]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
bitmap.c: Change NULL_PTR to NULL or "(rtx*)0".
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
35
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
40
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "obstack.h"
56 #include "toplev.h"
57 #include "hash.h"
58 #include "ggc.h"
59 #include "tm_p.h"
60
61 #ifndef TRAMPOLINE_ALIGNMENT
62 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
63 #endif
64
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
68
69 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
70 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
71 #endif
72
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #define SYMBOL__MAIN __main
80 #endif
81
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90
91 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
92 during rtl generation. If they are different register numbers, this is
93 always true. It may also be true if
94 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
95 generation. See fix_lexical_addr for details. */
96
97 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
98 #define NEED_SEPARATE_AP
99 #endif
100
101 /* Nonzero if function being compiled doesn't contain any calls
102 (ignoring the prologue and epilogue). This is set prior to
103 local register allocation and is valid for the remaining
104 compiler passes. */
105 int current_function_is_leaf;
106
107 /* Nonzero if function being compiled doesn't contain any instructions
108 that can throw an exception. This is set prior to final. */
109
110 int current_function_nothrow;
111
112 /* Nonzero if function being compiled doesn't modify the stack pointer
113 (ignoring the prologue and epilogue). This is only valid after
114 life_analysis has run. */
115 int current_function_sp_is_unchanging;
116
117 /* Nonzero if the function being compiled is a leaf function which only
118 uses leaf registers. This is valid after reload (specifically after
119 sched2) and is useful only if the port defines LEAF_REGISTERS. */
120 int current_function_uses_only_leaf_regs;
121
122 /* Nonzero once virtual register instantiation has been done.
123 assign_stack_local uses frame_pointer_rtx when this is nonzero.
124 calls.c:emit_library_call_value_1 uses it to set up
125 post-instantiation libcalls. */
126 int virtuals_instantiated;
127
128 /* These variables hold pointers to functions to create and destroy
129 target specific, per-function data structures. */
130 void (*init_machine_status) PARAMS ((struct function *));
131 void (*free_machine_status) PARAMS ((struct function *));
132 /* This variable holds a pointer to a function to register any
133 data items in the target specific, per-function data structure
134 that will need garbage collection. */
135 void (*mark_machine_status) PARAMS ((struct function *));
136
137 /* Likewise, but for language-specific data. */
138 void (*init_lang_status) PARAMS ((struct function *));
139 void (*save_lang_status) PARAMS ((struct function *));
140 void (*restore_lang_status) PARAMS ((struct function *));
141 void (*mark_lang_status) PARAMS ((struct function *));
142 void (*free_lang_status) PARAMS ((struct function *));
143
144 /* The FUNCTION_DECL for an inline function currently being expanded. */
145 tree inline_function_decl;
146
147 /* The currently compiled function. */
148 struct function *cfun = 0;
149
150 /* Global list of all compiled functions. */
151 struct function *all_functions = 0;
152
153 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
154 static varray_type prologue;
155 static varray_type epilogue;
156
157 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
158 in this function. */
159 static varray_type sibcall_epilogue;
160 \f
161 /* In order to evaluate some expressions, such as function calls returning
162 structures in memory, we need to temporarily allocate stack locations.
163 We record each allocated temporary in the following structure.
164
165 Associated with each temporary slot is a nesting level. When we pop up
166 one level, all temporaries associated with the previous level are freed.
167 Normally, all temporaries are freed after the execution of the statement
168 in which they were created. However, if we are inside a ({...}) grouping,
169 the result may be in a temporary and hence must be preserved. If the
170 result could be in a temporary, we preserve it if we can determine which
171 one it is in. If we cannot determine which temporary may contain the
172 result, all temporaries are preserved. A temporary is preserved by
173 pretending it was allocated at the previous nesting level.
174
175 Automatic variables are also assigned temporary slots, at the nesting
176 level where they are defined. They are marked a "kept" so that
177 free_temp_slots will not free them. */
178
179 struct temp_slot
180 {
181 /* Points to next temporary slot. */
182 struct temp_slot *next;
183 /* The rtx to used to reference the slot. */
184 rtx slot;
185 /* The rtx used to represent the address if not the address of the
186 slot above. May be an EXPR_LIST if multiple addresses exist. */
187 rtx address;
188 /* The alignment (in bits) of the slot. */
189 int align;
190 /* The size, in units, of the slot. */
191 HOST_WIDE_INT size;
192 /* The type of the object in the slot, or zero if it doesn't correspond
193 to a type. We use this to determine whether a slot can be reused.
194 It can be reused if objects of the type of the new slot will always
195 conflict with objects of the type of the old slot. */
196 tree type;
197 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
198 tree rtl_expr;
199 /* Non-zero if this temporary is currently in use. */
200 char in_use;
201 /* Non-zero if this temporary has its address taken. */
202 char addr_taken;
203 /* Nesting level at which this slot is being used. */
204 int level;
205 /* Non-zero if this should survive a call to free_temp_slots. */
206 int keep;
207 /* The offset of the slot from the frame_pointer, including extra space
208 for alignment. This info is for combine_temp_slots. */
209 HOST_WIDE_INT base_offset;
210 /* The size of the slot, including extra space for alignment. This
211 info is for combine_temp_slots. */
212 HOST_WIDE_INT full_size;
213 };
214 \f
215 /* This structure is used to record MEMs or pseudos used to replace VAR, any
216 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
217 maintain this list in case two operands of an insn were required to match;
218 in that case we must ensure we use the same replacement. */
219
220 struct fixup_replacement
221 {
222 rtx old;
223 rtx new;
224 struct fixup_replacement *next;
225 };
226
227 struct insns_for_mem_entry {
228 /* The KEY in HE will be a MEM. */
229 struct hash_entry he;
230 /* These are the INSNS which reference the MEM. */
231 rtx insns;
232 };
233
234 /* Forward declarations. */
235
236 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
237 int, struct function *));
238 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
239 HOST_WIDE_INT, int, tree));
240 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
241 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
242 enum machine_mode, enum machine_mode,
243 int, unsigned int, int,
244 struct hash_table *));
245 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
246 enum machine_mode,
247 struct hash_table *));
248 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
249 struct hash_table *));
250 static struct fixup_replacement
251 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
252 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
253 int, int));
254 static void fixup_var_refs_insns_with_hash
255 PARAMS ((struct hash_table *, rtx,
256 enum machine_mode, int));
257 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
258 int, int));
259 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
260 struct fixup_replacement **));
261 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
262 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
263 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
264 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
265 static void instantiate_decls PARAMS ((tree, int));
266 static void instantiate_decls_1 PARAMS ((tree, int));
267 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
268 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
269 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
270 static void delete_handlers PARAMS ((void));
271 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
272 struct args_size *));
273 #ifndef ARGS_GROW_DOWNWARD
274 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
275 tree));
276 #endif
277 static rtx round_trampoline_addr PARAMS ((rtx));
278 static rtx adjust_trampoline_addr PARAMS ((rtx));
279 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
280 static void reorder_blocks_0 PARAMS ((rtx));
281 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
282 static tree blocks_nreverse PARAMS ((tree));
283 static int all_blocks PARAMS ((tree, tree *));
284 static tree *get_block_vector PARAMS ((tree, int *));
285 /* We always define `record_insns' even if its not used so that we
286 can always export `prologue_epilogue_contains'. */
287 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
288 static int contains PARAMS ((rtx, varray_type));
289 #ifdef HAVE_return
290 static void emit_return_into_block PARAMS ((basic_block, rtx));
291 #endif
292 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
293 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
294 struct hash_table *));
295 static void purge_single_hard_subreg_set PARAMS ((rtx));
296 #ifdef HAVE_epilogue
297 static void keep_stack_depressed PARAMS ((rtx));
298 #endif
299 static int is_addressof PARAMS ((rtx *, void *));
300 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
301 struct hash_table *,
302 hash_table_key));
303 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
304 static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
305 static int insns_for_mem_walk PARAMS ((rtx *, void *));
306 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
307 static void mark_temp_slot PARAMS ((struct temp_slot *));
308 static void mark_function_status PARAMS ((struct function *));
309 static void mark_function_chain PARAMS ((void *));
310 static void prepare_function_start PARAMS ((void));
311 static void do_clobber_return_reg PARAMS ((rtx, void *));
312 static void do_use_return_reg PARAMS ((rtx, void *));
313 \f
314 /* Pointer to chain of `struct function' for containing functions. */
315 struct function *outer_function_chain;
316
317 /* Given a function decl for a containing function,
318 return the `struct function' for it. */
319
320 struct function *
321 find_function_data (decl)
322 tree decl;
323 {
324 struct function *p;
325
326 for (p = outer_function_chain; p; p = p->next)
327 if (p->decl == decl)
328 return p;
329
330 abort ();
331 }
332
333 /* Save the current context for compilation of a nested function.
334 This is called from language-specific code. The caller should use
335 the save_lang_status callback to save any language-specific state,
336 since this function knows only about language-independent
337 variables. */
338
339 void
340 push_function_context_to (context)
341 tree context;
342 {
343 struct function *p, *context_data;
344
345 if (context)
346 {
347 context_data = (context == current_function_decl
348 ? cfun
349 : find_function_data (context));
350 context_data->contains_functions = 1;
351 }
352
353 if (cfun == 0)
354 init_dummy_function_start ();
355 p = cfun;
356
357 p->next = outer_function_chain;
358 outer_function_chain = p;
359 p->fixup_var_refs_queue = 0;
360
361 if (save_lang_status)
362 (*save_lang_status) (p);
363
364 cfun = 0;
365 }
366
367 void
368 push_function_context ()
369 {
370 push_function_context_to (current_function_decl);
371 }
372
373 /* Restore the last saved context, at the end of a nested function.
374 This function is called from language-specific code. */
375
376 void
377 pop_function_context_from (context)
378 tree context ATTRIBUTE_UNUSED;
379 {
380 struct function *p = outer_function_chain;
381 struct var_refs_queue *queue;
382 struct var_refs_queue *next;
383
384 cfun = p;
385 outer_function_chain = p->next;
386
387 current_function_decl = p->decl;
388 reg_renumber = 0;
389
390 restore_emit_status (p);
391
392 if (restore_lang_status)
393 (*restore_lang_status) (p);
394
395 /* Finish doing put_var_into_stack for any of our variables
396 which became addressable during the nested function. */
397 for (queue = p->fixup_var_refs_queue; queue; queue = next)
398 {
399 next = queue->next;
400 fixup_var_refs (queue->modified, queue->promoted_mode,
401 queue->unsignedp, 0);
402 free (queue);
403 }
404 p->fixup_var_refs_queue = 0;
405
406 /* Reset variables that have known state during rtx generation. */
407 rtx_equal_function_value_matters = 1;
408 virtuals_instantiated = 0;
409 generating_concat_p = 1;
410 }
411
412 void
413 pop_function_context ()
414 {
415 pop_function_context_from (current_function_decl);
416 }
417
418 /* Clear out all parts of the state in F that can safely be discarded
419 after the function has been parsed, but not compiled, to let
420 garbage collection reclaim the memory. */
421
422 void
423 free_after_parsing (f)
424 struct function *f;
425 {
426 /* f->expr->forced_labels is used by code generation. */
427 /* f->emit->regno_reg_rtx is used by code generation. */
428 /* f->varasm is used by code generation. */
429 /* f->eh->eh_return_stub_label is used by code generation. */
430
431 if (free_lang_status)
432 (*free_lang_status) (f);
433 free_stmt_status (f);
434 }
435
436 /* Clear out all parts of the state in F that can safely be discarded
437 after the function has been compiled, to let garbage collection
438 reclaim the memory. */
439
440 void
441 free_after_compilation (f)
442 struct function *f;
443 {
444 struct temp_slot *ts;
445 struct temp_slot *next;
446
447 free_eh_status (f);
448 free_expr_status (f);
449 free_emit_status (f);
450 free_varasm_status (f);
451
452 if (free_machine_status)
453 (*free_machine_status) (f);
454
455 if (f->x_parm_reg_stack_loc)
456 free (f->x_parm_reg_stack_loc);
457
458 for (ts = f->x_temp_slots; ts; ts = next)
459 {
460 next = ts->next;
461 free (ts);
462 }
463 f->x_temp_slots = NULL;
464
465 f->arg_offset_rtx = NULL;
466 f->return_rtx = NULL;
467 f->internal_arg_pointer = NULL;
468 f->x_nonlocal_labels = NULL;
469 f->x_nonlocal_goto_handler_slots = NULL;
470 f->x_nonlocal_goto_handler_labels = NULL;
471 f->x_nonlocal_goto_stack_level = NULL;
472 f->x_cleanup_label = NULL;
473 f->x_return_label = NULL;
474 f->x_save_expr_regs = NULL;
475 f->x_stack_slot_list = NULL;
476 f->x_rtl_expr_chain = NULL;
477 f->x_tail_recursion_label = NULL;
478 f->x_tail_recursion_reentry = NULL;
479 f->x_arg_pointer_save_area = NULL;
480 f->x_clobber_return_insn = NULL;
481 f->x_context_display = NULL;
482 f->x_trampoline_list = NULL;
483 f->x_parm_birth_insn = NULL;
484 f->x_last_parm_insn = NULL;
485 f->x_parm_reg_stack_loc = NULL;
486 f->fixup_var_refs_queue = NULL;
487 f->original_arg_vector = NULL;
488 f->original_decl_initial = NULL;
489 f->inl_last_parm_insn = NULL;
490 f->epilogue_delay_list = NULL;
491 }
492 \f
493 /* Allocate fixed slots in the stack frame of the current function. */
494
495 /* Return size needed for stack frame based on slots so far allocated in
496 function F.
497 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
498 the caller may have to do that. */
499
500 HOST_WIDE_INT
501 get_func_frame_size (f)
502 struct function *f;
503 {
504 #ifdef FRAME_GROWS_DOWNWARD
505 return -f->x_frame_offset;
506 #else
507 return f->x_frame_offset;
508 #endif
509 }
510
511 /* Return size needed for stack frame based on slots so far allocated.
512 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
513 the caller may have to do that. */
514 HOST_WIDE_INT
515 get_frame_size ()
516 {
517 return get_func_frame_size (cfun);
518 }
519
520 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
521 with machine mode MODE.
522
523 ALIGN controls the amount of alignment for the address of the slot:
524 0 means according to MODE,
525 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
526 positive specifies alignment boundary in bits.
527
528 We do not round to stack_boundary here.
529
530 FUNCTION specifies the function to allocate in. */
531
532 static rtx
533 assign_stack_local_1 (mode, size, align, function)
534 enum machine_mode mode;
535 HOST_WIDE_INT size;
536 int align;
537 struct function *function;
538 {
539 register rtx x, addr;
540 int bigend_correction = 0;
541 int alignment;
542
543 if (align == 0)
544 {
545 tree type;
546
547 if (mode == BLKmode)
548 alignment = BIGGEST_ALIGNMENT;
549 else
550 alignment = GET_MODE_ALIGNMENT (mode);
551
552 /* Allow the target to (possibly) increase the alignment of this
553 stack slot. */
554 type = type_for_mode (mode, 0);
555 if (type)
556 alignment = LOCAL_ALIGNMENT (type, alignment);
557
558 alignment /= BITS_PER_UNIT;
559 }
560 else if (align == -1)
561 {
562 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
563 size = CEIL_ROUND (size, alignment);
564 }
565 else
566 alignment = align / BITS_PER_UNIT;
567
568 #ifdef FRAME_GROWS_DOWNWARD
569 function->x_frame_offset -= size;
570 #endif
571
572 /* Ignore alignment we can't do with expected alignment of the boundary. */
573 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
574 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
575
576 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
577 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
578
579 /* Round frame offset to that alignment.
580 We must be careful here, since FRAME_OFFSET might be negative and
581 division with a negative dividend isn't as well defined as we might
582 like. So we instead assume that ALIGNMENT is a power of two and
583 use logical operations which are unambiguous. */
584 #ifdef FRAME_GROWS_DOWNWARD
585 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
586 #else
587 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
588 #endif
589
590 /* On a big-endian machine, if we are allocating more space than we will use,
591 use the least significant bytes of those that are allocated. */
592 if (BYTES_BIG_ENDIAN && mode != BLKmode)
593 bigend_correction = size - GET_MODE_SIZE (mode);
594
595 /* If we have already instantiated virtual registers, return the actual
596 address relative to the frame pointer. */
597 if (function == cfun && virtuals_instantiated)
598 addr = plus_constant (frame_pointer_rtx,
599 (frame_offset + bigend_correction
600 + STARTING_FRAME_OFFSET));
601 else
602 addr = plus_constant (virtual_stack_vars_rtx,
603 function->x_frame_offset + bigend_correction);
604
605 #ifndef FRAME_GROWS_DOWNWARD
606 function->x_frame_offset += size;
607 #endif
608
609 x = gen_rtx_MEM (mode, addr);
610
611 function->x_stack_slot_list
612 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
613
614 return x;
615 }
616
617 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
618 current function. */
619
620 rtx
621 assign_stack_local (mode, size, align)
622 enum machine_mode mode;
623 HOST_WIDE_INT size;
624 int align;
625 {
626 return assign_stack_local_1 (mode, size, align, cfun);
627 }
628 \f
629 /* Allocate a temporary stack slot and record it for possible later
630 reuse.
631
632 MODE is the machine mode to be given to the returned rtx.
633
634 SIZE is the size in units of the space required. We do no rounding here
635 since assign_stack_local will do any required rounding.
636
637 KEEP is 1 if this slot is to be retained after a call to
638 free_temp_slots. Automatic variables for a block are allocated
639 with this flag. KEEP is 2 if we allocate a longer term temporary,
640 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
641 if we are to allocate something at an inner level to be treated as
642 a variable in the block (e.g., a SAVE_EXPR).
643
644 TYPE is the type that will be used for the stack slot. */
645
646 static rtx
647 assign_stack_temp_for_type (mode, size, keep, type)
648 enum machine_mode mode;
649 HOST_WIDE_INT size;
650 int keep;
651 tree type;
652 {
653 int align;
654 struct temp_slot *p, *best_p = 0;
655
656 /* If SIZE is -1 it means that somebody tried to allocate a temporary
657 of a variable size. */
658 if (size == -1)
659 abort ();
660
661 if (mode == BLKmode)
662 align = BIGGEST_ALIGNMENT;
663 else
664 align = GET_MODE_ALIGNMENT (mode);
665
666 if (! type)
667 type = type_for_mode (mode, 0);
668
669 if (type)
670 align = LOCAL_ALIGNMENT (type, align);
671
672 /* Try to find an available, already-allocated temporary of the proper
673 mode which meets the size and alignment requirements. Choose the
674 smallest one with the closest alignment. */
675 for (p = temp_slots; p; p = p->next)
676 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
677 && ! p->in_use
678 && objects_must_conflict_p (p->type, type)
679 && (best_p == 0 || best_p->size > p->size
680 || (best_p->size == p->size && best_p->align > p->align)))
681 {
682 if (p->align == align && p->size == size)
683 {
684 best_p = 0;
685 break;
686 }
687 best_p = p;
688 }
689
690 /* Make our best, if any, the one to use. */
691 if (best_p)
692 {
693 /* If there are enough aligned bytes left over, make them into a new
694 temp_slot so that the extra bytes don't get wasted. Do this only
695 for BLKmode slots, so that we can be sure of the alignment. */
696 if (GET_MODE (best_p->slot) == BLKmode)
697 {
698 int alignment = best_p->align / BITS_PER_UNIT;
699 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
700
701 if (best_p->size - rounded_size >= alignment)
702 {
703 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
704 p->in_use = p->addr_taken = 0;
705 p->size = best_p->size - rounded_size;
706 p->base_offset = best_p->base_offset + rounded_size;
707 p->full_size = best_p->full_size - rounded_size;
708 p->slot = gen_rtx_MEM (BLKmode,
709 plus_constant (XEXP (best_p->slot, 0),
710 rounded_size));
711 p->align = best_p->align;
712 p->address = 0;
713 p->rtl_expr = 0;
714 p->type = best_p->type;
715 p->next = temp_slots;
716 temp_slots = p;
717
718 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
719 stack_slot_list);
720
721 best_p->size = rounded_size;
722 best_p->full_size = rounded_size;
723 }
724 }
725
726 p = best_p;
727 }
728
729 /* If we still didn't find one, make a new temporary. */
730 if (p == 0)
731 {
732 HOST_WIDE_INT frame_offset_old = frame_offset;
733
734 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
735
736 /* We are passing an explicit alignment request to assign_stack_local.
737 One side effect of that is assign_stack_local will not round SIZE
738 to ensure the frame offset remains suitably aligned.
739
740 So for requests which depended on the rounding of SIZE, we go ahead
741 and round it now. We also make sure ALIGNMENT is at least
742 BIGGEST_ALIGNMENT. */
743 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
744 abort();
745 p->slot = assign_stack_local (mode,
746 (mode == BLKmode
747 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
748 : size),
749 align);
750
751 p->align = align;
752
753 /* The following slot size computation is necessary because we don't
754 know the actual size of the temporary slot until assign_stack_local
755 has performed all the frame alignment and size rounding for the
756 requested temporary. Note that extra space added for alignment
757 can be either above or below this stack slot depending on which
758 way the frame grows. We include the extra space if and only if it
759 is above this slot. */
760 #ifdef FRAME_GROWS_DOWNWARD
761 p->size = frame_offset_old - frame_offset;
762 #else
763 p->size = size;
764 #endif
765
766 /* Now define the fields used by combine_temp_slots. */
767 #ifdef FRAME_GROWS_DOWNWARD
768 p->base_offset = frame_offset;
769 p->full_size = frame_offset_old - frame_offset;
770 #else
771 p->base_offset = frame_offset_old;
772 p->full_size = frame_offset - frame_offset_old;
773 #endif
774 p->address = 0;
775 p->next = temp_slots;
776 temp_slots = p;
777 }
778
779 p->in_use = 1;
780 p->addr_taken = 0;
781 p->rtl_expr = seq_rtl_expr;
782 p->type = type;
783
784 if (keep == 2)
785 {
786 p->level = target_temp_slot_level;
787 p->keep = 0;
788 }
789 else if (keep == 3)
790 {
791 p->level = var_temp_slot_level;
792 p->keep = 0;
793 }
794 else
795 {
796 p->level = temp_slot_level;
797 p->keep = keep;
798 }
799
800 /* We may be reusing an old slot, so clear any MEM flags that may have been
801 set from before. */
802 RTX_UNCHANGING_P (p->slot) = 0;
803 MEM_IN_STRUCT_P (p->slot) = 0;
804 MEM_SCALAR_P (p->slot) = 0;
805 MEM_VOLATILE_P (p->slot) = 0;
806
807 /* If we know the alias set for the memory that will be used, use
808 it. If there's no TYPE, then we don't know anything about the
809 alias set for the memory. */
810 if (type)
811 MEM_ALIAS_SET (p->slot) = get_alias_set (type);
812 else
813 MEM_ALIAS_SET (p->slot) = 0;
814
815 /* If a type is specified, set the relevant flags. */
816 if (type != 0)
817 {
818 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
819 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
820 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
821 }
822
823 return p->slot;
824 }
825
826 /* Allocate a temporary stack slot and record it for possible later
827 reuse. First three arguments are same as in preceding function. */
828
829 rtx
830 assign_stack_temp (mode, size, keep)
831 enum machine_mode mode;
832 HOST_WIDE_INT size;
833 int keep;
834 {
835 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
836 }
837 \f
838 /* Assign a temporary of given TYPE.
839 KEEP is as for assign_stack_temp.
840 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
841 it is 0 if a register is OK.
842 DONT_PROMOTE is 1 if we should not promote values in register
843 to wider modes. */
844
845 rtx
846 assign_temp (type, keep, memory_required, dont_promote)
847 tree type;
848 int keep;
849 int memory_required;
850 int dont_promote ATTRIBUTE_UNUSED;
851 {
852 enum machine_mode mode = TYPE_MODE (type);
853 #ifndef PROMOTE_FOR_CALL_ONLY
854 int unsignedp = TREE_UNSIGNED (type);
855 #endif
856
857 if (mode == BLKmode || memory_required)
858 {
859 HOST_WIDE_INT size = int_size_in_bytes (type);
860 rtx tmp;
861
862 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
863 problems with allocating the stack space. */
864 if (size == 0)
865 size = 1;
866
867 /* Unfortunately, we don't yet know how to allocate variable-sized
868 temporaries. However, sometimes we have a fixed upper limit on
869 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
870 instead. This is the case for Chill variable-sized strings. */
871 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
872 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
873 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
874 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
875
876 tmp = assign_stack_temp_for_type (mode, size, keep, type);
877 return tmp;
878 }
879
880 #ifndef PROMOTE_FOR_CALL_ONLY
881 if (! dont_promote)
882 mode = promote_mode (type, mode, &unsignedp, 0);
883 #endif
884
885 return gen_reg_rtx (mode);
886 }
887 \f
888 /* Combine temporary stack slots which are adjacent on the stack.
889
890 This allows for better use of already allocated stack space. This is only
891 done for BLKmode slots because we can be sure that we won't have alignment
892 problems in this case. */
893
894 void
895 combine_temp_slots ()
896 {
897 struct temp_slot *p, *q;
898 struct temp_slot *prev_p, *prev_q;
899 int num_slots;
900
901 /* We can't combine slots, because the information about which slot
902 is in which alias set will be lost. */
903 if (flag_strict_aliasing)
904 return;
905
906 /* If there are a lot of temp slots, don't do anything unless
907 high levels of optimizaton. */
908 if (! flag_expensive_optimizations)
909 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
910 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
911 return;
912
913 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
914 {
915 int delete_p = 0;
916
917 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
918 for (q = p->next, prev_q = p; q; q = prev_q->next)
919 {
920 int delete_q = 0;
921 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
922 {
923 if (p->base_offset + p->full_size == q->base_offset)
924 {
925 /* Q comes after P; combine Q into P. */
926 p->size += q->size;
927 p->full_size += q->full_size;
928 delete_q = 1;
929 }
930 else if (q->base_offset + q->full_size == p->base_offset)
931 {
932 /* P comes after Q; combine P into Q. */
933 q->size += p->size;
934 q->full_size += p->full_size;
935 delete_p = 1;
936 break;
937 }
938 }
939 /* Either delete Q or advance past it. */
940 if (delete_q)
941 {
942 prev_q->next = q->next;
943 free (q);
944 }
945 else
946 prev_q = q;
947 }
948 /* Either delete P or advance past it. */
949 if (delete_p)
950 {
951 if (prev_p)
952 prev_p->next = p->next;
953 else
954 temp_slots = p->next;
955 }
956 else
957 prev_p = p;
958 }
959 }
960 \f
961 /* Find the temp slot corresponding to the object at address X. */
962
963 static struct temp_slot *
964 find_temp_slot_from_address (x)
965 rtx x;
966 {
967 struct temp_slot *p;
968 rtx next;
969
970 for (p = temp_slots; p; p = p->next)
971 {
972 if (! p->in_use)
973 continue;
974
975 else if (XEXP (p->slot, 0) == x
976 || p->address == x
977 || (GET_CODE (x) == PLUS
978 && XEXP (x, 0) == virtual_stack_vars_rtx
979 && GET_CODE (XEXP (x, 1)) == CONST_INT
980 && INTVAL (XEXP (x, 1)) >= p->base_offset
981 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
982 return p;
983
984 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
985 for (next = p->address; next; next = XEXP (next, 1))
986 if (XEXP (next, 0) == x)
987 return p;
988 }
989
990 /* If we have a sum involving a register, see if it points to a temp
991 slot. */
992 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
993 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
994 return p;
995 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
996 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
997 return p;
998
999 return 0;
1000 }
1001
1002 /* Indicate that NEW is an alternate way of referring to the temp slot
1003 that previously was known by OLD. */
1004
1005 void
1006 update_temp_slot_address (old, new)
1007 rtx old, new;
1008 {
1009 struct temp_slot *p;
1010
1011 if (rtx_equal_p (old, new))
1012 return;
1013
1014 p = find_temp_slot_from_address (old);
1015
1016 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1017 is a register, see if one operand of the PLUS is a temporary
1018 location. If so, NEW points into it. Otherwise, if both OLD and
1019 NEW are a PLUS and if there is a register in common between them.
1020 If so, try a recursive call on those values. */
1021 if (p == 0)
1022 {
1023 if (GET_CODE (old) != PLUS)
1024 return;
1025
1026 if (GET_CODE (new) == REG)
1027 {
1028 update_temp_slot_address (XEXP (old, 0), new);
1029 update_temp_slot_address (XEXP (old, 1), new);
1030 return;
1031 }
1032 else if (GET_CODE (new) != PLUS)
1033 return;
1034
1035 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1036 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1037 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1038 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1039 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1040 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1041 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1042 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1043
1044 return;
1045 }
1046
1047 /* Otherwise add an alias for the temp's address. */
1048 else if (p->address == 0)
1049 p->address = new;
1050 else
1051 {
1052 if (GET_CODE (p->address) != EXPR_LIST)
1053 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1054
1055 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1056 }
1057 }
1058
1059 /* If X could be a reference to a temporary slot, mark the fact that its
1060 address was taken. */
1061
1062 void
1063 mark_temp_addr_taken (x)
1064 rtx x;
1065 {
1066 struct temp_slot *p;
1067
1068 if (x == 0)
1069 return;
1070
1071 /* If X is not in memory or is at a constant address, it cannot be in
1072 a temporary slot. */
1073 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1074 return;
1075
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1077 if (p != 0)
1078 p->addr_taken = 1;
1079 }
1080
1081 /* If X could be a reference to a temporary slot, mark that slot as
1082 belonging to the to one level higher than the current level. If X
1083 matched one of our slots, just mark that one. Otherwise, we can't
1084 easily predict which it is, so upgrade all of them. Kept slots
1085 need not be touched.
