]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
2014-08-15 Manuel López-Ibáñez <manu@gcc.gnu.org>
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "stor-layout.h"
38 #include "stringpool.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "gfortran.h"
43 #include "diagnostic-core.h" /* For fatal_error. */
44 #include "toplev.h" /* For rest_of_decl_compilation. */
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 bool
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return true;
150 }
151
152 return false;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_FUNCTION(a,b,c,d) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_SUBROUTINE(a,b,c,d) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
350 c_interop_kinds_table[a].value = c;
351 #include "iso-c-binding.def"
352 }
353
354
355 /* Query the target to determine which machine modes are available for
356 computation. Choose KIND numbers for them. */
357
358 void
359 gfc_init_kinds (void)
360 {
361 unsigned int mode;
362 int i_index, r_index, kind;
363 bool saw_i4 = false, saw_i8 = false;
364 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
365
366 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
367 {
368 int kind, bitsize;
369
370 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
371 continue;
372
373 /* The middle end doesn't support constants larger than 2*HWI.
374 Perhaps the target hook shouldn't have accepted these either,
375 but just to be safe... */
376 bitsize = GET_MODE_BITSIZE ((enum machine_mode) mode);
377 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
378 continue;
379
380 gcc_assert (i_index != MAX_INT_KINDS);
381
382 /* Let the kind equal the bit size divided by 8. This insulates the
383 programmer from the underlying byte size. */
384 kind = bitsize / 8;
385
386 if (kind == 4)
387 saw_i4 = true;
388 if (kind == 8)
389 saw_i8 = true;
390
391 gfc_integer_kinds[i_index].kind = kind;
392 gfc_integer_kinds[i_index].radix = 2;
393 gfc_integer_kinds[i_index].digits = bitsize - 1;
394 gfc_integer_kinds[i_index].bit_size = bitsize;
395
396 gfc_logical_kinds[i_index].kind = kind;
397 gfc_logical_kinds[i_index].bit_size = bitsize;
398
399 i_index += 1;
400 }
401
402 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
403 used for large file access. */
404
405 if (saw_i8)
406 gfc_intio_kind = 8;
407 else
408 gfc_intio_kind = 4;
409
410 /* If we do not at least have kind = 4, everything is pointless. */
411 gcc_assert(saw_i4);
412
413 /* Set the maximum integer kind. Used with at least BOZ constants. */
414 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
415
416 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
417 {
418 const struct real_format *fmt =
419 REAL_MODE_FORMAT ((enum machine_mode) mode);
420 int kind;
421
422 if (fmt == NULL)
423 continue;
424 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
425 continue;
426
427 /* Only let float, double, long double and __float128 go through.
428 Runtime support for others is not provided, so they would be
429 useless. */
430 if (mode != TYPE_MODE (float_type_node)
431 && (mode != TYPE_MODE (double_type_node))
432 && (mode != TYPE_MODE (long_double_type_node))
433 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
434 && (mode != TFmode)
435 #endif
436 )
437 continue;
438
439 /* Let the kind equal the precision divided by 8, rounding up. Again,
440 this insulates the programmer from the underlying byte size.
441
442 Also, it effectively deals with IEEE extended formats. There, the
443 total size of the type may equal 16, but it's got 6 bytes of padding
444 and the increased size can get in the way of a real IEEE quad format
445 which may also be supported by the target.
446
447 We round up so as to handle IA-64 __floatreg (RFmode), which is an
448 82 bit type. Not to be confused with __float80 (XFmode), which is
449 an 80 bit type also supported by IA-64. So XFmode should come out
450 to be kind=10, and RFmode should come out to be kind=11. Egads. */
451
452 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
453
454 if (kind == 4)
455 saw_r4 = true;
456 if (kind == 8)
457 saw_r8 = true;
458 if (kind == 10)
459 saw_r10 = true;
460 if (kind == 16)
461 saw_r16 = true;
462
463 /* Careful we don't stumble a weird internal mode. */
464 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
465 /* Or have too many modes for the allocated space. */
466 gcc_assert (r_index != MAX_REAL_KINDS);
467
468 gfc_real_kinds[r_index].kind = kind;
469 gfc_real_kinds[r_index].radix = fmt->b;
470 gfc_real_kinds[r_index].digits = fmt->p;
471 gfc_real_kinds[r_index].min_exponent = fmt->emin;
472 gfc_real_kinds[r_index].max_exponent = fmt->emax;
473 if (fmt->pnan < fmt->p)
474 /* This is an IBM extended double format (or the MIPS variant)
475 made up of two IEEE doubles. The value of the long double is
476 the sum of the values of the two parts. The most significant
477 part is required to be the value of the long double rounded
478 to the nearest double. If we use emax of 1024 then we can't
479 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
480 rounding will make the most significant part overflow. */
481 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
482 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
483 r_index += 1;
484 }
485
486 /* Choose the default integer kind. We choose 4 unless the user directs us
487 otherwise. Even if the user specified that the default integer kind is 8,
488 the numeric storage size is not 64 bits. In this case, a warning will be
489 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
490
491 gfc_numeric_storage_size = 4 * 8;
492
493 if (gfc_option.flag_default_integer)
494 {
495 if (!saw_i8)
496 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
497
498 gfc_default_integer_kind = 8;
499
500 }
501 else if (gfc_option.flag_integer4_kind == 8)
502 {
503 if (!saw_i8)
504 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
505
506 gfc_default_integer_kind = 8;
507 }
508 else if (saw_i4)
509 {
510 gfc_default_integer_kind = 4;
511 }
512 else
513 {
514 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
515 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
516 }
517
518 /* Choose the default real kind. Again, we choose 4 when possible. */
519 if (gfc_option.flag_default_real)
520 {
521 if (!saw_r8)
522 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
523
524 gfc_default_real_kind = 8;
525 }
526 else if (gfc_option.flag_real4_kind == 8)
527 {
528 if (!saw_r8)
529 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
530
531 gfc_default_real_kind = 8;
532 }
533 else if (gfc_option.flag_real4_kind == 10)
534 {
535 if (!saw_r10)
536 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
537
538 gfc_default_real_kind = 10;
539 }
540 else if (gfc_option.flag_real4_kind == 16)
541 {
542 if (!saw_r16)
543 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
544
545 gfc_default_real_kind = 16;
546 }
547 else if (saw_r4)
548 gfc_default_real_kind = 4;
549 else
550 gfc_default_real_kind = gfc_real_kinds[0].kind;
551
552 /* Choose the default double kind. If -fdefault-real and -fdefault-double
553 are specified, we use kind=8, if it's available. If -fdefault-real is
554 specified without -fdefault-double, we use kind=16, if it's available.
555 Otherwise we do not change anything. */
556 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
557 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
558
559 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
560 gfc_default_double_kind = 8;
561 else if (gfc_option.flag_default_real && saw_r16)
562 gfc_default_double_kind = 16;
563 else if (gfc_option.flag_real8_kind == 4)
564 {
565 if (!saw_r4)
566 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
567
568 gfc_default_double_kind = 4;
569 }
570 else if (gfc_option.flag_real8_kind == 10 )
571 {
572 if (!saw_r10)
573 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
574
575 gfc_default_double_kind = 10;
576 }
577 else if (gfc_option.flag_real8_kind == 16 )
578 {
579 if (!saw_r16)
580 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
581
582 gfc_default_double_kind = 16;
583 }
584 else if (saw_r4 && saw_r8)
585 gfc_default_double_kind = 8;
586 else
587 {
588 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
589 real ... occupies two contiguous numeric storage units.
590
591 Therefore we must be supplied a kind twice as large as we chose
592 for single precision. There are loopholes, in that double
593 precision must *occupy* two storage units, though it doesn't have
594 to *use* two storage units. Which means that you can make this
595 kind artificially wide by padding it. But at present there are
596 no GCC targets for which a two-word type does not exist, so we
597 just let gfc_validate_kind abort and tell us if something breaks. */
598
599 gfc_default_double_kind
600 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
601 }
602
603 /* The default logical kind is constrained to be the same as the
604 default integer kind. Similarly with complex and real. */
605 gfc_default_logical_kind = gfc_default_integer_kind;
606 gfc_default_complex_kind = gfc_default_real_kind;
607
608 /* We only have two character kinds: ASCII and UCS-4.
