]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
builtins.c (gimplify_va_arg_expr): Reword comments to avoid 'abort'.
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
27
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
31
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
68
69 #ifndef STACK_ALIGNMENT_NEEDED
70 #define STACK_ALIGNMENT_NEEDED 1
71 #endif
72
73 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
74
75 /* Some systems use __main in a way incompatible with its use in gcc, in these
76 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
77 give the same symbol without quotes for an alternative entry point. You
78 must define both, or neither. */
79 #ifndef NAME__MAIN
80 #define NAME__MAIN "__main"
81 #endif
82
83 /* Round a value to the lowest integer less than it that is a multiple of
84 the required alignment. Avoid using division in case the value is
85 negative. Assume the alignment is a power of two. */
86 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87
88 /* Similar, but round to the next highest integer that meets the
89 alignment. */
90 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91
92 /* Nonzero if function being compiled doesn't contain any calls
93 (ignoring the prologue and epilogue). This is set prior to
94 local register allocation and is valid for the remaining
95 compiler passes. */
96 int current_function_is_leaf;
97
98 /* Nonzero if function being compiled doesn't modify the stack pointer
99 (ignoring the prologue and epilogue). This is only valid after
100 life_analysis has run. */
101 int current_function_sp_is_unchanging;
102
103 /* Nonzero if the function being compiled is a leaf function which only
104 uses leaf registers. This is valid after reload (specifically after
105 sched2) and is useful only if the port defines LEAF_REGISTERS. */
106 int current_function_uses_only_leaf_regs;
107
108 /* Nonzero once virtual register instantiation has been done.
109 assign_stack_local uses frame_pointer_rtx when this is nonzero.
110 calls.c:emit_library_call_value_1 uses it to set up
111 post-instantiation libcalls. */
112 int virtuals_instantiated;
113
114 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
115 static GTY(()) int funcdef_no;
116
117 /* These variables hold pointers to functions to create and destroy
118 target specific, per-function data structures. */
119 struct machine_function * (*init_machine_status) (void);
120
121 /* The currently compiled function. */
122 struct function *cfun = 0;
123
124 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
125 static GTY(()) varray_type prologue;
126 static GTY(()) varray_type epilogue;
127
128 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
129 in this function. */
130 static GTY(()) varray_type sibcall_epilogue;
131 \f
132 /* In order to evaluate some expressions, such as function calls returning
133 structures in memory, we need to temporarily allocate stack locations.
134 We record each allocated temporary in the following structure.
135
136 Associated with each temporary slot is a nesting level. When we pop up
137 one level, all temporaries associated with the previous level are freed.
138 Normally, all temporaries are freed after the execution of the statement
139 in which they were created. However, if we are inside a ({...}) grouping,
140 the result may be in a temporary and hence must be preserved. If the
141 result could be in a temporary, we preserve it if we can determine which
142 one it is in. If we cannot determine which temporary may contain the
143 result, all temporaries are preserved. A temporary is preserved by
144 pretending it was allocated at the previous nesting level.
145
146 Automatic variables are also assigned temporary slots, at the nesting
147 level where they are defined. They are marked a "kept" so that
148 free_temp_slots will not free them. */
149
150 struct temp_slot GTY(())
151 {
152 /* Points to next temporary slot. */
153 struct temp_slot *next;
154 /* Points to previous temporary slot. */
155 struct temp_slot *prev;
156
157 /* The rtx to used to reference the slot. */
158 rtx slot;
159 /* The rtx used to represent the address if not the address of the
160 slot above. May be an EXPR_LIST if multiple addresses exist. */
161 rtx address;
162 /* The alignment (in bits) of the slot. */
163 unsigned int align;
164 /* The size, in units, of the slot. */
165 HOST_WIDE_INT size;
166 /* The type of the object in the slot, or zero if it doesn't correspond
167 to a type. We use this to determine whether a slot can be reused.
168 It can be reused if objects of the type of the new slot will always
169 conflict with objects of the type of the old slot. */
170 tree type;
171 /* Nonzero if this temporary is currently in use. */
172 char in_use;
173 /* Nonzero if this temporary has its address taken. */
174 char addr_taken;
175 /* Nesting level at which this slot is being used. */
176 int level;
177 /* Nonzero if this should survive a call to free_temp_slots. */
178 int keep;
179 /* The offset of the slot from the frame_pointer, including extra space
180 for alignment. This info is for combine_temp_slots. */
181 HOST_WIDE_INT base_offset;
182 /* The size of the slot, including extra space for alignment. This
183 info is for combine_temp_slots. */
184 HOST_WIDE_INT full_size;
185 };
186 \f
187 /* Forward declarations. */
188
189 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
190 struct function *);
191 static struct temp_slot *find_temp_slot_from_address (rtx);
192 static void instantiate_decls (tree, int);
193 static void instantiate_decls_1 (tree, int);
194 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
195 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
196 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, varray_type *);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
207 static int contains (rtx, varray_type);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void instantiate_virtual_regs_lossage (rtx);
218 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 \f
220 /* Pointer to chain of `struct function' for containing functions. */
221 struct function *outer_function_chain;
222
223 /* Given a function decl for a containing function,
224 return the `struct function' for it. */
225
226 struct function *
227 find_function_data (tree decl)
228 {
229 struct function *p;
230
231 for (p = outer_function_chain; p; p = p->outer)
232 if (p->decl == decl)
233 return p;
234
235 gcc_unreachable ();
236 }
237
238 /* Save the current context for compilation of a nested function.
239 This is called from language-specific code. The caller should use
240 the enter_nested langhook to save any language-specific state,
241 since this function knows only about language-independent
242 variables. */
243
244 void
245 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 {
247 struct function *p;
248
249 if (cfun == 0)
250 init_dummy_function_start ();
251 p = cfun;
252
253 p->outer = outer_function_chain;
254 outer_function_chain = p;
255
256 lang_hooks.function.enter_nested (p);
257
258 cfun = 0;
259 }
260
261 void
262 push_function_context (void)
263 {
264 push_function_context_to (current_function_decl);
265 }
266
267 /* Restore the last saved context, at the end of a nested function.
