]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "stor-layout.h"
38 #include "stringpool.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 bool
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return true;
150 }
151
152 return false;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_FUNCTION(a,b,c,d) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_SUBROUTINE(a,b,c,d) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
350 c_interop_kinds_table[a].value = c;
351 #include "iso-c-binding.def"
352 }
353
354
355 /* Query the target to determine which machine modes are available for
356 computation. Choose KIND numbers for them. */
357
358 void
359 gfc_init_kinds (void)
360 {
361 unsigned int mode;
362 int i_index, r_index, kind;
363 bool saw_i4 = false, saw_i8 = false;
364 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
365
366 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
367 {
368 int kind, bitsize;
369
370 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
371 continue;
372
373 /* The middle end doesn't support constants larger than 2*HWI.
374 Perhaps the target hook shouldn't have accepted these either,
375 but just to be safe... */
376 bitsize = GET_MODE_BITSIZE (mode);
377 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
378 continue;
379
380 gcc_assert (i_index != MAX_INT_KINDS);
381
382 /* Let the kind equal the bit size divided by 8. This insulates the
383 programmer from the underlying byte size. */
384 kind = bitsize / 8;
385
386 if (kind == 4)
387 saw_i4 = true;
388 if (kind == 8)
389 saw_i8 = true;
390
391 gfc_integer_kinds[i_index].kind = kind;
392 gfc_integer_kinds[i_index].radix = 2;
393 gfc_integer_kinds[i_index].digits = bitsize - 1;
394 gfc_integer_kinds[i_index].bit_size = bitsize;
395
396 gfc_logical_kinds[i_index].kind = kind;
397 gfc_logical_kinds[i_index].bit_size = bitsize;
398
399 i_index += 1;
400 }
401
402 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
403 used for large file access. */
404
405 if (saw_i8)
406 gfc_intio_kind = 8;
407 else
408 gfc_intio_kind = 4;
409
410 /* If we do not at least have kind = 4, everything is pointless. */
411 gcc_assert(saw_i4);
412
413 /* Set the maximum integer kind. Used with at least BOZ constants. */
414 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
415
416 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
417 {
418 const struct real_format *fmt =
419 REAL_MODE_FORMAT ((enum machine_mode) mode);
420 int kind;
421
422 if (fmt == NULL)
423 continue;
424 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
425 continue;
426
427 /* Only let float, double, long double and __float128 go through.
428 Runtime support for others is not provided, so they would be
429 useless. */
430 if (mode != TYPE_MODE (float_type_node)
431 && (mode != TYPE_MODE (double_type_node))
432 && (mode != TYPE_MODE (long_double_type_node))
433 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
434 && (mode != TFmode)
435 #endif
436 )
437 continue;
438
439 /* Let the kind equal the precision divided by 8, rounding up. Again,
440 this insulates the programmer from the underlying byte size.
441
442 Also, it effectively deals with IEEE extended formats. There, the
443 total size of the type may equal 16, but it's got 6 bytes of padding
444 and the increased size can get in the way of a real IEEE quad format
445 which may also be supported by the target.
446
447 We round up so as to handle IA-64 __floatreg (RFmode), which is an
448 82 bit type. Not to be confused with __float80 (XFmode), which is
449 an 80 bit type also supported by IA-64. So XFmode should come out
450 to be kind=10, and RFmode should come out to be kind=11. Egads. */
451
452 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
453
454 if (kind == 4)
455 saw_r4 = true;
456 if (kind == 8)
457 saw_r8 = true;
458 if (kind == 10)
459 saw_r10 = true;
460 if (kind == 16)
461 saw_r16 = true;
462
463 /* Careful we don't stumble a weird internal mode. */
464 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
465 /* Or have too many modes for the allocated space. */
466 gcc_assert (r_index != MAX_REAL_KINDS);
467
468 gfc_real_kinds[r_index].kind = kind;
469 gfc_real_kinds[r_index].radix = fmt->b;
470 gfc_real_kinds[r_index].digits = fmt->p;
471 gfc_real_kinds[r_index].min_exponent = fmt->emin;
472 gfc_real_kinds[r_index].max_exponent = fmt->emax;
473 if (fmt->pnan < fmt->p)
474 /* This is an IBM extended double format (or the MIPS variant)
475 made up of two IEEE doubles. The value of the long double is
476 the sum of the values of the two parts. The most significant
477 part is required to be the value of the long double rounded
478 to the nearest double. If we use emax of 1024 then we can't
479 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
480 rounding will make the most significant part overflow. */
481 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
482 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
483 r_index += 1;
484 }
485
486 /* Choose the default integer kind. We choose 4 unless the user directs us
487 otherwise. Even if the user specified that the default integer kind is 8,
488 the numeric storage size is not 64 bits. In this case, a warning will be
489 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
490
491 gfc_numeric_storage_size = 4 * 8;
492
493 if (gfc_option.flag_default_integer)
494 {
495 if (!saw_i8)
496 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
497
498 gfc_default_integer_kind = 8;
499
500 }
501 else if (gfc_option.flag_integer4_kind == 8)
502 {
503 if (!saw_i8)
504 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
505
506 gfc_default_integer_kind = 8;
507 }
508 else if (saw_i4)
509 {
510 gfc_default_integer_kind = 4;
511 }
512 else
513 {
514 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
515 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
516 }
517
518 /* Choose the default real kind. Again, we choose 4 when possible. */
519 if (gfc_option.flag_default_real)
520 {
521 if (!saw_r8)
522 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
523
524 gfc_default_real_kind = 8;
525 }
526 else if (gfc_option.flag_real4_kind == 8)
527 {
528 if (!saw_r8)
529 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
530
531 gfc_default_real_kind = 8;
532 }
533 else if (gfc_option.flag_real4_kind == 10)
534 {
535 if (!saw_r10)
536 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
537
538 gfc_default_real_kind = 10;
539 }
540 else if (gfc_option.flag_real4_kind == 16)
541 {
542 if (!saw_r16)
543 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
544
545 gfc_default_real_kind = 16;
546 }
547 else if (saw_r4)
548 gfc_default_real_kind = 4;
549 else
550 gfc_default_real_kind = gfc_real_kinds[0].kind;
551
552 /* Choose the default double kind. If -fdefault-real and -fdefault-double
553 are specified, we use kind=8, if it's available. If -fdefault-real is
554 specified without -fdefault-double, we use kind=16, if it's available.
555 Otherwise we do not change anything. */
556 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
557 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
558
559 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
560 gfc_default_double_kind = 8;
561 else if (gfc_option.flag_default_real && saw_r16)
562 gfc_default_double_kind = 16;
563 else if (gfc_option.flag_real8_kind == 4)
564 {
565 if (!saw_r4)
566 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
567
568 gfc_default_double_kind = 4;
569 }
570 else if (gfc_option.flag_real8_kind == 10 )
571 {
572 if (!saw_r10)
573 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
574
575 gfc_default_double_kind = 10;
576 }
577 else if (gfc_option.flag_real8_kind == 16 )
578 {
579 if (!saw_r16)
580 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
581
582 gfc_default_double_kind = 16;
583 }
584 else if (saw_r4 && saw_r8)
585 gfc_default_double_kind = 8;
586 else
587 {
588 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
589 real ... occupies two contiguous numeric storage units.
590
591 Therefore we must be supplied a kind twice as large as we chose
592 for single precision. There are loopholes, in that double
593 precision must *occupy* two storage units, though it doesn't have
594 to *use* two storage units. Which means that you can make this
595 kind artificially wide by padding it. But at present there are
596 no GCC targets for which a two-word type does not exist, so we
597 just let gfc_validate_kind abort and tell us if something breaks. */
598
599 gfc_default_double_kind
600 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
601 }
602
603 /* The default logical kind is constrained to be the same as the
604 default integer kind. Similarly with complex and real. */
605 gfc_default_logical_kind = gfc_default_integer_kind;
606 gfc_default_complex_kind = gfc_default_real_kind;
607
608 /* We only have two character kinds: ASCII and UCS-4.