609 ASCII corresponds to a 8-bit integer type, if one is available.
610 UCS-4 corresponds to a 32-bit integer type, if one is available. */
611 i_index = 0;
612 if ((kind = get_int_kind_from_width (8)) > 0)
613 {
614 gfc_character_kinds[i_index].kind = kind;
615 gfc_character_kinds[i_index].bit_size = 8;
616 gfc_character_kinds[i_index].name = "ascii";
617 i_index++;
618 }
619 if ((kind = get_int_kind_from_width (32)) > 0)
620 {
621 gfc_character_kinds[i_index].kind = kind;
622 gfc_character_kinds[i_index].bit_size = 32;
623 gfc_character_kinds[i_index].name = "iso_10646";
624 i_index++;
625 }
626
627 /* Choose the smallest integer kind for our default character. */
628 gfc_default_character_kind = gfc_character_kinds[0].kind;
629 gfc_character_storage_size = gfc_default_character_kind * 8;
630
631 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
632
633 /* Pick a kind the same size as the C "int" type. */
634 gfc_c_int_kind = INT_TYPE_SIZE / 8;
635
636 /* Choose atomic kinds to match C's int. */
637 gfc_atomic_int_kind = gfc_c_int_kind;
638 gfc_atomic_logical_kind = gfc_c_int_kind;
639 }
640
641
642 /* Make sure that a valid kind is present. Returns an index into the
643 associated kinds array, -1 if the kind is not present. */
644
645 static int
646 validate_integer (int kind)
647 {
648 int i;
649
650 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
651 if (gfc_integer_kinds[i].kind == kind)
652 return i;
653
654 return -1;
655 }
656
657 static int
658 validate_real (int kind)
659 {
660 int i;
661
662 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
663 if (gfc_real_kinds[i].kind == kind)
664 return i;
665
666 return -1;
667 }
668
669 static int
670 validate_logical (int kind)
671 {
672 int i;
673
674 for (i = 0; gfc_logical_kinds[i].kind; i++)
675 if (gfc_logical_kinds[i].kind == kind)
676 return i;
677
678 return -1;
679 }
680
681 static int
682 validate_character (int kind)
683 {
684 int i;
685
686 for (i = 0; gfc_character_kinds[i].kind; i++)
687 if (gfc_character_kinds[i].kind == kind)
688 return i;
689
690 return -1;
691 }
692
693 /* Validate a kind given a basic type. The return value is the same
694 for the child functions, with -1 indicating nonexistence of the
695 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
696
697 int
698 gfc_validate_kind (bt type, int kind, bool may_fail)
699 {
700 int rc;
701
702 switch (type)
703 {
704 case BT_REAL: /* Fall through */
705 case BT_COMPLEX:
706 rc = validate_real (kind);
707 break;
708 case BT_INTEGER:
709 rc = validate_integer (kind);
710 break;
711 case BT_LOGICAL:
712 rc = validate_logical (kind);
713 break;
714 case BT_CHARACTER:
715 rc = validate_character (kind);
716 break;
717
718 default:
719 gfc_internal_error ("gfc_validate_kind(): Got bad type");
720 }
721
722 if (rc < 0 && !may_fail)
723 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
724
725 return rc;
726 }
727
728
729 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
730 Reuse common type nodes where possible. Recognize if the kind matches up
731 with a C type. This will be used later in determining which routines may
732 be scarfed from libm. */
733
734 static tree
735 gfc_build_int_type (gfc_integer_info *info)
736 {
737 int mode_precision = info->bit_size;
738
739 if (mode_precision == CHAR_TYPE_SIZE)
740 info->c_char = 1;
741 if (mode_precision == SHORT_TYPE_SIZE)
742 info->c_short = 1;
743 if (mode_precision == INT_TYPE_SIZE)
744 info->c_int = 1;
745 if (mode_precision == LONG_TYPE_SIZE)
746 info->c_long = 1;
747 if (mode_precision == LONG_LONG_TYPE_SIZE)
748 info->c_long_long = 1;
749
750 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
751 return intQI_type_node;
752 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
753 return intHI_type_node;
754 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
755 return intSI_type_node;
756 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
757 return intDI_type_node;
758 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
759 return intTI_type_node;
760
761 return make_signed_type (mode_precision);
762 }
763
764 tree
765 gfc_build_uint_type (int size)
766 {
767 if (size == CHAR_TYPE_SIZE)
768 return unsigned_char_type_node;
769 if (size == SHORT_TYPE_SIZE)
770 return short_unsigned_type_node;
771 if (size == INT_TYPE_SIZE)
772 return unsigned_type_node;
773 if (size == LONG_TYPE_SIZE)
774 return long_unsigned_type_node;
775 if (size == LONG_LONG_TYPE_SIZE)
776 return long_long_unsigned_type_node;
777
778 return make_unsigned_type (size);
779 }
780
781
782 static tree
783 gfc_build_real_type (gfc_real_info *info)
784 {
785 int mode_precision = info->mode_precision;
786 tree new_type;
787
788 if (mode_precision == FLOAT_TYPE_SIZE)
789 info->c_float = 1;
790 if (mode_precision == DOUBLE_TYPE_SIZE)
791 info->c_double = 1;
792 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
793 info->c_long_double = 1;
794 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
795 {
796 info->c_float128 = 1;
797 gfc_real16_is_float128 = true;
798 }
799
800 if (TYPE_PRECISION (float_type_node) == mode_precision)
801 return float_type_node;
802 if (TYPE_PRECISION (double_type_node) == mode_precision)
803 return double_type_node;
804 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
805 return long_double_type_node;
806
807 new_type = make_node (REAL_TYPE);
808 TYPE_PRECISION (new_type) = mode_precision;
809 layout_type (new_type);
810 return new_type;
811 }
812
813 static tree
814 gfc_build_complex_type (tree scalar_type)
815 {
816 tree new_type;
817
818 if (scalar_type == NULL)
819 return NULL;
820 if (scalar_type == float_type_node)
821 return complex_float_type_node;
822 if (scalar_type == double_type_node)
823 return complex_double_type_node;
824 if (scalar_type == long_double_type_node)
825 return complex_long_double_type_node;
826
827 new_type = make_node (COMPLEX_TYPE);
828 TREE_TYPE (new_type) = scalar_type;
829 layout_type (new_type);
830 return new_type;
831 }
832
833 static tree
834 gfc_build_logical_type (gfc_logical_info *info)
835 {
836 int bit_size = info->bit_size;
837 tree new_type;
838
839 if (bit_size == BOOL_TYPE_SIZE)
840 {
841 info->c_bool = 1;
842 return boolean_type_node;
843 }
844
845 new_type = make_unsigned_type (bit_size);
846 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
847 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
848 TYPE_PRECISION (new_type) = 1;
849
850 return new_type;
851 }
852
853
854 /* Create the backend type nodes. We map them to their
855 equivalent C type, at least for now. We also give
856 names to the types here, and we push them in the
857 global binding level context.*/
858
859 void
860 gfc_init_types (void)
861 {
862 char name_buf[18];
863 int index;
864 tree type;
865 unsigned n;
866
867 /* Create and name the types. */
868 #define PUSH_TYPE(name, node) \
869 pushdecl (build_decl (input_location, \
870 TYPE_DECL, get_identifier (name), node))
871
872 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
873 {
874 type = gfc_build_int_type (&gfc_integer_kinds[index]);
875 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
876 if (TYPE_STRING_FLAG (type))
877 type = make_signed_type (gfc_integer_kinds[index].bit_size);
878 gfc_integer_types[index] = type;
879 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
880 gfc_integer_kinds[index].kind);
881 PUSH_TYPE (name_buf, type);
882 }
883
884 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
885 {
886 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
887 gfc_logical_types[index] = type;
888 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
889 gfc_logical_kinds[index].kind);
890 PUSH_TYPE (name_buf, type);
891 }
892
893 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
894 {
895 type = gfc_build_real_type (&gfc_real_kinds[index]);
896 gfc_real_types[index] = type;
897 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
898 gfc_real_kinds[index].kind);
899 PUSH_TYPE (name_buf, type);
900
901 if (gfc_real_kinds[index].c_float128)
902 float128_type_node = type;
903
904 type = gfc_build_complex_type (type);
905 gfc_complex_types[index] = type;
906 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
907 gfc_real_kinds[index].kind);
908 PUSH_TYPE (name_buf, type);
909
910 if (gfc_real_kinds[index].c_float128)
911 complex_float128_type_node = type;
912 }
913
914 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
915 {
916 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
917 type = build_qualified_type (type, TYPE_UNQUALIFIED);
918 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
919 gfc_character_kinds[index].kind);
920 PUSH_TYPE (name_buf, type);
921 gfc_character_types[index] = type;
922 gfc_pcharacter_types[index] = build_pointer_type (type);
923 }
924 gfc_character1_type_node = gfc_character_types[0];
925
926 PUSH_TYPE ("byte", unsigned_char_type_node);
927 PUSH_TYPE ("void", void_type_node);
928
929 /* DBX debugging output gets upset if these aren't set. */
930 if (!TYPE_NAME (integer_type_node))
931 PUSH_TYPE ("c_integer", integer_type_node);
932 if (!TYPE_NAME (char_type_node))
933 PUSH_TYPE ("c_char", char_type_node);
934
935 #undef PUSH_TYPE
936
937 pvoid_type_node = build_pointer_type (void_type_node);
938 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
939 ppvoid_type_node = build_pointer_type (pvoid_type_node);
940 pchar_type_node = build_pointer_type (gfc_character1_type_node);
941 pfunc_type_node
942 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
943
944 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
945 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
946 since this function is called before gfc_init_constants. */
947 gfc_array_range_type
948 = build_range_type (gfc_array_index_type,
949 build_int_cst (gfc_array_index_type, 0),
950 NULL_TREE);
951
952 /* The maximum array element size that can be handled is determined
953 by the number of bits available to store this field in the array
954 descriptor. */
955
956 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
957 gfc_max_array_element_size
958 = wide_int_to_tree (size_type_node,
959 wi::mask (n, UNSIGNED,
960 TYPE_PRECISION (size_type_node)));
961
962 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
963 boolean_true_node = build_int_cst (boolean_type_node, 1);
964 boolean_false_node = build_int_cst (boolean_type_node, 0);
965
966 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
967 gfc_charlen_int_kind = 4;
968 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
969 }
970
971 /* Get the type node for the given type and kind. */
972
973 tree
974 gfc_get_int_type (int kind)
975 {
976 int index = gfc_validate_kind (BT_INTEGER, kind, true);
977 return index < 0 ? 0 : gfc_integer_types[index];
978 }
979
980 tree
981 gfc_get_real_type (int kind)
982 {
983 int index = gfc_validate_kind (BT_REAL, kind, true);
984 return index < 0 ? 0 : gfc_real_types[index];
985 }
986
987 tree
988 gfc_get_complex_type (int kind)
989 {
990 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
991 return index < 0 ? 0 : gfc_complex_types[index];
992 }
993
994 tree
995 gfc_get_logical_type (int kind)
996 {
997 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
998 return index < 0 ? 0 : gfc_logical_types[index];
999 }
1000
1001 tree
1002 gfc_get_char_type (int kind)
1003 {
1004 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1005 return index < 0 ? 0 : gfc_character_types[index];
1006 }
1007
1008 tree
1009 gfc_get_pchar_type (int kind)
1010 {
1011 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1012 return index < 0 ? 0 : gfc_pcharacter_types[index];
1013 }
1014
1015 \f
1016 /* Create a character type with the given kind and length. */
1017
1018 tree
1019 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1020 {
1021 tree bounds, type;
1022
1023 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1024 type = build_array_type (eltype, bounds);
1025 TYPE_STRING_FLAG (type) = 1;
1026
1027 return type;
1028 }
1029
1030 tree
1031 gfc_get_character_type_len (int kind, tree len)
1032 {
1033 gfc_validate_kind (BT_CHARACTER, kind, false);
1034 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1035 }
1036
1037
1038 /* Get a type node for a character kind. */
1039
1040 tree
1041 gfc_get_character_type (int kind, gfc_charlen * cl)
1042 {
1043 tree len;
1044
1045 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1046
1047 return gfc_get_character_type_len (kind, len);
1048 }
1049 \f
1050 /* Covert a basic type. This will be an array for character types. */
1051
1052 tree
1053 gfc_typenode_for_spec (gfc_typespec * spec)
1054 {
1055 tree basetype;
1056
1057 switch (spec->type)
1058 {
1059 case BT_UNKNOWN:
1060 gcc_unreachable ();
1061
1062 case BT_INTEGER:
1063 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1064 has been resolved. This is done so we can convert C_PTR and
1065 C_FUNPTR to simple variables that get translated to (void *). */
1066 if (spec->f90_type == BT_VOID)
1067 {
1068 if (spec->u.derived
1069 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1070 basetype = ptr_type_node;
1071 else
1072 basetype = pfunc_type_node;
1073 }
1074 else
1075 basetype = gfc_get_int_type (spec->kind);
1076 break;
1077
1078 case BT_REAL:
1079 basetype = gfc_get_real_type (spec->kind);
1080 break;
1081
1082 case BT_COMPLEX:
1083 basetype = gfc_get_complex_type (spec->kind);
1084 break;
1085
1086 case BT_LOGICAL:
1087 basetype = gfc_get_logical_type (spec->kind);
1088 break;
1089
1090 case BT_CHARACTER:
1091 #if 0
1092 if (spec->deferred)
1093 basetype = gfc_get_character_type (spec->kind, NULL);
1094 else
1095 #endif
1096 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1097 break;
1098
1099 case BT_HOLLERITH:
1100 /* Since this cannot be used, return a length one character. */
1101 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1102 gfc_index_one_node);
1103 break;
1104
1105 case BT_DERIVED:
1106 case BT_CLASS:
1107 basetype = gfc_get_derived_type (spec->u.derived);
1108
1109 if (spec->type == BT_CLASS)
1110 GFC_CLASS_TYPE_P (basetype) = 1;
1111
1112 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1113 type and kind to fit a (void *) and the basetype returned was a
1114 ptr_type_node. We need to pass up this new information to the
1115 symbol that was declared of type C_PTR or C_FUNPTR. */
1116 if (spec->u.derived->ts.f90_type == BT_VOID)
1117 {
1118 spec->type = BT_INTEGER;
1119 spec->kind = gfc_index_integer_kind;
1120 spec->f90_type = BT_VOID;
1121 }
1122 break;
1123 case BT_VOID:
1124 case BT_ASSUMED:
1125 /* This is for the second arg to c_f_pointer and c_f_procpointer
1126 of the iso_c_binding module, to accept any ptr type. */
1127 basetype = ptr_type_node;
1128 if (spec->f90_type == BT_VOID)
1129 {
1130 if (spec->u.derived
1131 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1132 basetype = ptr_type_node;
1133 else
1134 basetype = pfunc_type_node;
1135 }
1136 break;
1137 default:
1138 gcc_unreachable ();
1139 }
1140 return basetype;
1141 }
1142 \f
1143 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1144
1145 static tree
1146 gfc_conv_array_bound (gfc_expr * expr)
1147 {
1148 /* If expr is an integer constant, return that. */
1149 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1150 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1151
1152 /* Otherwise return NULL. */
1153 return NULL_TREE;
1154 }
1155 \f
1156 tree
1157 gfc_get_element_type (tree type)
1158 {
1159 tree element;
1160
1161 if (GFC_ARRAY_TYPE_P (type))
1162 {
1163 if (TREE_CODE (type) == POINTER_TYPE)
1164 type = TREE_TYPE (type);
1165 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1166 {
1167 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1168 element = type;
1169 }
1170 else
1171 {
1172 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1173 element = TREE_TYPE (type);
1174 }
1175 }
1176 else
1177 {
1178 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1179 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1180
1181 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1182 element = TREE_TYPE (element);
1183
1184 /* For arrays, which are not scalar coarrays. */
1185 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1186 element = TREE_TYPE (element);
1187 }
1188
1189 return element;
1190 }
1191 \f
1192 /* Build an array. This function is called from gfc_sym_type().
