]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
basic-block.h (BLOCK_HEAD, BLOCK_END): Remove.
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
65 #include "target.h"
66
67 #ifndef TRAMPOLINE_ALIGNMENT
68 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
69 #endif
70
71 #ifndef LOCAL_ALIGNMENT
72 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
73 #endif
74
75 #ifndef STACK_ALIGNMENT_NEEDED
76 #define STACK_ALIGNMENT_NEEDED 1
77 #endif
78
79 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
80
81 /* Some systems use __main in a way incompatible with its use in gcc, in these
82 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
83 give the same symbol without quotes for an alternative entry point. You
84 must define both, or neither. */
85 #ifndef NAME__MAIN
86 #define NAME__MAIN "__main"
87 #endif
88
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
93
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
97
98 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
99 during rtl generation. If they are different register numbers, this is
100 always true. It may also be true if
101 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
102 generation. See fix_lexical_addr for details. */
103
104 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
105 #define NEED_SEPARATE_AP
106 #endif
107
108 /* Nonzero if function being compiled doesn't contain any calls
109 (ignoring the prologue and epilogue). This is set prior to
110 local register allocation and is valid for the remaining
111 compiler passes. */
112 int current_function_is_leaf;
113
114 /* Nonzero if function being compiled doesn't contain any instructions
115 that can throw an exception. This is set prior to final. */
116
117 int current_function_nothrow;
118
119 /* Nonzero if function being compiled doesn't modify the stack pointer
120 (ignoring the prologue and epilogue). This is only valid after
121 life_analysis has run. */
122 int current_function_sp_is_unchanging;
123
124 /* Nonzero if the function being compiled is a leaf function which only
125 uses leaf registers. This is valid after reload (specifically after
126 sched2) and is useful only if the port defines LEAF_REGISTERS. */
127 int current_function_uses_only_leaf_regs;
128
129 /* Nonzero once virtual register instantiation has been done.
130 assign_stack_local uses frame_pointer_rtx when this is nonzero.
131 calls.c:emit_library_call_value_1 uses it to set up
132 post-instantiation libcalls. */
133 int virtuals_instantiated;
134
135 /* Nonzero if at least one trampoline has been created. */
136 int trampolines_created;
137
138 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
139 static GTY(()) int funcdef_no;
140
141 /* These variables hold pointers to functions to create and destroy
142 target specific, per-function data structures. */
143 struct machine_function * (*init_machine_status) (void);
144
145 /* The FUNCTION_DECL for an inline function currently being expanded. */
146 tree inline_function_decl;
147
148 /* The currently compiled function. */
149 struct function *cfun = 0;
150
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static GTY(()) varray_type prologue;
153 static GTY(()) varray_type epilogue;
154
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static GTY(()) varray_type sibcall_epilogue;
158 \f
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
162
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
172
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
176
177 struct temp_slot GTY(())
178 {
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 unsigned int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Nonzero if this temporary is currently in use. */
198 char in_use;
199 /* Nonzero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Nonzero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
211 };
212 \f
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
217
218 struct fixup_replacement GTY(())
219 {
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
223 };
224
225 struct insns_for_mem_entry
226 {
227 /* A MEM. */
228 rtx key;
229 /* These are the INSNs which reference the MEM. */
230 rtx insns;
231 };
232
233 /* Forward declarations. */
234
235 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
236 struct function *);
237 static struct temp_slot *find_temp_slot_from_address (rtx);
238 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
239 enum machine_mode, int, unsigned int, int, htab_t);
240 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
241 htab_t);
242 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
243 static struct fixup_replacement
244 *find_fixup_replacement (struct fixup_replacement **, rtx);
245 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
246 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
247 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
248 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
249 struct fixup_replacement **, rtx);
250 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
251 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
252 static rtx fixup_stack_1 (rtx, rtx);
253 static void optimize_bit_field (rtx, rtx, rtx *);
254 static void instantiate_decls (tree, int);
255 static void instantiate_decls_1 (tree, int);
256 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
257 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
258 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
259 static void delete_handlers (void);
260 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
261 static void pad_below (struct args_size *, enum machine_mode, tree);
262 static rtx round_trampoline_addr (rtx);
263 static rtx adjust_trampoline_addr (rtx);
264 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
265 static void reorder_blocks_0 (tree);
266 static void reorder_blocks_1 (rtx, tree, varray_type *);
267 static void reorder_fix_fragments (tree);
268 static tree blocks_nreverse (tree);
269 static int all_blocks (tree, tree *);
270 static tree *get_block_vector (tree, int *);
271 extern tree debug_find_var_in_block_tree (tree, tree);
272 /* We always define `record_insns' even if its not used so that we
273 can always export `prologue_epilogue_contains'. */
274 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
275 static int contains (rtx, varray_type);
276 #ifdef HAVE_return
277 static void emit_return_into_block (basic_block, rtx);
278 #endif
279 static void put_addressof_into_stack (rtx, htab_t);
280 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
281 static void purge_single_hard_subreg_set (rtx);
282 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
283 static rtx keep_stack_depressed (rtx);
284 #endif
285 static int is_addressof (rtx *, void *);
286 static hashval_t insns_for_mem_hash (const void *);
287 static int insns_for_mem_comp (const void *, const void *);
288 static int insns_for_mem_walk (rtx *, void *);
289 static void compute_insns_for_mem (rtx, rtx, htab_t);
290 static void prepare_function_start (tree);
291 static void do_clobber_return_reg (rtx, void *);
292 static void do_use_return_reg (rtx, void *);
293 static void instantiate_virtual_regs_lossage (rtx);
294 static tree split_complex_args (tree);
295 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
296 \f
297 /* Pointer to chain of `struct function' for containing functions. */
298 struct function *outer_function_chain;
299
300 /* List of insns that were postponed by purge_addressof_1. */
301 static rtx postponed_insns;
302
303 /* Given a function decl for a containing function,
304 return the `struct function' for it. */
305
306 struct function *
307 find_function_data (tree decl)
308 {
309 struct function *p;
310
311 for (p = outer_function_chain; p; p = p->outer)
312 if (p->decl == decl)
313 return p;
314
315 abort ();
316 }
317
318 /* Save the current context for compilation of a nested function.
319 This is called from language-specific code. The caller should use
320 the enter_nested langhook to save any language-specific state,
321 since this function knows only about language-independent
322 variables. */
323
324 void
325 push_function_context_to (tree context)
326 {
327 struct function *p;
328
329 if (context)
330 {
331 if (context == current_function_decl)
332 cfun->contains_functions = 1;
333 else
334 {
335 struct function *containing = find_function_data (context);
336 containing->contains_functions = 1;
337 }
338 }
339
340 if (cfun == 0)
341 init_dummy_function_start ();
342 p = cfun;
343
344 p->outer = outer_function_chain;
345 outer_function_chain = p;
346 p->fixup_var_refs_queue = 0;
347
348 (*lang_hooks.function.enter_nested) (p);
349
350 cfun = 0;
351 }
352
353 void
354 push_function_context (void)
355 {
356 push_function_context_to (current_function_decl);
357 }
358
359 /* Restore the last saved context, at the end of a nested function.
360 This function is called from language-specific code. */
361
362 void
363 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
364 {
365 struct function *p = outer_function_chain;
366 struct var_refs_queue *queue;
367
368 cfun = p;
369 outer_function_chain = p->outer;
370
371 current_function_decl = p->decl;
372 reg_renumber = 0;
373
374 restore_emit_status (p);
375
376 (*lang_hooks.function.leave_nested) (p);
377
378 /* Finish doing put_var_into_stack for any of our variables which became
379 addressable during the nested function. If only one entry has to be
380 fixed up, just do that one. Otherwise, first make a list of MEMs that
381 are not to be unshared. */
382 if (p->fixup_var_refs_queue == 0)
383 ;
384 else if (p->fixup_var_refs_queue->next == 0)
385 fixup_var_refs (p->fixup_var_refs_queue->modified,
386 p->fixup_var_refs_queue->promoted_mode,
387 p->fixup_var_refs_queue->unsignedp,
388 p->fixup_var_refs_queue->modified, 0);
389 else
390 {
391 rtx list = 0;
392
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
395
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 fixup_var_refs (queue->modified, queue->promoted_mode,
398 queue->unsignedp, list, 0);
399
400 }
401
402 p->fixup_var_refs_queue = 0;
403
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
408 }
409
410 void
411 pop_function_context (void)
412 {
413 pop_function_context_from (current_function_decl);
414 }
415
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
419
420 void
421 free_after_parsing (struct function *f)
422 {
423 /* f->expr->forced_labels is used by code generation. */
424 /* f->emit->regno_reg_rtx is used by code generation. */
425 /* f->varasm is used by code generation. */
426 /* f->eh->eh_return_stub_label is used by code generation. */
427
428 (*lang_hooks.function.final) (f);
429 f->stmt = NULL;
430 }
431
432 /* Clear out all parts of the state in F that can safely be discarded
433 after the function has been compiled, to let garbage collection
434 reclaim the memory. */
435
436 void
437 free_after_compilation (struct function *f)
438 {
439 f->eh = NULL;
440 f->expr = NULL;
441 f->emit = NULL;
442 f->varasm = NULL;
443 f->machine = NULL;
444
445 f->x_temp_slots = NULL;
446 f->arg_offset_rtx = NULL;
447 f->return_rtx = NULL;
448 f->internal_arg_pointer = NULL;
449 f->x_nonlocal_labels = NULL;
450 f->x_nonlocal_goto_handler_slots = NULL;
451 f->x_nonlocal_goto_handler_labels = NULL;
452 f->x_nonlocal_goto_stack_level = NULL;
453 f->x_cleanup_label = NULL;
454 f->x_return_label = NULL;
455 f->x_naked_return_label = NULL;
456 f->computed_goto_common_label = NULL;
457 f->computed_goto_common_reg = NULL;
458 f->x_save_expr_regs = NULL;
459 f->x_stack_slot_list = NULL;
460 f->x_rtl_expr_chain = NULL;
461 f->x_tail_recursion_label = NULL;
462 f->x_tail_recursion_reentry = NULL;
463 f->x_arg_pointer_save_area = NULL;
464 f->x_clobber_return_insn = NULL;
465 f->x_context_display = NULL;
466 f->x_trampoline_list = NULL;
467 f->x_parm_birth_insn = NULL;
468 f->x_last_parm_insn = NULL;
469 f->x_parm_reg_stack_loc = NULL;
470 f->fixup_var_refs_queue = NULL;
471 f->original_arg_vector = NULL;
472 f->original_decl_initial = NULL;
473 f->inl_last_parm_insn = NULL;
474 f->epilogue_delay_list = NULL;
475 }
476 \f
477 /* Allocate fixed slots in the stack frame of the current function. */
478
479 /* Return size needed for stack frame based on slots so far allocated in
480 function F.
481 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
482 the caller may have to do that. */
483
484 HOST_WIDE_INT
485 get_func_frame_size (struct function *f)
486 {
487 #ifdef FRAME_GROWS_DOWNWARD
488 return -f->x_frame_offset;
489 #else
490 return f->x_frame_offset;
491 #endif
492 }
493
494 /* Return size needed for stack frame based on slots so far allocated.
495 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
496 the caller may have to do that. */
497 HOST_WIDE_INT
498 get_frame_size (void)
499 {
500 return get_func_frame_size (cfun);
501 }
502
503 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
504 with machine mode MODE.
505
506 ALIGN controls the amount of alignment for the address of the slot:
507 0 means according to MODE,
508 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
509 positive specifies alignment boundary in bits.
510
511 We do not round to stack_boundary here.
512
513 FUNCTION specifies the function to allocate in. */
514
515 static rtx
516 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
517 struct function *function)
518 {
519 rtx x, addr;
520 int bigend_correction = 0;
521 int alignment;
522 int frame_off, frame_alignment, frame_phase;
523
524 if (align == 0)
525 {
526 tree type;
527
528 if (mode == BLKmode)
529 alignment = BIGGEST_ALIGNMENT;
530 else
531 alignment = GET_MODE_ALIGNMENT (mode);
532
533 /* Allow the target to (possibly) increase the alignment of this
534 stack slot. */
535 type = (*lang_hooks.types.type_for_mode) (mode, 0);
536 if (type)
537 alignment = LOCAL_ALIGNMENT (type, alignment);
538
539 alignment /= BITS_PER_UNIT;
540 }
541 else if (align == -1)
542 {
543 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
544 size = CEIL_ROUND (size, alignment);
545 }
546 else
547 alignment = align / BITS_PER_UNIT;
548
549 #ifdef FRAME_GROWS_DOWNWARD
550 function->x_frame_offset -= size;
551 #endif
552
553 /* Ignore alignment we can't do with expected alignment of the boundary. */
554 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
555 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
556
557 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
558 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
559
560 /* Calculate how many bytes the start of local variables is off from
561 stack alignment. */
562 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
563 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
564 frame_phase = frame_off ? frame_alignment - frame_off : 0;
565
566 /* Round the frame offset to the specified alignment. The default is
567 to always honor requests to align the stack but a port may choose to
568 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
569 if (STACK_ALIGNMENT_NEEDED
570 || mode != BLKmode
571 || size != 0)
572 {
573 /* We must be careful here, since FRAME_OFFSET might be negative and
574 division with a negative dividend isn't as well defined as we might
575 like. So we instead assume that ALIGNMENT is a power of two and
576 use logical operations which are unambiguous. */
577 #ifdef FRAME_GROWS_DOWNWARD
578 function->x_frame_offset
579 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
580 + frame_phase);
581 #else
582 function->x_frame_offset
583 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
584 + frame_phase);
585 #endif
586 }
587
588 /* On a big-endian machine, if we are allocating more space than we will use,
589 use the least significant bytes of those that are allocated. */
590 if (BYTES_BIG_ENDIAN && mode != BLKmode)
591 bigend_correction = size - GET_MODE_SIZE (mode);
592
593 /* If we have already instantiated virtual registers, return the actual
594 address relative to the frame pointer. */
595 if (function == cfun && virtuals_instantiated)
596 addr = plus_constant (frame_pointer_rtx,
597 trunc_int_for_mode
598 (frame_offset + bigend_correction
599 + STARTING_FRAME_OFFSET, Pmode));
600 else
601 addr = plus_constant (virtual_stack_vars_rtx,
602 trunc_int_for_mode
603 (function->x_frame_offset + bigend_correction,
604 Pmode));
605
606 #ifndef FRAME_GROWS_DOWNWARD
607 function->x_frame_offset += size;
608 #endif
609
610 x = gen_rtx_MEM (mode, addr);
611
612 function->x_stack_slot_list
613 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
614
615 return x;
616 }
617
618 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
619 current function. */
620
621 rtx
622 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
623 {
624 return assign_stack_local_1 (mode, size, align, cfun);
625 }
626 \f
627 /* Allocate a temporary stack slot and record it for possible later
628 reuse.
629
630 MODE is the machine mode to be given to the returned rtx.
631
632 SIZE is the size in units of the space required. We do no rounding here
633 since assign_stack_local will do any required rounding.
634
635 KEEP is 1 if this slot is to be retained after a call to
636 free_temp_slots. Automatic variables for a block are allocated
637 with this flag. KEEP is 2 if we allocate a longer term temporary,
638 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
639 if we are to allocate something at an inner level to be treated as
640 a variable in the block (e.g., a SAVE_EXPR).
641
642 TYPE is the type that will be used for the stack slot. */
643
644 rtx
645 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
646 tree type)
647 {
648 unsigned int align;
649 struct temp_slot *p, *best_p = 0;
650 rtx slot;
651
652 /* If SIZE is -1 it means that somebody tried to allocate a temporary
653 of a variable size. */
654 if (size == -1)
655 abort ();
656
657 if (mode == BLKmode)
658 align = BIGGEST_ALIGNMENT;
659 else
660 align = GET_MODE_ALIGNMENT (mode);
661
662 if (! type)
663 type = (*lang_hooks.types.type_for_mode) (mode, 0);
664
665 if (type)
666 align = LOCAL_ALIGNMENT (type, align);
667
668 /* Try to find an available, already-allocated temporary of the proper
669 mode which meets the size and alignment requirements. Choose the
670 smallest one with the closest alignment. */
671 for (p = temp_slots; p; p = p->next)
672 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
673 && ! p->in_use
674 && objects_must_conflict_p (p->type, type)
675 && (best_p == 0 || best_p->size > p->size
676 || (best_p->size == p->size && best_p->align > p->align)))
677 {
678 if (p->align == align && p->size == size)
679 {
680 best_p = 0;
681 break;
682 }
683 best_p = p;
684 }
685
686 /* Make our best, if any, the one to use. */
687 if (best_p)
688 {
689 /* If there are enough aligned bytes left over, make them into a new
690 temp_slot so that the extra bytes don't get wasted. Do this only
691 for BLKmode slots, so that we can be sure of the alignment. */
692 if (GET_MODE (best_p->slot) == BLKmode)
693 {
694 int alignment = best_p->align / BITS_PER_UNIT;
695 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
696
697 if (best_p->size - rounded_size >= alignment)
698 {
699 p = ggc_alloc (sizeof (struct temp_slot));
700 p->in_use = p->addr_taken = 0;
701 p->size = best_p->size - rounded_size;
702 p->base_offset = best_p->base_offset + rounded_size;
703 p->full_size = best_p->full_size - rounded_size;
704 p->slot = gen_rtx_MEM (BLKmode,
705 plus_constant (XEXP (best_p->slot, 0),
706 rounded_size));
707 p->align = best_p->align;
708 p->address = 0;
709 p->rtl_expr = 0;
710 p->type = best_p->type;
711 p->next = temp_slots;
712 temp_slots = p;
713
714 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
715 stack_slot_list);
716
717 best_p->size = rounded_size;
718 best_p->full_size = rounded_size;
719 }
720 }
721
722 p = best_p;
723 }
724
725 /* If we still didn't find one, make a new temporary. */
726 if (p == 0)
727 {
728 HOST_WIDE_INT frame_offset_old = frame_offset;
729
730 p = ggc_alloc (sizeof (struct temp_slot));
731
732 /* We are passing an explicit alignment request to assign_stack_local.
733 One side effect of that is assign_stack_local will not round SIZE
734 to ensure the frame offset remains suitably aligned.
735
736 So for requests which depended on the rounding of SIZE, we go ahead
737 and round it now. We also make sure ALIGNMENT is at least
738 BIGGEST_ALIGNMENT. */
739 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
740 abort ();
741 p->slot = assign_stack_local (mode,
742 (mode == BLKmode
743 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
744 : size),
745 align);
746
747 p->align = align;
748
749 /* The following slot size computation is necessary because we don't
750 know the actual size of the temporary slot until assign_stack_local
751 has performed all the frame alignment and size rounding for the
752 requested temporary. Note that extra space added for alignment
753 can be either above or below this stack slot depending on which
754 way the frame grows. We include the extra space if and only if it
755 is above this slot. */
756 #ifdef FRAME_GROWS_DOWNWARD
757 p->size = frame_offset_old - frame_offset;
758 #else
759 p->size = size;
760 #endif
761
762 /* Now define the fields used by combine_temp_slots. */
763 #ifdef FRAME_GROWS_DOWNWARD
764 p->base_offset = frame_offset;
765 p->full_size = frame_offset_old - frame_offset;
766 #else
767 p->base_offset = frame_offset_old;
768 p->full_size = frame_offset - frame_offset_old;
769 #endif
770 p->address = 0;
771 p->next = temp_slots;
772 temp_slots = p;
773 }
774
775 p->in_use = 1;
776 p->addr_taken = 0;
777 p->rtl_expr = seq_rtl_expr;
778 p->type = type;
779
780 if (keep == 2)
781 {
782 p->level = target_temp_slot_level;
783 p->keep = 0;
784 }
785 else if (keep == 3)
786 {
787 p->level = var_temp_slot_level;
788 p->keep = 0;
789 }
790 else
791 {
792 p->level = temp_slot_level;
793 p->keep = keep;
794 }
795
796
797 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
798 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
799 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
800
801 /* If we know the alias set for the memory that will be used, use
802 it. If there's no TYPE, then we don't know anything about the
803 alias set for the memory. */
804 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
805 set_mem_align (slot, align);
806
807 /* If a type is specified, set the relevant flags. */
808 if (type != 0)
809 {
810 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
811 && TYPE_READONLY (type));
812 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
813 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
814 }
815
816 return slot;
817 }
818
819 /* Allocate a temporary stack slot and record it for possible later
820 reuse. First three arguments are same as in preceding function. */
821
822 rtx
823 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
824 {
825 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
826 }
827 \f
828 /* Assign a temporary.
829 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
830 and so that should be used in error messages. In either case, we
831 allocate of the given type.
832 KEEP is as for assign_stack_temp.
833 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
834 it is 0 if a register is OK.
835 DONT_PROMOTE is 1 if we should not promote values in register
836 to wider modes. */
837
838 rtx
839 assign_temp (tree type_or_decl, int keep, int memory_required,
840 int dont_promote ATTRIBUTE_UNUSED)
841 {
842 tree type, decl;
843 enum machine_mode mode;
844 #ifndef PROMOTE_FOR_CALL_ONLY
845 int unsignedp;
846 #endif
847
848 if (DECL_P (type_or_decl))
849 decl = type_or_decl, type = TREE_TYPE (decl);
850 else
851 decl = NULL, type = type_or_decl;
852
853 mode = TYPE_MODE (type);
854 #ifndef PROMOTE_FOR_CALL_ONLY
855 unsignedp = TREE_UNSIGNED (type);
856 #endif
857
858 if (mode == BLKmode || memory_required)
859 {
860 HOST_WIDE_INT size = int_size_in_bytes (type);
861 rtx tmp;
862
863 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
864 problems with allocating the stack space. */
865 if (size == 0)
866 size = 1;
867
868 /* Unfortunately, we don't yet know how to allocate variable-sized
869 temporaries. However, sometimes we have a fixed upper limit on
870 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
871 instead. This is the case for Chill variable-sized strings. */
872 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
873 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
874 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
875 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
876
877 /* The size of the temporary may be too large to fit into an integer. */
878 /* ??? Not sure this should happen except for user silliness, so limit
879 this to things that aren't compiler-generated temporaries. The
880 rest of the time we'll abort in assign_stack_temp_for_type. */
881 if (decl && size == -1
882 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
883 {
884 error ("%Jsize of variable '%D' is too large", decl, decl);
885 size = 1;
886 }
887
888 tmp = assign_stack_temp_for_type (mode, size, keep, type);
889 return tmp;
890 }
891
892 #ifndef PROMOTE_FOR_CALL_ONLY
893 if (! dont_promote)
894 mode = promote_mode (type, mode, &unsignedp, 0);
895 #endif
896
897 return gen_reg_rtx (mode);
898 }
899 \f
900 /* Combine temporary stack slots which are adjacent on the stack.
901
902 This allows for better use of already allocated stack space. This is only
903 done for BLKmode slots because we can be sure that we won't have alignment
904 problems in this case. */
905
906 void
907 combine_temp_slots (void)
908 {
909 struct temp_slot *p, *q;
910 struct temp_slot *prev_p, *prev_q;
911 int num_slots;
912
913 /* We can't combine slots, because the information about which slot
914 is in which alias set will be lost. */
915 if (flag_strict_aliasing)
916 return;
917
918 /* If there are a lot of temp slots, don't do anything unless
919 high levels of optimization. */
920 if (! flag_expensive_optimizations)
921 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
922 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
923 return;
924
925 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
926 {
927 int delete_p = 0;
928
929 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
930 for (q = p->next, prev_q = p; q; q = prev_q->next)
931 {
932 int delete_q = 0;
933 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
934 {
935 if (p->base_offset + p->full_size == q->base_offset)
936 {
937 /* Q comes after P; combine Q into P. */
938 p->size += q->size;
939 p->full_size += q->full_size;
940 delete_q = 1;
941 }
942 else if (q->base_offset + q->full_size == p->base_offset)
943 {
944 /* P comes after Q; combine P into Q. */
945 q->size += p->size;
946 q->full_size += p->full_size;
947 delete_p = 1;
948 break;
949 }
950 }
951 /* Either delete Q or advance past it. */
952 if (delete_q)
953 prev_q->next = q->next;
954 else
955 prev_q = q;
956 }
957 /* Either delete P or advance past it. */
958 if (delete_p)
959 {
960 if (prev_p)
961 prev_p->next = p->next;
962 else
963 temp_slots = p->next;
964 }
965 else
966 prev_p = p;
967 }
968 }
969 \f
970 /* Find the temp slot corresponding to the object at address X. */
971
972 static struct temp_slot *
973 find_temp_slot_from_address (rtx x)
974 {
975 struct temp_slot *p;
976 rtx next;
977
978 for (p = temp_slots; p; p = p->next)
979 {
980 if (! p->in_use)
981 continue;
982
983 else if (XEXP (p->slot, 0) == x
984 || p->address == x
985 || (GET_CODE (x) == PLUS
986 && XEXP (x, 0) == virtual_stack_vars_rtx
987 && GET_CODE (XEXP (x, 1)) == CONST_INT
988 && INTVAL (XEXP (x, 1)) >= p->base_offset
989 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
990 return p;
991
992 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
993 for (next = p->address; next; next = XEXP (next, 1))
994 if (XEXP (next, 0) == x)
995 return p;
996 }
997
998 /* If we have a sum involving a register, see if it points to a temp
999 slot. */
1000 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1001 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1002 return p;
1003 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1004 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1005 return p;
1006
1007 return 0;
1008 }
1009
1010 /* Indicate that NEW is an alternate way of referring to the temp slot
1011 that previously was known by OLD. */
1012
1013 void
1014 update_temp_slot_address (rtx old, rtx new)
1015 {
1016 struct temp_slot *p;
1017
1018 if (rtx_equal_p (old, new))
1019 return;
1020
1021 p = find_temp_slot_from_address (old);
1022
1023 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1024 is a register, see if one operand of the PLUS is a temporary
1025 location. If so, NEW points into it. Otherwise, if both OLD and
1026 NEW are a PLUS and if there is a register in common between them.
1027 If so, try a recursive call on those values. */
1028 if (p == 0)
1029 {
1030 if (GET_CODE (old) != PLUS)
1031 return;
1032
1033 if (GET_CODE (new) == REG)
1034 {
1035 update_temp_slot_address (XEXP (old, 0), new);
1036 update_temp_slot_address (XEXP (old, 1), new);
1037 return;
1038 }
1039 else if (GET_CODE (new) != PLUS)
1040 return;
1041
1042 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1043 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1044 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1045 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1046 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1047 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1048 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1049 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1050
1051 return;
1052 }
1053
1054 /* Otherwise add an alias for the temp's address. */
1055 else if (p->address == 0)
1056 p->address = new;
1057 else
1058 {
1059 if (GET_CODE (p->address) != EXPR_LIST)
1060 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1061
1062 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1063 }
1064 }
1065
1066 /* If X could be a reference to a temporary slot, mark the fact that its
1067 address was taken. */
1068
1069 void
1070 mark_temp_addr_taken (rtx x)
1071 {
1072 struct temp_slot *p;
1073
1074 if (x == 0)
1075 return;
1076
1077 /* If X is not in memory or is at a constant address, it cannot be in
1078 a temporary slot. */
1079 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1080 return;
1081
1082 p = find_temp_slot_from_address (XEXP (x, 0));
1083 if (p != 0)
1084 p->addr_taken = 1;
1085 }
1086
1087 /* If X could be a reference to a temporary slot, mark that slot as
1088 belonging to the to one level higher than the current level. If X
1089 matched one of our slots, just mark that one. Otherwise, we can't
1090 easily predict which it is, so upgrade all of them. Kept slots
1091 need not be touched.
1092
1093 This is called when an ({...}) construct occurs and a statement
1094 returns a value in memory. */
1095
1096 void
1097 preserve_temp_slots (rtx x)
1098 {
1099 struct temp_slot *p = 0;
1100
1101 /* If there is no result, we still might have some objects whose address
1102 were taken, so we need to make sure they stay around. */
1103 if (x == 0)
1104 {
1105 for (p = temp_slots; p; p = p->next)
1106 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1107 p->level--;
1108
1109 return;
1110 }
1111
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. To be consistent with
1114 the code below, we really should preserve all non-kept slots
1115 if we can't find a match, but that seems to be much too costly. */
1116 if (GET_CODE (x) == REG && REG_POINTER (x))
1117 p = find_temp_slot_from_address (x);
1118
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot, but it can contain something whose address was
1121 taken. */
1122 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1123 {
1124 for (p = temp_slots; p; p = p->next)
1125 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1126 p->level--;
1127
1128 return;
1129 }
1130
1131 /* First see if we can find a match. */
1132 if (p == 0)
1133 p = find_temp_slot_from_address (XEXP (x, 0));
1134
1135 if (p != 0)
1136 {
1137 /* Move everything at our level whose address was taken to our new
1138 level in case we used its address. */
1139 struct temp_slot *q;
1140
1141 if (p->level == temp_slot_level)
1142 {
1143 for (q = temp_slots; q; q = q->next)
1144 if (q != p && q->addr_taken && q->level == p->level)
1145 q->level--;
1146
1147 p->level--;
1148 p->addr_taken = 0;
1149 }
1150 return;
1151 }
1152
1153 /* Otherwise, preserve all non-kept slots at this level. */
1154 for (p = temp_slots; p; p = p->next)
1155 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1156 p->level--;
1157 }
1158
1159 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1160 with that RTL_EXPR, promote it into a temporary slot at the present
1161 level so it will not be freed when we free slots made in the
1162 RTL_EXPR. */
1163
1164 void
1165 preserve_rtl_expr_result (rtx x)
1166 {
1167 struct temp_slot *p;
1168
1169 /* If X is not in memory or is at a constant address, it cannot be in
1170 a temporary slot. */
1171 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1172 return;
1173
1174 /* If we can find a match, move it to our level unless it is already at
1175 an upper level. */
1176 p = find_temp_slot_from_address (XEXP (x, 0));
1177 if (p != 0)
1178 {
1179 p->level = MIN (p->level, temp_slot_level);
1180 p->rtl_expr = 0;
1181 }
1182
1183 return;
1184 }
1185
1186 /* Free all temporaries used so far. This is normally called at the end
1187 of generating code for a statement. Don't free any temporaries
1188 currently in use for an RTL_EXPR that hasn't yet been emitted.