268 This function is called from language-specific code. */
269
270 void
271 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 {
273 struct function *p = outer_function_chain;
274
275 cfun = p;
276 outer_function_chain = p->outer;
277
278 current_function_decl = p->decl;
279
280 lang_hooks.function.leave_nested (p);
281
282 /* Reset variables that have known state during rtx generation. */
283 virtuals_instantiated = 0;
284 generating_concat_p = 1;
285 }
286
287 void
288 pop_function_context (void)
289 {
290 pop_function_context_from (current_function_decl);
291 }
292
293 /* Clear out all parts of the state in F that can safely be discarded
294 after the function has been parsed, but not compiled, to let
295 garbage collection reclaim the memory. */
296
297 void
298 free_after_parsing (struct function *f)
299 {
300 /* f->expr->forced_labels is used by code generation. */
301 /* f->emit->regno_reg_rtx is used by code generation. */
302 /* f->varasm is used by code generation. */
303 /* f->eh->eh_return_stub_label is used by code generation. */
304
305 lang_hooks.function.final (f);
306 }
307
308 /* Clear out all parts of the state in F that can safely be discarded
309 after the function has been compiled, to let garbage collection
310 reclaim the memory. */
311
312 void
313 free_after_compilation (struct function *f)
314 {
315 f->eh = NULL;
316 f->expr = NULL;
317 f->emit = NULL;
318 f->varasm = NULL;
319 f->machine = NULL;
320 f->cfg = NULL;
321
322 f->x_avail_temp_slots = NULL;
323 f->x_used_temp_slots = NULL;
324 f->arg_offset_rtx = NULL;
325 f->return_rtx = NULL;
326 f->internal_arg_pointer = NULL;
327 f->x_nonlocal_goto_handler_labels = NULL;
328 f->x_return_label = NULL;
329 f->x_naked_return_label = NULL;
330 f->x_stack_slot_list = NULL;
331 f->x_tail_recursion_reentry = NULL;
332 f->x_arg_pointer_save_area = NULL;
333 f->x_parm_birth_insn = NULL;
334 f->original_arg_vector = NULL;
335 f->original_decl_initial = NULL;
336 f->epilogue_delay_list = NULL;
337 }
338 \f
339 /* Allocate fixed slots in the stack frame of the current function. */
340
341 /* Return size needed for stack frame based on slots so far allocated in
342 function F.
343 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
344 the caller may have to do that. */
345
346 static HOST_WIDE_INT
347 get_func_frame_size (struct function *f)
348 {
349 #ifdef FRAME_GROWS_DOWNWARD
350 return -f->x_frame_offset;
351 #else
352 return f->x_frame_offset;
353 #endif
354 }
355
356 /* Return size needed for stack frame based on slots so far allocated.
357 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
358 the caller may have to do that. */
359 HOST_WIDE_INT
360 get_frame_size (void)
361 {
362 return get_func_frame_size (cfun);
363 }
364
365 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
366 with machine mode MODE.
367
368 ALIGN controls the amount of alignment for the address of the slot:
369 0 means according to MODE,
370 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
371 -2 means use BITS_PER_UNIT,
372 positive specifies alignment boundary in bits.
373
374 We do not round to stack_boundary here.
375
376 FUNCTION specifies the function to allocate in. */
377
378 static rtx
379 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
380 struct function *function)
381 {
382 rtx x, addr;
383 int bigend_correction = 0;
384 unsigned int alignment;
385 int frame_off, frame_alignment, frame_phase;
386
387 if (align == 0)
388 {
389 tree type;
390
391 if (mode == BLKmode)
392 alignment = BIGGEST_ALIGNMENT;
393 else
394 alignment = GET_MODE_ALIGNMENT (mode);
395
396 /* Allow the target to (possibly) increase the alignment of this
397 stack slot. */
398 type = lang_hooks.types.type_for_mode (mode, 0);
399 if (type)
400 alignment = LOCAL_ALIGNMENT (type, alignment);
401
402 alignment /= BITS_PER_UNIT;
403 }
404 else if (align == -1)
405 {
406 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
407 size = CEIL_ROUND (size, alignment);
408 }
409 else if (align == -2)
410 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
411 else
412 alignment = align / BITS_PER_UNIT;
413
414 #ifdef FRAME_GROWS_DOWNWARD
415 function->x_frame_offset -= size;
416 #endif
417
418 /* Ignore alignment we can't do with expected alignment of the boundary. */
419 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
420 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
421
422 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
423 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
424
425 /* Calculate how many bytes the start of local variables is off from
426 stack alignment. */
427 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
428 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
429 frame_phase = frame_off ? frame_alignment - frame_off : 0;
430
431 /* Round the frame offset to the specified alignment. The default is
432 to always honor requests to align the stack but a port may choose to
433 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
434 if (STACK_ALIGNMENT_NEEDED
435 || mode != BLKmode
436 || size != 0)
437 {
438 /* We must be careful here, since FRAME_OFFSET might be negative and
439 division with a negative dividend isn't as well defined as we might
440 like. So we instead assume that ALIGNMENT is a power of two and
441 use logical operations which are unambiguous. */
442 #ifdef FRAME_GROWS_DOWNWARD
443 function->x_frame_offset
444 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
445 (unsigned HOST_WIDE_INT) alignment)
446 + frame_phase);
447 #else
448 function->x_frame_offset
449 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
450 (unsigned HOST_WIDE_INT) alignment)
451 + frame_phase);
452 #endif
453 }
454
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode)
458 bigend_correction = size - GET_MODE_SIZE (mode);
459
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
472
473 #ifndef FRAME_GROWS_DOWNWARD
474 function->x_frame_offset += size;
475 #endif
476
477 x = gen_rtx_MEM (mode, addr);
478
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
481
482 return x;
483 }
484
485 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
486 current function. */
487
488 rtx
489 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
490 {
491 return assign_stack_local_1 (mode, size, align, cfun);
492 }
493
494 \f
495 /* Removes temporary slot TEMP from LIST. */
496
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
499 {
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
506
507 temp->prev = temp->next = NULL;
508 }
509
510 /* Inserts temporary slot TEMP to LIST. */
511
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
514 {
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
520 }
521
522 /* Returns the list of used temp slots at LEVEL. */
523
524 static struct temp_slot **
525 temp_slots_at_level (int level)
526 {
527
528 if (!used_temp_slots)
529 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
530
531 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
532 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
533
534 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
535 }
536
537 /* Returns the maximal temporary slot level. */
538
539 static int
540 max_slot_level (void)
541 {
542 if (!used_temp_slots)
543 return -1;
544
545 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
546 }
547
548 /* Moves temporary slot TEMP to LEVEL. */
549
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
552 {
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
556 }
557
558 /* Make temporary slot TEMP available. */
559
560 static void
561 make_slot_available (struct temp_slot *temp)
562 {
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
567 }
568 \f
569 /* Allocate a temporary stack slot and record it for possible later
570 reuse.
571
572 MODE is the machine mode to be given to the returned rtx.
573
574 SIZE is the size in units of the space required. We do no rounding here
575 since assign_stack_local will do any required rounding.
576
577 KEEP is 1 if this slot is to be retained after a call to
578 free_temp_slots. Automatic variables for a block are allocated
579 with this flag. KEEP values of 2 or 3 were needed respectively
580 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
581 or for SAVE_EXPRs, but they are now unused.