1193 Actually returns array descriptor type.
1194
1195 Format of array descriptors is as follows:
1196
1197 struct gfc_array_descriptor
1198 {
1199 array *data
1200 index offset;
1201 index dtype;
1202 struct descriptor_dimension dimension[N_DIM];
1203 }
1204
1205 struct descriptor_dimension
1206 {
1207 index stride;
1208 index lbound;
1209 index ubound;
1210 }
1211
1212 Translation code should use gfc_conv_descriptor_* rather than
1213 accessing the descriptor directly. Any changes to the array
1214 descriptor type will require changes in gfc_conv_descriptor_* and
1215 gfc_build_array_initializer.
1216
1217 This is represented internally as a RECORD_TYPE. The index nodes
1218 are gfc_array_index_type and the data node is a pointer to the
1219 data. See below for the handling of character types.
1220
1221 The dtype member is formatted as follows:
1222 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1223 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1224 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1225
1226 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1227 this generated poor code for assumed/deferred size arrays. These
1228 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1229 of the GENERIC grammar. Also, there is no way to explicitly set
1230 the array stride, so all data must be packed(1). I've tried to
1231 mark all the functions which would require modification with a GCC
1232 ARRAYS comment.
1233
1234 The data component points to the first element in the array. The
1235 offset field is the position of the origin of the array (i.e. element
1236 (0, 0 ...)). This may be outside the bounds of the array.
1237
1238 An element is accessed by
1239 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1240 This gives good performance as the computation does not involve the
1241 bounds of the array. For packed arrays, this is optimized further
1242 by substituting the known strides.
1243
1244 This system has one problem: all array bounds must be within 2^31
1245 elements of the origin (2^63 on 64-bit machines). For example
1246 integer, dimension (80000:90000, 80000:90000, 2) :: array
1247 may not work properly on 32-bit machines because 80000*80000 >
1248 2^31, so the calculation for stride2 would overflow. This may
1249 still work, but I haven't checked, and it relies on the overflow
1250 doing the right thing.
1251
1252 The way to fix this problem is to access elements as follows:
1253 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1254 Obviously this is much slower. I will make this a compile time
1255 option, something like -fsmall-array-offsets. Mixing code compiled
1256 with and without this switch will work.
1257
1258 (1) This can be worked around by modifying the upper bound of the
1259 previous dimension. This requires extra fields in the descriptor
1260 (both real_ubound and fake_ubound). */
1261
1262
1263 /* Returns true if the array sym does not require a descriptor. */
1264
1265 int
1266 gfc_is_nodesc_array (gfc_symbol * sym)
1267 {
1268 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1269
1270 /* We only want local arrays. */
1271 if (sym->attr.pointer || sym->attr.allocatable)
1272 return 0;
1273
1274 /* We want a descriptor for associate-name arrays that do not have an
1275 explicitly known shape already. */
1276 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1277 return 0;
1278
1279 if (sym->attr.dummy)
1280 return sym->as->type != AS_ASSUMED_SHAPE
1281 && sym->as->type != AS_ASSUMED_RANK;
1282
1283 if (sym->attr.result || sym->attr.function)
1284 return 0;
1285
1286 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1287
1288 return 1;
1289 }
1290
1291
1292 /* Create an array descriptor type. */
1293
1294 static tree
1295 gfc_build_array_type (tree type, gfc_array_spec * as,
1296 enum gfc_array_kind akind, bool restricted,
1297 bool contiguous)
1298 {
1299 tree lbound[GFC_MAX_DIMENSIONS];
1300 tree ubound[GFC_MAX_DIMENSIONS];
1301 int n, corank;
1302
1303 /* Assumed-shape arrays do not have codimension information stored in the
1304 descriptor. */
1305 corank = as->corank;
1306 if (as->type == AS_ASSUMED_SHAPE ||
1307 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1308 corank = 0;
1309
1310 if (as->type == AS_ASSUMED_RANK)
1311 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1312 {
1313 lbound[n] = NULL_TREE;
1314 ubound[n] = NULL_TREE;
1315 }
1316
1317 for (n = 0; n < as->rank; n++)
1318 {
1319 /* Create expressions for the known bounds of the array. */
1320 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1321 lbound[n] = gfc_index_one_node;
1322 else
1323 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1324 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1325 }
1326
1327 for (n = as->rank; n < as->rank + corank; n++)
1328 {
1329 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1330 lbound[n] = gfc_index_one_node;
1331 else
1332 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1333
1334 if (n < as->rank + corank - 1)
1335 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1336 }
1337
1338 if (as->type == AS_ASSUMED_SHAPE)
1339 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1340 : GFC_ARRAY_ASSUMED_SHAPE;
1341 else if (as->type == AS_ASSUMED_RANK)
1342 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1343 : GFC_ARRAY_ASSUMED_RANK;
1344 return gfc_get_array_type_bounds (type, as->rank == -1
1345 ? GFC_MAX_DIMENSIONS : as->rank,
1346 corank, lbound,
1347 ubound, 0, akind, restricted);
1348 }
1349 \f
1350 /* Returns the struct descriptor_dimension type. */
1351
1352 static tree
1353 gfc_get_desc_dim_type (void)
1354 {
1355 tree type;
1356 tree decl, *chain = NULL;
1357
1358 if (gfc_desc_dim_type)
1359 return gfc_desc_dim_type;
1360
1361 /* Build the type node. */
1362 type = make_node (RECORD_TYPE);
1363
1364 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1365 TYPE_PACKED (type) = 1;
1366
1367 /* Consists of the stride, lbound and ubound members. */
1368 decl = gfc_add_field_to_struct_1 (type,
1369 get_identifier ("stride"),
1370 gfc_array_index_type, &chain);
1371 TREE_NO_WARNING (decl) = 1;
1372
1373 decl = gfc_add_field_to_struct_1 (type,
1374 get_identifier ("lbound"),
1375 gfc_array_index_type, &chain);
1376 TREE_NO_WARNING (decl) = 1;
1377
1378 decl = gfc_add_field_to_struct_1 (type,
1379 get_identifier ("ubound"),
1380 gfc_array_index_type, &chain);
1381 TREE_NO_WARNING (decl) = 1;
1382
1383 /* Finish off the type. */
1384 gfc_finish_type (type);
1385 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1386
1387 gfc_desc_dim_type = type;
1388 return type;
1389 }
1390
1391
1392 /* Return the DTYPE for an array. This describes the type and type parameters
1393 of the array. */
1394 /* TODO: Only call this when the value is actually used, and make all the
1395 unknown cases abort. */
1396
1397 tree
1398 gfc_get_dtype_rank_type (int rank, tree etype)
1399 {
1400 tree size;
1401 int n;
1402 HOST_WIDE_INT i;
1403 tree tmp;
1404 tree dtype;
1405
1406 switch (TREE_CODE (etype))
1407 {
1408 case INTEGER_TYPE:
1409 n = BT_INTEGER;
1410 break;
1411
1412 case BOOLEAN_TYPE:
1413 n = BT_LOGICAL;
1414 break;
1415
1416 case REAL_TYPE:
1417 n = BT_REAL;
1418 break;
1419
1420 case COMPLEX_TYPE:
1421 n = BT_COMPLEX;
1422 break;
1423
1424 /* We will never have arrays of arrays. */
1425 case RECORD_TYPE:
1426 n = BT_DERIVED;
1427 break;
1428
1429 case ARRAY_TYPE:
1430 n = BT_CHARACTER;
1431 break;
1432
1433 case POINTER_TYPE:
1434 n = BT_ASSUMED;
1435 break;
1436
1437 default:
1438 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1439 /* We can strange array types for temporary arrays. */
1440 return gfc_index_zero_node;
1441 }
1442
1443 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1444 size = TYPE_SIZE_UNIT (etype);
1445
1446 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1447 if (size && INTEGER_CST_P (size))
1448 {
1449 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1450 gfc_fatal_error ("Array element size too big at %C");
1451
1452 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1453 }
1454 dtype = build_int_cst (gfc_array_index_type, i);
1455
1456 if (size && !INTEGER_CST_P (size))
1457 {
1458 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1459 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1460 gfc_array_index_type,
1461 fold_convert (gfc_array_index_type, size), tmp);
1462 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1463 tmp, dtype);
1464 }
1465 /* If we don't know the size we leave it as zero. This should never happen
1466 for anything that is actually used. */
1467 /* TODO: Check this is actually true, particularly when repacking
1468 assumed size parameters. */
1469
1470 return dtype;
1471 }
1472
1473
1474 tree
1475 gfc_get_dtype (tree type)
1476 {
1477 tree dtype;
1478 tree etype;
1479 int rank;
1480
1481 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1482
1483 if (GFC_TYPE_ARRAY_DTYPE (type))
1484 return GFC_TYPE_ARRAY_DTYPE (type);
1485
1486 rank = GFC_TYPE_ARRAY_RANK (type);
1487 etype = gfc_get_element_type (type);
1488 dtype = gfc_get_dtype_rank_type (rank, etype);
1489
1490 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1491 return dtype;
1492 }
1493
1494
1495 /* Build an array type for use without a descriptor, packed according
1496 to the value of PACKED. */
1497
1498 tree
1499 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1500 bool restricted)
1501 {
1502 tree range;
1503 tree type;
1504 tree tmp;
1505 int n;
1506 int known_stride;
1507 int known_offset;
1508 mpz_t offset;
1509 mpz_t stride;
1510 mpz_t delta;
1511 gfc_expr *expr;
1512
1513 mpz_init_set_ui (offset, 0);
1514 mpz_init_set_ui (stride, 1);
1515 mpz_init (delta);
1516
1517 /* We don't use build_array_type because this does not include include
1518 lang-specific information (i.e. the bounds of the array) when checking
1519 for duplicates. */
1520 if (as->rank)
1521 type = make_node (ARRAY_TYPE);
1522 else
1523 type = build_variant_type_copy (etype);
1524
1525 GFC_ARRAY_TYPE_P (type) = 1;
1526 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1527
1528 known_stride = (packed != PACKED_NO);
1529 known_offset = 1;
1530 for (n = 0; n < as->rank; n++)
1531 {
1532 /* Fill in the stride and bound components of the type. */
1533 if (known_stride)
1534 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1535 else
1536 tmp = NULL_TREE;
1537 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1538
1539 expr = as->lower[n];
1540 if (expr->expr_type == EXPR_CONSTANT)
1541 {
1542 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1543 gfc_index_integer_kind);
1544 }