1086
1087 This is called when an ({...}) construct occurs and a statement
1088 returns a value in memory. */
1089
1090 void
1091 preserve_temp_slots (x)
1092 rtx x;
1093 {
1094 struct temp_slot *p = 0;
1095
1096 /* If there is no result, we still might have some objects whose address
1097 were taken, so we need to make sure they stay around. */
1098 if (x == 0)
1099 {
1100 for (p = temp_slots; p; p = p->next)
1101 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1102 p->level--;
1103
1104 return;
1105 }
1106
1107 /* If X is a register that is being used as a pointer, see if we have
1108 a temporary slot we know it points to. To be consistent with
1109 the code below, we really should preserve all non-kept slots
1110 if we can't find a match, but that seems to be much too costly. */
1111 if (GET_CODE (x) == REG && REG_POINTER (x))
1112 p = find_temp_slot_from_address (x);
1113
1114 /* If X is not in memory or is at a constant address, it cannot be in
1115 a temporary slot, but it can contain something whose address was
1116 taken. */
1117 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1118 {
1119 for (p = temp_slots; p; p = p->next)
1120 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1121 p->level--;
1122
1123 return;
1124 }
1125
1126 /* First see if we can find a match. */
1127 if (p == 0)
1128 p = find_temp_slot_from_address (XEXP (x, 0));
1129
1130 if (p != 0)
1131 {
1132 /* Move everything at our level whose address was taken to our new
1133 level in case we used its address. */
1134 struct temp_slot *q;
1135
1136 if (p->level == temp_slot_level)
1137 {
1138 for (q = temp_slots; q; q = q->next)
1139 if (q != p && q->addr_taken && q->level == p->level)
1140 q->level--;
1141
1142 p->level--;
1143 p->addr_taken = 0;
1144 }
1145 return;
1146 }
1147
1148 /* Otherwise, preserve all non-kept slots at this level. */
1149 for (p = temp_slots; p; p = p->next)
1150 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1151 p->level--;
1152 }
1153
1154 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1155 with that RTL_EXPR, promote it into a temporary slot at the present
1156 level so it will not be freed when we free slots made in the
1157 RTL_EXPR. */
1158
1159 void
1160 preserve_rtl_expr_result (x)
1161 rtx x;
1162 {
1163 struct temp_slot *p;
1164
1165 /* If X is not in memory or is at a constant address, it cannot be in
1166 a temporary slot. */
1167 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1168 return;
1169
1170 /* If we can find a match, move it to our level unless it is already at
1171 an upper level. */
1172 p = find_temp_slot_from_address (XEXP (x, 0));
1173 if (p != 0)
1174 {
1175 p->level = MIN (p->level, temp_slot_level);
1176 p->rtl_expr = 0;
1177 }
1178
1179 return;
1180 }
1181
1182 /* Free all temporaries used so far. This is normally called at the end
1183 of generating code for a statement. Don't free any temporaries
1184 currently in use for an RTL_EXPR that hasn't yet been emitted.
1185 We could eventually do better than this since it can be reused while
1186 generating the same RTL_EXPR, but this is complex and probably not
1187 worthwhile. */
1188
1189 void
1190 free_temp_slots ()
1191 {
1192 struct temp_slot *p;
1193
1194 for (p = temp_slots; p; p = p->next)
1195 if (p->in_use && p->level == temp_slot_level && ! p->keep
1196 && p->rtl_expr == 0)
1197 p->in_use = 0;
1198
1199 combine_temp_slots ();
1200 }
1201
1202 /* Free all temporary slots used in T, an RTL_EXPR node. */
1203
1204 void
1205 free_temps_for_rtl_expr (t)
1206 tree t;
1207 {
1208 struct temp_slot *p;
1209
1210 for (p = temp_slots; p; p = p->next)
1211 if (p->rtl_expr == t)
1212 {
1213 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1214 needs to be preserved. This can happen if a temporary in
1215 the RTL_EXPR was addressed; preserve_temp_slots will move
1216 the temporary into a higher level. */
1217 if (temp_slot_level <= p->level)
1218 p->in_use = 0;
1219 else
1220 p->rtl_expr = NULL_TREE;
1221 }
1222
1223 combine_temp_slots ();
1224 }
1225
1226 /* Mark all temporaries ever allocated in this function as not suitable
1227 for reuse until the current level is exited. */
1228
1229 void
1230 mark_all_temps_used ()
1231 {
1232 struct temp_slot *p;
1233
1234 for (p = temp_slots; p; p = p->next)
1235 {
1236 p->in_use = p->keep = 1;
1237 p->level = MIN (p->level, temp_slot_level);
1238 }
1239 }
1240
1241 /* Push deeper into the nesting level for stack temporaries. */
1242
1243 void
1244 push_temp_slots ()
1245 {
1246 temp_slot_level++;
1247 }
1248
1249 /* Likewise, but save the new level as the place to allocate variables
1250 for blocks. */
1251
1252 #if 0
1253 void
1254 push_temp_slots_for_block ()
1255 {
1256 push_temp_slots ();
1257
1258 var_temp_slot_level = temp_slot_level;
1259 }
1260
1261 /* Likewise, but save the new level as the place to allocate temporaries
1262 for TARGET_EXPRs. */
1263
1264 void
1265 push_temp_slots_for_target ()
1266 {
1267 push_temp_slots ();
1268
1269 target_temp_slot_level = temp_slot_level;
1270 }
1271
1272 /* Set and get the value of target_temp_slot_level. The only
1273 permitted use of these functions is to save and restore this value. */
1274
1275 int
1276 get_target_temp_slot_level ()
1277 {
1278 return target_temp_slot_level;
1279 }
1280
1281 void
1282 set_target_temp_slot_level (level)
1283 int level;
1284 {
1285 target_temp_slot_level = level;
1286 }
1287 #endif
1288
1289 /* Pop a temporary nesting level. All slots in use in the current level
1290 are freed. */
1291
1292 void
1293 pop_temp_slots ()
1294 {
1295 struct temp_slot *p;
1296
1297 for (p = temp_slots; p; p = p->next)
1298 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1299 p->in_use = 0;
1300
1301 combine_temp_slots ();
1302
1303 temp_slot_level--;
1304 }
1305
1306 /* Initialize temporary slots. */
1307
1308 void
1309 init_temp_slots ()
1310 {
1311 /* We have not allocated any temporaries yet. */
1312 temp_slots = 0;
1313 temp_slot_level = 0;
1314 var_temp_slot_level = 0;
1315 target_temp_slot_level = 0;
1316 }
1317 \f
1318 /* Retroactively move an auto variable from a register to a stack slot.
1319 This is done when an address-reference to the variable is seen. */
1320
1321 void
1322 put_var_into_stack (decl)
1323 tree decl;
1324 {
1325 register rtx reg;
1326 enum machine_mode promoted_mode, decl_mode;
1327 struct function *function = 0;
1328 tree context;
1329 int can_use_addressof;
1330 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1331 int usedp = (TREE_USED (decl)
1332 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1333
1334 context = decl_function_context (decl);
1335
1336 /* Get the current rtl used for this object and its original mode. */
1337 reg = (TREE_CODE (decl) == SAVE_EXPR
1338 ? SAVE_EXPR_RTL (decl)
1339 : DECL_RTL_IF_SET (decl));
1340
1341 /* No need to do anything if decl has no rtx yet
1342 since in that case caller is setting TREE_ADDRESSABLE
1343 and a stack slot will be assigned when the rtl is made. */
1344 if (reg == 0)
1345 return;
1346
1347 /* Get the declared mode for this object. */
1348 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1349 : DECL_MODE (decl));
1350 /* Get the mode it's actually stored in. */
1351 promoted_mode = GET_MODE (reg);
1352
1353 /* If this variable comes from an outer function,
1354 find that function's saved context. */
1355 if (context != current_function_decl && context != inline_function_decl)
1356 for (function = outer_function_chain; function; function = function->next)
1357 if (function->decl == context)
1358 break;
1359
1360 /* If this is a variable-size object with a pseudo to address it,
1361 put that pseudo into the stack, if the var is nonlocal. */
1362 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1363 && GET_CODE (reg) == MEM
1364 && GET_CODE (XEXP (reg, 0)) == REG
1365 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1366 {
1367 reg = XEXP (reg, 0);
1368 decl_mode = promoted_mode = GET_MODE (reg);
1369 }
1370
1371 can_use_addressof
1372 = (function == 0
1373 && optimize > 0
1374 /* FIXME make it work for promoted modes too */
1375 && decl_mode == promoted_mode
1376 #ifdef NON_SAVING_SETJMP
1377 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1378 #endif
1379 );
1380
1381 /* If we can't use ADDRESSOF, make sure we see through one we already
1382 generated. */
1383 if (! can_use_addressof && GET_CODE (reg) == MEM
1384 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1385 reg = XEXP (XEXP (reg, 0), 0);
1386
1387 /* Now we should have a value that resides in one or more pseudo regs. */
1388
1389 if (GET_CODE (reg) == REG)
1390 {
1391 /* If this variable lives in the current function and we don't need
1392 to put things in the stack for the sake of setjmp, try to keep it
1393 in a register until we know we actually need the address. */
1394 if (can_use_addressof)
1395 gen_mem_addressof (reg, decl);
1396 else
1397 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1398 decl_mode, volatilep, 0, usedp, 0);
1399 }
1400 else if (GET_CODE (reg) == CONCAT)
1401 {
1402 /* A CONCAT contains two pseudos; put them both in the stack.
1403 We do it so they end up consecutive.
1404 We fixup references to the parts only after we fixup references
1405 to the whole CONCAT, lest we do double fixups for the latter
1406 references. */
1407 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1408 tree part_type = type_for_mode (part_mode, 0);
1409 rtx lopart = XEXP (reg, 0);
1410 rtx hipart = XEXP (reg, 1);
1411 #ifdef FRAME_GROWS_DOWNWARD
1412 /* Since part 0 should have a lower address, do it second. */
1413 put_reg_into_stack (function, hipart, part_type, part_mode,
1414 part_mode, volatilep, 0, 0, 0);
1415 put_reg_into_stack (function, lopart, part_type, part_mode,
1416 part_mode, volatilep, 0, 0, 0);
1417 #else
1418 put_reg_into_stack (function, lopart, part_type, part_mode,
1419 part_mode, volatilep, 0, 0, 0);
1420 put_reg_into_stack (function, hipart, part_type, part_mode,
1421 part_mode, volatilep, 0, 0, 0);
1422 #endif
1423
1424 /* Change the CONCAT into a combined MEM for both parts. */
1425 PUT_CODE (reg, MEM);
1426 set_mem_attributes (reg, decl, 1);
1427
1428 /* The two parts are in memory order already.
1429 Use the lower parts address as ours. */
1430 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1431 /* Prevent sharing of rtl that might lose. */
1432 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1433 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1434 if (usedp)
1435 {
1436 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1437 promoted_mode, 0);
1438 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1439 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1440 }
1441 }
1442 else
1443 return;
1444
1445 if (current_function_check_memory_usage)
1446 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1447 3, XEXP (reg, 0), Pmode,
1448 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1449 TYPE_MODE (sizetype),
1450 GEN_INT (MEMORY_USE_RW),
1451 TYPE_MODE (integer_type_node));
1452 }
1453
1454 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1455 into the stack frame of FUNCTION (0 means the current function).
1456 DECL_MODE is the machine mode of the user-level data type.
1457 PROMOTED_MODE is the machine mode of the register.
1458 VOLATILE_P is nonzero if this is for a "volatile" decl.
1459 USED_P is nonzero if this reg might have already been used in an insn. */
1460
1461 static void
1462 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1463 original_regno, used_p, ht)
1464 struct function *function;
1465 rtx reg;
1466 tree type;
1467 enum machine_mode promoted_mode, decl_mode;
1468 int volatile_p;
1469 unsigned int original_regno;
1470 int used_p;
1471 struct hash_table *ht;
1472 {
1473 struct function *func = function ? function : cfun;
1474 rtx new = 0;
1475 unsigned int regno = original_regno;
1476
1477 if (regno == 0)
1478 regno = REGNO (reg);
1479
1480 if (regno < func->x_max_parm_reg)
1481 new = func->x_parm_reg_stack_loc[regno];
1482
1483 if (new == 0)
1484 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1485
1486 PUT_CODE (reg, MEM);
1487 PUT_MODE (reg, decl_mode);
1488 XEXP (reg, 0) = XEXP (new, 0);
1489 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1490 MEM_VOLATILE_P (reg) = volatile_p;
1491
1492 /* If this is a memory ref that contains aggregate components,
1493 mark it as such for cse and loop optimize. If we are reusing a
1494 previously generated stack slot, then we need to copy the bit in
1495 case it was set for other reasons. For instance, it is set for
1496 __builtin_va_alist. */
1497 if (type)
1498 {
1499 MEM_SET_IN_STRUCT_P (reg,
1500 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1501 MEM_ALIAS_SET (reg) = get_alias_set (type);
1502 }
1503 if (used_p)
1504 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1505 }
1506
1507 /* Make sure that all refs to the variable, previously made
1508 when it was a register, are fixed up to be valid again.
1509 See function above for meaning of arguments. */
1510
1511 static void
1512 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1513 struct function *function;
1514 rtx reg;
1515 tree type;
1516 enum machine_mode promoted_mode;
1517 struct hash_table *ht;
1518 {
1519 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1520
1521 if (function != 0)
1522 {
1523 struct var_refs_queue *temp;
1524
1525 temp
1526 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1527 temp->modified = reg;
1528 temp->promoted_mode = promoted_mode;
1529 temp->unsignedp = unsigned_p;
1530 temp->next = function->fixup_var_refs_queue;
1531 function->fixup_var_refs_queue = temp;
1532 }
1533 else
1534 /* Variable is local; fix it up now. */
1535 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1536 }
1537 \f
1538 static void
1539 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1540 rtx var;
1541 enum machine_mode promoted_mode;
1542 int unsignedp;
1543 struct hash_table *ht;
1544 {
1545 tree pending;
1546 rtx first_insn = get_insns ();
1547 struct sequence_stack *stack = seq_stack;
1548 tree rtl_exps = rtl_expr_chain;
1549
1550 /* If there's a hash table, it must record all uses of VAR. */
1551 if (ht)
1552 {
1553 if (stack != 0)
1554 abort ();
1555 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
1556 return;
1557 }
1558
1559 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1560 stack == 0);
1561
1562 /* Scan all pending sequences too. */
1563 for (; stack; stack = stack->next)
1564 {
1565 push_to_full_sequence (stack->first, stack->last);
1566 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1567 stack->next != 0);
1568 /* Update remembered end of sequence
1569 in case we added an insn at the end. */
1570 stack->last = get_last_insn ();
1571 end_sequence ();
1572 }
1573
1574 /* Scan all waiting RTL_EXPRs too. */
1575 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1576 {
1577 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1578 if (seq != const0_rtx && seq != 0)
1579 {
1580 push_to_sequence (seq);
1581 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1582 end_sequence ();
1583 }
1584 }
1585 }
1586 \f
1587 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1588 some part of an insn. Return a struct fixup_replacement whose OLD
1589 value is equal to X. Allocate a new structure if no such entry exists. */
1590
1591 static struct fixup_replacement *
1592 find_fixup_replacement (replacements, x)
1593 struct fixup_replacement **replacements;
1594 rtx x;
1595 {
1596 struct fixup_replacement *p;
1597
1598 /* See if we have already replaced this. */
1599 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1600 ;
1601
1602 if (p == 0)
1603 {
1604 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1605 p->old = x;
1606 p->new = 0;
1607 p->next = *replacements;
1608 *replacements = p;
1609 }
1610
1611 return p;
1612 }
1613
1614 /* Scan the insn-chain starting with INSN for refs to VAR
1615 and fix them up. TOPLEVEL is nonzero if this chain is the
1616 main chain of insns for the current function. */
1617
1618 static void
1619 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
1620 rtx insn;
1621 rtx var;
1622 enum machine_mode promoted_mode;
1623 int unsignedp;
1624 int toplevel;
1625 {
1626 while (insn)
1627 {
1628 /* fixup_var_refs_insn might modify insn, so save its next
1629 pointer now. */
1630 rtx next = NEXT_INSN (insn);
1631
1632 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1633 the three sequences they (potentially) contain, and process
1634 them recursively. The CALL_INSN itself is not interesting. */
1635
1636 if (GET_CODE (insn) == CALL_INSN
1637 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1638 {
1639 int i;
1640
1641 /* Look at the Normal call, sibling call and tail recursion
1642 sequences attached to the CALL_PLACEHOLDER. */
1643 for (i = 0; i < 3; i++)
1644 {
1645 rtx seq = XEXP (PATTERN (insn), i);
1646 if (seq)
1647 {
1648 push_to_sequence (seq);
1649 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1650 XEXP (PATTERN (insn), i) = get_insns ();
1651 end_sequence ();
1652 }
1653 }
1654 }
1655
1656 else if (INSN_P (insn))
1657 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);
1658
1659 insn = next;
1660 }
1661 }
1662
1663 /* Look up the insns which reference VAR in HT and fix them up. Other
1664 arguments are the same as fixup_var_refs_insns.
1665
1666 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1667 because the hash table will point straight to the interesting insn
1668 (inside the CALL_PLACEHOLDER). */
1669 static void
1670 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
1671 struct hash_table *ht;
1672 rtx var;
1673 enum machine_mode promoted_mode;
1674 int unsignedp;
1675 {
1676 struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
1677 hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
1678 rtx insn_list = ime->insns;
1679
1680 while (insn_list)
1681 {
1682 rtx insn = XEXP (insn_list, 0);
1683
1684 if (INSN_P (insn))
1685 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 1);
1686
1687 insn_list = XEXP (insn_list, 1);
1688 }
1689 }
1690
1691
1692 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1693 the insn under examination, VAR is the variable to fix up
1694 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1695 TOPLEVEL is nonzero if this is the main insn chain for this
1696 function. */
1697 static void
1698 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
1699 rtx insn;
1700 rtx var;
1701 enum machine_mode promoted_mode;
1702 int unsignedp;
1703 int toplevel;
1704 {
1705 rtx call_dest = 0;
1706 rtx set, prev, prev_set;
1707 rtx note;
1708
1709 /* Remember the notes in case we delete the insn. */
1710 note = REG_NOTES (insn);
1711
1712 /* If this is a CLOBBER of VAR, delete it.
1713
1714 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1715 and REG_RETVAL notes too. */
1716 if (GET_CODE (PATTERN (insn)) == CLOBBER
1717 && (XEXP (PATTERN (insn), 0) == var
1718 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1719 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1720 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1721 {
1722 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1723 /* The REG_LIBCALL note will go away since we are going to
1724 turn INSN into a NOTE, so just delete the
1725 corresponding REG_RETVAL note. */
1726 remove_note (XEXP (note, 0),
1727 find_reg_note (XEXP (note, 0), REG_RETVAL,
1728 NULL_RTX));
1729
1730 /* In unoptimized compilation, we shouldn't call delete_insn
1731 except in jump.c doing warnings. */
1732 PUT_CODE (insn, NOTE);
1733 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1734 NOTE_SOURCE_FILE (insn) = 0;
1735 }
1736
1737 /* The insn to load VAR from a home in the arglist
1738 is now a no-op. When we see it, just delete it.
1739 Similarly if this is storing VAR from a register from which
1740 it was loaded in the previous insn. This will occur
1741 when an ADDRESSOF was made for an arglist slot. */
1742 else if (toplevel
1743 && (set = single_set (insn)) != 0
1744 && SET_DEST (set) == var
1745 /* If this represents the result of an insn group,
1746 don't delete the insn. */
1747 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1748 && (rtx_equal_p (SET_SRC (set), var)
1749 || (GET_CODE (SET_SRC (set)) == REG
1750 && (prev = prev_nonnote_insn (insn)) != 0
1751 && (prev_set = single_set (prev)) != 0
1752 && SET_DEST (prev_set) == SET_SRC (set)
1753 && rtx_equal_p (SET_SRC (prev_set), var))))
1754 {
1755 /* In unoptimized compilation, we shouldn't call delete_insn
1756 except in jump.c doing warnings. */
1757 PUT_CODE (insn, NOTE);
1758 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1759 NOTE_SOURCE_FILE (insn) = 0;
1760 }
1761 else
1762 {
1763 struct fixup_replacement *replacements = 0;
1764 rtx next_insn = NEXT_INSN (insn);
1765
1766 if (SMALL_REGISTER_CLASSES)
1767 {
1768 /* If the insn that copies the results of a CALL_INSN
1769 into a pseudo now references VAR, we have to use an
1770 intermediate pseudo since we want the life of the
1771 return value register to be only a single insn.
1772
1773 If we don't use an intermediate pseudo, such things as
1774 address computations to make the address of VAR valid
1775 if it is not can be placed between the CALL_INSN and INSN.
1776
1777 To make sure this doesn't happen, we record the destination
1778 of the CALL_INSN and see if the next insn uses both that
1779 and VAR. */
1780
1781 if (call_dest != 0 && GET_CODE (insn) == INSN
1782 && reg_mentioned_p (var, PATTERN (insn))
1783 && reg_mentioned_p (call_dest, PATTERN (insn)))
1784 {
1785 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1786
1787 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1788
1789 PATTERN (insn) = replace_rtx (PATTERN (insn),
1790 call_dest, temp);
1791 }
1792
1793 if (GET_CODE (insn) == CALL_INSN
1794 && GET_CODE (PATTERN (insn)) == SET)
1795 call_dest = SET_DEST (PATTERN (insn));
1796 else if (GET_CODE (insn) == CALL_INSN
1797 && GET_CODE (PATTERN (insn)) == PARALLEL
1798 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1799 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1800 else
1801 call_dest = 0;
1802 }
1803
1804 /* See if we have to do anything to INSN now that VAR is in
1805 memory. If it needs to be loaded into a pseudo, use a single
1806 pseudo for the entire insn in case there is a MATCH_DUP
1807 between two operands. We pass a pointer to the head of
1808 a list of struct fixup_replacements. If fixup_var_refs_1
1809 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1810 it will record them in this list.
1811
1812 If it allocated a pseudo for any replacement, we copy into
1813 it here. */
1814
1815 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1816 &replacements);
1817
1818 /* If this is last_parm_insn, and any instructions were output
1819 after it to fix it up, then we must set last_parm_insn to
1820 the last such instruction emitted. */
1821 if (insn == last_parm_insn)
1822 last_parm_insn = PREV_INSN (next_insn);
1823
1824 while (replacements)
1825 {
1826 struct fixup_replacement *next;
1827
1828 if (GET_CODE (replacements->new) == REG)
1829 {
1830 rtx insert_before;
1831 rtx seq;
1832
1833 /* OLD might be a (subreg (mem)). */
1834 if (GET_CODE (replacements->old) == SUBREG)
1835 replacements->old
1836 = fixup_memory_subreg (replacements->old, insn, 0);
1837 else
1838 replacements->old
1839 = fixup_stack_1 (replacements->old, insn);
1840
1841 insert_before = insn;
1842
1843 /* If we are changing the mode, do a conversion.
1844 This might be wasteful, but combine.c will
1845 eliminate much of the waste. */
1846
1847 if (GET_MODE (replacements->new)
1848 != GET_MODE (replacements->old))
1849 {
1850 start_sequence ();
1851 convert_move (replacements->new,
1852 replacements->old, unsignedp);
1853 seq = gen_sequence ();
1854 end_sequence ();
1855 }
1856 else
1857 seq = gen_move_insn (replacements->new,
1858 replacements->old);
1859
1860 emit_insn_before (seq, insert_before);
1861 }
1862
1863 next = replacements->next;
1864 free (replacements);
1865 replacements = next;
1866 }
1867 }
1868
1869 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1870 But don't touch other insns referred to by reg-notes;
1871 we will get them elsewhere. */
1872 while (note)
1873 {
1874 if (GET_CODE (note) != INSN_LIST)
1875 XEXP (note, 0)
1876 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1877 note = XEXP (note, 1);
1878 }
1879 }
1880 \f
1881 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1882 See if the rtx expression at *LOC in INSN needs to be changed.
1883
1884 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1885 contain a list of original rtx's and replacements. If we find that we need
1886 to modify this insn by replacing a memory reference with a pseudo or by
1887 making a new MEM to implement a SUBREG, we consult that list to see if
1888 we have already chosen a replacement. If none has already been allocated,
1889 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1890 or the SUBREG, as appropriate, to the pseudo. */
1891
1892 static void
1893 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1894 register rtx var;
1895 enum machine_mode promoted_mode;
1896 register rtx *loc;
1897 rtx insn;
1898 struct fixup_replacement **replacements;
1899 {
1900 register int i;
1901 register rtx x = *loc;
1902 RTX_CODE code = GET_CODE (x);
1903 register const char *fmt;
1904 register rtx tem, tem1;
1905 struct fixup_replacement *replacement;
1906
1907 switch (code)
1908 {
1909 case ADDRESSOF:
1910 if (XEXP (x, 0) == var)
1911 {
1912 /* Prevent sharing of rtl that might lose. */
1913 rtx sub = copy_rtx (XEXP (var, 0));
1914
1915 if (! validate_change (insn, loc, sub, 0))
1916 {
1917 rtx y = gen_reg_rtx (GET_MODE (sub));
1918 rtx seq, new_insn;
1919
1920 /* We should be able to replace with a register or all is lost.
1921 Note that we can't use validate_change to verify this, since
1922 we're not caring for replacing all dups simultaneously. */
1923 if (! validate_replace_rtx (*loc, y, insn))
1924 abort ();
1925
1926 /* Careful! First try to recognize a direct move of the
1927 value, mimicking how things are done in gen_reload wrt
1928 PLUS. Consider what happens when insn is a conditional
1929 move instruction and addsi3 clobbers flags. */
1930
1931 start_sequence ();
1932 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1933 seq = gen_sequence ();
1934 end_sequence ();
1935
1936 if (recog_memoized (new_insn) < 0)
1937 {
1938 /* That failed. Fall back on force_operand and hope. */
1939
1940 start_sequence ();
1941 sub = force_operand (sub, y);
1942 if (sub != y)
1943 emit_insn (gen_move_insn (y, sub));
1944 seq = gen_sequence ();
1945 end_sequence ();
1946 }
1947
1948 #ifdef HAVE_cc0
1949 /* Don't separate setter from user. */
1950 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1951 insn = PREV_INSN (insn);
1952 #endif
1953
1954 emit_insn_before (seq, insn);
1955 }
1956 }
1957 return;
1958
1959 case MEM:
1960 if (var == x)
1961 {
1962 /* If we already have a replacement, use it. Otherwise,
1963 try to fix up this address in case it is invalid. */
1964
1965 replacement = find_fixup_replacement (replacements, var);
1966 if (replacement->new)
1967 {
1968 *loc = replacement->new;
1969 return;
1970 }
1971
1972 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1973
1974 /* Unless we are forcing memory to register or we changed the mode,
1975 we can leave things the way they are if the insn is valid. */
1976
1977 INSN_CODE (insn) = -1;
1978 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1979 && recog_memoized (insn) >= 0)
1980 return;
1981
1982 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1983 return;
1984 }
1985
1986 /* If X contains VAR, we need to unshare it here so that we update
1987 each occurrence separately. But all identical MEMs in one insn
1988 must be replaced with the same rtx because of the possibility of
1989 MATCH_DUPs. */
1990
1991 if (reg_mentioned_p (var, x))
1992 {
1993 replacement = find_fixup_replacement (replacements, x);
1994 if (replacement->new == 0)
1995 replacement->new = copy_most_rtx (x, var);
1996
1997 *loc = x = replacement->new;
1998 code = GET_CODE (x);
1999 }
2000 break;
2001
2002 case REG:
2003 case CC0:
2004 case PC:
2005 case CONST_INT:
2006 case CONST:
2007 case SYMBOL_REF:
2008 case LABEL_REF:
2009 case CONST_DOUBLE:
2010 return;
2011
2012 case SIGN_EXTRACT:
2013 case ZERO_EXTRACT:
2014 /* Note that in some cases those types of expressions are altered
2015 by optimize_bit_field, and do not survive to get here. */
2016 if (XEXP (x, 0) == var
2017 || (GET_CODE (XEXP (x, 0)) == SUBREG
2018 && SUBREG_REG (XEXP (x, 0)) == var))
2019 {
2020 /* Get TEM as a valid MEM in the mode presently in the insn.