582
583 TYPE is the type that will be used for the stack slot. */
584
585 rtx
586 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
587 int keep, tree type)
588 {
589 unsigned int align;
590 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
591 rtx slot;
592
593 /* If SIZE is -1 it means that somebody tried to allocate a temporary
594 of a variable size. */
595 gcc_assert (size != -1);
596
597 /* These are now unused. */
598 gcc_assert (keep <= 1);
599
600 if (mode == BLKmode)
601 align = BIGGEST_ALIGNMENT;
602 else
603 align = GET_MODE_ALIGNMENT (mode);
604
605 if (! type)
606 type = lang_hooks.types.type_for_mode (mode, 0);
607
608 if (type)
609 align = LOCAL_ALIGNMENT (type, align);
610
611 /* Try to find an available, already-allocated temporary of the proper
612 mode which meets the size and alignment requirements. Choose the
613 smallest one with the closest alignment. */
614 for (p = avail_temp_slots; p; p = p->next)
615 {
616 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
617 && objects_must_conflict_p (p->type, type)
618 && (best_p == 0 || best_p->size > p->size
619 || (best_p->size == p->size && best_p->align > p->align)))
620 {
621 if (p->align == align && p->size == size)
622 {
623 selected = p;
624 cut_slot_from_list (selected, &avail_temp_slots);
625 best_p = 0;
626 break;
627 }
628 best_p = p;
629 }
630 }
631
632 /* Make our best, if any, the one to use. */
633 if (best_p)
634 {
635 selected = best_p;
636 cut_slot_from_list (selected, &avail_temp_slots);
637
638 /* If there are enough aligned bytes left over, make them into a new
639 temp_slot so that the extra bytes don't get wasted. Do this only
640 for BLKmode slots, so that we can be sure of the alignment. */
641 if (GET_MODE (best_p->slot) == BLKmode)
642 {
643 int alignment = best_p->align / BITS_PER_UNIT;
644 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
645
646 if (best_p->size - rounded_size >= alignment)
647 {
648 p = ggc_alloc (sizeof (struct temp_slot));
649 p->in_use = p->addr_taken = 0;
650 p->size = best_p->size - rounded_size;
651 p->base_offset = best_p->base_offset + rounded_size;
652 p->full_size = best_p->full_size - rounded_size;
653 p->slot = gen_rtx_MEM (BLKmode,
654 plus_constant (XEXP (best_p->slot, 0),
655 rounded_size));
656 p->align = best_p->align;
657 p->address = 0;
658 p->type = best_p->type;
659 insert_slot_to_list (p, &avail_temp_slots);
660
661 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
662 stack_slot_list);
663
664 best_p->size = rounded_size;
665 best_p->full_size = rounded_size;
666 }
667 }
668 }
669
670 /* If we still didn't find one, make a new temporary. */
671 if (selected == 0)
672 {
673 HOST_WIDE_INT frame_offset_old = frame_offset;
674
675 p = ggc_alloc (sizeof (struct temp_slot));
676
677 /* We are passing an explicit alignment request to assign_stack_local.
678 One side effect of that is assign_stack_local will not round SIZE
679 to ensure the frame offset remains suitably aligned.
680
681 So for requests which depended on the rounding of SIZE, we go ahead
682 and round it now. We also make sure ALIGNMENT is at least
683 BIGGEST_ALIGNMENT. */
684 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
685 p->slot = assign_stack_local (mode,
686 (mode == BLKmode
687 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
688 : size),
689 align);
690
691 p->align = align;
692
693 /* The following slot size computation is necessary because we don't
694 know the actual size of the temporary slot until assign_stack_local
695 has performed all the frame alignment and size rounding for the
696 requested temporary. Note that extra space added for alignment
697 can be either above or below this stack slot depending on which
698 way the frame grows. We include the extra space if and only if it
699 is above this slot. */
700 #ifdef FRAME_GROWS_DOWNWARD
701 p->size = frame_offset_old - frame_offset;
702 #else
703 p->size = size;
704 #endif
705
706 /* Now define the fields used by combine_temp_slots. */
707 #ifdef FRAME_GROWS_DOWNWARD
708 p->base_offset = frame_offset;
709 p->full_size = frame_offset_old - frame_offset;
710 #else
711 p->base_offset = frame_offset_old;
712 p->full_size = frame_offset - frame_offset_old;
713 #endif
714 p->address = 0;
715
716 selected = p;
717 }
718
719 p = selected;
720 p->in_use = 1;
721 p->addr_taken = 0;
722 p->type = type;
723 p->level = temp_slot_level;
724 p->keep = keep;
725
726 pp = temp_slots_at_level (p->level);
727 insert_slot_to_list (p, pp);
728
729 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
730 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
731 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
732
733 /* If we know the alias set for the memory that will be used, use
734 it. If there's no TYPE, then we don't know anything about the
735 alias set for the memory. */
736 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
737 set_mem_align (slot, align);
738
739 /* If a type is specified, set the relevant flags. */
740 if (type != 0)
741 {
742 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
743 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
744 }
745
746 return slot;
747 }
748
749 /* Allocate a temporary stack slot and record it for possible later
750 reuse. First three arguments are same as in preceding function. */
751
752 rtx
753 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
754 {
755 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
756 }
757 \f
758 /* Assign a temporary.
759 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
760 and so that should be used in error messages. In either case, we
761 allocate of the given type.
762 KEEP is as for assign_stack_temp.
763 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
764 it is 0 if a register is OK.
765 DONT_PROMOTE is 1 if we should not promote values in register
766 to wider modes. */
767
768 rtx
769 assign_temp (tree type_or_decl, int keep, int memory_required,
770 int dont_promote ATTRIBUTE_UNUSED)
771 {
772 tree type, decl;
773 enum machine_mode mode;
774 #ifdef PROMOTE_MODE
775 int unsignedp;
776 #endif
777
778 if (DECL_P (type_or_decl))
779 decl = type_or_decl, type = TREE_TYPE (decl);
780 else
781 decl = NULL, type = type_or_decl;
782
783 mode = TYPE_MODE (type);
784 #ifdef PROMOTE_MODE
785 unsignedp = TYPE_UNSIGNED (type);
786 #endif
787
788 if (mode == BLKmode || memory_required)
789 {
790 HOST_WIDE_INT size = int_size_in_bytes (type);
791 tree size_tree;
792 rtx tmp;
793
794 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
795 problems with allocating the stack space. */
796 if (size == 0)
797 size = 1;
798
799 /* Unfortunately, we don't yet know how to allocate variable-sized
800 temporaries. However, sometimes we have a fixed upper limit on
801 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
802 instead. This is the case for Chill variable-sized strings. */
803 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
804 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
805 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
806 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
807
808 /* If we still haven't been able to get a size, see if the language
809 can compute a maximum size. */
810 if (size == -1
811 && (size_tree = lang_hooks.types.max_size (type)) != 0
812 && host_integerp (size_tree, 1))
813 size = tree_low_cst (size_tree, 1);
814
815 /* The size of the temporary may be too large to fit into an integer. */
816 /* ??? Not sure this should happen except for user silliness, so limit
817 this to things that aren't compiler-generated temporaries. The
818 rest of the time we'll die in assign_stack_temp_for_type. */
819 if (decl && size == -1
820 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
821 {
822 error ("%Jsize of variable %qD is too large", decl, decl);
823 size = 1;
824 }
825
826 tmp = assign_stack_temp_for_type (mode, size, keep, type);
827 return tmp;
828 }
829
830 #ifdef PROMOTE_MODE
831 if (! dont_promote)
832 mode = promote_mode (type, mode, &unsignedp, 0);
833 #endif
834
835 return gen_reg_rtx (mode);
836 }
837 \f
838 /* Combine temporary stack slots which are adjacent on the stack.