1545 else
1546 {
1547 known_stride = 0;
1548 tmp = NULL_TREE;
1549 }
1550 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1551
1552 if (known_stride)
1553 {
1554 /* Calculate the offset. */
1555 mpz_mul (delta, stride, as->lower[n]->value.integer);
1556 mpz_sub (offset, offset, delta);
1557 }
1558 else
1559 known_offset = 0;
1560
1561 expr = as->upper[n];
1562 if (expr && expr->expr_type == EXPR_CONSTANT)
1563 {
1564 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1565 gfc_index_integer_kind);
1566 }
1567 else
1568 {
1569 tmp = NULL_TREE;
1570 known_stride = 0;
1571 }
1572 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1573
1574 if (known_stride)
1575 {
1576 /* Calculate the stride. */
1577 mpz_sub (delta, as->upper[n]->value.integer,
1578 as->lower[n]->value.integer);
1579 mpz_add_ui (delta, delta, 1);
1580 mpz_mul (stride, stride, delta);
1581 }
1582
1583 /* Only the first stride is known for partial packed arrays. */
1584 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1585 known_stride = 0;
1586 }
1587 for (n = as->rank; n < as->rank + as->corank; n++)
1588 {
1589 expr = as->lower[n];
1590 if (expr->expr_type == EXPR_CONSTANT)
1591 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1592 gfc_index_integer_kind);
1593 else
1594 tmp = NULL_TREE;
1595 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1596
1597 expr = as->upper[n];
1598 if (expr && expr->expr_type == EXPR_CONSTANT)
1599 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1600 gfc_index_integer_kind);
1601 else
1602 tmp = NULL_TREE;
1603 if (n < as->rank + as->corank - 1)
1604 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1605 }
1606
1607 if (known_offset)
1608 {
1609 GFC_TYPE_ARRAY_OFFSET (type) =
1610 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1611 }
1612 else
1613 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1614
1615 if (known_stride)
1616 {
1617 GFC_TYPE_ARRAY_SIZE (type) =
1618 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1619 }
1620 else
1621 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1622
1623 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1624 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1625 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1626 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1627 NULL_TREE);
1628 /* TODO: use main type if it is unbounded. */
1629 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1630 build_pointer_type (build_array_type (etype, range));
1631 if (restricted)
1632 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1633 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1634 TYPE_QUAL_RESTRICT);
1635
1636 if (as->rank == 0)
1637 {
1638 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1639 {
1640 type = build_pointer_type (type);
1641
1642 if (restricted)
1643 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1644
1645 GFC_ARRAY_TYPE_P (type) = 1;
1646 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1647 }
1648
1649 return type;
1650 }
1651
1652 if (known_stride)
1653 {
1654 mpz_sub_ui (stride, stride, 1);
1655 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1656 }
1657 else
1658 range = NULL_TREE;
1659
1660 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1661 TYPE_DOMAIN (type) = range;
1662
1663 build_pointer_type (etype);
1664 TREE_TYPE (type) = etype;
1665
1666 layout_type (type);
1667
1668 mpz_clear (offset);
1669 mpz_clear (stride);
1670 mpz_clear (delta);
1671
1672 /* Represent packed arrays as multi-dimensional if they have rank >
1673 1 and with proper bounds, instead of flat arrays. This makes for
1674 better debug info. */
1675 if (known_offset)
1676 {
1677 tree gtype = etype, rtype, type_decl;
1678
1679 for (n = as->rank - 1; n >= 0; n--)
1680 {
1681 rtype = build_range_type (gfc_array_index_type,
1682 GFC_TYPE_ARRAY_LBOUND (type, n),
1683 GFC_TYPE_ARRAY_UBOUND (type, n));
1684 gtype = build_array_type (gtype, rtype);
1685 }
1686 TYPE_NAME (type) = type_decl = build_decl (input_location,
1687 TYPE_DECL, NULL, gtype);
1688 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1689 }
1690
1691 if (packed != PACKED_STATIC || !known_stride
1692 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1693 {
1694 /* For dummy arrays and automatic (heap allocated) arrays we
1695 want a pointer to the array. */
1696 type = build_pointer_type (type);
1697 if (restricted)
1698 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1699 GFC_ARRAY_TYPE_P (type) = 1;
1700 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1701 }
1702 return type;
1703 }
1704
1705
1706 /* Return or create the base type for an array descriptor. */
1707
1708 static tree
1709 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1710 enum gfc_array_kind akind)
1711 {
1712 tree fat_type, decl, arraytype, *chain = NULL;
1713 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1714 int idx;
1715
1716 /* Assumed-rank array. */
1717 if (dimen == -1)
1718 dimen = GFC_MAX_DIMENSIONS;
1719
1720 idx = 2 * (codimen + dimen) + restricted;
1721
1722 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1723
1724 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1725 {
1726 if (gfc_array_descriptor_base_caf[idx])
1727 return gfc_array_descriptor_base_caf[idx];
1728 }
1729 else if (gfc_array_descriptor_base[idx])
1730 return gfc_array_descriptor_base[idx];
1731
1732 /* Build the type node. */
1733 fat_type = make_node (RECORD_TYPE);
1734
1735 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1736 TYPE_NAME (fat_type) = get_identifier (name);
1737 TYPE_NAMELESS (fat_type) = 1;
1738
1739 /* Add the data member as the first element of the descriptor. */
1740 decl = gfc_add_field_to_struct_1 (fat_type,
1741 get_identifier ("data"),
1742 (restricted
1743 ? prvoid_type_node
1744 : ptr_type_node), &chain);
1745
1746 /* Add the base component. */
1747 decl = gfc_add_field_to_struct_1 (fat_type,
1748 get_identifier ("offset"),
1749 gfc_array_index_type, &chain);
1750 TREE_NO_WARNING (decl) = 1;
1751
1752 /* Add the dtype component. */
1753 decl = gfc_add_field_to_struct_1 (fat_type,
1754 get_identifier ("dtype"),
1755 gfc_array_index_type, &chain);
1756 TREE_NO_WARNING (decl) = 1;
1757
1758 /* Build the array type for the stride and bound components. */
1759 if (dimen + codimen > 0)
1760 {
1761 arraytype =
1762 build_array_type (gfc_get_desc_dim_type (),
1763 build_range_type (gfc_array_index_type,
1764 gfc_index_zero_node,
1765 gfc_rank_cst[codimen + dimen - 1]));
1766
1767 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1768 arraytype, &chain);
1769 TREE_NO_WARNING (decl) = 1;
1770 }
1771
1772 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1773 && akind == GFC_ARRAY_ALLOCATABLE)
1774 {
1775 decl = gfc_add_field_to_struct_1 (fat_type,
1776 get_identifier ("token"),
1777 prvoid_type_node, &chain);
1778 TREE_NO_WARNING (decl) = 1;
1779 }
1780
1781 /* Finish off the type. */
1782 gfc_finish_type (fat_type);
1783 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1784
1785 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1786 && akind == GFC_ARRAY_ALLOCATABLE)
1787 gfc_array_descriptor_base_caf[idx] = fat_type;
1788 else
1789 gfc_array_descriptor_base[idx] = fat_type;
1790
1791 return fat_type;
1792 }
1793
1794
1795 /* Build an array (descriptor) type with given bounds. */
1796
1797 tree
1798 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1799 tree * ubound, int packed,
1800 enum gfc_array_kind akind, bool restricted)
1801 {
1802 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1803 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1804 const char *type_name;
1805 int n;
1806
1807 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1808 fat_type = build_distinct_type_copy (base_type);
1809 /* Make sure that nontarget and target array type have the same canonical
1810 type (and same stub decl for debug info). */
1811 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1812 TYPE_CANONICAL (fat_type) = base_type;
1813 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1814
1815 tmp = TYPE_NAME (etype);
1816 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1817 tmp = DECL_NAME (tmp);
1818 if (tmp)
1819 type_name = IDENTIFIER_POINTER (tmp);
1820 else
1821 type_name = "unknown";
1822 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1823 GFC_MAX_SYMBOL_LEN, type_name);
1824 TYPE_NAME (fat_type) = get_identifier (name);
1825 TYPE_NAMELESS (fat_type) = 1;
1826
1827 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1828 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1829
1830 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1831 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1832 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1833 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1834
1835 /* Build an array descriptor record type. */
1836 if (packed != 0)
1837 stride = gfc_index_one_node;
1838 else
1839 stride = NULL_TREE;
1840 for (n = 0; n < dimen + codimen; n++)
1841 {
1842 if (n < dimen)
1843 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1844
1845 if (lbound)
1846 lower = lbound[n];
1847 else
1848 lower = NULL_TREE;
1849
1850 if (lower != NULL_TREE)
1851 {
1852 if (INTEGER_CST_P (lower))
1853 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1854 else
1855 lower = NULL_TREE;
1856 }
1857
1858 if (codimen && n == dimen + codimen - 1)
1859 break;
1860
1861 upper = ubound[n];
1862 if (upper != NULL_TREE)
1863 {
1864 if (INTEGER_CST_P (upper))
1865 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1866 else
1867 upper = NULL_TREE;
1868 }
1869
1870 if (n >= dimen)
1871 continue;
1872
1873 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1874 {
1875 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1876 gfc_array_index_type, upper, lower);
1877 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1878 gfc_array_index_type, tmp,
1879 gfc_index_one_node);
1880 stride = fold_build2_loc (input_location, MULT_EXPR,
1881 gfc_array_index_type, tmp, stride);
1882 /* Check the folding worked. */
1883 gcc_assert (INTEGER_CST_P (stride));
1884 }
1885 else
1886 stride = NULL_TREE;
1887 }
1888 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1889
1890 /* TODO: known offsets for descriptors. */
1891 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1892
1893 if (dimen == 0)
1894 {
1895 arraytype = build_pointer_type (etype);
1896 if (restricted)
1897 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1898
1899 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1900 return fat_type;
1901 }
1902
1903 /* We define data as an array with the correct size if possible.