2021
2022 We don't worry about the possibility of MATCH_DUP here; it
2023 is highly unlikely and would be tricky to handle. */
2024
2025 tem = XEXP (x, 0);
2026 if (GET_CODE (tem) == SUBREG)
2027 {
2028 if (GET_MODE_BITSIZE (GET_MODE (tem))
2029 > GET_MODE_BITSIZE (GET_MODE (var)))
2030 {
2031 replacement = find_fixup_replacement (replacements, var);
2032 if (replacement->new == 0)
2033 replacement->new = gen_reg_rtx (GET_MODE (var));
2034 SUBREG_REG (tem) = replacement->new;
2035
2036 /* The following code works only if we have a MEM, so we
2037 need to handle the subreg here. We directly substitute
2038 it assuming that a subreg must be OK here. We already
2039 scheduled a replacement to copy the mem into the
2040 subreg. */
2041 XEXP (x, 0) = tem;
2042 return;
2043 }
2044 else
2045 tem = fixup_memory_subreg (tem, insn, 0);
2046 }
2047 else
2048 tem = fixup_stack_1 (tem, insn);
2049
2050 /* Unless we want to load from memory, get TEM into the proper mode
2051 for an extract from memory. This can only be done if the
2052 extract is at a constant position and length. */
2053
2054 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2055 && GET_CODE (XEXP (x, 2)) == CONST_INT
2056 && ! mode_dependent_address_p (XEXP (tem, 0))
2057 && ! MEM_VOLATILE_P (tem))
2058 {
2059 enum machine_mode wanted_mode = VOIDmode;
2060 enum machine_mode is_mode = GET_MODE (tem);
2061 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2062
2063 #ifdef HAVE_extzv
2064 if (GET_CODE (x) == ZERO_EXTRACT)
2065 {
2066 wanted_mode
2067 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2068 if (wanted_mode == VOIDmode)
2069 wanted_mode = word_mode;
2070 }
2071 #endif
2072 #ifdef HAVE_extv
2073 if (GET_CODE (x) == SIGN_EXTRACT)
2074 {
2075 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2076 if (wanted_mode == VOIDmode)
2077 wanted_mode = word_mode;
2078 }
2079 #endif
2080 /* If we have a narrower mode, we can do something. */
2081 if (wanted_mode != VOIDmode
2082 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2083 {
2084 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2085 rtx old_pos = XEXP (x, 2);
2086 rtx newmem;
2087
2088 /* If the bytes and bits are counted differently, we
2089 must adjust the offset. */
2090 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2091 offset = (GET_MODE_SIZE (is_mode)
2092 - GET_MODE_SIZE (wanted_mode) - offset);
2093
2094 pos %= GET_MODE_BITSIZE (wanted_mode);
2095
2096 newmem = gen_rtx_MEM (wanted_mode,
2097 plus_constant (XEXP (tem, 0), offset));
2098 MEM_COPY_ATTRIBUTES (newmem, tem);
2099
2100 /* Make the change and see if the insn remains valid. */
2101 INSN_CODE (insn) = -1;
2102 XEXP (x, 0) = newmem;
2103 XEXP (x, 2) = GEN_INT (pos);
2104
2105 if (recog_memoized (insn) >= 0)
2106 return;
2107
2108 /* Otherwise, restore old position. XEXP (x, 0) will be
2109 restored later. */
2110 XEXP (x, 2) = old_pos;
2111 }
2112 }
2113
2114 /* If we get here, the bitfield extract insn can't accept a memory
2115 reference. Copy the input into a register. */
2116
2117 tem1 = gen_reg_rtx (GET_MODE (tem));
2118 emit_insn_before (gen_move_insn (tem1, tem), insn);
2119 XEXP (x, 0) = tem1;
2120 return;
2121 }
2122 break;
2123
2124 case SUBREG:
2125 if (SUBREG_REG (x) == var)
2126 {
2127 /* If this is a special SUBREG made because VAR was promoted
2128 from a wider mode, replace it with VAR and call ourself
2129 recursively, this time saying that the object previously
2130 had its current mode (by virtue of the SUBREG). */
2131
2132 if (SUBREG_PROMOTED_VAR_P (x))
2133 {
2134 *loc = var;
2135 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2136 return;
2137 }
2138
2139 /* If this SUBREG makes VAR wider, it has become a paradoxical
2140 SUBREG with VAR in memory, but these aren't allowed at this
2141 stage of the compilation. So load VAR into a pseudo and take
2142 a SUBREG of that pseudo. */
2143 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2144 {
2145 replacement = find_fixup_replacement (replacements, var);
2146 if (replacement->new == 0)
2147 replacement->new = gen_reg_rtx (GET_MODE (var));
2148 SUBREG_REG (x) = replacement->new;
2149 return;
2150 }
2151
2152 /* See if we have already found a replacement for this SUBREG.
2153 If so, use it. Otherwise, make a MEM and see if the insn
2154 is recognized. If not, or if we should force MEM into a register,
2155 make a pseudo for this SUBREG. */
2156 replacement = find_fixup_replacement (replacements, x);
2157 if (replacement->new)
2158 {
2159 *loc = replacement->new;
2160 return;
2161 }
2162
2163 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2164
2165 INSN_CODE (insn) = -1;
2166 if (! flag_force_mem && recog_memoized (insn) >= 0)
2167 return;
2168
2169 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2170 return;
2171 }
2172 break;
2173
2174 case SET:
2175 /* First do special simplification of bit-field references. */
2176 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2177 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2178 optimize_bit_field (x, insn, 0);
2179 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2180 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2181 optimize_bit_field (x, insn, 0);
2182
2183 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2184 into a register and then store it back out. */
2185 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2186 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2187 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2188 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2189 > GET_MODE_SIZE (GET_MODE (var))))
2190 {
2191 replacement = find_fixup_replacement (replacements, var);
2192 if (replacement->new == 0)
2193 replacement->new = gen_reg_rtx (GET_MODE (var));
2194
2195 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2196 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2197 }
2198
2199 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2200 insn into a pseudo and store the low part of the pseudo into VAR. */
2201 if (GET_CODE (SET_DEST (x)) == SUBREG
2202 && SUBREG_REG (SET_DEST (x)) == var
2203 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2204 > GET_MODE_SIZE (GET_MODE (var))))
2205 {
2206 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2207 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2208 tem)),
2209 insn);
2210 break;
2211 }
2212
2213 {
2214 rtx dest = SET_DEST (x);
2215 rtx src = SET_SRC (x);
2216 #ifdef HAVE_insv
2217 rtx outerdest = dest;
2218 #endif
2219
2220 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2221 || GET_CODE (dest) == SIGN_EXTRACT
2222 || GET_CODE (dest) == ZERO_EXTRACT)
2223 dest = XEXP (dest, 0);
2224
2225 if (GET_CODE (src) == SUBREG)
2226 src = SUBREG_REG (src);
2227
2228 /* If VAR does not appear at the top level of the SET
2229 just scan the lower levels of the tree. */
2230
2231 if (src != var && dest != var)
2232 break;
2233
2234 /* We will need to rerecognize this insn. */
2235 INSN_CODE (insn) = -1;
2236
2237 #ifdef HAVE_insv
2238 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2239 {
2240 /* Since this case will return, ensure we fixup all the
2241 operands here. */
2242 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2243 insn, replacements);
2244 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2245 insn, replacements);
2246 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2247 insn, replacements);
2248
2249 tem = XEXP (outerdest, 0);
2250
2251 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2252 that may appear inside a ZERO_EXTRACT.
2253 This was legitimate when the MEM was a REG. */
2254 if (GET_CODE (tem) == SUBREG
2255 && SUBREG_REG (tem) == var)
2256 tem = fixup_memory_subreg (tem, insn, 0);
2257 else
2258 tem = fixup_stack_1 (tem, insn);
2259
2260 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2261 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2262 && ! mode_dependent_address_p (XEXP (tem, 0))
2263 && ! MEM_VOLATILE_P (tem))
2264 {
2265 enum machine_mode wanted_mode;
2266 enum machine_mode is_mode = GET_MODE (tem);
2267 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2268
2269 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2270 if (wanted_mode == VOIDmode)
2271 wanted_mode = word_mode;
2272
2273 /* If we have a narrower mode, we can do something. */
2274 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2275 {
2276 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2277 rtx old_pos = XEXP (outerdest, 2);
2278 rtx newmem;
2279
2280 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2281 offset = (GET_MODE_SIZE (is_mode)
2282 - GET_MODE_SIZE (wanted_mode) - offset);
2283
2284 pos %= GET_MODE_BITSIZE (wanted_mode);
2285
2286 newmem = gen_rtx_MEM (wanted_mode,
2287 plus_constant (XEXP (tem, 0),
2288 offset));
2289 MEM_COPY_ATTRIBUTES (newmem, tem);
2290
2291 /* Make the change and see if the insn remains valid. */
2292 INSN_CODE (insn) = -1;
2293 XEXP (outerdest, 0) = newmem;
2294 XEXP (outerdest, 2) = GEN_INT (pos);
2295
2296 if (recog_memoized (insn) >= 0)
2297 return;
2298
2299 /* Otherwise, restore old position. XEXP (x, 0) will be
2300 restored later. */
2301 XEXP (outerdest, 2) = old_pos;
2302 }
2303 }
2304
2305 /* If we get here, the bit-field store doesn't allow memory
2306 or isn't located at a constant position. Load the value into
2307 a register, do the store, and put it back into memory. */
2308
2309 tem1 = gen_reg_rtx (GET_MODE (tem));
2310 emit_insn_before (gen_move_insn (tem1, tem), insn);
2311 emit_insn_after (gen_move_insn (tem, tem1), insn);
2312 XEXP (outerdest, 0) = tem1;
2313 return;
2314 }
2315 #endif
2316
2317 /* STRICT_LOW_PART is a no-op on memory references
2318 and it can cause combinations to be unrecognizable,
2319 so eliminate it. */
2320
2321 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2322 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2323
2324 /* A valid insn to copy VAR into or out of a register
2325 must be left alone, to avoid an infinite loop here.
2326 If the reference to VAR is by a subreg, fix that up,
2327 since SUBREG is not valid for a memref.
2328 Also fix up the address of the stack slot.
2329
2330 Note that we must not try to recognize the insn until
2331 after we know that we have valid addresses and no
2332 (subreg (mem ...) ...) constructs, since these interfere
2333 with determining the validity of the insn. */
2334
2335 if ((SET_SRC (x) == var
2336 || (GET_CODE (SET_SRC (x)) == SUBREG
2337 && SUBREG_REG (SET_SRC (x)) == var))
2338 && (GET_CODE (SET_DEST (x)) == REG
2339 || (GET_CODE (SET_DEST (x)) == SUBREG
2340 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2341 && GET_MODE (var) == promoted_mode
2342 && x == single_set (insn))
2343 {
2344 rtx pat, last;
2345
2346 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2347 if (replacement->new)
2348 SET_SRC (x) = replacement->new;
2349 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2350 SET_SRC (x) = replacement->new
2351 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2352 else
2353 SET_SRC (x) = replacement->new
2354 = fixup_stack_1 (SET_SRC (x), insn);
2355
2356 if (recog_memoized (insn) >= 0)
2357 return;
2358
2359 /* INSN is not valid, but we know that we want to
2360 copy SET_SRC (x) to SET_DEST (x) in some way. So
2361 we generate the move and see whether it requires more
2362 than one insn. If it does, we emit those insns and
2363 delete INSN. Otherwise, we an just replace the pattern
2364 of INSN; we have already verified above that INSN has
2365 no other function that to do X. */
2366
2367 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2368 if (GET_CODE (pat) == SEQUENCE)
2369 {
2370 last = emit_insn_before (pat, insn);
2371
2372 /* INSN might have REG_RETVAL or other important notes, so
2373 we need to store the pattern of the last insn in the
2374 sequence into INSN similarly to the normal case. LAST
2375 should not have REG_NOTES, but we allow them if INSN has
2376 no REG_NOTES. */
2377 if (REG_NOTES (last) && REG_NOTES (insn))
2378 abort ();
2379 if (REG_NOTES (last))
2380 REG_NOTES (insn) = REG_NOTES (last);
2381 PATTERN (insn) = PATTERN (last);
2382
2383 PUT_CODE (last, NOTE);
2384 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2385 NOTE_SOURCE_FILE (last) = 0;
2386 }
2387 else
2388 PATTERN (insn) = pat;
2389
2390 return;
2391 }
2392
2393 if ((SET_DEST (x) == var
2394 || (GET_CODE (SET_DEST (x)) == SUBREG
2395 && SUBREG_REG (SET_DEST (x)) == var))
2396 && (GET_CODE (SET_SRC (x)) == REG
2397 || (GET_CODE (SET_SRC (x)) == SUBREG
2398 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2399 && GET_MODE (var) == promoted_mode
2400 && x == single_set (insn))
2401 {
2402 rtx pat, last;
2403
2404 if (GET_CODE (SET_DEST (x)) == SUBREG)
2405 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2406 else
2407 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2408
2409 if (recog_memoized (insn) >= 0)
2410 return;
2411
2412 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2413 if (GET_CODE (pat) == SEQUENCE)
2414 {
2415 last = emit_insn_before (pat, insn);
2416
2417 /* INSN might have REG_RETVAL or other important notes, so
2418 we need to store the pattern of the last insn in the
2419 sequence into INSN similarly to the normal case. LAST
2420 should not have REG_NOTES, but we allow them if INSN has
2421 no REG_NOTES. */
2422 if (REG_NOTES (last) && REG_NOTES (insn))
2423 abort ();
2424 if (REG_NOTES (last))
2425 REG_NOTES (insn) = REG_NOTES (last);
2426 PATTERN (insn) = PATTERN (last);
2427
2428 PUT_CODE (last, NOTE);
2429 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2430 NOTE_SOURCE_FILE (last) = 0;
2431 }
2432 else
2433 PATTERN (insn) = pat;
2434
2435 return;
2436 }
2437
2438 /* Otherwise, storing into VAR must be handled specially
2439 by storing into a temporary and copying that into VAR
2440 with a new insn after this one. Note that this case
2441 will be used when storing into a promoted scalar since
2442 the insn will now have different modes on the input
2443 and output and hence will be invalid (except for the case
2444 of setting it to a constant, which does not need any
2445 change if it is valid). We generate extra code in that case,
2446 but combine.c will eliminate it. */
2447
2448 if (dest == var)
2449 {
2450 rtx temp;
2451 rtx fixeddest = SET_DEST (x);
2452
2453 /* STRICT_LOW_PART can be discarded, around a MEM. */
2454 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2455 fixeddest = XEXP (fixeddest, 0);
2456 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2457 if (GET_CODE (fixeddest) == SUBREG)
2458 {
2459 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2460 promoted_mode = GET_MODE (fixeddest);
2461 }
2462 else
2463 fixeddest = fixup_stack_1 (fixeddest, insn);
2464
2465 temp = gen_reg_rtx (promoted_mode);
2466
2467 emit_insn_after (gen_move_insn (fixeddest,
2468 gen_lowpart (GET_MODE (fixeddest),
2469 temp)),
2470 insn);
2471
2472 SET_DEST (x) = temp;
2473 }
2474 }
2475
2476 default:
2477 break;
2478 }
2479
2480 /* Nothing special about this RTX; fix its operands. */
2481
2482 fmt = GET_RTX_FORMAT (code);
2483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2484 {
2485 if (fmt[i] == 'e')
2486 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2487 else if (fmt[i] == 'E')
2488 {
2489 register int j;
2490 for (j = 0; j < XVECLEN (x, i); j++)
2491 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2492 insn, replacements);
2493 }
2494 }
2495 }
2496 \f
2497 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2498 return an rtx (MEM:m1 newaddr) which is equivalent.
2499 If any insns must be emitted to compute NEWADDR, put them before INSN.
2500
2501 UNCRITICAL nonzero means accept paradoxical subregs.
2502 This is used for subregs found inside REG_NOTES. */
2503
2504 static rtx
2505 fixup_memory_subreg (x, insn, uncritical)
2506 rtx x;
2507 rtx insn;
2508 int uncritical;
2509 {
2510 int offset = SUBREG_BYTE (x);
2511 rtx addr = XEXP (SUBREG_REG (x), 0);
2512 enum machine_mode mode = GET_MODE (x);
2513 rtx result;
2514
2515 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2516 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2517 && ! uncritical)
2518 abort ();
2519
2520 addr = plus_constant (addr, offset);
2521 if (!flag_force_addr && memory_address_p (mode, addr))
2522 /* Shortcut if no insns need be emitted. */
2523 return change_address (SUBREG_REG (x), mode, addr);
2524 start_sequence ();
2525 result = change_address (SUBREG_REG (x), mode, addr);
2526 emit_insn_before (gen_sequence (), insn);
2527 end_sequence ();
2528 return result;
2529 }
2530
2531 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2532 Replace subexpressions of X in place.
2533 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2534 Otherwise return X, with its contents possibly altered.
2535
2536 If any insns must be emitted to compute NEWADDR, put them before INSN.
2537
2538 UNCRITICAL is as in fixup_memory_subreg. */
2539
2540 static rtx
2541 walk_fixup_memory_subreg (x, insn, uncritical)
2542 register rtx x;
2543 rtx insn;
2544 int uncritical;
2545 {
2546 register enum rtx_code code;
2547 register const char *fmt;
2548 register int i;
2549
2550 if (x == 0)
2551 return 0;
2552
2553 code = GET_CODE (x);
2554
2555 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2556 return fixup_memory_subreg (x, insn, uncritical);
2557
2558 /* Nothing special about this RTX; fix its operands. */
2559
2560 fmt = GET_RTX_FORMAT (code);
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2562 {
2563 if (fmt[i] == 'e')
2564 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2565 else if (fmt[i] == 'E')
2566 {
2567 register int j;
2568 for (j = 0; j < XVECLEN (x, i); j++)
2569 XVECEXP (x, i, j)
2570 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2571 }
2572 }
2573 return x;
2574 }
2575 \f
2576 /* For each memory ref within X, if it refers to a stack slot
2577 with an out of range displacement, put the address in a temp register
2578 (emitting new insns before INSN to load these registers)
2579 and alter the memory ref to use that register.
2580 Replace each such MEM rtx with a copy, to avoid clobberage. */
2581
2582 static rtx
2583 fixup_stack_1 (x, insn)
2584 rtx x;
2585 rtx insn;
2586 {
2587 register int i;
2588 register RTX_CODE code = GET_CODE (x);
2589 register const char *fmt;
2590
2591 if (code == MEM)
2592 {
2593 register rtx ad = XEXP (x, 0);
2594 /* If we have address of a stack slot but it's not valid
2595 (displacement is too large), compute the sum in a register. */
2596 if (GET_CODE (ad) == PLUS
2597 && GET_CODE (XEXP (ad, 0)) == REG
2598 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2599 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2600 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2601 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2602 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2603 #endif
2604 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2605 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2606 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2607 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2608 {
2609 rtx temp, seq;
2610 if (memory_address_p (GET_MODE (x), ad))
2611 return x;
2612
2613 start_sequence ();
2614 temp = copy_to_reg (ad);
2615 seq = gen_sequence ();
2616 end_sequence ();
2617 emit_insn_before (seq, insn);
2618 return change_address (x, VOIDmode, temp);
2619 }
2620 return x;
2621 }
2622
2623 fmt = GET_RTX_FORMAT (code);
2624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2625 {
2626 if (fmt[i] == 'e')
2627 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2628 else if (fmt[i] == 'E')
2629 {
2630 register int j;
2631 for (j = 0; j < XVECLEN (x, i); j++)
2632 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2633 }
2634 }
2635 return x;
2636 }
2637 \f
2638 /* Optimization: a bit-field instruction whose field
2639 happens to be a byte or halfword in memory
2640 can be changed to a move instruction.
2641
2642 We call here when INSN is an insn to examine or store into a bit-field.
2643 BODY is the SET-rtx to be altered.
2644
2645 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2646 (Currently this is called only from function.c, and EQUIV_MEM
2647 is always 0.) */
2648
2649 static void
2650 optimize_bit_field (body, insn, equiv_mem)
2651 rtx body;
2652 rtx insn;
2653 rtx *equiv_mem;
2654 {
2655 register rtx bitfield;
2656 int destflag;
2657 rtx seq = 0;
2658 enum machine_mode mode;
2659
2660 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2661 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2662 bitfield = SET_DEST (body), destflag = 1;
2663 else
2664 bitfield = SET_SRC (body), destflag = 0;
2665
2666 /* First check that the field being stored has constant size and position
2667 and is in fact a byte or halfword suitably aligned. */
2668
2669 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2670 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2671 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2672 != BLKmode)
2673 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2674 {
2675 register rtx memref = 0;
2676
2677 /* Now check that the containing word is memory, not a register,
2678 and that it is safe to change the machine mode. */
2679
2680 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2681 memref = XEXP (bitfield, 0);
2682 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2683 && equiv_mem != 0)
2684 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2685 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2686 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2687 memref = SUBREG_REG (XEXP (bitfield, 0));
2688 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2689 && equiv_mem != 0
2690 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2691 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2692
2693 if (memref
2694 && ! mode_dependent_address_p (XEXP (memref, 0))
2695 && ! MEM_VOLATILE_P (memref))
2696 {
2697 /* Now adjust the address, first for any subreg'ing
2698 that we are now getting rid of,
2699 and then for which byte of the word is wanted. */
2700
2701 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2702 rtx insns;
2703
2704 /* Adjust OFFSET to count bits from low-address byte. */
2705 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2706 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2707 - offset - INTVAL (XEXP (bitfield, 1)));
2708
2709 /* Adjust OFFSET to count bytes from low-address byte. */
2710 offset /= BITS_PER_UNIT;
2711 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2712 {
2713 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2714 / UNITS_PER_WORD) * UNITS_PER_WORD;
2715 if (BYTES_BIG_ENDIAN)
2716 offset -= (MIN (UNITS_PER_WORD,
2717 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2718 - MIN (UNITS_PER_WORD,
2719 GET_MODE_SIZE (GET_MODE (memref))));
2720 }
2721
2722 start_sequence ();
2723 memref = change_address (memref, mode,
2724 plus_constant (XEXP (memref, 0), offset));
2725 insns = get_insns ();
2726 end_sequence ();
2727 emit_insns_before (insns, insn);
2728
2729 /* Store this memory reference where
2730 we found the bit field reference. */
2731
2732 if (destflag)
2733 {
2734 validate_change (insn, &SET_DEST (body), memref, 1);
2735 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2736 {
2737 rtx src = SET_SRC (body);
2738 while (GET_CODE (src) == SUBREG
2739 && SUBREG_BYTE (src) == 0)
2740 src = SUBREG_REG (src);
2741 if (GET_MODE (src) != GET_MODE (memref))
2742 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2743 validate_change (insn, &SET_SRC (body), src, 1);
2744 }
2745 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2746 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2747 /* This shouldn't happen because anything that didn't have
2748 one of these modes should have got converted explicitly
2749 and then referenced through a subreg.
2750 This is so because the original bit-field was
2751 handled by agg_mode and so its tree structure had
2752 the same mode that memref now has. */
2753 abort ();
2754 }
2755 else
2756 {
2757 rtx dest = SET_DEST (body);
2758
2759 while (GET_CODE (dest) == SUBREG
2760 && SUBREG_BYTE (dest) == 0
2761 && (GET_MODE_CLASS (GET_MODE (dest))
2762 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2763 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2764 <= UNITS_PER_WORD))
2765 dest = SUBREG_REG (dest);
2766
2767 validate_change (insn, &SET_DEST (body), dest, 1);
2768
2769 if (GET_MODE (dest) == GET_MODE (memref))
2770 validate_change (insn, &SET_SRC (body), memref, 1);
2771 else
2772 {
2773 /* Convert the mem ref to the destination mode. */
2774 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2775
2776 start_sequence ();
2777 convert_move (newreg, memref,
2778 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2779 seq = get_insns ();
2780 end_sequence ();
2781
2782 validate_change (insn, &SET_SRC (body), newreg, 1);
2783 }
2784 }
2785
2786 /* See if we can convert this extraction or insertion into
2787 a simple move insn. We might not be able to do so if this
2788 was, for example, part of a PARALLEL.
2789
2790 If we succeed, write out any needed conversions. If we fail,
2791 it is hard to guess why we failed, so don't do anything
2792 special; just let the optimization be suppressed. */
2793
2794 if (apply_change_group () && seq)
2795 emit_insns_before (seq, insn);
2796 }
2797 }
2798 }
2799 \f
2800 /* These routines are responsible for converting virtual register references
2801 to the actual hard register references once RTL generation is complete.
2802
2803 The following four variables are used for communication between the
2804 routines. They contain the offsets of the virtual registers from their
2805 respective hard registers. */
2806
2807 static int in_arg_offset;
2808 static int var_offset;
2809 static int dynamic_offset;
2810 static int out_arg_offset;
2811 static int cfa_offset;
2812
2813 /* In most machines, the stack pointer register is equivalent to the bottom
2814 of the stack. */
2815
2816 #ifndef STACK_POINTER_OFFSET
2817 #define STACK_POINTER_OFFSET 0
2818 #endif
2819
2820 /* If not defined, pick an appropriate default for the offset of dynamically
2821 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2822 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2823
2824 #ifndef STACK_DYNAMIC_OFFSET
2825
2826 /* The bottom of the stack points to the actual arguments. If
2827 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2828 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2829 stack space for register parameters is not pushed by the caller, but
2830 rather part of the fixed stack areas and hence not included in
2831 `current_function_outgoing_args_size'. Nevertheless, we must allow
2832 for it when allocating stack dynamic objects. */
2833
2834 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2835 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2836 ((ACCUMULATE_OUTGOING_ARGS \
2837 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2838 + (STACK_POINTER_OFFSET)) \
2839
2840 #else
2841 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2842 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2843 + (STACK_POINTER_OFFSET))
2844 #endif
2845 #endif
2846
2847 /* On most machines, the CFA coincides with the first incoming parm. */
2848
2849 #ifndef ARG_POINTER_CFA_OFFSET
2850 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2851 #endif
2852
2853 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2854 its address taken. DECL is the decl for the object stored in the
2855 register, for later use if we do need to force REG into the stack.
