]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
use templates instead of gengtype for typed allocation functions
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "stor-layout.h"
38 #include "stringpool.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 bool
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return true;
150 }
151
152 return false;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_FUNCTION(a,b,c,d) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_SUBROUTINE(a,b,c,d) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
350 c_interop_kinds_table[a].value = c;
351 #include "iso-c-binding.def"
352 }
353
354
355 /* Query the target to determine which machine modes are available for
356 computation. Choose KIND numbers for them. */
357
358 void
359 gfc_init_kinds (void)
360 {
361 unsigned int mode;
362 int i_index, r_index, kind;
363 bool saw_i4 = false, saw_i8 = false;
364 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
365
366 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
367 {
368 int kind, bitsize;
369
370 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
371 continue;
372
373 /* The middle end doesn't support constants larger than 2*HWI.
374 Perhaps the target hook shouldn't have accepted these either,
375 but just to be safe... */
376 bitsize = GET_MODE_BITSIZE ((enum machine_mode) mode);
377 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
378 continue;
379
380 gcc_assert (i_index != MAX_INT_KINDS);
381
382 /* Let the kind equal the bit size divided by 8. This insulates the
383 programmer from the underlying byte size. */
384 kind = bitsize / 8;
385
386 if (kind == 4)
387 saw_i4 = true;
388 if (kind == 8)
389 saw_i8 = true;
390
391 gfc_integer_kinds[i_index].kind = kind;
392 gfc_integer_kinds[i_index].radix = 2;
393 gfc_integer_kinds[i_index].digits = bitsize - 1;
394 gfc_integer_kinds[i_index].bit_size = bitsize;
395
396 gfc_logical_kinds[i_index].kind = kind;
397 gfc_logical_kinds[i_index].bit_size = bitsize;
398
399 i_index += 1;
400 }
401
402 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
403 used for large file access. */
404
405 if (saw_i8)
406 gfc_intio_kind = 8;
407 else
408 gfc_intio_kind = 4;
409
410 /* If we do not at least have kind = 4, everything is pointless. */
411 gcc_assert(saw_i4);
412
413 /* Set the maximum integer kind. Used with at least BOZ constants. */
414 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
415
416 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
417 {
418 const struct real_format *fmt =
419 REAL_MODE_FORMAT ((enum machine_mode) mode);
420 int kind;
421
422 if (fmt == NULL)
423 continue;
424 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
425 continue;
426
427 /* Only let float, double, long double and __float128 go through.
428 Runtime support for others is not provided, so they would be
429 useless. */
430 if (mode != TYPE_MODE (float_type_node)
431 && (mode != TYPE_MODE (double_type_node))
432 && (mode != TYPE_MODE (long_double_type_node))
433 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
434 && (mode != TFmode)
435 #endif
436 )
437 continue;
438
439 /* Let the kind equal the precision divided by 8, rounding up. Again,
440 this insulates the programmer from the underlying byte size.
441
442 Also, it effectively deals with IEEE extended formats. There, the
443 total size of the type may equal 16, but it's got 6 bytes of padding
444 and the increased size can get in the way of a real IEEE quad format
445 which may also be supported by the target.
446
447 We round up so as to handle IA-64 __floatreg (RFmode), which is an
448 82 bit type. Not to be confused with __float80 (XFmode), which is
449 an 80 bit type also supported by IA-64. So XFmode should come out
450 to be kind=10, and RFmode should come out to be kind=11. Egads. */
451
452 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
453
454 if (kind == 4)
455 saw_r4 = true;
456 if (kind == 8)
457 saw_r8 = true;
458 if (kind == 10)
459 saw_r10 = true;
460 if (kind == 16)
461 saw_r16 = true;
462
463 /* Careful we don't stumble a weird internal mode. */
464 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
465 /* Or have too many modes for the allocated space. */
466 gcc_assert (r_index != MAX_REAL_KINDS);
467
468 gfc_real_kinds[r_index].kind = kind;
469 gfc_real_kinds[r_index].radix = fmt->b;
470 gfc_real_kinds[r_index].digits = fmt->p;
471 gfc_real_kinds[r_index].min_exponent = fmt->emin;
472 gfc_real_kinds[r_index].max_exponent = fmt->emax;
473 if (fmt->pnan < fmt->p)
474 /* This is an IBM extended double format (or the MIPS variant)
475 made up of two IEEE doubles. The value of the long double is
476 the sum of the values of the two parts. The most significant
477 part is required to be the value of the long double rounded
478 to the nearest double. If we use emax of 1024 then we can't
479 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
480 rounding will make the most significant part overflow. */
481 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
482 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
483 r_index += 1;
484 }
485
486 /* Choose the default integer kind. We choose 4 unless the user directs us
487 otherwise. Even if the user specified that the default integer kind is 8,
488 the numeric storage size is not 64 bits. In this case, a warning will be
489 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
490
491 gfc_numeric_storage_size = 4 * 8;
492
493 if (gfc_option.flag_default_integer)
494 {
495 if (!saw_i8)
496 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
497
498 gfc_default_integer_kind = 8;
499
500 }
501 else if (gfc_option.flag_integer4_kind == 8)
502 {
503 if (!saw_i8)
504 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
505
506 gfc_default_integer_kind = 8;
507 }
508 else if (saw_i4)
509 {
510 gfc_default_integer_kind = 4;
511 }
512 else
513 {
514 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
515 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
516 }
517
518 /* Choose the default real kind. Again, we choose 4 when possible. */
519 if (gfc_option.flag_default_real)
520 {
521 if (!saw_r8)
522 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
523
524 gfc_default_real_kind = 8;
525 }
526 else if (gfc_option.flag_real4_kind == 8)
527 {
528 if (!saw_r8)
529 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
530
531 gfc_default_real_kind = 8;
532 }
533 else if (gfc_option.flag_real4_kind == 10)
534 {
535 if (!saw_r10)
536 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
537
538 gfc_default_real_kind = 10;
539 }
540 else if (gfc_option.flag_real4_kind == 16)
541 {
542 if (!saw_r16)
543 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
544
545 gfc_default_real_kind = 16;
546 }
547 else if (saw_r4)
548 gfc_default_real_kind = 4;
549 else
550 gfc_default_real_kind = gfc_real_kinds[0].kind;
551
552 /* Choose the default double kind. If -fdefault-real and -fdefault-double
553 are specified, we use kind=8, if it's available. If -fdefault-real is
554 specified without -fdefault-double, we use kind=16, if it's available.
555 Otherwise we do not change anything. */
556 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
557 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
558
559 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
560 gfc_default_double_kind = 8;
561 else if (gfc_option.flag_default_real && saw_r16)
562 gfc_default_double_kind = 16;
563 else if (gfc_option.flag_real8_kind == 4)
564 {
565 if (!saw_r4)
566 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
567
568 gfc_default_double_kind = 4;
569 }
570 else if (gfc_option.flag_real8_kind == 10 )
571 {
572 if (!saw_r10)
573 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
574
575 gfc_default_double_kind = 10;
576 }
577 else if (gfc_option.flag_real8_kind == 16 )
578 {
579 if (!saw_r16)
580 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
581
582 gfc_default_double_kind = 16;
583 }
584 else if (saw_r4 && saw_r8)
585 gfc_default_double_kind = 8;
586 else
587 {
588 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
589 real ... occupies two contiguous numeric storage units.
590
591 Therefore we must be supplied a kind twice as large as we chose
592 for single precision. There are loopholes, in that double
593 precision must *occupy* two storage units, though it doesn't have
594 to *use* two storage units. Which means that you can make this
595 kind artificially wide by padding it. But at present there are
596 no GCC targets for which a two-word type does not exist, so we
597 just let gfc_validate_kind abort and tell us if something breaks. */
598
599 gfc_default_double_kind
600 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
601 }
602
603 /* The default logical kind is constrained to be the same as the
604 default integer kind. Similarly with complex and real. */
605 gfc_default_logical_kind = gfc_default_integer_kind;
606 gfc_default_complex_kind = gfc_default_real_kind;
607
608 /* We only have two character kinds: ASCII and UCS-4.