1904 Much better than doing pointer arithmetic. */
1905 if (stride)
1906 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1907 int_const_binop (MINUS_EXPR, stride,
1908 build_int_cst (TREE_TYPE (stride), 1)));
1909 else
1910 rtype = gfc_array_range_type;
1911 arraytype = build_array_type (etype, rtype);
1912 arraytype = build_pointer_type (arraytype);
1913 if (restricted)
1914 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1915 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1916
1917 /* This will generate the base declarations we need to emit debug
1918 information for this type. FIXME: there must be a better way to
1919 avoid divergence between compilations with and without debug
1920 information. */
1921 {
1922 struct array_descr_info info;
1923 gfc_get_array_descr_info (fat_type, &info);
1924 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1925 }
1926
1927 return fat_type;
1928 }
1929 \f
1930 /* Build a pointer type. This function is called from gfc_sym_type(). */
1931
1932 static tree
1933 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1934 {
1935 /* Array pointer types aren't actually pointers. */
1936 if (sym->attr.dimension)
1937 return type;
1938 else
1939 return build_pointer_type (type);
1940 }
1941
1942 static tree gfc_nonrestricted_type (tree t);
1943 /* Given two record or union type nodes TO and FROM, ensure
1944 that all fields in FROM have a corresponding field in TO,
1945 their type being nonrestrict variants. This accepts a TO
1946 node that already has a prefix of the fields in FROM. */
1947 static void
1948 mirror_fields (tree to, tree from)
1949 {
1950 tree fto, ffrom;
1951 tree *chain;
1952
1953 /* Forward to the end of TOs fields. */
1954 fto = TYPE_FIELDS (to);
1955 ffrom = TYPE_FIELDS (from);
1956 chain = &TYPE_FIELDS (to);
1957 while (fto)
1958 {
1959 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1960 chain = &DECL_CHAIN (fto);
1961 fto = DECL_CHAIN (fto);
1962 ffrom = DECL_CHAIN (ffrom);
1963 }
1964
1965 /* Now add all fields remaining in FROM (starting with ffrom). */
1966 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1967 {
1968 tree newfield = copy_node (ffrom);
1969 DECL_CONTEXT (newfield) = to;
1970 /* The store to DECL_CHAIN might seem redundant with the
1971 stores to *chain, but not clearing it here would mean
1972 leaving a chain into the old fields. If ever
1973 our called functions would look at them confusion
1974 will arise. */
1975 DECL_CHAIN (newfield) = NULL_TREE;
1976 *chain = newfield;
1977 chain = &DECL_CHAIN (newfield);
1978
1979 if (TREE_CODE (ffrom) == FIELD_DECL)
1980 {
1981 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1982 TREE_TYPE (newfield) = elemtype;
1983 }
1984 }
1985 *chain = NULL_TREE;
1986 }
1987
1988 /* Given a type T, returns a different type of the same structure,
1989 except that all types it refers to (recursively) are always
1990 non-restrict qualified types. */
1991 static tree
1992 gfc_nonrestricted_type (tree t)
1993 {
1994 tree ret = t;
1995
1996 /* If the type isn't laid out yet, don't copy it. If something
1997 needs it for real it should wait until the type got finished. */
1998 if (!TYPE_SIZE (t))
1999 return t;
2000
2001 if (!TYPE_LANG_SPECIFIC (t))
2002 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
2003 /* If we're dealing with this very node already further up
2004 the call chain (recursion via pointers and struct members)
2005 we haven't yet determined if we really need a new type node.
2006 Assume we don't, return T itself. */
2007 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2008 return t;
2009
2010 /* If we have calculated this all already, just return it. */
2011 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2012 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2013
2014 /* Mark this type. */
2015 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2016
2017 switch (TREE_CODE (t))
2018 {
2019 default:
2020 break;
2021
2022 case POINTER_TYPE:
2023 case REFERENCE_TYPE:
2024 {
2025 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2026 if (totype == TREE_TYPE (t))
2027 ret = t;
2028 else if (TREE_CODE (t) == POINTER_TYPE)
2029 ret = build_pointer_type (totype);
2030 else
2031 ret = build_reference_type (totype);
2032 ret = build_qualified_type (ret,
2033 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2034 }
2035 break;
2036
2037 case ARRAY_TYPE:
2038 {
2039 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2040 if (elemtype == TREE_TYPE (t))
2041 ret = t;
2042 else
2043 {
2044 ret = build_variant_type_copy (t);
2045 TREE_TYPE (ret) = elemtype;
2046 if (TYPE_LANG_SPECIFIC (t)
2047 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2048 {
2049 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2050 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2051 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2052 {
2053 TYPE_LANG_SPECIFIC (ret)
2054 = ggc_cleared_alloc<struct lang_type> ();
2055 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2056 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2057 }
2058 }
2059 }
2060 }
2061 break;
2062
2063 case RECORD_TYPE:
2064 case UNION_TYPE:
2065 case QUAL_UNION_TYPE:
2066 {
2067 tree field;
2068 /* First determine if we need a new type at all.
2069 Careful, the two calls to gfc_nonrestricted_type per field
2070 might return different values. That happens exactly when
2071 one of the fields reaches back to this very record type
2072 (via pointers). The first calls will assume that we don't
2073 need to copy T (see the error_mark_node marking). If there
2074 are any reasons for copying T apart from having to copy T,
2075 we'll indeed copy it, and the second calls to
2076 gfc_nonrestricted_type will use that new node if they
2077 reach back to T. */
2078 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2079 if (TREE_CODE (field) == FIELD_DECL)
2080 {
2081 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2082 if (elemtype != TREE_TYPE (field))
2083 break;
2084 }
2085 if (!field)
2086 break;
2087 ret = build_variant_type_copy (t);
2088 TYPE_FIELDS (ret) = NULL_TREE;
2089
2090 /* Here we make sure that as soon as we know we have to copy
2091 T, that also fields reaching back to us will use the new
2092 copy. It's okay if that copy still contains the old fields,
2093 we won't look at them. */
2094 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2095 mirror_fields (ret, t);
2096 }
2097 break;
2098 }
2099
2100 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2101 return ret;
2102 }
2103
2104 \f
2105 /* Return the type for a symbol. Special handling is required for character
2106 types to get the correct level of indirection.
2107 For functions return the return type.
2108 For subroutines return void_type_node.
2109 Calling this multiple times for the same symbol should be avoided,
2110 especially for character and array types. */
2111
2112 tree
2113 gfc_sym_type (gfc_symbol * sym)
2114 {
2115 tree type;
2116 int byref;
2117 bool restricted;
2118
2119 /* Procedure Pointers inside COMMON blocks. */
2120 if (sym->attr.proc_pointer && sym->attr.in_common)
2121 {
2122 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2123 sym->attr.proc_pointer = 0;
2124 type = build_pointer_type (gfc_get_function_type (sym));
2125 sym->attr.proc_pointer = 1;
2126 return type;
2127 }
2128
2129 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2130 return void_type_node;
2131
2132 /* In the case of a function the fake result variable may have a
2133 type different from the function type, so don't return early in
2134 that case. */
2135 if (sym->backend_decl && !sym->attr.function)
2136 return TREE_TYPE (sym->backend_decl);
2137
2138 if (sym->ts.type == BT_CHARACTER
2139 && ((sym->attr.function && sym->attr.is_bind_c)
2140 || (sym->attr.result
2141 && sym->ns->proc_name
2142 && sym->ns->proc_name->attr.is_bind_c)))
2143 type = gfc_character1_type_node;
2144 else
2145 type = gfc_typenode_for_spec (&sym->ts);
2146
2147 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2148 byref = 1;
2149 else
2150 byref = 0;
2151
2152 restricted = !sym->attr.target && !sym->attr.pointer
2153 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2154 if (!restricted)
2155 type = gfc_nonrestricted_type (type);
2156
2157 if (sym->attr.dimension || sym->attr.codimension)
2158 {
2159 if (gfc_is_nodesc_array (sym))
2160 {
2161 /* If this is a character argument of unknown length, just use the
2162 base type. */
2163 if (sym->ts.type != BT_CHARACTER
2164 || !(sym->attr.dummy || sym->attr.function)
2165 || sym->ts.u.cl->backend_decl)
2166 {
2167 type = gfc_get_nodesc_array_type (type, sym->as,
2168 byref ? PACKED_FULL
2169 : PACKED_STATIC,
2170 restricted);
2171 byref = 0;
2172 }
2173 }
2174 else
2175 {
2176 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2177 if (sym->attr.pointer)
2178 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2179 : GFC_ARRAY_POINTER;
2180 else if (sym->attr.allocatable)
2181 akind = GFC_ARRAY_ALLOCATABLE;
2182 type = gfc_build_array_type (type, sym->as, akind, restricted,
2183 sym->attr.contiguous);
2184 }
2185 }
2186 else
2187 {
2188 if (sym->attr.allocatable || sym->attr.pointer
2189 || gfc_is_associate_pointer (sym))
2190 type = gfc_build_pointer_type (sym, type);
2191 }
2192
2193 /* We currently pass all parameters by reference.