839
840 This allows for better use of already allocated stack space. This is only
841 done for BLKmode slots because we can be sure that we won't have alignment
842 problems in this case. */
843
844 static void
845 combine_temp_slots (void)
846 {
847 struct temp_slot *p, *q, *next, *next_q;
848 int num_slots;
849
850 /* We can't combine slots, because the information about which slot
851 is in which alias set will be lost. */
852 if (flag_strict_aliasing)
853 return;
854
855 /* If there are a lot of temp slots, don't do anything unless
856 high levels of optimization. */
857 if (! flag_expensive_optimizations)
858 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
859 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
860 return;
861
862 for (p = avail_temp_slots; p; p = next)
863 {
864 int delete_p = 0;
865
866 next = p->next;
867
868 if (GET_MODE (p->slot) != BLKmode)
869 continue;
870
871 for (q = p->next; q; q = next_q)
872 {
873 int delete_q = 0;
874
875 next_q = q->next;
876
877 if (GET_MODE (q->slot) != BLKmode)
878 continue;
879
880 if (p->base_offset + p->full_size == q->base_offset)
881 {
882 /* Q comes after P; combine Q into P. */
883 p->size += q->size;
884 p->full_size += q->full_size;
885 delete_q = 1;
886 }
887 else if (q->base_offset + q->full_size == p->base_offset)
888 {
889 /* P comes after Q; combine P into Q. */
890 q->size += p->size;
891 q->full_size += p->full_size;
892 delete_p = 1;
893 break;
894 }
895 if (delete_q)
896 cut_slot_from_list (q, &avail_temp_slots);
897 }
898
899 /* Either delete P or advance past it. */
900 if (delete_p)
901 cut_slot_from_list (p, &avail_temp_slots);
902 }
903 }
904 \f
905 /* Find the temp slot corresponding to the object at address X. */
906
907 static struct temp_slot *
908 find_temp_slot_from_address (rtx x)
909 {
910 struct temp_slot *p;
911 rtx next;
912 int i;
913
914 for (i = max_slot_level (); i >= 0; i--)
915 for (p = *temp_slots_at_level (i); p; p = p->next)
916 {
917 if (XEXP (p->slot, 0) == x
918 || p->address == x
919 || (GET_CODE (x) == PLUS
920 && XEXP (x, 0) == virtual_stack_vars_rtx
921 && GET_CODE (XEXP (x, 1)) == CONST_INT
922 && INTVAL (XEXP (x, 1)) >= p->base_offset
923 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
924 return p;
925
926 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
927 for (next = p->address; next; next = XEXP (next, 1))
928 if (XEXP (next, 0) == x)
929 return p;
930 }
931
932 /* If we have a sum involving a register, see if it points to a temp
933 slot. */
934 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
935 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
936 return p;
937 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
938 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
939 return p;
940
941 return 0;
942 }
943
944 /* Indicate that NEW is an alternate way of referring to the temp slot
945 that previously was known by OLD. */
946
947 void
948 update_temp_slot_address (rtx old, rtx new)
949 {
950 struct temp_slot *p;
951
952 if (rtx_equal_p (old, new))
953 return;
954
955 p = find_temp_slot_from_address (old);
956
957 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
958 is a register, see if one operand of the PLUS is a temporary
959 location. If so, NEW points into it. Otherwise, if both OLD and
960 NEW are a PLUS and if there is a register in common between them.
961 If so, try a recursive call on those values. */
962 if (p == 0)
963 {
964 if (GET_CODE (old) != PLUS)
965 return;
966
967 if (REG_P (new))
968 {
969 update_temp_slot_address (XEXP (old, 0), new);
970 update_temp_slot_address (XEXP (old, 1), new);
971 return;
972 }
973 else if (GET_CODE (new) != PLUS)
974 return;
975
976 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
977 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
978 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
979 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
980 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
981 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
982 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
983 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
984
985 return;
986 }
987
988 /* Otherwise add an alias for the temp's address. */
989 else if (p->address == 0)
990 p->address = new;
991 else
992 {
993 if (GET_CODE (p->address) != EXPR_LIST)
994 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
995
996 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
997 }
998 }
999
1000 /* If X could be a reference to a temporary slot, mark the fact that its
1001 address was taken. */
1002
1003 void
1004 mark_temp_addr_taken (rtx x)
1005 {
1006 struct temp_slot *p;
1007
1008 if (x == 0)
1009 return;
1010
1011 /* If X is not in memory or is at a constant address, it cannot be in
1012 a temporary slot. */
1013 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1014 return;
1015
1016 p = find_temp_slot_from_address (XEXP (x, 0));
1017 if (p != 0)
1018 p->addr_taken = 1;
1019 }
1020
1021 /* If X could be a reference to a temporary slot, mark that slot as
1022 belonging to the to one level higher than the current level. If X
1023 matched one of our slots, just mark that one. Otherwise, we can't
1024 easily predict which it is, so upgrade all of them. Kept slots
1025 need not be touched.
1026
1027 This is called when an ({...}) construct occurs and a statement
1028 returns a value in memory. */
1029
1030 void
1031 preserve_temp_slots (rtx x)
1032 {
1033 struct temp_slot *p = 0, *next;
1034
1035 /* If there is no result, we still might have some objects whose address
1036 were taken, so we need to make sure they stay around. */
1037 if (x == 0)
1038 {
1039 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1040 {
1041 next = p->next;
1042
1043 if (p->addr_taken)
1044 move_slot_to_level (p, temp_slot_level - 1);
1045 }
1046
1047 return;
1048 }
1049
1050 /* If X is a register that is being used as a pointer, see if we have
1051 a temporary slot we know it points to. To be consistent with
1052 the code below, we really should preserve all non-kept slots
1053 if we can't find a match, but that seems to be much too costly. */
1054 if (REG_P (x) && REG_POINTER (x))
1055 p = find_temp_slot_from_address (x);
1056
1057 /* If X is not in memory or is at a constant address, it cannot be in
1058 a temporary slot, but it can contain something whose address was
1059 taken. */
1060 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1061 {
1062 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1063 {
1064 next = p->next;
1065
1066 if (p->addr_taken)
1067 move_slot_to_level (p, temp_slot_level - 1);
1068 }
1069
1070 return;
1071 }
1072
1073 /* First see if we can find a match. */
1074 if (p == 0)
1075 p = find_temp_slot_from_address (XEXP (x, 0));
1076
1077 if (p != 0)
1078 {
1079 /* Move everything at our level whose address was taken to our new
1080 level in case we used its address. */
1081 struct temp_slot *q;
1082
1083 if (p->level == temp_slot_level)
1084 {
1085 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1086 {
1087 next = q->next;
1088
1089 if (p != q && q->addr_taken)
1090 move_slot_to_level (q, temp_slot_level - 1);
1091 }
1092
1093 move_slot_to_level (p, temp_slot_level - 1);
1094 p->addr_taken = 0;
1095 }
1096 return;
1097 }
1098
1099 /* Otherwise, preserve all non-kept slots at this level. */
1100 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1101 {
1102 next = p->next;
1103
1104 if (!p->keep)
1105 move_slot_to_level (p, temp_slot_level - 1);
1106 }
1107 }
1108
1109 /* Free all temporaries used so far. This is normally called at the
1110 end of generating code for a statement. */
1111
1112 void
1113 free_temp_slots (void)
1114 {
1115 struct temp_slot *p, *next;
1116
1117 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1118 {
1119 next = p->next;
1120
1121 if (!p->keep)
1122 make_slot_available (p);
1123 }
1124
1125 combine_temp_slots ();
1126 }
1127
1128 /* Push deeper into the nesting level for stack temporaries. */
1129
1130 void
1131 push_temp_slots (void)
1132 {
1133 temp_slot_level++;
1134 }
1135
1136 /* Pop a temporary nesting level. All slots in use in the current level
1137 are freed. */
1138
1139 void
1140 pop_temp_slots (void)
1141 {
1142 struct temp_slot *p, *next;
1143
1144 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1145 {
1146 next = p->next;
1147 make_slot_available (p);
1148 }
1149
1150 combine_temp_slots ();
1151
1152 temp_slot_level--;
1153 }
1154
1155 /* Initialize temporary slots. */
1156
1157 void
1158 init_temp_slots (void)
1159 {
1160 /* We have not allocated any temporaries yet. */
1161 avail_temp_slots = 0;
1162 used_temp_slots = 0;
1163 temp_slot_level = 0;
1164 }
1165 \f
1166 /* These routines are responsible for converting virtual register references
1167 to the actual hard register references once RTL generation is complete.