609 ASCII corresponds to a 8-bit integer type, if one is available.
610 UCS-4 corresponds to a 32-bit integer type, if one is available. */
611 i_index = 0;
612 if ((kind = get_int_kind_from_width (8)) > 0)
613 {
614 gfc_character_kinds[i_index].kind = kind;
615 gfc_character_kinds[i_index].bit_size = 8;
616 gfc_character_kinds[i_index].name = "ascii";
617 i_index++;
618 }
619 if ((kind = get_int_kind_from_width (32)) > 0)
620 {
621 gfc_character_kinds[i_index].kind = kind;
622 gfc_character_kinds[i_index].bit_size = 32;
623 gfc_character_kinds[i_index].name = "iso_10646";
624 i_index++;
625 }
626
627 /* Choose the smallest integer kind for our default character. */
628 gfc_default_character_kind = gfc_character_kinds[0].kind;
629 gfc_character_storage_size = gfc_default_character_kind * 8;
630
631 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
632
633 /* Pick a kind the same size as the C "int" type. */
634 gfc_c_int_kind = INT_TYPE_SIZE / 8;
635
636 /* Choose atomic kinds to match C's int. */
637 gfc_atomic_int_kind = gfc_c_int_kind;
638 gfc_atomic_logical_kind = gfc_c_int_kind;
639 }
640
641
642 /* Make sure that a valid kind is present. Returns an index into the
643 associated kinds array, -1 if the kind is not present. */
644
645 static int
646 validate_integer (int kind)
647 {
648 int i;
649
650 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
651 if (gfc_integer_kinds[i].kind == kind)
652 return i;
653
654 return -1;
655 }
656
657 static int
658 validate_real (int kind)
659 {
660 int i;
661
662 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
663 if (gfc_real_kinds[i].kind == kind)
664 return i;
665
666 return -1;
667 }
668
669 static int
670 validate_logical (int kind)
671 {
672 int i;
673
674 for (i = 0; gfc_logical_kinds[i].kind; i++)
675 if (gfc_logical_kinds[i].kind == kind)
676 return i;
677
678 return -1;
679 }
680
681 static int
682 validate_character (int kind)
683 {
684 int i;
685
686 for (i = 0; gfc_character_kinds[i].kind; i++)
687 if (gfc_character_kinds[i].kind == kind)
688 return i;
689
690 return -1;
691 }
692
693 /* Validate a kind given a basic type. The return value is the same
694 for the child functions, with -1 indicating nonexistence of the
695 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
696
697 int
698 gfc_validate_kind (bt type, int kind, bool may_fail)
699 {
700 int rc;
701
702 switch (type)
703 {
704 case BT_REAL: /* Fall through */
705 case BT_COMPLEX:
706 rc = validate_real (kind);
707 break;
708 case BT_INTEGER:
709 rc = validate_integer (kind);
710 break;
711 case BT_LOGICAL:
712 rc = validate_logical (kind);
713 break;
714 case BT_CHARACTER:
715 rc = validate_character (kind);
716 break;
717
718 default:
719 gfc_internal_error ("gfc_validate_kind(): Got bad type");
720 }
721
722 if (rc < 0 && !may_fail)
723 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
724
725 return rc;
726 }
727
728
729 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
730 Reuse common type nodes where possible. Recognize if the kind matches up
731 with a C type. This will be used later in determining which routines may
732 be scarfed from libm. */
733
734 static tree
735 gfc_build_int_type (gfc_integer_info *info)
736 {
737 int mode_precision = info->bit_size;
738
739 if (mode_precision == CHAR_TYPE_SIZE)
740 info->c_char = 1;
741 if (mode_precision == SHORT_TYPE_SIZE)
742 info->c_short = 1;
743 if (mode_precision == INT_TYPE_SIZE)
744 info->c_int = 1;
745 if (mode_precision == LONG_TYPE_SIZE)
746 info->c_long = 1;
747 if (mode_precision == LONG_LONG_TYPE_SIZE)
748 info->c_long_long = 1;
749
750 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
751 return intQI_type_node;
752 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
753 return intHI_type_node;
754 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
755 return intSI_type_node;
756 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
757 return intDI_type_node;
758 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
759 return intTI_type_node;
760
761 return make_signed_type (mode_precision);
762 }
763
764 tree
765 gfc_build_uint_type (int size)
766 {
767 if (size == CHAR_TYPE_SIZE)
768 return unsigned_char_type_node;
769 if (size == SHORT_TYPE_SIZE)
770 return short_unsigned_type_node;
771 if (size == INT_TYPE_SIZE)
772 return unsigned_type_node;
773 if (size == LONG_TYPE_SIZE)
774 return long_unsigned_type_node;
775 if (size == LONG_LONG_TYPE_SIZE)
776 return long_long_unsigned_type_node;
777
778 return make_unsigned_type (size);
779 }
780
781
782 static tree
783 gfc_build_real_type (gfc_real_info *info)
784 {
785 int mode_precision = info->mode_precision;
786 tree new_type;
787
788 if (mode_precision == FLOAT_TYPE_SIZE)
789 info->c_float = 1;
790 if (mode_precision == DOUBLE_TYPE_SIZE)
791 info->c_double = 1;
792 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
793 info->c_long_double = 1;
794 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
795 {
796 info->c_float128 = 1;
797 gfc_real16_is_float128 = true;
798 }
799
800 if (TYPE_PRECISION (float_type_node) == mode_precision)
801 return float_type_node;
802 if (TYPE_PRECISION (double_type_node) == mode_precision)
803 return double_type_node;
804 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
805 return long_double_type_node;
806
807 new_type = make_node (REAL_TYPE);
808 TYPE_PRECISION (new_type) = mode_precision;
809 layout_type (new_type);
810 return new_type;
811 }
812
813 static tree
814 gfc_build_complex_type (tree scalar_type)
815 {
816 tree new_type;
817
818 if (scalar_type == NULL)
819 return NULL;
820 if (scalar_type == float_type_node)
821 return complex_float_type_node;
822 if (scalar_type == double_type_node)
823 return complex_double_type_node;
824 if (scalar_type == long_double_type_node)
825 return complex_long_double_type_node;
826
827 new_type = make_node (COMPLEX_TYPE);
828 TREE_TYPE (new_type) = scalar_type;
829 layout_type (new_type);
830 return new_type;
831 }
832
833 static tree
834 gfc_build_logical_type (gfc_logical_info *info)
835 {
836 int bit_size = info->bit_size;
837 tree new_type;
838
839 if (bit_size == BOOL_TYPE_SIZE)
840 {
841 info->c_bool = 1;
842 return boolean_type_node;
843 }
844
845 new_type = make_unsigned_type (bit_size);
846 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
847 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
848 TYPE_PRECISION (new_type) = 1;
849
850 return new_type;
851 }
852
853
854 /* Create the backend type nodes. We map them to their
855 equivalent C type, at least for now. We also give
856 names to the types here, and we push them in the
857 global binding level context.*/
858
859 void
860 gfc_init_types (void)
861 {
862 char name_buf[18];
863 int index;
864 tree type;
865 unsigned n;
866 unsigned HOST_WIDE_INT hi;
867 unsigned HOST_WIDE_INT lo;
868
869 /* Create and name the types. */
870 #define PUSH_TYPE(name, node) \
871 pushdecl (build_decl (input_location, \
872 TYPE_DECL, get_identifier (name), node))
873
874 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
875 {
876 type = gfc_build_int_type (&gfc_integer_kinds[index]);
877 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
878 if (TYPE_STRING_FLAG (type))
879 type = make_signed_type (gfc_integer_kinds[index].bit_size);
880 gfc_integer_types[index] = type;
881 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
882 gfc_integer_kinds[index].kind);
883 PUSH_TYPE (name_buf, type);
884 }
885
886 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
887 {
888 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
889 gfc_logical_types[index] = type;
890 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
891 gfc_logical_kinds[index].kind);
892 PUSH_TYPE (name_buf, type);
893 }
894
895 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
896 {
897 type = gfc_build_real_type (&gfc_real_kinds[index]);
898 gfc_real_types[index] = type;
899 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
900 gfc_real_kinds[index].kind);
901 PUSH_TYPE (name_buf, type);
902
903 if (gfc_real_kinds[index].c_float128)
904 float128_type_node = type;
905
906 type = gfc_build_complex_type (type);
907 gfc_complex_types[index] = type;
908 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
909 gfc_real_kinds[index].kind);
910 PUSH_TYPE (name_buf, type);
911
912 if (gfc_real_kinds[index].c_float128)
913 complex_float128_type_node = type;
914 }
915
916 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
917 {
918 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
919 type = build_qualified_type (type, TYPE_UNQUALIFIED);
920 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
921 gfc_character_kinds[index].kind);
922 PUSH_TYPE (name_buf, type);
923 gfc_character_types[index] = type;
924 gfc_pcharacter_types[index] = build_pointer_type (type);
925 }
926 gfc_character1_type_node = gfc_character_types[0];
927
928 PUSH_TYPE ("byte", unsigned_char_type_node);
929 PUSH_TYPE ("void", void_type_node);
930
931 /* DBX debugging output gets upset if these aren't set. */
932 if (!TYPE_NAME (integer_type_node))
933 PUSH_TYPE ("c_integer", integer_type_node);
934 if (!TYPE_NAME (char_type_node))
935 PUSH_TYPE ("c_char", char_type_node);
936
937 #undef PUSH_TYPE
938
939 pvoid_type_node = build_pointer_type (void_type_node);
940 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
941 ppvoid_type_node = build_pointer_type (pvoid_type_node);
942 pchar_type_node = build_pointer_type (gfc_character1_type_node);
943 pfunc_type_node
944 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
945
946 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
947 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
948 since this function is called before gfc_init_constants. */
949 gfc_array_range_type
950 = build_range_type (gfc_array_index_type,
951 build_int_cst (gfc_array_index_type, 0),
952 NULL_TREE);
953
954 /* The maximum array element size that can be handled is determined
955 by the number of bits available to store this field in the array
956 descriptor. */
957
958 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
959 lo = ~ (unsigned HOST_WIDE_INT) 0;
960 if (n > HOST_BITS_PER_WIDE_INT)
961 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
962 else
963 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
964 gfc_max_array_element_size
965 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
966
967 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
968 boolean_true_node = build_int_cst (boolean_type_node, 1);
969 boolean_false_node = build_int_cst (boolean_type_node, 0);
970
971 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
972 gfc_charlen_int_kind = 4;
973 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
974 }
975
976 /* Get the type node for the given type and kind. */
977
978 tree
979 gfc_get_int_type (int kind)
980 {
981 int index = gfc_validate_kind (BT_INTEGER, kind, true);
982 return index < 0 ? 0 : gfc_integer_types[index];
983 }
984
985 tree
986 gfc_get_real_type (int kind)
987 {
988 int index = gfc_validate_kind (BT_REAL, kind, true);
989 return index < 0 ? 0 : gfc_real_types[index];
990 }
991
992 tree
993 gfc_get_complex_type (int kind)
994 {
995 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
996 return index < 0 ? 0 : gfc_complex_types[index];
997 }
998
999 tree
1000 gfc_get_logical_type (int kind)
1001 {
1002 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1003 return index < 0 ? 0 : gfc_logical_types[index];
1004 }
1005
1006 tree
1007 gfc_get_char_type (int kind)
1008 {
1009 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1010 return index < 0 ? 0 : gfc_character_types[index];
1011 }
1012
1013 tree
1014 gfc_get_pchar_type (int kind)
1015 {
1016 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1017 return index < 0 ? 0 : gfc_pcharacter_types[index];
1018 }
1019
1020 \f
1021 /* Create a character type with the given kind and length. */
1022
1023 tree
1024 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1025 {
1026 tree bounds, type;
1027
1028 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1029 type = build_array_type (eltype, bounds);
1030 TYPE_STRING_FLAG (type) = 1;
1031
1032 return type;
1033 }
1034
1035 tree
1036 gfc_get_character_type_len (int kind, tree len)
1037 {
1038 gfc_validate_kind (BT_CHARACTER, kind, false);
1039 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1040 }
1041
1042
1043 /* Get a type node for a character kind. */
1044
1045 tree