2856 REG is overwritten by the MEM like in put_reg_into_stack. */
2857
2858 rtx
2859 gen_mem_addressof (reg, decl)
2860 rtx reg;
2861 tree decl;
2862 {
2863 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2864 REGNO (reg), decl);
2865
2866 /* If the original REG was a user-variable, then so is the REG whose
2867 address is being taken. Likewise for unchanging. */
2868 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2869 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2870
2871 PUT_CODE (reg, MEM);
2872 XEXP (reg, 0) = r;
2873 if (decl)
2874 {
2875 tree type = TREE_TYPE (decl);
2876
2877 PUT_MODE (reg, DECL_MODE (decl));
2878 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2879 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2880 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2881
2882 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2883 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2884 }
2885 else
2886 {
2887 /* We have no alias information about this newly created MEM. */
2888 MEM_ALIAS_SET (reg) = 0;
2889
2890 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2891 }
2892
2893 return reg;
2894 }
2895
2896 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2897
2898 void
2899 flush_addressof (decl)
2900 tree decl;
2901 {
2902 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2903 && DECL_RTL (decl) != 0
2904 && GET_CODE (DECL_RTL (decl)) == MEM
2905 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2906 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2907 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2908 }
2909
2910 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2911
2912 static void
2913 put_addressof_into_stack (r, ht)
2914 rtx r;
2915 struct hash_table *ht;
2916 {
2917 tree decl, type;
2918 int volatile_p, used_p;
2919
2920 rtx reg = XEXP (r, 0);
2921
2922 if (GET_CODE (reg) != REG)
2923 abort ();
2924
2925 decl = ADDRESSOF_DECL (r);
2926 if (decl)
2927 {
2928 type = TREE_TYPE (decl);
2929 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2930 && TREE_THIS_VOLATILE (decl));
2931 used_p = (TREE_USED (decl)
2932 || (TREE_CODE (decl) != SAVE_EXPR
2933 && DECL_INITIAL (decl) != 0));
2934 }
2935 else
2936 {
2937 type = NULL_TREE;
2938 volatile_p = 0;
2939 used_p = 1;
2940 }
2941
2942 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2943 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2944 }
2945
2946 /* List of replacements made below in purge_addressof_1 when creating
2947 bitfield insertions. */
2948 static rtx purge_bitfield_addressof_replacements;
2949
2950 /* List of replacements made below in purge_addressof_1 for patterns
2951 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2952 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2953 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2954 enough in complex cases, e.g. when some field values can be
2955 extracted by usage MEM with narrower mode. */
2956 static rtx purge_addressof_replacements;
2957
2958 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2959 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2960 the stack. If the function returns FALSE then the replacement could not
2961 be made. */
2962
2963 static bool
2964 purge_addressof_1 (loc, insn, force, store, ht)
2965 rtx *loc;
2966 rtx insn;
2967 int force, store;
2968 struct hash_table *ht;
2969 {
2970 rtx x;
2971 RTX_CODE code;
2972 int i, j;
2973 const char *fmt;
2974 bool result = true;
2975
2976 /* Re-start here to avoid recursion in common cases. */
2977 restart:
2978
2979 x = *loc;
2980 if (x == 0)
2981 return true;
2982
2983 code = GET_CODE (x);
2984
2985 /* If we don't return in any of the cases below, we will recurse inside
2986 the RTX, which will normally result in any ADDRESSOF being forced into
2987 memory. */
2988 if (code == SET)
2989 {
2990 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2991 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2992 return result;
2993 }
2994 else if (code == ADDRESSOF)
2995 {
2996 rtx sub, insns;
2997
2998 if (GET_CODE (XEXP (x, 0)) != MEM)
2999 {
3000 put_addressof_into_stack (x, ht);
3001 return true;
3002 }
3003
3004 /* We must create a copy of the rtx because it was created by
3005 overwriting a REG rtx which is always shared. */
3006 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3007 if (validate_change (insn, loc, sub, 0)
3008 || validate_replace_rtx (x, sub, insn))
3009 return true;
3010
3011 start_sequence ();
3012 sub = force_operand (sub, NULL_RTX);
3013 if (! validate_change (insn, loc, sub, 0)
3014 && ! validate_replace_rtx (x, sub, insn))
3015 abort ();
3016
3017 insns = gen_sequence ();
3018 end_sequence ();
3019 emit_insn_before (insns, insn);
3020 return true;
3021 }
3022
3023 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3024 {
3025 rtx sub = XEXP (XEXP (x, 0), 0);
3026 rtx sub2;
3027
3028 if (GET_CODE (sub) == MEM)
3029 {
3030 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
3031 MEM_COPY_ATTRIBUTES (sub2, sub);
3032 sub = sub2;
3033 }
3034 else if (GET_CODE (sub) == REG
3035 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3036 ;
3037 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3038 {
3039 int size_x, size_sub;
3040
3041 if (!insn)
3042 {
3043 /* When processing REG_NOTES look at the list of
3044 replacements done on the insn to find the register that X
3045 was replaced by. */
3046 rtx tem;
3047
3048 for (tem = purge_bitfield_addressof_replacements;
3049 tem != NULL_RTX;
3050 tem = XEXP (XEXP (tem, 1), 1))
3051 if (rtx_equal_p (x, XEXP (tem, 0)))
3052 {
3053 *loc = XEXP (XEXP (tem, 1), 0);
3054 return true;
3055 }
3056
3057 /* See comment for purge_addressof_replacements. */
3058 for (tem = purge_addressof_replacements;
3059 tem != NULL_RTX;
3060 tem = XEXP (XEXP (tem, 1), 1))
3061 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3062 {
3063 rtx z = XEXP (XEXP (tem, 1), 0);
3064
3065 if (GET_MODE (x) == GET_MODE (z)
3066 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3067 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3068 abort ();
3069
3070 /* It can happen that the note may speak of things
3071 in a wider (or just different) mode than the
3072 code did. This is especially true of
3073 REG_RETVAL. */
3074
3075 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3076 z = SUBREG_REG (z);
3077
3078 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3079 && (GET_MODE_SIZE (GET_MODE (x))
3080 > GET_MODE_SIZE (GET_MODE (z))))
3081 {
3082 /* This can occur as a result in invalid
3083 pointer casts, e.g. float f; ...
3084 *(long long int *)&f.
3085 ??? We could emit a warning here, but
3086 without a line number that wouldn't be
3087 very helpful. */
3088 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3089 }
3090 else
3091 z = gen_lowpart (GET_MODE (x), z);
3092
3093 *loc = z;
3094 return true;
3095 }
3096
3097 /* Sometimes we may not be able to find the replacement. For
3098 example when the original insn was a MEM in a wider mode,
3099 and the note is part of a sign extension of a narrowed
3100 version of that MEM. Gcc testcase compile/990829-1.c can
3101 generate an example of this siutation. Rather than complain
3102 we return false, which will prompt our caller to remove the
3103 offending note. */
3104 return false;
3105 }
3106
3107 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3108 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3109
3110 /* Don't even consider working with paradoxical subregs,
3111 or the moral equivalent seen here. */
3112 if (size_x <= size_sub
3113 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3114 {
3115 /* Do a bitfield insertion to mirror what would happen
3116 in memory. */
3117
3118 rtx val, seq;
3119
3120 if (store)
3121 {
3122 rtx p = PREV_INSN (insn);
3123
3124 start_sequence ();
3125 val = gen_reg_rtx (GET_MODE (x));
3126 if (! validate_change (insn, loc, val, 0))
3127 {
3128 /* Discard the current sequence and put the
3129 ADDRESSOF on stack. */
3130 end_sequence ();
3131 goto give_up;
3132 }
3133 seq = gen_sequence ();
3134 end_sequence ();
3135 emit_insn_before (seq, insn);
3136 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3137 insn, ht);
3138
3139 start_sequence ();
3140 store_bit_field (sub, size_x, 0, GET_MODE (x),
3141 val, GET_MODE_SIZE (GET_MODE (sub)),
3142 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3143
3144 /* Make sure to unshare any shared rtl that store_bit_field
3145 might have created. */
3146 unshare_all_rtl_again (get_insns ());
3147
3148 seq = gen_sequence ();
3149 end_sequence ();
3150 p = emit_insn_after (seq, insn);
3151 if (NEXT_INSN (insn))
3152 compute_insns_for_mem (NEXT_INSN (insn),
3153 p ? NEXT_INSN (p) : NULL_RTX,
3154 ht);
3155 }
3156 else
3157 {
3158 rtx p = PREV_INSN (insn);
3159
3160 start_sequence ();
3161 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3162 GET_MODE (x), GET_MODE (x),
3163 GET_MODE_SIZE (GET_MODE (sub)),
3164 GET_MODE_SIZE (GET_MODE (sub)));
3165
3166 if (! validate_change (insn, loc, val, 0))
3167 {
3168 /* Discard the current sequence and put the
3169 ADDRESSOF on stack. */
3170 end_sequence ();
3171 goto give_up;
3172 }
3173
3174 seq = gen_sequence ();
3175 end_sequence ();
3176 emit_insn_before (seq, insn);
3177 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3178 insn, ht);
3179 }
3180
3181 /* Remember the replacement so that the same one can be done
3182 on the REG_NOTES. */
3183 purge_bitfield_addressof_replacements
3184 = gen_rtx_EXPR_LIST (VOIDmode, x,
3185 gen_rtx_EXPR_LIST
3186 (VOIDmode, val,
3187 purge_bitfield_addressof_replacements));
3188
3189 /* We replaced with a reg -- all done. */
3190 return true;
3191 }
3192 }
3193
3194 else if (validate_change (insn, loc, sub, 0))
3195 {
3196 /* Remember the replacement so that the same one can be done
3197 on the REG_NOTES. */
3198 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3199 {
3200 rtx tem;
3201
3202 for (tem = purge_addressof_replacements;
3203 tem != NULL_RTX;
3204 tem = XEXP (XEXP (tem, 1), 1))
3205 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3206 {
3207 XEXP (XEXP (tem, 1), 0) = sub;
3208 return true;
3209 }
3210 purge_addressof_replacements
3211 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3212 gen_rtx_EXPR_LIST (VOIDmode, sub,
3213 purge_addressof_replacements));
3214 return true;
3215 }
3216 goto restart;
3217 }
3218 }
3219
3220 give_up:
3221 /* Scan all subexpressions. */
3222 fmt = GET_RTX_FORMAT (code);
3223 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3224 {
3225 if (*fmt == 'e')
3226 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3227 else if (*fmt == 'E')
3228 for (j = 0; j < XVECLEN (x, i); j++)
3229 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3230 }
3231
3232 return result;
3233 }
3234
3235 /* Return a new hash table entry in HT. */
3236
3237 static struct hash_entry *
3238 insns_for_mem_newfunc (he, ht, k)
3239 struct hash_entry *he;
3240 struct hash_table *ht;
3241 hash_table_key k ATTRIBUTE_UNUSED;
3242 {
3243 struct insns_for_mem_entry *ifmhe;
3244 if (he)
3245 return he;
3246
3247 ifmhe = ((struct insns_for_mem_entry *)
3248 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3249 ifmhe->insns = NULL_RTX;
3250
3251 return &ifmhe->he;
3252 }
3253
3254 /* Return a hash value for K, a REG. */
3255
3256 static unsigned long
3257 insns_for_mem_hash (k)
3258 hash_table_key k;
3259 {
3260 /* K is really a RTX. Just use the address as the hash value. */
3261 return (unsigned long) k;
3262 }
3263
3264 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3265
3266 static bool
3267 insns_for_mem_comp (k1, k2)
3268 hash_table_key k1;
3269 hash_table_key k2;
3270 {
3271 return k1 == k2;
3272 }
3273
3274 struct insns_for_mem_walk_info {
3275 /* The hash table that we are using to record which INSNs use which
3276 MEMs. */
3277 struct hash_table *ht;
3278
3279 /* The INSN we are currently proessing. */
3280 rtx insn;
3281
3282 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3283 to find the insns that use the REGs in the ADDRESSOFs. */
3284 int pass;
3285 };
3286
3287 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3288 that might be used in an ADDRESSOF expression, record this INSN in
3289 the hash table given by DATA (which is really a pointer to an
3290 insns_for_mem_walk_info structure). */
3291
3292 static int
3293 insns_for_mem_walk (r, data)
3294 rtx *r;
3295 void *data;
3296 {
3297 struct insns_for_mem_walk_info *ifmwi
3298 = (struct insns_for_mem_walk_info *) data;
3299
3300 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3301 && GET_CODE (XEXP (*r, 0)) == REG)
3302 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3303 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3304 {
3305 /* Lookup this MEM in the hashtable, creating it if necessary. */
3306 struct insns_for_mem_entry *ifme
3307 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3308 *r,
3309 /*create=*/0,
3310 /*copy=*/0);
3311
3312 /* If we have not already recorded this INSN, do so now. Since
3313 we process the INSNs in order, we know that if we have
3314 recorded it it must be at the front of the list. */
3315 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3316 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3317 ifme->insns);
3318 }
3319
3320 return 0;
3321 }
3322
3323 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3324 which REGs in HT. */
3325
3326 static void
3327 compute_insns_for_mem (insns, last_insn, ht)
3328 rtx insns;
3329 rtx last_insn;
3330 struct hash_table *ht;
3331 {
3332 rtx insn;
3333 struct insns_for_mem_walk_info ifmwi;
3334 ifmwi.ht = ht;
3335
3336 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3337 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3338 if (INSN_P (insn))
3339 {
3340 ifmwi.insn = insn;
3341 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3342 }
3343 }
3344
3345 /* Helper function for purge_addressof called through for_each_rtx.
3346 Returns true iff the rtl is an ADDRESSOF. */
3347 static int
3348 is_addressof (rtl, data)
3349 rtx *rtl;
3350 void *data ATTRIBUTE_UNUSED;
3351 {
3352 return GET_CODE (*rtl) == ADDRESSOF;
3353 }
3354
3355 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3356 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3357 stack. */
3358
3359 void
3360 purge_addressof (insns)
3361 rtx insns;
3362 {
3363 rtx insn;
3364 struct hash_table ht;
3365
3366 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3367 requires a fixup pass over the instruction stream to correct
3368 INSNs that depended on the REG being a REG, and not a MEM. But,
3369 these fixup passes are slow. Furthermore, most MEMs are not
3370 mentioned in very many instructions. So, we speed up the process
3371 by pre-calculating which REGs occur in which INSNs; that allows
3372 us to perform the fixup passes much more quickly. */
3373 hash_table_init (&ht,
3374 insns_for_mem_newfunc,
3375 insns_for_mem_hash,
3376 insns_for_mem_comp);
3377 compute_insns_for_mem (insns, NULL_RTX, &ht);
3378
3379 for (insn = insns; insn; insn = NEXT_INSN (insn))
3380 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3381 || GET_CODE (insn) == CALL_INSN)
3382 {
3383 if (! purge_addressof_1 (&PATTERN (insn), insn,
3384 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3385 /* If we could not replace the ADDRESSOFs in the insn,
3386 something is wrong. */
3387 abort ();
3388
3389 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3390 {
3391 /* If we could not replace the ADDRESSOFs in the insn's notes,
3392 we can just remove the offending notes instead. */
3393 rtx note;
3394
3395 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3396 {
3397 /* If we find a REG_RETVAL note then the insn is a libcall.
3398 Such insns must have REG_EQUAL notes as well, in order
3399 for later passes of the compiler to work. So it is not
3400 safe to delete the notes here, and instead we abort. */
3401 if (REG_NOTE_KIND (note) == REG_RETVAL)
3402 abort ();
3403 if (for_each_rtx (&note, is_addressof, NULL))
3404 remove_note (insn, note);
3405 }
3406 }
3407 }
3408
3409 /* Clean up. */
3410 hash_table_free (&ht);
3411 purge_bitfield_addressof_replacements = 0;
3412 purge_addressof_replacements = 0;
3413
3414 /* REGs are shared. purge_addressof will destructively replace a REG
3415 with a MEM, which creates shared MEMs.
3416
3417 Unfortunately, the children of put_reg_into_stack assume that MEMs
3418 referring to the same stack slot are shared (fixup_var_refs and
3419 the associated hash table code).
3420
3421 So, we have to do another unsharing pass after we have flushed any
3422 REGs that had their address taken into the stack.
3423
3424 It may be worth tracking whether or not we converted any REGs into
3425 MEMs to avoid this overhead when it is not needed. */
3426 unshare_all_rtl_again (get_insns ());
3427 }
3428 \f
3429 /* Convert a SET of a hard subreg to a set of the appropriet hard
3430 register. A subroutine of purge_hard_subreg_sets. */
3431
3432 static void
3433 purge_single_hard_subreg_set (pattern)
3434 rtx pattern;
3435 {
3436 rtx reg = SET_DEST (pattern);
3437 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3438 int offset = 0;
3439
3440 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3441 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3442 {
3443 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3444 GET_MODE (SUBREG_REG (reg)),
3445 SUBREG_BYTE (reg),
3446 GET_MODE (reg));
3447 reg = SUBREG_REG (reg);
3448 }
3449
3450
3451 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3452 {
3453 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3454 SET_DEST (pattern) = reg;
3455 }
3456 }
3457
3458 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3459 only such SETs that we expect to see are those left in because
3460 integrate can't handle sets of parts of a return value register.
3461
3462 We don't use alter_subreg because we only want to eliminate subregs
3463 of hard registers. */
3464
3465 void
3466 purge_hard_subreg_sets (insn)
3467 rtx insn;
3468 {
3469 for (; insn; insn = NEXT_INSN (insn))
3470 {
3471 if (INSN_P (insn))
3472 {
3473 rtx pattern = PATTERN (insn);
3474 switch (GET_CODE (pattern))
3475 {
3476 case SET:
3477 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3478 purge_single_hard_subreg_set (pattern);
3479 break;
3480 case PARALLEL:
3481 {
3482 int j;
3483 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3484 {
3485 rtx inner_pattern = XVECEXP (pattern, 0, j);
3486 if (GET_CODE (inner_pattern) == SET
3487 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3488 purge_single_hard_subreg_set (inner_pattern);
3489 }
3490 }
3491 break;
3492 default:
3493 break;
3494 }
3495 }
3496 }
3497 }
3498 \f
3499 /* Pass through the INSNS of function FNDECL and convert virtual register
3500 references to hard register references. */
3501
3502 void
3503 instantiate_virtual_regs (fndecl, insns)
3504 tree fndecl;
3505 rtx insns;
3506 {
3507 rtx insn;
3508 unsigned int i;
3509
3510 /* Compute the offsets to use for this function. */
3511 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3512 var_offset = STARTING_FRAME_OFFSET;
3513 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3514 out_arg_offset = STACK_POINTER_OFFSET;
3515 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3516
3517 /* Scan all variables and parameters of this function. For each that is
3518 in memory, instantiate all virtual registers if the result is a valid
3519 address. If not, we do it later. That will handle most uses of virtual
3520 regs on many machines. */
3521 instantiate_decls (fndecl, 1);
3522
3523 /* Initialize recognition, indicating that volatile is OK. */
3524 init_recog ();
3525
3526 /* Scan through all the insns, instantiating every virtual register still
3527 present. */
3528 for (insn = insns; insn; insn = NEXT_INSN (insn))
3529 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3530 || GET_CODE (insn) == CALL_INSN)
3531 {
3532 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3533 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3534 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3535 if (GET_CODE (insn) == CALL_INSN)
3536 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3537 NULL_RTX, 0);
3538 }
3539
3540 /* Instantiate the stack slots for the parm registers, for later use in
3541 addressof elimination. */
3542 for (i = 0; i < max_parm_reg; ++i)
3543 if (parm_reg_stack_loc[i])
3544 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3545
3546 /* Now instantiate the remaining register equivalences for debugging info.
3547 These will not be valid addresses. */
3548 instantiate_decls (fndecl, 0);
3549
3550 /* Indicate that, from now on, assign_stack_local should use
3551 frame_pointer_rtx. */
3552 virtuals_instantiated = 1;
3553 }
3554
3555 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3556 all virtual registers in their DECL_RTL's.
3557
3558 If VALID_ONLY, do this only if the resulting address is still valid.
3559 Otherwise, always do it. */
3560
3561 static void
3562 instantiate_decls (fndecl, valid_only)
3563 tree fndecl;
3564 int valid_only;
3565 {
3566 tree decl;
3567
3568 /* Process all parameters of the function. */
3569 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3570 {
3571 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3572
3573 instantiate_decl (DECL_RTL (decl), size, valid_only);
3574
3575 /* If the parameter was promoted, then the incoming RTL mode may be
3576 larger than the declared type size. We must use the larger of
3577 the two sizes. */
3578 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3579 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3580 }
3581
3582 /* Now process all variables defined in the function or its subblocks. */
3583 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3584 }
3585
3586 /* Subroutine of instantiate_decls: Process all decls in the given
3587 BLOCK node and all its subblocks. */
3588
3589 static void
3590 instantiate_decls_1 (let, valid_only)
3591 tree let;
3592 int valid_only;
3593 {
3594 tree t;
3595
3596 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3597 if (DECL_RTL_SET_P (t))
3598 instantiate_decl (DECL_RTL (t),
3599 int_size_in_bytes (TREE_TYPE (t)),
3600 valid_only);
3601
3602 /* Process all subblocks. */
3603 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3604 instantiate_decls_1 (t, valid_only);
3605 }
3606
3607 /* Subroutine of the preceding procedures: Given RTL representing a
3608 decl and the size of the object, do any instantiation required.
3609
3610 If VALID_ONLY is non-zero, it means that the RTL should only be
3611 changed if the new address is valid. */
3612
3613 static void
3614 instantiate_decl (x, size, valid_only)
3615 rtx x;
3616 HOST_WIDE_INT size;
3617 int valid_only;
3618 {
3619 enum machine_mode mode;
3620 rtx addr;
3621
3622 /* If this is not a MEM, no need to do anything. Similarly if the
3623 address is a constant or a register that is not a virtual register. */
3624
3625 if (x == 0 || GET_CODE (x) != MEM)
3626 return;
3627
3628 addr = XEXP (x, 0);
3629 if (CONSTANT_P (addr)
3630 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3631 || (GET_CODE (addr) == REG
3632 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3633 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3634 return;
3635
3636 /* If we should only do this if the address is valid, copy the address.
3637 We need to do this so we can undo any changes that might make the
3638 address invalid. This copy is unfortunate, but probably can't be
3639 avoided. */
3640
3641 if (valid_only)
3642 addr = copy_rtx (addr);
3643
3644 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3645
3646 if (valid_only && size >= 0)
3647 {
3648 unsigned HOST_WIDE_INT decl_size = size;
3649
3650 /* Now verify that the resulting address is valid for every integer or
3651 floating-point mode up to and including SIZE bytes long. We do this
3652 since the object might be accessed in any mode and frame addresses
3653 are shared. */
3654
3655 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3656 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3657 mode = GET_MODE_WIDER_MODE (mode))
3658 if (! memory_address_p (mode, addr))
3659 return;
3660
3661 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3662 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3663 mode = GET_MODE_WIDER_MODE (mode))
3664 if (! memory_address_p (mode, addr))
3665 return;
3666 }
3667
3668 /* Put back the address now that we have updated it and we either know
3669 it is valid or we don't care whether it is valid. */
3670
3671 XEXP (x, 0) = addr;
3672 }
3673 \f
3674 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3675 is a virtual register, return the requivalent hard register and set the
3676 offset indirectly through the pointer. Otherwise, return 0. */
3677
3678 static rtx
3679 instantiate_new_reg (x, poffset)
3680 rtx x;
3681 HOST_WIDE_INT *poffset;
3682 {
3683 rtx new;
3684 HOST_WIDE_INT offset;
3685
3686 if (x == virtual_incoming_args_rtx)
3687 new = arg_pointer_rtx, offset = in_arg_offset;
3688 else if (x == virtual_stack_vars_rtx)
3689 new = frame_pointer_rtx, offset = var_offset;
3690 else if (x == virtual_stack_dynamic_rtx)
3691 new = stack_pointer_rtx, offset = dynamic_offset;
3692 else if (x == virtual_outgoing_args_rtx)
3693 new = stack_pointer_rtx, offset = out_arg_offset;
3694 else if (x == virtual_cfa_rtx)
3695 new = arg_pointer_rtx, offset = cfa_offset;
3696 else
3697 return 0;
3698
3699 *poffset = offset;
3700 return new;
3701 }
3702 \f
3703 /* Given a pointer to a piece of rtx and an optional pointer to the
3704 containing object, instantiate any virtual registers present in it.
3705
3706 If EXTRA_INSNS, we always do the replacement and generate
3707 any extra insns before OBJECT. If it zero, we do nothing if replacement
3708 is not valid.
3709
3710 Return 1 if we either had nothing to do or if we were able to do the
3711 needed replacement. Return 0 otherwise; we only return zero if
3712 EXTRA_INSNS is zero.
3713
3714 We first try some simple transformations to avoid the creation of extra
3715 pseudos. */
3716
3717 static int
3718 instantiate_virtual_regs_1 (loc, object, extra_insns)
3719 rtx *loc;
3720 rtx object;
3721 int extra_insns;
3722 {
3723 rtx x;
3724 RTX_CODE code;
3725 rtx new = 0;
3726 HOST_WIDE_INT offset = 0;
3727 rtx temp;
3728 rtx seq;
3729 int i, j;
3730 const char *fmt;
3731
3732 /* Re-start here to avoid recursion in common cases. */
3733 restart:
3734
3735 x = *loc;
3736 if (x == 0)
3737 return 1;
3738
3739 code = GET_CODE (x);
3740
3741 /* Check for some special cases. */
3742 switch (code)
3743 {
3744 case CONST_INT:
3745 case CONST_DOUBLE:
3746 case CONST:
3747 case SYMBOL_REF:
3748 case CODE_LABEL:
3749 case PC:
3750 case CC0:
3751 case ASM_INPUT:
3752 case ADDR_VEC:
3753 case ADDR_DIFF_VEC:
3754 case RETURN:
3755 return 1;
3756
3757 case SET:
3758 /* We are allowed to set the virtual registers. This means that
3759 the actual register should receive the source minus the
3760 appropriate offset. This is used, for example, in the handling
3761 of non-local gotos. */
3762 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3763 {
3764 rtx src = SET_SRC (x);
3765
3766 /* We are setting the register, not using it, so the relevant
3767 offset is the negative of the offset to use were we using
3768 the register. */
3769 offset = - offset;
3770 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3771
3772 /* The only valid sources here are PLUS or REG. Just do
3773 the simplest possible thing to handle them. */
3774 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3775 abort ();
3776
3777 start_sequence ();
3778 if (GET_CODE (src) != REG)
3779 temp = force_operand (src, NULL_RTX);
3780 else
3781 temp = src;
3782 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3783 seq = get_insns ();
3784 end_sequence ();
3785
3786 emit_insns_before (seq, object);
3787 SET_DEST (x) = new;
3788
3789 if (! validate_change (object, &SET_SRC (x), temp, 0)
3790 || ! extra_insns)
3791 abort ();
3792
3793 return 1;
3794 }
3795
3796 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3797 loc = &SET_SRC (x);
3798 goto restart;
3799
3800 case PLUS:
3801 /* Handle special case of virtual register plus constant. */
3802 if (CONSTANT_P (XEXP (x, 1)))
3803 {
3804 rtx old, new_offset;
3805
3806 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3807 if (GET_CODE (XEXP (x, 0)) == PLUS)
3808 {
3809 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3810 {
3811 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3812 extra_insns);
3813 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3814 }
3815 else
3816 {
3817 loc = &XEXP (x, 0);
3818 goto restart;
3819 }
3820 }
3821
3822 #ifdef POINTERS_EXTEND_UNSIGNED
3823 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3824 we can commute the PLUS and SUBREG because pointers into the
3825 frame are well-behaved. */
3826 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3827 && GET_CODE (XEXP (x, 1)) == CONST_INT
3828 && 0 != (new
3829 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3830 &offset))
3831 && validate_change (object, loc,
3832 plus_constant (gen_lowpart (ptr_mode,
3833 new),
3834 offset
3835 + INTVAL (XEXP (x, 1))),
3836 0))
3837 return 1;
3838 #endif
3839 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3840 {
3841 /* We know the second operand is a constant. Unless the
3842 first operand is a REG (which has been already checked),
3843 it needs to be checked. */
3844 if (GET_CODE (XEXP (x, 0)) != REG)
3845 {
3846 loc = &XEXP (x, 0);
3847 goto restart;
3848 }
3849 return 1;
3850 }
3851
3852 new_offset = plus_constant (XEXP (x, 1), offset);
3853
3854 /* If the new constant is zero, try to replace the sum with just
3855 the register. */
3856 if (new_offset == const0_rtx
3857 && validate_change (object, loc, new, 0))
3858 return 1;
3859
3860 /* Next try to replace the register and new offset.
3861 There are two changes to validate here and we can't assume that
3862 in the case of old offset equals new just changing the register
3863 will yield a valid insn. In the interests of a little efficiency,
3864 however, we only call validate change once (we don't queue up the
3865 changes and then call apply_change_group). */
3866
3867 old = XEXP (x, 0);
3868 if (offset == 0
3869 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3870 : (XEXP (x, 0) = new,
3871 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3872 {
3873 if (! extra_insns)
3874 {
3875 XEXP (x, 0) = old;
3876 return 0;
3877 }
3878
3879 /* Otherwise copy the new constant into a register and replace
3880 constant with that register. */
3881 temp = gen_reg_rtx (Pmode);
3882 XEXP (x, 0) = new;
3883 if (validate_change (object, &XEXP (x, 1), temp, 0))
3884 emit_insn_before (gen_move_insn (temp, new_offset), object);
3885 else
3886 {
3887 /* If that didn't work, replace this expression with a
3888 register containing the sum. */
3889
3890 XEXP (x, 0) = old;
3891 new = gen_rtx_PLUS (Pmode, new, new_offset);
3892
3893 start_sequence ();
3894 temp = force_operand (new, NULL_RTX);
3895 seq = get_insns ();
3896 end_sequence ();
3897
3898 emit_insns_before (seq, object);
3899 if (! validate_change (object, loc, temp, 0)
3900 && ! validate_replace_rtx (x, temp, object))
3901 abort ();
3902 }
3903 }
3904
3905 return 1;
3906 }
3907
3908 /* Fall through to generic two-operand expression case. */
3909 case EXPR_LIST:
3910 case CALL:
3911 case COMPARE:
3912 case MINUS:
3913 case MULT:
3914 case DIV: case UDIV:
3915 case MOD: case UMOD:
3916 case AND: case IOR: case XOR:
3917 case ROTATERT: case ROTATE:
3918 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3919 case NE: case EQ:
3920 case GE: case GT: case GEU: case GTU:
3921 case LE: case LT: case LEU: case LTU:
3922 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3923 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3924 loc = &XEXP (x, 0);
3925 goto restart;
3926
3927 case MEM:
3928 /* Most cases of MEM that convert to valid addresses have already been
3929 handled by our scan of decls. The only special handling we
3930 need here is to make a copy of the rtx to ensure it isn't being
3931 shared if we have to change it to a pseudo.