609 ASCII corresponds to a 8-bit integer type, if one is available.
610 UCS-4 corresponds to a 32-bit integer type, if one is available. */
611 i_index = 0;
612 if ((kind = get_int_kind_from_width (8)) > 0)
613 {
614 gfc_character_kinds[i_index].kind = kind;
615 gfc_character_kinds[i_index].bit_size = 8;
616 gfc_character_kinds[i_index].name = "ascii";
617 i_index++;
618 }
619 if ((kind = get_int_kind_from_width (32)) > 0)
620 {
621 gfc_character_kinds[i_index].kind = kind;
622 gfc_character_kinds[i_index].bit_size = 32;
623 gfc_character_kinds[i_index].name = "iso_10646";
624 i_index++;
625 }
626
627 /* Choose the smallest integer kind for our default character. */
628 gfc_default_character_kind = gfc_character_kinds[0].kind;
629 gfc_character_storage_size = gfc_default_character_kind * 8;
630
631 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
632
633 /* Pick a kind the same size as the C "int" type. */
634 gfc_c_int_kind = INT_TYPE_SIZE / 8;
635
636 /* Choose atomic kinds to match C's int. */
637 gfc_atomic_int_kind = gfc_c_int_kind;
638 gfc_atomic_logical_kind = gfc_c_int_kind;
639 }
640
641
642 /* Make sure that a valid kind is present. Returns an index into the
643 associated kinds array, -1 if the kind is not present. */
644
645 static int
646 validate_integer (int kind)
647 {
648 int i;
649
650 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
651 if (gfc_integer_kinds[i].kind == kind)
652 return i;
653
654 return -1;
655 }
656
657 static int
658 validate_real (int kind)
659 {
660 int i;
661
662 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
663 if (gfc_real_kinds[i].kind == kind)
664 return i;
665
666 return -1;
667 }
668
669 static int
670 validate_logical (int kind)
671 {
672 int i;
673
674 for (i = 0; gfc_logical_kinds[i].kind; i++)
675 if (gfc_logical_kinds[i].kind == kind)
676 return i;
677
678 return -1;
679 }
680
681 static int
682 validate_character (int kind)
683 {
684 int i;
685
686 for (i = 0; gfc_character_kinds[i].kind; i++)
687 if (gfc_character_kinds[i].kind == kind)
688 return i;
689
690 return -1;
691 }
692
693 /* Validate a kind given a basic type. The return value is the same
694 for the child functions, with -1 indicating nonexistence of the
695 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
696
697 int
698 gfc_validate_kind (bt type, int kind, bool may_fail)
699 {
700 int rc;
701
702 switch (type)
703 {
704 case BT_REAL: /* Fall through */
705 case BT_COMPLEX:
706 rc = validate_real (kind);
707 break;
708 case BT_INTEGER:
709 rc = validate_integer (kind);
710 break;
711 case BT_LOGICAL:
712 rc = validate_logical (kind);
713 break;
714 case BT_CHARACTER:
715 rc = validate_character (kind);
716 break;
717
718 default:
719 gfc_internal_error ("gfc_validate_kind(): Got bad type");
720 }
721
722 if (rc < 0 && !may_fail)
723 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
724
725 return rc;
726 }
727
728
729 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
730 Reuse common type nodes where possible. Recognize if the kind matches up
731 with a C type. This will be used later in determining which routines may
732 be scarfed from libm. */
733
734 static tree
735 gfc_build_int_type (gfc_integer_info *info)
736 {
737 int mode_precision = info->bit_size;
738
739 if (mode_precision == CHAR_TYPE_SIZE)
740 info->c_char = 1;
741 if (mode_precision == SHORT_TYPE_SIZE)
742 info->c_short = 1;
743 if (mode_precision == INT_TYPE_SIZE)
744 info->c_int = 1;
745 if (mode_precision == LONG_TYPE_SIZE)
746 info->c_long = 1;
747 if (mode_precision == LONG_LONG_TYPE_SIZE)
748 info->c_long_long = 1;
749
750 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
751 return intQI_type_node;
752 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
753 return intHI_type_node;
754 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
755 return intSI_type_node;
756 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
757 return intDI_type_node;
758 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
759 return intTI_type_node;
760
761 return make_signed_type (mode_precision);
762 }
763
764 tree
765 gfc_build_uint_type (int size)
766 {
767 if (size == CHAR_TYPE_SIZE)
768 return unsigned_char_type_node;
769 if (size == SHORT_TYPE_SIZE)
770 return short_unsigned_type_node;
771 if (size == INT_TYPE_SIZE)
772 return unsigned_type_node;
773 if (size == LONG_TYPE_SIZE)
774 return long_unsigned_type_node;
775 if (size == LONG_LONG_TYPE_SIZE)
776 return long_long_unsigned_type_node;
777
778 return make_unsigned_type (size);
779 }
780
781
782 static tree
783 gfc_build_real_type (gfc_real_info *info)
784 {
785 int mode_precision = info->mode_precision;
786 tree new_type;
787
788 if (mode_precision == FLOAT_TYPE_SIZE)
789 info->c_float = 1;
790 if (mode_precision == DOUBLE_TYPE_SIZE)
791 info->c_double = 1;
792 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
793 info->c_long_double = 1;
794 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
795 {
796 info->c_float128 = 1;
797 gfc_real16_is_float128 = true;
798 }
799
800 if (TYPE_PRECISION (float_type_node) == mode_precision)
801 return float_type_node;
802 if (TYPE_PRECISION (double_type_node) == mode_precision)
803 return double_type_node;
804 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
805 return long_double_type_node;
806
807 new_type = make_node (REAL_TYPE);
808 TYPE_PRECISION (new_type) = mode_precision;
809 layout_type (new_type);
810 return new_type;
811 }
812
813 static tree
814 gfc_build_complex_type (tree scalar_type)
815 {
816 tree new_type;
817
818 if (scalar_type == NULL)
819 return NULL;
820 if (scalar_type == float_type_node)
821 return complex_float_type_node;
822 if (scalar_type == double_type_node)
823 return complex_double_type_node;
824 if (scalar_type == long_double_type_node)
825 return complex_long_double_type_node;
826
827 new_type = make_node (COMPLEX_TYPE);
828 TREE_TYPE (new_type) = scalar_type;
829 layout_type (new_type);
830 return new_type;
831 }
832
833 static tree
834 gfc_build_logical_type (gfc_logical_info *info)
835 {
836 int bit_size = info->bit_size;
837 tree new_type;
838
839 if (bit_size == BOOL_TYPE_SIZE)
840 {
841 info->c_bool = 1;
842 return boolean_type_node;
843 }
844
845 new_type = make_unsigned_type (bit_size);
846 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
847 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
848 TYPE_PRECISION (new_type) = 1;
849
850 return new_type;
851 }
852
853
854 /* Create the backend type nodes. We map them to their
855 equivalent C type, at least for now. We also give
856 names to the types here, and we push them in the
857 global binding level context.*/
858
859 void
860 gfc_init_types (void)
861 {
862 char name_buf[18];
863 int index;
864 tree type;
865 unsigned n;
866
867 /* Create and name the types. */
868 #define PUSH_TYPE(name, node) \
869 pushdecl (build_decl (input_location, \
870 TYPE_DECL, get_identifier (name), node))
871
872 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
873 {
874 type = gfc_build_int_type (&gfc_integer_kinds[index]);
875 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
876 if (TYPE_STRING_FLAG (type))
877 type = make_signed_type (gfc_integer_kinds[index].bit_size);
878 gfc_integer_types[index] = type;
879 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
880 gfc_integer_kinds[index].kind);
881 PUSH_TYPE (name_buf, type);
882 }
883
884 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
885 {
886 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
887 gfc_logical_types[index] = type;
888 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
889 gfc_logical_kinds[index].kind);
890 PUSH_TYPE (name_buf, type);
891 }
892
893 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
894 {
895 type = gfc_build_real_type (&gfc_real_kinds[index]);
896 gfc_real_types[index] = type;
897 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
898 gfc_real_kinds[index].kind);
899 PUSH_TYPE (name_buf, type);
900
901 if (gfc_real_kinds[index].c_float128)
902 float128_type_node = type;
903
904 type = gfc_build_complex_type (type);
905 gfc_complex_types[index] = type;
906 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
907 gfc_real_kinds[index].kind);
908 PUSH_TYPE (name_buf, type);
909
910 if (gfc_real_kinds[index].c_float128)
911 complex_float128_type_node = type;
912 }
913
914 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
915 {
916 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
917 type = build_qualified_type (type, TYPE_UNQUALIFIED);
918 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
919 gfc_character_kinds[index].kind);
920 PUSH_TYPE (name_buf, type);
921 gfc_character_types[index] = type;
922 gfc_pcharacter_types[index] = build_pointer_type (type);
923 }
924 gfc_character1_type_node = gfc_character_types[0];
925
926 PUSH_TYPE ("byte", unsigned_char_type_node);
927 PUSH_TYPE ("void", void_type_node);
928
929 /* DBX debugging output gets upset if these aren't set. */
930 if (!TYPE_NAME (integer_type_node))
931 PUSH_TYPE ("c_integer", integer_type_node);
932 if (!TYPE_NAME (char_type_node))
933 PUSH_TYPE ("c_char", char_type_node);
934
935 #undef PUSH_TYPE
936
937 pvoid_type_node = build_pointer_type (void_type_node);
938 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
939 ppvoid_type_node = build_pointer_type (pvoid_type_node);
940 pchar_type_node = build_pointer_type (gfc_character1_type_node);
941 pfunc_type_node
942 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
943
944 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
945 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
946 since this function is called before gfc_init_constants. */
947 gfc_array_range_type
948 = build_range_type (gfc_array_index_type,
949 build_int_cst (gfc_array_index_type, 0),
950 NULL_TREE);
951
952 /* The maximum array element size that can be handled is determined
953 by the number of bits available to store this field in the array
954 descriptor. */
955
956 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
957 gfc_max_array_element_size
958 = wide_int_to_tree (long_unsigned_type_node,
959 wi::mask (n, UNSIGNED,
960 TYPE_PRECISION (long_unsigned_type_node)));
961
962 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
963 boolean_true_node = build_int_cst (boolean_type_node, 1);
964 boolean_false_node = build_int_cst (boolean_type_node, 0);
965
966 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
967 gfc_charlen_int_kind = 4;
968 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
969 }
970
971 /* Get the type node for the given type and kind. */
972
973 tree
974 gfc_get_int_type (int kind)
975 {
976 int index = gfc_validate_kind (BT_INTEGER, kind, true);
977 return index < 0 ? 0 : gfc_integer_types[index];
978 }
979
980 tree
981 gfc_get_real_type (int kind)
982 {
983 int index = gfc_validate_kind (BT_REAL, kind, true);
984 return index < 0 ? 0 : gfc_real_types[index];
985 }
986
987 tree
988 gfc_get_complex_type (int kind)
989 {
990 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
991 return index < 0 ? 0 : gfc_complex_types[index];
992 }
993
994 tree
995 gfc_get_logical_type (int kind)
996 {
997 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
998 return index < 0 ? 0 : gfc_logical_types[index];
999 }
1000
1001 tree
1002 gfc_get_char_type (int kind)
1003 {
1004 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1005 return index < 0 ? 0 : gfc_character_types[index];
1006 }
1007
1008 tree
1009 gfc_get_pchar_type (int kind)
1010 {
1011 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1012 return index < 0 ? 0 : gfc_pcharacter_types[index];
1013 }
1014
1015 \f
1016 /* Create a character type with the given kind and length. */
1017
1018 tree
1019 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1020 {
1021 tree bounds, type;
1022
1023 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1024 type = build_array_type (eltype, bounds);
1025 TYPE_STRING_FLAG (type) = 1;
1026
1027 return type;
1028 }
1029
1030 tree
1031 gfc_get_character_type_len (int kind, tree len)
1032 {
1033 gfc_validate_kind (BT_CHARACTER, kind, false);
1034 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1035 }
1036
1037
1038 /* Get a type node for a character kind. */
1039
1040 tree
1041 gfc_get_character_type (int kind, gfc_charlen * cl)
1042 {
1043 tree len;
1044
1045 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1046
1047 return gfc_get_character_type_len (kind, len);
1048 }
1049 \f