1046 gfc_get_character_type (int kind, gfc_charlen * cl)
1047 {
1048 tree len;
1049
1050 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1051
1052 return gfc_get_character_type_len (kind, len);
1053 }
1054 \f
1055 /* Covert a basic type. This will be an array for character types. */
1056
1057 tree
1058 gfc_typenode_for_spec (gfc_typespec * spec)
1059 {
1060 tree basetype;
1061
1062 switch (spec->type)
1063 {
1064 case BT_UNKNOWN:
1065 gcc_unreachable ();
1066
1067 case BT_INTEGER:
1068 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1069 has been resolved. This is done so we can convert C_PTR and
1070 C_FUNPTR to simple variables that get translated to (void *). */
1071 if (spec->f90_type == BT_VOID)
1072 {
1073 if (spec->u.derived
1074 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1075 basetype = ptr_type_node;
1076 else
1077 basetype = pfunc_type_node;
1078 }
1079 else
1080 basetype = gfc_get_int_type (spec->kind);
1081 break;
1082
1083 case BT_REAL:
1084 basetype = gfc_get_real_type (spec->kind);
1085 break;
1086
1087 case BT_COMPLEX:
1088 basetype = gfc_get_complex_type (spec->kind);
1089 break;
1090
1091 case BT_LOGICAL:
1092 basetype = gfc_get_logical_type (spec->kind);
1093 break;
1094
1095 case BT_CHARACTER:
1096 #if 0
1097 if (spec->deferred)
1098 basetype = gfc_get_character_type (spec->kind, NULL);
1099 else
1100 #endif
1101 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1102 break;
1103
1104 case BT_HOLLERITH:
1105 /* Since this cannot be used, return a length one character. */
1106 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1107 gfc_index_one_node);
1108 break;
1109
1110 case BT_DERIVED:
1111 case BT_CLASS:
1112 basetype = gfc_get_derived_type (spec->u.derived);
1113
1114 if (spec->type == BT_CLASS)
1115 GFC_CLASS_TYPE_P (basetype) = 1;
1116
1117 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1118 type and kind to fit a (void *) and the basetype returned was a
1119 ptr_type_node. We need to pass up this new information to the
1120 symbol that was declared of type C_PTR or C_FUNPTR. */
1121 if (spec->u.derived->ts.f90_type == BT_VOID)
1122 {
1123 spec->type = BT_INTEGER;
1124 spec->kind = gfc_index_integer_kind;
1125 spec->f90_type = BT_VOID;
1126 }
1127 break;
1128 case BT_VOID:
1129 case BT_ASSUMED:
1130 /* This is for the second arg to c_f_pointer and c_f_procpointer
1131 of the iso_c_binding module, to accept any ptr type. */
1132 basetype = ptr_type_node;
1133 if (spec->f90_type == BT_VOID)
1134 {
1135 if (spec->u.derived
1136 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1137 basetype = ptr_type_node;
1138 else
1139 basetype = pfunc_type_node;
1140 }
1141 break;
1142 default:
1143 gcc_unreachable ();
1144 }
1145 return basetype;
1146 }
1147 \f
1148 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1149
1150 static tree
1151 gfc_conv_array_bound (gfc_expr * expr)
1152 {
1153 /* If expr is an integer constant, return that. */
1154 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1155 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1156
1157 /* Otherwise return NULL. */
1158 return NULL_TREE;
1159 }
1160 \f
1161 tree
1162 gfc_get_element_type (tree type)
1163 {
1164 tree element;
1165
1166 if (GFC_ARRAY_TYPE_P (type))
1167 {
1168 if (TREE_CODE (type) == POINTER_TYPE)
1169 type = TREE_TYPE (type);
1170 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1171 {
1172 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1173 element = type;
1174 }
1175 else
1176 {
1177 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1178 element = TREE_TYPE (type);
1179 }
1180 }
1181 else
1182 {
1183 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1184 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1185
1186 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1187 element = TREE_TYPE (element);
1188
1189 /* For arrays, which are not scalar coarrays. */
1190 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1191 element = TREE_TYPE (element);
1192 }
1193
1194 return element;
1195 }
1196 \f
1197 /* Build an array. This function is called from gfc_sym_type().
1198 Actually returns array descriptor type.
1199
1200 Format of array descriptors is as follows:
1201
1202 struct gfc_array_descriptor
1203 {
1204 array *data
1205 index offset;
1206 index dtype;
1207 struct descriptor_dimension dimension[N_DIM];
1208 }
1209
1210 struct descriptor_dimension
1211 {
1212 index stride;
1213 index lbound;
1214 index ubound;
1215 }
1216
1217 Translation code should use gfc_conv_descriptor_* rather than
1218 accessing the descriptor directly. Any changes to the array
1219 descriptor type will require changes in gfc_conv_descriptor_* and
1220 gfc_build_array_initializer.
1221
1222 This is represented internally as a RECORD_TYPE. The index nodes
1223 are gfc_array_index_type and the data node is a pointer to the
1224 data. See below for the handling of character types.
1225
1226 The dtype member is formatted as follows:
1227 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1228 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1229 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1230
1231 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1232 this generated poor code for assumed/deferred size arrays. These
1233 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1234 of the GENERIC grammar. Also, there is no way to explicitly set
1235 the array stride, so all data must be packed(1). I've tried to
1236 mark all the functions which would require modification with a GCC
1237 ARRAYS comment.
1238
1239 The data component points to the first element in the array. The
1240 offset field is the position of the origin of the array (i.e. element
1241 (0, 0 ...)). This may be outside the bounds of the array.
1242
1243 An element is accessed by
1244 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1245 This gives good performance as the computation does not involve the
1246 bounds of the array. For packed arrays, this is optimized further
1247 by substituting the known strides.
1248
1249 This system has one problem: all array bounds must be within 2^31
1250 elements of the origin (2^63 on 64-bit machines). For example
1251 integer, dimension (80000:90000, 80000:90000, 2) :: array
1252 may not work properly on 32-bit machines because 80000*80000 >
1253 2^31, so the calculation for stride2 would overflow. This may
1254 still work, but I haven't checked, and it relies on the overflow
1255 doing the right thing.
1256
1257 The way to fix this problem is to access elements as follows:
1258 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1259 Obviously this is much slower. I will make this a compile time
1260 option, something like -fsmall-array-offsets. Mixing code compiled
1261 with and without this switch will work.
1262
1263 (1) This can be worked around by modifying the upper bound of the
1264 previous dimension. This requires extra fields in the descriptor
1265 (both real_ubound and fake_ubound). */
1266
1267
1268 /* Returns true if the array sym does not require a descriptor. */
1269
1270 int
1271 gfc_is_nodesc_array (gfc_symbol * sym)
1272 {
1273 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1274
1275 /* We only want local arrays. */
1276 if (sym->attr.pointer || sym->attr.allocatable)
1277 return 0;
1278
1279 /* We want a descriptor for associate-name arrays that do not have an
1280 explicitly known shape already. */
1281 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1282 return 0;
1283
1284 if (sym->attr.dummy)
1285 return sym->as->type != AS_ASSUMED_SHAPE
1286 && sym->as->type != AS_ASSUMED_RANK;
1287
1288 if (sym->attr.result || sym->attr.function)
1289 return 0;
1290
1291 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1292
1293 return 1;
1294 }
1295
1296
1297 /* Create an array descriptor type. */
1298
1299 static tree
1300 gfc_build_array_type (tree type, gfc_array_spec * as,
1301 enum gfc_array_kind akind, bool restricted,
1302 bool contiguous)
1303 {
1304 tree lbound[GFC_MAX_DIMENSIONS];
1305 tree ubound[GFC_MAX_DIMENSIONS];
1306 int n;
1307
1308 if (as->type == AS_ASSUMED_RANK)
1309 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1310 {
1311 lbound[n] = NULL_TREE;
1312 ubound[n] = NULL_TREE;
1313 }
1314
1315 for (n = 0; n < as->rank; n++)
1316 {
1317 /* Create expressions for the known bounds of the array. */
1318 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1319 lbound[n] = gfc_index_one_node;
1320 else
1321 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1322 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1323 }
1324
1325 for (n = as->rank; n < as->rank + as->corank; n++)
1326 {
1327 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1328 lbound[n] = gfc_index_one_node;
1329 else
1330 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1331
1332 if (n < as->rank + as->corank - 1)
1333 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1334 }
1335
1336 if (as->type == AS_ASSUMED_SHAPE)
1337 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1338 : GFC_ARRAY_ASSUMED_SHAPE;
1339 else if (as->type == AS_ASSUMED_RANK)
1340 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1341 : GFC_ARRAY_ASSUMED_RANK;
1342 return gfc_get_array_type_bounds (type, as->rank == -1
1343 ? GFC_MAX_DIMENSIONS : as->rank,
1344 as->corank, lbound,
1345 ubound, 0, akind, restricted);
1346 }
1347 \f
1348 /* Returns the struct descriptor_dimension type. */
1349
1350 static tree
1351 gfc_get_desc_dim_type (void)
1352 {
1353 tree type;
1354 tree decl, *chain = NULL;
1355
1356 if (gfc_desc_dim_type)
1357 return gfc_desc_dim_type;
1358
1359 /* Build the type node. */
1360 type = make_node (RECORD_TYPE);
1361
1362 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1363 TYPE_PACKED (type) = 1;
1364
1365 /* Consists of the stride, lbound and ubound members. */
1366 decl = gfc_add_field_to_struct_1 (type,
1367 get_identifier ("stride"),
1368 gfc_array_index_type, &chain);
1369 TREE_NO_WARNING (decl) = 1;
1370
1371 decl = gfc_add_field_to_struct_1 (type,
1372 get_identifier ("lbound"),
1373 gfc_array_index_type, &chain);
1374 TREE_NO_WARNING (decl) = 1;
1375
1376 decl = gfc_add_field_to_struct_1 (type,
1377 get_identifier ("ubound"),
1378 gfc_array_index_type, &chain);
1379 TREE_NO_WARNING (decl) = 1;
1380
1381 /* Finish off the type. */
1382 gfc_finish_type (type);
1383 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1384
1385 gfc_desc_dim_type = type;
1386 return type;
1387 }
1388
1389
1390 /* Return the DTYPE for an array. This describes the type and type parameters
1391 of the array. */
1392 /* TODO: Only call this when the value is actually used, and make all the
1393 unknown cases abort. */
1394
1395 tree
1396 gfc_get_dtype (tree type)
1397 {
1398 tree size;
1399 int n;
1400 HOST_WIDE_INT i;
1401 tree tmp;
1402 tree dtype;
1403 tree etype;
1404 int rank;
1405
1406 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1407
1408 if (GFC_TYPE_ARRAY_DTYPE (type))
1409 return GFC_TYPE_ARRAY_DTYPE (type);
1410
1411 rank = GFC_TYPE_ARRAY_RANK (type);
1412 etype = gfc_get_element_type (type);
1413
1414 switch (TREE_CODE (etype))
1415 {
1416 case INTEGER_TYPE:
1417 n = BT_INTEGER;
1418 break;
1419
1420 case BOOLEAN_TYPE:
1421 n = BT_LOGICAL;
1422 break;
1423
1424 case REAL_TYPE:
1425 n = BT_REAL;
1426 break;
1427
1428 case COMPLEX_TYPE:
1429 n = BT_COMPLEX;
1430 break;
1431
1432 /* We will never have arrays of arrays. */
1433 case RECORD_TYPE:
1434 n = BT_DERIVED;
1435 break;
1436
1437 case ARRAY_TYPE:
1438 n = BT_CHARACTER;
1439 break;
1440
1441 case POINTER_TYPE:
1442 n = BT_ASSUMED;
1443 break;
1444
1445 default:
1446 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1447 /* We can strange array types for temporary arrays. */
1448 return gfc_index_zero_node;
1449 }
1450
1451 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1452 size = TYPE_SIZE_UNIT (etype);
1453
1454 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1455 if (size && INTEGER_CST_P (size))
1456 {
1457 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1458 gfc_fatal_error ("Array element size too big at %C");
1459
1460 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1461 }
1462 dtype = build_int_cst (gfc_array_index_type, i);
1463
1464 if (size && !INTEGER_CST_P (size))
1465 {
1466 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1467 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1468 gfc_array_index_type,
1469 fold_convert (gfc_array_index_type, size), tmp);
