->ts.f90_type;
2517 c->initializer->expr_type = EXPR_NULL;
2518 }
2519 }
2520 }
2521
2522 if (TYPE_FIELDS (derived->backend_decl))
2523 return derived->backend_decl;
2524
2525 /* Build the type member list. Install the newly created RECORD_TYPE
2526 node as DECL_CONTEXT of each FIELD_DECL. */
2527 for (c = derived->components; c; c = c->next)
2528 {
2529 if (c->attr.proc_pointer)
2530 field_type = gfc_get_ppc_type (c);
2531 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2532 field_type = c->ts.u.derived->backend_decl;
2533 else
2534 {
2535 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2536 {
2537 /* Evaluate the string length. */
2538 gfc_conv_const_charlen (c->ts.u.cl);
2539 gcc_assert (c->ts.u.cl->backend_decl);
2540 }
2541 else if (c->ts.type == BT_CHARACTER)
2542 c->ts.u.cl->backend_decl
2543 = build_int_cst (gfc_charlen_type_node, 0);
2544
2545 field_type = gfc_typenode_for_spec (&c->ts);
2546 }
2547
2548 /* This returns an array descriptor type. Initialization may be
2549 required. */
2550 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2551 {
2552 if (c->attr.pointer || c->attr.allocatable)
2553 {
2554 enum gfc_array_kind akind;
2555 if (c->attr.pointer)
2556 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2557 : GFC_ARRAY_POINTER;
2558 else
2559 akind = GFC_ARRAY_ALLOCATABLE;
2560 /* Pointers to arrays aren't actually pointer types. The
2561 descriptors are separate, but the data is common. */
2562 field_type = gfc_build_array_type (field_type, c->as, akind,
2563 !c->attr.target
2564 && !c->attr.pointer,
2565 c->attr.contiguous);
2566 }
2567 else
2568 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2569 PACKED_STATIC,
2570 !c->attr.target);
2571 }
2572 else if ((c->attr.pointer || c->attr.allocatable)
2573 && !c->attr.proc_pointer
2574 && !(unlimited_entity && c == derived->components))
2575 field_type = build_pointer_type (field_type);
2576
2577 if (c->attr.pointer)
2578 field_type = gfc_nonrestricted_type (field_type);
2579
2580 /* vtype fields can point to different types to the base type. */
2581 if (c->ts.type == BT_DERIVED
2582 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2583 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2584 ptr_mode, true);
2585
2586 /* Ensure that the CLASS language specific flag is set. */
2587 if (c->ts.type == BT_CLASS)
2588 {
2589 if (POINTER_TYPE_P (field_type))
2590 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2591 else
2592 GFC_CLASS_TYPE_P (field_type) = 1;
2593 }
2594
2595 field = gfc_add_field_to_struct (typenode,
2596 get_identifier (c->name),
2597 field_type, &chain);
2598 if (c->loc.lb)
2599 gfc_set_decl_location (field, &c->loc);
2600 else if (derived->declared_at.lb)
2601 gfc_set_decl_location (field, &derived->declared_at);
2602
2603 gfc_finish_decl_attrs (field, &c->attr);
2604
2605 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2606
2607 gcc_assert (field);
2608 if (!c->backend_decl)
2609 c->backend_decl = field;
2610 }
2611
2612 /* Now lay out the derived type, including the fields. */
2613 if (canonical)
2614 TYPE_CANONICAL (typenode) = canonical;
2615
2616 gfc_finish_type (typenode);
2617 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2618 if (derived->module && derived->ns->proc_name
2619 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2620 {
2621 if (derived->ns->proc_name->backend_decl
2622 && TREE_CODE (derived->ns->proc_name->backend_decl)
2623 == NAMESPACE_DECL)
2624 {
2625 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2626 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2627 = derived->ns->proc_name->backend_decl;
2628 }
2629 }
2630
2631 derived->backend_decl = typenode;
2632
2633 copy_derived_types:
2634
2635 for (dt = gfc_derived_types; dt; dt = dt->next)
2636 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2637
2638 return derived->backend_decl;
2639 }
2640
2641
2642 int
2643 gfc_return_by_reference (gfc_symbol * sym)
2644 {
2645 if (!sym->attr.function)
2646 return 0;
2647
2648 if (sym->attr.dimension)
2649 return 1;
2650
2651 if (sym->ts.type == BT_CHARACTER
2652 && !sym->attr.is_bind_c
2653 && (!sym->attr.result
2654 || !sym->ns->proc_name
2655 || !sym->ns->proc_name->attr.is_bind_c))
2656 return 1;
2657
2658 /* Possibly return complex numbers by reference for g77 compatibility.