2194 See f95_get_function_decl. For dummy function parameters return the
2195 function type. */
2196 if (byref)
2197 {
2198 /* We must use pointer types for potentially absent variables. The
2199 optimizers assume a reference type argument is never NULL. */
2200 if (sym->attr.optional
2201 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2202 type = build_pointer_type (type);
2203 else
2204 {
2205 type = build_reference_type (type);
2206 if (restricted)
2207 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2208 }
2209 }
2210
2211 return (type);
2212 }
2213 \f
2214 /* Layout and output debug info for a record type. */
2215
2216 void
2217 gfc_finish_type (tree type)
2218 {
2219 tree decl;
2220
2221 decl = build_decl (input_location,
2222 TYPE_DECL, NULL_TREE, type);
2223 TYPE_STUB_DECL (type) = decl;
2224 layout_type (type);
2225 rest_of_type_compilation (type, 1);
2226 rest_of_decl_compilation (decl, 1, 0);
2227 }
2228 \f
2229 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2230 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2231 to the end of the field list pointed to by *CHAIN.
2232
2233 Returns a pointer to the new field. */
2234
2235 static tree
2236 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2237 {
2238 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2239
2240 DECL_CONTEXT (decl) = context;
2241 DECL_CHAIN (decl) = NULL_TREE;
2242 if (TYPE_FIELDS (context) == NULL_TREE)
2243 TYPE_FIELDS (context) = decl;
2244 if (chain != NULL)
2245 {
2246 if (*chain != NULL)
2247 **chain = decl;
2248 *chain = &DECL_CHAIN (decl);
2249 }
2250
2251 return decl;
2252 }
2253
2254 /* Like `gfc_add_field_to_struct_1', but adds alignment
2255 information. */
2256
2257 tree
2258 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2259 {
2260 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2261
2262 DECL_INITIAL (decl) = 0;
2263 DECL_ALIGN (decl) = 0;
2264 DECL_USER_ALIGN (decl) = 0;
2265
2266 return decl;
2267 }
2268
2269
2270 /* Copy the backend_decl and component backend_decls if
2271 the two derived type symbols are "equal", as described
2272 in 4.4.2 and resolved by gfc_compare_derived_types. */
2273
2274 int
2275 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2276 bool from_gsym)
2277 {
2278 gfc_component *to_cm;
2279 gfc_component *from_cm;
2280
2281 if (from == to)
2282 return 1;
2283
2284 if (from->backend_decl == NULL
2285 || !gfc_compare_derived_types (from, to))
2286 return 0;
2287
2288 to->backend_decl = from->backend_decl;
2289
2290 to_cm = to->components;
2291 from_cm = from->components;
2292
2293 /* Copy the component declarations. If a component is itself
2294 a derived type, we need a copy of its component declarations.
2295 This is done by recursing into gfc_get_derived_type and
2296 ensures that the component's component declarations have
2297 been built. If it is a character, we need the character
2298 length, as well. */
2299 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2300 {
2301 to_cm->backend_decl = from_cm->backend_decl;
2302 if (from_cm->ts.type == BT_DERIVED
2303 && (!from_cm->attr.pointer || from_gsym))
2304 gfc_get_derived_type (to_cm->ts.u.derived);
2305 else if (from_cm->ts.type == BT_CLASS
2306 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2307 gfc_get_derived_type (to_cm->ts.u.derived);
2308 else if (from_cm->ts.type == BT_CHARACTER)
2309 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2310 }
2311
2312 return 1;
2313 }
2314
2315
2316 /* Build a tree node for a procedure pointer component. */
2317
2318 tree
2319 gfc_get_ppc_type (gfc_component* c)
2320 {
2321 tree t;
2322
2323 /* Explicit interface. */
2324 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2325 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2326
2327 /* Implicit interface (only return value may be known). */
2328 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2329 t = gfc_typenode_for_spec (&c->ts);
2330 else
2331 t = void_type_node;
2332
2333 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2334 }
2335
2336
2337 /* Build a tree node for a derived type. If there are equal
2338 derived types, with different local names, these are built
2339 at the same time. If an equal derived type has been built
2340 in a parent namespace, this is used. */
2341
2342 tree
2343 gfc_get_derived_type (gfc_symbol * derived)
2344 {
2345 tree typenode = NULL, field = NULL, field_type = NULL;
2346 tree canonical = NULL_TREE;
2347 tree *chain = NULL;
2348 bool got_canonical = false;
2349 bool unlimited_entity = false;
2350 gfc_component *c;
2351 gfc_dt_list *dt;
2352 gfc_namespace *ns;
2353
2354 if (derived->attr.unlimited_polymorphic)
2355 return ptr_type_node;
2356
2357 if (derived && derived->attr.flavor == FL_PROCEDURE
2358 && derived->attr.generic)
2359 derived = gfc_find_dt_in_generic (derived);
2360
2361 /* See if it's one of the iso_c_binding derived types. */
2362 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2363 {
2364 if (derived->backend_decl)
2365 return derived->backend_decl;
2366
2367 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2368 derived->backend_decl = ptr_type_node;
2369 else
2370 derived->backend_decl = pfunc_type_node;
2371
2372 derived->ts.kind = gfc_index_integer_kind;
2373 derived->ts.type = BT_INTEGER;
2374 /* Set the f90_type to BT_VOID as a way to recognize something of type
2375 BT_INTEGER that needs to fit a void * for the purpose of the
2376 iso_c_binding derived types. */
2377 derived->ts.f90_type = BT_VOID;
2378
2379 return derived->backend_decl;
2380 }
2381
2382 /* If use associated, use the module type for this one. */
2383 if (derived->backend_decl == NULL
2384 && derived->attr.use_assoc
2385 && derived->module
2386 && gfc_get_module_backend_decl (derived))
2387 goto copy_derived_types;
2388
2389 /* The derived types from an earlier namespace can be used as the
2390 canonical type. */
2391 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2392 && gfc_global_ns_list)
2393 {
2394 for (ns = gfc_global_ns_list;
2395 ns->translated && !got_canonical;
2396 ns = ns->sibling)
2397 {
2398 dt = ns->derived_types;
2399 for (; dt && !canonical; dt = dt->next)
2400 {
2401 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2402 if (derived->backend_decl)
2403 got_canonical = true;
2404 }
2405 }
2406 }
2407
2408 /* Store up the canonical type to be added to this one. */
2409 if (got_canonical)
2410 {
2411 if (TYPE_CANONICAL (derived->backend_decl))
2412 canonical = TYPE_CANONICAL (derived->backend_decl);
2413 else
2414 canonical = derived->backend_decl;
2415
2416 derived->backend_decl = NULL_TREE;
2417 }
2418
2419 /* derived->backend_decl != 0 means we saw it before, but its
2420 components' backend_decl may have not been built. */
2421 if (derived->backend_decl)
2422 {
2423 /* Its components' backend_decl have been built or we are
2424 seeing recursion through the formal arglist of a procedure
2425 pointer component. */
2426 if (TYPE_FIELDS (derived->backend_decl)
2427 || derived->attr.proc_pointer_comp)
2428 return derived->backend_decl;
2429 else
2430 typenode = derived->backend_decl;
2431 }
2432 else
2433 {
2434 /* We see this derived type first time, so build the type node. */
2435 typenode = make_node (RECORD_TYPE);
2436 TYPE_NAME (typenode) = get_identifier (derived->name);
2437 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2438 derived->backend_decl = typenode;
2439 }
2440
2441 if (derived->components
2442 && derived->components->ts.type == BT_DERIVED
2443 && strcmp (derived->components->name, "_data") == 0
2444 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2445 unlimited_entity = true;
2446
2447 /* Go through the derived type components, building them as
2448 necessary. The reason for doing this now is that it is
2449 possible to recurse back to this derived type through a
2450 pointer component (PR24092). If this happens, the fields
2451 will be built and so we can return the type. */
2452 for (c = derived->components; c; c = c->next)
2453 {
2454 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2455 continue;
2456
2457 if ((!c->attr.pointer && !c->attr.proc_pointer)
2458 || c->ts.u.derived->backend_decl == NULL)
2459 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2460
2461 if (c->ts.u.derived->attr.is_iso_c)
2462 {
2463 /* Need to copy the modified ts from the derived type. The
2464 typespec was modified because C_PTR/C_FUNPTR are translated
2465 into (void *) from derived types. */
2466 c->ts.type = c->ts.u.derived->ts.type;
2467 c->ts.kind = c->ts.u.derived->ts.kind;
2468 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2469 if (c->initializer)
2470 {
2471 c->initializer->ts.type = c->ts.type;
2472 c->initializer->ts.kind = c->ts.kind;
2473 c->initializer->ts.f90_type = c->ts.f90_type;
2474 c->initializer->expr_type = EXPR_NULL;
2475 }
2476 }
2477 }
2478
2479 if (TYPE_FIELDS (derived->backend_decl))
2480 return derived->backend_decl;
2481
2482 /* Build the type member list. Install the newly created RECORD_TYPE
2483 node as DECL_CONTEXT of each FIELD_DECL. */
2484 for (c = derived->components; c; c = c->next)
2485 {
2486 if (c->attr.proc_pointer)
2487 field_type = gfc_get_ppc_type (c);
2488 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2489 field_type = c->ts.u.derived->backend_decl;
2490 else
2491 {
2492 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2493 {
2494 /* Evaluate the string length. */
2495 gfc_conv_const_charlen (c->ts.u.cl);
2496 gcc_assert (c->ts.u.cl->backend_decl);
2497 }
2498 else if (c->ts.type == BT_CHARACTER)
2499 c->ts.u.cl->backend_decl
2500 = build_int_cst (gfc_charlen_type_node, 0);
2501
2502 field_type = gfc_typenode_for_spec (&c->ts);
2503 }
2504
2505 /* This returns an array descriptor type. Initialization may be
2506 required. */
2507 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2508 {
2509 if (c->attr.pointer || c->attr.allocatable)
2510 {
2511 enum gfc_array_kind akind;
2512 if (c->attr.pointer)
2513 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2514 : GFC_ARRAY_POINTER;
2515 else
2516 akind = GFC_ARRAY_ALLOCATABLE;
2517 /* Pointers to arrays aren't actually pointer types. The
2518 descriptors are separate, but the data is common. */
2519 field_type = gfc_build_array_type (field_type, c->as, akind,
2520 !c->attr.target
2521 && !c->attr.pointer,
2522 c->attr.contiguous);
2523 }
2524 else
2525 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2526 PACKED_STATIC,
2527 !c->attr.target);
2528 }
2529 else if ((c->attr.pointer || c->attr.allocatable)
2530 && !c->attr.proc_pointer
2531 && !(unlimited_entity && c == derived->components))
2532 field_type = build_pointer_type (field_type);
2533
2534 if (c->attr.pointer)
2535 field_type = gfc_nonrestricted_type (field_type);
2536
2537 /* vtype fields can point to different types to the base type. */
2538 if (c->ts.type == BT_DERIVED
2539 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2540 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2541 ptr_mode, true);
2542
2543 /* Ensure that the CLASS language specific flag is set. */
2544 if (c->ts.type == BT_CLASS)
2545 {
2546 if (POINTER_TYPE_P (field_type))
2547 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2548 else
2549 GFC_CLASS_TYPE_P (field_type) = 1;
2550 }
2551
2552 field = gfc_add_field_to_struct (typenode,
2553 get_identifier (c->name),
2554 field_type, &chain);
2555 if (c->loc.lb)
2556 gfc_set_decl_location (field, &c->loc);
2557 else if (derived->declared_at.lb)
2558 gfc_set_decl_location (field, &derived->declared_at);
2559
2560 gfc_finish_decl_attrs (field, &c->attr);
2561
2562 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2563
2564 gcc_assert (field);
2565 if (!c->backend_decl)
2566 c->backend_decl = field;
2567 }
2568
2569 /* Now lay out the derived type, including the fields. */
2570 if (canonical)
2571 TYPE_CANONICAL (typenode) = canonical;
2572
2573 gfc_finish_type (typenode);
2574 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2575 if (derived->module && derived->ns->proc_name
2576 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2577 {
2578 if (derived->ns->proc_name->backend_decl
2579 && TREE_CODE (derived->ns->proc_name->backend_decl)
2580 == NAMESPACE_DECL)
2581 {
2582 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2583 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2584 = derived->ns->proc_name->backend_decl;
2585 }
2586 }
2587
2588 derived->backend_decl = typenode;
2589
2590 copy_derived_types:
2591
2592 for (dt = gfc_derived_types; dt; dt = dt->next)
2593 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2594
2595 return derived->backend_decl;
2596 }
2597
2598
2599 int
2600 gfc_return_by_reference (gfc_symbol * sym)
2601 {
2602 if (!sym->attr.function)
2603 return 0;
2604
2605 if (sym->attr.dimension)
2606 return 1;
2607
2608 if (sym->ts.type == BT_CHARACTER
2609 && !sym->attr.is_bind_c
2610 && (!sym->attr.result
2611 || !sym->ns->proc_name
2612 || !sym->ns->proc_name->attr.is_bind_c))
2613 return 1;
2614
2615 /* Possibly return complex numbers by reference for g77 compatibility.