1470 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1471 tmp, dtype);
1472 }
1473 /* If we don't know the size we leave it as zero. This should never happen
1474 for anything that is actually used. */
1475 /* TODO: Check this is actually true, particularly when repacking
1476 assumed size parameters. */
1477
1478 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1479 return dtype;
1480 }
1481
1482
1483 /* Build an array type for use without a descriptor, packed according
1484 to the value of PACKED. */
1485
1486 tree
1487 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1488 bool restricted)
1489 {
1490 tree range;
1491 tree type;
1492 tree tmp;
1493 int n;
1494 int known_stride;
1495 int known_offset;
1496 mpz_t offset;
1497 mpz_t stride;
1498 mpz_t delta;
1499 gfc_expr *expr;
1500
1501 mpz_init_set_ui (offset, 0);
1502 mpz_init_set_ui (stride, 1);
1503 mpz_init (delta);
1504
1505 /* We don't use build_array_type because this does not include include
1506 lang-specific information (i.e. the bounds of the array) when checking
1507 for duplicates. */
1508 if (as->rank)
1509 type = make_node (ARRAY_TYPE);
1510 else
1511 type = build_variant_type_copy (etype);
1512
1513 GFC_ARRAY_TYPE_P (type) = 1;
1514 TYPE_LANG_SPECIFIC (type)
1515 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1516
1517 known_stride = (packed != PACKED_NO);
1518 known_offset = 1;
1519 for (n = 0; n < as->rank; n++)
1520 {
1521 /* Fill in the stride and bound components of the type. */
1522 if (known_stride)
1523 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1524 else
1525 tmp = NULL_TREE;
1526 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1527
1528 expr = as->lower[n];
1529 if (expr->expr_type == EXPR_CONSTANT)
1530 {
1531 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1532 gfc_index_integer_kind);
1533 }
1534 else
1535 {
1536 known_stride = 0;
1537 tmp = NULL_TREE;
1538 }
1539 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1540
1541 if (known_stride)
1542 {
1543 /* Calculate the offset. */
1544 mpz_mul (delta, stride, as->lower[n]->value.integer);
1545 mpz_sub (offset, offset, delta);
1546 }
1547 else
1548 known_offset = 0;
1549
1550 expr = as->upper[n];
1551 if (expr && expr->expr_type == EXPR_CONSTANT)
1552 {
1553 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1554 gfc_index_integer_kind);
1555 }
1556 else
1557 {
1558 tmp = NULL_TREE;
1559 known_stride = 0;
1560 }
1561 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1562
1563 if (known_stride)
1564 {
1565 /* Calculate the stride. */
1566 mpz_sub (delta, as->upper[n]->value.integer,
1567 as->lower[n]->value.integer);
1568 mpz_add_ui (delta, delta, 1);
1569 mpz_mul (stride, stride, delta);
1570 }
1571
1572 /* Only the first stride is known for partial packed arrays. */
1573 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1574 known_stride = 0;
1575 }
1576 for (n = as->rank; n < as->rank + as->corank; n++)
1577 {
1578 expr = as->lower[n];
1579 if (expr->expr_type == EXPR_CONSTANT)
1580 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1581 gfc_index_integer_kind);
1582 else
1583 tmp = NULL_TREE;
1584 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1585
1586 expr = as->upper[n];
1587 if (expr && expr->expr_type == EXPR_CONSTANT)
1588 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1589 gfc_index_integer_kind);
1590 else
1591 tmp = NULL_TREE;
1592 if (n < as->rank + as->corank - 1)
1593 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1594 }
1595
1596 if (known_offset)
1597 {
1598 GFC_TYPE_ARRAY_OFFSET (type) =
1599 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1600 }
1601 else
1602 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1603
1604 if (known_stride)
1605 {
1606 GFC_TYPE_ARRAY_SIZE (type) =
1607 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1608 }
1609 else
1610 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1611
1612 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1613 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1614 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1615 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1616 NULL_TREE);
1617 /* TODO: use main type if it is unbounded. */
1618 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1619 build_pointer_type (build_array_type (etype, range));
1620 if (restricted)
1621 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1622 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1623 TYPE_QUAL_RESTRICT);
1624
1625 if (as->rank == 0)
1626 {
1627 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1628 {
1629 type = build_pointer_type (type);
1630
1631 if (restricted)
1632 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1633
1634 GFC_ARRAY_TYPE_P (type) = 1;
1635 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1636 }
1637
1638 return type;
1639 }
1640
1641 if (known_stride)
1642 {
1643 mpz_sub_ui (stride, stride, 1);
1644 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1645 }
1646 else
1647 range = NULL_TREE;
1648
1649 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1650 TYPE_DOMAIN (type) = range;
1651
1652 build_pointer_type (etype);
1653 TREE_TYPE (type) = etype;
1654
1655 layout_type (type);
1656
1657 mpz_clear (offset);
1658 mpz_clear (stride);
1659 mpz_clear (delta);
1660
1661 /* Represent packed arrays as multi-dimensional if they have rank >
1662 1 and with proper bounds, instead of flat arrays. This makes for
1663 better debug info. */
1664 if (known_offset)
1665 {
1666 tree gtype = etype, rtype, type_decl;
1667
1668 for (n = as->rank - 1; n >= 0; n--)
1669 {
1670 rtype = build_range_type (gfc_array_index_type,
1671 GFC_TYPE_ARRAY_LBOUND (type, n),
1672 GFC_TYPE_ARRAY_UBOUND (type, n));
1673 gtype = build_array_type (gtype, rtype);
1674 }
1675 TYPE_NAME (type) = type_decl = build_decl (input_location,
1676 TYPE_DECL, NULL, gtype);
1677 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1678 }
1679
1680 if (packed != PACKED_STATIC || !known_stride
1681 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1682 {
1683 /* For dummy arrays and automatic (heap allocated) arrays we
1684 want a pointer to the array. */
1685 type = build_pointer_type (type);
1686 if (restricted)
1687 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1688 GFC_ARRAY_TYPE_P (type) = 1;
1689 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1690 }
1691 return type;
1692 }
1693
1694
1695 /* Return or create the base type for an array descriptor. */
1696
1697 static tree
1698 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1699 enum gfc_array_kind akind)
1700 {
1701 tree fat_type, decl, arraytype, *chain = NULL;
1702 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1703 int idx;
1704
1705 /* Assumed-rank array. */
1706 if (dimen == -1)
1707 dimen = GFC_MAX_DIMENSIONS;
1708
1709 idx = 2 * (codimen + dimen) + restricted;
1710
1711 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1712
1713 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1714 {
1715 if (gfc_array_descriptor_base_caf[idx])
1716 return gfc_array_descriptor_base_caf[idx];
1717 }
1718 else if (gfc_array_descriptor_base[idx])
1719 return gfc_array_descriptor_base[idx];
1720
1721 /* Build the type node. */
1722 fat_type = make_node (RECORD_TYPE);
1723
1724 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1725 TYPE_NAME (fat_type) = get_identifier (name);
1726 TYPE_NAMELESS (fat_type) = 1;
1727
1728 /* Add the data member as the first element of the descriptor. */
1729 decl = gfc_add_field_to_struct_1 (fat_type,
1730 get_identifier ("data"),
1731 (restricted
1732 ? prvoid_type_node
1733 : ptr_type_node), &chain);
1734
1735 /* Add the base component. */
1736 decl = gfc_add_field_to_struct_1 (fat_type,
1737 get_identifier ("offset"),
1738 gfc_array_index_type, &chain);
1739 TREE_NO_WARNING (decl) = 1;
1740
1741 /* Add the dtype component. */
1742 decl = gfc_add_field_to_struct_1 (fat_type,
1743 get_identifier ("dtype"),
1744 gfc_array_index_type, &chain);
1745 TREE_NO_WARNING (decl) = 1;
1746
1747 /* Build the array type for the stride and bound components. */
1748 if (dimen + codimen > 0)
1749 {
1750 arraytype =
1751 build_array_type (gfc_get_desc_dim_type (),
1752 build_range_type (gfc_array_index_type,
1753 gfc_index_zero_node,
1754 gfc_rank_cst[codimen + dimen - 1]));
1755
1756 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1757 arraytype, &chain);
1758 TREE_NO_WARNING (decl) = 1;
1759 }
1760
1761 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1762 && akind == GFC_ARRAY_ALLOCATABLE)
1763 {
1764 decl = gfc_add_field_to_struct_1 (fat_type,
1765 get_identifier ("token"),
1766 prvoid_type_node, &chain);
1767 TREE_NO_WARNING (decl) = 1;
1768 }
1769
1770 /* Finish off the type. */
1771 gfc_finish_type (fat_type);
1772 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1773
1774 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1775 && akind == GFC_ARRAY_ALLOCATABLE)
1776 gfc_array_descriptor_base_caf[idx] = fat_type;
1777 else
1778 gfc_array_descriptor_base[idx] = fat_type;
1779
1780 return fat_type;
1781 }
1782
1783
1784 /* Build an array (descriptor) type with given bounds. */
1785
1786 tree
1787 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1788 tree * ubound, int packed,
1789 enum gfc_array_kind akind, bool restricted)
1790 {
1791 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1792 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1793 const char *type_name;
1794 int n;
1795
1796 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1797 fat_type = build_distinct_type_copy (base_type);
1798 /* Make sure that nontarget and target array type have the same canonical
1799 type (and same stub decl for debug info). */
1800 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1801 TYPE_CANONICAL (fat_type) = base_type;
1802 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1803
1804 tmp = TYPE_NAME (etype);
1805 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1806 tmp = DECL_NAME (tmp);
1807 if (tmp)
1808 type_name = IDENTIFIER_POINTER (tmp);
1809 else
1810 type_name = "unknown";
1811 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1812 GFC_MAX_SYMBOL_LEN, type_name);
1813 TYPE_NAME (fat_type) = get_identifier (name);
1814 TYPE_NAMELESS (fat_type) = 1;
1815
1816 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1817 TYPE_LANG_SPECIFIC (fat_type)
1818 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1819
1820 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1821 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1822 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1823 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1824
1825 /* Build an array descriptor record type. */
1826 if (packed != 0)
1827 stride = gfc_index_one_node;
1828 else
1829 stride = NULL_TREE;
1830 for (n = 0; n < dimen + codimen; n++)
1831 {
1832 if (n < dimen)
1833 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1834
1835 if (lbound)
1836 lower = lbound[n];
1837 else
1838 lower = NULL_TREE;
1839
1840 if (lower != NULL_TREE)
1841 {
1842 if (INTEGER_CST_P (lower))
1843 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1844 else
1845 lower = NULL_TREE;
1846 }
1847
1848 if (codimen && n == dimen + codimen - 1)
1849 break;
1850
1851 upper = ubound[n];
1852 if (upper != NULL_TREE)
1853 {
1854 if (INTEGER_CST_P (upper))
1855 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1856 else
1857 upper = NULL_TREE;
1858 }
1859
1860 if (n >= dimen)
1861 continue;
1862
1863 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1864 {
1865 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1866 gfc_array_index_type, upper, lower);
1867 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1868 gfc_array_index_type, tmp,
1869 gfc_index_one_node);
1870 stride = fold_build2_loc (input_location, MULT_EXPR,
1871 gfc_array_index_type, tmp, stride);
1872 /* Check the folding worked. */
1873 gcc_assert (INTEGER_CST_P (stride));
1874 }
1875 else
1876 stride = NULL_TREE;
1877 }
1878 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1879
1880 /* TODO: known offsets for descriptors. */
1881 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1882
1883 if (dimen == 0)
1884 {
1885 arraytype = build_pointer_type (etype);
1886 if (restricted)
1887 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1888
1889 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1890 return fat_type;
1891 }
1892
1893 /* We define data as an array with the correct size if possible.