3932
3933 If the rtx is a simple reference to an address via a virtual register,
3934 it can potentially be shared. In such cases, first try to make it
3935 a valid address, which can also be shared. Otherwise, copy it and
3936 proceed normally.
3937
3938 First check for common cases that need no processing. These are
3939 usually due to instantiation already being done on a previous instance
3940 of a shared rtx. */
3941
3942 temp = XEXP (x, 0);
3943 if (CONSTANT_ADDRESS_P (temp)
3944 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3945 || temp == arg_pointer_rtx
3946 #endif
3947 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3948 || temp == hard_frame_pointer_rtx
3949 #endif
3950 || temp == frame_pointer_rtx)
3951 return 1;
3952
3953 if (GET_CODE (temp) == PLUS
3954 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3955 && (XEXP (temp, 0) == frame_pointer_rtx
3956 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3957 || XEXP (temp, 0) == hard_frame_pointer_rtx
3958 #endif
3959 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3960 || XEXP (temp, 0) == arg_pointer_rtx
3961 #endif
3962 ))
3963 return 1;
3964
3965 if (temp == virtual_stack_vars_rtx
3966 || temp == virtual_incoming_args_rtx
3967 || (GET_CODE (temp) == PLUS
3968 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3969 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3970 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3971 {
3972 /* This MEM may be shared. If the substitution can be done without
3973 the need to generate new pseudos, we want to do it in place
3974 so all copies of the shared rtx benefit. The call below will
3975 only make substitutions if the resulting address is still
3976 valid.
3977
3978 Note that we cannot pass X as the object in the recursive call
3979 since the insn being processed may not allow all valid
3980 addresses. However, if we were not passed on object, we can
3981 only modify X without copying it if X will have a valid
3982 address.
3983
3984 ??? Also note that this can still lose if OBJECT is an insn that
3985 has less restrictions on an address that some other insn.
3986 In that case, we will modify the shared address. This case
3987 doesn't seem very likely, though. One case where this could
3988 happen is in the case of a USE or CLOBBER reference, but we
3989 take care of that below. */
3990
3991 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3992 object ? object : x, 0))
3993 return 1;
3994
3995 /* Otherwise make a copy and process that copy. We copy the entire
3996 RTL expression since it might be a PLUS which could also be
3997 shared. */
3998 *loc = x = copy_rtx (x);
3999 }
4000
4001 /* Fall through to generic unary operation case. */
4002 case SUBREG:
4003 case STRICT_LOW_PART:
4004 case NEG: case NOT:
4005 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4006 case SIGN_EXTEND: case ZERO_EXTEND:
4007 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4008 case FLOAT: case FIX:
4009 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4010 case ABS:
4011 case SQRT:
4012 case FFS:
4013 /* These case either have just one operand or we know that we need not
4014 check the rest of the operands. */
4015 loc = &XEXP (x, 0);
4016 goto restart;
4017
4018 case USE:
4019 case CLOBBER:
4020 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4021 go ahead and make the invalid one, but do it to a copy. For a REG,
4022 just make the recursive call, since there's no chance of a problem. */
4023
4024 if ((GET_CODE (XEXP (x, 0)) == MEM
4025 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4026 0))
4027 || (GET_CODE (XEXP (x, 0)) == REG
4028 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4029 return 1;
4030
4031 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4032 loc = &XEXP (x, 0);
4033 goto restart;
4034
4035 case REG:
4036 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4037 in front of this insn and substitute the temporary. */
4038 if ((new = instantiate_new_reg (x, &offset)) != 0)
4039 {
4040 temp = plus_constant (new, offset);
4041 if (!validate_change (object, loc, temp, 0))
4042 {
4043 if (! extra_insns)
4044 return 0;
4045
4046 start_sequence ();
4047 temp = force_operand (temp, NULL_RTX);
4048 seq = get_insns ();
4049 end_sequence ();
4050
4051 emit_insns_before (seq, object);
4052 if (! validate_change (object, loc, temp, 0)
4053 && ! validate_replace_rtx (x, temp, object))
4054 abort ();
4055 }
4056 }
4057
4058 return 1;
4059
4060 case ADDRESSOF:
4061 if (GET_CODE (XEXP (x, 0)) == REG)
4062 return 1;
4063
4064 else if (GET_CODE (XEXP (x, 0)) == MEM)
4065 {
4066 /* If we have a (addressof (mem ..)), do any instantiation inside
4067 since we know we'll be making the inside valid when we finally
4068 remove the ADDRESSOF. */
4069 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4070 return 1;
4071 }
4072 break;
4073
4074 default:
4075 break;
4076 }
4077
4078 /* Scan all subexpressions. */
4079 fmt = GET_RTX_FORMAT (code);
4080 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4081 if (*fmt == 'e')
4082 {
4083 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4084 return 0;
4085 }
4086 else if (*fmt == 'E')
4087 for (j = 0; j < XVECLEN (x, i); j++)
4088 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4089 extra_insns))
4090 return 0;
4091
4092 return 1;
4093 }
4094 \f
4095 /* Optimization: assuming this function does not receive nonlocal gotos,
4096 delete the handlers for such, as well as the insns to establish
4097 and disestablish them. */
4098
4099 static void
4100 delete_handlers ()
4101 {
4102 rtx insn;
4103 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4104 {
4105 /* Delete the handler by turning off the flag that would
4106 prevent jump_optimize from deleting it.
4107 Also permit deletion of the nonlocal labels themselves
4108 if nothing local refers to them. */
4109 if (GET_CODE (insn) == CODE_LABEL)
4110 {
4111 tree t, last_t;
4112
4113 LABEL_PRESERVE_P (insn) = 0;
4114
4115 /* Remove it from the nonlocal_label list, to avoid confusing
4116 flow. */
4117 for (t = nonlocal_labels, last_t = 0; t;
4118 last_t = t, t = TREE_CHAIN (t))
4119 if (DECL_RTL (TREE_VALUE (t)) == insn)
4120 break;
4121 if (t)
4122 {
4123 if (! last_t)
4124 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4125 else
4126 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4127 }
4128 }
4129 if (GET_CODE (insn) == INSN)
4130 {
4131 int can_delete = 0;
4132 rtx t;
4133 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4134 if (reg_mentioned_p (t, PATTERN (insn)))
4135 {
4136 can_delete = 1;
4137 break;
4138 }
4139 if (can_delete
4140 || (nonlocal_goto_stack_level != 0
4141 && reg_mentioned_p (nonlocal_goto_stack_level,
4142 PATTERN (insn))))
4143 delete_insn (insn);
4144 }
4145 }
4146 }
4147 \f
4148 int
4149 max_parm_reg_num ()
4150 {
4151 return max_parm_reg;
4152 }
4153
4154 /* Return the first insn following those generated by `assign_parms'. */
4155
4156 rtx
4157 get_first_nonparm_insn ()
4158 {
4159 if (last_parm_insn)
4160 return NEXT_INSN (last_parm_insn);
4161 return get_insns ();
4162 }
4163
4164 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4165 Crash if there is none. */
4166
4167 rtx
4168 get_first_block_beg ()
4169 {
4170 register rtx searcher;
4171 register rtx insn = get_first_nonparm_insn ();
4172
4173 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4174 if (GET_CODE (searcher) == NOTE
4175 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4176 return searcher;
4177
4178 abort (); /* Invalid call to this function. (See comments above.) */
4179 return NULL_RTX;
4180 }
4181
4182 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4183 This means a type for which function calls must pass an address to the
4184 function or get an address back from the function.
4185 EXP may be a type node or an expression (whose type is tested). */
4186
4187 int
4188 aggregate_value_p (exp)
4189 tree exp;
4190 {
4191 int i, regno, nregs;
4192 rtx reg;
4193
4194 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4195
4196 if (TREE_CODE (type) == VOID_TYPE)
4197 return 0;
4198 if (RETURN_IN_MEMORY (type))
4199 return 1;
4200 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4201 and thus can't be returned in registers. */
4202 if (TREE_ADDRESSABLE (type))
4203 return 1;
4204 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4205 return 1;
4206 /* Make sure we have suitable call-clobbered regs to return
4207 the value in; if not, we must return it in memory. */
4208 reg = hard_function_value (type, 0, 0);
4209
4210 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4211 it is OK. */
4212 if (GET_CODE (reg) != REG)
4213 return 0;
4214
4215 regno = REGNO (reg);
4216 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4217 for (i = 0; i < nregs; i++)
4218 if (! call_used_regs[regno + i])
4219 return 1;
4220 return 0;
4221 }
4222 \f
4223 /* Assign RTL expressions to the function's parameters.
4224 This may involve copying them into registers and using
4225 those registers as the RTL for them. */
4226
4227 void
4228 assign_parms (fndecl)
4229 tree fndecl;
4230 {
4231 register tree parm;
4232 register rtx entry_parm = 0;
4233 register rtx stack_parm = 0;
4234 CUMULATIVE_ARGS args_so_far;
4235 enum machine_mode promoted_mode, passed_mode;
4236 enum machine_mode nominal_mode, promoted_nominal_mode;
4237 int unsignedp;
4238 /* Total space needed so far for args on the stack,
4239 given as a constant and a tree-expression. */
4240 struct args_size stack_args_size;
4241 tree fntype = TREE_TYPE (fndecl);
4242 tree fnargs = DECL_ARGUMENTS (fndecl);
4243 /* This is used for the arg pointer when referring to stack args. */
4244 rtx internal_arg_pointer;
4245 /* This is a dummy PARM_DECL that we used for the function result if
4246 the function returns a structure. */
4247 tree function_result_decl = 0;
4248 #ifdef SETUP_INCOMING_VARARGS
4249 int varargs_setup = 0;
4250 #endif
4251 rtx conversion_insns = 0;
4252 struct args_size alignment_pad;
4253
4254 /* Nonzero if the last arg is named `__builtin_va_alist',
4255 which is used on some machines for old-fashioned non-ANSI varargs.h;
4256 this should be stuck onto the stack as if it had arrived there. */
4257 int hide_last_arg
4258 = (current_function_varargs
4259 && fnargs
4260 && (parm = tree_last (fnargs)) != 0
4261 && DECL_NAME (parm)
4262 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4263 "__builtin_va_alist")));
4264
4265 /* Nonzero if function takes extra anonymous args.
4266 This means the last named arg must be on the stack
4267 right before the anonymous ones. */
4268 int stdarg
4269 = (TYPE_ARG_TYPES (fntype) != 0
4270 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4271 != void_type_node));
4272
4273 current_function_stdarg = stdarg;
4274
4275 /* If the reg that the virtual arg pointer will be translated into is
4276 not a fixed reg or is the stack pointer, make a copy of the virtual
4277 arg pointer, and address parms via the copy. The frame pointer is
4278 considered fixed even though it is not marked as such.
4279
4280 The second time through, simply use ap to avoid generating rtx. */
4281
4282 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4283 || ! (fixed_regs[ARG_POINTER_REGNUM]
4284 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4285 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4286 else
4287 internal_arg_pointer = virtual_incoming_args_rtx;
4288 current_function_internal_arg_pointer = internal_arg_pointer;
4289
4290 stack_args_size.constant = 0;
4291 stack_args_size.var = 0;
4292
4293 /* If struct value address is treated as the first argument, make it so. */
4294 if (aggregate_value_p (DECL_RESULT (fndecl))
4295 && ! current_function_returns_pcc_struct
4296 && struct_value_incoming_rtx == 0)
4297 {
4298 tree type = build_pointer_type (TREE_TYPE (fntype));
4299
4300 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4301
4302 DECL_ARG_TYPE (function_result_decl) = type;
4303 TREE_CHAIN (function_result_decl) = fnargs;
4304 fnargs = function_result_decl;
4305 }
4306
4307 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4308 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4309
4310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4311 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4312 #else
4313 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4314 #endif
4315
4316 /* We haven't yet found an argument that we must push and pretend the
4317 caller did. */
4318 current_function_pretend_args_size = 0;
4319
4320 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4321 {
4322 struct args_size stack_offset;
4323 struct args_size arg_size;
4324 int passed_pointer = 0;
4325 int did_conversion = 0;
4326 tree passed_type = DECL_ARG_TYPE (parm);
4327 tree nominal_type = TREE_TYPE (parm);
4328 int pretend_named;
4329
4330 /* Set LAST_NAMED if this is last named arg before some
4331 anonymous args. */
4332 int last_named = ((TREE_CHAIN (parm) == 0
4333 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4334 && (stdarg || current_function_varargs));
4335 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4336 most machines, if this is a varargs/stdarg function, then we treat
4337 the last named arg as if it were anonymous too. */
4338 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4339
4340 if (TREE_TYPE (parm) == error_mark_node
4341 /* This can happen after weird syntax errors
4342 or if an enum type is defined among the parms. */
4343 || TREE_CODE (parm) != PARM_DECL
4344 || passed_type == NULL)
4345 {
4346 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4347 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4348 TREE_USED (parm) = 1;
4349 continue;
4350 }
4351
4352 /* For varargs.h function, save info about regs and stack space
4353 used by the individual args, not including the va_alist arg. */
4354 if (hide_last_arg && last_named)
4355 current_function_args_info = args_so_far;
4356
4357 /* Find mode of arg as it is passed, and mode of arg
4358 as it should be during execution of this function. */
4359 passed_mode = TYPE_MODE (passed_type);
4360 nominal_mode = TYPE_MODE (nominal_type);
4361
4362 /* If the parm's mode is VOID, its value doesn't matter,
4363 and avoid the usual things like emit_move_insn that could crash. */
4364 if (nominal_mode == VOIDmode)
4365 {
4366 SET_DECL_RTL (parm, const0_rtx);
4367 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4368 continue;
4369 }
4370
4371 /* If the parm is to be passed as a transparent union, use the
4372 type of the first field for the tests below. We have already
4373 verified that the modes are the same. */
4374 if (DECL_TRANSPARENT_UNION (parm)
4375 || (TREE_CODE (passed_type) == UNION_TYPE
4376 && TYPE_TRANSPARENT_UNION (passed_type)))
4377 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4378
4379 /* See if this arg was passed by invisible reference. It is if
4380 it is an object whose size depends on the contents of the
4381 object itself or if the machine requires these objects be passed
4382 that way. */
4383
4384 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4385 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4386 || TREE_ADDRESSABLE (passed_type)
4387 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4388 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4389 passed_type, named_arg)
4390 #endif
4391 )
4392 {
4393 passed_type = nominal_type = build_pointer_type (passed_type);
4394 passed_pointer = 1;
4395 passed_mode = nominal_mode = Pmode;
4396 }
4397
4398 promoted_mode = passed_mode;
4399
4400 #ifdef PROMOTE_FUNCTION_ARGS
4401 /* Compute the mode in which the arg is actually extended to. */
4402 unsignedp = TREE_UNSIGNED (passed_type);
4403 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4404 #endif
4405
4406 /* Let machine desc say which reg (if any) the parm arrives in.
4407 0 means it arrives on the stack. */
4408 #ifdef FUNCTION_INCOMING_ARG
4409 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4410 passed_type, named_arg);
4411 #else
4412 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4413 passed_type, named_arg);
4414 #endif
4415
4416 if (entry_parm == 0)
4417 promoted_mode = passed_mode;
4418
4419 #ifdef SETUP_INCOMING_VARARGS
4420 /* If this is the last named parameter, do any required setup for
4421 varargs or stdargs. We need to know about the case of this being an
4422 addressable type, in which case we skip the registers it
4423 would have arrived in.
4424
4425 For stdargs, LAST_NAMED will be set for two parameters, the one that
4426 is actually the last named, and the dummy parameter. We only
4427 want to do this action once.
4428
4429 Also, indicate when RTL generation is to be suppressed. */
4430 if (last_named && !varargs_setup)
4431 {
4432 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4433 current_function_pretend_args_size, 0);
4434 varargs_setup = 1;
4435 }
4436 #endif
4437
4438 /* Determine parm's home in the stack,
4439 in case it arrives in the stack or we should pretend it did.
4440
4441 Compute the stack position and rtx where the argument arrives
4442 and its size.
4443
4444 There is one complexity here: If this was a parameter that would
4445 have been passed in registers, but wasn't only because it is
4446 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4447 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4448 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4449 0 as it was the previous time. */
4450
4451 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4452 locate_and_pad_parm (promoted_mode, passed_type,
4453 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4454 1,
4455 #else
4456 #ifdef FUNCTION_INCOMING_ARG
4457 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4458 passed_type,
4459 pretend_named) != 0,
4460 #else
4461 FUNCTION_ARG (args_so_far, promoted_mode,
4462 passed_type,
4463 pretend_named) != 0,
4464 #endif
4465 #endif
4466 fndecl, &stack_args_size, &stack_offset, &arg_size,
4467 &alignment_pad);
4468
4469 {
4470 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4471
4472 if (offset_rtx == const0_rtx)
4473 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4474 else
4475 stack_parm = gen_rtx_MEM (promoted_mode,
4476 gen_rtx_PLUS (Pmode,
4477 internal_arg_pointer,
4478 offset_rtx));
4479
4480 set_mem_attributes (stack_parm, parm, 1);
4481 }
4482
4483 /* If this parameter was passed both in registers and in the stack,
4484 use the copy on the stack. */
4485 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4486 entry_parm = 0;
4487
4488 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4489 /* If this parm was passed part in regs and part in memory,
4490 pretend it arrived entirely in memory
4491 by pushing the register-part onto the stack.
4492
4493 In the special case of a DImode or DFmode that is split,
4494 we could put it together in a pseudoreg directly,
4495 but for now that's not worth bothering with. */
4496
4497 if (entry_parm)
4498 {
4499 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4500 passed_type, named_arg);
4501
4502 if (nregs > 0)
4503 {
4504 current_function_pretend_args_size
4505 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4506 / (PARM_BOUNDARY / BITS_PER_UNIT)
4507 * (PARM_BOUNDARY / BITS_PER_UNIT));
4508
4509 /* Handle calls that pass values in multiple non-contiguous
4510 locations. The Irix 6 ABI has examples of this. */
4511 if (GET_CODE (entry_parm) == PARALLEL)
4512 emit_group_store (validize_mem (stack_parm), entry_parm,
4513 int_size_in_bytes (TREE_TYPE (parm)),
4514 TYPE_ALIGN (TREE_TYPE (parm)));
4515
4516 else
4517 move_block_from_reg (REGNO (entry_parm),
4518 validize_mem (stack_parm), nregs,
4519 int_size_in_bytes (TREE_TYPE (parm)));
4520
4521 entry_parm = stack_parm;
4522 }
4523 }
4524 #endif
4525
4526 /* If we didn't decide this parm came in a register,
4527 by default it came on the stack. */
4528 if (entry_parm == 0)
4529 entry_parm = stack_parm;
4530
4531 /* Record permanently how this parm was passed. */
4532 DECL_INCOMING_RTL (parm) = entry_parm;
4533
4534 /* If there is actually space on the stack for this parm,
4535 count it in stack_args_size; otherwise set stack_parm to 0
4536 to indicate there is no preallocated stack slot for the parm. */
4537
4538 if (entry_parm == stack_parm
4539 || (GET_CODE (entry_parm) == PARALLEL
4540 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4541 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4542 /* On some machines, even if a parm value arrives in a register
4543 there is still an (uninitialized) stack slot allocated for it.
4544
4545 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4546 whether this parameter already has a stack slot allocated,
4547 because an arg block exists only if current_function_args_size
4548 is larger than some threshold, and we haven't calculated that
4549 yet. So, for now, we just assume that stack slots never exist
4550 in this case. */
4551 || REG_PARM_STACK_SPACE (fndecl) > 0
4552 #endif
4553 )
4554 {
4555 stack_args_size.constant += arg_size.constant;
4556 if (arg_size.var)
4557 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4558 }
4559 else
4560 /* No stack slot was pushed for this parm. */
4561 stack_parm = 0;
4562
4563 /* Update info on where next arg arrives in registers. */
4564
4565 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4566 passed_type, named_arg);
4567
4568 /* If we can't trust the parm stack slot to be aligned enough
4569 for its ultimate type, don't use that slot after entry.
4570 We'll make another stack slot, if we need one. */
4571 {
4572 unsigned int thisparm_boundary
4573 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4574
4575 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4576 stack_parm = 0;
4577 }
4578
4579 /* If parm was passed in memory, and we need to convert it on entry,
4580 don't store it back in that same slot. */
4581 if (entry_parm != 0
4582 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4583 stack_parm = 0;
4584
4585 /* When an argument is passed in multiple locations, we can't
4586 make use of this information, but we can save some copying if
4587 the whole argument is passed in a single register. */
4588 if (GET_CODE (entry_parm) == PARALLEL
4589 && nominal_mode != BLKmode && passed_mode != BLKmode)
4590 {
4591 int i, len = XVECLEN (entry_parm, 0);
4592
4593 for (i = 0; i < len; i++)
4594 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4595 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4596 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4597 == passed_mode)
4598 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4599 {
4600 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4601 DECL_INCOMING_RTL (parm) = entry_parm;
4602 break;
4603 }
4604 }
4605
4606 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4607 in the mode in which it arrives.
4608 STACK_PARM is an RTX for a stack slot where the parameter can live
4609 during the function (in case we want to put it there).
4610 STACK_PARM is 0 if no stack slot was pushed for it.
4611
4612 Now output code if necessary to convert ENTRY_PARM to
4613 the type in which this function declares it,
4614 and store that result in an appropriate place,
4615 which may be a pseudo reg, may be STACK_PARM,
4616 or may be a local stack slot if STACK_PARM is 0.
4617
4618 Set DECL_RTL to that place. */
4619
4620 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4621 {
4622 /* If a BLKmode arrives in registers, copy it to a stack slot.
4623 Handle calls that pass values in multiple non-contiguous
4624 locations. The Irix 6 ABI has examples of this. */
4625 if (GET_CODE (entry_parm) == REG
4626 || GET_CODE (entry_parm) == PARALLEL)
4627 {
4628 int size_stored
4629 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4630 UNITS_PER_WORD);
4631
4632 /* Note that we will be storing an integral number of words.
4633 So we have to be careful to ensure that we allocate an
4634 integral number of words. We do this below in the
4635 assign_stack_local if space was not allocated in the argument
4636 list. If it was, this will not work if PARM_BOUNDARY is not
4637 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4638 if it becomes a problem. */
4639
4640 if (stack_parm == 0)
4641 {
4642 stack_parm
4643 = assign_stack_local (GET_MODE (entry_parm),
4644 size_stored, 0);
4645 set_mem_attributes (stack_parm, parm, 1);
4646 }
4647
4648 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4649 abort ();
4650
4651 /* Handle calls that pass values in multiple non-contiguous
4652 locations. The Irix 6 ABI has examples of this. */
4653 if (GET_CODE (entry_parm) == PARALLEL)
4654 emit_group_store (validize_mem (stack_parm), entry_parm,
4655 int_size_in_bytes (TREE_TYPE (parm)),
4656 TYPE_ALIGN (TREE_TYPE (parm)));
4657 else
4658 move_block_from_reg (REGNO (entry_parm),
4659 validize_mem (stack_parm),
4660 size_stored / UNITS_PER_WORD,
4661 int_size_in_bytes (TREE_TYPE (parm)));
4662 }
4663 SET_DECL_RTL (parm, stack_parm);
4664 }
4665 else if (! ((! optimize
4666 && ! DECL_REGISTER (parm)
4667 && ! DECL_INLINE (fndecl))
4668 || TREE_SIDE_EFFECTS (parm)
4669 /* If -ffloat-store specified, don't put explicit
4670 float variables into registers. */
4671 || (flag_float_store
4672 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4673 /* Always assign pseudo to structure return or item passed
4674 by invisible reference. */
4675 || passed_pointer || parm == function_result_decl)
4676 {
4677 /* Store the parm in a pseudoregister during the function, but we
4678 may need to do it in a wider mode. */
4679
4680 register rtx parmreg;
4681 unsigned int regno, regnoi = 0, regnor = 0;
4682
4683 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4684
4685 promoted_nominal_mode
4686 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4687
4688 parmreg = gen_reg_rtx (promoted_nominal_mode);
4689 mark_user_reg (parmreg);
4690
4691 /* If this was an item that we received a pointer to, set DECL_RTL
4692 appropriately. */
4693 if (passed_pointer)
4694 {
4695 SET_DECL_RTL (parm,
4696 gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4697 parmreg));
4698 set_mem_attributes (DECL_RTL (parm), parm, 1);
4699 }
4700 else
4701 {
4702 SET_DECL_RTL (parm, parmreg);
4703 maybe_set_unchanging (DECL_RTL (parm), parm);
4704 }
4705
4706 /* Copy the value into the register. */
4707 if (nominal_mode != passed_mode
4708 || promoted_nominal_mode != promoted_mode)
4709 {
4710 int save_tree_used;
4711 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4712 mode, by the caller. We now have to convert it to
4713 NOMINAL_MODE, if different. However, PARMREG may be in
4714 a different mode than NOMINAL_MODE if it is being stored
4715 promoted.
4716
4717 If ENTRY_PARM is a hard register, it might be in a register
4718 not valid for operating in its mode (e.g., an odd-numbered
4719 register for a DFmode). In that case, moves are the only
4720 thing valid, so we can't do a convert from there. This
4721 occurs when the calling sequence allow such misaligned
4722 usages.
4723
4724 In addition, the conversion may involve a call, which could
4725 clobber parameters which haven't been copied to pseudo
4726 registers yet. Therefore, we must first copy the parm to
4727 a pseudo reg here, and save the conversion until after all
4728 parameters have been moved. */
4729
4730 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4731
4732 emit_move_insn (tempreg, validize_mem (entry_parm));
4733
4734 push_to_sequence (conversion_insns);
4735 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4736
4737 if (GET_CODE (tempreg) == SUBREG
4738 && GET_MODE (tempreg) == nominal_mode
4739 && GET_CODE (SUBREG_REG (tempreg)) == REG
4740 && nominal_mode == passed_mode
4741 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4742 && GET_MODE_SIZE (GET_MODE (tempreg))
4743 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4744 {
4745 /* The argument is already sign/zero extended, so note it
4746 into the subreg. */
4747 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4748 SUBREG_PROMOTED_UNSIGNED_P (tempreg) = unsignedp;
4749 }
4750
4751 /* TREE_USED gets set erroneously during expand_assignment. */
4752 save_tree_used = TREE_USED (parm);
4753 expand_assignment (parm,
4754 make_tree (nominal_type, tempreg), 0, 0);
4755 TREE_USED (parm) = save_tree_used;
4756 conversion_insns = get_insns ();
4757 did_conversion = 1;
4758 end_sequence ();
4759 }
4760 else
4761 emit_move_insn (parmreg, validize_mem (entry_parm));
4762
4763 /* If we were passed a pointer but the actual value
4764 can safely live in a register, put it in one. */
4765 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4766 && ! ((! optimize
4767 && ! DECL_REGISTER (parm)
4768 && ! DECL_INLINE (fndecl))
4769 || TREE_SIDE_EFFECTS (parm)
4770 /* If -ffloat-store specified, don't put explicit
4771 float variables into registers. */
4772 || (flag_float_store
4773 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4774 {
4775 /* We can't use nominal_mode, because it will have been set to
4776 Pmode above. We must use the actual mode of the parm. */
4777 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4778 mark_user_reg (parmreg);
4779 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4780 {
4781 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4782 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4783 push_to_sequence (conversion_insns);
4784 emit_move_insn (tempreg, DECL_RTL (parm));
4785 SET_DECL_RTL (parm,
4786 convert_to_mode (GET_MODE (parmreg),
4787 tempreg,
4788 unsigned_p));
4789 emit_move_insn (parmreg, DECL_RTL (parm));
4790 conversion_insns = get_insns();
4791 did_conversion = 1;
4792 end_sequence ();
4793 }
4794 else
4795 emit_move_insn (parmreg, DECL_RTL (parm));
4796 SET_DECL_RTL (parm, parmreg);
4797 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4798 now the parm. */
4799 stack_parm = 0;
4800 }
4801 #ifdef FUNCTION_ARG_CALLEE_COPIES
4802 /* If we are passed an arg by reference and it is our responsibility
4803 to make a copy, do it now.