1168
1169 The following four variables are used for communication between the
1170 routines. They contain the offsets of the virtual registers from their
1171 respective hard registers. */
1172
1173 static int in_arg_offset;
1174 static int var_offset;
1175 static int dynamic_offset;
1176 static int out_arg_offset;
1177 static int cfa_offset;
1178
1179 /* In most machines, the stack pointer register is equivalent to the bottom
1180 of the stack. */
1181
1182 #ifndef STACK_POINTER_OFFSET
1183 #define STACK_POINTER_OFFSET 0
1184 #endif
1185
1186 /* If not defined, pick an appropriate default for the offset of dynamically
1187 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1188 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1189
1190 #ifndef STACK_DYNAMIC_OFFSET
1191
1192 /* The bottom of the stack points to the actual arguments. If
1193 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1194 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1195 stack space for register parameters is not pushed by the caller, but
1196 rather part of the fixed stack areas and hence not included in
1197 `current_function_outgoing_args_size'. Nevertheless, we must allow
1198 for it when allocating stack dynamic objects. */
1199
1200 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1201 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1202 ((ACCUMULATE_OUTGOING_ARGS \
1203 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1204 + (STACK_POINTER_OFFSET)) \
1205
1206 #else
1207 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1208 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1209 + (STACK_POINTER_OFFSET))
1210 #endif
1211 #endif
1212
1213 /* On most machines, the CFA coincides with the first incoming parm. */
1214
1215 #ifndef ARG_POINTER_CFA_OFFSET
1216 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1217 #endif
1218
1219 \f
1220 /* Pass through the INSNS of function FNDECL and convert virtual register
1221 references to hard register references. */
1222
1223 void
1224 instantiate_virtual_regs (void)
1225 {
1226 rtx insn;
1227
1228 /* Compute the offsets to use for this function. */
1229 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1230 var_offset = STARTING_FRAME_OFFSET;
1231 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1232 out_arg_offset = STACK_POINTER_OFFSET;
1233 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1234
1235 /* Scan all variables and parameters of this function. For each that is
1236 in memory, instantiate all virtual registers if the result is a valid
1237 address. If not, we do it later. That will handle most uses of virtual
1238 regs on many machines. */
1239 instantiate_decls (current_function_decl, 1);
1240
1241 /* Initialize recognition, indicating that volatile is OK. */
1242 init_recog ();
1243
1244 /* Scan through all the insns, instantiating every virtual register still
1245 present. */
1246 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1247 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1248 || GET_CODE (insn) == CALL_INSN)
1249 {
1250 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1251 if (INSN_DELETED_P (insn))
1252 continue;
1253 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1254 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1255 if (GET_CODE (insn) == CALL_INSN)
1256 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1257 NULL_RTX, 0);
1258
1259 /* Past this point all ASM statements should match. Verify that
1260 to avoid failures later in the compilation process. */
1261 if (asm_noperands (PATTERN (insn)) >= 0
1262 && ! check_asm_operands (PATTERN (insn)))
1263 instantiate_virtual_regs_lossage (insn);
1264 }
1265
1266 /* Now instantiate the remaining register equivalences for debugging info.
1267 These will not be valid addresses. */
1268 instantiate_decls (current_function_decl, 0);
1269
1270 /* Indicate that, from now on, assign_stack_local should use
1271 frame_pointer_rtx. */
1272 virtuals_instantiated = 1;
1273 }
1274
1275 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1276 all virtual registers in their DECL_RTL's.
1277
1278 If VALID_ONLY, do this only if the resulting address is still valid.
1279 Otherwise, always do it. */
1280
1281 static void
1282 instantiate_decls (tree fndecl, int valid_only)
1283 {
1284 tree decl;
1285
1286 /* Process all parameters of the function. */
1287 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1288 {
1289 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1290 HOST_WIDE_INT size_rtl;
1291
1292 instantiate_decl (DECL_RTL (decl), size, valid_only);
1293
1294 /* If the parameter was promoted, then the incoming RTL mode may be
1295 larger than the declared type size. We must use the larger of
1296 the two sizes. */
1297 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1298 size = MAX (size_rtl, size);
1299 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1300 }
1301
1302 /* Now process all variables defined in the function or its subblocks. */
1303 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1304 }
1305
1306 /* Subroutine of instantiate_decls: Process all decls in the given
1307 BLOCK node and all its subblocks. */
1308
1309 static void
1310 instantiate_decls_1 (tree let, int valid_only)
1311 {
1312 tree t;
1313
1314 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1315 if (DECL_RTL_SET_P (t))
1316 instantiate_decl (DECL_RTL (t),
1317 int_size_in_bytes (TREE_TYPE (t)),
1318 valid_only);
1319
1320 /* Process all subblocks. */
1321 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1322 instantiate_decls_1 (t, valid_only);
1323 }
1324
1325 /* Subroutine of the preceding procedures: Given RTL representing a
1326 decl and the size of the object, do any instantiation required.
1327
1328 If VALID_ONLY is nonzero, it means that the RTL should only be
1329 changed if the new address is valid. */
1330
1331 static void
1332 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1333 {
1334 enum machine_mode mode;
1335 rtx addr;
1336
1337 if (x == 0)
1338 return;
1339
1340 /* If this is a CONCAT, recurse for the pieces. */
1341 if (GET_CODE (x) == CONCAT)
1342 {
1343 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1344 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1345 return;
1346 }
1347
1348 /* If this is not a MEM, no need to do anything. Similarly if the
1349 address is a constant or a register that is not a virtual register. */
1350 if (!MEM_P (x))
1351 return;
1352
1353 addr = XEXP (x, 0);
1354 if (CONSTANT_P (addr)
1355 || (REG_P (addr)
1356 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1357 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1358 return;
1359
1360 /* If we should only do this if the address is valid, copy the address.