1894 Much better than doing pointer arithmetic. */
1895 if (stride)
1896 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1897 int_const_binop (MINUS_EXPR, stride,
1898 integer_one_node));
1899 else
1900 rtype = gfc_array_range_type;
1901 arraytype = build_array_type (etype, rtype);
1902 arraytype = build_pointer_type (arraytype);
1903 if (restricted)
1904 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1905 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1906
1907 /* This will generate the base declarations we need to emit debug
1908 information for this type. FIXME: there must be a better way to
1909 avoid divergence between compilations with and without debug
1910 information. */
1911 {
1912 struct array_descr_info info;
1913 gfc_get_array_descr_info (fat_type, &info);
1914 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1915 }
1916
1917 return fat_type;
1918 }
1919 \f
1920 /* Build a pointer type. This function is called from gfc_sym_type(). */
1921
1922 static tree
1923 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1924 {
1925 /* Array pointer types aren't actually pointers. */
1926 if (sym->attr.dimension)
1927 return type;
1928 else
1929 return build_pointer_type (type);
1930 }
1931
1932 static tree gfc_nonrestricted_type (tree t);
1933 /* Given two record or union type nodes TO and FROM, ensure
1934 that all fields in FROM have a corresponding field in TO,
1935 their type being nonrestrict variants. This accepts a TO
1936 node that already has a prefix of the fields in FROM. */
1937 static void
1938 mirror_fields (tree to, tree from)
1939 {
1940 tree fto, ffrom;
1941 tree *chain;
1942
1943 /* Forward to the end of TOs fields. */
1944 fto = TYPE_FIELDS (to);
1945 ffrom = TYPE_FIELDS (from);
1946 chain = &TYPE_FIELDS (to);
1947 while (fto)
1948 {
1949 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1950 chain = &DECL_CHAIN (fto);
1951 fto = DECL_CHAIN (fto);
1952 ffrom = DECL_CHAIN (ffrom);
1953 }
1954
1955 /* Now add all fields remaining in FROM (starting with ffrom). */
1956 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1957 {
1958 tree newfield = copy_node (ffrom);
1959 DECL_CONTEXT (newfield) = to;
1960 /* The store to DECL_CHAIN might seem redundant with the
1961 stores to *chain, but not clearing it here would mean
1962 leaving a chain into the old fields. If ever
1963 our called functions would look at them confusion
1964 will arise. */
1965 DECL_CHAIN (newfield) = NULL_TREE;
1966 *chain = newfield;
1967 chain = &DECL_CHAIN (newfield);
1968
1969 if (TREE_CODE (ffrom) == FIELD_DECL)
1970 {
1971 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1972 TREE_TYPE (newfield) = elemtype;
1973 }
1974 }
1975 *chain = NULL_TREE;
1976 }
1977
1978 /* Given a type T, returns a different type of the same structure,
1979 except that all types it refers to (recursively) are always
1980 non-restrict qualified types. */
1981 static tree
1982 gfc_nonrestricted_type (tree t)
1983 {
1984 tree ret = t;
1985
1986 /* If the type isn't laid out yet, don't copy it. If something
1987 needs it for real it should wait until the type got finished. */
1988 if (!TYPE_SIZE (t))
1989 return t;
1990
1991 if (!TYPE_LANG_SPECIFIC (t))
1992 TYPE_LANG_SPECIFIC (t)
1993 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1994 /* If we're dealing with this very node already further up
1995 the call chain (recursion via pointers and struct members)
1996 we haven't yet determined if we really need a new type node.
1997 Assume we don't, return T itself. */
1998 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1999 return t;
2000
2001 /* If we have calculated this all already, just return it. */
2002 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2003 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2004
2005 /* Mark this type. */
2006 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2007
2008 switch (TREE_CODE (t))
2009 {
2010 default:
2011 break;
2012
2013 case POINTER_TYPE:
2014 case REFERENCE_TYPE:
2015 {
2016 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2017 if (totype == TREE_TYPE (t))
2018 ret = t;
2019 else if (TREE_CODE (t) == POINTER_TYPE)
2020 ret = build_pointer_type (totype);
2021 else
2022 ret = build_reference_type (totype);
2023 ret = build_qualified_type (ret,
2024 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2025 }
2026 break;
2027
2028 case ARRAY_TYPE:
2029 {
2030 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2031 if (elemtype == TREE_TYPE (t))
2032 ret = t;
2033 else
2034 {
2035 ret = build_variant_type_copy (t);
2036 TREE_TYPE (ret) = elemtype;
2037 if (TYPE_LANG_SPECIFIC (t)
2038 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2039 {
2040 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2041 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2042 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2043 {
2044 TYPE_LANG_SPECIFIC (ret)
2045 = ggc_alloc_cleared_lang_type (sizeof (struct
2046 lang_type));
2047 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2048 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2049 }
2050 }
2051 }
2052 }
2053 break;
2054
2055 case RECORD_TYPE:
2056 case UNION_TYPE:
2057 case QUAL_UNION_TYPE:
2058 {
2059 tree field;
2060 /* First determine if we need a new type at all.
2061 Careful, the two calls to gfc_nonrestricted_type per field
2062 might return different values. That happens exactly when
2063 one of the fields reaches back to this very record type
2064 (via pointers). The first calls will assume that we don't
2065 need to copy T (see the error_mark_node marking). If there
2066 are any reasons for copying T apart from having to copy T,
2067 we'll indeed copy it, and the second calls to
2068 gfc_nonrestricted_type will use that new node if they
2069 reach back to T. */
2070 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2071 if (TREE_CODE (field) == FIELD_DECL)
2072 {
2073 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2074 if (elemtype != TREE_TYPE (field))
2075 break;
2076 }
2077 if (!field)
2078 break;
2079 ret = build_variant_type_copy (t);
2080 TYPE_FIELDS (ret) = NULL_TREE;
2081
2082 /* Here we make sure that as soon as we know we have to copy
2083 T, that also fields reaching back to us will use the new
2084 copy. It's okay if that copy still contains the old fields,
2085 we won't look at them. */
2086 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2087 mirror_fields (ret, t);
2088 }
2089 break;
2090 }
2091
2092 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2093 return ret;
2094 }
2095
2096 \f
2097 /* Return the type for a symbol. Special handling is required for character
2098 types to get the correct level of indirection.