2659 We don't do this for calls to intrinsics (as the library uses the
2660 -fno-f2c calling convention), nor for calls to functions which always
2661 require an explicit interface, as no compatibility problems can
2662 arise there. */
2663 if (flag_f2c && sym->ts.type == BT_COMPLEX
2664 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2665 return 1;
2666
2667 return 0;
2668 }
2669 \f
2670 static tree
2671 gfc_get_mixed_entry_union (gfc_namespace *ns)
2672 {
2673 tree type;
2674 tree *chain = NULL;
2675 char name[GFC_MAX_SYMBOL_LEN + 1];
2676 gfc_entry_list *el, *el2;
2677
2678 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2679 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2680
2681 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2682
2683 /* Build the type node. */
2684 type = make_node (UNION_TYPE);
2685
2686 TYPE_NAME (type) = get_identifier (name);
2687
2688 for (el = ns->entries; el; el = el->next)
2689 {
2690 /* Search for duplicates. */
2691 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2692 if (el2->sym->result == el->sym->result)
2693 break;
2694
2695 if (el == el2)
2696 gfc_add_field_to_struct_1 (type,
2697 get_identifier (el->sym->result->name),
2698 gfc_sym_type (el->sym->result), &chain);
2699 }
2700
2701 /* Finish off the type. */
2702 gfc_finish_type (type);
2703 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2704 return type;
2705 }
2706 \f
2707 /* Create a "fn spec" based on the formal arguments;
2708 cf. create_function_arglist. */
2709
2710 static tree
2711 create_fn_spec (gfc_symbol *sym, tree fntype)
2712 {
2713 char spec[150];
2714 size_t spec_len;
2715 gfc_formal_arglist *f;
2716 tree tmp;
2717
2718 memset (&spec, 0, sizeof (spec));
2719 spec[0] = '.';
2720 spec_len = 1;
2721
2722 if (sym->attr.entry_master)
2723 spec[spec_len++] = 'R';
2724 if (gfc_return_by_reference (sym))
2725 {
2726 gfc_symbol *result = sym->result ? sym->result : sym;
2727
2728 if (result->attr.pointer || sym->attr.proc_pointer)
2729 spec[spec_len++] = '.';
2730 else
2731 spec[spec_len++] = 'w';
2732 if (sym->ts.type == BT_CHARACTER)
2733 spec[spec_len++] = 'R';
2734 }
2735
2736 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2737 if (spec_len < sizeof (spec))
2738 {
2739 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2740 || f->sym->attr.external || f->sym->attr.cray_pointer
2741 || (f->sym->ts.type == BT_DERIVED
2742 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2743 || f->sym->ts.u.derived->attr.pointer_comp))
2744 || (f->sym->ts.type == BT_CLASS
2745 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2746 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2747 spec[spec_len++] = '.';
2748 else if (f->sym->attr.intent == INTENT_IN)
2749 spec[spec_len++] = 'r';
2750 else if (f->sym)
2751 spec[spec_len++] = 'w';
2752 }
2753
2754 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2755 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2756 return build_type_attribute_variant (fntype, tmp);
2757 }
2758
2759
2760 tree
2761 gfc_get_function_type (gfc_symbol * sym)
2762 {
2763 tree type;
2764 vec<tree, va_gc> *typelist = NULL;
2765 gfc_formal_arglist *f;
2766 gfc_symbol *arg;
2767 int alternate_return = 0;
2768 bool is_varargs = true;
2769
2770 /* Make sure this symbol is a function, a subroutine or the main
2771 program. */
2772 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2773 || sym->attr.flavor == FL_PROGRAM);
2774
2775 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2776 so that they can be detected here and handled further down. */
2777 if (sym->backend_decl == NULL)
2778 sym->backend_decl = error_mark_node;
2779 else if (sym->backend_decl == error_mark_node)
2780 goto arg_type_list_done;
2781 else if (sym->attr.proc_pointer)
2782 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2783 else