1189 We could eventually do better than this since it can be reused while
1190 generating the same RTL_EXPR, but this is complex and probably not
1191 worthwhile. */
1192
1193 void
1194 free_temp_slots (void)
1195 {
1196 struct temp_slot *p;
1197
1198 for (p = temp_slots; p; p = p->next)
1199 if (p->in_use && p->level == temp_slot_level && ! p->keep
1200 && p->rtl_expr == 0)
1201 p->in_use = 0;
1202
1203 combine_temp_slots ();
1204 }
1205
1206 /* Free all temporary slots used in T, an RTL_EXPR node. */
1207
1208 void
1209 free_temps_for_rtl_expr (tree t)
1210 {
1211 struct temp_slot *p;
1212
1213 for (p = temp_slots; p; p = p->next)
1214 if (p->rtl_expr == t)
1215 {
1216 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1217 needs to be preserved. This can happen if a temporary in
1218 the RTL_EXPR was addressed; preserve_temp_slots will move
1219 the temporary into a higher level. */
1220 if (temp_slot_level <= p->level)
1221 p->in_use = 0;
1222 else
1223 p->rtl_expr = NULL_TREE;
1224 }
1225
1226 combine_temp_slots ();
1227 }
1228
1229 /* Mark all temporaries ever allocated in this function as not suitable
1230 for reuse until the current level is exited. */
1231
1232 void
1233 mark_all_temps_used (void)
1234 {
1235 struct temp_slot *p;
1236
1237 for (p = temp_slots; p; p = p->next)
1238 {
1239 p->in_use = p->keep = 1;
1240 p->level = MIN (p->level, temp_slot_level);
1241 }
1242 }
1243
1244 /* Push deeper into the nesting level for stack temporaries. */
1245
1246 void
1247 push_temp_slots (void)
1248 {
1249 temp_slot_level++;
1250 }
1251
1252 /* Pop a temporary nesting level. All slots in use in the current level
1253 are freed. */
1254
1255 void
1256 pop_temp_slots (void)
1257 {
1258 struct temp_slot *p;
1259
1260 for (p = temp_slots; p; p = p->next)
1261 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1262 p->in_use = 0;
1263
1264 combine_temp_slots ();
1265
1266 temp_slot_level--;
1267 }
1268
1269 /* Initialize temporary slots. */
1270
1271 void
1272 init_temp_slots (void)
1273 {
1274 /* We have not allocated any temporaries yet. */
1275 temp_slots = 0;
1276 temp_slot_level = 0;
1277 var_temp_slot_level = 0;
1278 target_temp_slot_level = 0;
1279 }
1280 \f
1281 /* Retroactively move an auto variable from a register to a stack
1282 slot. This is done when an address-reference to the variable is
1283 seen. If RESCAN is true, all previously emitted instructions are
1284 examined and modified to handle the fact that DECL is now
1285 addressable. */
1286
1287 void
1288 put_var_into_stack (tree decl, int rescan)
1289 {
1290 rtx reg;
1291 enum machine_mode promoted_mode, decl_mode;
1292 struct function *function = 0;
1293 tree context;
1294 int can_use_addressof;
1295 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1296 int usedp = (TREE_USED (decl)
1297 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1298
1299 context = decl_function_context (decl);
1300
1301 /* Get the current rtl used for this object and its original mode. */
1302 reg = (TREE_CODE (decl) == SAVE_EXPR
1303 ? SAVE_EXPR_RTL (decl)
1304 : DECL_RTL_IF_SET (decl));
1305
1306 /* No need to do anything if decl has no rtx yet
1307 since in that case caller is setting TREE_ADDRESSABLE
1308 and a stack slot will be assigned when the rtl is made. */
1309 if (reg == 0)
1310 return;
1311
1312 /* Get the declared mode for this object. */
1313 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1314 : DECL_MODE (decl));
1315 /* Get the mode it's actually stored in. */
1316 promoted_mode = GET_MODE (reg);
1317
1318 /* If this variable comes from an outer function, find that
1319 function's saved context. Don't use find_function_data here,
1320 because it might not be in any active function.
1321 FIXME: Is that really supposed to happen?
1322 It does in ObjC at least. */
1323 if (context != current_function_decl && context != inline_function_decl)
1324 for (function = outer_function_chain; function; function = function->outer)
1325 if (function->decl == context)
1326 break;
1327
1328 /* If this is a variable-sized object or a structure passed by invisible
1329 reference, with a pseudo to address it, put that pseudo into the stack
1330 if the var is non-local. */
1331 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1332 && GET_CODE (reg) == MEM
1333 && GET_CODE (XEXP (reg, 0)) == REG
1334 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1335 {
1336 reg = XEXP (reg, 0);
1337 decl_mode = promoted_mode = GET_MODE (reg);
1338 }
1339
1340 /* If this variable lives in the current function and we don't need to put it
1341 in the stack for the sake of setjmp or the non-locality, try to keep it in
1342 a register until we know we actually need the address. */
1343 can_use_addressof
1344 = (function == 0
1345 && ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
1346 && optimize > 0
1347 /* FIXME make it work for promoted modes too */
1348 && decl_mode == promoted_mode
1349 #ifdef NON_SAVING_SETJMP
1350 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1351 #endif
1352 );
1353
1354 /* If we can't use ADDRESSOF, make sure we see through one we already
1355 generated. */
1356 if (! can_use_addressof && GET_CODE (reg) == MEM
1357 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1358 reg = XEXP (XEXP (reg, 0), 0);
1359
1360 /* Now we should have a value that resides in one or more pseudo regs. */
1361
1362 if (GET_CODE (reg) == REG)
1363 {
1364 if (can_use_addressof)
1365 gen_mem_addressof (reg, decl, rescan);
1366 else
1367 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1368 decl_mode, volatilep, 0, usedp, 0);
1369 }
1370 else if (GET_CODE (reg) == CONCAT)
1371 {
1372 /* A CONCAT contains two pseudos; put them both in the stack.
1373 We do it so they end up consecutive.
1374 We fixup references to the parts only after we fixup references
1375 to the whole CONCAT, lest we do double fixups for the latter
1376 references. */
1377 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1378 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1379 rtx lopart = XEXP (reg, 0);
1380 rtx hipart = XEXP (reg, 1);
1381 #ifdef FRAME_GROWS_DOWNWARD
1382 /* Since part 0 should have a lower address, do it second. */
1383 put_reg_into_stack (function, hipart, part_type, part_mode,
1384 part_mode, volatilep, 0, 0, 0);
1385 put_reg_into_stack (function, lopart, part_type, part_mode,
1386 part_mode, volatilep, 0, 0, 0);
1387 #else
1388 put_reg_into_stack (function, lopart, part_type, part_mode,
1389 part_mode, volatilep, 0, 0, 0);
1390 put_reg_into_stack (function, hipart, part_type, part_mode,
1391 part_mode, volatilep, 0, 0, 0);
1392 #endif
1393
1394 /* Change the CONCAT into a combined MEM for both parts. */
1395 PUT_CODE (reg, MEM);
1396 MEM_ATTRS (reg) = 0;
1397
1398 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1399 already computed alias sets. Here we want to re-generate. */
1400 if (DECL_P (decl))
1401 SET_DECL_RTL (decl, NULL);
1402 set_mem_attributes (reg, decl, 1);
1403 if (DECL_P (decl))
1404 SET_DECL_RTL (decl, reg);
1405
1406 /* The two parts are in memory order already.
1407 Use the lower parts address as ours. */
1408 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1409 /* Prevent sharing of rtl that might lose. */
1410 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1411 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1412 if (usedp && rescan)
1413 {
1414 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1415 promoted_mode, 0);
1416 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1417 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1418 }
1419 }
1420 else
1421 return;
1422 }
1423
1424 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1425 into the stack frame of FUNCTION (0 means the current function).
1426 DECL_MODE is the machine mode of the user-level data type.
1427 PROMOTED_MODE is the machine mode of the register.
1428 VOLATILE_P is nonzero if this is for a "volatile" decl.
1429 USED_P is nonzero if this reg might have already been used in an insn. */
1430
1431 static void
1432 put_reg_into_stack (struct function *function, rtx reg, tree type,
1433 enum machine_mode promoted_mode, enum machine_mode decl_mode,
1434 int volatile_p, unsigned int original_regno, int used_p, htab_t ht)
1435 {
1436 struct function *func = function ? function : cfun;
1437 rtx new = 0;
1438 unsigned int regno = original_regno;
1439
1440 if (regno == 0)
1441 regno = REGNO (reg);
1442
1443 if (regno < func->x_max_parm_reg)
1444 new = func->x_parm_reg_stack_loc[regno];
1445
1446 if (new == 0)
1447 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1448
1449 PUT_CODE (reg, MEM);
1450 PUT_MODE (reg, decl_mode);
1451 XEXP (reg, 0) = XEXP (new, 0);
1452 MEM_ATTRS (reg) = 0;
1453 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1454 MEM_VOLATILE_P (reg) = volatile_p;
1455
1456 /* If this is a memory ref that contains aggregate components,
1457 mark it as such for cse and loop optimize. If we are reusing a
1458 previously generated stack slot, then we need to copy the bit in
1459 case it was set for other reasons. For instance, it is set for
1460 __builtin_va_alist. */
1461 if (type)
1462 {
1463 MEM_SET_IN_STRUCT_P (reg,
1464 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1465 set_mem_alias_set (reg, get_alias_set (type));
1466 }
1467
1468 if (used_p)
1469 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1470 }
1471
1472 /* Make sure that all refs to the variable, previously made
1473 when it was a register, are fixed up to be valid again.
1474 See function above for meaning of arguments. */
1475
1476 static void
1477 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1478 enum machine_mode promoted_mode, htab_t ht)
1479 {
1480 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1481
1482 if (function != 0)
1483 {
1484 struct var_refs_queue *temp;
1485
1486 temp = ggc_alloc (sizeof (struct var_refs_queue));
1487 temp->modified = reg;
1488 temp->promoted_mode = promoted_mode;
1489 temp->unsignedp = unsigned_p;
1490 temp->next = function->fixup_var_refs_queue;
1491 function->fixup_var_refs_queue = temp;
1492 }
1493 else
1494 /* Variable is local; fix it up now. */
1495 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1496 }
1497 \f
1498 static void
1499 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1500 rtx may_share, htab_t ht)
1501 {
1502 tree pending;
1503 rtx first_insn = get_insns ();
1504 struct sequence_stack *stack = seq_stack;
1505 tree rtl_exps = rtl_expr_chain;
1506
1507 /* If there's a hash table, it must record all uses of VAR. */
1508 if (ht)
1509 {
1510 if (stack != 0)
1511 abort ();
1512 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1513 may_share);
1514 return;
1515 }
1516
1517 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1518 stack == 0, may_share);
1519
1520 /* Scan all pending sequences too. */
1521 for (; stack; stack = stack->next)
1522 {
1523 push_to_full_sequence (stack->first, stack->last);
1524 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1525 stack->next != 0, may_share);
1526 /* Update remembered end of sequence
1527 in case we added an insn at the end. */
1528 stack->last = get_last_insn ();
1529 end_sequence ();
1530 }
1531
1532 /* Scan all waiting RTL_EXPRs too. */
1533 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1534 {
1535 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1536 if (seq != const0_rtx && seq != 0)
1537 {
1538 push_to_sequence (seq);
1539 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1540 may_share);
1541 end_sequence ();
1542 }
1543 }
1544 }
1545 \f
1546 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1547 some part of an insn. Return a struct fixup_replacement whose OLD
1548 value is equal to X. Allocate a new structure if no such entry exists. */
1549
1550 static struct fixup_replacement *
1551 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1552 {
1553 struct fixup_replacement *p;
1554
1555 /* See if we have already replaced this. */
1556 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1557 ;
1558
1559 if (p == 0)
1560 {
1561 p = xmalloc (sizeof (struct fixup_replacement));
1562 p->old = x;
1563 p->new = 0;
1564 p->next = *replacements;
1565 *replacements = p;
1566 }
1567
1568 return p;
1569 }
1570
1571 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1572 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1573 for the current function. MAY_SHARE is either a MEM that is not
1574 to be unshared or a list of them. */
1575
1576 static void
1577 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1578 int unsignedp, int toplevel, rtx may_share)
1579 {
1580 while (insn)
1581 {
1582 /* fixup_var_refs_insn might modify insn, so save its next
1583 pointer now. */
1584 rtx next = NEXT_INSN (insn);
1585
1586 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1587 the three sequences they (potentially) contain, and process
1588 them recursively. The CALL_INSN itself is not interesting. */
1589
1590 if (GET_CODE (insn) == CALL_INSN
1591 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1592 {
1593 int i;
1594
1595 /* Look at the Normal call, sibling call and tail recursion
1596 sequences attached to the CALL_PLACEHOLDER. */
1597 for (i = 0; i < 3; i++)
1598 {
1599 rtx seq = XEXP (PATTERN (insn), i);
1600 if (seq)
1601 {
1602 push_to_sequence (seq);
1603 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1604 may_share);
1605 XEXP (PATTERN (insn), i) = get_insns ();
1606 end_sequence ();
1607 }
1608 }
1609 }
1610
1611 else if (INSN_P (insn))
1612 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1613 may_share);
1614
1615 insn = next;
1616 }
1617 }
1618
1619 /* Look up the insns which reference VAR in HT and fix them up. Other
1620 arguments are the same as fixup_var_refs_insns.
1621
1622 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1623 because the hash table will point straight to the interesting insn
1624 (inside the CALL_PLACEHOLDER). */
1625
1626 static void
1627 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1628 int unsignedp, rtx may_share)
1629 {
1630 struct insns_for_mem_entry tmp;
1631 struct insns_for_mem_entry *ime;
1632 rtx insn_list;
1633
1634 tmp.key = var;
1635 ime = htab_find (ht, &tmp);
1636 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1637 if (INSN_P (XEXP (insn_list, 0)))
1638 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1639 unsignedp, 1, may_share);
1640 }
1641
1642
1643 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1644 the insn under examination, VAR is the variable to fix up
1645 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1646 TOPLEVEL is nonzero if this is the main insn chain for this
1647 function. */
1648
1649 static void
1650 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1651 int unsignedp, int toplevel, rtx no_share)
1652 {
1653 rtx call_dest = 0;
1654 rtx set, prev, prev_set;
1655 rtx note;
1656
1657 /* Remember the notes in case we delete the insn. */
1658 note = REG_NOTES (insn);
1659
1660 /* If this is a CLOBBER of VAR, delete it.
1661
1662 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1663 and REG_RETVAL notes too. */
1664 if (GET_CODE (PATTERN (insn)) == CLOBBER
1665 && (XEXP (PATTERN (insn), 0) == var
1666 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1667 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1668 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1669 {
1670 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1671 /* The REG_LIBCALL note will go away since we are going to
1672 turn INSN into a NOTE, so just delete the
1673 corresponding REG_RETVAL note. */
1674 remove_note (XEXP (note, 0),
1675 find_reg_note (XEXP (note, 0), REG_RETVAL,
1676 NULL_RTX));
1677
1678 delete_insn (insn);
1679 }
1680
1681 /* The insn to load VAR from a home in the arglist
1682 is now a no-op. When we see it, just delete it.
1683 Similarly if this is storing VAR from a register from which
1684 it was loaded in the previous insn. This will occur
1685 when an ADDRESSOF was made for an arglist slot. */
1686 else if (toplevel
1687 && (set = single_set (insn)) != 0
1688 && SET_DEST (set) == var
1689 /* If this represents the result of an insn group,
1690 don't delete the insn. */
1691 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1692 && (rtx_equal_p (SET_SRC (set), var)
1693 || (GET_CODE (SET_SRC (set)) == REG
1694 && (prev = prev_nonnote_insn (insn)) != 0
1695 && (prev_set = single_set (prev)) != 0
1696 && SET_DEST (prev_set) == SET_SRC (set)
1697 && rtx_equal_p (SET_SRC (prev_set), var))))
1698 {
1699 delete_insn (insn);
1700 }
1701 else
1702 {
1703 struct fixup_replacement *replacements = 0;
1704 rtx next_insn = NEXT_INSN (insn);
1705
1706 if (SMALL_REGISTER_CLASSES)
1707 {
1708 /* If the insn that copies the results of a CALL_INSN
1709 into a pseudo now references VAR, we have to use an
1710 intermediate pseudo since we want the life of the
1711 return value register to be only a single insn.
1712
1713 If we don't use an intermediate pseudo, such things as
1714 address computations to make the address of VAR valid
1715 if it is not can be placed between the CALL_INSN and INSN.
1716
1717 To make sure this doesn't happen, we record the destination
1718 of the CALL_INSN and see if the next insn uses both that
1719 and VAR. */
1720
1721 if (call_dest != 0 && GET_CODE (insn) == INSN
1722 && reg_mentioned_p (var, PATTERN (insn))
1723 && reg_mentioned_p (call_dest, PATTERN (insn)))
1724 {
1725 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1726
1727 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1728
1729 PATTERN (insn) = replace_rtx (PATTERN (insn),
1730 call_dest, temp);
1731 }
1732
1733 if (GET_CODE (insn) == CALL_INSN
1734 && GET_CODE (PATTERN (insn)) == SET)
1735 call_dest = SET_DEST (PATTERN (insn));
1736 else if (GET_CODE (insn) == CALL_INSN
1737 && GET_CODE (PATTERN (insn)) == PARALLEL
1738 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1739 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1740 else
1741 call_dest = 0;
1742 }
1743
1744 /* See if we have to do anything to INSN now that VAR is in
1745 memory. If it needs to be loaded into a pseudo, use a single
1746 pseudo for the entire insn in case there is a MATCH_DUP
1747 between two operands. We pass a pointer to the head of
1748 a list of struct fixup_replacements. If fixup_var_refs_1
1749 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1750 it will record them in this list.
1751
1752 If it allocated a pseudo for any replacement, we copy into
1753 it here. */
1754
1755 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1756 &replacements, no_share);
1757
1758 /* If this is last_parm_insn, and any instructions were output
1759 after it to fix it up, then we must set last_parm_insn to
1760 the last such instruction emitted. */
1761 if (insn == last_parm_insn)
1762 last_parm_insn = PREV_INSN (next_insn);
1763
1764 while (replacements)
1765 {
1766 struct fixup_replacement *next;
1767
1768 if (GET_CODE (replacements->new) == REG)
1769 {
1770 rtx insert_before;
1771 rtx seq;
1772
1773 /* OLD might be a (subreg (mem)). */
1774 if (GET_CODE (replacements->old) == SUBREG)
1775 replacements->old
1776 = fixup_memory_subreg (replacements->old, insn,
1777 promoted_mode, 0);
1778 else
1779 replacements->old
1780 = fixup_stack_1 (replacements->old, insn);
1781
1782 insert_before = insn;
1783
1784 /* If we are changing the mode, do a conversion.
1785 This might be wasteful, but combine.c will
1786 eliminate much of the waste. */
1787
1788 if (GET_MODE (replacements->new)
1789 != GET_MODE (replacements->old))
1790 {
1791 start_sequence ();
1792 convert_move (replacements->new,
1793 replacements->old, unsignedp);
1794 seq = get_insns ();
1795 end_sequence ();
1796 }
1797 else
1798 seq = gen_move_insn (replacements->new,
1799 replacements->old);
1800
1801 emit_insn_before (seq, insert_before);
1802 }
1803
1804 next = replacements->next;
1805 free (replacements);
1806 replacements = next;
1807 }
1808 }
1809
1810 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1811 But don't touch other insns referred to by reg-notes;
1812 we will get them elsewhere. */
1813 while (note)
1814 {
1815 if (GET_CODE (note) != INSN_LIST)
1816 XEXP (note, 0)
1817 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1818 promoted_mode, 1);
1819 note = XEXP (note, 1);
1820 }
1821 }
1822 \f
1823 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1824 See if the rtx expression at *LOC in INSN needs to be changed.
1825
1826 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1827 contain a list of original rtx's and replacements. If we find that we need
1828 to modify this insn by replacing a memory reference with a pseudo or by
1829 making a new MEM to implement a SUBREG, we consult that list to see if
1830 we have already chosen a replacement. If none has already been allocated,
1831 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1832 or the SUBREG, as appropriate, to the pseudo. */
1833
1834 static void
1835 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1836 struct fixup_replacement **replacements, rtx no_share)
1837 {
1838 int i;
1839 rtx x = *loc;
1840 RTX_CODE code = GET_CODE (x);
1841 const char *fmt;
1842 rtx tem, tem1;
1843 struct fixup_replacement *replacement;
1844
1845 switch (code)
1846 {
1847 case ADDRESSOF:
1848 if (XEXP (x, 0) == var)
1849 {
1850 /* Prevent sharing of rtl that might lose. */
1851 rtx sub = copy_rtx (XEXP (var, 0));
1852
1853 if (! validate_change (insn, loc, sub, 0))
1854 {
1855 rtx y = gen_reg_rtx (GET_MODE (sub));
1856 rtx seq, new_insn;
1857
1858 /* We should be able to replace with a register or all is lost.
1859 Note that we can't use validate_change to verify this, since
1860 we're not caring for replacing all dups simultaneously. */
1861 if (! validate_replace_rtx (*loc, y, insn))
1862 abort ();
1863
1864 /* Careful! First try to recognize a direct move of the
1865 value, mimicking how things are done in gen_reload wrt
1866 PLUS. Consider what happens when insn is a conditional
1867 move instruction and addsi3 clobbers flags. */
1868
1869 start_sequence ();
1870 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1871 seq = get_insns ();
1872 end_sequence ();
1873
1874 if (recog_memoized (new_insn) < 0)
1875 {
1876 /* That failed. Fall back on force_operand and hope. */
1877
1878 start_sequence ();
1879 sub = force_operand (sub, y);
1880 if (sub != y)
1881 emit_insn (gen_move_insn (y, sub));
1882 seq = get_insns ();
1883 end_sequence ();
1884 }
1885
1886 #ifdef HAVE_cc0
1887 /* Don't separate setter from user. */
1888 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1889 insn = PREV_INSN (insn);
1890 #endif
1891
1892 emit_insn_before (seq, insn);
1893 }
1894 }
1895 return;
1896
1897 case MEM:
1898 if (var == x)
1899 {
1900 /* If we already have a replacement, use it. Otherwise,
1901 try to fix up this address in case it is invalid. */
1902
1903 replacement = find_fixup_replacement (replacements, var);
1904 if (replacement->new)
1905 {
1906 *loc = replacement->new;
1907 return;
1908 }
1909
1910 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1911
1912 /* Unless we are forcing memory to register or we changed the mode,
1913 we can leave things the way they are if the insn is valid. */
1914
1915 INSN_CODE (insn) = -1;
1916 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1917 && recog_memoized (insn) >= 0)
1918 return;
1919
1920 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1921 return;
1922 }
1923
1924 /* If X contains VAR, we need to unshare it here so that we update
1925 each occurrence separately. But all identical MEMs in one insn
1926 must be replaced with the same rtx because of the possibility of
1927 MATCH_DUPs. */
1928
1929 if (reg_mentioned_p (var, x))
1930 {
1931 replacement = find_fixup_replacement (replacements, x);
1932 if (replacement->new == 0)
1933 replacement->new = copy_most_rtx (x, no_share);
1934
1935 *loc = x = replacement->new;
1936 code = GET_CODE (x);
1937 }
1938 break;
1939
1940 case REG:
1941 case CC0:
1942 case PC:
1943 case CONST_INT:
1944 case CONST:
1945 case SYMBOL_REF:
1946 case LABEL_REF:
1947 case CONST_DOUBLE:
1948 case CONST_VECTOR:
1949 return;
1950
1951 case SIGN_EXTRACT:
1952 case ZERO_EXTRACT:
1953 /* Note that in some cases those types of expressions are altered
1954 by optimize_bit_field, and do not survive to get here. */
1955 if (XEXP (x, 0) == var
1956 || (GET_CODE (XEXP (x, 0)) == SUBREG
1957 && SUBREG_REG (XEXP (x, 0)) == var))
1958 {
1959 /* Get TEM as a valid MEM in the mode presently in the insn.
1960
1961 We don't worry about the possibility of MATCH_DUP here; it
1962 is highly unlikely and would be tricky to handle. */
1963
1964 tem = XEXP (x, 0);
1965 if (GET_CODE (tem) == SUBREG)
1966 {
1967 if (GET_MODE_BITSIZE (GET_MODE (tem))
1968 > GET_MODE_BITSIZE (GET_MODE (var)))
1969 {
1970 replacement = find_fixup_replacement (replacements, var);
1971 if (replacement->new == 0)
1972 replacement->new = gen_reg_rtx (GET_MODE (var));
1973 SUBREG_REG (tem) = replacement->new;
1974
1975 /* The following code works only if we have a MEM, so we
1976 need to handle the subreg here. We directly substitute
1977 it assuming that a subreg must be OK here. We already
1978 scheduled a replacement to copy the mem into the
1979 subreg. */
1980 XEXP (x, 0) = tem;
1981 return;
1982 }
1983 else
1984 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
1985 }
1986 else
1987 tem = fixup_stack_1 (tem, insn);
1988
1989 /* Unless we want to load from memory, get TEM into the proper mode
1990 for an extract from memory. This can only be done if the
1991 extract is at a constant position and length. */
1992
1993 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1994 && GET_CODE (XEXP (x, 2)) == CONST_INT
1995 && ! mode_dependent_address_p (XEXP (tem, 0))
1996 && ! MEM_VOLATILE_P (tem))
1997 {
1998 enum machine_mode wanted_mode = VOIDmode;
1999 enum machine_mode is_mode = GET_MODE (tem);
2000 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2001
2002 if (GET_CODE (x) == ZERO_EXTRACT)
2003 {
2004 enum machine_mode new_mode
2005 = mode_for_extraction (EP_extzv, 1);
2006 if (new_mode != MAX_MACHINE_MODE)
2007 wanted_mode = new_mode;
2008 }
2009 else if (GET_CODE (x) == SIGN_EXTRACT)
2010 {
2011 enum machine_mode new_mode
2012 = mode_for_extraction (EP_extv, 1);
2013 if (new_mode != MAX_MACHINE_MODE)
2014 wanted_mode = new_mode;
2015 }
2016
2017 /* If we have a narrower mode, we can do something. */
2018 if (wanted_mode != VOIDmode
2019 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2020 {
2021 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2022 rtx old_pos = XEXP (x, 2);
2023 rtx newmem;
2024
2025 /* If the bytes and bits are counted differently, we
2026 must adjust the offset. */
2027 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2028 offset = (GET_MODE_SIZE (is_mode)
2029 - GET_MODE_SIZE (wanted_mode) - offset);
2030
2031 pos %= GET_MODE_BITSIZE (wanted_mode);
2032
2033 newmem = adjust_address_nv (tem, wanted_mode, offset);
2034
2035 /* Make the change and see if the insn remains valid. */
2036 INSN_CODE (insn) = -1;
2037 XEXP (x, 0) = newmem;
2038 XEXP (x, 2) = GEN_INT (pos);
2039
2040 if (recog_memoized (insn) >= 0)
2041 return;
2042
2043 /* Otherwise, restore old position. XEXP (x, 0) will be
2044 restored later. */
2045 XEXP (x, 2) = old_pos;
2046 }
2047 }
2048
2049 /* If we get here, the bitfield extract insn can't accept a memory
2050 reference. Copy the input into a register. */
2051
2052 tem1 = gen_reg_rtx (GET_MODE (tem));
2053 emit_insn_before (gen_move_insn (tem1, tem), insn);
2054 XEXP (x, 0) = tem1;
2055 return;
2056 }
2057 break;
2058
2059 case SUBREG:
2060 if (SUBREG_REG (x) == var)
2061 {
2062 /* If this is a special SUBREG made because VAR was promoted
2063 from a wider mode, replace it with VAR and call ourself
2064 recursively, this time saying that the object previously
2065 had its current mode (by virtue of the SUBREG). */
2066
2067 if (SUBREG_PROMOTED_VAR_P (x))
2068 {
2069 *loc = var;
2070 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2071 no_share);
2072 return;
2073 }
2074
2075 /* If this SUBREG makes VAR wider, it has become a paradoxical
2076 SUBREG with VAR in memory, but these aren't allowed at this
2077 stage of the compilation. So load VAR into a pseudo and take
2078 a SUBREG of that pseudo. */
2079 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2080 {
2081 replacement = find_fixup_replacement (replacements, var);
2082 if (replacement->new == 0)
2083 replacement->new = gen_reg_rtx (promoted_mode);
2084 SUBREG_REG (x) = replacement->new;
2085 return;
2086 }
2087
2088 /* See if we have already found a replacement for this SUBREG.