2099 For functions return the return type.
2100 For subroutines return void_type_node.
2101 Calling this multiple times for the same symbol should be avoided,
2102 especially for character and array types. */
2103
2104 tree
2105 gfc_sym_type (gfc_symbol * sym)
2106 {
2107 tree type;
2108 int byref;
2109 bool restricted;
2110
2111 /* Procedure Pointers inside COMMON blocks. */
2112 if (sym->attr.proc_pointer && sym->attr.in_common)
2113 {
2114 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2115 sym->attr.proc_pointer = 0;
2116 type = build_pointer_type (gfc_get_function_type (sym));
2117 sym->attr.proc_pointer = 1;
2118 return type;
2119 }
2120
2121 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2122 return void_type_node;
2123
2124 /* In the case of a function the fake result variable may have a
2125 type different from the function type, so don't return early in
2126 that case. */
2127 if (sym->backend_decl && !sym->attr.function)
2128 return TREE_TYPE (sym->backend_decl);
2129
2130 if (sym->ts.type == BT_CHARACTER
2131 && ((sym->attr.function && sym->attr.is_bind_c)
2132 || (sym->attr.result
2133 && sym->ns->proc_name
2134 && sym->ns->proc_name->attr.is_bind_c)))
2135 type = gfc_character1_type_node;
2136 else
2137 type = gfc_typenode_for_spec (&sym->ts);
2138
2139 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2140 byref = 1;
2141 else
2142 byref = 0;
2143
2144 restricted = !sym->attr.target && !sym->attr.pointer
2145 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2146 if (!restricted)
2147 type = gfc_nonrestricted_type (type);
2148
2149 if (sym->attr.dimension || sym->attr.codimension)
2150 {
2151 if (gfc_is_nodesc_array (sym))
2152 {
2153 /* If this is a character argument of unknown length, just use the
2154 base type. */
2155 if (sym->ts.type != BT_CHARACTER
2156 || !(sym->attr.dummy || sym->attr.function)
2157 || sym->ts.u.cl->backend_decl)
2158 {
2159 type = gfc_get_nodesc_array_type (type, sym->as,
2160 byref ? PACKED_FULL
2161 : PACKED_STATIC,
2162 restricted);
2163 byref = 0;
2164 }
2165
2166 if (sym->attr.cray_pointee)
2167 GFC_POINTER_TYPE_P (type) = 1;
2168 }
2169 else
2170 {
2171 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2172 if (sym->attr.pointer)
2173 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2174 : GFC_ARRAY_POINTER;
2175 else if (sym->attr.allocatable)
2176 akind = GFC_ARRAY_ALLOCATABLE;
2177 type = gfc_build_array_type (type, sym->as, akind, restricted,
2178 sym->attr.contiguous);
2179 }
2180 }
2181 else
2182 {
2183 if (sym->attr.allocatable || sym->attr.pointer
2184 || gfc_is_associate_pointer (sym))
2185 type = gfc_build_pointer_type (sym, type);
2186 if (sym->attr.pointer || sym->attr.cray_pointee)
2187 GFC_POINTER_TYPE_P (type) = 1;
2188 }
2189
2190 /* We currently pass all parameters by reference.
2191 See f95_get_function_decl. For dummy function parameters return the
2192 function type. */
2193 if (byref)
2194 {
2195 /* We must use pointer types for potentially absent variables. The
2196 optimizers assume a reference type argument is never NULL. */
2197 if (sym->attr.optional
2198 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2199 type = build_pointer_type (type);
2200 else
2201 {
2202 type = build_reference_type (type);
2203 if (restricted)
2204 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2205 }
2206 }
2207
2208 return (type);
2209 }
2210 \f
2211 /* Layout and output debug info for a record type. */
2212
2213 void
2214 gfc_finish_type (tree type)
2215 {
2216 tree decl;
2217
2218 decl = build_decl (input_location,
2219 TYPE_DECL, NULL_TREE, type);
2220 TYPE_STUB_DECL (type) = decl;
2221 layout_type (type);
2222 rest_of_type_compilation (type, 1);
2223 rest_of_decl_compilation (decl, 1, 0);
2224 }
2225 \f
2226 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2227 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2228 to the end of the field list pointed to by *CHAIN.
2229
2230 Returns a pointer to the new field. */
2231
2232 static tree
2233 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2234 {
2235 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2236
2237 DECL_CONTEXT (decl) = context;
2238 DECL_CHAIN (decl) = NULL_TREE;
2239 if (TYPE_FIELDS (context) == NULL_TREE)
2240 TYPE_FIELDS (context) = decl;
2241 if (chain != NULL)
2242 {
2243 if (*chain != NULL)
2244 **chain = decl;
2245 *chain = &DECL_CHAIN (decl);
2246 }
2247
2248 return decl;
2249 }
2250
2251 /* Like `gfc_add_field_to_struct_1', but adds alignment
2252 information. */
2253
2254 tree
2255 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2256 {
2257 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2258
2259 DECL_INITIAL (decl) = 0;
2260 DECL_ALIGN (decl) = 0;
2261 DECL_USER_ALIGN (decl) = 0;
2262
2263 return decl;
2264 }
2265
2266
2267 /* Copy the backend_decl and component backend_decls if
2268 the two derived type symbols are "equal", as described
2269 in 4.4.2 and resolved by gfc_compare_derived_types. */
2270
2271 int
2272 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2273 bool from_gsym)
2274 {
2275 gfc_component *to_cm;
2276 gfc_component *from_cm;
2277
2278 if (from == to)
2279 return 1;
2280
2281 if (from->backend_decl == NULL
2282 || !gfc_compare_derived_types (from, to))
2283 return 0;
2284
2285 to->backend_decl = from->backend_decl;
2286
2287 to_cm = to->components;
2288 from_cm = from->components;
2289
2290 /* Copy the component declarations. If a component is itself
2291 a derived type, we need a copy of its component declarations.
2292 This is done by recursing into gfc_get_derived_type and
2293 ensures that the component's component declarations have
2294 been built. If it is a character, we need the character
2295 length, as well. */
2296 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2297 {
2298 to_cm->backend_decl = from_cm->backend_decl;
2299 if (from_cm->ts.type == BT_DERIVED
2300 && (!from_cm->attr.pointer || from_gsym))
2301 gfc_get_derived_type (to_cm->ts.u.derived);
2302 else if (from_cm->ts.type == BT_CLASS
2303 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2304 gfc_get_derived_type (to_cm->ts.u.derived);
2305 else if (from_cm->ts.type == BT_CHARACTER)
2306 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2307 }
2308
2309 return 1;
2310 }
2311
2312
2313 /* Build a tree node for a procedure pointer component. */
2314
2315 tree
2316 gfc_get_ppc_type (gfc_component* c)
2317 {
2318 tree t;
2319
2320 /* Explicit interface. */
2321 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2322 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2323
2324 /* Implicit interface (only return value may be known). */
2325 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2326 t = gfc_typenode_for_spec (&c->ts);
2327 else
2328 t = void_type_node;
2329
2330 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2331 }
2332
2333
2334 /* Build a tree node for a derived type. If there are equal
2335 derived types, with different local names, these are built
2336 at the same time. If an equal derived type has been built
2337 in a parent namespace, this is used. */
2338
2339 tree
2340 gfc_get_derived_type (gfc_symbol * derived)
2341 {
2342 tree typenode = NULL, field = NULL, field_type = NULL;
2343 tree canonical = NULL_TREE;
2344 tree *chain = NULL;
2345 bool got_canonical = false;
2346 bool unlimited_entity = false;
2347 gfc_component *c;
2348 gfc_dt_list *dt;
2349 gfc_namespace *ns;
2350
2351 if (derived->attr.unlimited_polymorphic)
2352 return ptr_type_node;
2353
2354 if (derived && derived->attr.flavor == FL_PROCEDURE
2355 && derived->attr.generic)
2356 derived = gfc_find_dt_in_generic (derived);
2357
2358 /* See if it's one of the iso_c_binding derived types. */
2359 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2360 {
2361 if (derived->backend_decl)
2362 return derived->backend_decl;
2363
2364 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2365 derived->backend_decl = ptr_type_node;
2366 else
2367 derived->backend_decl = pfunc_type_node;
2368
2369 derived->ts.kind = gfc_index_integer_kind;
2370 derived->ts.type = BT_INTEGER;
2371 /* Set the f90_type to BT_VOID as a way to recognize something of type
2372 BT_INTEGER that needs to fit a void * for the purpose of the
2373 iso_c_binding derived types. */
2374 derived->ts.f90_type = BT_VOID;
2375
2376 return derived->backend_decl;
2377 }
2378
2379 /* If use associated, use the module type for this one. */
2380 if (derived->backend_decl == NULL
2381 && derived->attr.use_assoc
2382 && derived->module
2383 && gfc_get_module_backend_decl (derived))
2384 goto copy_derived_types;
2385
2386 /* The derived types from an earlier namespace can be used as the
2387 canonical type. */
2388 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2389 && gfc_global_ns_list)
2390 {
2391 for (ns = gfc_global_ns_list;
2392 ns->translated && !got_canonical;
2393 ns = ns->sibling)
2394 {
2395 dt = ns->derived_types;
2396 for (; dt && !canonical; dt = dt->next)
2397 {
2398 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2399 if (derived->backend_decl)
2400 got_canonical = true;
2401 }
2402 }
2403 }
2404
2405 /* Store up the canonical type to be added to this one. */
2406 if (got_canonical)
2407 {
2408 if (TYPE_CANONICAL (derived->backend_decl))
2409 canonical = TYPE_CANONICAL (derived->backend_decl);
2410 else
2411 canonical = derived->backend_decl;
2412
2413 derived->backend_decl = NULL_TREE;
2414 }
2415
2416 /* derived->backend_decl != 0 means we saw it before, but its
2417 components' backend_decl may have not been built. */
2418 if (derived->backend_decl)
2419 {
2420 /* Its components' backend_decl have been built or we are
2421 seeing recursion through the formal arglist of a procedure
2422 pointer component. */
2423 if (TYPE_FIELDS (derived->backend_decl)
2424 || derived->attr.proc_pointer_comp)
2425 return derived->backend_decl;
2426 else
2427 typenode = derived->backend_decl;
2428 }
2429 else
2430 {
2431 /* We see this derived type first time, so build the type node. */
2432 typenode = make_node (RECORD_TYPE);
2433 TYPE_NAME (typenode) = get_identifier (derived->name);
2434 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2435 derived->backend_decl = typenode;
2436 }
2437
2438 if (derived->components
2439 && derived->components->ts.type == BT_DERIVED
2440 && strcmp (derived->components->name, "_data") == 0
2441 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2442 unlimited_entity = true;
2443
2444 /* Go through the derived type components, building them as
2445 necessary. The reason for doing this now is that it is
2446 possible to recurse back to this derived type through a
2447 pointer component (PR24092). If this happens, the fields
2448 will be built and so we can return the type. */
2449 for (c = derived->components; c; c = c->next)
2450 {
2451 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2452 continue;