1050 /* Covert a basic type. This will be an array for character types. */
1051
1052 tree
1053 gfc_typenode_for_spec (gfc_typespec * spec)
1054 {
1055 tree basetype;
1056
1057 switch (spec->type)
1058 {
1059 case BT_UNKNOWN:
1060 gcc_unreachable ();
1061
1062 case BT_INTEGER:
1063 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1064 has been resolved. This is done so we can convert C_PTR and
1065 C_FUNPTR to simple variables that get translated to (void *). */
1066 if (spec->f90_type == BT_VOID)
1067 {
1068 if (spec->u.derived
1069 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1070 basetype = ptr_type_node;
1071 else
1072 basetype = pfunc_type_node;
1073 }
1074 else
1075 basetype = gfc_get_int_type (spec->kind);
1076 break;
1077
1078 case BT_REAL:
1079 basetype = gfc_get_real_type (spec->kind);
1080 break;
1081
1082 case BT_COMPLEX:
1083 basetype = gfc_get_complex_type (spec->kind);
1084 break;
1085
1086 case BT_LOGICAL:
1087 basetype = gfc_get_logical_type (spec->kind);
1088 break;
1089
1090 case BT_CHARACTER:
1091 #if 0
1092 if (spec->deferred)
1093 basetype = gfc_get_character_type (spec->kind, NULL);
1094 else
1095 #endif
1096 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1097 break;
1098
1099 case BT_HOLLERITH:
1100 /* Since this cannot be used, return a length one character. */
1101 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1102 gfc_index_one_node);
1103 break;
1104
1105 case BT_DERIVED:
1106 case BT_CLASS:
1107 basetype = gfc_get_derived_type (spec->u.derived);
1108
1109 if (spec->type == BT_CLASS)
1110 GFC_CLASS_TYPE_P (basetype) = 1;
1111
1112 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1113 type and kind to fit a (void *) and the basetype returned was a
1114 ptr_type_node. We need to pass up this new information to the
1115 symbol that was declared of type C_PTR or C_FUNPTR. */
1116 if (spec->u.derived->ts.f90_type == BT_VOID)
1117 {
1118 spec->type = BT_INTEGER;
1119 spec->kind = gfc_index_integer_kind;
1120 spec->f90_type = BT_VOID;
1121 }
1122 break;
1123 case BT_VOID:
1124 case BT_ASSUMED:
1125 /* This is for the second arg to c_f_pointer and c_f_procpointer
1126 of the iso_c_binding module, to accept any ptr type. */
1127 basetype = ptr_type_node;
1128 if (spec->f90_type == BT_VOID)
1129 {
1130 if (spec->u.derived
1131 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1132 basetype = ptr_type_node;
1133 else
1134 basetype = pfunc_type_node;
1135 }
1136 break;
1137 default:
1138 gcc_unreachable ();
1139 }
1140 return basetype;
1141 }
1142 \f
1143 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1144
1145 static tree
1146 gfc_conv_array_bound (gfc_expr * expr)
1147 {
1148 /* If expr is an integer constant, return that. */
1149 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1150 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1151
1152 /* Otherwise return NULL. */
1153 return NULL_TREE;
1154 }
1155 \f
1156 tree
1157 gfc_get_element_type (tree type)
1158 {
1159 tree element;
1160
1161 if (GFC_ARRAY_TYPE_P (type))
1162 {
1163 if (TREE_CODE (type) == POINTER_TYPE)
1164 type = TREE_TYPE (type);
1165 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1166 {
1167 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1168 element = type;
1169 }
1170 else
1171 {
1172 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1173 element = TREE_TYPE (type);
1174 }
1175 }
1176 else
1177 {
1178 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1179 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1180
1181 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1182 element = TREE_TYPE (element);
1183
1184 /* For arrays, which are not scalar coarrays. */
1185 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1186 element = TREE_TYPE (element);
1187 }
1188
1189 return element;
1190 }
1191 \f
1192 /* Build an array. This function is called from gfc_sym_type().
1193 Actually returns array descriptor type.
1194
1195 Format of array descriptors is as follows:
1196
1197 struct gfc_array_descriptor
1198 {
1199 array *data
1200 index offset;
1201 index dtype;
1202 struct descriptor_dimension dimension[N_DIM];
1203 }
1204
1205 struct descriptor_dimension
1206 {
1207 index stride;
1208 index lbound;
1209 index ubound;
1210 }
1211
1212 Translation code should use gfc_conv_descriptor_* rather than
1213 accessing the descriptor directly. Any changes to the array
1214 descriptor type will require changes in gfc_conv_descriptor_* and
1215 gfc_build_array_initializer.
1216
1217 This is represented internally as a RECORD_TYPE. The index nodes
1218 are gfc_array_index_type and the data node is a pointer to the
1219 data. See below for the handling of character types.
1220
1221 The dtype member is formatted as follows:
1222 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1223 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1224 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1225
1226 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1227 this generated poor code for assumed/deferred size arrays. These
1228 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1229 of the GENERIC grammar. Also, there is no way to explicitly set
1230 the array stride, so all data must be packed(1). I've tried to
1231 mark all the functions which would require modification with a GCC
1232 ARRAYS comment.
1233
1234 The data component points to the first element in the array. The
1235 offset field is the position of the origin of the array (i.e. element
1236 (0, 0 ...)). This may be outside the bounds of the array.
1237
1238 An element is accessed by
1239 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1240 This gives good performance as the computation does not involve the
1241 bounds of the array. For packed arrays, this is optimized further
1242 by substituting the known strides.
1243
1244 This system has one problem: all array bounds must be within 2^31
1245 elements of the origin (2^63 on 64-bit machines). For example
1246 integer, dimension (80000:90000, 80000:90000, 2) :: array
1247 may not work properly on 32-bit machines because 80000*80000 >
1248 2^31, so the calculation for stride2 would overflow. This may
1249 still work, but I haven't checked, and it relies on the overflow
1250 doing the right thing.
1251
1252 The way to fix this problem is to access elements as follows:
1253 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1254 Obviously this is much slower. I will make this a compile time
1255 option, something like -fsmall-array-offsets. Mixing code compiled
1256 with and without this switch will work.
1257
1258 (1) This can be worked around by modifying the upper bound of the
1259 previous dimension. This requires extra fields in the descriptor
1260 (both real_ubound and fake_ubound). */
1261
1262
1263 /* Returns true if the array sym does not require a descriptor. */
1264
1265 int
1266 gfc_is_nodesc_array (gfc_symbol * sym)
1267 {
1268 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1269
1270 /* We only want local arrays. */
1271 if (sym->attr.pointer || sym->attr.allocatable)
1272 return 0;
1273
1274 /* We want a descriptor for associate-name arrays that do not have an
1275 explicitly known shape already. */
1276 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1277 return 0;
1278
1279 if (sym->attr.dummy)
1280 return sym->as->type != AS_ASSUMED_SHAPE
1281 && sym->as->type != AS_ASSUMED_RANK;
1282
1283 if (sym->attr.result || sym->attr.function)
1284 return 0;
1285
1286 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1287
1288 return 1;
1289 }
1290
1291
1292 /* Create an array descriptor type. */
1293
1294 static tree
1295 gfc_build_array_type (tree type, gfc_array_spec * as,
1296 enum gfc_array_kind akind, bool restricted,
1297 bool contiguous)
1298 {
1299 tree lbound[GFC_MAX_DIMENSIONS];
1300 tree ubound[GFC_MAX_DIMENSIONS];
1301 int n, corank;
1302
1303 /* Assumed-shape arrays do not have codimension information stored in the
1304 descriptor. */
1305 corank = as->corank;
1306 if (as->type == AS_ASSUMED_SHAPE ||
1307 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1308 corank = 0;
1309
1310 if (as->type == AS_ASSUMED_RANK)
1311 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1312 {
1313 lbound[n] = NULL_TREE;
1314 ubound[n] = NULL_TREE;
1315 }
1316
1317 for (n = 0; n < as->rank; n++)
1318 {
1319 /* Create expressions for the known bounds of the array. */
1320 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1321 lbound[n] = gfc_index_one_node;
1322 else
1323 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1324 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1325 }
1326
1327 for (n = as->rank; n < as->rank + corank; n++)
1328 {
1329 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1330 lbound[n] = gfc_index_one_node;
1331 else
1332 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1333
1334 if (n < as->rank + corank - 1)
1335 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1336 }
1337
1338 if (as->type == AS_ASSUMED_SHAPE)
1339 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1340 : GFC_ARRAY_ASSUMED_SHAPE;
1341 else if (as->type == AS_ASSUMED_RANK)
1342 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1343 : GFC_ARRAY_ASSUMED_RANK;
1344 return gfc_get_array_type_bounds (type, as->rank == -1
1345 ? GFC_MAX_DIMENSIONS : as->rank,
1346 corank, lbound,
1347 ubound, 0, akind, restricted);
1348 }
1349 \f
1350 /* Returns the struct descriptor_dimension type. */
1351
1352 static tree
1353 gfc_get_desc_dim_type (void)
1354 {
1355 tree type;
1356 tree decl, *chain = NULL;
1357
1358 if (gfc_desc_dim_type)
1359 return gfc_desc_dim_type;
1360
1361 /* Build the type node. */
1362 type = make_node (RECORD_TYPE);
1363
1364 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1365 TYPE_PACKED (type) = 1;
1366
1367 /* Consists of the stride, lbound and ubound members. */
1368 decl = gfc_add_field_to_struct_1 (type,
1369 get_identifier ("stride"),
1370 gfc_array_index_type, &chain);
1371 TREE_NO_WARNING (decl) = 1;
1372
1373 decl = gfc_add_field_to_struct_1 (type,
1374 get_identifier ("lbound"),
1375 gfc_array_index_type, &chain);
1376 TREE_NO_WARNING (decl) = 1;
1377
1378 decl = gfc_add_field_to_struct_1 (type,
1379 get_identifier ("ubound"),
1380 gfc_array_index_type, &chain);
1381 TREE_NO_WARNING (decl) = 1;
1382
1383 /* Finish off the type. */
1384 gfc_finish_type (type);
1385 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1386
1387 gfc_desc_dim_type = type;
1388 return type;
1389 }
1390
1391
1392 /* Return the DTYPE for an array. This describes the type and type parameters
1393 of the array. */
1394 /* TODO: Only call this when the value is actually used, and make all the
1395 unknown cases abort. */
1396
1397 tree
1398 gfc_get_dtype (tree type)
1399 {
1400 tree size;
1401 int n;
1402 HOST_WIDE_INT i;
1403 tree tmp;
1404 tree dtype;
1405 tree etype;
1406 int rank;
1407
1408 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1409
1410 if (GFC_TYPE_ARRAY_DTYPE (type))
1411 return GFC_TYPE_ARRAY_DTYPE (type);
1412
1413 rank = GFC_TYPE_ARRAY_RANK (type);
1414 etype = gfc_get_element_type (type);
1415
1416 switch (TREE_CODE (etype))
1417 {
1418 case INTEGER_TYPE:
1419 n = BT_INTEGER;
1420 break;
1421
1422 case BOOLEAN_TYPE:
1423 n = BT_LOGICAL;
1424 break;
1425
1426 case REAL_TYPE:
1427 n = BT_REAL;
1428 break;
1429
1430 case COMPLEX_TYPE:
1431 n = BT_COMPLEX;
1432 break;
1433
1434 /* We will never have arrays of arrays. */
1435 case RECORD_TYPE:
1436 n = BT_DERIVED;
1437 break;
1438
1439 case ARRAY_TYPE:
1440 n = BT_CHARACTER;
1441 break;
1442
1443 case POINTER_TYPE:
1444 n = BT_ASSUMED;
1445 break;
1446
1447 default:
1448 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1449 /* We can strange array types for temporary arrays. */
1450 return gfc_index_zero_node;
1451 }
1452
1453 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1454 size = TYPE_SIZE_UNIT (etype);
1455
1456 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1457 if (size && INTEGER_CST_P (size))
1458 {
1459 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1460 gfc_fatal_error ("Array element size too big at %C");
1461
1462 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1463 }
1464 dtype = build_int_cst (gfc_array_index_type, i);
1465
1466 if (size && !INTEGER_CST_P (size))
1467 {
1468 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1469 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1470 gfc_array_index_type,