2089 If so, use it. Otherwise, make a MEM and see if the insn
2090 is recognized. If not, or if we should force MEM into a register,
2091 make a pseudo for this SUBREG. */
2092 replacement = find_fixup_replacement (replacements, x);
2093 if (replacement->new)
2094 {
2095 enum machine_mode mode = GET_MODE (x);
2096 *loc = replacement->new;
2097
2098 /* Careful! We may have just replaced a SUBREG by a MEM, which
2099 means that the insn may have become invalid again. We can't
2100 in this case make a new replacement since we already have one
2101 and we must deal with MATCH_DUPs. */
2102 if (GET_CODE (replacement->new) == MEM)
2103 {
2104 INSN_CODE (insn) = -1;
2105 if (recog_memoized (insn) >= 0)
2106 return;
2107
2108 fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
2109 insn, replacements, no_share);
2110 }
2111
2112 return;
2113 }
2114
2115 replacement->new = *loc = fixup_memory_subreg (x, insn,
2116 promoted_mode, 0);
2117
2118 INSN_CODE (insn) = -1;
2119 if (! flag_force_mem && recog_memoized (insn) >= 0)
2120 return;
2121
2122 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2123 return;
2124 }
2125 break;
2126
2127 case SET:
2128 /* First do special simplification of bit-field references. */
2129 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2130 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2131 optimize_bit_field (x, insn, 0);
2132 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2133 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2134 optimize_bit_field (x, insn, 0);
2135
2136 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2137 into a register and then store it back out. */
2138 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2139 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2140 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2141 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2142 > GET_MODE_SIZE (GET_MODE (var))))
2143 {
2144 replacement = find_fixup_replacement (replacements, var);
2145 if (replacement->new == 0)
2146 replacement->new = gen_reg_rtx (GET_MODE (var));
2147
2148 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2149 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2150 }
2151
2152 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2153 insn into a pseudo and store the low part of the pseudo into VAR. */
2154 if (GET_CODE (SET_DEST (x)) == SUBREG
2155 && SUBREG_REG (SET_DEST (x)) == var
2156 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2157 > GET_MODE_SIZE (GET_MODE (var))))
2158 {
2159 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2160 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2161 tem)),
2162 insn);
2163 break;
2164 }
2165
2166 {
2167 rtx dest = SET_DEST (x);
2168 rtx src = SET_SRC (x);
2169 rtx outerdest = dest;
2170
2171 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2172 || GET_CODE (dest) == SIGN_EXTRACT
2173 || GET_CODE (dest) == ZERO_EXTRACT)
2174 dest = XEXP (dest, 0);
2175
2176 if (GET_CODE (src) == SUBREG)
2177 src = SUBREG_REG (src);
2178
2179 /* If VAR does not appear at the top level of the SET
2180 just scan the lower levels of the tree. */
2181
2182 if (src != var && dest != var)
2183 break;
2184
2185 /* We will need to rerecognize this insn. */
2186 INSN_CODE (insn) = -1;
2187
2188 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2189 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2190 {
2191 /* Since this case will return, ensure we fixup all the
2192 operands here. */
2193 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2194 insn, replacements, no_share);
2195 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2196 insn, replacements, no_share);
2197 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2198 insn, replacements, no_share);
2199
2200 tem = XEXP (outerdest, 0);
2201
2202 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2203 that may appear inside a ZERO_EXTRACT.
2204 This was legitimate when the MEM was a REG. */
2205 if (GET_CODE (tem) == SUBREG
2206 && SUBREG_REG (tem) == var)
2207 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2208 else
2209 tem = fixup_stack_1 (tem, insn);
2210
2211 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2212 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2213 && ! mode_dependent_address_p (XEXP (tem, 0))
2214 && ! MEM_VOLATILE_P (tem))
2215 {
2216 enum machine_mode wanted_mode;
2217 enum machine_mode is_mode = GET_MODE (tem);
2218 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2219
2220 wanted_mode = mode_for_extraction (EP_insv, 0);
2221
2222 /* If we have a narrower mode, we can do something. */
2223 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2224 {
2225 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2226 rtx old_pos = XEXP (outerdest, 2);
2227 rtx newmem;
2228
2229 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2230 offset = (GET_MODE_SIZE (is_mode)
2231 - GET_MODE_SIZE (wanted_mode) - offset);
2232
2233 pos %= GET_MODE_BITSIZE (wanted_mode);
2234
2235 newmem = adjust_address_nv (tem, wanted_mode, offset);
2236
2237 /* Make the change and see if the insn remains valid. */
2238 INSN_CODE (insn) = -1;
2239 XEXP (outerdest, 0) = newmem;
2240 XEXP (outerdest, 2) = GEN_INT (pos);
2241
2242 if (recog_memoized (insn) >= 0)
2243 return;
2244
2245 /* Otherwise, restore old position. XEXP (x, 0) will be
2246 restored later. */
2247 XEXP (outerdest, 2) = old_pos;
2248 }
2249 }
2250
2251 /* If we get here, the bit-field store doesn't allow memory
2252 or isn't located at a constant position. Load the value into
2253 a register, do the store, and put it back into memory. */
2254
2255 tem1 = gen_reg_rtx (GET_MODE (tem));
2256 emit_insn_before (gen_move_insn (tem1, tem), insn);
2257 emit_insn_after (gen_move_insn (tem, tem1), insn);
2258 XEXP (outerdest, 0) = tem1;
2259 return;
2260 }
2261
2262 /* STRICT_LOW_PART is a no-op on memory references
2263 and it can cause combinations to be unrecognizable,
2264 so eliminate it. */
2265
2266 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2267 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2268
2269 /* A valid insn to copy VAR into or out of a register
2270 must be left alone, to avoid an infinite loop here.
2271 If the reference to VAR is by a subreg, fix that up,
2272 since SUBREG is not valid for a memref.
2273 Also fix up the address of the stack slot.
2274
2275 Note that we must not try to recognize the insn until
2276 after we know that we have valid addresses and no
2277 (subreg (mem ...) ...) constructs, since these interfere
2278 with determining the validity of the insn. */
2279
2280 if ((SET_SRC (x) == var
2281 || (GET_CODE (SET_SRC (x)) == SUBREG
2282 && SUBREG_REG (SET_SRC (x)) == var))
2283 && (GET_CODE (SET_DEST (x)) == REG
2284 || (GET_CODE (SET_DEST (x)) == SUBREG
2285 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2286 && GET_MODE (var) == promoted_mode
2287 && x == single_set (insn))
2288 {
2289 rtx pat, last;
2290
2291 if (GET_CODE (SET_SRC (x)) == SUBREG
2292 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2293 > GET_MODE_SIZE (GET_MODE (var))))
2294 {
2295 /* This (subreg VAR) is now a paradoxical subreg. We need
2296 to replace VAR instead of the subreg. */
2297 replacement = find_fixup_replacement (replacements, var);
2298 if (replacement->new == NULL_RTX)
2299 replacement->new = gen_reg_rtx (GET_MODE (var));
2300 SUBREG_REG (SET_SRC (x)) = replacement->new;
2301 }
2302 else
2303 {
2304 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2305 if (replacement->new)
2306 SET_SRC (x) = replacement->new;
2307 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2308 SET_SRC (x) = replacement->new
2309 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2310 0);
2311 else
2312 SET_SRC (x) = replacement->new
2313 = fixup_stack_1 (SET_SRC (x), insn);
2314 }
2315
2316 if (recog_memoized (insn) >= 0)
2317 return;
2318
2319 /* INSN is not valid, but we know that we want to
2320 copy SET_SRC (x) to SET_DEST (x) in some way. So
2321 we generate the move and see whether it requires more
2322 than one insn. If it does, we emit those insns and
2323 delete INSN. Otherwise, we can just replace the pattern
2324 of INSN; we have already verified above that INSN has
2325 no other function that to do X. */
2326
2327 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2328 if (NEXT_INSN (pat) != NULL_RTX)
2329 {
2330 last = emit_insn_before (pat, insn);
2331
2332 /* INSN might have REG_RETVAL or other important notes, so
2333 we need to store the pattern of the last insn in the
2334 sequence into INSN similarly to the normal case. LAST
2335 should not have REG_NOTES, but we allow them if INSN has
2336 no REG_NOTES. */
2337 if (REG_NOTES (last) && REG_NOTES (insn))
2338 abort ();
2339 if (REG_NOTES (last))
2340 REG_NOTES (insn) = REG_NOTES (last);
2341 PATTERN (insn) = PATTERN (last);
2342
2343 delete_insn (last);
2344 }
2345 else
2346 PATTERN (insn) = PATTERN (pat);
2347
2348 return;
2349 }
2350
2351 if ((SET_DEST (x) == var
2352 || (GET_CODE (SET_DEST (x)) == SUBREG
2353 && SUBREG_REG (SET_DEST (x)) == var))
2354 && (GET_CODE (SET_SRC (x)) == REG
2355 || (GET_CODE (SET_SRC (x)) == SUBREG
2356 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2357 && GET_MODE (var) == promoted_mode
2358 && x == single_set (insn))
2359 {
2360 rtx pat, last;
2361
2362 if (GET_CODE (SET_DEST (x)) == SUBREG)
2363 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2364 promoted_mode, 0);
2365 else
2366 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2367
2368 if (recog_memoized (insn) >= 0)
2369 return;
2370
2371 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2372 if (NEXT_INSN (pat) != NULL_RTX)
2373 {
2374 last = emit_insn_before (pat, insn);
2375
2376 /* INSN might have REG_RETVAL or other important notes, so
2377 we need to store the pattern of the last insn in the
2378 sequence into INSN similarly to the normal case. LAST
2379 should not have REG_NOTES, but we allow them if INSN has
2380 no REG_NOTES. */
2381 if (REG_NOTES (last) && REG_NOTES (insn))
2382 abort ();
2383 if (REG_NOTES (last))
2384 REG_NOTES (insn) = REG_NOTES (last);
2385 PATTERN (insn) = PATTERN (last);
2386
2387 delete_insn (last);
2388 }
2389 else
2390 PATTERN (insn) = PATTERN (pat);
2391
2392 return;
2393 }
2394
2395 /* Otherwise, storing into VAR must be handled specially
2396 by storing into a temporary and copying that into VAR
2397 with a new insn after this one. Note that this case
2398 will be used when storing into a promoted scalar since
2399 the insn will now have different modes on the input
2400 and output and hence will be invalid (except for the case
2401 of setting it to a constant, which does not need any
2402 change if it is valid). We generate extra code in that case,
2403 but combine.c will eliminate it. */
2404
2405 if (dest == var)
2406 {
2407 rtx temp;
2408 rtx fixeddest = SET_DEST (x);
2409 enum machine_mode temp_mode;
2410
2411 /* STRICT_LOW_PART can be discarded, around a MEM. */
2412 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2413 fixeddest = XEXP (fixeddest, 0);
2414 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2415 if (GET_CODE (fixeddest) == SUBREG)
2416 {
2417 fixeddest = fixup_memory_subreg (fixeddest, insn,
2418 promoted_mode, 0);
2419 temp_mode = GET_MODE (fixeddest);
2420 }
2421 else
2422 {
2423 fixeddest = fixup_stack_1 (fixeddest, insn);
2424 temp_mode = promoted_mode;
2425 }
2426
2427 temp = gen_reg_rtx (temp_mode);
2428
2429 emit_insn_after (gen_move_insn (fixeddest,
2430 gen_lowpart (GET_MODE (fixeddest),
2431 temp)),
2432 insn);
2433
2434 SET_DEST (x) = temp;
2435 }
2436 }
2437
2438 default:
2439 break;
2440 }
2441
2442 /* Nothing special about this RTX; fix its operands. */
2443
2444 fmt = GET_RTX_FORMAT (code);
2445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2446 {
2447 if (fmt[i] == 'e')
2448 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2449 no_share);
2450 else if (fmt[i] == 'E')
2451 {
2452 int j;
2453 for (j = 0; j < XVECLEN (x, i); j++)
2454 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2455 insn, replacements, no_share);
2456 }
2457 }
2458 }
2459 \f
2460 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2461 The REG was placed on the stack, so X now has the form (SUBREG:m1
2462 (MEM:m2 ...)).
2463
2464 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2465 must be emitted to compute NEWADDR, put them before INSN.
2466
2467 UNCRITICAL nonzero means accept paradoxical subregs.
2468 This is used for subregs found inside REG_NOTES. */
2469
2470 static rtx
2471 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2472 {
2473 int offset;
2474 rtx mem = SUBREG_REG (x);
2475 rtx addr = XEXP (mem, 0);
2476 enum machine_mode mode = GET_MODE (x);
2477 rtx result, seq;
2478
2479 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2480 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2481 abort ();
2482
2483 offset = SUBREG_BYTE (x);
2484 if (BYTES_BIG_ENDIAN)
2485 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2486 the offset so that it points to the right location within the
2487 MEM. */
2488 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2489
2490 if (!flag_force_addr
2491 && memory_address_p (mode, plus_constant (addr, offset)))
2492 /* Shortcut if no insns need be emitted. */
2493 return adjust_address (mem, mode, offset);
2494
2495 start_sequence ();
2496 result = adjust_address (mem, mode, offset);
2497 seq = get_insns ();
2498 end_sequence ();
2499
2500 emit_insn_before (seq, insn);
2501 return result;
2502 }
2503
2504 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2505 Replace subexpressions of X in place.
2506 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2507 Otherwise return X, with its contents possibly altered.
2508
2509 INSN, PROMOTED_MODE and UNCRITICAL are as for
2510 fixup_memory_subreg. */
2511
2512 static rtx
2513 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2514 int uncritical)
2515 {
2516 enum rtx_code code;
2517 const char *fmt;
2518 int i;
2519
2520 if (x == 0)
2521 return 0;
2522
2523 code = GET_CODE (x);
2524
2525 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2526 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2527
2528 /* Nothing special about this RTX; fix its operands. */
2529
2530 fmt = GET_RTX_FORMAT (code);
2531 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2532 {
2533 if (fmt[i] == 'e')
2534 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2535 promoted_mode, uncritical);
2536 else if (fmt[i] == 'E')
2537 {
2538 int j;
2539 for (j = 0; j < XVECLEN (x, i); j++)
2540 XVECEXP (x, i, j)
2541 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2542 promoted_mode, uncritical);
2543 }
2544 }
2545 return x;
2546 }
2547 \f
2548 /* For each memory ref within X, if it refers to a stack slot
2549 with an out of range displacement, put the address in a temp register
2550 (emitting new insns before INSN to load these registers)
2551 and alter the memory ref to use that register.
2552 Replace each such MEM rtx with a copy, to avoid clobberage. */
2553
2554 static rtx
2555 fixup_stack_1 (rtx x, rtx insn)
2556 {
2557 int i;
2558 RTX_CODE code = GET_CODE (x);
2559 const char *fmt;
2560
2561 if (code == MEM)
2562 {
2563 rtx ad = XEXP (x, 0);
2564 /* If we have address of a stack slot but it's not valid
2565 (displacement is too large), compute the sum in a register. */
2566 if (GET_CODE (ad) == PLUS
2567 && GET_CODE (XEXP (ad, 0)) == REG
2568 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2569 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2570 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2571 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2572 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2573 #endif
2574 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2575 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2576 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2577 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2578 {
2579 rtx temp, seq;
2580 if (memory_address_p (GET_MODE (x), ad))
2581 return x;
2582
2583 start_sequence ();
2584 temp = copy_to_reg (ad);
2585 seq = get_insns ();
2586 end_sequence ();
2587 emit_insn_before (seq, insn);
2588 return replace_equiv_address (x, temp);
2589 }
2590 return x;
2591 }
2592
2593 fmt = GET_RTX_FORMAT (code);
2594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2595 {
2596 if (fmt[i] == 'e')
2597 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2598 else if (fmt[i] == 'E')
2599 {
2600 int j;
2601 for (j = 0; j < XVECLEN (x, i); j++)
2602 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2603 }
2604 }
2605 return x;
2606 }
2607 \f
2608 /* Optimization: a bit-field instruction whose field
2609 happens to be a byte or halfword in memory
2610 can be changed to a move instruction.
2611
2612 We call here when INSN is an insn to examine or store into a bit-field.
2613 BODY is the SET-rtx to be altered.
2614
2615 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2616 (Currently this is called only from function.c, and EQUIV_MEM
2617 is always 0.) */
2618
2619 static void
2620 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2621 {
2622 rtx bitfield;
2623 int destflag;
2624 rtx seq = 0;
2625 enum machine_mode mode;
2626
2627 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2628 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2629 bitfield = SET_DEST (body), destflag = 1;
2630 else
2631 bitfield = SET_SRC (body), destflag = 0;
2632
2633 /* First check that the field being stored has constant size and position
2634 and is in fact a byte or halfword suitably aligned. */
2635
2636 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2637 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2638 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2639 != BLKmode)
2640 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2641 {
2642 rtx memref = 0;
2643
2644 /* Now check that the containing word is memory, not a register,
2645 and that it is safe to change the machine mode. */
2646
2647 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2648 memref = XEXP (bitfield, 0);
2649 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2650 && equiv_mem != 0)
2651 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2652 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2653 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2654 memref = SUBREG_REG (XEXP (bitfield, 0));
2655 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2656 && equiv_mem != 0
2657 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2658 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2659
2660 if (memref
2661 && ! mode_dependent_address_p (XEXP (memref, 0))
2662 && ! MEM_VOLATILE_P (memref))
2663 {
2664 /* Now adjust the address, first for any subreg'ing
2665 that we are now getting rid of,
2666 and then for which byte of the word is wanted. */
2667
2668 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2669 rtx insns;
2670
2671 /* Adjust OFFSET to count bits from low-address byte. */
2672 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2673 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2674 - offset - INTVAL (XEXP (bitfield, 1)));
2675
2676 /* Adjust OFFSET to count bytes from low-address byte. */
2677 offset /= BITS_PER_UNIT;
2678 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2679 {
2680 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2681 / UNITS_PER_WORD) * UNITS_PER_WORD;
2682 if (BYTES_BIG_ENDIAN)
2683 offset -= (MIN (UNITS_PER_WORD,
2684 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2685 - MIN (UNITS_PER_WORD,
2686 GET_MODE_SIZE (GET_MODE (memref))));
2687 }
2688
2689 start_sequence ();
2690 memref = adjust_address (memref, mode, offset);
2691 insns = get_insns ();
2692 end_sequence ();
2693 emit_insn_before (insns, insn);
2694
2695 /* Store this memory reference where
2696 we found the bit field reference. */
2697
2698 if (destflag)
2699 {
2700 validate_change (insn, &SET_DEST (body), memref, 1);
2701 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2702 {
2703 rtx src = SET_SRC (body);
2704 while (GET_CODE (src) == SUBREG
2705 && SUBREG_BYTE (src) == 0)
2706 src = SUBREG_REG (src);
2707 if (GET_MODE (src) != GET_MODE (memref))
2708 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2709 validate_change (insn, &SET_SRC (body), src, 1);
2710 }
2711 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2712 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2713 /* This shouldn't happen because anything that didn't have
2714 one of these modes should have got converted explicitly
2715 and then referenced through a subreg.
2716 This is so because the original bit-field was
2717 handled by agg_mode and so its tree structure had
2718 the same mode that memref now has. */
2719 abort ();
2720 }
2721 else
2722 {
2723 rtx dest = SET_DEST (body);
2724
2725 while (GET_CODE (dest) == SUBREG
2726 && SUBREG_BYTE (dest) == 0
2727 && (GET_MODE_CLASS (GET_MODE (dest))
2728 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2729 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2730 <= UNITS_PER_WORD))
2731 dest = SUBREG_REG (dest);
2732
2733 validate_change (insn, &SET_DEST (body), dest, 1);
2734
2735 if (GET_MODE (dest) == GET_MODE (memref))
2736 validate_change (insn, &SET_SRC (body), memref, 1);
2737 else
2738 {
2739 /* Convert the mem ref to the destination mode. */
2740 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2741
2742 start_sequence ();
2743 convert_move (newreg, memref,
2744 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2745 seq = get_insns ();
2746 end_sequence ();
2747
2748 validate_change (insn, &SET_SRC (body), newreg, 1);
2749 }
2750 }
2751
2752 /* See if we can convert this extraction or insertion into
2753 a simple move insn. We might not be able to do so if this
2754 was, for example, part of a PARALLEL.
2755
2756 If we succeed, write out any needed conversions. If we fail,
2757 it is hard to guess why we failed, so don't do anything
2758 special; just let the optimization be suppressed. */
2759
2760 if (apply_change_group () && seq)
2761 emit_insn_before (seq, insn);
2762 }
2763 }
2764 }
2765 \f
2766 /* These routines are responsible for converting virtual register references
2767 to the actual hard register references once RTL generation is complete.
2768
2769 The following four variables are used for communication between the
2770 routines. They contain the offsets of the virtual registers from their
2771 respective hard registers. */
2772
2773 static int in_arg_offset;
2774 static int var_offset;
2775 static int dynamic_offset;
2776 static int out_arg_offset;
2777 static int cfa_offset;
2778
2779 /* In most machines, the stack pointer register is equivalent to the bottom
2780 of the stack. */
2781
2782 #ifndef STACK_POINTER_OFFSET
2783 #define STACK_POINTER_OFFSET 0
2784 #endif
2785
2786 /* If not defined, pick an appropriate default for the offset of dynamically
2787 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2788 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2789
2790 #ifndef STACK_DYNAMIC_OFFSET
2791
2792 /* The bottom of the stack points to the actual arguments. If
2793 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2794 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2795 stack space for register parameters is not pushed by the caller, but
2796 rather part of the fixed stack areas and hence not included in
2797 `current_function_outgoing_args_size'. Nevertheless, we must allow
2798 for it when allocating stack dynamic objects. */
2799
2800 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2801 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2802 ((ACCUMULATE_OUTGOING_ARGS \
2803 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2804 + (STACK_POINTER_OFFSET)) \
2805
2806 #else
2807 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2808 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2809 + (STACK_POINTER_OFFSET))
2810 #endif
2811 #endif
2812
2813 /* On most machines, the CFA coincides with the first incoming parm. */
2814
2815 #ifndef ARG_POINTER_CFA_OFFSET
2816 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2817 #endif
2818
2819 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2820 had its address taken. DECL is the decl or SAVE_EXPR for the
2821 object stored in the register, for later use if we do need to force
2822 REG into the stack. REG is overwritten by the MEM like in
2823 put_reg_into_stack. RESCAN is true if previously emitted
2824 instructions must be rescanned and modified now that the REG has
2825 been transformed. */
2826
2827 rtx
2828 gen_mem_addressof (rtx reg, tree decl, int rescan)
2829 {
2830 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2831 REGNO (reg), decl);
2832
2833 /* Calculate this before we start messing with decl's RTL. */
2834 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2835
2836 /* If the original REG was a user-variable, then so is the REG whose
2837 address is being taken. Likewise for unchanging. */
2838 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2839 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2840
2841 PUT_CODE (reg, MEM);
2842 MEM_ATTRS (reg) = 0;
2843 XEXP (reg, 0) = r;
2844
2845 if (decl)
2846 {
2847 tree type = TREE_TYPE (decl);
2848 enum machine_mode decl_mode
2849 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2850 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2851 : DECL_RTL_IF_SET (decl));
2852
2853 PUT_MODE (reg, decl_mode);
2854
2855 /* Clear DECL_RTL momentarily so functions below will work
2856 properly, then set it again. */
2857 if (DECL_P (decl) && decl_rtl == reg)
2858 SET_DECL_RTL (decl, 0);
2859
2860 set_mem_attributes (reg, decl, 1);
2861 set_mem_alias_set (reg, set);
2862
2863 if (DECL_P (decl) && decl_rtl == reg)
2864 SET_DECL_RTL (decl, reg);
2865
2866 if (rescan
2867 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2868 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2869 }
2870 else if (rescan)
2871 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2872
2873 return reg;
2874 }
2875
2876 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2877
2878 void
2879 flush_addressof (tree decl)
2880 {
2881 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2882 && DECL_RTL (decl) != 0
2883 && GET_CODE (DECL_RTL (decl)) == MEM
2884 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2885 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2886 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2887 }
2888
2889 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2890
2891 static void
2892 put_addressof_into_stack (rtx r, htab_t ht)
2893 {
2894 tree decl, type;
2895 int volatile_p, used_p;
2896
2897 rtx reg = XEXP (r, 0);
2898
2899 if (GET_CODE (reg) != REG)
2900 abort ();
2901
2902 decl = ADDRESSOF_DECL (r);
2903 if (decl)
2904 {
2905 type = TREE_TYPE (decl);
2906 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2907 && TREE_THIS_VOLATILE (decl));
2908 used_p = (TREE_USED (decl)
2909 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2910 }
2911 else
2912 {
2913 type = NULL_TREE;
2914 volatile_p = 0;
2915 used_p = 1;
2916 }
2917
2918 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2919 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2920 }
2921
2922 /* List of replacements made below in purge_addressof_1 when creating
2923 bitfield insertions. */
2924 static rtx purge_bitfield_addressof_replacements;
2925
2926 /* List of replacements made below in purge_addressof_1 for patterns
2927 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2928 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2929 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2930 enough in complex cases, e.g. when some field values can be
2931 extracted by usage MEM with narrower mode. */
2932 static rtx purge_addressof_replacements;
2933
2934 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2935 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2936 the stack. If the function returns FALSE then the replacement could not
2937 be made. If MAY_POSTPONE is true and we would not put the addressof
2938 to stack, postpone processing of the insn. */
2939
2940 static bool
2941 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2942 htab_t ht)
2943 {
2944 rtx x;
2945 RTX_CODE code;
2946 int i, j;
2947 const char *fmt;
2948 bool result = true;
2949 bool libcall = false;
2950
2951 /* Re-start here to avoid recursion in common cases. */
2952 restart:
2953
2954 x = *loc;
2955 if (x == 0)
2956 return true;
2957
2958 /* Is this a libcall? */
2959 if (!insn)
2960 libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
2961
2962 code = GET_CODE (x);
2963
2964 /* If we don't return in any of the cases below, we will recurse inside
2965 the RTX, which will normally result in any ADDRESSOF being forced into
2966 memory. */
2967 if (code == SET)
2968 {
2969 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2970 may_postpone, ht);
2971 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2972 may_postpone, ht);
2973 return result;
2974 }
2975 else if (code == ADDRESSOF)
2976 {
2977 rtx sub, insns;
2978
2979 if (GET_CODE (XEXP (x, 0)) != MEM)
2980 put_addressof_into_stack (x, ht);
2981
2982 /* We must create a copy of the rtx because it was created by
2983 overwriting a REG rtx which is always shared. */
2984 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2985 if (validate_change (insn, loc, sub, 0)
2986 || validate_replace_rtx (x, sub, insn))
2987 return true;
2988
2989 start_sequence ();
2990
2991 /* If SUB is a hard or virtual register, try it as a pseudo-register.
2992 Otherwise, perhaps SUB is an expression, so generate code to compute
2993 it. */
2994 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
2995 sub = copy_to_reg (sub);
2996 else
2997 sub = force_operand (sub, NULL_RTX);
2998
2999 if (! validate_change (insn, loc, sub, 0)
3000 && ! validate_replace_rtx (x, sub, insn))
3001 abort ();
3002
3003 insns = get_insns ();
3004 end_sequence ();
3005 emit_insn_before (insns, insn);
3006 return true;
3007 }
3008
3009 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3010 {
3011 rtx sub = XEXP (XEXP (x, 0), 0);
3012
3013 if (GET_CODE (sub) == MEM)
3014 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3015 else if (GET_CODE (sub) == REG
3016 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3017 ;
3018 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3019 {
3020 int size_x, size_sub;
3021
3022 if (may_postpone)
3023 {
3024 /* Postpone for now, so that we do not emit bitfield arithmetics
3025 unless there is some benefit from it. */
3026 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3027 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3028 return true;
3029 }
3030
3031 if (!insn)
3032 {
3033 /* When processing REG_NOTES look at the list of
3034 replacements done on the insn to find the register that X
3035 was replaced by. */
3036 rtx tem;
3037
3038 for (tem = purge_bitfield_addressof_replacements;
3039 tem != NULL_RTX;
3040 tem = XEXP (XEXP (tem, 1), 1))
3041 if (rtx_equal_p (x, XEXP (tem, 0)))
3042 {
3043 *loc = XEXP (XEXP (tem, 1), 0);
3044 return true;
3045 }
3046
3047 /* See comment for purge_addressof_replacements. */
3048 for (tem = purge_addressof_replacements;
3049 tem != NULL_RTX;
3050 tem = XEXP (XEXP (tem, 1), 1))
3051 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3052 {
3053 rtx z = XEXP (XEXP (tem, 1), 0);
3054
3055 if (GET_MODE (x) == GET_MODE (z)
3056 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3057 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3058 abort ();
3059
3060 /* It can happen that the note may speak of things
3061 in a wider (or just different) mode than the
3062 code did. This is especially true of
3063 REG_RETVAL. */
3064
3065 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3066 z = SUBREG_REG (z);
3067
3068 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3069 && (GET_MODE_SIZE (GET_MODE (x))
3070 > GET_MODE_SIZE (GET_MODE (z))))
3071 {
3072 /* This can occur as a result in invalid
3073 pointer casts, e.g. float f; ...
3074 *(long long int *)&f.
3075 ??? We could emit a warning here, but
3076 without a line number that wouldn't be
3077 very helpful. */
3078 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3079 }
3080 else
3081 z = gen_lowpart (GET_MODE (x), z);
3082
3083 *loc = z;
3084 return true;
3085 }
3086
3087 /* When we are processing the REG_NOTES of the last instruction
3088 of a libcall, there will be typically no replacements
3089 for that insn; the replacements happened before, piecemeal
3090 fashion. OTOH we are not interested in the details of
3091 this for the REG_EQUAL note, we want to know the big picture,
3092 which can be succinctly described with a simple SUBREG.