2616 We don't do this for calls to intrinsics (as the library uses the
2617 -fno-f2c calling convention), nor for calls to functions which always
2618 require an explicit interface, as no compatibility problems can
2619 arise there. */
2620 if (gfc_option.flag_f2c
2621 && sym->ts.type == BT_COMPLEX
2622 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2623 return 1;
2624
2625 return 0;
2626 }
2627 \f
2628 static tree
2629 gfc_get_mixed_entry_union (gfc_namespace *ns)
2630 {
2631 tree type;
2632 tree *chain = NULL;
2633 char name[GFC_MAX_SYMBOL_LEN + 1];
2634 gfc_entry_list *el, *el2;
2635
2636 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2637 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2638
2639 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2640
2641 /* Build the type node. */
2642 type = make_node (UNION_TYPE);
2643
2644 TYPE_NAME (type) = get_identifier (name);
2645
2646 for (el = ns->entries; el; el = el->next)
2647 {
2648 /* Search for duplicates. */
2649 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2650 if (el2->sym->result == el->sym->result)
2651 break;
2652
2653 if (el == el2)
2654 gfc_add_field_to_struct_1 (type,
2655 get_identifier (el->sym->result->name),
2656 gfc_sym_type (el->sym->result), &chain);
2657 }
2658
2659 /* Finish off the type. */
2660 gfc_finish_type (type);
2661 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2662 return type;
2663 }
2664 \f
2665 /* Create a "fn spec" based on the formal arguments;
2666 cf. create_function_arglist. */
2667
2668 static tree
2669 create_fn_spec (gfc_symbol *sym, tree fntype)
2670 {
2671 char spec[150];
2672 size_t spec_len;
2673 gfc_formal_arglist *f;
2674 tree tmp;
2675
2676 memset (&spec, 0, sizeof (spec));
2677 spec[0] = '.';
2678 spec_len = 1;
2679
2680 if (sym->attr.entry_master)
2681 spec[spec_len++] = 'R';
2682 if (gfc_return_by_reference (sym))
2683 {
2684 gfc_symbol *result = sym->result ? sym->result : sym;
2685
2686 if (result->attr.pointer || sym->attr.proc_pointer)
2687 spec[spec_len++] = '.';
2688 else
2689 spec[spec_len++] = 'w';
2690 if (sym->ts.type == BT_CHARACTER)
2691 spec[spec_len++] = 'R';
2692 }
2693
2694 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2695 if (spec_len < sizeof (spec))
2696 {
2697 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2698 || f->sym->attr.external || f->sym->attr.cray_pointer
2699 || (f->sym->ts.type == BT_DERIVED
2700 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2701 || f->sym->ts.u.derived->attr.pointer_comp))
2702 || (f->sym->ts.type == BT_CLASS
2703 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2704 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2705 spec[spec_len++] = '.';
2706 else if (f->sym->attr.intent == INTENT_IN)
2707 spec[spec_len++] = 'r';
2708 else if (f->sym)
2709 spec[spec_len++] = 'w';
2710 }
2711
2712 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2713 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2714 return build_type_attribute_variant (fntype, tmp);
2715 }
2716
2717
2718 tree
2719 gfc_get_function_type (gfc_symbol * sym)
2720 {
2721 tree type;
2722 vec<tree, va_gc> *typelist = NULL;
2723 gfc_formal_arglist *f;
2724 gfc_symbol *arg;
2725 int alternate_return = 0;
2726 bool is_varargs = true;
2727
2728 /* Make sure this symbol is a function, a subroutine or the main
2729 program. */
2730 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2731 || sym->attr.flavor == FL_PROGRAM);
2732
2733 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2734 so that they can be detected here and handled further down. */
2735 if (sym->backend_decl == NULL)
2736 sym->backend_decl = error_mark_node;
2737 else if (sym->backend_decl == error_mark_node)
2738 goto arg_type_list_done;
2739 else if (sym->attr.proc_pointer)
2740 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2741 else
2742 return TREE_TYPE (sym->backend_decl);
2743
2744 if (sym->attr.entry_master)
2745 /* Additional parameter for selecting an entry point. */
2746 vec_safe_push (typelist, gfc_array_index_type);
2747
2748 if (sym->result)
2749 arg = sym->result;
2750 else
2751 arg = sym;
2752
2753 if (arg->ts.type == BT_CHARACTER)
2754 gfc_conv_const_charlen (arg->ts.u.cl);
2755
2756 /* Some functions we use an extra parameter for the return value. */
2757 if (gfc_return_by_reference (sym))
2758 {
2759 type = gfc_sym_type (arg);
2760 if (arg->ts.type == BT_COMPLEX
2761 || arg->attr.dimension
2762 || arg->ts.type == BT_CHARACTER)
2763 type = build_reference_type (type);
2764
2765 vec_safe_push (typelist, type);
2766 if (arg->ts.type == BT_CHARACTER)
2767 {
2768 if (!arg->ts.deferred)
2769 /* Transfer by value. */
2770 vec_safe_push (typelist, gfc_charlen_type_node);
2771 else
2772 /* Deferred character lengths are transferred by reference
2773 so that the value can be returned. */
2774 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2775 }
2776 }
2777
2778 /* Build the argument types for the function. */
2779 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2780 {
2781 arg = f->sym;
2782 if (arg)
2783 {
2784 /* Evaluate constant character lengths here so that they can be
2785 included in the type. */
2786 if (arg->ts.type == BT_CHARACTER)
2787 gfc_conv_const_charlen (arg->ts.u.cl);
2788
2789 if (arg->attr.flavor == FL_PROCEDURE)
2790 {
2791 type = gfc_get_function_type (arg);
2792 type = build_pointer_type (type);
2793 }
2794 else
2795 type = gfc_sym_type (arg);
2796
2797 /* Parameter Passing Convention
2798
2799 We currently pass all parameters by reference.
2800 Parameters with INTENT(IN) could be passed by value.
2801 The problem arises if a function is called via an implicit
2802 prototype. In this situation the INTENT is not known.
2803 For this reason all parameters to global functions must be
2804 passed by reference. Passing by value would potentially
2805 generate bad code. Worse there would be no way of telling that
2806 this code was bad, except that it would give incorrect results.