2784 return TREE_TYPE (sym->backend_decl);
2785
2786 if (sym->attr.entry_master)
2787 /* Additional parameter for selecting an entry point. */
2788 vec_safe_push (typelist, gfc_array_index_type);
2789
2790 if (sym->result)
2791 arg = sym->result;
2792 else
2793 arg = sym;
2794
2795 if (arg->ts.type == BT_CHARACTER)
2796 gfc_conv_const_charlen (arg->ts.u.cl);
2797
2798 /* Some functions we use an extra parameter for the return value. */
2799 if (gfc_return_by_reference (sym))
2800 {
2801 type = gfc_sym_type (arg);
2802 if (arg->ts.type == BT_COMPLEX
2803 || arg->attr.dimension
2804 || arg->ts.type == BT_CHARACTER)
2805 type = build_reference_type (type);
2806
2807 vec_safe_push (typelist, type);
2808 if (arg->ts.type == BT_CHARACTER)
2809 {
2810 if (!arg->ts.deferred)
2811 /* Transfer by value. */
2812 vec_safe_push (typelist, gfc_charlen_type_node);
2813 else
2814 /* Deferred character lengths are transferred by reference
2815 so that the value can be returned. */
2816 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2817 }
2818 }
2819
2820 /* Build the argument types for the function. */
2821 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2822 {
2823 arg = f->sym;
2824 if (arg)
2825 {
2826 /* Evaluate constant character lengths here so that they can be
2827 included in the type. */
2828 if (arg->ts.type == BT_CHARACTER)
2829 gfc_conv_const_charlen (arg->ts.u.cl);
2830
2831 if (arg->attr.flavor == FL_PROCEDURE)
2832 {
2833 type = gfc_get_function_type (arg);
2834 type = build_pointer_type (type);
2835 }
2836 else
2837 type = gfc_sym_type (arg);
2838
2839 /* Parameter Passing Convention
2840
2841 We currently pass all parameters by reference.
2842 Parameters with INTENT(IN) could be passed by value.
2843 The problem arises if a function is called via an implicit
2844 prototype. In this situation the INTENT is not known.
2845 For this reason all parameters to global functions must be
2846 passed by reference. Passing by value would potentially
2847 generate bad code. Worse there would be no way of telling that
2848 this code was bad, except that it would give incorrect results.
2849
2850 Contained procedures could pass by value as these are never
2851 used without an explicit interface, and cannot be passed as
2852 actual parameters for a dummy procedure. */
2853
2854 vec_safe_push (typelist, type);
2855 }
2856 else
2857 {
2858 if (sym->attr.subroutine)
2859 alternate_return = 1;
2860 }
2861 }
2862
2863 /* Add hidden string length parameters. */
2864 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2865 {
2866 arg = f->sym;
2867 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2868 {
2869 if (!arg->ts.deferred)
2870 /* Transfer by value. */
2871 type = gfc_charlen_type_node;
2872 else
2873 /* Deferred character lengths are transferred by reference
2874 so that the value can be returned. */
2875 type = build_pointer_type (gfc_charlen_type_node);
2876
2877 vec_safe_push (typelist, type);
2878 }
2879 }
2880
2881 if (!vec_safe_is_empty (typelist)
2882 || sym->attr.is_main_program
2883 || sym->attr.if_source != IFSRC_UNKNOWN)
2884 is_varargs = false;
2885
2886 if (sym->backend_decl == error_mark_node)
2887 sym->backend_decl = NULL_TREE;
2888
2889 arg_type_list_done:
2890
2891 if (alternate_return)
2892 type = integer_type_node;
2893 else if (!sym->attr.function || gfc_return_by_reference (sym))
2894 type = void_type_node;
2895 else if (sym->attr.mixed_entry_master)
2896 type = gfc_get_mixed_entry_union (sym->ns);
2897 else if (flag_f2c && sym->ts.type == BT_REAL
2898 && sym->ts.kind == gfc_default_real_kind
2899 && !sym->attr.always_explicit)
2900 {
2901 /* Special case: f2c calling conventions require that (scalar)
2902 default REAL functions return the C type double instead. f2c
2903 compatibility is only an issue with functions that don't