3093 Note that removing the REG_EQUAL note is not an option
3094 on the last insn of a libcall, so we must do a replacement. */
3095
3096 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3097 we got
3098 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3099 [0 S8 A32]), which can be expressed with a simple
3100 same-size subreg */
3101 if ((GET_MODE_SIZE (GET_MODE (x))
3102 <= GET_MODE_SIZE (GET_MODE (sub)))
3103 /* Again, invalid pointer casts (as in
3104 compile/990203-1.c) can require paradoxical
3105 subregs. */
3106 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3107 && (GET_MODE_SIZE (GET_MODE (x))
3108 > GET_MODE_SIZE (GET_MODE (sub)))
3109 && libcall))
3110 {
3111 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3112 return true;
3113 }
3114 /* ??? Are there other cases we should handle? */
3115
3116 /* Sometimes we may not be able to find the replacement. For
3117 example when the original insn was a MEM in a wider mode,
3118 and the note is part of a sign extension of a narrowed
3119 version of that MEM. Gcc testcase compile/990829-1.c can
3120 generate an example of this situation. Rather than complain
3121 we return false, which will prompt our caller to remove the
3122 offending note. */
3123 return false;
3124 }
3125
3126 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3127 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3128
3129 /* Do not frob unchanging MEMs. If a later reference forces the
3130 pseudo to the stack, we can wind up with multiple writes to
3131 an unchanging memory, which is invalid. */
3132 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3133 ;
3134
3135 /* Don't even consider working with paradoxical subregs,
3136 or the moral equivalent seen here. */
3137 else if (size_x <= size_sub
3138 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3139 {
3140 /* Do a bitfield insertion to mirror what would happen
3141 in memory. */
3142
3143 rtx val, seq;
3144
3145 if (store)
3146 {
3147 rtx p = PREV_INSN (insn);
3148
3149 start_sequence ();
3150 val = gen_reg_rtx (GET_MODE (x));
3151 if (! validate_change (insn, loc, val, 0))
3152 {
3153 /* Discard the current sequence and put the
3154 ADDRESSOF on stack. */
3155 end_sequence ();
3156 goto give_up;
3157 }
3158 seq = get_insns ();
3159 end_sequence ();
3160 emit_insn_before (seq, insn);
3161 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3162 insn, ht);
3163
3164 start_sequence ();
3165 store_bit_field (sub, size_x, 0, GET_MODE (x),
3166 val, GET_MODE_SIZE (GET_MODE (sub)));
3167
3168 /* Make sure to unshare any shared rtl that store_bit_field
3169 might have created. */
3170 unshare_all_rtl_again (get_insns ());
3171
3172 seq = get_insns ();
3173 end_sequence ();
3174 p = emit_insn_after (seq, insn);
3175 if (NEXT_INSN (insn))
3176 compute_insns_for_mem (NEXT_INSN (insn),
3177 p ? NEXT_INSN (p) : NULL_RTX,
3178 ht);
3179 }
3180 else
3181 {
3182 rtx p = PREV_INSN (insn);
3183
3184 start_sequence ();
3185 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3186 GET_MODE (x), GET_MODE (x),
3187 GET_MODE_SIZE (GET_MODE (sub)));
3188
3189 if (! validate_change (insn, loc, val, 0))
3190 {
3191 /* Discard the current sequence and put the
3192 ADDRESSOF on stack. */
3193 end_sequence ();
3194 goto give_up;
3195 }
3196
3197 seq = get_insns ();
3198 end_sequence ();
3199 emit_insn_before (seq, insn);
3200 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3201 insn, ht);
3202 }
3203
3204 /* Remember the replacement so that the same one can be done
3205 on the REG_NOTES. */
3206 purge_bitfield_addressof_replacements
3207 = gen_rtx_EXPR_LIST (VOIDmode, x,
3208 gen_rtx_EXPR_LIST
3209 (VOIDmode, val,
3210 purge_bitfield_addressof_replacements));
3211
3212 /* We replaced with a reg -- all done. */
3213 return true;
3214 }
3215 }
3216
3217 else if (validate_change (insn, loc, sub, 0))
3218 {
3219 /* Remember the replacement so that the same one can be done
3220 on the REG_NOTES. */
3221 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3222 {
3223 rtx tem;
3224
3225 for (tem = purge_addressof_replacements;
3226 tem != NULL_RTX;
3227 tem = XEXP (XEXP (tem, 1), 1))
3228 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3229 {
3230 XEXP (XEXP (tem, 1), 0) = sub;
3231 return true;
3232 }
3233 purge_addressof_replacements
3234 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3235 gen_rtx_EXPR_LIST (VOIDmode, sub,
3236 purge_addressof_replacements));
3237 return true;
3238 }
3239 goto restart;
3240 }
3241 }
3242
3243 give_up:
3244 /* Scan all subexpressions. */
3245 fmt = GET_RTX_FORMAT (code);
3246 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3247 {
3248 if (*fmt == 'e')
3249 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3250 may_postpone, ht);
3251 else if (*fmt == 'E')
3252 for (j = 0; j < XVECLEN (x, i); j++)
3253 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3254 may_postpone, ht);
3255 }
3256
3257 return result;
3258 }
3259
3260 /* Return a hash value for K, a REG. */
3261
3262 static hashval_t
3263 insns_for_mem_hash (const void *k)
3264 {
3265 /* Use the address of the key for the hash value. */
3266 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3267 return htab_hash_pointer (m->key);
3268 }
3269
3270 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3271
3272 static int
3273 insns_for_mem_comp (const void *k1, const void *k2)
3274 {
3275 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3276 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3277 return m1->key == m2->key;
3278 }
3279
3280 struct insns_for_mem_walk_info
3281 {
3282 /* The hash table that we are using to record which INSNs use which
3283 MEMs. */
3284 htab_t ht;
3285
3286 /* The INSN we are currently processing. */
3287 rtx insn;
3288
3289 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3290 to find the insns that use the REGs in the ADDRESSOFs. */
3291 int pass;
3292 };
3293
3294 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3295 that might be used in an ADDRESSOF expression, record this INSN in
3296 the hash table given by DATA (which is really a pointer to an
3297 insns_for_mem_walk_info structure). */
3298
3299 static int
3300 insns_for_mem_walk (rtx *r, void *data)
3301 {
3302 struct insns_for_mem_walk_info *ifmwi
3303 = (struct insns_for_mem_walk_info *) data;
3304 struct insns_for_mem_entry tmp;
3305 tmp.insns = NULL_RTX;
3306
3307 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3308 && GET_CODE (XEXP (*r, 0)) == REG)
3309 {
3310 void **e;
3311 tmp.key = XEXP (*r, 0);
3312 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3313 if (*e == NULL)
3314 {
3315 *e = ggc_alloc (sizeof (tmp));
3316 memcpy (*e, &tmp, sizeof (tmp));
3317 }
3318 }
3319 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3320 {
3321 struct insns_for_mem_entry *ifme;
3322 tmp.key = *r;
3323 ifme = htab_find (ifmwi->ht, &tmp);
3324
3325 /* If we have not already recorded this INSN, do so now. Since
3326 we process the INSNs in order, we know that if we have
3327 recorded it it must be at the front of the list. */
3328 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3329 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3330 ifme->insns);
3331 }
3332
3333 return 0;
3334 }
3335
3336 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3337 which REGs in HT. */
3338
3339 static void
3340 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3341 {
3342 rtx insn;
3343 struct insns_for_mem_walk_info ifmwi;
3344 ifmwi.ht = ht;
3345
3346 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3347 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3348 if (INSN_P (insn))
3349 {
3350 ifmwi.insn = insn;
3351 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3352 }
3353 }
3354
3355 /* Helper function for purge_addressof called through for_each_rtx.
3356 Returns true iff the rtl is an ADDRESSOF. */
3357
3358 static int
3359 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3360 {
3361 return GET_CODE (*rtl) == ADDRESSOF;
3362 }
3363
3364 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3365 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3366 stack. */
3367
3368 void
3369 purge_addressof (rtx insns)
3370 {
3371 rtx insn, tmp;
3372 htab_t ht;
3373
3374 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3375 requires a fixup pass over the instruction stream to correct
3376 INSNs that depended on the REG being a REG, and not a MEM. But,
3377 these fixup passes are slow. Furthermore, most MEMs are not
3378 mentioned in very many instructions. So, we speed up the process
3379 by pre-calculating which REGs occur in which INSNs; that allows
3380 us to perform the fixup passes much more quickly. */
3381 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3382 compute_insns_for_mem (insns, NULL_RTX, ht);
3383
3384 postponed_insns = NULL;
3385
3386 for (insn = insns; insn; insn = NEXT_INSN (insn))
3387 if (INSN_P (insn))
3388 {
3389 if (! purge_addressof_1 (&PATTERN (insn), insn,
3390 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3391 /* If we could not replace the ADDRESSOFs in the insn,
3392 something is wrong. */
3393 abort ();
3394
3395 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3396 {
3397 /* If we could not replace the ADDRESSOFs in the insn's notes,
3398 we can just remove the offending notes instead. */
3399 rtx note;
3400
3401 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3402 {
3403 /* If we find a REG_RETVAL note then the insn is a libcall.
3404 Such insns must have REG_EQUAL notes as well, in order
3405 for later passes of the compiler to work. So it is not
3406 safe to delete the notes here, and instead we abort. */
3407 if (REG_NOTE_KIND (note) == REG_RETVAL)
3408 abort ();
3409 if (for_each_rtx (&note, is_addressof, NULL))
3410 remove_note (insn, note);
3411 }
3412 }
3413 }
3414
3415 /* Process the postponed insns. */
3416 while (postponed_insns)
3417 {
3418 insn = XEXP (postponed_insns, 0);
3419 tmp = postponed_insns;
3420 postponed_insns = XEXP (postponed_insns, 1);
3421 free_INSN_LIST_node (tmp);
3422
3423 if (! purge_addressof_1 (&PATTERN (insn), insn,
3424 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3425 abort ();
3426 }
3427
3428 /* Clean up. */
3429 purge_bitfield_addressof_replacements = 0;
3430 purge_addressof_replacements = 0;
3431
3432 /* REGs are shared. purge_addressof will destructively replace a REG
3433 with a MEM, which creates shared MEMs.
3434
3435 Unfortunately, the children of put_reg_into_stack assume that MEMs
3436 referring to the same stack slot are shared (fixup_var_refs and
3437 the associated hash table code).
3438
3439 So, we have to do another unsharing pass after we have flushed any
3440 REGs that had their address taken into the stack.
3441
3442 It may be worth tracking whether or not we converted any REGs into
3443 MEMs to avoid this overhead when it is not needed. */
3444 unshare_all_rtl_again (get_insns ());
3445 }
3446 \f
3447 /* Convert a SET of a hard subreg to a set of the appropriate hard
3448 register. A subroutine of purge_hard_subreg_sets. */
3449
3450 static void
3451 purge_single_hard_subreg_set (rtx pattern)
3452 {
3453 rtx reg = SET_DEST (pattern);
3454 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3455 int offset = 0;
3456
3457 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3458 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3459 {
3460 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3461 GET_MODE (SUBREG_REG (reg)),
3462 SUBREG_BYTE (reg),
3463 GET_MODE (reg));
3464 reg = SUBREG_REG (reg);
3465 }
3466
3467
3468 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3469 {
3470 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3471 SET_DEST (pattern) = reg;
3472 }
3473 }
3474
3475 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3476 only such SETs that we expect to see are those left in because
3477 integrate can't handle sets of parts of a return value register.
3478
3479 We don't use alter_subreg because we only want to eliminate subregs
3480 of hard registers. */
3481
3482 void
3483 purge_hard_subreg_sets (rtx insn)
3484 {
3485 for (; insn; insn = NEXT_INSN (insn))
3486 {
3487 if (INSN_P (insn))
3488 {
3489 rtx pattern = PATTERN (insn);
3490 switch (GET_CODE (pattern))
3491 {
3492 case SET:
3493 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3494 purge_single_hard_subreg_set (pattern);
3495 break;
3496 case PARALLEL:
3497 {
3498 int j;
3499 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3500 {
3501 rtx inner_pattern = XVECEXP (pattern, 0, j);
3502 if (GET_CODE (inner_pattern) == SET
3503 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3504 purge_single_hard_subreg_set (inner_pattern);
3505 }
3506 }
3507 break;
3508 default:
3509 break;
3510 }
3511 }
3512 }
3513 }
3514 \f
3515 /* Pass through the INSNS of function FNDECL and convert virtual register
3516 references to hard register references. */
3517
3518 void
3519 instantiate_virtual_regs (tree fndecl, rtx insns)
3520 {
3521 rtx insn;
3522 unsigned int i;
3523
3524 /* Compute the offsets to use for this function. */
3525 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3526 var_offset = STARTING_FRAME_OFFSET;
3527 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3528 out_arg_offset = STACK_POINTER_OFFSET;
3529 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3530
3531 /* Scan all variables and parameters of this function. For each that is
3532 in memory, instantiate all virtual registers if the result is a valid
3533 address. If not, we do it later. That will handle most uses of virtual
3534 regs on many machines. */
3535 instantiate_decls (fndecl, 1);
3536
3537 /* Initialize recognition, indicating that volatile is OK. */
3538 init_recog ();
3539
3540 /* Scan through all the insns, instantiating every virtual register still
3541 present. */
3542 for (insn = insns; insn; insn = NEXT_INSN (insn))
3543 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3544 || GET_CODE (insn) == CALL_INSN)
3545 {
3546 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3547 if (INSN_DELETED_P (insn))
3548 continue;
3549 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3550 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3551 if (GET_CODE (insn) == CALL_INSN)
3552 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3553 NULL_RTX, 0);
3554
3555 /* Past this point all ASM statements should match. Verify that
3556 to avoid failures later in the compilation process. */
3557 if (asm_noperands (PATTERN (insn)) >= 0
3558 && ! check_asm_operands (PATTERN (insn)))
3559 instantiate_virtual_regs_lossage (insn);
3560 }
3561
3562 /* Instantiate the stack slots for the parm registers, for later use in
3563 addressof elimination. */
3564 for (i = 0; i < max_parm_reg; ++i)
3565 if (parm_reg_stack_loc[i])
3566 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3567
3568 /* Now instantiate the remaining register equivalences for debugging info.
3569 These will not be valid addresses. */
3570 instantiate_decls (fndecl, 0);
3571
3572 /* Indicate that, from now on, assign_stack_local should use
3573 frame_pointer_rtx. */
3574 virtuals_instantiated = 1;
3575 }
3576
3577 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3578 all virtual registers in their DECL_RTL's.
3579
3580 If VALID_ONLY, do this only if the resulting address is still valid.
3581 Otherwise, always do it. */
3582
3583 static void
3584 instantiate_decls (tree fndecl, int valid_only)
3585 {
3586 tree decl;
3587
3588 /* Process all parameters of the function. */
3589 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3590 {
3591 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3592 HOST_WIDE_INT size_rtl;
3593
3594 instantiate_decl (DECL_RTL (decl), size, valid_only);
3595
3596 /* If the parameter was promoted, then the incoming RTL mode may be
3597 larger than the declared type size. We must use the larger of
3598 the two sizes. */
3599 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3600 size = MAX (size_rtl, size);
3601 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3602 }
3603
3604 /* Now process all variables defined in the function or its subblocks. */
3605 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3606 }
3607
3608 /* Subroutine of instantiate_decls: Process all decls in the given
3609 BLOCK node and all its subblocks. */
3610
3611 static void
3612 instantiate_decls_1 (tree let, int valid_only)
3613 {
3614 tree t;
3615
3616 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3617 if (DECL_RTL_SET_P (t))
3618 instantiate_decl (DECL_RTL (t),
3619 int_size_in_bytes (TREE_TYPE (t)),
3620 valid_only);
3621
3622 /* Process all subblocks. */
3623 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3624 instantiate_decls_1 (t, valid_only);
3625 }
3626
3627 /* Subroutine of the preceding procedures: Given RTL representing a
3628 decl and the size of the object, do any instantiation required.
3629
3630 If VALID_ONLY is nonzero, it means that the RTL should only be
3631 changed if the new address is valid. */
3632
3633 static void
3634 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3635 {
3636 enum machine_mode mode;
3637 rtx addr;
3638
3639 /* If this is not a MEM, no need to do anything. Similarly if the
3640 address is a constant or a register that is not a virtual register. */
3641
3642 if (x == 0 || GET_CODE (x) != MEM)
3643 return;
3644
3645 addr = XEXP (x, 0);
3646 if (CONSTANT_P (addr)
3647 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3648 || (GET_CODE (addr) == REG
3649 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3650 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3651 return;
3652
3653 /* If we should only do this if the address is valid, copy the address.
3654 We need to do this so we can undo any changes that might make the
3655 address invalid. This copy is unfortunate, but probably can't be
3656 avoided. */
3657
3658 if (valid_only)
3659 addr = copy_rtx (addr);
3660
3661 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3662
3663 if (valid_only && size >= 0)
3664 {
3665 unsigned HOST_WIDE_INT decl_size = size;
3666
3667 /* Now verify that the resulting address is valid for every integer or
3668 floating-point mode up to and including SIZE bytes long. We do this
3669 since the object might be accessed in any mode and frame addresses
3670 are shared. */
3671
3672 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3673 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3674 mode = GET_MODE_WIDER_MODE (mode))
3675 if (! memory_address_p (mode, addr))
3676 return;
3677
3678 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3679 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3680 mode = GET_MODE_WIDER_MODE (mode))
3681 if (! memory_address_p (mode, addr))
3682 return;
3683 }
3684
3685 /* Put back the address now that we have updated it and we either know
3686 it is valid or we don't care whether it is valid. */
3687
3688 XEXP (x, 0) = addr;
3689 }
3690 \f
3691 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3692 is a virtual register, return the equivalent hard register and set the
3693 offset indirectly through the pointer. Otherwise, return 0. */
3694
3695 static rtx
3696 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3697 {
3698 rtx new;
3699 HOST_WIDE_INT offset;
3700
3701 if (x == virtual_incoming_args_rtx)
3702 new = arg_pointer_rtx, offset = in_arg_offset;
3703 else if (x == virtual_stack_vars_rtx)
3704 new = frame_pointer_rtx, offset = var_offset;
3705 else if (x == virtual_stack_dynamic_rtx)
3706 new = stack_pointer_rtx, offset = dynamic_offset;
3707 else if (x == virtual_outgoing_args_rtx)
3708 new = stack_pointer_rtx, offset = out_arg_offset;
3709 else if (x == virtual_cfa_rtx)
3710 new = arg_pointer_rtx, offset = cfa_offset;
3711 else
3712 return 0;
3713
3714 *poffset = offset;
3715 return new;
3716 }
3717 \f
3718
3719 /* Called when instantiate_virtual_regs has failed to update the instruction.
3720 Usually this means that non-matching instruction has been emit, however for
3721 asm statements it may be the problem in the constraints. */
3722 static void
3723 instantiate_virtual_regs_lossage (rtx insn)
3724 {
3725 if (asm_noperands (PATTERN (insn)) >= 0)
3726 {
3727 error_for_asm (insn, "impossible constraint in `asm'");
3728 delete_insn (insn);
3729 }
3730 else
3731 abort ();
3732 }
3733 /* Given a pointer to a piece of rtx and an optional pointer to the
3734 containing object, instantiate any virtual registers present in it.
3735
3736 If EXTRA_INSNS, we always do the replacement and generate
3737 any extra insns before OBJECT. If it zero, we do nothing if replacement
3738 is not valid.
3739
3740 Return 1 if we either had nothing to do or if we were able to do the
3741 needed replacement. Return 0 otherwise; we only return zero if
3742 EXTRA_INSNS is zero.
3743
3744 We first try some simple transformations to avoid the creation of extra
3745 pseudos. */
3746
3747 static int
3748 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3749 {
3750 rtx x;
3751 RTX_CODE code;
3752 rtx new = 0;
3753 HOST_WIDE_INT offset = 0;
3754 rtx temp;
3755 rtx seq;
3756 int i, j;
3757 const char *fmt;
3758
3759 /* Re-start here to avoid recursion in common cases. */
3760 restart:
3761
3762 x = *loc;
3763 if (x == 0)
3764 return 1;
3765
3766 /* We may have detected and deleted invalid asm statements. */
3767 if (object && INSN_P (object) && INSN_DELETED_P (object))
3768 return 1;
3769
3770 code = GET_CODE (x);
3771
3772 /* Check for some special cases. */
3773 switch (code)
3774 {
3775 case CONST_INT:
3776 case CONST_DOUBLE:
3777 case CONST_VECTOR:
3778 case CONST:
3779 case SYMBOL_REF:
3780 case CODE_LABEL:
3781 case PC:
3782 case CC0:
3783 case ASM_INPUT:
3784 case ADDR_VEC:
3785 case ADDR_DIFF_VEC:
3786 case RETURN:
3787 return 1;
3788
3789 case SET:
3790 /* We are allowed to set the virtual registers. This means that
3791 the actual register should receive the source minus the
3792 appropriate offset. This is used, for example, in the handling
3793 of non-local gotos. */
3794 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3795 {
3796 rtx src = SET_SRC (x);
3797
3798 /* We are setting the register, not using it, so the relevant
3799 offset is the negative of the offset to use were we using
3800 the register. */
3801 offset = - offset;
3802 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3803
3804 /* The only valid sources here are PLUS or REG. Just do
3805 the simplest possible thing to handle them. */
3806 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3807 {
3808 instantiate_virtual_regs_lossage (object);
3809 return 1;
3810 }
3811
3812 start_sequence ();
3813 if (GET_CODE (src) != REG)
3814 temp = force_operand (src, NULL_RTX);
3815 else
3816 temp = src;
3817 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3818 seq = get_insns ();
3819 end_sequence ();
3820
3821 emit_insn_before (seq, object);
3822 SET_DEST (x) = new;
3823
3824 if (! validate_change (object, &SET_SRC (x), temp, 0)
3825 || ! extra_insns)
3826 instantiate_virtual_regs_lossage (object);
3827
3828 return 1;
3829 }
3830
3831 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3832 loc = &SET_SRC (x);
3833 goto restart;
3834
3835 case PLUS:
3836 /* Handle special case of virtual register plus constant. */
3837 if (CONSTANT_P (XEXP (x, 1)))
3838 {
3839 rtx old, new_offset;
3840
3841 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3842 if (GET_CODE (XEXP (x, 0)) == PLUS)
3843 {
3844 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3845 {
3846 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3847 extra_insns);
3848 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3849 }
3850 else
3851 {
3852 loc = &XEXP (x, 0);
3853 goto restart;
3854 }
3855 }
3856
3857 #ifdef POINTERS_EXTEND_UNSIGNED
3858 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3859 we can commute the PLUS and SUBREG because pointers into the
3860 frame are well-behaved. */
3861 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3862 && GET_CODE (XEXP (x, 1)) == CONST_INT
3863 && 0 != (new
3864 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3865 &offset))
3866 && validate_change (object, loc,
3867 plus_constant (gen_lowpart (ptr_mode,
3868 new),
3869 offset
3870 + INTVAL (XEXP (x, 1))),
3871 0))
3872 return 1;
3873 #endif
3874 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3875 {
3876 /* We know the second operand is a constant. Unless the
3877 first operand is a REG (which has been already checked),
3878 it needs to be checked. */
3879 if (GET_CODE (XEXP (x, 0)) != REG)
3880 {
3881 loc = &XEXP (x, 0);
3882 goto restart;
3883 }
3884 return 1;
3885 }
3886
3887 new_offset = plus_constant (XEXP (x, 1), offset);
3888
3889 /* If the new constant is zero, try to replace the sum with just
3890 the register. */
3891 if (new_offset == const0_rtx
3892 && validate_change (object, loc, new, 0))
3893 return 1;
3894
3895 /* Next try to replace the register and new offset.
3896 There are two changes to validate here and we can't assume that
3897 in the case of old offset equals new just changing the register
3898 will yield a valid insn. In the interests of a little efficiency,
3899 however, we only call validate change once (we don't queue up the
3900 changes and then call apply_change_group). */
3901
3902 old = XEXP (x, 0);
3903 if (offset == 0
3904 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3905 : (XEXP (x, 0) = new,
3906 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3907 {
3908 if (! extra_insns)
3909 {
3910 XEXP (x, 0) = old;
3911 return 0;
3912 }
3913
3914 /* Otherwise copy the new constant into a register and replace
3915 constant with that register. */
3916 temp = gen_reg_rtx (Pmode);
3917 XEXP (x, 0) = new;
3918 if (validate_change (object, &XEXP (x, 1), temp, 0))
3919 emit_insn_before (gen_move_insn (temp, new_offset), object);
3920 else
3921 {
3922 /* If that didn't work, replace this expression with a
3923 register containing the sum. */
3924
3925 XEXP (x, 0) = old;
3926 new = gen_rtx_PLUS (Pmode, new, new_offset);
3927
3928 start_sequence ();
3929 temp = force_operand (new, NULL_RTX);
3930 seq = get_insns ();
3931 end_sequence ();
3932
3933 emit_insn_before (seq, object);
3934 if (! validate_change (object, loc, temp, 0)
3935 && ! validate_replace_rtx (x, temp, object))
3936 {
3937 instantiate_virtual_regs_lossage (object);
3938 return 1;
3939 }
3940 }
3941 }
3942
3943 return 1;
3944 }
3945
3946 /* Fall through to generic two-operand expression case. */
3947 case EXPR_LIST:
3948 case CALL:
3949 case COMPARE:
3950 case MINUS:
3951 case MULT:
3952 case DIV: case UDIV:
3953 case MOD: case UMOD:
3954 case AND: case IOR: case XOR:
3955 case ROTATERT: case ROTATE:
3956 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3957 case NE: case EQ:
3958 case GE: case GT: case GEU: case GTU:
3959 case LE: case LT: case LEU: case LTU:
3960 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3961 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3962 loc = &XEXP (x, 0);
3963 goto restart;
3964
3965 case MEM:
3966 /* Most cases of MEM that convert to valid addresses have already been
3967 handled by our scan of decls. The only special handling we
3968 need here is to make a copy of the rtx to ensure it isn't being
3969 shared if we have to change it to a pseudo.
3970
3971 If the rtx is a simple reference to an address via a virtual register,
3972 it can potentially be shared. In such cases, first try to make it
3973 a valid address, which can also be shared. Otherwise, copy it and
3974 proceed normally.
3975
3976 First check for common cases that need no processing. These are
3977 usually due to instantiation already being done on a previous instance
3978 of a shared rtx. */
3979
3980 temp = XEXP (x, 0);
3981 if (CONSTANT_ADDRESS_P (temp)
3982 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3983 || temp == arg_pointer_rtx
3984 #endif
3985 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3986 || temp == hard_frame_pointer_rtx
3987 #endif
3988 || temp == frame_pointer_rtx)
3989 return 1;
3990
3991 if (GET_CODE (temp) == PLUS
3992 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3993 && (XEXP (temp, 0) == frame_pointer_rtx
3994 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3995 || XEXP (temp, 0) == hard_frame_pointer_rtx
3996 #endif
3997 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3998 || XEXP (temp, 0) == arg_pointer_rtx
3999 #endif
4000 ))
4001 return 1;
4002
4003 if (temp == virtual_stack_vars_rtx
4004 || temp == virtual_incoming_args_rtx
4005 || (GET_CODE (temp) == PLUS
4006 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4007 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4008 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4009 {
4010 /* This MEM may be shared. If the substitution can be done without
4011 the need to generate new pseudos, we want to do it in place
4012 so all copies of the shared rtx benefit. The call below will
4013 only make substitutions if the resulting address is still
4014 valid.
4015
4016 Note that we cannot pass X as the object in the recursive call
4017 since the insn being processed may not allow all valid
4018 addresses. However, if we were not passed on object, we can
4019 only modify X without copying it if X will have a valid
4020 address.
4021
4022 ??? Also note that this can still lose if OBJECT is an insn that
4023 has less restrictions on an address that some other insn.
4024 In that case, we will modify the shared address. This case
4025 doesn't seem very likely, though. One case where this could
4026 happen is in the case of a USE or CLOBBER reference, but we
4027 take care of that below. */
4028
4029 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4030 object ? object : x, 0))
4031 return 1;
4032
4033 /* Otherwise make a copy and process that copy. We copy the entire
4034 RTL expression since it might be a PLUS which could also be
4035 shared. */
4036 *loc = x = copy_rtx (x);
4037 }
4038
4039 /* Fall through to generic unary operation case. */
4040 case PREFETCH:
4041 case SUBREG:
4042 case STRICT_LOW_PART:
4043 case NEG: case NOT:
4044 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4045 case SIGN_EXTEND: case ZERO_EXTEND:
4046 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4047 case FLOAT: case FIX:
4048 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4049 case ABS:
4050 case SQRT:
4051 case FFS:
4052 case CLZ: case CTZ:
4053 case POPCOUNT: case PARITY:
4054 /* These case either have just one operand or we know that we need not
4055 check the rest of the operands. */
4056 loc = &XEXP (x, 0);
4057 goto restart;
4058
4059 case USE:
4060 case CLOBBER:
4061 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4062 go ahead and make the invalid one, but do it to a copy. For a REG,
4063 just make the recursive call, since there's no chance of a problem. */
4064
4065 if ((GET_CODE (XEXP (x, 0)) == MEM
4066 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4067 0))
4068 || (GET_CODE (XEXP (x, 0)) == REG
4069 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4070 return 1;
4071
4072 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4073 loc = &XEXP (x, 0);
4074 goto restart;
4075
4076 case REG:
4077 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4078 in front of this insn and substitute the temporary. */
4079 if ((new = instantiate_new_reg (x, &offset)) != 0)
4080 {
4081 temp = plus_constant (new, offset);
4082 if (!validate_change (object, loc, temp, 0))
4083 {
4084 if (! extra_insns)
4085 return 0;
4086
4087 start_sequence ();
4088 temp = force_operand (temp, NULL_RTX);
4089 seq = get_insns ();
4090 end_sequence ();
4091
4092 emit_insn_before (seq, object);
4093 if (! validate_change (object, loc, temp, 0)
4094 && ! validate_replace_rtx (x, temp, object))
4095 instantiate_virtual_regs_lossage (object);
4096 }
4097 }
4098
4099 return 1;
4100
4101 case ADDRESSOF:
4102 if (GET_CODE (XEXP (x, 0)) == REG)
4103 return 1;
4104
4105 else if (GET_CODE (XEXP (x, 0)) == MEM)
4106 {
4107 /* If we have a (addressof (mem ..)), do any instantiation inside
4108 since we know we'll be making the inside valid when we finally
4109 remove the ADDRESSOF. */
4110 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4111 return 1;
4112 }
4113 break;
4114
4115 default:
4116 break;
4117 }
4118
4119 /* Scan all subexpressions. */
4120 fmt = GET_RTX_FORMAT (code);
4121 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4122 if (*fmt == 'e')
4123 {
4124 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4125 return 0;
4126 }
4127 else if (*fmt == 'E')
4128 for (j = 0; j < XVECLEN (x, i); j++)
4129 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4130 extra_insns))
4131 return 0;
4132
4133 return 1;
4134 }
4135 \f
4136 /* Optimization: assuming this function does not receive nonlocal gotos,
4137 delete the handlers for such, as well as the insns to establish
4138 and disestablish them. */
4139
4140 static void
4141 delete_handlers (void)
4142 {
4143 rtx insn;
4144 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4145 {
4146 /* Delete the handler by turning off the flag that would
4147 prevent jump_optimize from deleting it.