1471 fold_convert (gfc_array_index_type, size), tmp);
1472 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1473 tmp, dtype);
1474 }
1475 /* If we don't know the size we leave it as zero. This should never happen
1476 for anything that is actually used. */
1477 /* TODO: Check this is actually true, particularly when repacking
1478 assumed size parameters. */
1479
1480 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1481 return dtype;
1482 }
1483
1484
1485 /* Build an array type for use without a descriptor, packed according
1486 to the value of PACKED. */
1487
1488 tree
1489 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1490 bool restricted)
1491 {
1492 tree range;
1493 tree type;
1494 tree tmp;
1495 int n;
1496 int known_stride;
1497 int known_offset;
1498 mpz_t offset;
1499 mpz_t stride;
1500 mpz_t delta;
1501 gfc_expr *expr;
1502
1503 mpz_init_set_ui (offset, 0);
1504 mpz_init_set_ui (stride, 1);
1505 mpz_init (delta);
1506
1507 /* We don't use build_array_type because this does not include include
1508 lang-specific information (i.e. the bounds of the array) when checking
1509 for duplicates. */
1510 if (as->rank)
1511 type = make_node (ARRAY_TYPE);
1512 else
1513 type = build_variant_type_copy (etype);
1514
1515 GFC_ARRAY_TYPE_P (type) = 1;
1516 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1517
1518 known_stride = (packed != PACKED_NO);
1519 known_offset = 1;
1520 for (n = 0; n < as->rank; n++)
1521 {
1522 /* Fill in the stride and bound components of the type. */
1523 if (known_stride)
1524 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1525 else
1526 tmp = NULL_TREE;
1527 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1528
1529 expr = as->lower[n];
1530 if (expr->expr_type == EXPR_CONSTANT)
1531 {
1532 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1533 gfc_index_integer_kind);
1534 }
1535 else
1536 {
1537 known_stride = 0;
1538 tmp = NULL_TREE;
1539 }
1540 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1541
1542 if (known_stride)
1543 {
1544 /* Calculate the offset. */
1545 mpz_mul (delta, stride, as->lower[n]->value.integer);
1546 mpz_sub (offset, offset, delta);
1547 }
1548 else
1549 known_offset = 0;
1550
1551 expr = as->upper[n];
1552 if (expr && expr->expr_type == EXPR_CONSTANT)
1553 {
1554 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1555 gfc_index_integer_kind);
1556 }
1557 else
1558 {
1559 tmp = NULL_TREE;
1560 known_stride = 0;
1561 }
1562 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1563
1564 if (known_stride)
1565 {
1566 /* Calculate the stride. */
1567 mpz_sub (delta, as->upper[n]->value.integer,
1568 as->lower[n]->value.integer);
1569 mpz_add_ui (delta, delta, 1);
1570 mpz_mul (stride, stride, delta);
1571 }
1572
1573 /* Only the first stride is known for partial packed arrays. */
1574 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1575 known_stride = 0;
1576 }
1577 for (n = as->rank; n < as->rank + as->corank; n++)
1578 {
1579 expr = as->lower[n];
1580 if (expr->expr_type == EXPR_CONSTANT)
1581 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1582 gfc_index_integer_kind);
1583 else
1584 tmp = NULL_TREE;
1585 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1586
1587 expr = as->upper[n];
1588 if (expr && expr->expr_type == EXPR_CONSTANT)
1589 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1590 gfc_index_integer_kind);
1591 else
1592 tmp = NULL_TREE;
1593 if (n < as->rank + as->corank - 1)
1594 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1595 }
1596
1597 if (known_offset)
1598 {
1599 GFC_TYPE_ARRAY_OFFSET (type) =
1600 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1601 }
1602 else
1603 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1604
1605 if (known_stride)
1606 {
1607 GFC_TYPE_ARRAY_SIZE (type) =
1608 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1609 }
1610 else
1611 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1612
1613 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1614 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1615 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1616 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1617 NULL_TREE);
1618 /* TODO: use main type if it is unbounded. */
1619 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1620 build_pointer_type (build_array_type (etype, range));
1621 if (restricted)
1622 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1623 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1624 TYPE_QUAL_RESTRICT);
1625
1626 if (as->rank == 0)
1627 {
1628 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1629 {
1630 type = build_pointer_type (type);
1631
1632 if (restricted)
1633 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1634
1635 GFC_ARRAY_TYPE_P (type) = 1;
1636 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1637 }
1638
1639 return type;
1640 }
1641
1642 if (known_stride)
1643 {
1644 mpz_sub_ui (stride, stride, 1);
1645 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1646 }
1647 else
1648 range = NULL_TREE;
1649
1650 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1651 TYPE_DOMAIN (type) = range;
1652
1653 build_pointer_type (etype);
1654 TREE_TYPE (type) = etype;
1655
1656 layout_type (type);
1657
1658 mpz_clear (offset);
1659 mpz_clear (stride);
1660 mpz_clear (delta);
1661
1662 /* Represent packed arrays as multi-dimensional if they have rank >
1663 1 and with proper bounds, instead of flat arrays. This makes for
1664 better debug info. */
1665 if (known_offset)
1666 {
1667 tree gtype = etype, rtype, type_decl;
1668
1669 for (n = as->rank - 1; n >= 0; n--)
1670 {
1671 rtype = build_range_type (gfc_array_index_type,
1672 GFC_TYPE_ARRAY_LBOUND (type, n),
1673 GFC_TYPE_ARRAY_UBOUND (type, n));
1674 gtype = build_array_type (gtype, rtype);
1675 }
1676 TYPE_NAME (type) = type_decl = build_decl (input_location,
1677 TYPE_DECL, NULL, gtype);
1678 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1679 }
1680
1681 if (packed != PACKED_STATIC || !known_stride
1682 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1683 {
1684 /* For dummy arrays and automatic (heap allocated) arrays we
1685 want a pointer to the array. */
1686 type = build_pointer_type (type);
1687 if (restricted)
1688 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1689 GFC_ARRAY_TYPE_P (type) = 1;
1690 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1691 }
1692 return type;
1693 }
1694
1695
1696 /* Return or create the base type for an array descriptor. */
1697
1698 static tree
1699 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1700 enum gfc_array_kind akind)
1701 {
1702 tree fat_type, decl, arraytype, *chain = NULL;
1703 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1704 int idx;
1705
1706 /* Assumed-rank array. */
1707 if (dimen == -1)
1708 dimen = GFC_MAX_DIMENSIONS;
1709
1710 idx = 2 * (codimen + dimen) + restricted;
1711
1712 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1713
1714 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1715 {
1716 if (gfc_array_descriptor_base_caf[idx])
1717 return gfc_array_descriptor_base_caf[idx];
1718 }
1719 else if (gfc_array_descriptor_base[idx])
1720 return gfc_array_descriptor_base[idx];
1721
1722 /* Build the type node. */
1723 fat_type = make_node (RECORD_TYPE);
1724
1725 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1726 TYPE_NAME (fat_type) = get_identifier (name);
1727 TYPE_NAMELESS (fat_type) = 1;
1728
1729 /* Add the data member as the first element of the descriptor. */
1730 decl = gfc_add_field_to_struct_1 (fat_type,
1731 get_identifier ("data"),
1732 (restricted
1733 ? prvoid_type_node
1734 : ptr_type_node), &chain);
1735
1736 /* Add the base component. */
1737 decl = gfc_add_field_to_struct_1 (fat_type,
1738 get_identifier ("offset"),
1739 gfc_array_index_type, &chain);
1740 TREE_NO_WARNING (decl) = 1;
1741
1742 /* Add the dtype component. */
1743 decl = gfc_add_field_to_struct_1 (fat_type,
1744 get_identifier ("dtype"),
1745 gfc_array_index_type, &chain);
1746 TREE_NO_WARNING (decl) = 1;
1747
1748 /* Build the array type for the stride and bound components. */
1749 if (dimen + codimen > 0)
1750 {
1751 arraytype =
1752 build_array_type (gfc_get_desc_dim_type (),
1753 build_range_type (gfc_array_index_type,
1754 gfc_index_zero_node,
1755 gfc_rank_cst[codimen + dimen - 1]));
1756
1757 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1758 arraytype, &chain);
1759 TREE_NO_WARNING (decl) = 1;
1760 }
1761
1762 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1763 && akind == GFC_ARRAY_ALLOCATABLE)
1764 {
1765 decl = gfc_add_field_to_struct_1 (fat_type,
1766 get_identifier ("token"),
1767 prvoid_type_node, &chain);
1768 TREE_NO_WARNING (decl) = 1;
1769 }
1770
1771 /* Finish off the type. */
1772 gfc_finish_type (fat_type);
1773 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1774
1775 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1776 && akind == GFC_ARRAY_ALLOCATABLE)
1777 gfc_array_descriptor_base_caf[idx] = fat_type;
1778 else
1779 gfc_array_descriptor_base[idx] = fat_type;
1780
1781 return fat_type;
1782 }
1783
1784
1785 /* Build an array (descriptor) type with given bounds. */
1786
1787 tree
1788 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1789 tree * ubound, int packed,
1790 enum gfc_array_kind akind, bool restricted)
1791 {
1792 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1793 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1794 const char *type_name;
1795 int n;
1796
1797 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1798 fat_type = build_distinct_type_copy (base_type);
1799 /* Make sure that nontarget and target array type have the same canonical
1800 type (and same stub decl for debug info). */
1801 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1802 TYPE_CANONICAL (fat_type) = base_type;
1803 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1804
1805 tmp = TYPE_NAME (etype);
1806 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1807 tmp = DECL_NAME (tmp);
1808 if (tmp)
1809 type_name = IDENTIFIER_POINTER (tmp);
1810 else
1811 type_name = "unknown";
1812 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1813 GFC_MAX_SYMBOL_LEN, type_name);
1814 TYPE_NAME (fat_type) = get_identifier (name);
1815 TYPE_NAMELESS (fat_type) = 1;
1816
1817 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1818 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1819
1820 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1821 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1822 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1823 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1824
1825 /* Build an array descriptor record type. */
1826 if (packed != 0)
1827 stride = gfc_index_one_node;
1828 else
1829 stride = NULL_TREE;
1830 for (n = 0; n < dimen + codimen; n++)
1831 {
1832 if (n < dimen)
1833 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1834
1835 if (lbound)
1836 lower = lbound[n];
1837 else
1838 lower = NULL_TREE;
1839
1840 if (lower != NULL_TREE)
1841 {
1842 if (INTEGER_CST_P (lower))
1843 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1844 else
1845 lower = NULL_TREE;
1846 }
1847
1848 if (codimen && n == dimen + codimen - 1)
1849 break;
1850
1851 upper = ubound[n];
1852 if (upper != NULL_TREE)
1853 {
1854 if (INTEGER_CST_P (upper))
1855 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1856 else
1857 upper = NULL_TREE;
1858 }
1859
1860 if (n >= dimen)
1861 continue;
1862
1863 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1864 {
1865 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1866 gfc_array_index_type, upper, lower);
1867 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1868 gfc_array_index_type, tmp,
1869 gfc_index_one_node);
1870 stride = fold_build2_loc (input_location, MULT_EXPR,
1871 gfc_array_index_type, tmp, stride);
1872 /* Check the folding worked. */
1873 gcc_assert (INTEGER_CST_P (stride));
1874 }
1875 else
1876 stride = NULL_TREE;
1877 }
1878 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1879
1880 /* TODO: known offsets for descriptors. */
1881 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1882
1883 if (dimen == 0)
1884 {
1885 arraytype = build_pointer_type (etype);
1886 if (restricted)
1887 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1888
1889 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1890 return fat_type;
1891 }
1892
1893 /* We define data as an array with the correct size if possible.