2904 require an explicit interface, as only these could be
2905 implemented in Fortran 77. */
2906 sym->ts.kind = gfc_default_double_kind;
2907 type = gfc_typenode_for_spec (&sym->ts);
2908 sym->ts.kind = gfc_default_real_kind;
2909 }
2910 else if (sym->result && sym->result->attr.proc_pointer)
2911 /* Procedure pointer return values. */
2912 {
2913 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2914 {
2915 /* Unset proc_pointer as gfc_get_function_type
2916 is called recursively. */
2917 sym->result->attr.proc_pointer = 0;
2918 type = build_pointer_type (gfc_get_function_type (sym->result));
2919 sym->result->attr.proc_pointer = 1;
2920 }
2921 else
2922 type = gfc_sym_type (sym->result);
2923 }
2924 else
2925 type = gfc_sym_type (sym);
2926
2927 if (is_varargs)
2928 type = build_varargs_function_type_vec (type, typelist);
2929 else
2930 type = build_function_type_vec (type, typelist);
2931 type = create_fn_spec (sym, type);
2932
2933 return type;
2934 }
2935 \f
2936 /* Language hooks for middle-end access to type nodes. */
2937
2938 /* Return an integer type with BITS bits of precision,
2939 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2940
2941 tree
2942 gfc_type_for_size (unsigned bits, int unsignedp)
2943 {
2944 if (!unsignedp)
2945 {
2946 int i;
2947 for (i = 0; i <= MAX_INT_KINDS; ++i)
2948 {
2949 tree type = gfc_integer_types[i];
2950 if (type && bits == TYPE_PRECISION (type))
2951 return type;
2952 }
2953
2954 /* Handle TImode as a special case because it is used by some backends
2955 (e.g. ARM) even though it is not available for normal use. */
2956 #if HOST_BITS_PER_WIDE_INT >= 64
2957 if (bits == TYPE_PRECISION (intTI_type_node))
2958 return intTI_type_node;
2959 #endif
2960
2961 if (bits <= TYPE_PRECISION (intQI_type_node))
2962 return intQI_type_node;
2963 if (bits <= TYPE_PRECISION (intHI_type_node))
2964 return intHI_type_node;
2965 if (bits <= TYPE_PRECISION (intSI_type_node))
2966 return intSI_type_node;
2967 if (bits <= TYPE_PRECISION (intDI_type_node))
2968 return intDI_type_node;
2969 if (bits <= TYPE_PRECISION (intTI_type_node))
2970 return intTI_type_node;
2971 }
2972 else
2973 {
2974 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2975 return unsigned_intQI_type_node;
2976 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2977 return unsigned_intHI_type_node;
2978 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2979 return unsigned_intSI_type_node;
2980 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2981 return unsigned_intDI_type_node;
2982 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2983 return unsigned_intTI_type_node;
2984 }
2985
2986 return NULL_TREE;
2987 }
2988
2989 /* Return a data type that has machine mode MODE. If the mode is an
2990 integer, then UNSIGNEDP selects between signed and unsigned types. */
2991
2992 tree
2993 gfc_type_for_mode (machine_mode mode, int unsignedp)
2994 {
2995 int i;
2996 tree *base;
2997
2998 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2999 base = gfc_real_types;
3000 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
3001 base = gfc_complex_types;
3002 else if (SCALAR_INT_MODE_P (mode))
3003 {
3004 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
3005 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
3006 }
3007 else if (VECTOR_MODE_P (mode))
3008 {
3009 machine_mode inner_mode = GET_MODE_INNER (mode);
3010 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
3011 if (inner_type != NULL_TREE)
3012 return build_vector_type_for_mode (inner_type, mode);
3013 return NULL_TREE;
3014 }
3015 else
3016 return NULL_TREE;
3017
3018 for (i = 0; i <= MAX_REAL_KINDS; ++i)
3019 {
3020 tree type = base[i];
3021 if (type && mode == TYPE_MODE (type))
3022 return type;
3023 }
3024
3025 return NULL_TREE;
3026 }
3027
3028 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