4804 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4805 original argument, so we must recreate them in the call to
4806 FUNCTION_ARG_CALLEE_COPIES. */
4807 /* ??? Later add code to handle the case that if the argument isn't
4808 modified, don't do the copy. */
4809
4810 else if (passed_pointer
4811 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4812 TYPE_MODE (DECL_ARG_TYPE (parm)),
4813 DECL_ARG_TYPE (parm),
4814 named_arg)
4815 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4816 {
4817 rtx copy;
4818 tree type = DECL_ARG_TYPE (parm);
4819
4820 /* This sequence may involve a library call perhaps clobbering
4821 registers that haven't been copied to pseudos yet. */
4822
4823 push_to_sequence (conversion_insns);
4824
4825 if (!COMPLETE_TYPE_P (type)
4826 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4827 /* This is a variable sized object. */
4828 copy = gen_rtx_MEM (BLKmode,
4829 allocate_dynamic_stack_space
4830 (expr_size (parm), NULL_RTX,
4831 TYPE_ALIGN (type)));
4832 else
4833 copy = assign_stack_temp (TYPE_MODE (type),
4834 int_size_in_bytes (type), 1);
4835 set_mem_attributes (copy, parm, 1);
4836
4837 store_expr (parm, copy, 0);
4838 emit_move_insn (parmreg, XEXP (copy, 0));
4839 if (current_function_check_memory_usage)
4840 emit_library_call (chkr_set_right_libfunc,
4841 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4842 XEXP (copy, 0), Pmode,
4843 GEN_INT (int_size_in_bytes (type)),
4844 TYPE_MODE (sizetype),
4845 GEN_INT (MEMORY_USE_RW),
4846 TYPE_MODE (integer_type_node));
4847 conversion_insns = get_insns ();
4848 did_conversion = 1;
4849 end_sequence ();
4850 }
4851 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4852
4853 /* In any case, record the parm's desired stack location
4854 in case we later discover it must live in the stack.
4855
4856 If it is a COMPLEX value, store the stack location for both
4857 halves. */
4858
4859 if (GET_CODE (parmreg) == CONCAT)
4860 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4861 else
4862 regno = REGNO (parmreg);
4863
4864 if (regno >= max_parm_reg)
4865 {
4866 rtx *new;
4867 int old_max_parm_reg = max_parm_reg;
4868
4869 /* It's slow to expand this one register at a time,
4870 but it's also rare and we need max_parm_reg to be
4871 precisely correct. */
4872 max_parm_reg = regno + 1;
4873 new = (rtx *) xrealloc (parm_reg_stack_loc,
4874 max_parm_reg * sizeof (rtx));
4875 memset ((char *) (new + old_max_parm_reg), 0,
4876 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4877 parm_reg_stack_loc = new;
4878 }
4879
4880 if (GET_CODE (parmreg) == CONCAT)
4881 {
4882 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4883
4884 regnor = REGNO (gen_realpart (submode, parmreg));
4885 regnoi = REGNO (gen_imagpart (submode, parmreg));
4886
4887 if (stack_parm != 0)
4888 {
4889 parm_reg_stack_loc[regnor]
4890 = gen_realpart (submode, stack_parm);
4891 parm_reg_stack_loc[regnoi]
4892 = gen_imagpart (submode, stack_parm);
4893 }
4894 else
4895 {
4896 parm_reg_stack_loc[regnor] = 0;
4897 parm_reg_stack_loc[regnoi] = 0;
4898 }
4899 }
4900 else
4901 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4902
4903 /* Mark the register as eliminable if we did no conversion
4904 and it was copied from memory at a fixed offset,
4905 and the arg pointer was not copied to a pseudo-reg.
4906 If the arg pointer is a pseudo reg or the offset formed
4907 an invalid address, such memory-equivalences
4908 as we make here would screw up life analysis for it. */
4909 if (nominal_mode == passed_mode
4910 && ! did_conversion
4911 && stack_parm != 0
4912 && GET_CODE (stack_parm) == MEM
4913 && stack_offset.var == 0
4914 && reg_mentioned_p (virtual_incoming_args_rtx,
4915 XEXP (stack_parm, 0)))
4916 {
4917 rtx linsn = get_last_insn ();
4918 rtx sinsn, set;
4919
4920 /* Mark complex types separately. */
4921 if (GET_CODE (parmreg) == CONCAT)
4922 /* Scan backwards for the set of the real and
4923 imaginary parts. */
4924 for (sinsn = linsn; sinsn != 0;
4925 sinsn = prev_nonnote_insn (sinsn))
4926 {
4927 set = single_set (sinsn);
4928 if (set != 0
4929 && SET_DEST (set) == regno_reg_rtx [regnoi])
4930 REG_NOTES (sinsn)
4931 = gen_rtx_EXPR_LIST (REG_EQUIV,
4932 parm_reg_stack_loc[regnoi],
4933 REG_NOTES (sinsn));
4934 else if (set != 0
4935 && SET_DEST (set) == regno_reg_rtx [regnor])
4936 REG_NOTES (sinsn)
4937 = gen_rtx_EXPR_LIST (REG_EQUIV,
4938 parm_reg_stack_loc[regnor],
4939 REG_NOTES (sinsn));
4940 }
4941 else if ((set = single_set (linsn)) != 0
4942 && SET_DEST (set) == parmreg)
4943 REG_NOTES (linsn)
4944 = gen_rtx_EXPR_LIST (REG_EQUIV,
4945 stack_parm, REG_NOTES (linsn));
4946 }
4947
4948 /* For pointer data type, suggest pointer register. */
4949 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4950 mark_reg_pointer (parmreg,
4951 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4952
4953 /* If something wants our address, try to use ADDRESSOF. */
4954 if (TREE_ADDRESSABLE (parm))
4955 {
4956 /* If we end up putting something into the stack,
4957 fixup_var_refs_insns will need to make a pass over
4958 all the instructions. It looks throughs the pending
4959 sequences -- but it can't see the ones in the
4960 CONVERSION_INSNS, if they're not on the sequence
4961 stack. So, we go back to that sequence, just so that
4962 the fixups will happen. */
4963 push_to_sequence (conversion_insns);
4964 put_var_into_stack (parm);
4965 conversion_insns = get_insns ();
4966 end_sequence ();
4967 }
4968 }
4969 else
4970 {
4971 /* Value must be stored in the stack slot STACK_PARM
4972 during function execution. */
4973
4974 if (promoted_mode != nominal_mode)
4975 {
4976 /* Conversion is required. */
4977 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4978
4979 emit_move_insn (tempreg, validize_mem (entry_parm));
4980
4981 push_to_sequence (conversion_insns);
4982 entry_parm = convert_to_mode (nominal_mode, tempreg,
4983 TREE_UNSIGNED (TREE_TYPE (parm)));
4984 if (stack_parm)
4985 {
4986 /* ??? This may need a big-endian conversion on sparc64. */
4987 stack_parm = change_address (stack_parm, nominal_mode,
4988 NULL_RTX);
4989 }
4990 conversion_insns = get_insns ();
4991 did_conversion = 1;
4992 end_sequence ();
4993 }
4994
4995 if (entry_parm != stack_parm)
4996 {
4997 if (stack_parm == 0)
4998 {
4999 stack_parm
5000 = assign_stack_local (GET_MODE (entry_parm),
5001 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5002 set_mem_attributes (stack_parm, parm, 1);
5003 }
5004
5005 if (promoted_mode != nominal_mode)
5006 {
5007 push_to_sequence (conversion_insns);
5008 emit_move_insn (validize_mem (stack_parm),
5009 validize_mem (entry_parm));
5010 conversion_insns = get_insns ();
5011 end_sequence ();
5012 }
5013 else
5014 emit_move_insn (validize_mem (stack_parm),
5015 validize_mem (entry_parm));
5016 }
5017 if (current_function_check_memory_usage)
5018 {
5019 push_to_sequence (conversion_insns);
5020 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
5021 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
5022 GEN_INT (GET_MODE_SIZE (GET_MODE
5023 (entry_parm))),
5024 TYPE_MODE (sizetype),
5025 GEN_INT (MEMORY_USE_RW),
5026 TYPE_MODE (integer_type_node));
5027
5028 conversion_insns = get_insns ();
5029 end_sequence ();
5030 }
5031 SET_DECL_RTL (parm, stack_parm);
5032 }
5033
5034 /* If this "parameter" was the place where we are receiving the
5035 function's incoming structure pointer, set up the result. */
5036 if (parm == function_result_decl)
5037 {
5038 tree result = DECL_RESULT (fndecl);
5039
5040 SET_DECL_RTL (result,
5041 gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm)));
5042
5043 set_mem_attributes (DECL_RTL (result), result, 1);
5044 }
5045 }
5046
5047 /* Output all parameter conversion instructions (possibly including calls)
5048 now that all parameters have been copied out of hard registers. */
5049 emit_insns (conversion_insns);
5050
5051 last_parm_insn = get_last_insn ();
5052
5053 current_function_args_size = stack_args_size.constant;
5054
5055 /* Adjust function incoming argument size for alignment and
5056 minimum length. */
5057
5058 #ifdef REG_PARM_STACK_SPACE
5059 #ifndef MAYBE_REG_PARM_STACK_SPACE
5060 current_function_args_size = MAX (current_function_args_size,
5061 REG_PARM_STACK_SPACE (fndecl));
5062 #endif
5063 #endif
5064
5065 #ifdef STACK_BOUNDARY
5066 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5067
5068 current_function_args_size
5069 = ((current_function_args_size + STACK_BYTES - 1)
5070 / STACK_BYTES) * STACK_BYTES;
5071 #endif
5072
5073 #ifdef ARGS_GROW_DOWNWARD
5074 current_function_arg_offset_rtx
5075 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5076 : expand_expr (size_diffop (stack_args_size.var,
5077 size_int (-stack_args_size.constant)),
5078 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5079 #else
5080 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5081 #endif
5082
5083 /* See how many bytes, if any, of its args a function should try to pop
5084 on return. */
5085
5086 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5087 current_function_args_size);
5088
5089 /* For stdarg.h function, save info about
5090 regs and stack space used by the named args. */
5091
5092 if (!hide_last_arg)
5093 current_function_args_info = args_so_far;
5094
5095 /* Set the rtx used for the function return value. Put this in its
5096 own variable so any optimizers that need this information don't have
5097 to include tree.h. Do this here so it gets done when an inlined
5098 function gets output. */
5099
5100 current_function_return_rtx
5101 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5102 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5103 }
5104 \f
5105 /* Indicate whether REGNO is an incoming argument to the current function
5106 that was promoted to a wider mode. If so, return the RTX for the
5107 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5108 that REGNO is promoted from and whether the promotion was signed or
5109 unsigned. */
5110
5111 #ifdef PROMOTE_FUNCTION_ARGS
5112
5113 rtx
5114 promoted_input_arg (regno, pmode, punsignedp)
5115 unsigned int regno;
5116 enum machine_mode *pmode;
5117 int *punsignedp;
5118 {
5119 tree arg;
5120
5121 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5122 arg = TREE_CHAIN (arg))
5123 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5124 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5125 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5126 {
5127 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5128 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5129
5130 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5131 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5132 && mode != DECL_MODE (arg))
5133 {
5134 *pmode = DECL_MODE (arg);
5135 *punsignedp = unsignedp;
5136 return DECL_INCOMING_RTL (arg);
5137 }
5138 }
5139
5140 return 0;
5141 }
5142
5143 #endif
5144 \f
5145 /* Compute the size and offset from the start of the stacked arguments for a
5146 parm passed in mode PASSED_MODE and with type TYPE.
5147
5148 INITIAL_OFFSET_PTR points to the current offset into the stacked
5149 arguments.
5150
5151 The starting offset and size for this parm are returned in *OFFSET_PTR
5152 and *ARG_SIZE_PTR, respectively.
5153
5154 IN_REGS is non-zero if the argument will be passed in registers. It will
5155 never be set if REG_PARM_STACK_SPACE is not defined.
5156
5157 FNDECL is the function in which the argument was defined.
5158
5159 There are two types of rounding that are done. The first, controlled by
5160 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5161 list to be aligned to the specific boundary (in bits). This rounding
5162 affects the initial and starting offsets, but not the argument size.
5163
5164 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5165 optionally rounds the size of the parm to PARM_BOUNDARY. The
5166 initial offset is not affected by this rounding, while the size always
5167 is and the starting offset may be. */
5168
5169 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5170 initial_offset_ptr is positive because locate_and_pad_parm's
5171 callers pass in the total size of args so far as
5172 initial_offset_ptr. arg_size_ptr is always positive.*/
5173
5174 void
5175 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5176 initial_offset_ptr, offset_ptr, arg_size_ptr,
5177 alignment_pad)
5178 enum machine_mode passed_mode;
5179 tree type;
5180 int in_regs ATTRIBUTE_UNUSED;
5181 tree fndecl ATTRIBUTE_UNUSED;
5182 struct args_size *initial_offset_ptr;
5183 struct args_size *offset_ptr;
5184 struct args_size *arg_size_ptr;
5185 struct args_size *alignment_pad;
5186
5187 {
5188 tree sizetree
5189 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5190 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5191 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5192
5193 #ifdef REG_PARM_STACK_SPACE
5194 /* If we have found a stack parm before we reach the end of the
5195 area reserved for registers, skip that area. */
5196 if (! in_regs)
5197 {
5198 int reg_parm_stack_space = 0;
5199
5200 #ifdef MAYBE_REG_PARM_STACK_SPACE
5201 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5202 #else
5203 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5204 #endif
5205 if (reg_parm_stack_space > 0)
5206 {
5207 if (initial_offset_ptr->var)
5208 {
5209 initial_offset_ptr->var
5210 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5211 ssize_int (reg_parm_stack_space));
5212 initial_offset_ptr->constant = 0;
5213 }
5214 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5215 initial_offset_ptr->constant = reg_parm_stack_space;
5216 }
5217 }
5218 #endif /* REG_PARM_STACK_SPACE */
5219
5220 arg_size_ptr->var = 0;
5221 arg_size_ptr->constant = 0;
5222 alignment_pad->var = 0;
5223 alignment_pad->constant = 0;
5224
5225 #ifdef ARGS_GROW_DOWNWARD
5226 if (initial_offset_ptr->var)
5227 {
5228 offset_ptr->constant = 0;
5229 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5230 initial_offset_ptr->var);
5231 }
5232 else
5233 {
5234 offset_ptr->constant = -initial_offset_ptr->constant;
5235 offset_ptr->var = 0;
5236 }
5237 if (where_pad != none
5238 && (!host_integerp (sizetree, 1)
5239 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5240 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5241 SUB_PARM_SIZE (*offset_ptr, sizetree);
5242 if (where_pad != downward)
5243 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5244 if (initial_offset_ptr->var)
5245 arg_size_ptr->var = size_binop (MINUS_EXPR,
5246 size_binop (MINUS_EXPR,
5247 ssize_int (0),
5248 initial_offset_ptr->var),
5249 offset_ptr->var);
5250
5251 else
5252 arg_size_ptr->constant = (-initial_offset_ptr->constant
5253 - offset_ptr->constant);
5254
5255 #else /* !ARGS_GROW_DOWNWARD */
5256 if (!in_regs
5257 #ifdef REG_PARM_STACK_SPACE
5258 || REG_PARM_STACK_SPACE (fndecl) > 0
5259 #endif
5260 )
5261 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5262 *offset_ptr = *initial_offset_ptr;
5263
5264 #ifdef PUSH_ROUNDING
5265 if (passed_mode != BLKmode)
5266 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5267 #endif
5268
5269 /* Pad_below needs the pre-rounded size to know how much to pad below
5270 so this must be done before rounding up. */
5271 if (where_pad == downward
5272 /* However, BLKmode args passed in regs have their padding done elsewhere.
5273 The stack slot must be able to hold the entire register. */
5274 && !(in_regs && passed_mode == BLKmode))
5275 pad_below (offset_ptr, passed_mode, sizetree);
5276
5277 if (where_pad != none
5278 && (!host_integerp (sizetree, 1)
5279 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5280 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5281
5282 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5283 #endif /* ARGS_GROW_DOWNWARD */
5284 }
5285
5286 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5287 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5288
5289 static void
5290 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5291 struct args_size *offset_ptr;
5292 int boundary;
5293 struct args_size *alignment_pad;
5294 {
5295 tree save_var = NULL_TREE;
5296 HOST_WIDE_INT save_constant = 0;
5297
5298 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5299
5300 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5301 {
5302 save_var = offset_ptr->var;
5303 save_constant = offset_ptr->constant;
5304 }
5305
5306 alignment_pad->var = NULL_TREE;
5307 alignment_pad->constant = 0;
5308
5309 if (boundary > BITS_PER_UNIT)
5310 {
5311 if (offset_ptr->var)
5312 {
5313 offset_ptr->var =
5314 #ifdef ARGS_GROW_DOWNWARD
5315 round_down
5316 #else
5317 round_up
5318 #endif
5319 (ARGS_SIZE_TREE (*offset_ptr),
5320 boundary / BITS_PER_UNIT);
5321 offset_ptr->constant = 0; /*?*/
5322 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5323 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5324 save_var);
5325 }
5326 else
5327 {
5328 offset_ptr->constant =
5329 #ifdef ARGS_GROW_DOWNWARD
5330 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5331 #else
5332 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5333 #endif
5334 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5335 alignment_pad->constant = offset_ptr->constant - save_constant;
5336 }
5337 }
5338 }
5339
5340 #ifndef ARGS_GROW_DOWNWARD
5341 static void
5342 pad_below (offset_ptr, passed_mode, sizetree)
5343 struct args_size *offset_ptr;
5344 enum machine_mode passed_mode;
5345 tree sizetree;
5346 {
5347 if (passed_mode != BLKmode)
5348 {
5349 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5350 offset_ptr->constant
5351 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5352 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5353 - GET_MODE_SIZE (passed_mode));
5354 }
5355 else
5356 {
5357 if (TREE_CODE (sizetree) != INTEGER_CST
5358 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5359 {
5360 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5361 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5362 /* Add it in. */
5363 ADD_PARM_SIZE (*offset_ptr, s2);
5364 SUB_PARM_SIZE (*offset_ptr, sizetree);
5365 }
5366 }
5367 }
5368 #endif
5369 \f
5370 /* Walk the tree of blocks describing the binding levels within a function
5371 and warn about uninitialized variables.
5372 This is done after calling flow_analysis and before global_alloc
5373 clobbers the pseudo-regs to hard regs. */
5374
5375 void
5376 uninitialized_vars_warning (block)
5377 tree block;
5378 {
5379 register tree decl, sub;
5380 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5381 {
5382 if (warn_uninitialized
5383 && TREE_CODE (decl) == VAR_DECL
5384 /* These warnings are unreliable for and aggregates
5385 because assigning the fields one by one can fail to convince
5386 flow.c that the entire aggregate was initialized.
5387 Unions are troublesome because members may be shorter. */
5388 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5389 && DECL_RTL (decl) != 0
5390 && GET_CODE (DECL_RTL (decl)) == REG
5391 /* Global optimizations can make it difficult to determine if a
5392 particular variable has been initialized. However, a VAR_DECL
5393 with a nonzero DECL_INITIAL had an initializer, so do not
5394 claim it is potentially uninitialized.
5395
5396 We do not care about the actual value in DECL_INITIAL, so we do
5397 not worry that it may be a dangling pointer. */
5398 && DECL_INITIAL (decl) == NULL_TREE
5399 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5400 warning_with_decl (decl,
5401 "`%s' might be used uninitialized in this function");
5402 if (extra_warnings
5403 && TREE_CODE (decl) == VAR_DECL
5404 && DECL_RTL (decl) != 0
5405 && GET_CODE (DECL_RTL (decl)) == REG
5406 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5407 warning_with_decl (decl,
5408 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5409 }
5410 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5411 uninitialized_vars_warning (sub);
5412 }
5413
5414 /* Do the appropriate part of uninitialized_vars_warning
5415 but for arguments instead of local variables. */
5416
5417 void
5418 setjmp_args_warning ()
5419 {
5420 register tree decl;
5421 for (decl = DECL_ARGUMENTS (current_function_decl);
5422 decl; decl = TREE_CHAIN (decl))
5423 if (DECL_RTL (decl) != 0
5424 && GET_CODE (DECL_RTL (decl)) == REG
5425 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5426 warning_with_decl (decl,
5427 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5428 }
5429
5430 /* If this function call setjmp, put all vars into the stack
5431 unless they were declared `register'. */
5432
5433 void
5434 setjmp_protect (block)
5435 tree block;
5436 {
5437 register tree decl, sub;
5438 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5439 if ((TREE_CODE (decl) == VAR_DECL
5440 || TREE_CODE (decl) == PARM_DECL)
5441 && DECL_RTL (decl) != 0
5442 && (GET_CODE (DECL_RTL (decl)) == REG
5443 || (GET_CODE (DECL_RTL (decl)) == MEM
5444 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5445 /* If this variable came from an inline function, it must be
5446 that its life doesn't overlap the setjmp. If there was a
5447 setjmp in the function, it would already be in memory. We
5448 must exclude such variable because their DECL_RTL might be
5449 set to strange things such as virtual_stack_vars_rtx. */
5450 && ! DECL_FROM_INLINE (decl)
5451 && (
5452 #ifdef NON_SAVING_SETJMP
5453 /* If longjmp doesn't restore the registers,
5454 don't put anything in them. */
5455 NON_SAVING_SETJMP
5456 ||
5457 #endif
5458 ! DECL_REGISTER (decl)))
5459 put_var_into_stack (decl);
5460 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5461 setjmp_protect (sub);
5462 }
5463 \f
5464 /* Like the previous function, but for args instead of local variables. */
5465
5466 void
5467 setjmp_protect_args ()
5468 {
5469 register tree decl;
5470 for (decl = DECL_ARGUMENTS (current_function_decl);
5471 decl; decl = TREE_CHAIN (decl))
5472 if ((TREE_CODE (decl) == VAR_DECL
5473 || TREE_CODE (decl) == PARM_DECL)
5474 && DECL_RTL (decl) != 0
5475 && (GET_CODE (DECL_RTL (decl)) == REG
5476 || (GET_CODE (DECL_RTL (decl)) == MEM
5477 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5478 && (
5479 /* If longjmp doesn't restore the registers,
5480 don't put anything in them. */
5481 #ifdef NON_SAVING_SETJMP
5482 NON_SAVING_SETJMP
5483 ||
5484 #endif
5485 ! DECL_REGISTER (decl)))
5486 put_var_into_stack (decl);
5487 }
5488 \f
5489 /* Return the context-pointer register corresponding to DECL,
5490 or 0 if it does not need one. */
5491
5492 rtx
5493 lookup_static_chain (decl)
5494 tree decl;
5495 {
5496 tree context = decl_function_context (decl);
5497 tree link;
5498
5499 if (context == 0
5500 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5501 return 0;
5502
5503 /* We treat inline_function_decl as an alias for the current function
5504 because that is the inline function whose vars, types, etc.
5505 are being merged into the current function.
5506 See expand_inline_function. */
5507 if (context == current_function_decl || context == inline_function_decl)
5508 return virtual_stack_vars_rtx;
5509
5510 for (link = context_display; link; link = TREE_CHAIN (link))
5511 if (TREE_PURPOSE (link) == context)
5512 return RTL_EXPR_RTL (TREE_VALUE (link));
5513
5514 abort ();
5515 }
5516 \f
5517 /* Convert a stack slot address ADDR for variable VAR
5518 (from a containing function)
5519 into an address valid in this function (using a static chain). */
5520
5521 rtx
5522 fix_lexical_addr (addr, var)
5523 rtx addr;
5524 tree var;
5525 {
5526 rtx basereg;
5527 HOST_WIDE_INT displacement;
5528 tree context = decl_function_context (var);
5529 struct function *fp;
5530 rtx base = 0;
5531
5532 /* If this is the present function, we need not do anything. */
5533 if (context == current_function_decl || context == inline_function_decl)
5534 return addr;
5535
5536 for (fp = outer_function_chain; fp; fp = fp->next)
5537 if (fp->decl == context)
5538 break;
5539
5540 if (fp == 0)
5541 abort ();
5542
5543 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5544 addr = XEXP (XEXP (addr, 0), 0);
5545
5546 /* Decode given address as base reg plus displacement. */
5547 if (GET_CODE (addr) == REG)
5548 basereg = addr, displacement = 0;
5549 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5550 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5551 else
5552 abort ();
5553
5554 /* We accept vars reached via the containing function's
5555 incoming arg pointer and via its stack variables pointer. */
5556 if (basereg == fp->internal_arg_pointer)
5557 {
5558 /* If reached via arg pointer, get the arg pointer value
5559 out of that function's stack frame.
5560
5561 There are two cases: If a separate ap is needed, allocate a
5562 slot in the outer function for it and dereference it that way.
5563 This is correct even if the real ap is actually a pseudo.
5564 Otherwise, just adjust the offset from the frame pointer to
5565 compensate. */
5566
5567 #ifdef NEED_SEPARATE_AP
5568 rtx addr;
5569
5570 if (fp->x_arg_pointer_save_area == 0)
5571 fp->x_arg_pointer_save_area
5572 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5573
5574 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5575 addr = memory_address (Pmode, addr);
5576
5577 base = gen_rtx_MEM (Pmode, addr);
5578 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5579 base = copy_to_reg (base);
5580 #else
5581 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5582 base = lookup_static_chain (var);
5583 #endif
5584 }
5585
5586 else if (basereg == virtual_stack_vars_rtx)
5587 {
5588 /* This is the same code as lookup_static_chain, duplicated here to
5589 avoid an extra call to decl_function_context. */
5590 tree link;
5591
5592 for (link = context_display; link; link = TREE_CHAIN (link))
5593 if (TREE_PURPOSE (link) == context)
5594 {
5595 base = RTL_EXPR_RTL (TREE_VALUE (link));
5596 break;
5597 }
5598 }
5599
5600 if (base == 0)
5601 abort ();
5602
5603 /* Use same offset, relative to appropriate static chain or argument
5604 pointer. */
5605 return plus_constant (base, displacement);
5606 }
5607 \f
5608 /* Return the address of the trampoline for entering nested fn FUNCTION.
5609 If necessary, allocate a trampoline (in the stack frame)
5610 and emit rtl to initialize its contents (at entry to this function). */
5611
5612 rtx
5613 trampoline_address (function)
5614 tree function;
5615 {
5616 tree link;
5617 tree rtlexp;
5618 rtx tramp;
5619 struct function *fp;
5620 tree fn_context;
5621
5622 /* Find an existing trampoline and return it. */
5623 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5624 if (TREE_PURPOSE (link) == function)
5625 return
5626 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5627
5628 for (fp = outer_function_chain; fp; fp = fp->next)
5629 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5630 if (TREE_PURPOSE (link) == function)
5631 {
5632 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5633 function);
5634 return adjust_trampoline_addr (tramp);
5635 }
5636
5637 /* None exists; we must make one. */
5638
5639 /* Find the `struct function' for the function containing FUNCTION. */
5640 fp = 0;
5641 fn_context = decl_function_context (function);
5642 if (fn_context != current_function_decl
5643 && fn_context != inline_function_decl)
5644 for (fp = outer_function_chain; fp; fp = fp->next)
5645 if (fp->decl == fn_context)
5646 break;
5647
5648 /* Allocate run-time space for this trampoline
5649 (usually in the defining function's stack frame). */
5650 #ifdef ALLOCATE_TRAMPOLINE
5651 tramp = ALLOCATE_TRAMPOLINE (fp);
5652 #else
5653 /* If rounding needed, allocate extra space
5654 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5655 #ifdef TRAMPOLINE_ALIGNMENT
5656 #define TRAMPOLINE_REAL_SIZE \
5657 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5658 #else
5659 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5660 #endif
5661 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5662 fp ? fp : cfun);
5663 #endif
5664
5665 /* Record the trampoline for reuse and note it for later initialization
5666 by expand_function_end. */
5667 if (fp != 0)
5668 {
5669 rtlexp = make_node (RTL_EXPR);
5670 RTL_EXPR_RTL (rtlexp) = tramp;
5671 fp->x_trampoline_list = tree_cons (function, rtlexp,
5672 fp->x_trampoline_list);
5673 }
5674 else
5675 {
5676 /* Make the RTL_EXPR node temporary, not momentary, so that the
5677 trampoline_list doesn't become garbage. */
5678 rtlexp = make_node (RTL_EXPR);
5679
5680 RTL_EXPR_RTL (rtlexp) = tramp;
5681 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5682 }
5683
5684 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5685 return adjust_trampoline_addr (tramp);
5686 }
5687
5688 /* Given a trampoline address,
5689 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5690
5691 static rtx
5692 round_trampoline_addr (tramp)
5693 rtx tramp;
5694 {
5695 #ifdef TRAMPOLINE_ALIGNMENT
5696 /* Round address up to desired boundary. */
5697 rtx temp = gen_reg_rtx (Pmode);
5698 temp = expand_binop (Pmode, add_optab, tramp,
5699 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5700 temp, 0, OPTAB_LIB_WIDEN);
5701 tramp = expand_binop (Pmode, and_optab, temp,
5702 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5703 temp, 0, OPTAB_LIB_WIDEN);
5704 #endif
5705 return tramp;
5706 }
5707
5708 /* Given a trampoline address, round it then apply any
5709 platform-specific adjustments so that the result can be used for a
5710 function call . */
5711
5712 static rtx
5713 adjust_trampoline_addr (tramp)
5714 rtx tramp;
5715 {
5716 tramp = round_trampoline_addr (tramp);
5717 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5718 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5719 #endif
5720 return tramp;
5721 }
5722 \f
5723 /* Put all this function's BLOCK nodes including those that are chained
5724 onto the first block into a vector, and return it.