2453
2454 if ((!c->attr.pointer && !c->attr.proc_pointer)
2455 || c->ts.u.derived->backend_decl == NULL)
2456 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2457
2458 if (c->ts.u.derived->attr.is_iso_c)
2459 {
2460 /* Need to copy the modified ts from the derived type. The
2461 typespec was modified because C_PTR/C_FUNPTR are translated
2462 into (void *) from derived types. */
2463 c->ts.type = c->ts.u.derived->ts.type;
2464 c->ts.kind = c->ts.u.derived->ts.kind;
2465 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2466 if (c->initializer)
2467 {
2468 c->initializer->ts.type = c->ts.type;
2469 c->initializer->ts.kind = c->ts.kind;
2470 c->initializer->ts.f90_type = c->ts.f90_type;
2471 c->initializer->expr_type = EXPR_NULL;
2472 }
2473 }
2474 }
2475
2476 if (TYPE_FIELDS (derived->backend_decl))
2477 return derived->backend_decl;
2478
2479 /* Build the type member list. Install the newly created RECORD_TYPE
2480 node as DECL_CONTEXT of each FIELD_DECL. */
2481 for (c = derived->components; c; c = c->next)
2482 {
2483 if (c->attr.proc_pointer)
2484 field_type = gfc_get_ppc_type (c);
2485 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2486 field_type = c->ts.u.derived->backend_decl;
2487 else
2488 {
2489 if (c->ts.type == BT_CHARACTER)
2490 {
2491 /* Evaluate the string length. */
2492 gfc_conv_const_charlen (c->ts.u.cl);
2493 gcc_assert (c->ts.u.cl->backend_decl);
2494 }
2495
2496 field_type = gfc_typenode_for_spec (&c->ts);
2497 }
2498
2499 /* This returns an array descriptor type. Initialization may be
2500 required. */
2501 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2502 {
2503 if (c->attr.pointer || c->attr.allocatable)
2504 {
2505 enum gfc_array_kind akind;
2506 if (c->attr.pointer)
2507 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2508 : GFC_ARRAY_POINTER;
2509 else
2510 akind = GFC_ARRAY_ALLOCATABLE;
2511 /* Pointers to arrays aren't actually pointer types. The
2512 descriptors are separate, but the data is common. */
2513 field_type = gfc_build_array_type (field_type, c->as, akind,
2514 !c->attr.target
2515 && !c->attr.pointer,
2516 c->attr.contiguous);
2517 }
2518 else
2519 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2520 PACKED_STATIC,
2521 !c->attr.target);
2522 }
2523 else if ((c->attr.pointer || c->attr.allocatable)
2524 && !c->attr.proc_pointer
2525 && !(unlimited_entity && c == derived->components))
2526 field_type = build_pointer_type (field_type);
2527
2528 if (c->attr.pointer)
2529 field_type = gfc_nonrestricted_type (field_type);
2530
2531 /* vtype fields can point to different types to the base type. */
2532 if (c->ts.type == BT_DERIVED
2533 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2534 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2535 ptr_mode, true);
2536
2537 /* Ensure that the CLASS language specific flag is set. */
2538 if (c->ts.type == BT_CLASS)
2539 {
2540 if (POINTER_TYPE_P (field_type))
2541 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2542 else
2543 GFC_CLASS_TYPE_P (field_type) = 1;
2544 }
2545
2546 field = gfc_add_field_to_struct (typenode,
2547 get_identifier (c->name),
2548 field_type, &chain);
2549 if (c->loc.lb)
2550 gfc_set_decl_location (field, &c->loc);
2551 else if (derived->declared_at.lb)
2552 gfc_set_decl_location (field, &derived->declared_at);
2553
2554 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2555
2556 gcc_assert (field);
2557 if (!c->backend_decl)
2558 c->backend_decl = field;
2559 }
2560
2561 /* Now lay out the derived type, including the fields. */
2562 if (canonical)
2563 TYPE_CANONICAL (typenode) = canonical;
2564
2565 gfc_finish_type (typenode);
2566 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2567 if (derived->module && derived->ns->proc_name
2568 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2569 {
2570 if (derived->ns->proc_name->backend_decl
2571 && TREE_CODE (derived->ns->proc_name->backend_decl)
2572 == NAMESPACE_DECL)
2573 {
2574 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2575 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2576 = derived->ns->proc_name->backend_decl;
2577 }
2578 }
2579
2580 derived->backend_decl = typenode;
2581
2582 copy_derived_types:
2583
2584 for (dt = gfc_derived_types; dt; dt = dt->next)
2585 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2586
2587 return derived->backend_decl;
2588 }
2589
2590
2591 int
2592 gfc_return_by_reference (gfc_symbol * sym)
2593 {
2594 if (!sym->attr.function)
2595 return 0;
2596
2597 if (sym->attr.dimension)
2598 return 1;
2599
2600 if (sym->ts.type == BT_CHARACTER
2601 && !sym->attr.is_bind_c
2602 && (!sym->attr.result
2603 || !sym->ns->proc_name
2604 || !sym->ns->proc_name->attr.is_bind_c))
2605 return 1;
2606
2607 /* Possibly return complex numbers by reference for g77 compatibility.
2608 We don't do this for calls to intrinsics (as the library uses the
2609 -fno-f2c calling convention), nor for calls to functions which always
2610 require an explicit interface, as no compatibility problems can
2611 arise there. */
2612 if (gfc_option.flag_f2c
2613 && sym->ts.type == BT_COMPLEX
2614 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2615 return 1;
2616
2617 return 0;
2618 }
2619 \f
2620 static tree
2621 gfc_get_mixed_entry_union (gfc_namespace *ns)
2622 {
2623 tree type;
2624 tree *chain = NULL;
2625 char name[GFC_MAX_SYMBOL_LEN + 1];
2626 gfc_entry_list *el, *el2;
2627
2628 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2629 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2630
2631 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2632
2633 /* Build the type node. */
2634 type = make_node (UNION_TYPE);
2635
2636 TYPE_NAME (type) = get_identifier (name);
2637
2638 for (el = ns->entries; el; el = el->next)
2639 {
2640 /* Search for duplicates. */
2641 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2642 if (el2->sym->result == el->sym->result)
2643 break;
2644
2645 if (el == el2)
2646 gfc_add_field_to_struct_1 (type,
2647 get_identifier (el->sym->result->name),
2648 gfc_sym_type (el->sym->result), &chain);
2649 }
2650
2651 /* Finish off the type. */
2652 gfc_finish_type (type);
2653 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2654 return type;
2655 }
2656 \f
2657 /* Create a "fn spec" based on the formal arguments;
2658 cf. create_function_arglist. */
2659
2660 static tree
2661 create_fn_spec (gfc_symbol *sym, tree fntype)
2662 {
2663 char spec[150];
2664 size_t spec_len;
2665 gfc_formal_arglist *f;
2666 tree tmp;
2667
2668 memset (&spec, 0, sizeof (spec));
2669 spec[0] = '.';
2670 spec_len = 1;
2671
2672 if (sym->attr.entry_master)
2673 spec[spec_len++] = 'R';
2674 if (gfc_return_by_reference (sym))
2675 {
2676 gfc_symbol *result = sym->result ? sym->result : sym;
2677
2678 if (result->attr.pointer || sym->attr.proc_pointer)
2679 spec[spec_len++] = '.';
2680 else
2681 spec[spec_len++] = 'w';
2682 if (sym->ts.type == BT_CHARACTER)
2683 spec[spec_len++] = 'R';
2684 }
2685
2686 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2687 if (spec_len < sizeof (spec))
2688 {
2689 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2690 || f->sym->attr.external || f->sym->attr.cray_pointer
2691 || (f->sym->ts.type == BT_DERIVED
2692 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2693 || f->sym->ts.u.derived->attr.pointer_comp))
2694 || (f->sym->ts.type == BT_CLASS
2695 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2696 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2697 spec[spec_len++] = '.';
2698 else if (f->sym->attr.intent == INTENT_IN)
2699 spec[spec_len++] = 'r';
2700 else if (f->sym)
2701 spec[spec_len++] = 'w';
2702 }
2703
2704 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2705 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2706 return build_type_attribute_variant (fntype, tmp);
2707 }
2708
2709
2710 tree
2711 gfc_get_function_type (gfc_symbol * sym)
2712 {
2713 tree type;
2714 vec<tree, va_gc> *typelist;
2715 gfc_formal_arglist *f;
2716 gfc_symbol *arg;
2717 int alternate_return;
2718 bool is_varargs = true, recursive_type = false;
2719
2720 /* Make sure this symbol is a function, a subroutine or the main
2721 program. */
2722 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2723 || sym->attr.flavor == FL_PROGRAM);
2724
2725 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2726 so that they can be detected here and handled further down. */
2727 if (sym->backend_decl == NULL)
2728 sym->backend_decl = error_mark_node;
2729 else if (sym->backend_decl == error_mark_node)
2730 recursive_type = true;
2731 else if (sym->attr.proc_pointer)
2732 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2733 else
2734 return TREE_TYPE (sym->backend_decl);
2735
2736 alternate_return = 0;
2737 typelist = NULL;
2738
2739 if (sym->attr.entry_master)
2740 /* Additional parameter for selecting an entry point. */
2741 vec_safe_push (typelist, gfc_array_index_type);
2742
2743 if (sym->result)
2744 arg = sym->result;
2745 else
2746 arg = sym;
2747
2748 if (arg->ts.type == BT_CHARACTER)
2749 gfc_conv_const_charlen (arg->ts.u.cl);
2750
2751 /* Some functions we use an extra parameter for the return value. */
2752 if (gfc_return_by_reference (sym))
2753 {
2754 type = gfc_sym_type (arg);
2755 if (arg->ts.type == BT_COMPLEX
2756 || arg->attr.dimension
2757 || arg->ts.type == BT_CHARACTER)
2758 type = build_reference_type (type);
2759
2760 vec_safe_push (typelist, type);
2761 if (arg->ts.type == BT_CHARACTER)
2762 {
2763 if (!arg->ts.deferred)
2764 /* Transfer by value. */
2765 vec_safe_push (typelist, gfc_charlen_type_node);
2766 else
2767 /* Deferred character lengths are transferred by reference
2768 so that the value can be returned. */
2769 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2770 }
2771 }
2772
2773 /* Build the argument types for the function. */
2774 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2775 {
2776 arg = f->sym;
2777 if (arg)
2778 {
2779 /* Evaluate constant character lengths here so that they can be
2780 included in the type. */
2781 if (arg->ts.type == BT_CHARACTER)
2782 gfc_conv_const_charlen (arg->ts.u.cl);
2783
2784 if (arg->attr.flavor == FL_PROCEDURE)
2785 {
2786 /* We don't know in the general case which argument causes
2787 recursion. But we know that it is a procedure. So we give up
2788 creating the procedure argument type list at the first
2789 procedure argument. */
2790 if (recursive_type)
2791 goto arg_type_list_done;
2792
2793 type = gfc_get_function_type (arg);
2794 type = build_pointer_type (type);
2795 }
2796 else
2797 type = gfc_sym_type (arg);
2798
2799 /* Parameter Passing Convention
2800
2801 We currently pass all parameters by reference.
2802 Parameters with INTENT(IN) could be passed by value.
2803 The problem arises if a function is called via an implicit
2804 prototype. In this situation the INTENT is not known.