3029 in that case. */
3030
3031 bool
3032 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
3033 {
3034 int rank, dim;
3035 bool indirect = false;
3036 tree etype, ptype, field, t, base_decl;
3037 tree data_off, dim_off, dim_size, elem_size;
3038 tree lower_suboff, upper_suboff, stride_suboff;
3039
3040 if (! GFC_DESCRIPTOR_TYPE_P (type))
3041 {
3042 if (! POINTER_TYPE_P (type))
3043 return false;
3044 type = TREE_TYPE (type);
3045 if (! GFC_DESCRIPTOR_TYPE_P (type))
3046 return false;
3047 indirect = true;
3048 }
3049
3050 rank = GFC_TYPE_ARRAY_RANK (type);
3051 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3052 return false;
3053
3054 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3055 gcc_assert (POINTER_TYPE_P (etype));
3056 etype = TREE_TYPE (etype);
3057
3058 /* If the type is not a scalar coarray. */
3059 if (TREE_CODE (etype) == ARRAY_TYPE)
3060 etype = TREE_TYPE (etype);
3061
3062 /* Can't handle variable sized elements yet. */
3063 if (int_size_in_bytes (etype) <= 0)
3064 return false;
3065 /* Nor non-constant lower bounds in assumed shape arrays. */
3066 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3067 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3068 {
3069 for (dim = 0; dim < rank; dim++)
3070 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3071 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3072 return false;
3073 }
3074
3075 memset (info, '\0', sizeof (*info));
3076 info->ndimensions = rank;
3077 info->ordering = array_descr_ordering_column_major;
3078 info->element_type = etype;
3079 ptype = build_pointer_type (gfc_array_index_type);
3080 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3081 if (!base_decl)
3082 {
3083 base_decl = make_node (DEBUG_EXPR_DECL);
3084 DECL_ARTIFICIAL (base_decl) = 1;
3085 TREE_TYPE (base_decl) = indirect ? build_pointer_type (ptype) : ptype;
3086 DECL_MODE (base_decl) = TYPE_MODE (TREE_TYPE (base_decl));
3087 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3088 }
3089 info->base_decl = base_decl;
3090 if (indirect)
3091 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3092
3093 if (GFC_TYPE_ARRAY_SPAN (type))
3094 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3095 else
3096 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3097 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3098 data_off = byte_position (field);
3099 field = DECL_CHAIN (field);
3100 field = DECL_CHAIN (field);
3101 field = DECL_CHAIN (field);
3102 dim_off = byte_position (field);
3103 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3104 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3105 stride_suboff = byte_position (field);
3106 field = DECL_CHAIN (field);
3107 lower_suboff = byte_position (field);
3108 field = DECL_CHAIN (field);
3109 upper_suboff = byte_position (field);
3110
3111 t = base_decl;
3112 if (!integer_zerop (data_off))
3113 t = fold_build_pointer_plus (t, data_off);
3114 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3115 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3116 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3117 info->allocated = build2 (NE_EXPR, boolean_type_node,
3118 info->data_location, null_pointer_node);
3119 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3120 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3121 info->associated = build2 (NE_EXPR, boolean_type_node,
3122 info->data_location, null_pointer_node);
3123
3124 for (dim = 0; dim < rank; dim++)
3125 {
3126 t = fold_build_pointer_plus (base_decl,
3127 size_binop (PLUS_EXPR,
3128 dim_off, lower_suboff));
3129 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3130 info->dimen[dim].lower_bound = t;
3131 t = fold_build_pointer_plus (base_decl,
3132 size_binop (PLUS_EXPR,
3133 dim_off, upper_suboff));