1894 Much better than doing pointer arithmetic. */
1895 if (stride)
1896 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1897 int_const_binop (MINUS_EXPR, stride,
1898 build_int_cst (TREE_TYPE (stride), 1)));
1899 else
1900 rtype = gfc_array_range_type;
1901 arraytype = build_array_type (etype, rtype);
1902 arraytype = build_pointer_type (arraytype);
1903 if (restricted)
1904 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1905 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1906
1907 /* This will generate the base declarations we need to emit debug
1908 information for this type. FIXME: there must be a better way to
1909 avoid divergence between compilations with and without debug
1910 information. */
1911 {
1912 struct array_descr_info info;
1913 gfc_get_array_descr_info (fat_type, &info);
1914 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1915 }
1916
1917 return fat_type;
1918 }
1919 \f
1920 /* Build a pointer type. This function is called from gfc_sym_type(). */
1921
1922 static tree
1923 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1924 {
1925 /* Array pointer types aren't actually pointers. */
1926 if (sym->attr.dimension)
1927 return type;
1928 else
1929 return build_pointer_type (type);
1930 }
1931
1932 static tree gfc_nonrestricted_type (tree t);
1933 /* Given two record or union type nodes TO and FROM, ensure
1934 that all fields in FROM have a corresponding field in TO,
1935 their type being nonrestrict variants. This accepts a TO
1936 node that already has a prefix of the fields in FROM. */
1937 static void
1938 mirror_fields (tree to, tree from)
1939 {
1940 tree fto, ffrom;
1941 tree *chain;
1942
1943 /* Forward to the end of TOs fields. */
1944 fto = TYPE_FIELDS (to);
1945 ffrom = TYPE_FIELDS (from);
1946 chain = &TYPE_FIELDS (to);
1947 while (fto)
1948 {
1949 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1950 chain = &DECL_CHAIN (fto);
1951 fto = DECL_CHAIN (fto);
1952 ffrom = DECL_CHAIN (ffrom);
1953 }
1954
1955 /* Now add all fields remaining in FROM (starting with ffrom). */
1956 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1957 {
1958 tree newfield = copy_node (ffrom);
1959 DECL_CONTEXT (newfield) = to;
1960 /* The store to DECL_CHAIN might seem redundant with the
1961 stores to *chain, but not clearing it here would mean
1962 leaving a chain into the old fields. If ever
1963 our called functions would look at them confusion
1964 will arise. */
1965 DECL_CHAIN (newfield) = NULL_TREE;
1966 *chain = newfield;
1967 chain = &DECL_CHAIN (newfield);
1968
1969 if (TREE_CODE (ffrom) == FIELD_DECL)
1970 {
1971 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1972 TREE_TYPE (newfield) = elemtype;
1973 }
1974 }
1975 *chain = NULL_TREE;
1976 }
1977
1978 /* Given a type T, returns a different type of the same structure,
1979 except that all types it refers to (recursively) are always
1980 non-restrict qualified types. */
1981 static tree
1982 gfc_nonrestricted_type (tree t)
1983 {
1984 tree ret = t;
1985
1986 /* If the type isn't laid out yet, don't copy it. If something
1987 needs it for real it should wait until the type got finished. */
1988 if (!TYPE_SIZE (t))
1989 return t;
1990
1991 if (!TYPE_LANG_SPECIFIC (t))
1992 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
1993 /* If we're dealing with this very node already further up
1994 the call chain (recursion via pointers and struct members)
1995 we haven't yet determined if we really need a new type node.
1996 Assume we don't, return T itself. */
1997 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1998 return t;
1999
2000 /* If we have calculated this all already, just return it. */
2001 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2002 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2003
2004 /* Mark this type. */
2005 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2006
2007 switch (TREE_CODE (t))
2008 {
2009 default:
2010 break;
2011
2012 case POINTER_TYPE:
2013 case REFERENCE_TYPE:
2014 {
2015 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2016 if (totype == TREE_TYPE (t))
2017 ret = t;
2018 else if (TREE_CODE (t) == POINTER_TYPE)
2019 ret = build_pointer_type (totype);
2020 else
2021 ret = build_reference_type (totype);
2022 ret = build_qualified_type (ret,
2023 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2024 }
2025 break;
2026
2027 case ARRAY_TYPE:
2028 {
2029 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2030 if (elemtype == TREE_TYPE (t))
2031 ret = t;
2032 else
2033 {
2034 ret = build_variant_type_copy (t);
2035 TREE_TYPE (ret) = elemtype;
2036 if (TYPE_LANG_SPECIFIC (t)
2037 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2038 {
2039 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2040 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2041 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2042 {
2043 TYPE_LANG_SPECIFIC (ret)
2044 = ggc_cleared_alloc<struct lang_type> ();
2045 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2046 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2047 }
2048 }
2049 }
2050 }
2051 break;
2052
2053 case RECORD_TYPE:
2054 case UNION_TYPE:
2055 case QUAL_UNION_TYPE:
2056 {
2057 tree field;
2058 /* First determine if we need a new type at all.
2059 Careful, the two calls to gfc_nonrestricted_type per field
2060 might return different values. That happens exactly when
2061 one of the fields reaches back to this very record type
2062 (via pointers). The first calls will assume that we don't
2063 need to copy T (see the error_mark_node marking). If there
2064 are any reasons for copying T apart from having to copy T,
2065 we'll indeed copy it, and the second calls to
2066 gfc_nonrestricted_type will use that new node if they
2067 reach back to T. */
2068 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2069 if (TREE_CODE (field) == FIELD_DECL)
2070 {
2071 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2072 if (elemtype != TREE_TYPE (field))
2073 break;
2074 }
2075 if (!field)
2076 break;
2077 ret = build_variant_type_copy (t);
2078 TYPE_FIELDS (ret) = NULL_TREE;
2079
2080 /* Here we make sure that as soon as we know we have to copy
2081 T, that also fields reaching back to us will use the new
2082 copy. It's okay if that copy still contains the old fields,
2083 we won't look at them. */
2084 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2085 mirror_fields (ret, t);
2086 }
2087 break;
2088 }
2089
2090 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2091 return ret;
2092 }
2093
2094 \f
2095 /* Return the type for a symbol. Special handling is required for character
2096 types to get the correct level of indirection.