2807
2808 Contained procedures could pass by value as these are never
2809 used without an explicit interface, and cannot be passed as
2810 actual parameters for a dummy procedure. */
2811
2812 vec_safe_push (typelist, type);
2813 }
2814 else
2815 {
2816 if (sym->attr.subroutine)
2817 alternate_return = 1;
2818 }
2819 }
2820
2821 /* Add hidden string length parameters. */
2822 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2823 {
2824 arg = f->sym;
2825 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2826 {
2827 if (!arg->ts.deferred)
2828 /* Transfer by value. */
2829 type = gfc_charlen_type_node;
2830 else
2831 /* Deferred character lengths are transferred by reference
2832 so that the value can be returned. */
2833 type = build_pointer_type (gfc_charlen_type_node);
2834
2835 vec_safe_push (typelist, type);
2836 }
2837 }
2838
2839 if (!vec_safe_is_empty (typelist)
2840 || sym->attr.is_main_program
2841 || sym->attr.if_source != IFSRC_UNKNOWN)
2842 is_varargs = false;
2843
2844 if (sym->backend_decl == error_mark_node)
2845 sym->backend_decl = NULL_TREE;
2846
2847 arg_type_list_done:
2848
2849 if (alternate_return)
2850 type = integer_type_node;
2851 else if (!sym->attr.function || gfc_return_by_reference (sym))
2852 type = void_type_node;
2853 else if (sym->attr.mixed_entry_master)
2854 type = gfc_get_mixed_entry_union (sym->ns);
2855 else if (gfc_option.flag_f2c
2856 && sym->ts.type == BT_REAL
2857 && sym->ts.kind == gfc_default_real_kind
2858 && !sym->attr.always_explicit)
2859 {
2860 /* Special case: f2c calling conventions require that (scalar)
2861 default REAL functions return the C type double instead. f2c
2862 compatibility is only an issue with functions that don't
2863 require an explicit interface, as only these could be
2864 implemented in Fortran 77. */
2865 sym->ts.kind = gfc_default_double_kind;
2866 type = gfc_typenode_for_spec (&sym->ts);
2867 sym->ts.kind = gfc_default_real_kind;
2868 }
2869 else if (sym->result && sym->result->attr.proc_pointer)
2870 /* Procedure pointer return values. */
2871 {
2872 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2873 {
2874 /* Unset proc_pointer as gfc_get_function_type
2875 is called recursively. */
2876 sym->result->attr.proc_pointer = 0;
2877 type = build_pointer_type (gfc_get_function_type (sym->result));
2878 sym->result->attr.proc_pointer = 1;
2879 }
2880 else
2881 type = gfc_sym_type (sym->result);
2882 }
2883 else
2884 type = gfc_sym_type (sym);
2885
2886 if (is_varargs)
2887 type = build_varargs_function_type_vec (type, typelist);
2888 else
2889 type = build_function_type_vec (type, typelist);
2890 type = create_fn_spec (sym, type);
2891
2892 return type;
2893 }
2894 \f
2895 /* Language hooks for middle-end access to type nodes. */
2896
2897 /* Return an integer type with BITS bits of precision,
2898 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2899
2900 tree
2901 gfc_type_for_size (unsigned bits, int unsignedp)
2902 {
2903 if (!unsignedp)
2904 {
2905 int i;
2906 for (i = 0; i <= MAX_INT_KINDS; ++i)
2907 {
2908 tree type = gfc_integer_types[i];
2909 if (type && bits == TYPE_PRECISION (type))
2910 return type;
2911 }
2912
2913 /* Handle TImode as a special case because it is used by some backends
2914 (e.g. ARM) even though it is not available for normal use. */
2915 #if HOST_BITS_PER_WIDE_INT >= 64
2916 if (bits == TYPE_PRECISION (intTI_type_node))
2917 return intTI_type_node;
2918 #endif
2919
2920 if (bits <= TYPE_PRECISION (intQI_type_node))
2921 return intQI_type_node;
2922 if (bits <= TYPE_PRECISION (intHI_type_node))
2923 return intHI_type_node;
2924 if (bits <= TYPE_PRECISION (intSI_type_node))
2925 return intSI_type_node;
2926 if (bits <= TYPE_PRECISION (intDI_type_node))
2927 return intDI_type_node;
2928 if (bits <= TYPE_PRECISION (intTI_type_node))
2929 return intTI_type_node;
2930 }
2931 else
2932 {
2933 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2934 return unsigned_intQI_type_node;
2935 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2936 return unsigned_intHI_type_node;
2937 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2938 return unsigned_intSI_type_node;
2939 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2940 return unsigned_intDI_type_node;
2941 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2942 return unsigned_intTI_type_node;
2943 }
2944
2945 return NULL_TREE;
2946 }
2947
2948 /* Return a data type that has machine mode MODE. If the mode is an
2949 integer, then UNSIGNEDP selects between signed and unsigned types. */
2950
2951 tree
2952 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2953 {
2954 int i;
2955 tree *base;
2956
2957 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2958 base = gfc_real_types;
2959 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2960 base = gfc_complex_types;
2961 else if (SCALAR_INT_MODE_P (mode))
2962 {
2963 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2964 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2965 }
2966 else if (VECTOR_MODE_P (mode))
2967 {
2968 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2969 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2970 if (inner_type != NULL_TREE)
2971 return build_vector_type_for_mode (inner_type, mode);
2972 return NULL_TREE;
2973 }
2974 else
2975 return NULL_TREE;
2976
2977 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2978 {
2979 tree type = base[i];
2980 if (type && mode == TYPE_MODE (type))
2981 return type;
2982 }
2983
2984 return NULL_TREE;
2985 }
2986
2987 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2988 in that case. */
2989
2990 bool
2991 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2992 {
2993 int rank, dim;
2994 bool indirect = false;
2995 tree etype, ptype, field, t, base_decl;
2996 tree data_off, dim_off, dim_size, elem_size;
2997 tree lower_suboff, upper_suboff, stride_suboff;
2998
2999 if (! GFC_DESCRIPTOR_TYPE_P (type))
3000 {
3001 if (! POINTER_TYPE_P (type))
3002 return false;
3003 type = TREE_TYPE (type);
3004 if (! GFC_DESCRIPTOR_TYPE_P (type))
3005 return false;
3006 indirect = true;
3007 }
3008
3009 rank = GFC_TYPE_ARRAY_RANK (type);
3010 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3011 return false;
3012
3013 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3014 gcc_assert (POINTER_TYPE_P (etype));
3015 etype = TREE_TYPE (etype);
3016
3017 /* If the type is not a scalar coarray. */
3018 if (TREE_CODE (etype) == ARRAY_TYPE)
3019 etype = TREE_TYPE (etype);
3020
3021 /* Can't handle variable sized elements yet. */
3022 if (int_size_in_bytes (etype) <= 0)
3023 return false;
3024 /* Nor non-constant lower bounds in assumed shape arrays. */
3025 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3026 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3027 {
3028 for (dim = 0; dim < rank; dim++)
3029 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3030 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3031 return false;
3032 }
3033
3034 memset (info, '\0', sizeof (*info));
3035 info->ndimensions = rank;
3036 info->element_type = etype;
3037 ptype = build_pointer_type (gfc_array_index_type);
3038 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3039 if (!base_decl)
3040 {
3041 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3042 indirect ? build_pointer_type (ptype) : ptype);
3043 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3044 }
3045 info->base_decl = base_decl;
3046 if (indirect)
3047 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3048
3049 if (GFC_TYPE_ARRAY_SPAN (type))
3050 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3051 else
3052 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3053 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3054 data_off = byte_position (field);
3055 field = DECL_CHAIN (field);
3056 field = DECL_CHAIN (field);
3057 field = DECL_CHAIN (field);
3058 dim_off = byte_position (field);
3059 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3060 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3061 stride_suboff = byte_position (field);
3062 field = DECL_CHAIN (field);
3063 lower_suboff = byte_position (field);
3064 field = DECL_CHAIN (field);
3065 upper_suboff = byte_position (field);
3066
3067 t = base_decl;
3068 if (!integer_zerop (data_off))
3069 t = fold_build_pointer_plus (t, data_off);
3070 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3071 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3072 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3073 info->allocated = build2 (NE_EXPR, boolean_type_node,
3074 info->data_location, null_pointer_node);
3075 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3076 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3077 info->associated = build2 (NE_EXPR, boolean_type_node,
3078 info->data_location, null_pointer_node);
3079
3080 for (dim = 0; dim < rank; dim++)
3081 {
3082 t = fold_build_pointer_plus (base_decl,
3083 size_binop (PLUS_EXPR,
3084 dim_off, lower_suboff));
3085 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3086 info->dimen[dim].lower_bound = t;
3087 t = fold_build_pointer_plus (base_decl,
3088 size_binop (PLUS_EXPR,
3089 dim_off, upper_suboff));
3090 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3091 info->dimen[dim].upper_bound = t;
3092 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3093 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3094 {
3095 /* Assumed shape arrays have known lower bounds. */
3096 info->dimen[dim].upper_bound
3097 = build2 (MINUS_EXPR, gfc_array_index_type,
3098 info->dimen[dim].upper_bound,
3099 info->dimen[dim].lower_bound);
3100 info->dimen[dim].lower_bound
3101 = fold_convert (gfc_array_index_type,
3102 GFC_TYPE_ARRAY_LBOUND (type, dim));
3103 info->dimen[dim].upper_bound
3104 = build2 (PLUS_EXPR, gfc_array_index_type,
3105 info->dimen[dim].lower_bound,
3106 info->dimen[dim].upper_bound);
3107 }
3108 t = fold_build_pointer_plus (base_decl,
3109 size_binop (PLUS_EXPR,
3110 dim_off, stride_suboff));
3111 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3112 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3113 info->dimen[dim].stride = t;
3114 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3115 }
3116
3117 return true;
3118 }
3119
3120
3121 /* Create a type to handle vector subscripts for coarray library calls. It
3122 has the form:
3123 struct caf_vector_t {
3124 size_t nvec; // size of the vector
3125 union {
3126 struct {
3127 void *vector;
3128 int kind;
3129 } v;
3130 struct {
3131 ptrdiff_t lower_bound;
3132 ptrdiff_t upper_bound;
3133 ptrdiff_t stride;
3134 } triplet;
3135 } u;
3136 }
3137 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3138 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3139
3140 tree
3141 gfc_get_caf_vector_type (int dim)
3142 {
3143 static tree vector_types[GFC_MAX_DIMENSIONS];
3144 static tree vec_type = NULL_TREE;
3145 tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3146
3147 if (vector_types[dim-1] != NULL_TREE)
3148 return vector_types[dim-1];
3149
3150 if (vec_type == NULL_TREE)
3151 {
3152 chain = 0;
3153 vect_struct_type = make_node (RECORD_TYPE);
3154 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3155 get_identifier ("vector"),
3156 pvoid_type_node, &chain);
3157 TREE_NO_WARNING (tmp) = 1;
3158 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3159 get_identifier ("kind"),
3160 integer_type_node, &chain);
3161 TREE_NO_WARNING (tmp) = 1;
3162 gfc_finish_type (vect_struct_type);
3163
3164 chain = 0;
3165 triplet_struct_type = make_node (RECORD_TYPE);
3166 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3167 get_identifier ("lower_bound"),
3168 gfc_array_index_type, &chain);
3169 TREE_NO_WARNING (tmp) = 1;
3170 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3171 get_identifier ("upper_bound"),
3172 gfc_array_index_type, &chain);
3173 TREE_NO_WARNING (tmp) = 1;
3174 tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3175 gfc_array_index_type, &chain);
3176 TREE_NO_WARNING (tmp) = 1;
3177 gfc_finish_type (triplet_struct_type);
3178
3179 chain = 0;
3180 union_type = make_node (UNION_TYPE);
3181 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3182 vect_struct_type, &chain);
3183 TREE_NO_WARNING (tmp) = 1;
3184 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3185 triplet_struct_type, &chain);
3186 TREE_NO_WARNING (tmp) = 1;
3187 gfc_finish_type (union_type);
3188
3189 chain = 0;
3190 vec_type = make_node (RECORD_TYPE);
3191 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3192 size_type_node, &chain);
3193 TREE_NO_WARNING (tmp) = 1;
3194 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3195 union_type, &chain);
3196 TREE_NO_WARNING (tmp) = 1;
3197 gfc_finish_type (vec_type);
3198 TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3199 }
3200
3201 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3202 gfc_rank_cst[dim-1]);
3203 vector_types[dim-1] = build_array_type (vec_type, tmp);
3204 return vector_types[dim-1];
3205 }
3206
3207 #include "gt-fortran-trans-types.h"