4148 Also permit deletion of the nonlocal labels themselves
4149 if nothing local refers to them. */
4150 if (GET_CODE (insn) == CODE_LABEL)
4151 {
4152 tree t, last_t;
4153
4154 LABEL_PRESERVE_P (insn) = 0;
4155
4156 /* Remove it from the nonlocal_label list, to avoid confusing
4157 flow. */
4158 for (t = nonlocal_labels, last_t = 0; t;
4159 last_t = t, t = TREE_CHAIN (t))
4160 if (DECL_RTL (TREE_VALUE (t)) == insn)
4161 break;
4162 if (t)
4163 {
4164 if (! last_t)
4165 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4166 else
4167 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4168 }
4169 }
4170 if (GET_CODE (insn) == INSN)
4171 {
4172 int can_delete = 0;
4173 rtx t;
4174 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4175 if (reg_mentioned_p (t, PATTERN (insn)))
4176 {
4177 can_delete = 1;
4178 break;
4179 }
4180 if (can_delete
4181 || (nonlocal_goto_stack_level != 0
4182 && reg_mentioned_p (nonlocal_goto_stack_level,
4183 PATTERN (insn))))
4184 delete_related_insns (insn);
4185 }
4186 }
4187 }
4188 \f
4189 /* Return the first insn following those generated by `assign_parms'. */
4190
4191 rtx
4192 get_first_nonparm_insn (void)
4193 {
4194 if (last_parm_insn)
4195 return NEXT_INSN (last_parm_insn);
4196 return get_insns ();
4197 }
4198
4199 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4200 This means a type for which function calls must pass an address to the
4201 function or get an address back from the function.
4202 EXP may be a type node or an expression (whose type is tested). */
4203
4204 int
4205 aggregate_value_p (tree exp, tree fntype)
4206 {
4207 int i, regno, nregs;
4208 rtx reg;
4209
4210 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4211
4212 if (fntype)
4213 switch (TREE_CODE (fntype))
4214 {
4215 case CALL_EXPR:
4216 fntype = get_callee_fndecl (fntype);
4217 fntype = fntype ? TREE_TYPE (fntype) : 0;
4218 break;
4219 case FUNCTION_DECL:
4220 fntype = TREE_TYPE (fntype);
4221 break;
4222 case FUNCTION_TYPE:
4223 case METHOD_TYPE:
4224 break;
4225 case IDENTIFIER_NODE:
4226 fntype = 0;
4227 break;
4228 default:
4229 /* We don't expect other rtl types here. */
4230 abort();
4231 }
4232
4233 if (TREE_CODE (type) == VOID_TYPE)
4234 return 0;
4235 if (targetm.calls.return_in_memory (type, fntype))
4236 return 1;
4237 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4238 and thus can't be returned in registers. */
4239 if (TREE_ADDRESSABLE (type))
4240 return 1;
4241 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4242 return 1;
4243 /* Make sure we have suitable call-clobbered regs to return
4244 the value in; if not, we must return it in memory. */
4245 reg = hard_function_value (type, 0, 0);
4246
4247 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4248 it is OK. */
4249 if (GET_CODE (reg) != REG)
4250 return 0;
4251
4252 regno = REGNO (reg);
4253 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4254 for (i = 0; i < nregs; i++)
4255 if (! call_used_regs[regno + i])
4256 return 1;
4257 return 0;
4258 }
4259 \f
4260 /* Assign RTL expressions to the function's parameters.
4261 This may involve copying them into registers and using
4262 those registers as the RTL for them. */
4263
4264 void
4265 assign_parms (tree fndecl)
4266 {
4267 tree parm;
4268 CUMULATIVE_ARGS args_so_far;
4269 /* Total space needed so far for args on the stack,
4270 given as a constant and a tree-expression. */
4271 struct args_size stack_args_size;
4272 tree fntype = TREE_TYPE (fndecl);
4273 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4274 /* This is used for the arg pointer when referring to stack args. */
4275 rtx internal_arg_pointer;
4276 /* This is a dummy PARM_DECL that we used for the function result if
4277 the function returns a structure. */
4278 tree function_result_decl = 0;
4279 int varargs_setup = 0;
4280 int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
4281 rtx conversion_insns = 0;
4282
4283 /* Nonzero if function takes extra anonymous args.
4284 This means the last named arg must be on the stack
4285 right before the anonymous ones. */
4286 int stdarg
4287 = (TYPE_ARG_TYPES (fntype) != 0
4288 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4289 != void_type_node));
4290
4291 current_function_stdarg = stdarg;
4292
4293 /* If the reg that the virtual arg pointer will be translated into is
4294 not a fixed reg or is the stack pointer, make a copy of the virtual
4295 arg pointer, and address parms via the copy. The frame pointer is
4296 considered fixed even though it is not marked as such.
4297
4298 The second time through, simply use ap to avoid generating rtx. */
4299
4300 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4301 || ! (fixed_regs[ARG_POINTER_REGNUM]
4302 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4303 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4304 else
4305 internal_arg_pointer = virtual_incoming_args_rtx;
4306 current_function_internal_arg_pointer = internal_arg_pointer;
4307
4308 stack_args_size.constant = 0;
4309 stack_args_size.var = 0;
4310
4311 /* If struct value address is treated as the first argument, make it so. */
4312 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
4313 && ! current_function_returns_pcc_struct
4314 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
4315 {
4316 tree type = build_pointer_type (TREE_TYPE (fntype));
4317
4318 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4319
4320 DECL_ARG_TYPE (function_result_decl) = type;
4321 TREE_CHAIN (function_result_decl) = fnargs;
4322 fnargs = function_result_decl;
4323 }
4324
4325 orig_fnargs = fnargs;
4326
4327 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4328 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4329
4330 if (SPLIT_COMPLEX_ARGS)
4331 fnargs = split_complex_args (fnargs);
4332
4333 #ifdef REG_PARM_STACK_SPACE
4334 #ifdef MAYBE_REG_PARM_STACK_SPACE
4335 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4336 #else
4337 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4338 #endif
4339 #endif
4340
4341 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4342 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4343 #else
4344 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4345 #endif
4346
4347 /* We haven't yet found an argument that we must push and pretend the
4348 caller did. */
4349 current_function_pretend_args_size = 0;
4350
4351 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4352 {
4353 rtx entry_parm;
4354 rtx stack_parm;
4355 enum machine_mode promoted_mode, passed_mode;
4356 enum machine_mode nominal_mode, promoted_nominal_mode;
4357 int unsignedp;
4358 struct locate_and_pad_arg_data locate;
4359 int passed_pointer = 0;
4360 int did_conversion = 0;
4361 tree passed_type = DECL_ARG_TYPE (parm);
4362 tree nominal_type = TREE_TYPE (parm);
4363 int last_named = 0, named_arg;
4364 int in_regs;
4365 int partial = 0;
4366 int pretend_bytes = 0;
4367
4368 /* Set LAST_NAMED if this is last named arg before last
4369 anonymous args. */
4370 if (stdarg)
4371 {
4372 tree tem;
4373
4374 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4375 if (DECL_NAME (tem))
4376 break;
4377
4378 if (tem == 0)
4379 last_named = 1;
4380 }
4381 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4382 most machines, if this is a varargs/stdarg function, then we treat
4383 the last named arg as if it were anonymous too. */
4384 named_arg = targetm.calls.strict_argument_naming (&args_so_far) ? 1 : ! last_named;
4385
4386 if (TREE_TYPE (parm) == error_mark_node
4387 /* This can happen after weird syntax errors
4388 or if an enum type is defined among the parms. */
4389 || TREE_CODE (parm) != PARM_DECL
4390 || passed_type == NULL)
4391 {
4392 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4393 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4394 TREE_USED (parm) = 1;
4395 continue;
4396 }
4397
4398 /* Find mode of arg as it is passed, and mode of arg
4399 as it should be during execution of this function. */
4400 passed_mode = TYPE_MODE (passed_type);
4401 nominal_mode = TYPE_MODE (nominal_type);
4402
4403 /* If the parm's mode is VOID, its value doesn't matter,
4404 and avoid the usual things like emit_move_insn that could crash. */
4405 if (nominal_mode == VOIDmode)
4406 {
4407 SET_DECL_RTL (parm, const0_rtx);
4408 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4409 continue;
4410 }
4411
4412 /* If the parm is to be passed as a transparent union, use the
4413 type of the first field for the tests below. We have already
4414 verified that the modes are the same. */
4415 if (DECL_TRANSPARENT_UNION (parm)
4416 || (TREE_CODE (passed_type) == UNION_TYPE
4417 && TYPE_TRANSPARENT_UNION (passed_type)))
4418 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4419
4420 /* See if this arg was passed by invisible reference. It is if
4421 it is an object whose size depends on the contents of the
4422 object itself or if the machine requires these objects be passed
4423 that way. */
4424
4425 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4426 || TREE_ADDRESSABLE (passed_type)
4427 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4428 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4429 passed_type, named_arg)
4430 #endif
4431 )
4432 {
4433 passed_type = nominal_type = build_pointer_type (passed_type);
4434 passed_pointer = 1;
4435 passed_mode = nominal_mode = Pmode;
4436 }
4437 /* See if the frontend wants to pass this by invisible reference. */
4438 else if (passed_type != nominal_type
4439 && POINTER_TYPE_P (passed_type)
4440 && TREE_TYPE (passed_type) == nominal_type)
4441 {
4442 nominal_type = passed_type;
4443 passed_pointer = 1;
4444 passed_mode = nominal_mode = Pmode;
4445 }
4446
4447 promoted_mode = passed_mode;
4448
4449 if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
4450 {
4451 /* Compute the mode in which the arg is actually extended to. */
4452 unsignedp = TREE_UNSIGNED (passed_type);
4453 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4454 }
4455
4456 /* Let machine desc say which reg (if any) the parm arrives in.
4457 0 means it arrives on the stack. */
4458 #ifdef FUNCTION_INCOMING_ARG
4459 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4460 passed_type, named_arg);
4461 #else
4462 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4463 passed_type, named_arg);
4464 #endif
4465
4466 if (entry_parm == 0)
4467 promoted_mode = passed_mode;
4468
4469 /* If this is the last named parameter, do any required setup for
4470 varargs or stdargs. We need to know about the case of this being an
4471 addressable type, in which case we skip the registers it
4472 would have arrived in.
4473
4474 For stdargs, LAST_NAMED will be set for two parameters, the one that
4475 is actually the last named, and the dummy parameter. We only
4476 want to do this action once.
4477
4478 Also, indicate when RTL generation is to be suppressed. */
4479 if (last_named && !varargs_setup)
4480 {
4481 int varargs_pretend_bytes = 0;
4482 targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
4483 passed_type,
4484 &varargs_pretend_bytes, 0);
4485 varargs_setup = 1;
4486
4487 /* If the back-end has requested extra stack space, record how
4488 much is needed. Do not change pretend_args_size otherwise
4489 since it may be nonzero from an earlier partial argument. */
4490 if (varargs_pretend_bytes > 0)
4491 current_function_pretend_args_size = varargs_pretend_bytes;
4492 }
4493
4494 /* Determine parm's home in the stack,
4495 in case it arrives in the stack or we should pretend it did.
4496
4497 Compute the stack position and rtx where the argument arrives
4498 and its size.
4499
4500 There is one complexity here: If this was a parameter that would
4501 have been passed in registers, but wasn't only because it is
4502 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4503 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4504 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4505 0 as it was the previous time. */
4506 in_regs = entry_parm != 0;
4507 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4508 in_regs = 1;
4509 #endif
4510 if (!in_regs && !named_arg)
4511 {
4512 int pretend_named =
4513 targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
4514 if (pretend_named)
4515 {
4516 #ifdef FUNCTION_INCOMING_ARG
4517 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4518 passed_type,
4519 pretend_named) != 0;
4520 #else
4521 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4522 passed_type,
4523 pretend_named) != 0;
4524 #endif
4525 }
4526 }
4527
4528 /* If this parameter was passed both in registers and in the stack,
4529 use the copy on the stack. */
4530 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4531 entry_parm = 0;
4532
4533 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4534 if (entry_parm)
4535 {
4536 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4537 passed_type, named_arg);
4538 if (partial
4539 #ifndef MAYBE_REG_PARM_STACK_SPACE
4540 /* The caller might already have allocated stack space
4541 for the register parameters. */
4542 && reg_parm_stack_space == 0
4543 #endif
4544 )
4545 {
4546 /* Part of this argument is passed in registers and part
4547 is passed on the stack. Ask the prologue code to extend
4548 the stack part so that we can recreate the full value.
4549
4550 PRETEND_BYTES is the size of the registers we need to store.
4551 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
4552 stack space that the prologue should allocate.
4553
4554 Internally, gcc assumes that the argument pointer is
4555 aligned to STACK_BOUNDARY bits. This is used both for
4556 alignment optimizations (see init_emit) and to locate
4557 arguments that are aligned to more than PARM_BOUNDARY
4558 bits. We must preserve this invariant by rounding
4559 CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
4560 boundary. */
4561 pretend_bytes = partial * UNITS_PER_WORD;
4562 current_function_pretend_args_size
4563 = CEIL_ROUND (pretend_bytes, STACK_BYTES);
4564
4565 /* If PRETEND_BYTES != CURRENT_FUNCTION_PRETEND_ARGS_SIZE,
4566 insert the padding before the start of the first pretend
4567 argument. */
4568 stack_args_size.constant
4569 = (current_function_pretend_args_size - pretend_bytes);
4570 }
4571 }
4572 #endif
4573
4574 memset (&locate, 0, sizeof (locate));
4575 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4576 entry_parm ? partial : 0, fndecl,
4577 &stack_args_size, &locate);
4578
4579 {
4580 rtx offset_rtx;
4581
4582 /* If we're passing this arg using a reg, make its stack home
4583 the aligned stack slot. */
4584 if (entry_parm)
4585 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4586 else
4587 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4588
4589 if (offset_rtx == const0_rtx)
4590 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4591 else
4592 stack_parm = gen_rtx_MEM (promoted_mode,
4593 gen_rtx_PLUS (Pmode,
4594 internal_arg_pointer,
4595 offset_rtx));
4596
4597 set_mem_attributes (stack_parm, parm, 1);
4598 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4599 set_mem_align (stack_parm, PARM_BOUNDARY);
4600
4601 /* Set also REG_ATTRS if parameter was passed in a register. */
4602 if (entry_parm)
4603 set_reg_attrs_for_parm (entry_parm, stack_parm);
4604 }
4605
4606 /* If this parm was passed part in regs and part in memory,
4607 pretend it arrived entirely in memory
4608 by pushing the register-part onto the stack.
4609
4610 In the special case of a DImode or DFmode that is split,
4611 we could put it together in a pseudoreg directly,
4612 but for now that's not worth bothering with. */
4613
4614 if (partial)
4615 {
4616 /* Handle calls that pass values in multiple non-contiguous
4617 locations. The Irix 6 ABI has examples of this. */
4618 if (GET_CODE (entry_parm) == PARALLEL)
4619 emit_group_store (validize_mem (stack_parm), entry_parm,
4620 TREE_TYPE (parm),
4621 int_size_in_bytes (TREE_TYPE (parm)));
4622
4623 else
4624 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4625 partial);
4626
4627 entry_parm = stack_parm;
4628 }
4629
4630 /* If we didn't decide this parm came in a register,
4631 by default it came on the stack. */
4632 if (entry_parm == 0)
4633 entry_parm = stack_parm;
4634
4635 /* Record permanently how this parm was passed. */
4636 DECL_INCOMING_RTL (parm) = entry_parm;
4637
4638 /* If there is actually space on the stack for this parm,
4639 count it in stack_args_size; otherwise set stack_parm to 0
4640 to indicate there is no preallocated stack slot for the parm. */
4641
4642 if (entry_parm == stack_parm
4643 || (GET_CODE (entry_parm) == PARALLEL
4644 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4645 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4646 /* On some machines, even if a parm value arrives in a register
4647 there is still an (uninitialized) stack slot allocated for it.
4648
4649 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4650 whether this parameter already has a stack slot allocated,
4651 because an arg block exists only if current_function_args_size
4652 is larger than some threshold, and we haven't calculated that
4653 yet. So, for now, we just assume that stack slots never exist
4654 in this case. */
4655 || REG_PARM_STACK_SPACE (fndecl) > 0
4656 #endif
4657 )
4658 {
4659 stack_args_size.constant += pretend_bytes + locate.size.constant;
4660 if (locate.size.var)
4661 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4662 }
4663 else
4664 /* No stack slot was pushed for this parm. */
4665 stack_parm = 0;
4666
4667 /* Update info on where next arg arrives in registers. */
4668
4669 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4670 passed_type, named_arg);
4671
4672 /* If we can't trust the parm stack slot to be aligned enough
4673 for its ultimate type, don't use that slot after entry.
4674 We'll make another stack slot, if we need one. */
4675 {
4676 unsigned int thisparm_boundary
4677 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4678
4679 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4680 stack_parm = 0;
4681 }
4682
4683 /* If parm was passed in memory, and we need to convert it on entry,
4684 don't store it back in that same slot. */
4685 if (entry_parm == stack_parm
4686 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4687 stack_parm = 0;
4688
4689 /* When an argument is passed in multiple locations, we can't
4690 make use of this information, but we can save some copying if
4691 the whole argument is passed in a single register. */
4692 if (GET_CODE (entry_parm) == PARALLEL
4693 && nominal_mode != BLKmode && passed_mode != BLKmode)
4694 {
4695 int i, len = XVECLEN (entry_parm, 0);
4696
4697 for (i = 0; i < len; i++)
4698 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4699 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4700 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4701 == passed_mode)
4702 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4703 {
4704 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4705 DECL_INCOMING_RTL (parm) = entry_parm;
4706 break;
4707 }
4708 }
4709
4710 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4711 in the mode in which it arrives.
4712 STACK_PARM is an RTX for a stack slot where the parameter can live
4713 during the function (in case we want to put it there).
4714 STACK_PARM is 0 if no stack slot was pushed for it.
4715
4716 Now output code if necessary to convert ENTRY_PARM to
4717 the type in which this function declares it,
4718 and store that result in an appropriate place,
4719 which may be a pseudo reg, may be STACK_PARM,
4720 or may be a local stack slot if STACK_PARM is 0.
4721
4722 Set DECL_RTL to that place. */
4723
4724 if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode
4725 && XVECLEN (entry_parm, 0) > 1)
4726 {
4727 /* Reconstitute objects the size of a register or larger using
4728 register operations instead of the stack. */
4729 rtx parmreg = gen_reg_rtx (nominal_mode);
4730
4731 if (REG_P (parmreg))
4732 {
4733 emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
4734 int_size_in_bytes (TREE_TYPE (parm)));
4735 SET_DECL_RTL (parm, parmreg);
4736 }
4737 }
4738
4739 if (nominal_mode == BLKmode
4740 #ifdef BLOCK_REG_PADDING
4741 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4742 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4743 #endif
4744 || GET_CODE (entry_parm) == PARALLEL)
4745 {
4746 /* If a BLKmode arrives in registers, copy it to a stack slot.
4747 Handle calls that pass values in multiple non-contiguous
4748 locations. The Irix 6 ABI has examples of this. */
4749 if (GET_CODE (entry_parm) == REG
4750 || GET_CODE (entry_parm) == PARALLEL)
4751 {
4752 int size = int_size_in_bytes (TREE_TYPE (parm));
4753 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4754 rtx mem;
4755
4756 /* Note that we will be storing an integral number of words.
4757 So we have to be careful to ensure that we allocate an
4758 integral number of words. We do this below in the
4759 assign_stack_local if space was not allocated in the argument
4760 list. If it was, this will not work if PARM_BOUNDARY is not
4761 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4762 if it becomes a problem. Exception is when BLKmode arrives
4763 with arguments not conforming to word_mode. */
4764
4765 if (stack_parm == 0)
4766 {
4767 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4768 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4769 set_mem_attributes (stack_parm, parm, 1);
4770 }
4771 else if (GET_CODE (entry_parm) == PARALLEL
4772 && GET_MODE(entry_parm) == BLKmode)
4773 ;
4774 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4775 abort ();
4776
4777 mem = validize_mem (stack_parm);
4778
4779 /* Handle calls that pass values in multiple non-contiguous
4780 locations. The Irix 6 ABI has examples of this. */
4781 if (GET_CODE (entry_parm) == PARALLEL)
4782 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4783
4784 else if (size == 0)
4785 ;
4786
4787 /* If SIZE is that of a mode no bigger than a word, just use
4788 that mode's store operation. */
4789 else if (size <= UNITS_PER_WORD)
4790 {
4791 enum machine_mode mode
4792 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4793
4794 if (mode != BLKmode
4795 #ifdef BLOCK_REG_PADDING
4796 && (size == UNITS_PER_WORD
4797 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4798 != (BYTES_BIG_ENDIAN ? upward : downward)))
4799 #endif
4800 )
4801 {
4802 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4803 emit_move_insn (change_address (mem, mode, 0), reg);
4804 }
4805
4806 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4807 machine must be aligned to the left before storing
4808 to memory. Note that the previous test doesn't
4809 handle all cases (e.g. SIZE == 3). */
4810 else if (size != UNITS_PER_WORD
4811 #ifdef BLOCK_REG_PADDING
4812 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4813 == downward)
4814 #else
4815 && BYTES_BIG_ENDIAN
4816 #endif
4817 )
4818 {
4819 rtx tem, x;
4820 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4821 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4822
4823 x = expand_binop (word_mode, ashl_optab, reg,
4824 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4825 tem = change_address (mem, word_mode, 0);
4826 emit_move_insn (tem, x);
4827 }
4828 else
4829 move_block_from_reg (REGNO (entry_parm), mem,
4830 size_stored / UNITS_PER_WORD);
4831 }
4832 else
4833 move_block_from_reg (REGNO (entry_parm), mem,
4834 size_stored / UNITS_PER_WORD);
4835 }
4836 /* If parm is already bound to register pair, don't change
4837 this binding. */
4838 if (! DECL_RTL_SET_P (parm))
4839 SET_DECL_RTL (parm, stack_parm);
4840 }
4841 else if (! ((! optimize
4842 && ! DECL_REGISTER (parm))
4843 || TREE_SIDE_EFFECTS (parm)
4844 /* If -ffloat-store specified, don't put explicit
4845 float variables into registers. */
4846 || (flag_float_store
4847 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4848 /* Always assign pseudo to structure return or item passed
4849 by invisible reference. */
4850 || passed_pointer || parm == function_result_decl)
4851 {
4852 /* Store the parm in a pseudoregister during the function, but we
4853 may need to do it in a wider mode. */
4854
4855 rtx parmreg;
4856 unsigned int regno, regnoi = 0, regnor = 0;
4857
4858 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4859
4860 promoted_nominal_mode
4861 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4862
4863 parmreg = gen_reg_rtx (promoted_nominal_mode);
4864 mark_user_reg (parmreg);
4865
4866 /* If this was an item that we received a pointer to, set DECL_RTL
4867 appropriately. */
4868 if (passed_pointer)
4869 {
4870 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4871 parmreg);
4872 set_mem_attributes (x, parm, 1);
4873 SET_DECL_RTL (parm, x);
4874 }
4875 else
4876 {
4877 SET_DECL_RTL (parm, parmreg);
4878 maybe_set_unchanging (DECL_RTL (parm), parm);
4879 }
4880
4881 /* Copy the value into the register. */
4882 if (nominal_mode != passed_mode
4883 || promoted_nominal_mode != promoted_mode)
4884 {
4885 int save_tree_used;
4886 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4887 mode, by the caller. We now have to convert it to
4888 NOMINAL_MODE, if different. However, PARMREG may be in
4889 a different mode than NOMINAL_MODE if it is being stored
4890 promoted.
4891
4892 If ENTRY_PARM is a hard register, it might be in a register
4893 not valid for operating in its mode (e.g., an odd-numbered
4894 register for a DFmode). In that case, moves are the only
4895 thing valid, so we can't do a convert from there. This
4896 occurs when the calling sequence allow such misaligned
4897 usages.
4898
4899 In addition, the conversion may involve a call, which could
4900 clobber parameters which haven't been copied to pseudo
4901 registers yet. Therefore, we must first copy the parm to
4902 a pseudo reg here, and save the conversion until after all
4903 parameters have been moved. */
4904
4905 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4906
4907 emit_move_insn (tempreg, validize_mem (entry_parm));
4908
4909 push_to_sequence (conversion_insns);
4910 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4911
4912 if (GET_CODE (tempreg) == SUBREG
4913 && GET_MODE (tempreg) == nominal_mode
4914 && GET_CODE (SUBREG_REG (tempreg)) == REG
4915 && nominal_mode == passed_mode
4916 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4917 && GET_MODE_SIZE (GET_MODE (tempreg))
4918 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4919 {
4920 /* The argument is already sign/zero extended, so note it
4921 into the subreg. */
4922 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4923 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4924 }
4925
4926 /* TREE_USED gets set erroneously during expand_assignment. */
4927 save_tree_used = TREE_USED (parm);
4928 expand_assignment (parm,
4929 make_tree (nominal_type, tempreg), 0);
4930 TREE_USED (parm) = save_tree_used;
4931 conversion_insns = get_insns ();
4932 did_conversion = 1;
4933 end_sequence ();
4934 }
4935 else
4936 emit_move_insn (parmreg, validize_mem (entry_parm));
4937
4938 /* If we were passed a pointer but the actual value
4939 can safely live in a register, put it in one. */
4940 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4941 /* If by-reference argument was promoted, demote it. */
4942 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4943 || ! ((! optimize
4944 && ! DECL_REGISTER (parm))
4945 || TREE_SIDE_EFFECTS (parm)
4946 /* If -ffloat-store specified, don't put explicit
4947 float variables into registers. */
4948 || (flag_float_store
4949 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4950 {
4951 /* We can't use nominal_mode, because it will have been set to
4952 Pmode above. We must use the actual mode of the parm. */
4953 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4954 mark_user_reg (parmreg);
4955 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4956 {
4957 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4958 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4959 push_to_sequence (conversion_insns);
4960 emit_move_insn (tempreg, DECL_RTL (parm));
4961 SET_DECL_RTL (parm,
4962 convert_to_mode (GET_MODE (parmreg),
4963 tempreg,
4964 unsigned_p));
4965 emit_move_insn (parmreg, DECL_RTL (parm));
4966 conversion_insns = get_insns();
4967 did_conversion = 1;
4968 end_sequence ();
4969 }
4970 else
4971 emit_move_insn (parmreg, DECL_RTL (parm));
4972 SET_DECL_RTL (parm, parmreg);
4973 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4974 now the parm. */
4975 stack_parm = 0;
4976 }
4977 #ifdef FUNCTION_ARG_CALLEE_COPIES
4978 /* If we are passed an arg by reference and it is our responsibility
4979 to make a copy, do it now.
4980 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4981 original argument, so we must recreate them in the call to
4982 FUNCTION_ARG_CALLEE_COPIES. */
4983 /* ??? Later add code to handle the case that if the argument isn't
4984 modified, don't do the copy. */
4985
4986 else if (passed_pointer
4987 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4988 TYPE_MODE (TREE_TYPE (passed_type)),
4989 TREE_TYPE (passed_type),
4990 named_arg)
4991 && ! TREE_ADDRESSABLE (TREE_TYPE (passed_type)))
4992 {
4993 rtx copy;
4994 tree type = TREE_TYPE (passed_type);
4995
4996 /* This sequence may involve a library call perhaps clobbering
4997 registers that haven't been copied to pseudos yet. */
4998
4999 push_to_sequence (conversion_insns);
5000
5001 if (!COMPLETE_TYPE_P (type)
5002 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5003 /* This is a variable sized object. */
5004 copy = gen_rtx_MEM (BLKmode,
5005 allocate_dynamic_stack_space
5006 (expr_size (parm), NULL_RTX,
5007 TYPE_ALIGN (type)));
5008 else
5009 copy = assign_stack_temp (TYPE_MODE (type),
5010 int_size_in_bytes (type), 1);
5011 set_mem_attributes (copy, parm, 1);
5012
5013 store_expr (parm, copy, 0);
5014 emit_move_insn (parmreg, XEXP (copy, 0));
5015 conversion_insns = get_insns ();
5016 did_conversion = 1;
5017 end_sequence ();
5018 }
5019 #endif /* FUNCTION_ARG_CALLEE_COPIES */
5020
5021 /* In any case, record the parm's desired stack location
5022 in case we later discover it must live in the stack.
5023
5024 If it is a COMPLEX value, store the stack location for both
5025 halves. */
5026
5027 if (GET_CODE (parmreg) == CONCAT)
5028 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
5029 else
5030 regno = REGNO (parmreg);
5031
5032 if (regno >= max_parm_reg)
5033 {
5034 rtx *new;
5035 int old_max_parm_reg = max_parm_reg;
5036
5037 /* It's slow to expand this one register at a time,
5038 but it's also rare and we need max_parm_reg to be
5039 precisely correct. */
5040 max_parm_reg = regno + 1;
5041 new = ggc_realloc (parm_reg_stack_loc,
5042 max_parm_reg * sizeof (rtx));
5043 memset (new + old_max_parm_reg, 0,
5044 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
5045 parm_reg_stack_loc = new;
5046 }
5047
5048 if (GET_CODE (parmreg) == CONCAT)
5049 {
5050 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
5051
5052 regnor = REGNO (gen_realpart (submode, parmreg));
5053 regnoi = REGNO (gen_imagpart (submode, parmreg));
5054
5055 if (stack_parm != 0)
5056 {
5057 parm_reg_stack_loc[regnor]
5058 = gen_realpart (submode, stack_parm);
5059 parm_reg_stack_loc[regnoi]
5060 = gen_imagpart (submode, stack_parm);
5061 }
5062 else
5063 {
5064 parm_reg_stack_loc[regnor] = 0;
5065 parm_reg_stack_loc[regnoi] = 0;
5066 }
5067 }
5068 else
5069 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5070
5071 /* Mark the register as eliminable if we did no conversion
5072 and it was copied from memory at a fixed offset,
5073 and the arg pointer was not copied to a pseudo-reg.