2097 For functions return the return type.
2098 For subroutines return void_type_node.
2099 Calling this multiple times for the same symbol should be avoided,
2100 especially for character and array types. */
2101
2102 tree
2103 gfc_sym_type (gfc_symbol * sym)
2104 {
2105 tree type;
2106 int byref;
2107 bool restricted;
2108
2109 /* Procedure Pointers inside COMMON blocks. */
2110 if (sym->attr.proc_pointer && sym->attr.in_common)
2111 {
2112 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2113 sym->attr.proc_pointer = 0;
2114 type = build_pointer_type (gfc_get_function_type (sym));
2115 sym->attr.proc_pointer = 1;
2116 return type;
2117 }
2118
2119 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2120 return void_type_node;
2121
2122 /* In the case of a function the fake result variable may have a
2123 type different from the function type, so don't return early in
2124 that case. */
2125 if (sym->backend_decl && !sym->attr.function)
2126 return TREE_TYPE (sym->backend_decl);
2127
2128 if (sym->ts.type == BT_CHARACTER
2129 && ((sym->attr.function && sym->attr.is_bind_c)
2130 || (sym->attr.result
2131 && sym->ns->proc_name
2132 && sym->ns->proc_name->attr.is_bind_c)))
2133 type = gfc_character1_type_node;
2134 else
2135 type = gfc_typenode_for_spec (&sym->ts);
2136
2137 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2138 byref = 1;
2139 else
2140 byref = 0;
2141
2142 restricted = !sym->attr.target && !sym->attr.pointer
2143 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2144 if (!restricted)
2145 type = gfc_nonrestricted_type (type);
2146
2147 if (sym->attr.dimension || sym->attr.codimension)
2148 {
2149 if (gfc_is_nodesc_array (sym))
2150 {
2151 /* If this is a character argument of unknown length, just use the
2152 base type. */
2153 if (sym->ts.type != BT_CHARACTER
2154 || !(sym->attr.dummy || sym->attr.function)
2155 || sym->ts.u.cl->backend_decl)
2156 {
2157 type = gfc_get_nodesc_array_type (type, sym->as,
2158 byref ? PACKED_FULL
2159 : PACKED_STATIC,
2160 restricted);
2161 byref = 0;
2162 }
2163
2164 if (sym->attr.cray_pointee)
2165 GFC_POINTER_TYPE_P (type) = 1;
2166 }
2167 else
2168 {
2169 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2170 if (sym->attr.pointer)
2171 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2172 : GFC_ARRAY_POINTER;
2173 else if (sym->attr.allocatable)
2174 akind = GFC_ARRAY_ALLOCATABLE;
2175 type = gfc_build_array_type (type, sym->as, akind, restricted,
2176 sym->attr.contiguous);
2177 }
2178 }
2179 else
2180 {
2181 if (sym->attr.allocatable || sym->attr.pointer
2182 || gfc_is_associate_pointer (sym))
2183 type = gfc_build_pointer_type (sym, type);
2184 if (sym->attr.pointer || sym->attr.cray_pointee)
2185 GFC_POINTER_TYPE_P (type) = 1;
2186 }
2187
2188 /* We currently pass all parameters by reference.
2189 See f95_get_function_decl. For dummy function parameters return the
2190 function type. */
2191 if (byref)
2192 {
2193 /* We must use pointer types for potentially absent variables. The
2194 optimizers assume a reference type argument is never NULL. */
2195 if (sym->attr.optional
2196 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2197 type = build_pointer_type (type);
2198 else
2199 {
2200 type = build_reference_type (type);
2201 if (restricted)
2202 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2203 }
2204 }
2205
2206 return (type);
2207 }
2208 \f
2209 /* Layout and output debug info for a record type. */
2210
2211 void
2212 gfc_finish_type (tree type)
2213 {
2214 tree decl;
2215
2216 decl = build_decl (input_location,
2217 TYPE_DECL, NULL_TREE, type);
2218 TYPE_STUB_DECL (type) = decl;
2219 layout_type (type);
2220 rest_of_type_compilation (type, 1);
2221 rest_of_decl_compilation (decl, 1, 0);
2222 }
2223 \f
2224 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2225 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2226 to the end of the field list pointed to by *CHAIN.
2227
2228 Returns a pointer to the new field. */
2229
2230 static tree
2231 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2232 {
2233 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2234
2235 DECL_CONTEXT (decl) = context;
2236 DECL_CHAIN (decl) = NULL_TREE;
2237 if (TYPE_FIELDS (context) == NULL_TREE)
2238 TYPE_FIELDS (context) = decl;
2239 if (chain != NULL)
2240 {
2241 if (*chain != NULL)
2242 **chain = decl;
2243 *chain = &DECL_CHAIN (decl);
2244 }
2245
2246 return decl;
2247 }
2248
2249 /* Like `gfc_add_field_to_struct_1', but adds alignment
2250 information. */
2251
2252 tree
2253 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2254 {
2255 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2256
2257 DECL_INITIAL (decl) = 0;
2258 DECL_ALIGN (decl) = 0;
2259 DECL_USER_ALIGN (decl) = 0;
2260
2261 return decl;
2262 }
2263
2264
2265 /* Copy the backend_decl and component backend_decls if
2266 the two derived type symbols are "equal", as described
2267 in 4.4.2 and resolved by gfc_compare_derived_types. */
2268
2269 int
2270 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2271 bool from_gsym)
2272 {
2273 gfc_component *to_cm;
2274 gfc_component *from_cm;
2275
2276 if (from == to)
2277 return 1;
2278
2279 if (from->backend_decl == NULL
2280 || !gfc_compare_derived_types (from, to))
2281 return 0;
2282
2283 to->backend_decl = from->backend_decl;
2284
2285 to_cm = to->components;
2286 from_cm = from->components;
2287
2288 /* Copy the component declarations. If a component is itself
2289 a derived type, we need a copy of its component declarations.
2290 This is done by recursing into gfc_get_derived_type and
2291 ensures that the component's component declarations have
2292 been built. If it is a character, we need the character
2293 length, as well. */
2294 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2295 {
2296 to_cm->backend_decl = from_cm->backend_decl;
2297 if (from_cm->ts.type == BT_DERIVED
2298 && (!from_cm->attr.pointer || from_gsym))
2299 gfc_get_derived_type (to_cm->ts.u.derived);
2300 else if (from_cm->ts.type == BT_CLASS
2301 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2302 gfc_get_derived_type (to_cm->ts.u.derived);
2303 else if (from_cm->ts.type == BT_CHARACTER)
2304 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2305 }
2306
2307 return 1;
2308 }
2309
2310
2311 /* Build a tree node for a procedure pointer component. */
2312
2313 tree
2314 gfc_get_ppc_type (gfc_component* c)
2315 {
2316 tree t;
2317
2318 /* Explicit interface. */
2319 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2320 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2321
2322 /* Implicit interface (only return value may be known). */
2323 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2324 t = gfc_typenode_for_spec (&c->ts);
2325 else
2326 t = void_type_node;
2327
2328 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2329 }
2330
2331
2332 /* Build a tree node for a derived type. If there are equal
2333 derived types, with different local names, these are built
2334 at the same time. If an equal derived type has been built
2335 in a parent namespace, this is used. */
2336
2337 tree
2338 gfc_get_derived_type (gfc_symbol * derived)
2339 {
2340 tree typenode = NULL, field = NULL, field_type = NULL;
2341 tree canonical = NULL_TREE;
2342 tree *chain = NULL;
2343 bool got_canonical = false;
2344 bool unlimited_entity = false;
2345 gfc_component *c;
2346 gfc_dt_list *dt;
2347 gfc_namespace *ns;
2348
2349 if (derived->attr.unlimited_polymorphic)
2350 return ptr_type_node;
2351
2352 if (derived && derived->attr.flavor == FL_PROCEDURE
2353 && derived->attr.generic)
2354 derived = gfc_find_dt_in_generic (derived);
2355
2356 /* See if it's one of the iso_c_binding derived types. */
2357 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2358 {
2359 if (derived->backend_decl)
2360 return derived->backend_decl;
2361
2362 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2363 derived->backend_decl = ptr_type_node;
2364 else
2365 derived->backend_decl = pfunc_type_node;
2366
2367 derived->ts.kind = gfc_index_integer_kind;
2368 derived->ts.type = BT_INTEGER;
2369 /* Set the f90_type to BT_VOID as a way to recognize something of type
2370 BT_INTEGER that needs to fit a void * for the purpose of the
2371 iso_c_binding derived types. */
2372 derived->ts.f90_type = BT_VOID;
2373
2374 return derived->backend_decl;
2375 }
2376
2377 /* If use associated, use the module type for this one. */
2378 if (derived->backend_decl == NULL
2379 && derived->attr.use_assoc
2380 && derived->module
2381 && gfc_get_module_backend_decl (derived))
2382 goto copy_derived_types;
2383
2384 /* The derived types from an earlier namespace can be used as the
2385 canonical type. */
2386 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2387 && gfc_global_ns_list)
2388 {
2389 for (ns = gfc_global_ns_list;
2390 ns->translated && !got_canonical;
2391 ns = ns->sibling)
2392 {
2393 dt = ns->derived_types;
2394 for (; dt && !canonical; dt = dt->next)
2395 {
2396 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2397 if (derived->backend_decl)
2398 got_canonical = true;
2399 }
2400 }
2401 }
2402
2403 /* Store up the canonical type to be added to this one. */
2404 if (got_canonical)
2405 {
2406 if (TYPE_CANONICAL (derived->backend_decl))
2407 canonical = TYPE_CANONICAL (derived->backend_decl);
2408 else
2409 canonical = derived->backend_decl;
2410
2411 derived->backend_decl = NULL_TREE;
2412 }
2413
2414 /* derived->backend_decl != 0 means we saw it before, but its
2415 components' backend_decl may have not been built. */
2416 if (derived->backend_decl)
2417 {
2418 /* Its components' backend_decl have been built or we are
2419 seeing recursion through the formal arglist of a procedure
2420 pointer component. */
2421 if (TYPE_FIELDS (derived->backend_decl)
2422 || derived->attr.proc_pointer_comp)
2423 return derived->backend_decl;
2424 else
2425 typenode = derived->backend_decl;
2426 }
2427 else
2428 {
2429 /* We see this derived type first time, so build the type node. */
2430 typenode = make_node (RECORD_TYPE);
2431 TYPE_NAME (typenode) = get_identifier (derived->name);
2432 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2433 derived->backend_decl = typenode;
2434 }
2435
2436 if (derived->components
2437 && derived->components->ts.type == BT_DERIVED
2438 && strcmp (derived->components->name, "_data") == 0
2439 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2440 unlimited_entity = true;
2441
2442 /* Go through the derived type components, building them as
2443 necessary. The reason for doing this now is that it is
2444 possible to recurse back to this derived type through a
2445 pointer component (PR24092). If this happens, the fields
2446 will be built and so we can return the type. */