1361 We need to do this so we can undo any changes that might make the
1362 address invalid. This copy is unfortunate, but probably can't be
1363 avoided. */
1364
1365 if (valid_only)
1366 addr = copy_rtx (addr);
1367
1368 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1369
1370 if (valid_only && size >= 0)
1371 {
1372 unsigned HOST_WIDE_INT decl_size = size;
1373
1374 /* Now verify that the resulting address is valid for every integer or
1375 floating-point mode up to and including SIZE bytes long. We do this
1376 since the object might be accessed in any mode and frame addresses
1377 are shared. */
1378
1379 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1380 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1381 mode = GET_MODE_WIDER_MODE (mode))
1382 if (! memory_address_p (mode, addr))
1383 return;
1384
1385 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1386 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1387 mode = GET_MODE_WIDER_MODE (mode))
1388 if (! memory_address_p (mode, addr))
1389 return;
1390 }
1391
1392 /* Put back the address now that we have updated it and we either know
1393 it is valid or we don't care whether it is valid. */
1394
1395 XEXP (x, 0) = addr;
1396 }
1397 \f
1398 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1399 is a virtual register, return the equivalent hard register and set the
1400 offset indirectly through the pointer. Otherwise, return 0. */
1401
1402 static rtx
1403 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1404 {
1405 rtx new;
1406 HOST_WIDE_INT offset;
1407
1408 if (x == virtual_incoming_args_rtx)
1409 new = arg_pointer_rtx, offset = in_arg_offset;
1410 else if (x == virtual_stack_vars_rtx)
1411 new = frame_pointer_rtx, offset = var_offset;
1412 else if (x == virtual_stack_dynamic_rtx)
1413 new = stack_pointer_rtx, offset = dynamic_offset;
1414 else if (x == virtual_outgoing_args_rtx)
1415 new = stack_pointer_rtx, offset = out_arg_offset;
1416 else if (x == virtual_cfa_rtx)
1417 new = arg_pointer_rtx, offset = cfa_offset;
1418 else
1419 return 0;
1420
1421 *poffset = offset;
1422 return new;
1423 }
1424 \f
1425
1426 /* Called when instantiate_virtual_regs has failed to update the instruction.
1427 Usually this means that non-matching instruction has been emit, however for
1428 asm statements it may be the problem in the constraints. */
1429 static void
1430 instantiate_virtual_regs_lossage (rtx insn)
1431 {
1432 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1433 error_for_asm (insn, "impossible constraint in %<asm%>");
1434 delete_insn (insn);
1435 }
1436 /* Given a pointer to a piece of rtx and an optional pointer to the
1437 containing object, instantiate any virtual registers present in it.
1438
1439 If EXTRA_INSNS, we always do the replacement and generate
1440 any extra insns before OBJECT. If it zero, we do nothing if replacement
1441 is not valid.
1442
1443 Return 1 if we either had nothing to do or if we were able to do the
1444 needed replacement. Return 0 otherwise; we only return zero if
1445 EXTRA_INSNS is zero.
1446
1447 We first try some simple transformations to avoid the creation of extra
1448 pseudos. */
1449
1450 static int
1451 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1452 {
1453 rtx x;
1454 RTX_CODE code;
1455 rtx new = 0;
1456 HOST_WIDE_INT offset = 0;
1457 rtx temp;
1458 rtx seq;
1459 int i, j;
1460 const char *fmt;
1461
1462 /* Re-start here to avoid recursion in common cases. */
1463 restart:
1464
1465 x = *loc;
1466 if (x == 0)
1467 return 1;
1468
1469 /* We may have detected and deleted invalid asm statements. */
1470 if (object && INSN_P (object) && INSN_DELETED_P (object))
1471 return 1;
1472
1473 code = GET_CODE (x);
1474
1475 /* Check for some special cases. */
1476 switch (code)
1477 {
1478 case CONST_INT:
1479 case CONST_DOUBLE:
1480 case CONST_VECTOR:
1481 case CONST:
1482 case SYMBOL_REF:
1483 case CODE_LABEL:
1484 case PC:
1485 case CC0:
1486 case ASM_INPUT:
1487 case ADDR_VEC:
1488 case ADDR_DIFF_VEC:
1489 case RETURN:
1490 return 1;
1491
1492 case SET:
1493 /* We are allowed to set the virtual registers. This means that
1494 the actual register should receive the source minus the
1495 appropriate offset. This is used, for example, in the handling
1496 of non-local gotos. */
1497 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1498 {
1499 rtx src = SET_SRC (x);
1500
1501 /* We are setting the register, not using it, so the relevant
1502 offset is the negative of the offset to use were we using
1503 the register. */
1504 offset = - offset;
1505 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1506
1507 /* The only valid sources here are PLUS or REG. Just do
1508 the simplest possible thing to handle them. */
1509 if (!REG_P (src) && GET_CODE (src) != PLUS)
1510 {
1511 instantiate_virtual_regs_lossage (object);
1512 return 1;
1513 }
1514
1515 start_sequence ();
1516 if (!REG_P (src))
1517 temp = force_operand (src, NULL_RTX);
1518 else
1519 temp = src;
1520 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1521 seq = get_insns ();
1522 end_sequence ();
1523
1524 emit_insn_before (seq, object);
1525 SET_DEST (x) = new;
1526
1527 if (! validate_change (object, &SET_SRC (x), temp, 0)
1528 || ! extra_insns)
1529 instantiate_virtual_regs_lossage (object);
1530
1531 return 1;
1532 }
1533
1534 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1535 loc = &SET_SRC (x);
1536 goto restart;
1537
1538 case PLUS:
1539 /* Handle special case of virtual register plus constant. */
1540 if (CONSTANT_P (XEXP (x, 1)))
1541 {
1542 rtx old, new_offset;
1543
1544 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1545 if (GET_CODE (XEXP (x, 0)) == PLUS)
1546 {
1547 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1548 {
1549 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1550 extra_insns);
1551 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1552 }
1553 else
1554 {
1555 loc = &XEXP (x, 0);
1556 goto restart;
1557 }
1558 }
1559
1560 #ifdef POINTERS_EXTEND_UNSIGNED
1561 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1562 we can commute the PLUS and SUBREG because pointers into the
1563 frame are well-behaved. */
1564 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1565 && GET_CODE (XEXP (x, 1)) == CONST_INT
1566 && 0 != (new
1567 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1568 &offset))
1569 && validate_change (object, loc,
1570 plus_constant (gen_lowpart (ptr_mode,
1571 new),
1572 offset
1573 + INTVAL (XEXP (x, 1))),
1574 0))
1575 return 1;
1576 #endif
1577 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1578 {
1579 /* We know the second operand is a constant. Unless the
1580 first operand is a REG (which has been already checked),
1581 it needs to be checked. */
1582 if (!REG_P (XEXP (x, 0)))
1583 {
1584 loc = &XEXP (x, 0);
1585 goto restart;
1586 }
1587 return 1;
1588 }
1589
1590 new_offset = plus_constant (XEXP (x, 1), offset);
1591
1592 /* If the new constant is zero, try to replace the sum with just
1593 the register. */
1594 if (new_offset == const0_rtx
1595 && validate_change (object, loc, new, 0))
1596 return 1;
1597
1598 /* Next try to replace the register and new offset.