5725 Also store in each NOTE for the beginning or end of a block
5726 the index of that block in the vector.
5727 The arguments are BLOCK, the chain of top-level blocks of the function,
5728 and INSNS, the insn chain of the function. */
5729
5730 void
5731 identify_blocks ()
5732 {
5733 int n_blocks;
5734 tree *block_vector, *last_block_vector;
5735 tree *block_stack;
5736 tree block = DECL_INITIAL (current_function_decl);
5737
5738 if (block == 0)
5739 return;
5740
5741 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5742 depth-first order. */
5743 block_vector = get_block_vector (block, &n_blocks);
5744 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5745
5746 last_block_vector = identify_blocks_1 (get_insns (),
5747 block_vector + 1,
5748 block_vector + n_blocks,
5749 block_stack);
5750
5751 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5752 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5753 if (0 && last_block_vector != block_vector + n_blocks)
5754 abort ();
5755
5756 free (block_vector);
5757 free (block_stack);
5758 }
5759
5760 /* Subroutine of identify_blocks. Do the block substitution on the
5761 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5762
5763 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5764 BLOCK_VECTOR is incremented for each block seen. */
5765
5766 static tree *
5767 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5768 rtx insns;
5769 tree *block_vector;
5770 tree *end_block_vector;
5771 tree *orig_block_stack;
5772 {
5773 rtx insn;
5774 tree *block_stack = orig_block_stack;
5775
5776 for (insn = insns; insn; insn = NEXT_INSN (insn))
5777 {
5778 if (GET_CODE (insn) == NOTE)
5779 {
5780 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5781 {
5782 tree b;
5783
5784 /* If there are more block notes than BLOCKs, something
5785 is badly wrong. */
5786 if (block_vector == end_block_vector)
5787 abort ();
5788
5789 b = *block_vector++;
5790 NOTE_BLOCK (insn) = b;
5791 *block_stack++ = b;
5792 }
5793 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5794 {
5795 /* If there are more NOTE_INSN_BLOCK_ENDs than
5796 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5797 if (block_stack == orig_block_stack)
5798 abort ();
5799
5800 NOTE_BLOCK (insn) = *--block_stack;
5801 }
5802 }
5803 else if (GET_CODE (insn) == CALL_INSN
5804 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5805 {
5806 rtx cp = PATTERN (insn);
5807
5808 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5809 end_block_vector, block_stack);
5810 if (XEXP (cp, 1))
5811 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5812 end_block_vector, block_stack);
5813 if (XEXP (cp, 2))
5814 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5815 end_block_vector, block_stack);
5816 }
5817 }
5818
5819 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5820 something is badly wrong. */
5821 if (block_stack != orig_block_stack)
5822 abort ();
5823
5824 return block_vector;
5825 }
5826
5827 /* Identify BLOCKs referenced by more than one
5828 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5829
5830 void
5831 reorder_blocks ()
5832 {
5833 tree block = DECL_INITIAL (current_function_decl);
5834 varray_type block_stack;
5835
5836 if (block == NULL_TREE)
5837 return;
5838
5839 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5840
5841 /* Prune the old trees away, so that they don't get in the way. */
5842 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5843 BLOCK_CHAIN (block) = NULL_TREE;
5844
5845 reorder_blocks_0 (get_insns ());
5846 reorder_blocks_1 (get_insns (), block, &block_stack);
5847
5848 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5849
5850 VARRAY_FREE (block_stack);
5851 }
5852
5853 /* Helper function for reorder_blocks. Process the insn chain beginning
5854 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5855
5856 static void
5857 reorder_blocks_0 (insns)
5858 rtx insns;
5859 {
5860 rtx insn;
5861
5862 for (insn = insns; insn; insn = NEXT_INSN (insn))
5863 {
5864 if (GET_CODE (insn) == NOTE)
5865 {
5866 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5867 {
5868 tree block = NOTE_BLOCK (insn);
5869 TREE_ASM_WRITTEN (block) = 0;
5870 }
5871 }
5872 else if (GET_CODE (insn) == CALL_INSN
5873 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5874 {
5875 rtx cp = PATTERN (insn);
5876 reorder_blocks_0 (XEXP (cp, 0));
5877 if (XEXP (cp, 1))
5878 reorder_blocks_0 (XEXP (cp, 1));
5879 if (XEXP (cp, 2))
5880 reorder_blocks_0 (XEXP (cp, 2));
5881 }
5882 }
5883 }
5884
5885 static void
5886 reorder_blocks_1 (insns, current_block, p_block_stack)
5887 rtx insns;
5888 tree current_block;
5889 varray_type *p_block_stack;
5890 {
5891 rtx insn;
5892
5893 for (insn = insns; insn; insn = NEXT_INSN (insn))
5894 {
5895 if (GET_CODE (insn) == NOTE)
5896 {
5897 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5898 {
5899 tree block = NOTE_BLOCK (insn);
5900 /* If we have seen this block before, copy it. */
5901 if (TREE_ASM_WRITTEN (block))
5902 {
5903 block = copy_node (block);
5904 NOTE_BLOCK (insn) = block;
5905 }
5906 BLOCK_SUBBLOCKS (block) = 0;
5907 TREE_ASM_WRITTEN (block) = 1;
5908 BLOCK_SUPERCONTEXT (block) = current_block;
5909 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5910 BLOCK_SUBBLOCKS (current_block) = block;
5911 current_block = block;
5912 VARRAY_PUSH_TREE (*p_block_stack, block);
5913 }
5914 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5915 {
5916 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5917 VARRAY_POP (*p_block_stack);
5918 BLOCK_SUBBLOCKS (current_block)
5919 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5920 current_block = BLOCK_SUPERCONTEXT (current_block);
5921 }
5922 }
5923 else if (GET_CODE (insn) == CALL_INSN
5924 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5925 {
5926 rtx cp = PATTERN (insn);
5927 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5928 if (XEXP (cp, 1))
5929 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5930 if (XEXP (cp, 2))
5931 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5932 }
5933 }
5934 }
5935
5936 /* Reverse the order of elements in the chain T of blocks,
5937 and return the new head of the chain (old last element). */
5938
5939 static tree
5940 blocks_nreverse (t)
5941 tree t;
5942 {
5943 register tree prev = 0, decl, next;
5944 for (decl = t; decl; decl = next)
5945 {
5946 next = BLOCK_CHAIN (decl);
5947 BLOCK_CHAIN (decl) = prev;
5948 prev = decl;
5949 }
5950 return prev;
5951 }
5952
5953 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5954 non-NULL, list them all into VECTOR, in a depth-first preorder
5955 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5956 blocks. */
5957
5958 static int
5959 all_blocks (block, vector)
5960 tree block;
5961 tree *vector;
5962 {
5963 int n_blocks = 0;
5964
5965 while (block)
5966 {
5967 TREE_ASM_WRITTEN (block) = 0;
5968
5969 /* Record this block. */
5970 if (vector)
5971 vector[n_blocks] = block;
5972
5973 ++n_blocks;
5974
5975 /* Record the subblocks, and their subblocks... */
5976 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5977 vector ? vector + n_blocks : 0);
5978 block = BLOCK_CHAIN (block);
5979 }
5980
5981 return n_blocks;
5982 }
5983
5984 /* Return a vector containing all the blocks rooted at BLOCK. The
5985 number of elements in the vector is stored in N_BLOCKS_P. The
5986 vector is dynamically allocated; it is the caller's responsibility
5987 to call `free' on the pointer returned. */
5988
5989 static tree *
5990 get_block_vector (block, n_blocks_p)
5991 tree block;
5992 int *n_blocks_p;
5993 {
5994 tree *block_vector;
5995
5996 *n_blocks_p = all_blocks (block, NULL);
5997 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5998 all_blocks (block, block_vector);
5999
6000 return block_vector;
6001 }
6002
6003 static int next_block_index = 2;
6004
6005 /* Set BLOCK_NUMBER for all the blocks in FN. */
6006
6007 void
6008 number_blocks (fn)
6009 tree fn;
6010 {
6011 int i;
6012 int n_blocks;
6013 tree *block_vector;
6014
6015 /* For SDB and XCOFF debugging output, we start numbering the blocks
6016 from 1 within each function, rather than keeping a running
6017 count. */
6018 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6019 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6020 next_block_index = 1;
6021 #endif
6022
6023 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6024
6025 /* The top-level BLOCK isn't numbered at all. */
6026 for (i = 1; i < n_blocks; ++i)
6027 /* We number the blocks from two. */
6028 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6029
6030 free (block_vector);
6031
6032 return;
6033 }
6034 \f
6035 /* Allocate a function structure and reset its contents to the defaults. */
6036 static void
6037 prepare_function_start ()
6038 {
6039 cfun = (struct function *) xcalloc (1, sizeof (struct function));
6040
6041 init_stmt_for_function ();
6042 init_eh_for_function ();
6043
6044 cse_not_expected = ! optimize;
6045
6046 /* Caller save not needed yet. */
6047 caller_save_needed = 0;
6048
6049 /* No stack slots have been made yet. */
6050 stack_slot_list = 0;
6051
6052 current_function_has_nonlocal_label = 0;
6053 current_function_has_nonlocal_goto = 0;
6054
6055 /* There is no stack slot for handling nonlocal gotos. */
6056 nonlocal_goto_handler_slots = 0;
6057 nonlocal_goto_stack_level = 0;
6058
6059 /* No labels have been declared for nonlocal use. */
6060 nonlocal_labels = 0;
6061 nonlocal_goto_handler_labels = 0;
6062
6063 /* No function calls so far in this function. */
6064 function_call_count = 0;
6065
6066 /* No parm regs have been allocated.
6067 (This is important for output_inline_function.) */
6068 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6069
6070 /* Initialize the RTL mechanism. */
6071 init_emit ();
6072
6073 /* Initialize the queue of pending postincrement and postdecrements,
6074 and some other info in expr.c. */
6075 init_expr ();
6076
6077 /* We haven't done register allocation yet. */
6078 reg_renumber = 0;
6079
6080 init_varasm_status (cfun);
6081
6082 /* Clear out data used for inlining. */
6083 cfun->inlinable = 0;
6084 cfun->original_decl_initial = 0;
6085 cfun->original_arg_vector = 0;
6086
6087 #ifdef STACK_BOUNDARY
6088 cfun->stack_alignment_needed = STACK_BOUNDARY;
6089 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6090 #else
6091 cfun->stack_alignment_needed = 0;
6092 cfun->preferred_stack_boundary = 0;
6093 #endif
6094
6095 /* Set if a call to setjmp is seen. */
6096 current_function_calls_setjmp = 0;
6097
6098 /* Set if a call to longjmp is seen. */
6099 current_function_calls_longjmp = 0;
6100
6101 current_function_calls_alloca = 0;
6102 current_function_contains_functions = 0;
6103 current_function_is_leaf = 0;
6104 current_function_nothrow = 0;
6105 current_function_sp_is_unchanging = 0;
6106 current_function_uses_only_leaf_regs = 0;
6107 current_function_has_computed_jump = 0;
6108 current_function_is_thunk = 0;
6109
6110 current_function_returns_pcc_struct = 0;
6111 current_function_returns_struct = 0;
6112 current_function_epilogue_delay_list = 0;
6113 current_function_uses_const_pool = 0;
6114 current_function_uses_pic_offset_table = 0;
6115 current_function_cannot_inline = 0;
6116
6117 /* We have not yet needed to make a label to jump to for tail-recursion. */
6118 tail_recursion_label = 0;
6119
6120 /* We haven't had a need to make a save area for ap yet. */
6121 arg_pointer_save_area = 0;
6122
6123 /* No stack slots allocated yet. */
6124 frame_offset = 0;
6125
6126 /* No SAVE_EXPRs in this function yet. */
6127 save_expr_regs = 0;
6128
6129 /* No RTL_EXPRs in this function yet. */
6130 rtl_expr_chain = 0;
6131
6132 /* Set up to allocate temporaries. */
6133 init_temp_slots ();
6134
6135 /* Indicate that we need to distinguish between the return value of the
6136 present function and the return value of a function being called. */
6137 rtx_equal_function_value_matters = 1;
6138
6139 /* Indicate that we have not instantiated virtual registers yet. */
6140 virtuals_instantiated = 0;
6141
6142 /* Indicate that we want CONCATs now. */
6143 generating_concat_p = 1;
6144
6145 /* Indicate we have no need of a frame pointer yet. */
6146 frame_pointer_needed = 0;
6147
6148 /* By default assume not varargs or stdarg. */
6149 current_function_varargs = 0;
6150 current_function_stdarg = 0;
6151
6152 /* We haven't made any trampolines for this function yet. */
6153 trampoline_list = 0;
6154
6155 init_pending_stack_adjust ();
6156 inhibit_defer_pop = 0;
6157
6158 current_function_outgoing_args_size = 0;
6159
6160 if (init_lang_status)
6161 (*init_lang_status) (cfun);
6162 if (init_machine_status)
6163 (*init_machine_status) (cfun);
6164 }
6165
6166 /* Initialize the rtl expansion mechanism so that we can do simple things
6167 like generate sequences. This is used to provide a context during global
6168 initialization of some passes. */
6169 void
6170 init_dummy_function_start ()
6171 {
6172 prepare_function_start ();
6173 }
6174
6175 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6176 and initialize static variables for generating RTL for the statements
6177 of the function. */
6178
6179 void
6180 init_function_start (subr, filename, line)
6181 tree subr;
6182 const char *filename;
6183 int line;
6184 {
6185 prepare_function_start ();
6186
6187 /* Remember this function for later. */
6188 cfun->next_global = all_functions;
6189 all_functions = cfun;
6190
6191 current_function_name = (*decl_printable_name) (subr, 2);
6192 cfun->decl = subr;
6193
6194 /* Nonzero if this is a nested function that uses a static chain. */
6195
6196 current_function_needs_context
6197 = (decl_function_context (current_function_decl) != 0
6198 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6199
6200 /* Within function body, compute a type's size as soon it is laid out. */
6201 immediate_size_expand++;
6202
6203 /* Prevent ever trying to delete the first instruction of a function.
6204 Also tell final how to output a linenum before the function prologue.
6205 Note linenums could be missing, e.g. when compiling a Java .class file. */
6206 if (line > 0)
6207 emit_line_note (filename, line);
6208
6209 /* Make sure first insn is a note even if we don't want linenums.
6210 This makes sure the first insn will never be deleted.
6211 Also, final expects a note to appear there. */
6212 emit_note (NULL, NOTE_INSN_DELETED);
6213
6214 /* Set flags used by final.c. */
6215 if (aggregate_value_p (DECL_RESULT (subr)))
6216 {
6217 #ifdef PCC_STATIC_STRUCT_RETURN
6218 current_function_returns_pcc_struct = 1;
6219 #endif
6220 current_function_returns_struct = 1;
6221 }
6222
6223 /* Warn if this value is an aggregate type,
6224 regardless of which calling convention we are using for it. */
6225 if (warn_aggregate_return
6226 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6227 warning ("function returns an aggregate");
6228
6229 current_function_returns_pointer
6230 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6231 }
6232
6233 /* Make sure all values used by the optimization passes have sane
6234 defaults. */
6235 void
6236 init_function_for_compilation ()
6237 {
6238 reg_renumber = 0;
6239
6240 /* No prologue/epilogue insns yet. */
6241 VARRAY_GROW (prologue, 0);
6242 VARRAY_GROW (epilogue, 0);
6243 VARRAY_GROW (sibcall_epilogue, 0);
6244 }
6245
6246 /* Indicate that the current function uses extra args
6247 not explicitly mentioned in the argument list in any fashion. */
6248
6249 void
6250 mark_varargs ()
6251 {
6252 current_function_varargs = 1;
6253 }
6254
6255 /* Expand a call to __main at the beginning of a possible main function. */
6256
6257 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6258 #undef HAS_INIT_SECTION
6259 #define HAS_INIT_SECTION
6260 #endif
6261
6262 void
6263 expand_main_function ()
6264 {
6265 #if !defined (HAS_INIT_SECTION)
6266 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6267 VOIDmode, 0);
6268 #endif /* not HAS_INIT_SECTION */
6269 }
6270 \f
6271 extern struct obstack permanent_obstack;
6272
6273 /* Start the RTL for a new function, and set variables used for
6274 emitting RTL.
6275 SUBR is the FUNCTION_DECL node.
6276 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6277 the function's parameters, which must be run at any return statement. */
6278
6279 void
6280 expand_function_start (subr, parms_have_cleanups)
6281 tree subr;
6282 int parms_have_cleanups;
6283 {
6284 tree tem;
6285 rtx last_ptr = NULL_RTX;
6286
6287 /* Make sure volatile mem refs aren't considered
6288 valid operands of arithmetic insns. */
6289 init_recog_no_volatile ();
6290
6291 /* Set this before generating any memory accesses. */
6292 current_function_check_memory_usage
6293 = (flag_check_memory_usage
6294 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6295
6296 current_function_instrument_entry_exit
6297 = (flag_instrument_function_entry_exit
6298 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6299
6300 current_function_limit_stack
6301 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6302
6303 /* If function gets a static chain arg, store it in the stack frame.
6304 Do this first, so it gets the first stack slot offset. */
6305 if (current_function_needs_context)
6306 {
6307 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6308
6309 /* Delay copying static chain if it is not a register to avoid
6310 conflicts with regs used for parameters. */
6311 if (! SMALL_REGISTER_CLASSES
6312 || GET_CODE (static_chain_incoming_rtx) == REG)
6313 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6314 }
6315
6316 /* If the parameters of this function need cleaning up, get a label
6317 for the beginning of the code which executes those cleanups. This must
6318 be done before doing anything with return_label. */
6319 if (parms_have_cleanups)
6320 cleanup_label = gen_label_rtx ();
6321 else
6322 cleanup_label = 0;
6323
6324 /* Make the label for return statements to jump to. Do not special
6325 case machines with special return instructions -- they will be
6326 handled later during jump, ifcvt, or epilogue creation. */
6327 return_label = gen_label_rtx ();
6328
6329 /* Initialize rtx used to return the value. */
6330 /* Do this before assign_parms so that we copy the struct value address
6331 before any library calls that assign parms might generate. */
6332
6333 /* Decide whether to return the value in memory or in a register. */
6334 if (aggregate_value_p (DECL_RESULT (subr)))
6335 {
6336 /* Returning something that won't go in a register. */
6337 register rtx value_address = 0;
6338
6339 #ifdef PCC_STATIC_STRUCT_RETURN
6340 if (current_function_returns_pcc_struct)
6341 {
6342 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6343 value_address = assemble_static_space (size);
6344 }
6345 else
6346 #endif
6347 {
6348 /* Expect to be passed the address of a place to store the value.
6349 If it is passed as an argument, assign_parms will take care of
6350 it. */
6351 if (struct_value_incoming_rtx)
6352 {
6353 value_address = gen_reg_rtx (Pmode);
6354 emit_move_insn (value_address, struct_value_incoming_rtx);
6355 }
6356 }
6357 if (value_address)
6358 {
6359 SET_DECL_RTL (DECL_RESULT (subr),
6360 gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)),
6361 value_address));
6362 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6363 DECL_RESULT (subr), 1);
6364 }
6365 }
6366 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6367 /* If return mode is void, this decl rtl should not be used. */
6368 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6369 else if (parms_have_cleanups
6370 || current_function_instrument_entry_exit
6371 || (flag_exceptions && USING_SJLJ_EXCEPTIONS))
6372 {
6373 /* If function will end with cleanup code for parms,
6374 compute the return values into a pseudo reg,
6375 which we will copy into the true return register
6376 after the cleanups are done. */
6377
6378 enum machine_mode mode = DECL_MODE (DECL_RESULT (subr));
6379
6380 #ifdef PROMOTE_FUNCTION_RETURN
6381 tree type = TREE_TYPE (DECL_RESULT (subr));
6382 int unsignedp = TREE_UNSIGNED (type);
6383
6384 mode = promote_mode (type, mode, &unsignedp, 1);
6385 #endif
6386
6387 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (mode));
6388 /* Needed because we may need to move this to memory
6389 in case it's a named return value whose address is taken. */
6390 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6391 }
6392 else
6393 {
6394 /* Scalar, returned in a register. */
6395 SET_DECL_RTL (DECL_RESULT (subr),
6396 hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6397 subr, 1));
6398
6399 /* Mark this reg as the function's return value. */
6400 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6401 {
6402 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6403 /* Needed because we may need to move this to memory
6404 in case it's a named return value whose address is taken. */
6405 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6406 }
6407 }
6408
6409 /* Initialize rtx for parameters and local variables.
6410 In some cases this requires emitting insns. */
6411
6412 assign_parms (subr);
6413
6414 /* Copy the static chain now if it wasn't a register. The delay is to
6415 avoid conflicts with the parameter passing registers. */
6416
6417 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6418 if (GET_CODE (static_chain_incoming_rtx) != REG)
6419 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6420
6421 /* The following was moved from init_function_start.
6422 The move is supposed to make sdb output more accurate. */
6423 /* Indicate the beginning of the function body,
6424 as opposed to parm setup. */
6425 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6426
6427 if (GET_CODE (get_last_insn ()) != NOTE)
6428 emit_note (NULL, NOTE_INSN_DELETED);
6429 parm_birth_insn = get_last_insn ();
6430
6431 context_display = 0;
6432 if (current_function_needs_context)
6433 {
6434 /* Fetch static chain values for containing functions. */
6435 tem = decl_function_context (current_function_decl);
6436 /* Copy the static chain pointer into a pseudo. If we have
6437 small register classes, copy the value from memory if
6438 static_chain_incoming_rtx is a REG. */
6439 if (tem)
6440 {
6441 /* If the static chain originally came in a register, put it back
6442 there, then move it out in the next insn. The reason for
6443 this peculiar code is to satisfy function integration. */
6444 if (SMALL_REGISTER_CLASSES
6445 && GET_CODE (static_chain_incoming_rtx) == REG)
6446 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6447 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6448 }
6449
6450 while (tem)
6451 {
6452 tree rtlexp = make_node (RTL_EXPR);
6453
6454 RTL_EXPR_RTL (rtlexp) = last_ptr;
6455 context_display = tree_cons (tem, rtlexp, context_display);
6456 tem = decl_function_context (tem);
6457 if (tem == 0)
6458 break;
6459 /* Chain thru stack frames, assuming pointer to next lexical frame
6460 is found at the place we always store it. */
6461 #ifdef FRAME_GROWS_DOWNWARD
6462 last_ptr = plus_constant (last_ptr,
6463 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6464 #endif
6465 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6466 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6467 last_ptr = copy_to_reg (last_ptr);
6468
6469 /* If we are not optimizing, ensure that we know that this
6470 piece of context is live over the entire function. */
6471 if (! optimize)
6472 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6473 save_expr_regs);
6474 }
6475 }
6476
6477 if (current_function_instrument_entry_exit)
6478 {
6479 rtx fun = DECL_RTL (current_function_decl);
6480 if (GET_CODE (fun) == MEM)
6481 fun = XEXP (fun, 0);
6482 else
6483 abort ();
6484 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6485 fun, Pmode,
6486 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6487 0,
6488 hard_frame_pointer_rtx),
6489 Pmode);
6490 }
6491
6492 #ifdef PROFILE_HOOK
6493 if (profile_flag)
6494 PROFILE_HOOK (profile_label_no);
6495 #endif
6496
6497 /* After the display initializations is where the tail-recursion label
6498 should go, if we end up needing one. Ensure we have a NOTE here
6499 since some things (like trampolines) get placed before this. */
6500 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6501
6502 /* Evaluate now the sizes of any types declared among the arguments. */
6503 for (tem = nreverse (get_pending_sizes ()); tem; tem = TREE_CHAIN (tem))
6504 {
6505 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6506 EXPAND_MEMORY_USE_BAD);
6507 /* Flush the queue in case this parameter declaration has
6508 side-effects. */
6509 emit_queue ();
6510 }
6511
6512 /* Make sure there is a line number after the function entry setup code. */
6513 force_next_line_note ();
6514 }
6515 \f
6516 /* Undo the effects of init_dummy_function_start. */
6517 void
6518 expand_dummy_function_end ()
6519 {
6520 /* End any sequences that failed to be closed due to syntax errors. */
6521 while (in_sequence_p ())
6522 end_sequence ();
6523
6524 /* Outside function body, can't compute type's actual size
6525 until next function's body starts. */
6526
6527 free_after_parsing (cfun);
6528 free_after_compilation (cfun);
6529 free (cfun);
6530 cfun = 0;
6531 }
6532
6533 /* Call DOIT for each hard register used as a return value from
6534 the current function. */
6535
6536 void
6537 diddle_return_value (doit, arg)
6538 void (*doit) PARAMS ((rtx, void *));
6539 void *arg;
6540 {
6541 rtx outgoing = current_function_return_rtx;
6542 int pcc;
6543
6544 if (! outgoing)
6545 return;
6546
6547 pcc = (current_function_returns_struct
6548 || current_function_returns_pcc_struct);
6549
6550 if ((GET_CODE (outgoing) == REG
6551 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6552 || pcc)
6553 {
6554 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6555
6556 /* A PCC-style return returns a pointer to the memory in which
6557 the structure is stored. */
6558 if (pcc)
6559 type = build_pointer_type (type);
6560
6561 #ifdef FUNCTION_OUTGOING_VALUE
6562 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6563 #else
6564 outgoing = FUNCTION_VALUE (type, current_function_decl);
6565 #endif
6566 /* If this is a BLKmode structure being returned in registers, then use
6567 the mode computed in expand_return. */
6568 if (GET_MODE (outgoing) == BLKmode)
6569 PUT_MODE (outgoing, GET_MODE (current_function_return_rtx));
6570 REG_FUNCTION_VALUE_P (outgoing) = 1;
6571 }
6572
6573 if (GET_CODE (outgoing) == REG)
6574 (*doit) (outgoing, arg);
6575 else if (GET_CODE (outgoing) == PARALLEL)
6576 {
6577 int i;
6578
6579 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6580 {
6581 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6582
6583 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6584 (*doit) (x, arg);
6585 }
6586 }
6587 }
6588
6589 static void
6590 do_clobber_return_reg (reg, arg)
6591 rtx reg;
6592 void *arg ATTRIBUTE_UNUSED;
6593 {
6594 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6595 }
6596
6597 void
6598 clobber_return_register ()
6599 {
6600 diddle_return_value (do_clobber_return_reg, NULL);
6601 }
6602
6603 static void
6604 do_use_return_reg (reg, arg)
6605 rtx reg;
6606 void *arg ATTRIBUTE_UNUSED;
6607 {
6608 emit_insn (gen_rtx_USE (VOIDmode, reg));
6609 }
6610
6611 void
6612 use_return_register ()
6613 {
6614 diddle_return_value (do_use_return_reg, NULL);
6615 }
6616
6617 /* Generate RTL for the end of the current function.