2805 For this reason all parameters to global functions must be
2806 passed by reference. Passing by value would potentially
2807 generate bad code. Worse there would be no way of telling that
2808 this code was bad, except that it would give incorrect results.
2809
2810 Contained procedures could pass by value as these are never
2811 used without an explicit interface, and cannot be passed as
2812 actual parameters for a dummy procedure. */
2813
2814 vec_safe_push (typelist, type);
2815 }
2816 else
2817 {
2818 if (sym->attr.subroutine)
2819 alternate_return = 1;
2820 }
2821 }
2822
2823 /* Add hidden string length parameters. */
2824 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2825 {
2826 arg = f->sym;
2827 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2828 {
2829 if (!arg->ts.deferred)
2830 /* Transfer by value. */
2831 type = gfc_charlen_type_node;
2832 else
2833 /* Deferred character lengths are transferred by reference
2834 so that the value can be returned. */
2835 type = build_pointer_type (gfc_charlen_type_node);
2836
2837 vec_safe_push (typelist, type);
2838 }
2839 }
2840
2841 if (!vec_safe_is_empty (typelist)
2842 || sym->attr.is_main_program
2843 || sym->attr.if_source != IFSRC_UNKNOWN)
2844 is_varargs = false;
2845
2846 arg_type_list_done:
2847
2848 if (!recursive_type && sym->backend_decl == error_mark_node)
2849 sym->backend_decl = NULL_TREE;
2850
2851 if (alternate_return)
2852 type = integer_type_node;
2853 else if (!sym->attr.function || gfc_return_by_reference (sym))
2854 type = void_type_node;
2855 else if (sym->attr.mixed_entry_master)
2856 type = gfc_get_mixed_entry_union (sym->ns);
2857 else if (gfc_option.flag_f2c
2858 && sym->ts.type == BT_REAL
2859 && sym->ts.kind == gfc_default_real_kind
2860 && !sym->attr.always_explicit)
2861 {
2862 /* Special case: f2c calling conventions require that (scalar)
2863 default REAL functions return the C type double instead. f2c
2864 compatibility is only an issue with functions that don't
2865 require an explicit interface, as only these could be
2866 implemented in Fortran 77. */
2867 sym->ts.kind = gfc_default_double_kind;
2868 type = gfc_typenode_for_spec (&sym->ts);
2869 sym->ts.kind = gfc_default_real_kind;
2870 }
2871 else if (sym->result && sym->result->attr.proc_pointer)
2872 /* Procedure pointer return values. */
2873 {
2874 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2875 {
2876 /* Unset proc_pointer as gfc_get_function_type
2877 is called recursively. */
2878 sym->result->attr.proc_pointer = 0;
2879 type = build_pointer_type (gfc_get_function_type (sym->result));
2880 sym->result->attr.proc_pointer = 1;
2881 }
2882 else
2883 type = gfc_sym_type (sym->result);
2884 }
2885 else
2886 type = gfc_sym_type (sym);
2887
2888 if (is_varargs || recursive_type)
2889 type = build_varargs_function_type_vec (type, typelist);
2890 else
2891 type = build_function_type_vec (type, typelist);
2892 type = create_fn_spec (sym, type);
2893
2894 return type;
2895 }
2896 \f
2897 /* Language hooks for middle-end access to type nodes. */
2898
2899 /* Return an integer type with BITS bits of precision,
2900 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2901
2902 tree
2903 gfc_type_for_size (unsigned bits, int unsignedp)
2904 {
2905 if (!unsignedp)
2906 {
2907 int i;
2908 for (i = 0; i <= MAX_INT_KINDS; ++i)
2909 {
2910 tree type = gfc_integer_types[i];
2911 if (type && bits == TYPE_PRECISION (type))
2912 return type;
2913 }
2914
2915 /* Handle TImode as a special case because it is used by some backends
2916 (e.g. ARM) even though it is not available for normal use. */
2917 #if HOST_BITS_PER_WIDE_INT >= 64
2918 if (bits == TYPE_PRECISION (intTI_type_node))
2919 return intTI_type_node;
2920 #endif
2921
2922 if (bits <= TYPE_PRECISION (intQI_type_node))
2923 return intQI_type_node;
2924 if (bits <= TYPE_PRECISION (intHI_type_node))
2925 return intHI_type_node;
2926 if (bits <= TYPE_PRECISION (intSI_type_node))
2927 return intSI_type_node;
2928 if (bits <= TYPE_PRECISION (intDI_type_node))
2929 return intDI_type_node;
2930 if (bits <= TYPE_PRECISION (intTI_type_node))
2931 return intTI_type_node;
2932 }
2933 else
2934 {
2935 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2936 return unsigned_intQI_type_node;
2937 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2938 return unsigned_intHI_type_node;
2939 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2940 return unsigned_intSI_type_node;
2941 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2942 return unsigned_intDI_type_node;
2943 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2944 return unsigned_intTI_type_node;
2945 }
2946
2947 return NULL_TREE;
2948 }
2949
2950 /* Return a data type that has machine mode MODE. If the mode is an
2951 integer, then UNSIGNEDP selects between signed and unsigned types. */
2952
2953 tree
2954 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2955 {
2956 int i;
2957 tree *base;
2958
2959 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2960 base = gfc_real_types;
2961 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2962 base = gfc_complex_types;
2963 else if (SCALAR_INT_MODE_P (mode))
2964 {
2965 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2966 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2967 }
2968 else if (VECTOR_MODE_P (mode))
2969 {
2970 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2971 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2972 if (inner_type != NULL_TREE)
2973 return build_vector_type_for_mode (inner_type, mode);
2974 return NULL_TREE;
2975 }
2976 else
2977 return NULL_TREE;
2978
2979 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2980 {
2981 tree type = base[i];
2982 if (type && mode == TYPE_MODE (type))
2983 return type;
2984 }
2985
2986 return NULL_TREE;
2987 }
2988
2989 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2990 in that case. */
2991
2992 bool
2993 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2994 {
2995 int rank, dim;
2996 bool indirect = false;
2997 tree etype, ptype, field, t, base_decl;
2998 tree data_off, dim_off, dim_size, elem_size;
2999 tree lower_suboff, upper_suboff, stride_suboff;
3000
3001 if (! GFC_DESCRIPTOR_TYPE_P (type))
3002 {
3003 if (! POINTER_TYPE_P (type))
3004 return false;
3005 type = TREE_TYPE (type);
3006 if (! GFC_DESCRIPTOR_TYPE_P (type))
3007 return false;
3008 indirect = true;
3009 }
3010
3011 rank = GFC_TYPE_ARRAY_RANK (type);
3012 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3013 return false;
3014
3015 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3016 gcc_assert (POINTER_TYPE_P (etype));
3017 etype = TREE_TYPE (etype);
3018
3019 /* If the type is not a scalar coarray. */
3020 if (TREE_CODE (etype) == ARRAY_TYPE)
3021 etype = TREE_TYPE (etype);
3022
3023 /* Can't handle variable sized elements yet. */
3024 if (int_size_in_bytes (etype) <= 0)
3025 return false;
3026 /* Nor non-constant lower bounds in assumed shape arrays. */
3027 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3028 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3029 {
3030 for (dim = 0; dim < rank; dim++)
3031 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3032 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3033 return false;
3034 }
3035
3036 memset (info, '\0', sizeof (*info));
3037 info->ndimensions = rank;
3038 info->element_type = etype;
3039 ptype = build_pointer_type (gfc_array_index_type);
3040 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3041 if (!base_decl)
3042 {
3043 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3044 indirect ? build_pointer_type (ptype) : ptype);
3045 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3046 }
3047 info->base_decl = base_decl;
3048 if (indirect)
3049 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3050
3051 if (GFC_TYPE_ARRAY_SPAN (type))
3052 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3053 else
3054 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3055 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3056 data_off = byte_position (field);
3057 field = DECL_CHAIN (field);
3058 field = DECL_CHAIN (field);
3059 field = DECL_CHAIN (field);
3060 dim_off = byte_position (field);
3061 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3062 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3063 stride_suboff = byte_position (field);
3064 field = DECL_CHAIN (field);
3065 lower_suboff = byte_position (field);
3066 field = DECL_CHAIN (field);
3067 upper_suboff = byte_position (field);
3068
3069 t = base_decl;
3070 if (!integer_zerop (data_off))
3071 t = fold_build_pointer_plus (t, data_off);
3072 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3073 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3074 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3075 info->allocated = build2 (NE_EXPR, boolean_type_node,
3076 info->data_location, null_pointer_node);
3077 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3078 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3079 info->associated = build2 (NE_EXPR, boolean_type_node,
3080 info->data_location, null_pointer_node);
3081
3082 for (dim = 0; dim < rank; dim++)
3083 {
3084 t = fold_build_pointer_plus (base_decl,
3085 size_binop (PLUS_EXPR,
3086 dim_off, lower_suboff));
3087 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3088 info->dimen[dim].lower_bound = t;
3089 t = fold_build_pointer_plus (base_decl,
3090 size_binop (PLUS_EXPR,
3091 dim_off, upper_suboff));
3092 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3093 info->dimen[dim].upper_bound = t;
3094 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3095 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3096 {
3097 /* Assumed shape arrays have known lower bounds. */
3098 info->dimen[dim].upper_bound
3099 = build2 (MINUS_EXPR, gfc_array_index_type,
3100 info->dimen[dim].upper_bound,
3101 info->dimen[dim].lower_bound);
3102 info->dimen[dim].lower_bound
3103 = fold_convert (gfc_array_index_type,
3104 GFC_TYPE_ARRAY_LBOUND (type, dim));
3105 info->dimen[dim].upper_bound
3106 = build2 (PLUS_EXPR, gfc_array_index_type,
3107 info->dimen[dim].lower_bound,
3108 info->dimen[dim].upper_bound);
3109 }
3110 t = fold_build_pointer_plus (base_decl,
3111 size_binop (PLUS_EXPR,
3112 dim_off, stride_suboff));
3113 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3114 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3115 info->dimen[dim].stride = t;
3116 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3117 }
3118
3119 return true;
3120 }
3121
3122 #include "gt-fortran-trans-types.h"