1599 There are two changes to validate here and we can't assume that
1600 in the case of old offset equals new just changing the register
1601 will yield a valid insn. In the interests of a little efficiency,
1602 however, we only call validate change once (we don't queue up the
1603 changes and then call apply_change_group). */
1604
1605 old = XEXP (x, 0);
1606 if (offset == 0
1607 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1608 : (XEXP (x, 0) = new,
1609 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1610 {
1611 if (! extra_insns)
1612 {
1613 XEXP (x, 0) = old;
1614 return 0;
1615 }
1616
1617 /* Otherwise copy the new constant into a register and replace
1618 constant with that register. */
1619 temp = gen_reg_rtx (Pmode);
1620 XEXP (x, 0) = new;
1621 if (validate_change (object, &XEXP (x, 1), temp, 0))
1622 emit_insn_before (gen_move_insn (temp, new_offset), object);
1623 else
1624 {
1625 /* If that didn't work, replace this expression with a
1626 register containing the sum. */
1627
1628 XEXP (x, 0) = old;
1629 new = gen_rtx_PLUS (Pmode, new, new_offset);
1630
1631 start_sequence ();
1632 temp = force_operand (new, NULL_RTX);
1633 seq = get_insns ();
1634 end_sequence ();
1635
1636 emit_insn_before (seq, object);
1637 if (! validate_change (object, loc, temp, 0)
1638 && ! validate_replace_rtx (x, temp, object))
1639 {
1640 instantiate_virtual_regs_lossage (object);
1641 return 1;
1642 }
1643 }
1644 }
1645
1646 return 1;
1647 }
1648
1649 /* Fall through to generic two-operand expression case. */
1650 case EXPR_LIST:
1651 case CALL:
1652 case COMPARE:
1653 case MINUS:
1654 case MULT:
1655 case DIV: case UDIV:
1656 case MOD: case UMOD:
1657 case AND: case IOR: case XOR:
1658 case ROTATERT: case ROTATE:
1659 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1660 case NE: case EQ:
1661 case GE: case GT: case GEU: case GTU:
1662 case LE: case LT: case LEU: case LTU:
1663 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1664 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1665 loc = &XEXP (x, 0);
1666 goto restart;
1667
1668 case MEM:
1669 /* Most cases of MEM that convert to valid addresses have already been
1670 handled by our scan of decls. The only special handling we
1671 need here is to make a copy of the rtx to ensure it isn't being
1672 shared if we have to change it to a pseudo.
1673
1674 If the rtx is a simple reference to an address via a virtual register,
1675 it can potentially be shared. In such cases, first try to make it
1676 a valid address, which can also be shared. Otherwise, copy it and
1677 proceed normally.
1678
1679 First check for common cases that need no processing. These are
1680 usually due to instantiation already being done on a previous instance
1681 of a shared rtx. */
1682
1683 temp = XEXP (x, 0);
1684 if (CONSTANT_ADDRESS_P (temp)
1685 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1686 || temp == arg_pointer_rtx
1687 #endif
1688 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1689 || temp == hard_frame_pointer_rtx
1690 #endif
1691 || temp == frame_pointer_rtx)
1692 return 1;
1693
1694 if (GET_CODE (temp) == PLUS
1695 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1696 && (XEXP (temp, 0) == frame_pointer_rtx
1697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || XEXP (temp, 0) == hard_frame_pointer_rtx
1699 #endif
1700 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1701 || XEXP (temp, 0) == arg_pointer_rtx
1702 #endif
1703 ))
1704 return 1;
1705
1706 if (temp == virtual_stack_vars_rtx
1707 || temp == virtual_incoming_args_rtx
1708 || (GET_CODE (temp) == PLUS
1709 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1710 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1711 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1712 {
1713 /* This MEM may be shared. If the substitution can be done without
1714 the need to generate new pseudos, we want to do it in place
1715 so all copies of the shared rtx benefit. The call below will
1716 only make substitutions if the resulting address is still
1717 valid.
1718
1719 Note that we cannot pass X as the object in the recursive call
1720 since the insn being processed may not allow all valid
1721 addresses. However, if we were not passed on object, we can
1722 only modify X without copying it if X will have a valid
1723 address.
1724
1725 ??? Also note that this can still lose if OBJECT is an insn that
1726 has less restrictions on an address that some other insn.
1727 In that case, we will modify the shared address. This case
1728 doesn't seem very likely, though. One case where this could
1729 happen is in the case of a USE or CLOBBER reference, but we
1730 take care of that below. */
1731
1732 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1733 object ? object : x, 0))
1734 return 1;
1735
1736 /* Otherwise make a copy and process that copy. We copy the entire
1737 RTL expression since it might be a PLUS which could also be
1738 shared. */
1739 *loc = x = copy_rtx (x);
1740 }
1741
1742 /* Fall through to generic unary operation case. */
1743 case PREFETCH:
1744 case SUBREG:
1745 case STRICT_LOW_PART:
1746 case NEG: case NOT:
1747 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1748 case SIGN_EXTEND: case ZERO_EXTEND:
1749 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1750 case FLOAT: case FIX:
1751 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1752 case ABS:
1753 case SQRT:
1754 case FFS:
1755 case CLZ: case CTZ:
1756 case POPCOUNT: case PARITY:
1757 /* These case either have just one operand or we know that we need not
1758 check the rest of the operands. */
1759 loc = &XEXP (x, 0);
1760 goto restart;
1761
1762 case USE:
1763 case CLOBBER:
1764 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1765 go ahead and make the invalid one, but do it to a copy. For a REG,
1766 just make the recursive call, since there's no chance of a problem. */
1767
1768 if ((MEM_P (XEXP (x, 0))
1769 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1770 0))
1771 || (REG_P (XEXP (x, 0))
1772 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1773 return 1;
1774
1775 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1776 loc = &XEXP (x, 0);
1777 goto restart;
1778
1779 case REG:
1780 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1781 in front of this insn and substitute the temporary. */
1782 if ((new = instantiate_new_reg (x, &offset)) != 0)
1783 {
1784 temp = plus_constant (new, offset);
1785 if (!validate_change (object, loc, temp, 0))
1786 {
1787 if (! extra_insns)
1788 return 0;
1789
1790 start_sequence ();
1791 temp = force_operand (temp, NULL_RTX);
1792 seq = get_insns ();
1793 end_sequence ();
1794
1795 emit_insn_before (seq, object);
1796 if (! validate_change (object, loc, temp, 0)
1797 && ! validate_replace_rtx (x, temp, object))
1798 instantiate_virtual_regs_lossage (object);
1799 }
1800 }
1801
1802 return 1;
1803
1804 default:
1805 break;
1806 }
1807
1808 /* Scan all subexpressions. */
1809 fmt = GET_RTX_FORMAT (code);
1810 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1811 if (*fmt == 'e')
1812 {
1813 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1814 return 0;
1815 }
1816 else if (*fmt == 'E')
1817 for (j = 0; j < XVECLEN (x, i); j++)
1818 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1819 extra_insns))
1820 return 0;
1821
1822 return 1;
1823 }
1824 \f
1825 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1826 This means a type for which function calls must pass an address to the
1827 function or get an address back from the function.