2447 for (c = derived->components; c; c = c->next)
2448 {
2449 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2450 continue;
2451
2452 if ((!c->attr.pointer && !c->attr.proc_pointer)
2453 || c->ts.u.derived->backend_decl == NULL)
2454 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2455
2456 if (c->ts.u.derived->attr.is_iso_c)
2457 {
2458 /* Need to copy the modified ts from the derived type. The
2459 typespec was modified because C_PTR/C_FUNPTR are translated
2460 into (void *) from derived types. */
2461 c->ts.type = c->ts.u.derived->ts.type;
2462 c->ts.kind = c->ts.u.derived->ts.kind;
2463 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2464 if (c->initializer)
2465 {
2466 c->initializer->ts.type = c->ts.type;
2467 c->initializer->ts.kind = c->ts.kind;
2468 c->initializer->ts.f90_type = c->ts.f90_type;
2469 c->initializer->expr_type = EXPR_NULL;
2470 }
2471 }
2472 }
2473
2474 if (TYPE_FIELDS (derived->backend_decl))
2475 return derived->backend_decl;
2476
2477 /* Build the type member list. Install the newly created RECORD_TYPE
2478 node as DECL_CONTEXT of each FIELD_DECL. */
2479 for (c = derived->components; c; c = c->next)
2480 {
2481 if (c->attr.proc_pointer)
2482 field_type = gfc_get_ppc_type (c);
2483 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2484 field_type = c->ts.u.derived->backend_decl;
2485 else
2486 {
2487 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2488 {
2489 /* Evaluate the string length. */
2490 gfc_conv_const_charlen (c->ts.u.cl);
2491 gcc_assert (c->ts.u.cl->backend_decl);
2492 }
2493 else if (c->ts.type == BT_CHARACTER)
2494 c->ts.u.cl->backend_decl
2495 = build_int_cst (gfc_charlen_type_node, 0);
2496
2497 field_type = gfc_typenode_for_spec (&c->ts);
2498 }
2499
2500 /* This returns an array descriptor type. Initialization may be
2501 required. */
2502 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2503 {
2504 if (c->attr.pointer || c->attr.allocatable)
2505 {
2506 enum gfc_array_kind akind;
2507 if (c->attr.pointer)
2508 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2509 : GFC_ARRAY_POINTER;
2510 else
2511 akind = GFC_ARRAY_ALLOCATABLE;
2512 /* Pointers to arrays aren't actually pointer types. The
2513 descriptors are separate, but the data is common. */
2514 field_type = gfc_build_array_type (field_type, c->as, akind,
2515 !c->attr.target
2516 && !c->attr.pointer,
2517 c->attr.contiguous);
2518 }
2519 else
2520 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2521 PACKED_STATIC,
2522 !c->attr.target);
2523 }
2524 else if ((c->attr.pointer || c->attr.allocatable)
2525 && !c->attr.proc_pointer
2526 && !(unlimited_entity && c == derived->components))
2527 field_type = build_pointer_type (field_type);
2528
2529 if (c->attr.pointer)
2530 field_type = gfc_nonrestricted_type (field_type);
2531
2532 /* vtype fields can point to different types to the base type. */
2533 if (c->ts.type == BT_DERIVED
2534 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2535 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2536 ptr_mode, true);
2537
2538 /* Ensure that the CLASS language specific flag is set. */
2539 if (c->ts.type == BT_CLASS)
2540 {
2541 if (POINTER_TYPE_P (field_type))
2542 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2543 else
2544 GFC_CLASS_TYPE_P (field_type) = 1;
2545 }
2546
2547 field = gfc_add_field_to_struct (typenode,
2548 get_identifier (c->name),
2549 field_type, &chain);
2550 if (c->loc.lb)
2551 gfc_set_decl_location (field, &c->loc);
2552 else if (derived->declared_at.lb)
2553 gfc_set_decl_location (field, &derived->declared_at);
2554
2555 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2556
2557 gcc_assert (field);
2558 if (!c->backend_decl)
2559 c->backend_decl = field;
2560 }
2561
2562 /* Now lay out the derived type, including the fields. */
2563 if (canonical)
2564 TYPE_CANONICAL (typenode) = canonical;
2565
2566 gfc_finish_type (typenode);
2567 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2568 if (derived->module && derived->ns->proc_name
2569 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2570 {
2571 if (derived->ns->proc_name->backend_decl
2572 && TREE_CODE (derived->ns->proc_name->backend_decl)
2573 == NAMESPACE_DECL)
2574 {
2575 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2576 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2577 = derived->ns->proc_name->backend_decl;
2578 }
2579 }
2580
2581 derived->backend_decl = typenode;
2582
2583 copy_derived_types:
2584
2585 for (dt = gfc_derived_types; dt; dt = dt->next)
2586 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2587
2588 return derived->backend_decl;
2589 }
2590
2591
2592 int
2593 gfc_return_by_reference (gfc_symbol * sym)
2594 {
2595 if (!sym->attr.function)
2596 return 0;
2597
2598 if (sym->attr.dimension)
2599 return 1;
2600
2601 if (sym->ts.type == BT_CHARACTER
2602 && !sym->attr.is_bind_c
2603 && (!sym->attr.result
2604 || !sym->ns->proc_name
2605 || !sym->ns->proc_name->attr.is_bind_c))
2606 return 1;
2607
2608 /* Possibly return complex numbers by reference for g77 compatibility.
2609 We don't do this for calls to intrinsics (as the library uses the
2610 -fno-f2c calling convention), nor for calls to functions which always
2611 require an explicit interface, as no compatibility problems can
2612 arise there. */
2613 if (gfc_option.flag_f2c
2614 && sym->ts.type == BT_COMPLEX
2615 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2616 return 1;
2617
2618 return 0;
2619 }
2620 \f
2621 static tree
2622 gfc_get_mixed_entry_union (gfc_namespace *ns)
2623 {
2624 tree type;
2625 tree *chain = NULL;
2626 char name[GFC_MAX_SYMBOL_LEN + 1];
2627 gfc_entry_list *el, *el2;
2628
2629 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2630 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2631
2632 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2633
2634 /* Build the type node. */
2635 type = make_node (UNION_TYPE);
2636
2637 TYPE_NAME (type) = get_identifier (name);
2638
2639 for (el = ns->entries; el; el = el->next)
2640 {
2641 /* Search for duplicates. */
2642 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2643 if (el2->sym->result == el->sym->result)
2644 break;
2645
2646 if (el == el2)
2647 gfc_add_field_to_struct_1 (type,
2648 get_identifier (el->sym->result->name),
2649 gfc_sym_type (el->sym->result), &chain);
2650 }
2651
2652 /* Finish off the type. */
2653 gfc_finish_type (type);
2654 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2655 return type;
2656 }
2657 \f
2658 /* Create a "fn spec" based on the formal arguments;
2659 cf. create_function_arglist. */
2660
2661 static tree
2662 create_fn_spec (gfc_symbol *sym, tree fntype)
2663 {
2664 char spec[150];
2665 size_t spec_len;
2666 gfc_formal_arglist *f;
2667 tree tmp;
2668
2669 memset (&spec, 0, sizeof (spec));
2670 spec[0] = '.';
2671 spec_len = 1;
2672
2673 if (sym->attr.entry_master)
2674 spec[spec_len++] = 'R';
2675 if (gfc_return_by_reference (sym))
2676 {
2677 gfc_symbol *result = sym->result ? sym->result : sym;
2678
2679 if (result->attr.pointer || sym->attr.proc_pointer)
2680 spec[spec_len++] = '.';
2681 else
2682 spec[spec_len++] = 'w';
2683 if (sym->ts.type == BT_CHARACTER)
2684 spec[spec_len++] = 'R';
2685 }
2686
2687 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2688 if (spec_len < sizeof (spec))
2689 {
2690 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2691 || f->sym->attr.external || f->sym->attr.cray_pointer
2692 || (f->sym->ts.type == BT_DERIVED
2693 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2694 || f->sym->ts.u.derived->attr.pointer_comp))
2695 || (f->sym->ts.type == BT_CLASS
2696 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2697 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2698 spec[spec_len++] = '.';
2699 else if (f->sym->attr.intent == INTENT_IN)
2700 spec[spec_len++] = 'r';
2701 else if (f->sym)
2702 spec[spec_len++] = 'w';
2703 }
2704
2705 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2706 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2707 return build_type_attribute_variant (fntype, tmp);
2708 }
2709
2710
2711 tree
2712 gfc_get_function_type (gfc_symbol * sym)
2713 {
2714 tree type;
2715 vec<tree, va_gc> *typelist = NULL;
2716 gfc_formal_arglist *f;
2717 gfc_symbol *arg;
2718 int alternate_return = 0;
2719 bool is_varargs = true;
2720
2721 /* Make sure this symbol is a function, a subroutine or the main
2722 program. */
2723 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2724 || sym->attr.flavor == FL_PROGRAM);
2725
2726 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2727 so that they can be detected here and handled further down. */
2728 if (sym->backend_decl == NULL)
2729 sym->backend_decl = error_mark_node;
2730 else if (sym->backend_decl == error_mark_node)
2731 goto arg_type_list_done;
2732 else if (sym->attr.proc_pointer)
2733 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2734 else
2735 return TREE_TYPE (sym->backend_decl);
2736
2737 if (sym->attr.entry_master)
2738 /* Additional parameter for selecting an entry point. */
2739 vec_safe_push (typelist, gfc_array_index_type);
2740
2741 if (sym->result)
2742 arg = sym->result;
2743 else
2744 arg = sym;
2745
2746 if (arg->ts.type == BT_CHARACTER)
2747 gfc_conv_const_charlen (arg->ts.u.cl);
2748
2749 /* Some functions we use an extra parameter for the return value. */
2750 if (gfc_return_by_reference (sym))
2751 {
2752 type = gfc_sym_type (arg);
2753 if (arg->ts.type == BT_COMPLEX
2754 || arg->attr.dimension
2755 || arg->ts.type == BT_CHARACTER)
2756 type = build_reference_type (type);
2757
2758 vec_safe_push (typelist, type);
2759 if (arg->ts.type == BT_CHARACTER)
2760 {
2761 if (!arg->ts.deferred)
2762 /* Transfer by value. */
2763 vec_safe_push (typelist, gfc_charlen_type_node);
2764 else
2765 /* Deferred character lengths are transferred by reference
2766 so that the value can be returned. */
2767 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2768 }
2769 }
2770
2771 /* Build the argument types for the function. */
2772 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2773 {
2774 arg = f->sym;
2775 if (arg)
2776 {
2777 /* Evaluate constant character lengths here so that they can be
2778 included in the type. */
2779 if (arg->ts.type == BT_CHARACTER)
2780 gfc_conv_const_charlen (arg->ts.u.cl);
2781
2782 if (arg->attr.flavor == FL_PROCEDURE)
2783 {
2784 type = gfc_get_function_type (arg);
2785 type = build_pointer_type (type);
2786 }
2787 else
2788 type = gfc_sym_type (arg);
2789
2790 /* Parameter Passing Convention
2791
2792 We currently pass all parameters by reference.
2793 Parameters with INTENT(IN) could be passed by value.
2794 The problem arises if a function is called via an implicit
2795 prototype. In this situation the INTENT is not known.