3134 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3135 info->dimen[dim].upper_bound = t;
3136 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3137 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3138 {
3139 /* Assumed shape arrays have known lower bounds. */
3140 info->dimen[dim].upper_bound
3141 = build2 (MINUS_EXPR, gfc_array_index_type,
3142 info->dimen[dim].upper_bound,
3143 info->dimen[dim].lower_bound);
3144 info->dimen[dim].lower_bound
3145 = fold_convert (gfc_array_index_type,
3146 GFC_TYPE_ARRAY_LBOUND (type, dim));
3147 info->dimen[dim].upper_bound
3148 = build2 (PLUS_EXPR, gfc_array_index_type,
3149 info->dimen[dim].lower_bound,
3150 info->dimen[dim].upper_bound);
3151 }
3152 t = fold_build_pointer_plus (base_decl,
3153 size_binop (PLUS_EXPR,
3154 dim_off, stride_suboff));
3155 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3156 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3157 info->dimen[dim].stride = t;
3158 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3159 }
3160
3161 return true;
3162 }
3163
3164
3165 /* Create a type to handle vector subscripts for coarray library calls. It
3166 has the form:
3167 struct caf_vector_t {
3168 size_t nvec; // size of the vector
3169 union {
3170 struct {
3171 void *vector;
3172 int kind;
3173 } v;
3174 struct {
3175 ptrdiff_t lower_bound;
3176 ptrdiff_t upper_bound;
3177 ptrdiff_t stride;
3178 } triplet;
3179 } u;
3180 }
3181 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3182 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3183
3184 tree
3185 gfc_get_caf_vector_type (int dim)
3186 {
3187 static tree vector_types[GFC_MAX_DIMENSIONS];
3188 static tree vec_type = NULL_TREE;
3189 tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3190
3191 if (vector_types[dim-1] != NULL_TREE)
3192 return vector_types[dim-1];
3193
3194 if (vec_type == NULL_TREE)
3195 {
3196 chain = 0;
3197 vect_struct_type = make_node (RECORD_TYPE);
3198 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3199 get_identifier ("vector"),
3200 pvoid_type_node, &chain);
3201 TREE_NO_WARNING (tmp) = 1;
3202 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3203 get_identifier ("kind"),
3204 integer_type_node, &chain);
3205 TREE_NO_WARNING (tmp) = 1;
3206 gfc_finish_type (vect_struct_type);
3207
3208 chain = 0;
3209 triplet_struct_type = make_node (RECORD_TYPE);
3210 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3211 get_identifier ("lower_bound"),
3212 gfc_array_index_type, &chain);
3213 TREE_NO_WARNING (tmp) = 1;
3214 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3215 get_identifier ("upper_bound"),
3216 gfc_array_index_type, &chain);
3217 TREE_NO_WARNING (tmp) = 1;
3218 tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3219 gfc_array_index_type, &chain);
3220 TREE_NO_WARNING (tmp) = 1;
3221 gfc_finish_type (triplet_struct_type);
3222
3223 chain = 0;
3224 union_type = make_node (UNION_TYPE);
3225 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3226 vect_struct_type, &chain);
3227 TREE_NO_WARNING (tmp) = 1;
3228 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3229 triplet_struct_type, &chain);
3230 TREE_NO_WARNING (tmp) = 1;
3231 gfc_finish_type (union_type);
3232
3233 chain = 0;
3234 vec_type = make_node (RECORD_TYPE);
3235 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3236 size_type_node, &chain);
3237 TREE_NO_WARNING (tmp) = 1;
3238 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3239 union_type, &chain);
3240 TREE_NO_WARNING (tmp) = 1;
3241 gfc_finish_type (vec_type);
3242 TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3243 }
3244
3245 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3246 gfc_rank_cst[dim-1]);
3247 vector_types[dim-1] = build_array_type (vec_type, tmp);
3248 return vector_types[dim-1];
3249 }
3250
3251 #include "gt-fortran-trans-types.h"