5074 If the arg pointer is a pseudo reg or the offset formed
5075 an invalid address, such memory-equivalences
5076 as we make here would screw up life analysis for it. */
5077 if (nominal_mode == passed_mode
5078 && ! did_conversion
5079 && stack_parm != 0
5080 && GET_CODE (stack_parm) == MEM
5081 && locate.offset.var == 0
5082 && reg_mentioned_p (virtual_incoming_args_rtx,
5083 XEXP (stack_parm, 0)))
5084 {
5085 rtx linsn = get_last_insn ();
5086 rtx sinsn, set;
5087
5088 /* Mark complex types separately. */
5089 if (GET_CODE (parmreg) == CONCAT)
5090 /* Scan backwards for the set of the real and
5091 imaginary parts. */
5092 for (sinsn = linsn; sinsn != 0;
5093 sinsn = prev_nonnote_insn (sinsn))
5094 {
5095 set = single_set (sinsn);
5096 if (set != 0
5097 && SET_DEST (set) == regno_reg_rtx [regnoi])
5098 REG_NOTES (sinsn)
5099 = gen_rtx_EXPR_LIST (REG_EQUIV,
5100 parm_reg_stack_loc[regnoi],
5101 REG_NOTES (sinsn));
5102 else if (set != 0
5103 && SET_DEST (set) == regno_reg_rtx [regnor])
5104 REG_NOTES (sinsn)
5105 = gen_rtx_EXPR_LIST (REG_EQUIV,
5106 parm_reg_stack_loc[regnor],
5107 REG_NOTES (sinsn));
5108 }
5109 else if ((set = single_set (linsn)) != 0
5110 && SET_DEST (set) == parmreg)
5111 REG_NOTES (linsn)
5112 = gen_rtx_EXPR_LIST (REG_EQUIV,
5113 stack_parm, REG_NOTES (linsn));
5114 }
5115
5116 /* For pointer data type, suggest pointer register. */
5117 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5118 mark_reg_pointer (parmreg,
5119 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5120
5121 /* If something wants our address, try to use ADDRESSOF. */
5122 if (TREE_ADDRESSABLE (parm))
5123 {
5124 /* If we end up putting something into the stack,
5125 fixup_var_refs_insns will need to make a pass over
5126 all the instructions. It looks through the pending
5127 sequences -- but it can't see the ones in the
5128 CONVERSION_INSNS, if they're not on the sequence
5129 stack. So, we go back to that sequence, just so that
5130 the fixups will happen. */
5131 push_to_sequence (conversion_insns);
5132 put_var_into_stack (parm, /*rescan=*/true);
5133 conversion_insns = get_insns ();
5134 end_sequence ();
5135 }
5136 }
5137 else
5138 {
5139 /* Value must be stored in the stack slot STACK_PARM
5140 during function execution. */
5141
5142 if (promoted_mode != nominal_mode)
5143 {
5144 /* Conversion is required. */
5145 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5146
5147 emit_move_insn (tempreg, validize_mem (entry_parm));
5148
5149 push_to_sequence (conversion_insns);
5150 entry_parm = convert_to_mode (nominal_mode, tempreg,
5151 TREE_UNSIGNED (TREE_TYPE (parm)));
5152 if (stack_parm)
5153 /* ??? This may need a big-endian conversion on sparc64. */
5154 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5155
5156 conversion_insns = get_insns ();
5157 did_conversion = 1;
5158 end_sequence ();
5159 }
5160
5161 if (entry_parm != stack_parm)
5162 {
5163 if (stack_parm == 0)
5164 {
5165 stack_parm
5166 = assign_stack_local (GET_MODE (entry_parm),
5167 GET_MODE_SIZE (GET_MODE (entry_parm)),
5168 0);
5169 set_mem_attributes (stack_parm, parm, 1);
5170 }
5171
5172 if (promoted_mode != nominal_mode)
5173 {
5174 push_to_sequence (conversion_insns);
5175 emit_move_insn (validize_mem (stack_parm),
5176 validize_mem (entry_parm));
5177 conversion_insns = get_insns ();
5178 end_sequence ();
5179 }
5180 else
5181 emit_move_insn (validize_mem (stack_parm),
5182 validize_mem (entry_parm));
5183 }
5184
5185 SET_DECL_RTL (parm, stack_parm);
5186 }
5187 }
5188
5189 if (SPLIT_COMPLEX_ARGS && fnargs != orig_fnargs)
5190 {
5191 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5192 {
5193 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE)
5194 {
5195 SET_DECL_RTL (parm,
5196 gen_rtx_CONCAT (DECL_MODE (parm),
5197 DECL_RTL (fnargs),
5198 DECL_RTL (TREE_CHAIN (fnargs))));
5199 DECL_INCOMING_RTL (parm)
5200 = gen_rtx_CONCAT (DECL_MODE (parm),
5201 DECL_INCOMING_RTL (fnargs),
5202 DECL_INCOMING_RTL (TREE_CHAIN (fnargs)));
5203 fnargs = TREE_CHAIN (fnargs);
5204 }
5205 else
5206 {
5207 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5208 DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
5209 }
5210 fnargs = TREE_CHAIN (fnargs);
5211 }
5212 }
5213
5214 /* Output all parameter conversion instructions (possibly including calls)
5215 now that all parameters have been copied out of hard registers. */
5216 emit_insn (conversion_insns);
5217
5218 /* If we are receiving a struct value address as the first argument, set up
5219 the RTL for the function result. As this might require code to convert
5220 the transmitted address to Pmode, we do this here to ensure that possible
5221 preliminary conversions of the address have been emitted already. */
5222 if (function_result_decl)
5223 {
5224 tree result = DECL_RESULT (fndecl);
5225 rtx addr = DECL_RTL (function_result_decl);
5226 rtx x;
5227
5228 addr = convert_memory_address (Pmode, addr);
5229 x = gen_rtx_MEM (DECL_MODE (result), addr);
5230 set_mem_attributes (x, result, 1);
5231 SET_DECL_RTL (result, x);
5232 }
5233
5234 last_parm_insn = get_last_insn ();
5235
5236 current_function_args_size = stack_args_size.constant;
5237
5238 /* Adjust function incoming argument size for alignment and
5239 minimum length. */
5240
5241 #ifdef REG_PARM_STACK_SPACE
5242 #ifndef MAYBE_REG_PARM_STACK_SPACE
5243 current_function_args_size = MAX (current_function_args_size,
5244 REG_PARM_STACK_SPACE (fndecl));
5245 #endif
5246 #endif
5247
5248 current_function_args_size
5249 = ((current_function_args_size + STACK_BYTES - 1)
5250 / STACK_BYTES) * STACK_BYTES;
5251
5252 #ifdef ARGS_GROW_DOWNWARD
5253 current_function_arg_offset_rtx
5254 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5255 : expand_expr (size_diffop (stack_args_size.var,
5256 size_int (-stack_args_size.constant)),
5257 NULL_RTX, VOIDmode, 0));
5258 #else
5259 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5260 #endif
5261
5262 /* See how many bytes, if any, of its args a function should try to pop
5263 on return. */
5264
5265 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5266 current_function_args_size);
5267
5268 /* For stdarg.h function, save info about
5269 regs and stack space used by the named args. */
5270
5271 current_function_args_info = args_so_far;
5272
5273 /* Set the rtx used for the function return value. Put this in its
5274 own variable so any optimizers that need this information don't have
5275 to include tree.h. Do this here so it gets done when an inlined
5276 function gets output. */
5277
5278 current_function_return_rtx
5279 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5280 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5281
5282 /* If scalar return value was computed in a pseudo-reg, or was a named
5283 return value that got dumped to the stack, copy that to the hard
5284 return register. */
5285 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5286 {
5287 tree decl_result = DECL_RESULT (fndecl);
5288 rtx decl_rtl = DECL_RTL (decl_result);
5289
5290 if (REG_P (decl_rtl)
5291 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5292 : DECL_REGISTER (decl_result))
5293 {
5294 rtx real_decl_rtl;
5295
5296 #ifdef FUNCTION_OUTGOING_VALUE
5297 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5298 fndecl);
5299 #else
5300 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5301 fndecl);
5302 #endif
5303 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5304 /* The delay slot scheduler assumes that current_function_return_rtx
5305 holds the hard register containing the return value, not a
5306 temporary pseudo. */
5307 current_function_return_rtx = real_decl_rtl;
5308 }
5309 }
5310 }
5311
5312 /* If ARGS contains entries with complex types, split the entry into two
5313 entries of the component type. Return a new list of substitutions are
5314 needed, else the old list. */
5315
5316 static tree
5317 split_complex_args (tree args)
5318 {
5319 tree p;
5320
5321 /* Before allocating memory, check for the common case of no complex. */
5322 for (p = args; p; p = TREE_CHAIN (p))
5323 if (TREE_CODE (TREE_TYPE (p)) == COMPLEX_TYPE)
5324 goto found;
5325 return args;
5326
5327 found:
5328 args = copy_list (args);
5329
5330 for (p = args; p; p = TREE_CHAIN (p))
5331 {
5332 tree type = TREE_TYPE (p);
5333 if (TREE_CODE (type) == COMPLEX_TYPE)
5334 {
5335 tree decl;
5336 tree subtype = TREE_TYPE (type);
5337
5338 /* Rewrite the PARM_DECL's type with its component. */
5339 TREE_TYPE (p) = subtype;
5340 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5341 DECL_MODE (p) = VOIDmode;
5342 DECL_SIZE (p) = NULL;
5343 DECL_SIZE_UNIT (p) = NULL;
5344 layout_decl (p, 0);
5345
5346 /* Build a second synthetic decl. */
5347 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5348 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5349 layout_decl (decl, 0);
5350
5351 /* Splice it in; skip the new decl. */
5352 TREE_CHAIN (decl) = TREE_CHAIN (p);
5353 TREE_CHAIN (p) = decl;
5354 p = decl;
5355 }
5356 }
5357
5358 return args;
5359 }
5360 \f
5361 /* Indicate whether REGNO is an incoming argument to the current function
5362 that was promoted to a wider mode. If so, return the RTX for the
5363 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5364 that REGNO is promoted from and whether the promotion was signed or
5365 unsigned. */
5366
5367 rtx
5368 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5369 {
5370 tree arg;
5371
5372 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5373 arg = TREE_CHAIN (arg))
5374 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5375 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5376 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5377 {
5378 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5379 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5380
5381 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5382 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5383 && mode != DECL_MODE (arg))
5384 {
5385 *pmode = DECL_MODE (arg);
5386 *punsignedp = unsignedp;
5387 return DECL_INCOMING_RTL (arg);
5388 }
5389 }
5390
5391 return 0;
5392 }
5393
5394 \f
5395 /* Compute the size and offset from the start of the stacked arguments for a
5396 parm passed in mode PASSED_MODE and with type TYPE.
5397
5398 INITIAL_OFFSET_PTR points to the current offset into the stacked
5399 arguments.
5400
5401 The starting offset and size for this parm are returned in
5402 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5403 nonzero, the offset is that of stack slot, which is returned in
5404 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5405 padding required from the initial offset ptr to the stack slot.
5406
5407 IN_REGS is nonzero if the argument will be passed in registers. It will
5408 never be set if REG_PARM_STACK_SPACE is not defined.
5409
5410 FNDECL is the function in which the argument was defined.
5411
5412 There are two types of rounding that are done. The first, controlled by
5413 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5414 list to be aligned to the specific boundary (in bits). This rounding
5415 affects the initial and starting offsets, but not the argument size.
5416
5417 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5418 optionally rounds the size of the parm to PARM_BOUNDARY. The
5419 initial offset is not affected by this rounding, while the size always
5420 is and the starting offset may be. */
5421
5422 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5423 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5424 callers pass in the total size of args so far as
5425 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5426
5427 void
5428 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5429 int partial, tree fndecl ATTRIBUTE_UNUSED,
5430 struct args_size *initial_offset_ptr,
5431 struct locate_and_pad_arg_data *locate)
5432 {
5433 tree sizetree;
5434 enum direction where_pad;
5435 int boundary;
5436 int reg_parm_stack_space = 0;
5437 int part_size_in_regs;
5438
5439 #ifdef REG_PARM_STACK_SPACE
5440 #ifdef MAYBE_REG_PARM_STACK_SPACE
5441 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5442 #else
5443 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5444 #endif
5445
5446 /* If we have found a stack parm before we reach the end of the
5447 area reserved for registers, skip that area. */
5448 if (! in_regs)
5449 {
5450 if (reg_parm_stack_space > 0)
5451 {
5452 if (initial_offset_ptr->var)
5453 {
5454 initial_offset_ptr->var
5455 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5456 ssize_int (reg_parm_stack_space));
5457 initial_offset_ptr->constant = 0;
5458 }
5459 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5460 initial_offset_ptr->constant = reg_parm_stack_space;
5461 }
5462 }
5463 #endif /* REG_PARM_STACK_SPACE */
5464
5465 part_size_in_regs = 0;
5466 if (reg_parm_stack_space == 0)
5467 part_size_in_regs = ((partial * UNITS_PER_WORD)
5468 / (PARM_BOUNDARY / BITS_PER_UNIT)
5469 * (PARM_BOUNDARY / BITS_PER_UNIT));
5470
5471 sizetree
5472 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5473 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5474 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5475 locate->where_pad = where_pad;
5476
5477 #ifdef ARGS_GROW_DOWNWARD
5478 locate->slot_offset.constant = -initial_offset_ptr->constant;
5479 if (initial_offset_ptr->var)
5480 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5481 initial_offset_ptr->var);
5482
5483 {
5484 tree s2 = sizetree;
5485 if (where_pad != none
5486 && (!host_integerp (sizetree, 1)
5487 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5488 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5489 SUB_PARM_SIZE (locate->slot_offset, s2);
5490 }
5491
5492 locate->slot_offset.constant += part_size_in_regs;
5493
5494 if (!in_regs
5495 #ifdef REG_PARM_STACK_SPACE
5496 || REG_PARM_STACK_SPACE (fndecl) > 0
5497 #endif
5498 )
5499 pad_to_arg_alignment (&locate->slot_offset, boundary,
5500 &locate->alignment_pad);
5501
5502 locate->size.constant = (-initial_offset_ptr->constant
5503 - locate->slot_offset.constant);
5504 if (initial_offset_ptr->var)
5505 locate->size.var = size_binop (MINUS_EXPR,
5506 size_binop (MINUS_EXPR,
5507 ssize_int (0),
5508 initial_offset_ptr->var),
5509 locate->slot_offset.var);
5510
5511 /* Pad_below needs the pre-rounded size to know how much to pad
5512 below. */
5513 locate->offset = locate->slot_offset;
5514 if (where_pad == downward)
5515 pad_below (&locate->offset, passed_mode, sizetree);
5516
5517 #else /* !ARGS_GROW_DOWNWARD */
5518 if (!in_regs
5519 #ifdef REG_PARM_STACK_SPACE
5520 || REG_PARM_STACK_SPACE (fndecl) > 0
5521 #endif
5522 )
5523 pad_to_arg_alignment (initial_offset_ptr, boundary,
5524 &locate->alignment_pad);
5525 locate->slot_offset = *initial_offset_ptr;
5526
5527 #ifdef PUSH_ROUNDING
5528 if (passed_mode != BLKmode)
5529 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5530 #endif
5531
5532 /* Pad_below needs the pre-rounded size to know how much to pad below
5533 so this must be done before rounding up. */
5534 locate->offset = locate->slot_offset;
5535 if (where_pad == downward)
5536 pad_below (&locate->offset, passed_mode, sizetree);
5537
5538 if (where_pad != none
5539 && (!host_integerp (sizetree, 1)
5540 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5541 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5542
5543 ADD_PARM_SIZE (locate->size, sizetree);
5544
5545 locate->size.constant -= part_size_in_regs;
5546 #endif /* ARGS_GROW_DOWNWARD */
5547 }
5548
5549 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5550 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5551
5552 static void
5553 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5554 struct args_size *alignment_pad)
5555 {
5556 tree save_var = NULL_TREE;
5557 HOST_WIDE_INT save_constant = 0;
5558 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5559 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
5560
5561 #ifdef SPARC_STACK_BOUNDARY_HACK
5562 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
5563 higher than the real alignment of %sp. However, when it does this,
5564 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
5565 This is a temporary hack while the sparc port is fixed. */
5566 if (SPARC_STACK_BOUNDARY_HACK)
5567 sp_offset = 0;
5568 #endif
5569
5570 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5571 {
5572 save_var = offset_ptr->var;
5573 save_constant = offset_ptr->constant;
5574 }
5575
5576 alignment_pad->var = NULL_TREE;
5577 alignment_pad->constant = 0;
5578
5579 if (boundary > BITS_PER_UNIT)
5580 {
5581 if (offset_ptr->var)
5582 {
5583 tree sp_offset_tree = ssize_int (sp_offset);
5584 tree offset = size_binop (PLUS_EXPR,
5585 ARGS_SIZE_TREE (*offset_ptr),
5586 sp_offset_tree);
5587 #ifdef ARGS_GROW_DOWNWARD
5588 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
5589 #else
5590 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
5591 #endif
5592
5593 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
5594 /* ARGS_SIZE_TREE includes constant term. */
5595 offset_ptr->constant = 0;
5596 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5597 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5598 save_var);
5599 }
5600 else
5601 {
5602 offset_ptr->constant = -sp_offset +
5603 #ifdef ARGS_GROW_DOWNWARD
5604 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5605 #else
5606 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
5607 #endif
5608 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5609 alignment_pad->constant = offset_ptr->constant - save_constant;
5610 }
5611 }
5612 }
5613
5614 static void
5615 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5616 {
5617 if (passed_mode != BLKmode)
5618 {
5619 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5620 offset_ptr->constant
5621 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5622 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5623 - GET_MODE_SIZE (passed_mode));
5624 }
5625 else
5626 {
5627 if (TREE_CODE (sizetree) != INTEGER_CST
5628 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5629 {
5630 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5631 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5632 /* Add it in. */
5633 ADD_PARM_SIZE (*offset_ptr, s2);
5634 SUB_PARM_SIZE (*offset_ptr, sizetree);
5635 }
5636 }
5637 }
5638 \f
5639 /* Walk the tree of blocks describing the binding levels within a function
5640 and warn about uninitialized variables.
5641 This is done after calling flow_analysis and before global_alloc
5642 clobbers the pseudo-regs to hard regs. */
5643
5644 void
5645 uninitialized_vars_warning (tree block)
5646 {
5647 tree decl, sub;
5648 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5649 {
5650 if (warn_uninitialized
5651 && TREE_CODE (decl) == VAR_DECL
5652 /* These warnings are unreliable for and aggregates
5653 because assigning the fields one by one can fail to convince
5654 flow.c that the entire aggregate was initialized.
5655 Unions are troublesome because members may be shorter. */
5656 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5657 && DECL_RTL (decl) != 0
5658 && GET_CODE (DECL_RTL (decl)) == REG
5659 /* Global optimizations can make it difficult to determine if a
5660 particular variable has been initialized. However, a VAR_DECL
5661 with a nonzero DECL_INITIAL had an initializer, so do not
5662 claim it is potentially uninitialized.
5663
5664 When the DECL_INITIAL is NULL call the language hook to tell us
5665 if we want to warn. */
5666 && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
5667 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5668 warning ("%J'%D' might be used uninitialized in this function",
5669 decl, decl);
5670 if (extra_warnings
5671 && TREE_CODE (decl) == VAR_DECL
5672 && DECL_RTL (decl) != 0
5673 && GET_CODE (DECL_RTL (decl)) == REG
5674 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5675 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
5676 decl, decl);
5677 }
5678 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5679 uninitialized_vars_warning (sub);
5680 }
5681
5682 /* Do the appropriate part of uninitialized_vars_warning
5683 but for arguments instead of local variables. */
5684
5685 void
5686 setjmp_args_warning (void)
5687 {
5688 tree decl;
5689 for (decl = DECL_ARGUMENTS (current_function_decl);
5690 decl; decl = TREE_CHAIN (decl))
5691 if (DECL_RTL (decl) != 0
5692 && GET_CODE (DECL_RTL (decl)) == REG
5693 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5694 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
5695 decl, decl);
5696 }
5697
5698 /* If this function call setjmp, put all vars into the stack
5699 unless they were declared `register'. */
5700
5701 void
5702 setjmp_protect (tree block)
5703 {
5704 tree decl, sub;
5705 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5706 if ((TREE_CODE (decl) == VAR_DECL
5707 || TREE_CODE (decl) == PARM_DECL)
5708 && DECL_RTL (decl) != 0
5709 && (GET_CODE (DECL_RTL (decl)) == REG
5710 || (GET_CODE (DECL_RTL (decl)) == MEM
5711 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5712 /* If this variable came from an inline function, it must be
5713 that its life doesn't overlap the setjmp. If there was a
5714 setjmp in the function, it would already be in memory. We
5715 must exclude such variable because their DECL_RTL might be
5716 set to strange things such as virtual_stack_vars_rtx. */
5717 && ! DECL_FROM_INLINE (decl)
5718 && (
5719 #ifdef NON_SAVING_SETJMP
5720 /* If longjmp doesn't restore the registers,
5721 don't put anything in them. */
5722 NON_SAVING_SETJMP
5723 ||
5724 #endif
5725 ! DECL_REGISTER (decl)))
5726 put_var_into_stack (decl, /*rescan=*/true);
5727 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5728 setjmp_protect (sub);
5729 }
5730 \f
5731 /* Like the previous function, but for args instead of local variables. */
5732
5733 void
5734 setjmp_protect_args (void)
5735 {
5736 tree decl;
5737 for (decl = DECL_ARGUMENTS (current_function_decl);
5738 decl; decl = TREE_CHAIN (decl))
5739 if ((TREE_CODE (decl) == VAR_DECL
5740 || TREE_CODE (decl) == PARM_DECL)
5741 && DECL_RTL (decl) != 0
5742 && (GET_CODE (DECL_RTL (decl)) == REG
5743 || (GET_CODE (DECL_RTL (decl)) == MEM
5744 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5745 && (
5746 /* If longjmp doesn't restore the registers,
5747 don't put anything in them. */
5748 #ifdef NON_SAVING_SETJMP
5749 NON_SAVING_SETJMP
5750 ||
5751 #endif
5752 ! DECL_REGISTER (decl)))
5753 put_var_into_stack (decl, /*rescan=*/true);
5754 }
5755 \f
5756 /* Return the context-pointer register corresponding to DECL,
5757 or 0 if it does not need one. */
5758
5759 rtx
5760 lookup_static_chain (tree decl)
5761 {
5762 tree context = decl_function_context (decl);
5763 tree link;
5764
5765 if (context == 0
5766 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5767 return 0;
5768
5769 /* We treat inline_function_decl as an alias for the current function
5770 because that is the inline function whose vars, types, etc.
5771 are being merged into the current function.
5772 See expand_inline_function. */
5773 if (context == current_function_decl || context == inline_function_decl)
5774 return virtual_stack_vars_rtx;
5775
5776 for (link = context_display; link; link = TREE_CHAIN (link))
5777 if (TREE_PURPOSE (link) == context)
5778 return RTL_EXPR_RTL (TREE_VALUE (link));
5779
5780 abort ();
5781 }
5782 \f
5783 /* Convert a stack slot address ADDR for variable VAR
5784 (from a containing function)
5785 into an address valid in this function (using a static chain). */
5786
5787 rtx
5788 fix_lexical_addr (rtx addr, tree var)
5789 {
5790 rtx basereg;
5791 HOST_WIDE_INT displacement;
5792 tree context = decl_function_context (var);
5793 struct function *fp;
5794 rtx base = 0;
5795
5796 /* If this is the present function, we need not do anything. */
5797 if (context == current_function_decl || context == inline_function_decl)
5798 return addr;
5799
5800 fp = find_function_data (context);
5801
5802 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5803 addr = XEXP (XEXP (addr, 0), 0);
5804
5805 /* Decode given address as base reg plus displacement. */
5806 if (GET_CODE (addr) == REG)
5807 basereg = addr, displacement = 0;
5808 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5809 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5810 else
5811 abort ();
5812
5813 /* We accept vars reached via the containing function's
5814 incoming arg pointer and via its stack variables pointer. */
5815 if (basereg == fp->internal_arg_pointer)
5816 {
5817 /* If reached via arg pointer, get the arg pointer value
5818 out of that function's stack frame.
5819
5820 There are two cases: If a separate ap is needed, allocate a
5821 slot in the outer function for it and dereference it that way.
5822 This is correct even if the real ap is actually a pseudo.
5823 Otherwise, just adjust the offset from the frame pointer to
5824 compensate. */
5825
5826 #ifdef NEED_SEPARATE_AP
5827 rtx addr;
5828
5829 addr = get_arg_pointer_save_area (fp);
5830 addr = fix_lexical_addr (XEXP (addr, 0), var);
5831 addr = memory_address (Pmode, addr);
5832
5833 base = gen_rtx_MEM (Pmode, addr);
5834 set_mem_alias_set (base, get_frame_alias_set ());
5835 base = copy_to_reg (base);
5836 #else
5837 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5838 base = lookup_static_chain (var);
5839 #endif
5840 }
5841
5842 else if (basereg == virtual_stack_vars_rtx)
5843 {
5844 /* This is the same code as lookup_static_chain, duplicated here to
5845 avoid an extra call to decl_function_context. */
5846 tree link;
5847
5848 for (link = context_display; link; link = TREE_CHAIN (link))
5849 if (TREE_PURPOSE (link) == context)
5850 {
5851 base = RTL_EXPR_RTL (TREE_VALUE (link));
5852 break;
5853 }
5854 }
5855
5856 if (base == 0)
5857 abort ();
5858
5859 /* Use same offset, relative to appropriate static chain or argument
5860 pointer. */
5861 return plus_constant (base, displacement);
5862 }
5863 \f
5864 /* Return the address of the trampoline for entering nested fn FUNCTION.
5865 If necessary, allocate a trampoline (in the stack frame)
5866 and emit rtl to initialize its contents (at entry to this function). */
5867
5868 rtx
5869 trampoline_address (tree function)
5870 {
5871 tree link;
5872 tree rtlexp;
5873 rtx tramp;
5874 struct function *fp;
5875 tree fn_context;
5876
5877 /* Find an existing trampoline and return it. */
5878 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5879 if (TREE_PURPOSE (link) == function)
5880 return
5881 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5882
5883 for (fp = outer_function_chain; fp; fp = fp->outer)
5884 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5885 if (TREE_PURPOSE (link) == function)
5886 {
5887 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5888 function);
5889 return adjust_trampoline_addr (tramp);
5890 }
5891
5892 /* None exists; we must make one. */
5893
5894 /* Find the `struct function' for the function containing FUNCTION. */
5895 fp = 0;
5896 fn_context = decl_function_context (function);
5897 if (fn_context != current_function_decl
5898 && fn_context != inline_function_decl)
5899 fp = find_function_data (fn_context);
5900
5901 /* Allocate run-time space for this trampoline. */
5902 /* If rounding needed, allocate extra space
5903 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5904 #define TRAMPOLINE_REAL_SIZE \
5905 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5906 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5907 fp ? fp : cfun);
5908 /* Record the trampoline for reuse and note it for later initialization
5909 by expand_function_end. */
5910 if (fp != 0)
5911 {
5912 rtlexp = make_node (RTL_EXPR);
5913 RTL_EXPR_RTL (rtlexp) = tramp;
5914 fp->x_trampoline_list = tree_cons (function, rtlexp,
5915 fp->x_trampoline_list);
5916 }
5917 else
5918 {
5919 /* Make the RTL_EXPR node temporary, not momentary, so that the
5920 trampoline_list doesn't become garbage. */
5921 rtlexp = make_node (RTL_EXPR);
5922
5923 RTL_EXPR_RTL (rtlexp) = tramp;
5924 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5925 }
5926
5927 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5928 return adjust_trampoline_addr (tramp);
5929 }
5930
5931 /* Given a trampoline address,
5932 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5933
5934 static rtx
5935 round_trampoline_addr (rtx tramp)
5936 {
5937 /* Round address up to desired boundary. */
5938 rtx temp = gen_reg_rtx (Pmode);
5939 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5940 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5941
5942 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5943 temp, 0, OPTAB_LIB_WIDEN);
5944 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5945 temp, 0, OPTAB_LIB_WIDEN);
5946
5947 return tramp;
5948 }
5949
5950 /* Given a trampoline address, round it then apply any
5951 platform-specific adjustments so that the result can be used for a
5952 function call . */
5953
5954 static rtx
5955 adjust_trampoline_addr (rtx tramp)
5956 {
5957 tramp = round_trampoline_addr (tramp);
5958 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5959 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5960 #endif
5961 return tramp;
5962 }
5963 \f
5964 /* Put all this function's BLOCK nodes including those that are chained
5965 onto the first block into a vector, and return it.
5966 Also store in each NOTE for the beginning or end of a block
5967 the index of that block in the vector.