2796 For this reason all parameters to global functions must be
2797 passed by reference. Passing by value would potentially
2798 generate bad code. Worse there would be no way of telling that
2799 this code was bad, except that it would give incorrect results.
2800
2801 Contained procedures could pass by value as these are never
2802 used without an explicit interface, and cannot be passed as
2803 actual parameters for a dummy procedure. */
2804
2805 vec_safe_push (typelist, type);
2806 }
2807 else
2808 {
2809 if (sym->attr.subroutine)
2810 alternate_return = 1;
2811 }
2812 }
2813
2814 /* Add hidden string length parameters. */
2815 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2816 {
2817 arg = f->sym;
2818 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2819 {
2820 if (!arg->ts.deferred)
2821 /* Transfer by value. */
2822 type = gfc_charlen_type_node;
2823 else
2824 /* Deferred character lengths are transferred by reference
2825 so that the value can be returned. */
2826 type = build_pointer_type (gfc_charlen_type_node);
2827
2828 vec_safe_push (typelist, type);
2829 }
2830 }
2831
2832 if (!vec_safe_is_empty (typelist)
2833 || sym->attr.is_main_program
2834 || sym->attr.if_source != IFSRC_UNKNOWN)
2835 is_varargs = false;
2836
2837 if (sym->backend_decl == error_mark_node)
2838 sym->backend_decl = NULL_TREE;
2839
2840 arg_type_list_done:
2841
2842 if (alternate_return)
2843 type = integer_type_node;
2844 else if (!sym->attr.function || gfc_return_by_reference (sym))
2845 type = void_type_node;
2846 else if (sym->attr.mixed_entry_master)
2847 type = gfc_get_mixed_entry_union (sym->ns);
2848 else if (gfc_option.flag_f2c
2849 && sym->ts.type == BT_REAL
2850 && sym->ts.kind == gfc_default_real_kind
2851 && !sym->attr.always_explicit)
2852 {
2853 /* Special case: f2c calling conventions require that (scalar)
2854 default REAL functions return the C type double instead. f2c
2855 compatibility is only an issue with functions that don't
2856 require an explicit interface, as only these could be
2857 implemented in Fortran 77. */
2858 sym->ts.kind = gfc_default_double_kind;
2859 type = gfc_typenode_for_spec (&sym->ts);
2860 sym->ts.kind = gfc_default_real_kind;
2861 }
2862 else if (sym->result && sym->result->attr.proc_pointer)
2863 /* Procedure pointer return values. */
2864 {
2865 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2866 {
2867 /* Unset proc_pointer as gfc_get_function_type
2868 is called recursively. */
2869 sym->result->attr.proc_pointer = 0;
2870 type = build_pointer_type (gfc_get_function_type (sym->result));
2871 sym->result->attr.proc_pointer = 1;
2872 }
2873 else
2874 type = gfc_sym_type (sym->result);
2875 }
2876 else
2877 type = gfc_sym_type (sym);
2878
2879 if (is_varargs)
2880 type = build_varargs_function_type_vec (type, typelist);
2881 else
2882 type = build_function_type_vec (type, typelist);
2883 type = create_fn_spec (sym, type);
2884
2885 return type;
2886 }
2887 \f
2888 /* Language hooks for middle-end access to type nodes. */
2889
2890 /* Return an integer type with BITS bits of precision,
2891 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2892
2893 tree
2894 gfc_type_for_size (unsigned bits, int unsignedp)
2895 {
2896 if (!unsignedp)
2897 {
2898 int i;
2899 for (i = 0; i <= MAX_INT_KINDS; ++i)
2900 {
2901 tree type = gfc_integer_types[i];
2902 if (type && bits == TYPE_PRECISION (type))
2903 return type;
2904 }
2905
2906 /* Handle TImode as a special case because it is used by some backends
2907 (e.g. ARM) even though it is not available for normal use. */
2908 #if HOST_BITS_PER_WIDE_INT >= 64
2909 if (bits == TYPE_PRECISION (intTI_type_node))
2910 return intTI_type_node;
2911 #endif
2912
2913 if (bits <= TYPE_PRECISION (intQI_type_node))
2914 return intQI_type_node;
2915 if (bits <= TYPE_PRECISION (intHI_type_node))
2916 return intHI_type_node;
2917 if (bits <= TYPE_PRECISION (intSI_type_node))
2918 return intSI_type_node;
2919 if (bits <= TYPE_PRECISION (intDI_type_node))
2920 return intDI_type_node;
2921 if (bits <= TYPE_PRECISION (intTI_type_node))
2922 return intTI_type_node;
2923 }
2924 else
2925 {
2926 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2927 return unsigned_intQI_type_node;
2928 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2929 return unsigned_intHI_type_node;
2930 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2931 return unsigned_intSI_type_node;
2932 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2933 return unsigned_intDI_type_node;
2934 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2935 return unsigned_intTI_type_node;
2936 }
2937
2938 return NULL_TREE;
2939 }
2940
2941 /* Return a data type that has machine mode MODE. If the mode is an
2942 integer, then UNSIGNEDP selects between signed and unsigned types. */
2943
2944 tree
2945 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2946 {
2947 int i;
2948 tree *base;
2949
2950 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2951 base = gfc_real_types;
2952 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2953 base = gfc_complex_types;
2954 else if (SCALAR_INT_MODE_P (mode))
2955 {
2956 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2957 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2958 }
2959 else if (VECTOR_MODE_P (mode))
2960 {
2961 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2962 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2963 if (inner_type != NULL_TREE)
2964 return build_vector_type_for_mode (inner_type, mode);
2965 return NULL_TREE;
2966 }
2967 else
2968 return NULL_TREE;
2969
2970 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2971 {
2972 tree type = base[i];
2973 if (type && mode == TYPE_MODE (type))
2974 return type;
2975 }
2976
2977 return NULL_TREE;
2978 }
2979
2980 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2981 in that case. */
2982
2983 bool
2984 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2985 {
2986 int rank, dim;
2987 bool indirect = false;
2988 tree etype, ptype, field, t, base_decl;
2989 tree data_off, dim_off, dim_size, elem_size;
2990 tree lower_suboff, upper_suboff, stride_suboff;
2991
2992 if (! GFC_DESCRIPTOR_TYPE_P (type))
2993 {
2994 if (! POINTER_TYPE_P (type))
2995 return false;
2996 type = TREE_TYPE (type);
2997 if (! GFC_DESCRIPTOR_TYPE_P (type))
2998 return false;
2999 indirect = true;
3000 }
3001
3002 rank = GFC_TYPE_ARRAY_RANK (type);
3003 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3004 return false;
3005
3006 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3007 gcc_assert (POINTER_TYPE_P (etype));
3008 etype = TREE_TYPE (etype);
3009
3010 /* If the type is not a scalar coarray. */
3011 if (TREE_CODE (etype) == ARRAY_TYPE)
3012 etype = TREE_TYPE (etype);
3013
3014 /* Can't handle variable sized elements yet. */
3015 if (int_size_in_bytes (etype) <= 0)
3016 return false;
3017 /* Nor non-constant lower bounds in assumed shape arrays. */
3018 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3019 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3020 {
3021 for (dim = 0; dim < rank; dim++)
3022 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3023 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3024 return false;
3025 }
3026
3027 memset (info, '\0', sizeof (*info));
3028 info->ndimensions = rank;
3029 info->element_type = etype;
3030 ptype = build_pointer_type (gfc_array_index_type);
3031 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3032 if (!base_decl)
3033 {
3034 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3035 indirect ? build_pointer_type (ptype) : ptype);
3036 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3037 }
3038 info->base_decl = base_decl;
3039 if (indirect)
3040 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3041
3042 if (GFC_TYPE_ARRAY_SPAN (type))
3043 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3044 else
3045 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3046 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3047 data_off = byte_position (field);
3048 field = DECL_CHAIN (field);
3049 field = DECL_CHAIN (field);
3050 field = DECL_CHAIN (field);
3051 dim_off = byte_position (field);
3052 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3053 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3054 stride_suboff = byte_position (field);
3055 field = DECL_CHAIN (field);
3056 lower_suboff = byte_position (field);
3057 field = DECL_CHAIN (field);
3058 upper_suboff = byte_position (field);
3059
3060 t = base_decl;
3061 if (!integer_zerop (data_off))
3062 t = fold_build_pointer_plus (t, data_off);
3063 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3064 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3065 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3066 info->allocated = build2 (NE_EXPR, boolean_type_node,
3067 info->data_location, null_pointer_node);
3068 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3069 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3070 info->associated = build2 (NE_EXPR, boolean_type_node,
3071 info->data_location, null_pointer_node);
3072
3073 for (dim = 0; dim < rank; dim++)
3074 {
3075 t = fold_build_pointer_plus (base_decl,
3076 size_binop (PLUS_EXPR,
3077 dim_off, lower_suboff));
3078 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3079 info->dimen[dim].lower_bound = t;
3080 t = fold_build_pointer_plus (base_decl,
3081 size_binop (PLUS_EXPR,
3082 dim_off, upper_suboff));
3083 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3084 info->dimen[dim].upper_bound = t;
3085 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3086 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3087 {
3088 /* Assumed shape arrays have known lower bounds. */
3089 info->dimen[dim].upper_bound
3090 = build2 (MINUS_EXPR, gfc_array_index_type,
3091 info->dimen[dim].upper_bound,
3092 info->dimen[dim].lower_bound);
3093 info->dimen[dim].lower_bound
3094 = fold_convert (gfc_array_index_type,
3095 GFC_TYPE_ARRAY_LBOUND (type, dim));
3096 info->dimen[dim].upper_bound
3097 = build2 (PLUS_EXPR, gfc_array_index_type,
3098 info->dimen[dim].lower_bound,
3099 info->dimen[dim].upper_bound);
3100 }
3101 t = fold_build_pointer_plus (base_decl,
3102 size_binop (PLUS_EXPR,
3103 dim_off, stride_suboff));
3104 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3105 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3106 info->dimen[dim].stride = t;
3107 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3108 }
3109
3110 return true;
3111 }
3112
3113 #include "gt-fortran-trans-types.h"