6618 FILENAME and LINE are the current position in the source file.
6619
6620 It is up to language-specific callers to do cleanups for parameters--
6621 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6622
6623 void
6624 expand_function_end (filename, line, end_bindings)
6625 const char *filename;
6626 int line;
6627 int end_bindings;
6628 {
6629 tree link;
6630
6631 #ifdef TRAMPOLINE_TEMPLATE
6632 static rtx initial_trampoline;
6633 #endif
6634
6635 finish_expr_for_function ();
6636
6637 #ifdef NON_SAVING_SETJMP
6638 /* Don't put any variables in registers if we call setjmp
6639 on a machine that fails to restore the registers. */
6640 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6641 {
6642 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6643 setjmp_protect (DECL_INITIAL (current_function_decl));
6644
6645 setjmp_protect_args ();
6646 }
6647 #endif
6648
6649 /* Save the argument pointer if a save area was made for it. */
6650 if (arg_pointer_save_area)
6651 {
6652 /* arg_pointer_save_area may not be a valid memory address, so we
6653 have to check it and fix it if necessary. */
6654 rtx seq;
6655 start_sequence ();
6656 emit_move_insn (validize_mem (arg_pointer_save_area),
6657 virtual_incoming_args_rtx);
6658 seq = gen_sequence ();
6659 end_sequence ();
6660 emit_insn_before (seq, tail_recursion_reentry);
6661 }
6662
6663 /* Initialize any trampolines required by this function. */
6664 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6665 {
6666 tree function = TREE_PURPOSE (link);
6667 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6668 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6669 #ifdef TRAMPOLINE_TEMPLATE
6670 rtx blktramp;
6671 #endif
6672 rtx seq;
6673
6674 #ifdef TRAMPOLINE_TEMPLATE
6675 /* First make sure this compilation has a template for
6676 initializing trampolines. */
6677 if (initial_trampoline == 0)
6678 {
6679 initial_trampoline
6680 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6681
6682 ggc_add_rtx_root (&initial_trampoline, 1);
6683 }
6684 #endif
6685
6686 /* Generate insns to initialize the trampoline. */
6687 start_sequence ();
6688 tramp = round_trampoline_addr (XEXP (tramp, 0));
6689 #ifdef TRAMPOLINE_TEMPLATE
6690 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6691 emit_block_move (blktramp, initial_trampoline,
6692 GEN_INT (TRAMPOLINE_SIZE),
6693 TRAMPOLINE_ALIGNMENT);
6694 #endif
6695 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6696 seq = get_insns ();
6697 end_sequence ();
6698
6699 /* Put those insns at entry to the containing function (this one). */
6700 emit_insns_before (seq, tail_recursion_reentry);
6701 }
6702
6703 /* If we are doing stack checking and this function makes calls,
6704 do a stack probe at the start of the function to ensure we have enough
6705 space for another stack frame. */
6706 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6707 {
6708 rtx insn, seq;
6709
6710 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6711 if (GET_CODE (insn) == CALL_INSN)
6712 {
6713 start_sequence ();
6714 probe_stack_range (STACK_CHECK_PROTECT,
6715 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6716 seq = get_insns ();
6717 end_sequence ();
6718 emit_insns_before (seq, tail_recursion_reentry);
6719 break;
6720 }
6721 }
6722
6723 /* Warn about unused parms if extra warnings were specified. */
6724 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6725 warning. WARN_UNUSED_PARAMETER is negative when set by
6726 -Wunused. */
6727 if (warn_unused_parameter > 0
6728 || (warn_unused_parameter < 0 && extra_warnings))
6729 {
6730 tree decl;
6731
6732 for (decl = DECL_ARGUMENTS (current_function_decl);
6733 decl; decl = TREE_CHAIN (decl))
6734 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6735 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6736 warning_with_decl (decl, "unused parameter `%s'");
6737 }
6738
6739 /* Delete handlers for nonlocal gotos if nothing uses them. */
6740 if (nonlocal_goto_handler_slots != 0
6741 && ! current_function_has_nonlocal_label)
6742 delete_handlers ();
6743
6744 /* End any sequences that failed to be closed due to syntax errors. */
6745 while (in_sequence_p ())
6746 end_sequence ();
6747
6748 /* Outside function body, can't compute type's actual size
6749 until next function's body starts. */
6750 immediate_size_expand--;
6751
6752 clear_pending_stack_adjust ();
6753 do_pending_stack_adjust ();
6754
6755 /* Mark the end of the function body.
6756 If control reaches this insn, the function can drop through
6757 without returning a value. */
6758 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6759
6760 /* Must mark the last line number note in the function, so that the test
6761 coverage code can avoid counting the last line twice. This just tells
6762 the code to ignore the immediately following line note, since there
6763 already exists a copy of this note somewhere above. This line number
6764 note is still needed for debugging though, so we can't delete it. */
6765 if (flag_test_coverage)
6766 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6767
6768 /* Output a linenumber for the end of the function.
6769 SDB depends on this. */
6770 emit_line_note_force (filename, line);
6771
6772 /* Before the return label (if any), clobber the return
6773 registers so that they are not propogated live to the rest of
6774 the function. This can only happen with functions that drop
6775 through; if there had been a return statement, there would
6776 have either been a return rtx, or a jump to the return label. */
6777 {
6778 rtx before, after;
6779
6780 before = get_last_insn ();
6781 clobber_return_register ();
6782 after = get_last_insn ();
6783
6784 if (before != after)
6785 cfun->x_clobber_return_insn = after;
6786 }
6787
6788 /* Output the label for the actual return from the function,
6789 if one is expected. This happens either because a function epilogue
6790 is used instead of a return instruction, or because a return was done
6791 with a goto in order to run local cleanups, or because of pcc-style
6792 structure returning. */
6793 if (return_label)
6794 emit_label (return_label);
6795
6796 /* C++ uses this. */
6797 if (end_bindings)
6798 expand_end_bindings (0, 0, 0);
6799
6800 if (current_function_instrument_entry_exit)
6801 {
6802 rtx fun = DECL_RTL (current_function_decl);
6803 if (GET_CODE (fun) == MEM)
6804 fun = XEXP (fun, 0);
6805 else
6806 abort ();
6807 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6808 fun, Pmode,
6809 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6810 0,
6811 hard_frame_pointer_rtx),
6812 Pmode);
6813 }
6814
6815 /* Let except.c know where it should emit the call to unregister
6816 the function context for sjlj exceptions. */
6817 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6818 sjlj_emit_function_exit_after (get_last_insn ());
6819
6820 /* If we had calls to alloca, and this machine needs
6821 an accurate stack pointer to exit the function,
6822 insert some code to save and restore the stack pointer. */
6823 #ifdef EXIT_IGNORE_STACK
6824 if (! EXIT_IGNORE_STACK)
6825 #endif
6826 if (current_function_calls_alloca)
6827 {
6828 rtx tem = 0;
6829
6830 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6831 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6832 }
6833
6834 /* If scalar return value was computed in a pseudo-reg, or was a named
6835 return value that got dumped to the stack, copy that to the hard
6836 return register. */
6837 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6838 {
6839 tree decl_result = DECL_RESULT (current_function_decl);
6840 rtx decl_rtl = DECL_RTL (decl_result);
6841
6842 if (REG_P (decl_rtl)
6843 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6844 : DECL_REGISTER (decl_result))
6845 {
6846 rtx real_decl_rtl;
6847
6848 #ifdef FUNCTION_OUTGOING_VALUE
6849 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6850 current_function_decl);
6851 #else
6852 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6853 current_function_decl);
6854 #endif
6855 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6856
6857 /* If this is a BLKmode structure being returned in registers,
6858 then use the mode computed in expand_return. Note that if
6859 decl_rtl is memory, then its mode may have been changed,
6860 but that current_function_return_rtx has not. */
6861 if (GET_MODE (real_decl_rtl) == BLKmode)
6862 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6863
6864 /* If a named return value dumped decl_return to memory, then
6865 we may need to re-do the PROMOTE_MODE signed/unsigned
6866 extension. */
6867 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6868 {
6869 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6870
6871 #ifdef PROMOTE_FUNCTION_RETURN
6872 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6873 &unsignedp, 1);
6874 #endif
6875
6876 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6877 }
6878 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6879 emit_group_load (real_decl_rtl, decl_rtl,
6880 int_size_in_bytes (TREE_TYPE (decl_result)),
6881 TYPE_ALIGN (TREE_TYPE (decl_result)));
6882 else
6883 emit_move_insn (real_decl_rtl, decl_rtl);
6884
6885 /* The delay slot scheduler assumes that current_function_return_rtx
6886 holds the hard register containing the return value, not a
6887 temporary pseudo. */
6888 current_function_return_rtx = real_decl_rtl;
6889 }
6890 }
6891
6892 /* If returning a structure, arrange to return the address of the value
6893 in a place where debuggers expect to find it.
6894
6895 If returning a structure PCC style,
6896 the caller also depends on this value.
6897 And current_function_returns_pcc_struct is not necessarily set. */
6898 if (current_function_returns_struct
6899 || current_function_returns_pcc_struct)
6900 {
6901 rtx value_address
6902 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6903 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6904 #ifdef FUNCTION_OUTGOING_VALUE
6905 rtx outgoing
6906 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6907 current_function_decl);
6908 #else
6909 rtx outgoing
6910 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6911 #endif
6912
6913 /* Mark this as a function return value so integrate will delete the
6914 assignment and USE below when inlining this function. */
6915 REG_FUNCTION_VALUE_P (outgoing) = 1;
6916
6917 #ifdef POINTERS_EXTEND_UNSIGNED
6918 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6919 if (GET_MODE (outgoing) != GET_MODE (value_address))
6920 value_address = convert_memory_address (GET_MODE (outgoing),
6921 value_address);
6922 #endif
6923
6924 emit_move_insn (outgoing, value_address);
6925
6926 /* Show return register used to hold result (in this case the address
6927 of the result. */
6928 current_function_return_rtx = outgoing;
6929 }
6930
6931 /* If this is an implementation of throw, do what's necessary to
6932 communicate between __builtin_eh_return and the epilogue. */
6933 expand_eh_return ();
6934
6935 /* ??? This should no longer be necessary since stupid is no longer with
6936 us, but there are some parts of the compiler (eg reload_combine, and
6937 sh mach_dep_reorg) that still try and compute their own lifetime info
6938 instead of using the general framework. */
6939 use_return_register ();
6940
6941 /* Output a return insn if we are using one.
6942 Otherwise, let the rtl chain end here, to drop through
6943 into the epilogue. */
6944
6945 #ifdef HAVE_return
6946 if (HAVE_return)
6947 {
6948 emit_jump_insn (gen_return ());
6949 emit_barrier ();
6950 }
6951 #endif
6952
6953 /* Fix up any gotos that jumped out to the outermost
6954 binding level of the function.
6955 Must follow emitting RETURN_LABEL. */
6956
6957 /* If you have any cleanups to do at this point,
6958 and they need to create temporary variables,
6959 then you will lose. */
6960 expand_fixups (get_insns ());
6961 }
6962 \f
6963 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6964 sequence or a single insn). */
6965
6966 static void
6967 record_insns (insns, vecp)
6968 rtx insns;
6969 varray_type *vecp;
6970 {
6971 if (GET_CODE (insns) == SEQUENCE)
6972 {
6973 int len = XVECLEN (insns, 0);
6974 int i = VARRAY_SIZE (*vecp);
6975
6976 VARRAY_GROW (*vecp, i + len);
6977 while (--len >= 0)
6978 {
6979 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6980 ++i;
6981 }
6982 }
6983 else
6984 {
6985 int i = VARRAY_SIZE (*vecp);
6986 VARRAY_GROW (*vecp, i + 1);
6987 VARRAY_INT (*vecp, i) = INSN_UID (insns);
6988 }
6989 }
6990
6991 /* Determine how many INSN_UIDs in VEC are part of INSN. */
6992
6993 static int
6994 contains (insn, vec)
6995 rtx insn;
6996 varray_type vec;
6997 {
6998 register int i, j;
6999
7000 if (GET_CODE (insn) == INSN
7001 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7002 {
7003 int count = 0;
7004 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7005 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7006 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7007 count++;
7008 return count;
7009 }
7010 else
7011 {
7012 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7013 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7014 return 1;
7015 }
7016 return 0;
7017 }
7018
7019 int
7020 prologue_epilogue_contains (insn)
7021 rtx insn;
7022 {
7023 if (contains (insn, prologue))
7024 return 1;
7025 if (contains (insn, epilogue))
7026 return 1;
7027 return 0;
7028 }
7029
7030 int
7031 sibcall_epilogue_contains (insn)
7032 rtx insn;
7033 {
7034 if (sibcall_epilogue)
7035 return contains (insn, sibcall_epilogue);
7036 return 0;
7037 }
7038
7039 #ifdef HAVE_return
7040 /* Insert gen_return at the end of block BB. This also means updating
7041 block_for_insn appropriately. */
7042
7043 static void
7044 emit_return_into_block (bb, line_note)
7045 basic_block bb;
7046 rtx line_note;
7047 {
7048 rtx p, end;
7049
7050 p = NEXT_INSN (bb->end);
7051 end = emit_jump_insn_after (gen_return (), bb->end);
7052 if (line_note)
7053 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7054 NOTE_LINE_NUMBER (line_note), bb->end);
7055
7056 while (1)
7057 {
7058 set_block_for_insn (p, bb);
7059 if (p == bb->end)
7060 break;
7061 p = PREV_INSN (p);
7062 }
7063 bb->end = end;
7064 }
7065 #endif /* HAVE_return */
7066
7067 #ifdef HAVE_epilogue
7068
7069 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7070 to the stack pointer. */
7071
7072 static void
7073 keep_stack_depressed (seq)
7074 rtx seq;
7075 {
7076 int i;
7077 rtx sp_from_reg = 0;
7078 int sp_modified_unknown = 0;
7079
7080 /* If the epilogue is just a single instruction, it's OK as is */
7081
7082 if (GET_CODE (seq) != SEQUENCE)
7083 return;
7084
7085 /* Scan all insns in SEQ looking for ones that modified the stack
7086 pointer. Record if it modified the stack pointer by copying it
7087 from the frame pointer or if it modified it in some other way.
7088 Then modify any subsequent stack pointer references to take that
7089 into account. We start by only allowing SP to be copied from a
7090 register (presumably FP) and then be subsequently referenced. */
7091
7092 for (i = 0; i < XVECLEN (seq, 0); i++)
7093 {
7094 rtx insn = XVECEXP (seq, 0, i);
7095
7096 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7097 continue;
7098
7099 if (reg_set_p (stack_pointer_rtx, insn))
7100 {
7101 rtx set = single_set (insn);
7102
7103 /* If SP is set as a side-effect, we can't support this. */
7104 if (set == 0)
7105 abort ();
7106
7107 if (GET_CODE (SET_SRC (set)) == REG)
7108 sp_from_reg = SET_SRC (set);
7109 else
7110 sp_modified_unknown = 1;
7111
7112 /* Don't allow the SP modification to happen. */
7113 PUT_CODE (insn, NOTE);
7114 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7115 NOTE_SOURCE_FILE (insn) = 0;
7116 }
7117 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7118 {
7119 if (sp_modified_unknown)
7120 abort ();
7121
7122 else if (sp_from_reg != 0)
7123 PATTERN (insn)
7124 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7125 }
7126 }
7127 }
7128 #endif
7129
7130 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7131 this into place with notes indicating where the prologue ends and where
7132 the epilogue begins. Update the basic block information when possible. */
7133
7134 void
7135 thread_prologue_and_epilogue_insns (f)
7136 rtx f ATTRIBUTE_UNUSED;
7137 {
7138 int inserted = 0;
7139 edge e;
7140 rtx seq;
7141 #ifdef HAVE_prologue
7142 rtx prologue_end = NULL_RTX;
7143 #endif
7144 #if defined (HAVE_epilogue) || defined(HAVE_return)
7145 rtx epilogue_end = NULL_RTX;
7146 #endif
7147
7148 #ifdef HAVE_prologue
7149 if (HAVE_prologue)
7150 {
7151 start_sequence ();
7152 seq = gen_prologue ();
7153 emit_insn (seq);
7154
7155 /* Retain a map of the prologue insns. */
7156 if (GET_CODE (seq) != SEQUENCE)
7157 seq = get_insns ();
7158 record_insns (seq, &prologue);
7159 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7160
7161 seq = gen_sequence ();
7162 end_sequence ();
7163
7164 /* If optimization is off, and perhaps in an empty function,
7165 the entry block will have no successors. */
7166 if (ENTRY_BLOCK_PTR->succ)
7167 {
7168 /* Can't deal with multiple successsors of the entry block. */
7169 if (ENTRY_BLOCK_PTR->succ->succ_next)
7170 abort ();
7171
7172 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7173 inserted = 1;
7174 }
7175 else
7176 emit_insn_after (seq, f);
7177 }
7178 #endif
7179
7180 /* If the exit block has no non-fake predecessors, we don't need
7181 an epilogue. */
7182 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7183 if ((e->flags & EDGE_FAKE) == 0)
7184 break;
7185 if (e == NULL)
7186 goto epilogue_done;
7187
7188 #ifdef HAVE_return
7189 if (optimize && HAVE_return)
7190 {
7191 /* If we're allowed to generate a simple return instruction,
7192 then by definition we don't need a full epilogue. Examine
7193 the block that falls through to EXIT. If it does not
7194 contain any code, examine its predecessors and try to
7195 emit (conditional) return instructions. */
7196
7197 basic_block last;
7198 edge e_next;
7199 rtx label;
7200
7201 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7202 if (e->flags & EDGE_FALLTHRU)
7203 break;
7204 if (e == NULL)
7205 goto epilogue_done;
7206 last = e->src;
7207
7208 /* Verify that there are no active instructions in the last block. */
7209 label = last->end;
7210 while (label && GET_CODE (label) != CODE_LABEL)
7211 {
7212 if (active_insn_p (label))
7213 break;
7214 label = PREV_INSN (label);
7215 }
7216
7217 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7218 {
7219 rtx epilogue_line_note = NULL_RTX;
7220
7221 /* Locate the line number associated with the closing brace,
7222 if we can find one. */
7223 for (seq = get_last_insn ();
7224 seq && ! active_insn_p (seq);
7225 seq = PREV_INSN (seq))
7226 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7227 {
7228 epilogue_line_note = seq;
7229 break;
7230 }
7231
7232 for (e = last->pred; e; e = e_next)
7233 {
7234 basic_block bb = e->src;
7235 rtx jump;
7236
7237 e_next = e->pred_next;
7238 if (bb == ENTRY_BLOCK_PTR)
7239 continue;
7240
7241 jump = bb->end;
7242 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7243 continue;
7244
7245 /* If we have an unconditional jump, we can replace that
7246 with a simple return instruction. */
7247 if (simplejump_p (jump))
7248 {
7249 emit_return_into_block (bb, epilogue_line_note);
7250 flow_delete_insn (jump);
7251 }
7252
7253 /* If we have a conditional jump, we can try to replace
7254 that with a conditional return instruction. */
7255 else if (condjump_p (jump))
7256 {
7257 rtx ret, *loc;
7258
7259 ret = SET_SRC (PATTERN (jump));
7260 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7261 loc = &XEXP (ret, 1);
7262 else
7263 loc = &XEXP (ret, 2);
7264 ret = gen_rtx_RETURN (VOIDmode);
7265
7266 if (! validate_change (jump, loc, ret, 0))
7267 continue;
7268 if (JUMP_LABEL (jump))
7269 LABEL_NUSES (JUMP_LABEL (jump))--;
7270
7271 /* If this block has only one successor, it both jumps
7272 and falls through to the fallthru block, so we can't
7273 delete the edge. */
7274 if (bb->succ->succ_next == NULL)
7275 continue;
7276 }
7277 else
7278 continue;
7279
7280 /* Fix up the CFG for the successful change we just made. */
7281 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7282 }
7283
7284 /* Emit a return insn for the exit fallthru block. Whether
7285 this is still reachable will be determined later. */
7286
7287 emit_barrier_after (last->end);
7288 emit_return_into_block (last, epilogue_line_note);
7289 epilogue_end = last->end;
7290 goto epilogue_done;
7291 }
7292 }
7293 #endif
7294 #ifdef HAVE_epilogue
7295 if (HAVE_epilogue)
7296 {
7297 /* Find the edge that falls through to EXIT. Other edges may exist
7298 due to RETURN instructions, but those don't need epilogues.
7299 There really shouldn't be a mixture -- either all should have
7300 been converted or none, however... */
7301
7302 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7303 if (e->flags & EDGE_FALLTHRU)
7304 break;
7305 if (e == NULL)
7306 goto epilogue_done;
7307
7308 start_sequence ();
7309 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7310
7311 seq = gen_epilogue ();
7312
7313 /* If this function returns with the stack depressed, massage
7314 the epilogue to actually do that. */
7315 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7316 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7317 keep_stack_depressed (seq);
7318
7319 emit_jump_insn (seq);
7320
7321 /* Retain a map of the epilogue insns. */
7322 if (GET_CODE (seq) != SEQUENCE)
7323 seq = get_insns ();
7324 record_insns (seq, &epilogue);
7325
7326 seq = gen_sequence ();
7327 end_sequence ();
7328
7329 insert_insn_on_edge (seq, e);
7330 inserted = 1;
7331 }
7332 #endif
7333 epilogue_done:
7334
7335 if (inserted)
7336 commit_edge_insertions ();
7337
7338 #ifdef HAVE_sibcall_epilogue
7339 /* Emit sibling epilogues before any sibling call sites. */
7340 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7341 {
7342 basic_block bb = e->src;
7343 rtx insn = bb->end;
7344 rtx i;
7345 rtx newinsn;
7346
7347 if (GET_CODE (insn) != CALL_INSN
7348 || ! SIBLING_CALL_P (insn))
7349 continue;
7350
7351 start_sequence ();
7352 seq = gen_sibcall_epilogue ();
7353 end_sequence ();
7354
7355 i = PREV_INSN (insn);
7356 newinsn = emit_insn_before (seq, insn);
7357
7358 /* Update the UID to basic block map. */
7359 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7360 set_block_for_insn (i, bb);
7361
7362 /* Retain a map of the epilogue insns. Used in life analysis to
7363 avoid getting rid of sibcall epilogue insns. */
7364 record_insns (GET_CODE (seq) == SEQUENCE
7365 ? seq : newinsn, &sibcall_epilogue);
7366 }
7367 #endif
7368
7369 #ifdef HAVE_prologue
7370 if (prologue_end)
7371 {
7372 rtx insn, prev;
7373
7374 /* GDB handles `break f' by setting a breakpoint on the first
7375 line note after the prologue. Which means (1) that if
7376 there are line number notes before where we inserted the
7377 prologue we should move them, and (2) we should generate a
7378 note before the end of the first basic block, if there isn't
7379 one already there.
7380
7381 ??? This behaviour is completely broken when dealing with
7382 multiple entry functions. We simply place the note always
7383 into first basic block and let alternate entry points
7384 to be missed.
7385 */
7386
7387 for (insn = prologue_end; insn; insn = prev)
7388 {
7389 prev = PREV_INSN (insn);
7390 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7391 {
7392 /* Note that we cannot reorder the first insn in the
7393 chain, since rest_of_compilation relies on that
7394 remaining constant. */
7395 if (prev == NULL)
7396 break;
7397 reorder_insns (insn, insn, prologue_end);
7398 }
7399 }
7400
7401 /* Find the last line number note in the first block. */
7402 for (insn = BASIC_BLOCK (0)->end;
7403 insn != prologue_end && insn;
7404 insn = PREV_INSN (insn))
7405 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7406 break;
7407
7408 /* If we didn't find one, make a copy of the first line number
7409 we run across. */
7410 if (! insn)
7411 {
7412 for (insn = next_active_insn (prologue_end);
7413 insn;
7414 insn = PREV_INSN (insn))
7415 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7416 {
7417 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7418 NOTE_LINE_NUMBER (insn),
7419 prologue_end);
7420 break;
7421 }
7422 }
7423 }
7424 #endif
7425 #ifdef HAVE_epilogue
7426 if (epilogue_end)
7427 {
7428 rtx insn, next;
7429
7430 /* Similarly, move any line notes that appear after the epilogue.
7431 There is no need, however, to be quite so anal about the existance
7432 of such a note. */
7433 for (insn = epilogue_end; insn; insn = next)
7434 {
7435 next = NEXT_INSN (insn);
7436 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7437 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7438 }
7439 }
7440 #endif
7441 }
7442
7443 /* Reposition the prologue-end and epilogue-begin notes after instruction
7444 scheduling and delayed branch scheduling. */
7445
7446 void
7447 reposition_prologue_and_epilogue_notes (f)
7448 rtx f ATTRIBUTE_UNUSED;
7449 {
7450 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7451 int len;
7452
7453 if ((len = VARRAY_SIZE (prologue)) > 0)
7454 {
7455 register rtx insn, note = 0;
7456
7457 /* Scan from the beginning until we reach the last prologue insn.
7458 We apparently can't depend on basic_block_{head,end} after
7459 reorg has run. */
7460 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7461 {
7462 if (GET_CODE (insn) == NOTE)
7463 {
7464 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7465 note = insn;
7466 }
7467 else if ((len -= contains (insn, prologue)) == 0)
7468 {
7469 rtx next;
7470 /* Find the prologue-end note if we haven't already, and
7471 move it to just after the last prologue insn. */
7472 if (note == 0)
7473 {
7474 for (note = insn; (note = NEXT_INSN (note));)
7475 if (GET_CODE (note) == NOTE
7476 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7477 break;
7478 }
7479
7480 next = NEXT_INSN (note);
7481
7482 /* Whether or not we can depend on BLOCK_HEAD,
7483 attempt to keep it up-to-date. */
7484 if (BLOCK_HEAD (0) == note)
7485 BLOCK_HEAD (0) = next;
7486
7487 remove_insn (note);
7488 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7489 if (GET_CODE (insn) == CODE_LABEL)
7490 insn = NEXT_INSN (insn);
7491 add_insn_after (note, insn);
7492 }
7493 }
7494 }
7495
7496 if ((len = VARRAY_SIZE (epilogue)) > 0)
7497 {
7498 register rtx insn, note = 0;
7499
7500 /* Scan from the end until we reach the first epilogue insn.
7501 We apparently can't depend on basic_block_{head,end} after
7502 reorg has run. */
7503 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7504 {
7505 if (GET_CODE (insn) == NOTE)
7506 {
7507 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7508 note = insn;
7509 }
7510 else if ((len -= contains (insn, epilogue)) == 0)
7511 {
7512 /* Find the epilogue-begin note if we haven't already, and
7513 move it to just before the first epilogue insn. */
7514 if (note == 0)
7515 {
7516 for (note = insn; (note = PREV_INSN (note));)
7517 if (GET_CODE (note) == NOTE
7518 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7519 break;
7520 }
7521
7522 /* Whether or not we can depend on BLOCK_HEAD,
7523 attempt to keep it up-to-date. */
7524 if (n_basic_blocks
7525 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7526 BLOCK_HEAD (n_basic_blocks-1) = note;
7527
7528 remove_insn (note);
7529 add_insn_before (note, insn);
7530 }
7531 }
7532 }
7533 #endif /* HAVE_prologue or HAVE_epilogue */
7534 }
7535
7536 /* Mark T for GC. */
7537
7538 static void
7539 mark_temp_slot (t)
7540 struct temp_slot *t;
7541 {
7542 while (t)
7543 {
7544 ggc_mark_rtx (t->slot);
7545 ggc_mark_rtx (t->address);
7546 ggc_mark_tree (t->rtl_expr);
7547 ggc_mark_tree (t->type);
7548
7549 t = t->next;
7550 }
7551 }
7552
7553 /* Mark P for GC. */
7554
7555 static void
7556 mark_function_status (p)
7557 struct function *p;
7558 {
7559 int i;
7560 rtx *r;
7561
7562 if (p == 0)
7563 return;
7564
7565 ggc_mark_rtx (p->arg_offset_rtx);
7566
7567 if (p->x_parm_reg_stack_loc)
7568 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7569 i > 0; --i, ++r)
7570 ggc_mark_rtx (*r);
7571
7572 ggc_mark_rtx (p->return_rtx);
7573 ggc_mark_rtx (p->x_cleanup_label);
7574 ggc_mark_rtx (p->x_return_label);
7575 ggc_mark_rtx (p->x_save_expr_regs);
7576 ggc_mark_rtx (p->x_stack_slot_list);
7577 ggc_mark_rtx (p->x_parm_birth_insn);
7578 ggc_mark_rtx (p->x_tail_recursion_label);
7579 ggc_mark_rtx (p->x_tail_recursion_reentry);
7580 ggc_mark_rtx (p->internal_arg_pointer);
7581 ggc_mark_rtx (p->x_arg_pointer_save_area);
7582 ggc_mark_tree (p->x_rtl_expr_chain);
7583 ggc_mark_rtx (p->x_last_parm_insn);
7584 ggc_mark_tree (p->x_context_display);
7585 ggc_mark_tree (p->x_trampoline_list);
7586 ggc_mark_rtx (p->epilogue_delay_list);
7587 ggc_mark_rtx (p->x_clobber_return_insn);
7588
7589 mark_temp_slot (p->x_temp_slots);
7590
7591 {
7592 struct var_refs_queue *q = p->fixup_var_refs_queue;
7593 while (q)
7594 {
7595 ggc_mark_rtx (q->modified);
7596 q = q->next;
7597 }
7598 }
7599
7600 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7601 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7602 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7603 ggc_mark_tree (p->x_nonlocal_labels);
7604 }
7605
7606 /* Mark the function chain ARG (which is really a struct function **)
7607 for GC. */
7608
7609 static void
7610 mark_function_chain (arg)
7611 void *arg;
7612 {
7613 struct function *f = *(struct function **) arg;
7614
7615 for (; f; f = f->next_global)
7616 {
7617 ggc_mark_tree (f->decl);
7618
7619 mark_function_status (f);
7620 mark_eh_status (f->eh);
7621 mark_stmt_status (f->stmt);
7622 mark_expr_status (f->expr);
7623 mark_emit_status (f->emit);
7624 mark_varasm_status (f->varasm);
7625
7626 if (mark_machine_status)
7627 (*mark_machine_status) (f);
7628 if (mark_lang_status)
7629 (*mark_lang_status) (f);
7630
7631 if (f->original_arg_vector)
7632 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7633 if (f->original_decl_initial)
7634 ggc_mark_tree (f->original_decl_initial);
7635 }
7636 }
7637
7638 /* Called once, at initialization, to initialize function.c. */
7639
7640 void
7641 init_function_once ()
7642 {
7643 ggc_add_root (&all_functions, 1, sizeof all_functions,
7644 mark_function_chain);
7645
7646 VARRAY_INT_INIT (prologue, 0, "prologue");
7647 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7648 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7649 }