5968 The arguments are BLOCK, the chain of top-level blocks of the function,
5969 and INSNS, the insn chain of the function. */
5970
5971 void
5972 identify_blocks (void)
5973 {
5974 int n_blocks;
5975 tree *block_vector, *last_block_vector;
5976 tree *block_stack;
5977 tree block = DECL_INITIAL (current_function_decl);
5978
5979 if (block == 0)
5980 return;
5981
5982 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5983 depth-first order. */
5984 block_vector = get_block_vector (block, &n_blocks);
5985 block_stack = xmalloc (n_blocks * sizeof (tree));
5986
5987 last_block_vector = identify_blocks_1 (get_insns (),
5988 block_vector + 1,
5989 block_vector + n_blocks,
5990 block_stack);
5991
5992 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5993 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5994 if (0 && last_block_vector != block_vector + n_blocks)
5995 abort ();
5996
5997 free (block_vector);
5998 free (block_stack);
5999 }
6000
6001 /* Subroutine of identify_blocks. Do the block substitution on the
6002 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
6003
6004 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
6005 BLOCK_VECTOR is incremented for each block seen. */
6006
6007 static tree *
6008 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
6009 tree *orig_block_stack)
6010 {
6011 rtx insn;
6012 tree *block_stack = orig_block_stack;
6013
6014 for (insn = insns; insn; insn = NEXT_INSN (insn))
6015 {
6016 if (GET_CODE (insn) == NOTE)
6017 {
6018 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6019 {
6020 tree b;
6021
6022 /* If there are more block notes than BLOCKs, something
6023 is badly wrong. */
6024 if (block_vector == end_block_vector)
6025 abort ();
6026
6027 b = *block_vector++;
6028 NOTE_BLOCK (insn) = b;
6029 *block_stack++ = b;
6030 }
6031 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6032 {
6033 /* If there are more NOTE_INSN_BLOCK_ENDs than
6034 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
6035 if (block_stack == orig_block_stack)
6036 abort ();
6037
6038 NOTE_BLOCK (insn) = *--block_stack;
6039 }
6040 }
6041 else if (GET_CODE (insn) == CALL_INSN
6042 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6043 {
6044 rtx cp = PATTERN (insn);
6045
6046 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
6047 end_block_vector, block_stack);
6048 if (XEXP (cp, 1))
6049 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
6050 end_block_vector, block_stack);
6051 if (XEXP (cp, 2))
6052 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
6053 end_block_vector, block_stack);
6054 }
6055 }
6056
6057 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
6058 something is badly wrong. */
6059 if (block_stack != orig_block_stack)
6060 abort ();
6061
6062 return block_vector;
6063 }
6064
6065 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
6066 and create duplicate blocks. */
6067 /* ??? Need an option to either create block fragments or to create
6068 abstract origin duplicates of a source block. It really depends
6069 on what optimization has been performed. */
6070
6071 void
6072 reorder_blocks (void)
6073 {
6074 tree block = DECL_INITIAL (current_function_decl);
6075 varray_type block_stack;
6076
6077 if (block == NULL_TREE)
6078 return;
6079
6080 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
6081
6082 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6083 reorder_blocks_0 (block);
6084
6085 /* Prune the old trees away, so that they don't get in the way. */
6086 BLOCK_SUBBLOCKS (block) = NULL_TREE;
6087 BLOCK_CHAIN (block) = NULL_TREE;
6088
6089 /* Recreate the block tree from the note nesting. */
6090 reorder_blocks_1 (get_insns (), block, &block_stack);
6091 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6092
6093 /* Remove deleted blocks from the block fragment chains. */
6094 reorder_fix_fragments (block);
6095 }
6096
6097 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
6098
6099 static void
6100 reorder_blocks_0 (tree block)
6101 {
6102 while (block)
6103 {
6104 TREE_ASM_WRITTEN (block) = 0;
6105 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6106 block = BLOCK_CHAIN (block);
6107 }
6108 }
6109
6110 static void
6111 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
6112 {
6113 rtx insn;
6114
6115 for (insn = insns; insn; insn = NEXT_INSN (insn))
6116 {
6117 if (GET_CODE (insn) == NOTE)
6118 {
6119 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6120 {
6121 tree block = NOTE_BLOCK (insn);
6122
6123 /* If we have seen this block before, that means it now
6124 spans multiple address regions. Create a new fragment. */
6125 if (TREE_ASM_WRITTEN (block))
6126 {
6127 tree new_block = copy_node (block);
6128 tree origin;
6129
6130 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6131 ? BLOCK_FRAGMENT_ORIGIN (block)
6132 : block);
6133 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6134 BLOCK_FRAGMENT_CHAIN (new_block)
6135 = BLOCK_FRAGMENT_CHAIN (origin);
6136 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6137
6138 NOTE_BLOCK (insn) = new_block;
6139 block = new_block;
6140 }
6141
6142 BLOCK_SUBBLOCKS (block) = 0;
6143 TREE_ASM_WRITTEN (block) = 1;
6144 /* When there's only one block for the entire function,
6145 current_block == block and we mustn't do this, it
6146 will cause infinite recursion. */
6147 if (block != current_block)
6148 {
6149 BLOCK_SUPERCONTEXT (block) = current_block;
6150 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6151 BLOCK_SUBBLOCKS (current_block) = block;
6152 current_block = block;
6153 }
6154 VARRAY_PUSH_TREE (*p_block_stack, block);
6155 }
6156 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6157 {
6158 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6159 VARRAY_POP (*p_block_stack);
6160 BLOCK_SUBBLOCKS (current_block)
6161 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6162 current_block = BLOCK_SUPERCONTEXT (current_block);
6163 }
6164 }
6165 else if (GET_CODE (insn) == CALL_INSN
6166 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6167 {
6168 rtx cp = PATTERN (insn);
6169 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6170 if (XEXP (cp, 1))
6171 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6172 if (XEXP (cp, 2))
6173 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6174 }
6175 }
6176 }
6177
6178 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6179 appears in the block tree, select one of the fragments to become
6180 the new origin block. */
6181
6182 static void
6183 reorder_fix_fragments (tree block)
6184 {
6185 while (block)
6186 {
6187 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6188 tree new_origin = NULL_TREE;
6189
6190 if (dup_origin)
6191 {
6192 if (! TREE_ASM_WRITTEN (dup_origin))
6193 {
6194 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6195
6196 /* Find the first of the remaining fragments. There must
6197 be at least one -- the current block. */
6198 while (! TREE_ASM_WRITTEN (new_origin))
6199 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6200 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6201 }
6202 }
6203 else if (! dup_origin)
6204 new_origin = block;
6205
6206 /* Re-root the rest of the fragments to the new origin. In the
6207 case that DUP_ORIGIN was null, that means BLOCK was the origin
6208 of a chain of fragments and we want to remove those fragments
6209 that didn't make it to the output. */
6210 if (new_origin)
6211 {
6212 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6213 tree chain = *pp;
6214
6215 while (chain)
6216 {
6217 if (TREE_ASM_WRITTEN (chain))
6218 {
6219 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6220 *pp = chain;
6221 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6222 }
6223 chain = BLOCK_FRAGMENT_CHAIN (chain);
6224 }
6225 *pp = NULL_TREE;
6226 }
6227
6228 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6229 block = BLOCK_CHAIN (block);
6230 }
6231 }
6232
6233 /* Reverse the order of elements in the chain T of blocks,
6234 and return the new head of the chain (old last element). */
6235
6236 static tree
6237 blocks_nreverse (tree t)
6238 {
6239 tree prev = 0, decl, next;
6240 for (decl = t; decl; decl = next)
6241 {
6242 next = BLOCK_CHAIN (decl);
6243 BLOCK_CHAIN (decl) = prev;
6244 prev = decl;
6245 }
6246 return prev;
6247 }
6248
6249 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6250 non-NULL, list them all into VECTOR, in a depth-first preorder
6251 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6252 blocks. */
6253
6254 static int
6255 all_blocks (tree block, tree *vector)
6256 {
6257 int n_blocks = 0;
6258
6259 while (block)
6260 {
6261 TREE_ASM_WRITTEN (block) = 0;
6262
6263 /* Record this block. */
6264 if (vector)
6265 vector[n_blocks] = block;
6266
6267 ++n_blocks;
6268
6269 /* Record the subblocks, and their subblocks... */
6270 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6271 vector ? vector + n_blocks : 0);
6272 block = BLOCK_CHAIN (block);
6273 }
6274
6275 return n_blocks;
6276 }
6277
6278 /* Return a vector containing all the blocks rooted at BLOCK. The
6279 number of elements in the vector is stored in N_BLOCKS_P. The
6280 vector is dynamically allocated; it is the caller's responsibility
6281 to call `free' on the pointer returned. */
6282
6283 static tree *
6284 get_block_vector (tree block, int *n_blocks_p)
6285 {
6286 tree *block_vector;
6287
6288 *n_blocks_p = all_blocks (block, NULL);
6289 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6290 all_blocks (block, block_vector);
6291
6292 return block_vector;
6293 }
6294
6295 static GTY(()) int next_block_index = 2;
6296
6297 /* Set BLOCK_NUMBER for all the blocks in FN. */
6298
6299 void
6300 number_blocks (tree fn)
6301 {
6302 int i;
6303 int n_blocks;
6304 tree *block_vector;
6305
6306 /* For SDB and XCOFF debugging output, we start numbering the blocks
6307 from 1 within each function, rather than keeping a running
6308 count. */
6309 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6310 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6311 next_block_index = 1;
6312 #endif
6313
6314 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6315
6316 /* The top-level BLOCK isn't numbered at all. */
6317 for (i = 1; i < n_blocks; ++i)
6318 /* We number the blocks from two. */
6319 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6320
6321 free (block_vector);
6322
6323 return;
6324 }
6325
6326 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6327
6328 tree
6329 debug_find_var_in_block_tree (tree var, tree block)
6330 {
6331 tree t;
6332
6333 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6334 if (t == var)
6335 return block;
6336
6337 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6338 {
6339 tree ret = debug_find_var_in_block_tree (var, t);
6340 if (ret)
6341 return ret;
6342 }
6343
6344 return NULL_TREE;
6345 }
6346 \f
6347 /* Allocate a function structure for FNDECL and set its contents
6348 to the defaults. */
6349
6350 void
6351 allocate_struct_function (tree fndecl)
6352 {
6353 tree result;
6354
6355 cfun = ggc_alloc_cleared (sizeof (struct function));
6356
6357 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6358
6359 cfun->stack_alignment_needed = STACK_BOUNDARY;
6360 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6361
6362 current_function_funcdef_no = funcdef_no++;
6363
6364 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6365
6366 init_stmt_for_function ();
6367 init_eh_for_function ();
6368 init_emit ();
6369 init_expr ();
6370 init_varasm_status (cfun);
6371
6372 (*lang_hooks.function.init) (cfun);
6373 if (init_machine_status)
6374 cfun->machine = (*init_machine_status) ();
6375
6376 if (fndecl == NULL)
6377 return;
6378
6379 DECL_SAVED_INSNS (fndecl) = cfun;
6380 cfun->decl = fndecl;
6381
6382 current_function_name = (*lang_hooks.decl_printable_name) (fndecl, 2);
6383
6384 result = DECL_RESULT (fndecl);
6385 if (aggregate_value_p (result, fndecl))
6386 {
6387 #ifdef PCC_STATIC_STRUCT_RETURN
6388 current_function_returns_pcc_struct = 1;
6389 #endif
6390 current_function_returns_struct = 1;
6391 }
6392
6393 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6394
6395 current_function_needs_context
6396 = (decl_function_context (current_function_decl) != 0
6397 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6398 }
6399
6400 /* Reset cfun, and other non-struct-function variables to defaults as
6401 appropriate for emitting rtl at the start of a function. */
6402
6403 static void
6404 prepare_function_start (tree fndecl)
6405 {
6406 if (fndecl && DECL_SAVED_INSNS (fndecl))
6407 cfun = DECL_SAVED_INSNS (fndecl);
6408 else
6409 allocate_struct_function (fndecl);
6410
6411 cse_not_expected = ! optimize;
6412
6413 /* Caller save not needed yet. */
6414 caller_save_needed = 0;
6415
6416 /* We haven't done register allocation yet. */
6417 reg_renumber = 0;
6418
6419 /* Indicate that we need to distinguish between the return value of the
6420 present function and the return value of a function being called. */
6421 rtx_equal_function_value_matters = 1;
6422
6423 /* Indicate that we have not instantiated virtual registers yet. */
6424 virtuals_instantiated = 0;
6425
6426 /* Indicate that we want CONCATs now. */
6427 generating_concat_p = 1;
6428
6429 /* Indicate we have no need of a frame pointer yet. */
6430 frame_pointer_needed = 0;
6431 }
6432
6433 /* Initialize the rtl expansion mechanism so that we can do simple things
6434 like generate sequences. This is used to provide a context during global
6435 initialization of some passes. */
6436 void
6437 init_dummy_function_start (void)
6438 {
6439 prepare_function_start (NULL);
6440 }
6441
6442 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6443 and initialize static variables for generating RTL for the statements
6444 of the function. */
6445
6446 void
6447 init_function_start (tree subr)
6448 {
6449 prepare_function_start (subr);
6450
6451 /* Within function body, compute a type's size as soon it is laid out. */
6452 immediate_size_expand++;
6453
6454 /* Prevent ever trying to delete the first instruction of a
6455 function. Also tell final how to output a linenum before the
6456 function prologue. Note linenums could be missing, e.g. when
6457 compiling a Java .class file. */
6458 if (DECL_SOURCE_LINE (subr))
6459 emit_line_note (DECL_SOURCE_LOCATION (subr));
6460
6461 /* Make sure first insn is a note even if we don't want linenums.
6462 This makes sure the first insn will never be deleted.
6463 Also, final expects a note to appear there. */
6464 emit_note (NOTE_INSN_DELETED);
6465
6466 /* Warn if this value is an aggregate type,
6467 regardless of which calling convention we are using for it. */
6468 if (warn_aggregate_return
6469 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6470 warning ("function returns an aggregate");
6471 }
6472
6473 /* Make sure all values used by the optimization passes have sane
6474 defaults. */
6475 void
6476 init_function_for_compilation (void)
6477 {
6478 reg_renumber = 0;
6479
6480 /* No prologue/epilogue insns yet. */
6481 VARRAY_GROW (prologue, 0);
6482 VARRAY_GROW (epilogue, 0);
6483 VARRAY_GROW (sibcall_epilogue, 0);
6484 }
6485
6486 /* Expand a call to __main at the beginning of a possible main function. */
6487
6488 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6489 #undef HAS_INIT_SECTION
6490 #define HAS_INIT_SECTION
6491 #endif
6492
6493 void
6494 expand_main_function (void)
6495 {
6496 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6497 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6498 {
6499 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6500 rtx tmp, seq;
6501
6502 start_sequence ();
6503 /* Forcibly align the stack. */
6504 #ifdef STACK_GROWS_DOWNWARD
6505 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6506 stack_pointer_rtx, 1, OPTAB_WIDEN);
6507 #else
6508 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6509 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6510 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6511 stack_pointer_rtx, 1, OPTAB_WIDEN);
6512 #endif
6513 if (tmp != stack_pointer_rtx)
6514 emit_move_insn (stack_pointer_rtx, tmp);
6515
6516 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6517 tmp = force_reg (Pmode, const0_rtx);
6518 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6519 seq = get_insns ();
6520 end_sequence ();
6521
6522 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6523 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6524 break;
6525 if (tmp)
6526 emit_insn_before (seq, tmp);
6527 else
6528 emit_insn (seq);
6529 }
6530 #endif
6531
6532 #ifndef HAS_INIT_SECTION
6533 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6534 #endif
6535 }
6536 \f
6537 /* The PENDING_SIZES represent the sizes of variable-sized types.
6538 Create RTL for the various sizes now (using temporary variables),
6539 so that we can refer to the sizes from the RTL we are generating
6540 for the current function. The PENDING_SIZES are a TREE_LIST. The
6541 TREE_VALUE of each node is a SAVE_EXPR. */
6542
6543 void
6544 expand_pending_sizes (tree pending_sizes)
6545 {
6546 tree tem;
6547
6548 /* Evaluate now the sizes of any types declared among the arguments. */
6549 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6550 {
6551 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6552 /* Flush the queue in case this parameter declaration has
6553 side-effects. */
6554 emit_queue ();
6555 }
6556 }
6557
6558 /* Start the RTL for a new function, and set variables used for
6559 emitting RTL.
6560 SUBR is the FUNCTION_DECL node.
6561 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6562 the function's parameters, which must be run at any return statement. */
6563
6564 void
6565 expand_function_start (tree subr, int parms_have_cleanups)
6566 {
6567 tree tem;
6568 rtx last_ptr = NULL_RTX;
6569
6570 /* Make sure volatile mem refs aren't considered
6571 valid operands of arithmetic insns. */
6572 init_recog_no_volatile ();
6573
6574 current_function_instrument_entry_exit
6575 = (flag_instrument_function_entry_exit
6576 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6577
6578 current_function_profile
6579 = (profile_flag
6580 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6581
6582 current_function_limit_stack
6583 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6584
6585 /* If function gets a static chain arg, store it in the stack frame.
6586 Do this first, so it gets the first stack slot offset. */
6587 if (current_function_needs_context)
6588 {
6589 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6590
6591 /* Delay copying static chain if it is not a register to avoid
6592 conflicts with regs used for parameters. */
6593 if (! SMALL_REGISTER_CLASSES
6594 || GET_CODE (static_chain_incoming_rtx) == REG)
6595 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6596 }
6597
6598 /* If the parameters of this function need cleaning up, get a label
6599 for the beginning of the code which executes those cleanups. This must
6600 be done before doing anything with return_label. */
6601 if (parms_have_cleanups)
6602 cleanup_label = gen_label_rtx ();
6603 else
6604 cleanup_label = 0;
6605
6606 /* Make the label for return statements to jump to. Do not special
6607 case machines with special return instructions -- they will be
6608 handled later during jump, ifcvt, or epilogue creation. */
6609 return_label = gen_label_rtx ();
6610
6611 /* Initialize rtx used to return the value. */
6612 /* Do this before assign_parms so that we copy the struct value address
6613 before any library calls that assign parms might generate. */
6614
6615 /* Decide whether to return the value in memory or in a register. */
6616 if (aggregate_value_p (DECL_RESULT (subr), subr))
6617 {
6618 /* Returning something that won't go in a register. */
6619 rtx value_address = 0;
6620
6621 #ifdef PCC_STATIC_STRUCT_RETURN
6622 if (current_function_returns_pcc_struct)
6623 {
6624 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6625 value_address = assemble_static_space (size);
6626 }
6627 else
6628 #endif
6629 {
6630 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6631 /* Expect to be passed the address of a place to store the value.
6632 If it is passed as an argument, assign_parms will take care of
6633 it. */
6634 if (sv)
6635 {
6636 value_address = gen_reg_rtx (Pmode);
6637 emit_move_insn (value_address, sv);
6638 }
6639 }
6640 if (value_address)
6641 {
6642 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6643 set_mem_attributes (x, DECL_RESULT (subr), 1);
6644 SET_DECL_RTL (DECL_RESULT (subr), x);
6645 }
6646 }
6647 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6648 /* If return mode is void, this decl rtl should not be used. */
6649 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6650 else
6651 {
6652 /* Compute the return values into a pseudo reg, which we will copy
6653 into the true return register after the cleanups are done. */
6654
6655 /* In order to figure out what mode to use for the pseudo, we
6656 figure out what the mode of the eventual return register will
6657 actually be, and use that. */
6658 rtx hard_reg
6659 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6660 subr, 1);
6661
6662 /* Structures that are returned in registers are not aggregate_value_p,
6663 so we may see a PARALLEL or a REG. */
6664 if (REG_P (hard_reg))
6665 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6666 else if (GET_CODE (hard_reg) == PARALLEL)
6667 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6668 else
6669 abort ();
6670
6671 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6672 result to the real return register(s). */
6673 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6674 }
6675
6676 /* Initialize rtx for parameters and local variables.
6677 In some cases this requires emitting insns. */
6678
6679 assign_parms (subr);
6680
6681 /* Copy the static chain now if it wasn't a register. The delay is to
6682 avoid conflicts with the parameter passing registers. */
6683
6684 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6685 if (GET_CODE (static_chain_incoming_rtx) != REG)
6686 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6687
6688 /* The following was moved from init_function_start.
6689 The move is supposed to make sdb output more accurate. */
6690 /* Indicate the beginning of the function body,
6691 as opposed to parm setup. */
6692 emit_note (NOTE_INSN_FUNCTION_BEG);
6693
6694 if (GET_CODE (get_last_insn ()) != NOTE)
6695 emit_note (NOTE_INSN_DELETED);
6696 parm_birth_insn = get_last_insn ();
6697
6698 context_display = 0;
6699 if (current_function_needs_context)
6700 {
6701 /* Fetch static chain values for containing functions. */
6702 tem = decl_function_context (current_function_decl);
6703 /* Copy the static chain pointer into a pseudo. If we have
6704 small register classes, copy the value from memory if
6705 static_chain_incoming_rtx is a REG. */
6706 if (tem)
6707 {
6708 /* If the static chain originally came in a register, put it back
6709 there, then move it out in the next insn. The reason for
6710 this peculiar code is to satisfy function integration. */
6711 if (SMALL_REGISTER_CLASSES
6712 && GET_CODE (static_chain_incoming_rtx) == REG)
6713 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6714 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6715 }
6716
6717 while (tem)
6718 {
6719 tree rtlexp = make_node (RTL_EXPR);
6720
6721 RTL_EXPR_RTL (rtlexp) = last_ptr;
6722 context_display = tree_cons (tem, rtlexp, context_display);
6723 tem = decl_function_context (tem);
6724 if (tem == 0)
6725 break;
6726 /* Chain thru stack frames, assuming pointer to next lexical frame
6727 is found at the place we always store it. */
6728 #ifdef FRAME_GROWS_DOWNWARD
6729 last_ptr = plus_constant (last_ptr,
6730 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6731 #endif
6732 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6733 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6734 last_ptr = copy_to_reg (last_ptr);
6735
6736 /* If we are not optimizing, ensure that we know that this
6737 piece of context is live over the entire function. */
6738 if (! optimize)
6739 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6740 save_expr_regs);
6741 }
6742 }
6743
6744 if (current_function_instrument_entry_exit)
6745 {
6746 rtx fun = DECL_RTL (current_function_decl);
6747 if (GET_CODE (fun) == MEM)
6748 fun = XEXP (fun, 0);
6749 else
6750 abort ();
6751 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6752 2, fun, Pmode,
6753 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6754 0,
6755 hard_frame_pointer_rtx),
6756 Pmode);
6757 }
6758
6759 if (current_function_profile)
6760 {
6761 #ifdef PROFILE_HOOK
6762 PROFILE_HOOK (current_function_funcdef_no);
6763 #endif
6764 }
6765
6766 /* After the display initializations is where the tail-recursion label
6767 should go, if we end up needing one. Ensure we have a NOTE here
6768 since some things (like trampolines) get placed before this. */
6769 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6770
6771 /* Evaluate now the sizes of any types declared among the arguments. */
6772 expand_pending_sizes (nreverse (get_pending_sizes ()));
6773
6774 /* Make sure there is a line number after the function entry setup code. */
6775 force_next_line_note ();
6776 }
6777 \f
6778 /* Undo the effects of init_dummy_function_start. */
6779 void
6780 expand_dummy_function_end (void)
6781 {
6782 /* End any sequences that failed to be closed due to syntax errors. */
6783 while (in_sequence_p ())
6784 end_sequence ();
6785
6786 /* Outside function body, can't compute type's actual size
6787 until next function's body starts. */
6788
6789 free_after_parsing (cfun);
6790 free_after_compilation (cfun);
6791 cfun = 0;
6792 }
6793
6794 /* Call DOIT for each hard register used as a return value from
6795 the current function. */
6796
6797 void
6798 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6799 {
6800 rtx outgoing = current_function_return_rtx;
6801
6802 if (! outgoing)
6803 return;
6804
6805 if (GET_CODE (outgoing) == REG)
6806 (*doit) (outgoing, arg);
6807 else if (GET_CODE (outgoing) == PARALLEL)
6808 {
6809 int i;
6810
6811 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6812 {
6813 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6814
6815 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6816 (*doit) (x, arg);
6817 }
6818 }
6819 }
6820
6821 static void
6822 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6823 {
6824 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6825 }
6826
6827 void
6828 clobber_return_register (void)
6829 {
6830 diddle_return_value (do_clobber_return_reg, NULL);
6831
6832 /* In case we do use pseudo to return value, clobber it too. */
6833 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6834 {
6835 tree decl_result = DECL_RESULT (current_function_decl);
6836 rtx decl_rtl = DECL_RTL (decl_result);
6837 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6838 {
6839 do_clobber_return_reg (decl_rtl, NULL);
6840 }
6841 }
6842 }
6843
6844 static void
6845 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6846 {
6847 emit_insn (gen_rtx_USE (VOIDmode, reg));
6848 }
6849
6850 void
6851 use_return_register (void)
6852 {
6853 diddle_return_value (do_use_return_reg, NULL);
6854 }
6855
6856 static GTY(()) rtx initial_trampoline;
6857
6858 /* Generate RTL for the end of the current function. */
6859
6860 void
6861 expand_function_end (void)
6862 {
6863 tree link;
6864 rtx clobber_after;
6865
6866 finish_expr_for_function ();
6867
6868 /* If arg_pointer_save_area was referenced only from a nested
6869 function, we will not have initialized it yet. Do that now. */
6870 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6871 get_arg_pointer_save_area (cfun);
6872
6873 #ifdef NON_SAVING_SETJMP
6874 /* Don't put any variables in registers if we call setjmp
6875 on a machine that fails to restore the registers. */
6876 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6877 {
6878 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6879 setjmp_protect (DECL_INITIAL (current_function_decl));
6880
6881 setjmp_protect_args ();
6882 }
6883 #endif
6884
6885 /* Initialize any trampolines required by this function. */
6886 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6887 {
6888 tree function = TREE_PURPOSE (link);
6889 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6890 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6891 #ifdef TRAMPOLINE_TEMPLATE
6892 rtx blktramp;
6893 #endif
6894 rtx seq;
6895
6896 #ifdef TRAMPOLINE_TEMPLATE
6897 /* First make sure this compilation has a template for
6898 initializing trampolines. */
6899 if (initial_trampoline == 0)
6900 {
6901 initial_trampoline
6902 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6903 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6904 }
6905 #endif
6906
6907 /* Generate insns to initialize the trampoline. */
6908 start_sequence ();
6909 tramp = round_trampoline_addr (XEXP (tramp, 0));
6910 #ifdef TRAMPOLINE_TEMPLATE
6911 blktramp = replace_equiv_address (initial_trampoline, tramp);
6912 emit_block_move (blktramp, initial_trampoline,
6913 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6914 #endif
6915 trampolines_created = 1;
6916 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6917 seq = get_insns ();
6918 end_sequence ();
6919
6920 /* Put those insns at entry to the containing function (this one). */
6921 emit_insn_before (seq, tail_recursion_reentry);
6922 }
6923
6924 /* If we are doing stack checking and this function makes calls,
6925 do a stack probe at the start of the function to ensure we have enough
6926 space for another stack frame. */
6927 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6928 {
6929 rtx insn, seq;
6930
6931 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6932 if (GET_CODE (insn) == CALL_INSN)
6933 {
6934 start_sequence ();
6935 probe_stack_range (STACK_CHECK_PROTECT,
6936 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6937 seq = get_insns ();
6938 end_sequence ();
6939 emit_insn_before (seq, tail_recursion_reentry);
6940 break;
6941 }
6942 }
6943
6944 /* Possibly warn about unused parameters. */
6945 if (warn_unused_parameter)
6946 {
6947 tree decl;
6948
6949 for (decl = DECL_ARGUMENTS (current_function_decl);
6950 decl; decl = TREE_CHAIN (decl))
6951 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6952 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6953 warning ("%Junused parameter '%D'", decl, decl);
6954 }
6955
6956 /* Delete handlers for nonlocal gotos if nothing uses them. */
6957 if (nonlocal_goto_handler_slots != 0
6958 && ! current_function_has_nonlocal_label)
6959 delete_handlers ();
6960
6961 /* End any sequences that failed to be closed due to syntax errors. */
6962 while (in_sequence_p ())
6963 end_sequence ();
6964
6965 /* Outside function body, can't compute type's actual size
6966 until next function's body starts. */
6967 immediate_size_expand--;
6968
6969 clear_pending_stack_adjust ();
6970 do_pending_stack_adjust ();
6971
6972 /* Mark the end of the function body.
6973 If control reaches this insn, the function can drop through
6974 without returning a value. */
6975 emit_note (NOTE_INSN_FUNCTION_END);
6976
6977 /* Must mark the last line number note in the function, so that the test
6978 coverage code can avoid counting the last line twice. This just tells
6979 the code to ignore the immediately following line note, since there
6980 already exists a copy of this note somewhere above. This line number
6981 note is still needed for debugging though, so we can't delete it. */
6982 if (flag_test_coverage)
6983 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
6984
6985 /* Output a linenumber for the end of the function.
6986 SDB depends on this. */
6987 force_next_line_note ();
6988 emit_line_note (input_location);
6989
6990 /* Before the return label (if any), clobber the return
6991 registers so that they are not propagated live to the rest of
6992 the function. This can only happen with functions that drop
6993 through; if there had been a return statement, there would
6994 have either been a return rtx, or a jump to the return label.
6995
6996 We delay actual code generation after the current_function_value_rtx
6997 is computed. */
6998 clobber_after = get_last_insn ();
6999
7000 /* Output the label for the actual return from the function,
7001 if one is expected. This happens either because a function epilogue
7002 is used instead of a return instruction, or because a return was done
7003 with a goto in order to run local cleanups, or because of pcc-style
7004 structure returning. */
7005 if (return_label)
7006 emit_label (return_label);
7007
7008 if (current_function_instrument_entry_exit)
7009 {
7010 rtx fun = DECL_RTL (current_function_decl);
7011 if (GET_CODE (fun) == MEM)
7012 fun = XEXP (fun, 0);
7013 else
7014 abort ();
7015 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
7016 2, fun, Pmode,
7017 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
7018 0,
7019 hard_frame_pointer_rtx),
7020 Pmode);
7021 }
7022
7023 /* Let except.c know where it should emit the call to unregister
7024 the function context for sjlj exceptions. */
7025 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
7026 sjlj_emit_function_exit_after (get_last_insn ());
7027
7028 /* If we had calls to alloca, and this machine needs
7029 an accurate stack pointer to exit the function,
7030 insert some code to save and restore the stack pointer. */
7031 #ifdef EXIT_IGNORE_STACK
7032 if (! EXIT_IGNORE_STACK)
7033 #endif
7034 if (current_function_calls_alloca)
7035 {
7036 rtx tem = 0;
7037
7038 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7039 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7040 }
7041
7042 /* If scalar return value was computed in a pseudo-reg, or was a named
7043 return value that got dumped to the stack, copy that to the hard
7044 return register. */
7045 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7046 {
7047 tree decl_result = DECL_RESULT (current_function_decl);
7048 rtx decl_rtl = DECL_RTL (decl_result);
7049
7050 if (REG_P (decl_rtl)
7051 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7052 : DECL_REGISTER (decl_result))
7053 {
7054 rtx real_decl_rtl = current_function_return_rtx;
7055
7056 /* This should be set in assign_parms. */
7057 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7058 abort ();
7059
7060 /* If this is a BLKmode structure being returned in registers,
7061 then use the mode computed in expand_return. Note that if
7062 decl_rtl is memory, then its mode may have been changed,
7063 but that current_function_return_rtx has not. */
7064 if (GET_MODE (real_decl_rtl) == BLKmode)
7065 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7066
7067 /* If a named return value dumped decl_return to memory, then
7068 we may need to re-do the PROMOTE_MODE signed/unsigned
7069 extension. */
7070 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7071 {
7072 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7073
7074 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
7075 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7076 &unsignedp, 1);
7077
7078 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7079 }
7080 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7081 {
7082 /* If expand_function_start has created a PARALLEL for decl_rtl,
7083 move the result to the real return registers. Otherwise, do
7084 a group load from decl_rtl for a named return. */
7085 if (GET_CODE (decl_rtl) == PARALLEL)
7086 emit_group_move (real_decl_rtl, decl_rtl);
7087 else
7088 emit_group_load (real_decl_rtl, decl_rtl,
7089 TREE_TYPE (decl_result),
7090 int_size_in_bytes (TREE_TYPE (decl_result)));
7091 }
7092 else
7093 emit_move_insn (real_decl_rtl, decl_rtl);
7094 }
7095 }
7096
7097 /* If returning a structure, arrange to return the address of the value
7098 in a place where debuggers expect to find it.
7099
7100 If returning a structure PCC style,
7101 the caller also depends on this value.
7102 And current_function_returns_pcc_struct is not necessarily set. */
7103 if (current_function_returns_struct
7104 || current_function_returns_pcc_struct)
7105 {
7106 rtx value_address
7107 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7108 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7109 #ifdef FUNCTION_OUTGOING_VALUE
7110 rtx outgoing
7111 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7112 current_function_decl);
7113 #else
7114 rtx outgoing
7115 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7116 #endif
7117
7118 /* Mark this as a function return value so integrate will delete the
7119 assignment and USE below when inlining this function. */
7120 REG_FUNCTION_VALUE_P (outgoing) = 1;
7121
7122 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7123 value_address = convert_memory_address (GET_MODE (outgoing),
7124 value_address);
7125
7126 emit_move_insn (outgoing, value_address);
7127
7128 /* Show return register used to hold result (in this case the address
7129 of the result. */
7130 current_function_return_rtx = outgoing;
7131 }
7132
7133 /* If this is an implementation of throw, do what's necessary to
7134 communicate between __builtin_eh_return and the epilogue. */
7135 expand_eh_return ();
7136
7137 /* Emit the actual code to clobber return register. */
7138 {
7139 rtx seq, after;
7140
7141 start_sequence ();
7142 clobber_return_register ();
7143 seq = get_insns ();
7144 end_sequence ();
7145
7146 after = emit_insn_after (seq, clobber_after);
7147
7148 if (clobber_after != after)
7149 cfun->x_clobber_return_insn = after;
7150 }
7151
7152 /* Output the label for the naked return from the function, if one is
7153 expected. This is currently used only by __builtin_return. */
7154 if (naked_return_label)
7155 emit_label (naked_return_label);
7156
7157 /* ??? This should no longer be necessary since stupid is no longer with
7158 us, but there are some parts of the compiler (eg reload_combine, and
7159 sh mach_dep_reorg) that still try and compute their own lifetime info
7160 instead of using the general framework. */
7161 use_return_register ();
7162
7163 /* Fix up any gotos that jumped out to the outermost
7164 binding level of the function.
7165 Must follow emitting RETURN_LABEL. */
7166
7167 /* If you have any cleanups to do at this point,
7168 and they need to create temporary variables,
7169 then you will lose. */
7170 expand_fixups (get_insns ());
7171 }
7172
7173 rtx
7174 get_arg_pointer_save_area (struct function *f)
7175 {
7176 rtx ret = f->x_arg_pointer_save_area;
7177
7178 if (! ret)
7179 {
7180 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7181 f->x_arg_pointer_save_area = ret;
7182 }
7183
7184 if (f == cfun && ! f->arg_pointer_save_area_init)
7185 {
7186 rtx seq;
7187
7188 /* Save the arg pointer at the beginning of the function. The
7189 generated stack slot may not be a valid memory address, so we
7190 have to check it and fix it if necessary. */
7191 start_sequence ();
7192 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7193 seq = get_insns ();
7194 end_sequence ();
7195
7196 push_topmost_sequence ();
7197 emit_insn_after (seq, get_insns ());
7198 pop_topmost_sequence ();
7199 }
7200
7201 return ret;
7202 }
7203 \f
7204 /* Extend a vector that records the INSN_UIDs of INSNS
7205 (a list of one or more insns). */
7206
7207 static void
7208 record_insns (rtx insns, varray_type *vecp)
7209 {
7210 int i, len;
7211 rtx tmp;
7212
7213 tmp = insns;
7214 len = 0;
7215 while (tmp != NULL_RTX)
7216 {
7217 len++;
7218 tmp = NEXT_INSN (tmp);
7219 }
7220
7221 i = VARRAY_SIZE (*vecp);
7222 VARRAY_GROW (*vecp, i + len);
7223 tmp = insns;
7224 while (tmp != NULL_RTX)
7225 {
7226 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7227 i++;
7228 tmp = NEXT_INSN (tmp);
7229 }
7230 }
7231
7232 /* Set the specified locator to the insn chain. */
7233 static void
7234 set_insn_locators (rtx insn, int loc)
7235 {
7236 while (insn != NULL_RTX)
7237 {
7238 if (INSN_P (insn))
7239 INSN_LOCATOR (insn) = loc;
7240 insn = NEXT_INSN (insn);
7241 }
7242 }
7243
7244 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7245 be running after reorg, SEQUENCE rtl is possible. */
7246
7247 static int
7248 contains (rtx insn, varray_type vec)
7249 {
7250 int i, j;
7251
7252 if (GET_CODE (insn) == INSN
7253 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7254 {
7255 int count = 0;
7256 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7257 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7258 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7259 count++;
7260 return count;
7261 }
7262 else
7263 {
7264 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7265 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7266 return 1;
7267 }
7268 return 0;
7269 }
7270
7271 int
7272 prologue_epilogue_contains (rtx insn)
7273 {
7274 if (contains (insn, prologue))
7275 return 1;
7276 if (contains (insn, epilogue))
7277 return 1;
7278 return 0;
7279 }
7280
7281 int
7282 sibcall_epilogue_contains (rtx insn)
7283 {
7284 if (sibcall_epilogue)
7285 return contains (insn, sibcall_epilogue);
7286 return 0;
7287 }
7288
7289 #ifdef HAVE_return
7290 /* Insert gen_return at the end of block BB. This also means updating
7291 block_for_insn appropriately. */
7292
7293 static void
7294 emit_return_into_block (basic_block bb, rtx line_note)
7295 {
7296 emit_jump_insn_after (gen_return (), BB_END (bb));
7297 if (line_note)
7298 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
7299 }
7300 #endif /* HAVE_return */
7301
7302 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7303
7304 /* These functions convert the epilogue into a variant that does not modify the
7305 stack pointer. This is used in cases where a function returns an object
7306 whose size is not known until it is computed. The called function leaves the
7307 object on the stack, leaves the stack depressed, and returns a pointer to
7308 the object.
7309
7310 What we need to do is track all modifications and references to the stack
7311 pointer, deleting the modifications and changing the references to point to
7312 the location the stack pointer would have pointed to had the modifications
7313 taken place.
7314
7315 These functions need to be portable so we need to make as few assumptions
7316 about the epilogue as we can. However, the epilogue basically contains
7317 three things: instructions to reset the stack pointer, instructions to
7318 reload registers, possibly including the frame pointer, and an
7319 instruction to return to the caller.
7320
7321 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7322 We also make no attempt to validate the insns we make since if they are
7323 invalid, we probably can't do anything valid. The intent is that these
7324 routines get "smarter" as more and more machines start to use them and
7325 they try operating on different epilogues.
7326
7327 We use the following structure to track what the part of the epilogue that
7328 we've already processed has done. We keep two copies of the SP equivalence,
7329 one for use during the insn we are processing and one for use in the next
7330 insn. The difference is because one part of a PARALLEL may adjust SP
7331 and the other may use it. */
7332
7333 struct epi_info
7334 {
7335 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7336 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7337 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7338 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7339 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7340 should be set to once we no longer need
7341 its value. */
7342 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
7343 for registers. */
7344 };
7345
7346 static void handle_epilogue_set (rtx, struct epi_info *);
7347 static void update_epilogue_consts (rtx, rtx, void *);
7348 static void emit_equiv_load (struct epi_info *);
7349
7350 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7351 no modifications to the stack pointer. Return the new list of insns. */
7352
7353 static rtx
7354 keep_stack_depressed (rtx insns)
7355 {
7356 int j;
7357 struct epi_info info;
7358 rtx insn, next;
7359
7360 /* If the epilogue is just a single instruction, it must be OK as is. */
7361 if (NEXT_INSN (insns) == NULL_RTX)
7362 return insns;
7363
7364 /* Otherwise, start a sequence, initialize the information we have, and
7365 process all the insns we were given. */
7366 start_sequence ();
7367
7368 info.sp_equiv_reg = stack_pointer_rtx;
7369 info.sp_offset = 0;
7370 info.equiv_reg_src = 0;
7371
7372 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
7373 info.const_equiv[j] = 0;
7374
7375 insn = insns;
7376 next = NULL_RTX;
7377 while (insn != NULL_RTX)
7378 {
7379 next = NEXT_INSN (insn);
7380
7381 if (!INSN_P (insn))
7382 {
7383 add_insn (insn);
7384 insn = next;
7385 continue;
7386 }
7387
7388 /* If this insn references the register that SP is equivalent to and
7389 we have a pending load to that register, we must force out the load
7390 first and then indicate we no longer know what SP's equivalent is. */
7391 if (info.equiv_reg_src != 0
7392 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7393 {
7394 emit_equiv_load (&info);
7395 info.sp_equiv_reg = 0;
7396 }
7397
7398 info.new_sp_equiv_reg = info.sp_equiv_reg;
7399 info.new_sp_offset = info.sp_offset;
7400
7401 /* If this is a (RETURN) and the return address is on the stack,
7402 update the address and change to an indirect jump. */
7403 if (GET_CODE (PATTERN (insn)) == RETURN
7404 || (GET_CODE (PATTERN (insn)) == PARALLEL
7405 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7406 {
7407 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7408 rtx base = 0;
7409 HOST_WIDE_INT offset = 0;
7410 rtx jump_insn, jump_set;
7411
7412 /* If the return address is in a register, we can emit the insn
7413 unchanged. Otherwise, it must be a MEM and we see what the
7414 base register and offset are. In any case, we have to emit any
7415 pending load to the equivalent reg of SP, if any. */
7416 if (GET_CODE (retaddr) == REG)
7417 {
7418 emit_equiv_load (&info);
7419 add_insn (insn);
7420 insn = next;
7421 continue;
7422 }
7423 else if (GET_CODE (retaddr) == MEM
7424 && GET_CODE (XEXP (retaddr, 0)) == REG)
7425 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7426 else if (GET_CODE (retaddr) == MEM
7427 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7428 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7429 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7430 {
7431 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7432 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7433 }
7434 else
7435 abort ();
7436
7437 /* If the base of the location containing the return pointer
7438 is SP, we must update it with the replacement address. Otherwise,
7439 just build the necessary MEM. */
7440 retaddr = plus_constant (base, offset);
7441 if (base == stack_pointer_rtx)
7442 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7443 plus_constant (info.sp_equiv_reg,
7444 info.sp_offset));
7445
7446 retaddr = gen_rtx_MEM (Pmode, retaddr);
7447
7448 /* If there is a pending load to the equivalent register for SP
7449 and we reference that register, we must load our address into
7450 a scratch register and then do that load. */
7451 if (info.equiv_reg_src
7452 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7453 {
7454 unsigned int regno;
7455 rtx reg;
7456
7457 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7458 if (HARD_REGNO_MODE_OK (regno, Pmode)
7459 && !fixed_regs[regno]
7460 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7461 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7462 regno)
7463 && !refers_to_regno_p (regno,
7464 regno + HARD_REGNO_NREGS (regno,
7465 Pmode),
7466 info.equiv_reg_src, NULL)
7467 && info.const_equiv[regno] == 0)
7468 break;
7469
7470 if (regno == FIRST_PSEUDO_REGISTER)
7471 abort ();
7472
7473 reg = gen_rtx_REG (Pmode, regno);
7474 emit_move_insn (reg, retaddr);
7475 retaddr = reg;
7476 }
7477
7478 emit_equiv_load (&info);
7479 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7480
7481 /* Show the SET in the above insn is a RETURN. */
7482 jump_set = single_set (jump_insn);
7483 if (jump_set == 0)
7484 abort ();
7485 else
7486 SET_IS_RETURN_P (jump_set) = 1;
7487 }
7488
7489 /* If SP is not mentioned in the pattern and its equivalent register, if
7490 any, is not modified, just emit it. Otherwise, if neither is set,
7491 replace the reference to SP and emit the insn. If none of those are
7492 true, handle each SET individually. */
7493 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7494 && (info.sp_equiv_reg == stack_pointer_rtx
7495 || !reg_set_p (info.sp_equiv_reg, insn)))
7496 add_insn (insn);
7497 else if (! reg_set_p (stack_pointer_rtx, insn)
7498 && (info.sp_equiv_reg == stack_pointer_rtx
7499 || !reg_set_p (info.sp_equiv_reg, insn)))
7500 {
7501 if (! validate_replace_rtx (stack_pointer_rtx,
7502 plus_constant (info.sp_equiv_reg,
7503 info.sp_offset),
7504 insn))
7505 abort ();
7506
7507 add_insn (insn);
7508 }
7509 else if (GET_CODE (PATTERN (insn)) == SET)
7510 handle_epilogue_set (PATTERN (insn), &info);
7511 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7512 {
7513 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7514 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7515 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7516 }
7517 else
7518 add_insn (insn);
7519
7520 info.sp_equiv_reg = info.new_sp_equiv_reg;
7521 info.sp_offset = info.new_sp_offset;
7522
7523 /* Now update any constants this insn sets. */
7524 note_stores (PATTERN (insn), update_epilogue_consts, &info);
7525 insn = next;
7526 }
7527
7528 insns = get_insns ();
7529 end_sequence ();
7530 return insns;
7531 }
7532
7533 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7534 structure that contains information about what we've seen so far. We
7535 process this SET by either updating that data or by emitting one or
7536 more insns. */
7537
7538 static void
7539 handle_epilogue_set (rtx set, struct epi_info *p)
7540 {
7541 /* First handle the case where we are setting SP. Record what it is being
7542 set from. If unknown, abort. */
7543 if (reg_set_p (stack_pointer_rtx, set))
7544 {
7545 if (SET_DEST (set) != stack_pointer_rtx)
7546 abort ();
7547
7548 if (GET_CODE (SET_SRC (set)) == PLUS)
7549 {
7550 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7551 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7552 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7553 else if (GET_CODE (XEXP (SET_SRC (set), 1)) == REG
7554 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
7555 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
7556 p->new_sp_offset
7557 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
7558 else
7559 abort ();
7560 }
7561 else
7562 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7563
7564 /* If we are adjusting SP, we adjust from the old data. */
7565 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7566 {
7567 p->new_sp_equiv_reg = p->sp_equiv_reg;
7568 p->new_sp_offset += p->sp_offset;
7569 }
7570
7571 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7572 abort ();
7573
7574 return;
7575 }
7576
7577 /* Next handle the case where we are setting SP's equivalent register.
7578 If we already have a value to set it to, abort. We could update, but
7579 there seems little point in handling that case. Note that we have
7580 to allow for the case where we are setting the register set in
7581 the previous part of a PARALLEL inside a single insn. But use the
7582 old offset for any updates within this insn. We must allow for the case
7583 where the register is being set in a different (usually wider) mode than
7584 Pmode). */
7585 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7586 {
7587 if (p->equiv_reg_src != 0
7588 || GET_CODE (p->new_sp_equiv_reg) != REG
7589 || GET_CODE (SET_DEST (set)) != REG
7590 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
7591 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
7592 abort ();
7593 else
7594 p->equiv_reg_src
7595 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7596 plus_constant (p->sp_equiv_reg,
7597 p->sp_offset));
7598 }
7599
7600 /* Otherwise, replace any references to SP in the insn to its new value
7601 and emit the insn. */
7602 else
7603 {
7604 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7605 plus_constant (p->sp_equiv_reg,
7606 p->sp_offset));
7607 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7608 plus_constant (p->sp_equiv_reg,
7609 p->sp_offset));
7610 emit_insn (set);
7611 }
7612 }
7613
7614 /* Update the tracking information for registers set to constants. */
7615
7616 static void
7617 update_epilogue_consts (rtx dest, rtx x, void *data)
7618 {
7619 struct epi_info *p = (struct epi_info *) data;
7620
7621 if (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
7622 return;
7623 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x))
7624 || GET_CODE (SET_SRC (x)) != CONST_INT)
7625 p->const_equiv[REGNO (dest)] = 0;
7626 else
7627 p->const_equiv[REGNO (dest)] = SET_SRC (x);
7628 }
7629
7630 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7631
7632 static void
7633 emit_equiv_load (struct epi_info *p)
7634 {
7635 if (p->equiv_reg_src != 0)
7636 {
7637 rtx dest = p->sp_equiv_reg;
7638
7639 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
7640 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
7641 REGNO (p->sp_equiv_reg));
7642
7643 emit_move_insn (dest, p->equiv_reg_src);
7644 p->equiv_reg_src = 0;
7645 }
7646 }
7647 #endif
7648
7649 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7650 this into place with notes indicating where the prologue ends and where
7651 the epilogue begins. Update the basic block information when possible. */
7652
7653 void
7654 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7655 {
7656 int inserted = 0;
7657 edge e;
7658 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7659 rtx seq;
7660 #endif
7661 #ifdef HAVE_prologue
7662 rtx prologue_end = NULL_RTX;
7663 #endif
7664 #if defined (HAVE_epilogue) || defined(HAVE_return)
7665 rtx epilogue_end = NULL_RTX;
7666 #endif
7667
7668 #ifdef HAVE_prologue
7669 if (HAVE_prologue)
7670 {
7671 start_sequence ();
7672 seq = gen_prologue ();
7673 emit_insn (seq);
7674
7675 /* Retain a map of the prologue insns. */
7676 record_insns (seq, &prologue);
7677 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7678
7679 seq = get_insns ();
7680 end_sequence ();
7681 set_insn_locators (seq, prologue_locator);
7682
7683 /* Can't deal with multiple successors of the entry block
7684 at the moment. Function should always have at least one
7685 entry point. */
7686 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7687 abort ();
7688
7689 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7690 inserted = 1;
7691 }
7692 #endif
7693
7694 /* If the exit block has no non-fake predecessors, we don't need
7695 an epilogue. */
7696 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7697 if ((e->flags & EDGE_FAKE) == 0)
7698 break;
7699 if (e == NULL)
7700 goto epilogue_done;
7701
7702 #ifdef HAVE_return
7703 if (optimize && HAVE_return)
7704 {
7705 /* If we're allowed to generate a simple return instruction,
7706 then by definition we don't need a full epilogue. Examine
7707 the block that falls through to EXIT. If it does not
7708 contain any code, examine its predecessors and try to
7709 emit (conditional) return instructions. */
7710
7711 basic_block last;
7712 edge e_next;
7713 rtx label;
7714
7715 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7716 if (e->flags & EDGE_FALLTHRU)
7717 break;
7718 if (e == NULL)
7719 goto epilogue_done;
7720 last = e->src;
7721
7722 /* Verify that there are no active instructions in the last block. */
7723 label = BB_END (last);
7724 while (label && GET_CODE (label) != CODE_LABEL)
7725 {
7726 if (active_insn_p (label))
7727 break;
7728 label = PREV_INSN (label);
7729 }
7730
7731 if (BB_HEAD (last) == label && GET_CODE (label) == CODE_LABEL)
7732 {
7733 rtx epilogue_line_note = NULL_RTX;
7734
7735 /* Locate the line number associated with the closing brace,
7736 if we can find one. */
7737 for (seq = get_last_insn ();
7738 seq && ! active_insn_p (seq);
7739 seq = PREV_INSN (seq))
7740 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7741 {
7742 epilogue_line_note = seq;
7743 break;
7744 }
7745
7746 for (e = last->pred; e; e = e_next)
7747 {
7748 basic_block bb = e->src;
7749 rtx jump;
7750
7751 e_next = e->pred_next;
7752 if (bb == ENTRY_BLOCK_PTR)
7753 continue;
7754
7755 jump = BB_END (bb);
7756 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7757 continue;
7758
7759 /* If we have an unconditional jump, we can replace that
7760 with a simple return instruction. */
7761 if (simplejump_p (jump))
7762 {
7763 emit_return_into_block (bb, epilogue_line_note);
7764 delete_insn (jump);
7765 }
7766
7767 /* If we have a conditional jump, we can try to replace
7768 that with a conditional return instruction. */
7769 else if (condjump_p (jump))
7770 {
7771 if (! redirect_jump (jump, 0, 0))
7772 continue;
7773
7774 /* If this block has only one successor, it both jumps
7775 and falls through to the fallthru block, so we can't
7776 delete the edge. */
7777 if (bb->succ->succ_next == NULL)
7778 continue;
7779 }
7780 else
7781 continue;
7782
7783 /* Fix up the CFG for the successful change we just made. */
7784 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7785 }
7786
7787 /* Emit a return insn for the exit fallthru block. Whether
7788 this is still reachable will be determined later. */
7789
7790 emit_barrier_after (BB_END (last));
7791 emit_return_into_block (last, epilogue_line_note);
7792 epilogue_end = BB_END (last);
7793 last->succ->flags &= ~EDGE_FALLTHRU;
7794 goto epilogue_done;
7795 }
7796 }
7797 #endif
7798 #ifdef HAVE_epilogue
7799 if (HAVE_epilogue)
7800 {
7801 /* Find the edge that falls through to EXIT. Other edges may exist
7802 due to RETURN instructions, but those don't need epilogues.
7803 There really shouldn't be a mixture -- either all should have
7804 been converted or none, however... */
7805
7806 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7807 if (e->flags & EDGE_FALLTHRU)
7808 break;
7809 if (e == NULL)
7810 goto epilogue_done;
7811
7812 start_sequence ();
7813 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7814
7815 seq = gen_epilogue ();
7816
7817 #ifdef INCOMING_RETURN_ADDR_RTX
7818 /* If this function returns with the stack depressed and we can support
7819 it, massage the epilogue to actually do that. */
7820 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7821 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7822 seq = keep_stack_depressed (seq);
7823 #endif
7824
7825 emit_jump_insn (seq);
7826
7827 /* Retain a map of the epilogue insns. */
7828 record_insns (seq, &epilogue);
7829 set_insn_locators (seq, epilogue_locator);
7830
7831 seq = get_insns ();
7832 end_sequence ();
7833
7834 insert_insn_on_edge (seq, e);
7835 inserted = 1;
7836 }
7837 #endif
7838 epilogue_done:
7839
7840 if (inserted)
7841 commit_edge_insertions ();
7842
7843 #ifdef HAVE_sibcall_epilogue
7844 /* Emit sibling epilogues before any sibling call sites. */
7845 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7846 {
7847 basic_block bb = e->src;
7848 rtx insn = BB_END (bb);
7849 rtx i;
7850 rtx newinsn;
7851
7852 if (GET_CODE (insn) != CALL_INSN
7853 || ! SIBLING_CALL_P (insn))
7854 continue;
7855
7856 start_sequence ();
7857 emit_insn (gen_sibcall_epilogue ());
7858 seq = get_insns ();
7859 end_sequence ();
7860
7861 /* Retain a map of the epilogue insns. Used in life analysis to
7862 avoid getting rid of sibcall epilogue insns. Do this before we
7863 actually emit the sequence. */
7864 record_insns (seq, &sibcall_epilogue);
7865 set_insn_locators (seq, epilogue_locator);
7866
7867 i = PREV_INSN (insn);
7868 newinsn = emit_insn_before (seq, insn);
7869 }
7870 #endif
7871
7872 #ifdef HAVE_prologue
7873 if (prologue_end)
7874 {
7875 rtx insn, prev;
7876
7877 /* GDB handles `break f' by setting a breakpoint on the first
7878 line note after the prologue. Which means (1) that if
7879 there are line number notes before where we inserted the
7880 prologue we should move them, and (2) we should generate a
7881 note before the end of the first basic block, if there isn't
7882 one already there.
7883
7884 ??? This behavior is completely broken when dealing with
7885 multiple entry functions. We simply place the note always
7886 into first basic block and let alternate entry points
7887 to be missed.
7888 */
7889
7890 for (insn = prologue_end; insn; insn = prev)
7891 {
7892 prev = PREV_INSN (insn);
7893 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7894 {
7895 /* Note that we cannot reorder the first insn in the
7896 chain, since rest_of_compilation relies on that
7897 remaining constant. */
7898 if (prev == NULL)
7899 break;
7900 reorder_insns (insn, insn, prologue_end);
7901 }
7902 }
7903
7904 /* Find the last line number note in the first block. */
7905 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
7906 insn != prologue_end && insn;
7907 insn = PREV_INSN (insn))
7908 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7909 break;
7910
7911 /* If we didn't find one, make a copy of the first line number
7912 we run across. */
7913 if (! insn)
7914 {
7915 for (insn = next_active_insn (prologue_end);
7916 insn;
7917 insn = PREV_INSN (insn))
7918 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7919 {
7920 emit_note_copy_after (insn, prologue_end);
7921 break;
7922 }
7923 }
7924 }
7925 #endif
7926 #ifdef HAVE_epilogue
7927 if (epilogue_end)
7928 {
7929 rtx insn, next;
7930
7931 /* Similarly, move any line notes that appear after the epilogue.
7932 There is no need, however, to be quite so anal about the existence
7933 of such a note. */
7934 for (insn = epilogue_end; insn; insn = next)
7935 {
7936 next = NEXT_INSN (insn);
7937 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7938 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7939 }
7940 }
7941 #endif
7942 }
7943
7944 /* Reposition the prologue-end and epilogue-begin notes after instruction
7945 scheduling and delayed branch scheduling. */
7946
7947 void
7948 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7949 {
7950 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7951 rtx insn, last, note;
7952 int len;
7953
7954 if ((len = VARRAY_SIZE (prologue)) > 0)
7955 {
7956 last = 0, note = 0;
7957
7958 /* Scan from the beginning until we reach the last prologue insn.
7959 We apparently can't depend on basic_block_{head,end} after
7960 reorg has run. */
7961 for (insn = f; insn; insn = NEXT_INSN (insn))
7962 {
7963 if (GET_CODE (insn) == NOTE)
7964 {
7965 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7966 note = insn;
7967 }
7968 else if (contains (insn, prologue))
7969 {
7970 last = insn;
7971 if (--len == 0)
7972 break;
7973 }
7974 }
7975
7976 if (last)
7977 {
7978 /* Find the prologue-end note if we haven't already, and
7979 move it to just after the last prologue insn. */
7980 if (note == 0)
7981 {
7982 for (note = last; (note = NEXT_INSN (note));)
7983 if (GET_CODE (note) == NOTE
7984 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7985 break;
7986 }
7987
7988 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7989 if (GET_CODE (last) == CODE_LABEL)
7990 last = NEXT_INSN (last);
7991 reorder_insns (note, note, last);
7992 }
7993 }
7994
7995 if ((len = VARRAY_SIZE (epilogue)) > 0)
7996 {
7997 last = 0, note = 0;
7998
7999 /* Scan from the end until we reach the first epilogue insn.
8000 We apparently can't depend on basic_block_{head,end} after
8001 reorg has run. */
8002 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8003 {
8004 if (GET_CODE (insn) == NOTE)
8005 {
8006 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
8007 note = insn;
8008 }
8009 else if (contains (insn, epilogue))
8010 {
8011 last = insn;
8012 if (--len == 0)
8013 break;
8014 }
8015 }
8016
8017 if (last)
8018 {
8019 /* Find the epilogue-begin note if we haven't already, and
8020 move it to just before the first epilogue insn. */
8021 if (note == 0)
8022 {
8023 for (note = insn; (note = PREV_INSN (note));)
8024 if (GET_CODE (note) == NOTE
8025 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
8026 break;
8027 }
8028
8029 if (PREV_INSN (last) != note)
8030 reorder_insns (note, note, PREV_INSN (last));
8031 }
8032 }
8033 #endif /* HAVE_prologue or HAVE_epilogue */
8034 }
8035
8036 /* Called once, at initialization, to initialize function.c. */
8037
8038 void
8039 init_function_once (void)
8040 {
8041 VARRAY_INT_INIT (prologue, 0, "prologue");
8042 VARRAY_INT_INIT (epilogue, 0, "epilogue");
8043 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
8044 }
8045
8046 #include "gt-function.h"