1828 EXP may be a type node or an expression (whose type is tested). */
1829
1830 int
1831 aggregate_value_p (tree exp, tree fntype)
1832 {
1833 int i, regno, nregs;
1834 rtx reg;
1835
1836 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1837
1838 if (fntype)
1839 switch (TREE_CODE (fntype))
1840 {
1841 case CALL_EXPR:
1842 fntype = get_callee_fndecl (fntype);
1843 fntype = fntype ? TREE_TYPE (fntype) : 0;
1844 break;
1845 case FUNCTION_DECL:
1846 fntype = TREE_TYPE (fntype);
1847 break;
1848 case FUNCTION_TYPE:
1849 case METHOD_TYPE:
1850 break;
1851 case IDENTIFIER_NODE:
1852 fntype = 0;
1853 break;
1854 default:
1855 /* We don't expect other rtl types here. */
1856 gcc_unreachable ();
1857 }
1858
1859 if (TREE_CODE (type) == VOID_TYPE)
1860 return 0;
1861 /* If the front end has decided that this needs to be passed by
1862 reference, do so. */
1863 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1864 && DECL_BY_REFERENCE (exp))
1865 return 1;
1866 if (targetm.calls.return_in_memory (type, fntype))
1867 return 1;
1868 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1869 and thus can't be returned in registers. */
1870 if (TREE_ADDRESSABLE (type))
1871 return 1;
1872 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1873 return 1;
1874 /* Make sure we have suitable call-clobbered regs to return
1875 the value in; if not, we must return it in memory. */
1876 reg = hard_function_value (type, 0, 0);
1877
1878 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1879 it is OK. */
1880 if (!REG_P (reg))
1881 return 0;
1882
1883 regno = REGNO (reg);
1884 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1885 for (i = 0; i < nregs; i++)
1886 if (! call_used_regs[regno + i])
1887 return 1;
1888 return 0;
1889 }
1890 \f
1891 /* Return true if we should assign DECL a pseudo register; false if it
1892 should live on the local stack. */
1893
1894 bool
1895 use_register_for_decl (tree decl)
1896 {
1897 /* Honor volatile. */
1898 if (TREE_SIDE_EFFECTS (decl))
1899 return false;
1900
1901 /* Honor addressability. */
1902 if (TREE_ADDRESSABLE (decl))
1903 return false;
1904
1905 /* Only register-like things go in registers. */
1906 if (DECL_MODE (decl) == BLKmode)
1907 return false;
1908
1909 /* If -ffloat-store specified, don't put explicit float variables
1910 into registers. */
1911 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1912 propagates values across these stores, and it probably shouldn't. */
1913 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1914 return false;
1915
1916 /* If we're not interested in tracking debugging information for
1917 this decl, then we can certainly put it in a register. */
1918 if (DECL_IGNORED_P (decl))
1919 return true;
1920
1921 return (optimize || DECL_REGISTER (decl));
1922 }
1923
1924 /* Return true if TYPE should be passed by invisible reference. */
1925
1926 bool
1927 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1928 tree type, bool named_arg)
1929 {
1930 if (type)
1931 {
1932 /* If this type contains non-trivial constructors, then it is
1933 forbidden for the middle-end to create any new copies. */
1934 if (TREE_ADDRESSABLE (type))
1935 return true;
1936
1937 /* GCC post 3.4 passes *all* variable sized types by reference. */
1938 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1939 return true;
1940 }
1941
1942 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1943 }
1944
1945 /* Return true if TYPE, which is passed by reference, should be callee
1946 copied instead of caller copied. */
1947
1948 bool
1949 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1950 tree type, bool named_arg)
1951 {
1952 if (type && TREE_ADDRESSABLE (type))
1953 return false;
1954 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1955 }
1956
1957 /* Structures to communicate between the subroutines of assign_parms.
1958 The first holds data persistent across all parameters, the second
1959 is cleared out for each parameter. */
1960
1961 struct assign_parm_data_all
1962 {
1963 CUMULATIVE_ARGS args_so_far;
1964 struct args_size stack_args_size;
1965 tree function_result_decl;
1966 tree orig_fnargs;
1967 rtx conversion_insns;
1968 HOST_WIDE_INT pretend_args_size;
1969 HOST_WIDE_INT extra_pretend_bytes;
1970 int reg_parm_stack_space;
1971 };
1972
1973 struct assign_parm_data_one
1974 {
1975 tree nominal_type;
1976 tree passed_type;
1977 rtx entry_parm;
1978 rtx stack_parm;
1979 enum machine_mode nominal_mode;
1980 enum machine_mode passed_mode;
1981 enum machine_mode promoted_mode;
1982 struct locate_and_pad_arg_data locate;
1983 int partial;
1984 BOOL_BITFIELD named_arg : 1;
1985 BOOL_BITFIELD passed_pointer : 1;
1986 BOOL_BITFIELD on_stack : 1;
1987 BOOL_BITFIELD loaded_in_reg : 1;
1988 };
1989
1990 /* A subroutine of assign_parms. Initialize ALL. */
1991
1992 static void
1993 assign_parms_initialize_all (struct assign_parm_data_all *all)
1994 {
1995 tree fntype;
1996
1997 memset (all, 0, sizeof (*all));
1998
1999 fntype = TREE_TYPE (current_function_decl);
2000
2001 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2002 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2003 #else
2004 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2005 current_function_decl, -1);
2006 #endif
2007
2008 #ifdef REG_PARM_STACK_SPACE
2009 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2010 #endif
2011 }
2012
2013 /* If ARGS contains entries with complex types, split the entry into two
2014 entries of the component type. Return a new list of substitutions are
2015 needed, else the old list. */
2016
2017 static tree
2018 split_complex_args (tree args)
2019 {
2020 tree p;
2021
2022 /* Before allocating memory, check for the common case of no complex. */
2023 for (p = args; p; p = TREE_CHAIN (p))
2024 {
2025 tree type = TREE_TYPE (p);
2026 if (TREE_CODE (type) == COMPLEX_TYPE
2027 && targetm.calls.split_complex_arg (type))
2028 goto found;
2029 }
2030 return args;
2031
2032 found:
2033 args = copy_list (args);
2034
2035 for (p = args; p; p = TREE_CHAIN (p))
2036 {
2037 tree type = TREE_TYPE (p);
2038 if (TREE_CODE (type) == COMPLEX_TYPE
2039 && targetm.calls.split_complex_arg (type))
2040 {
2041 tree decl;
2042 tree subtype = TREE_TYPE (type);
2043 bool addressable = TREE_ADDRESSABLE (p);
2044
2045 /* Rewrite the PARM_DECL's type with its component. */
2046 TREE_TYPE (p) = subtype;
2047 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2048 DECL_MODE (p) = VOIDmode;
2049 DECL_SIZE (p) = NULL;
2050 DECL_SIZE_UNIT (p) = NULL;
2051 /* If this arg must go in memory, put it in a pseudo here.
2052 We can't allow it to go in memory as per normal parms,
2053 because the usual place might not have the imag part
2054 adjacent to the real part. */
2055 DECL_ARTIFICIAL (p) = addressable;
2056 DECL_IGNORED_P (p) = addressable;
2057 TREE_ADDRESSABLE (p) = 0;
2058 layout_decl (p, 0);
2059
2060 /* Build a second synthetic decl. */
2061 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2062 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2063 DECL_ARTIFICIAL (decl) = addressable;
2064 DECL_IGNORED_P (decl) = addressable;
2065 layout_decl (decl, 0);
2066
2067 /* Splice it in; skip the new decl. */
2068 TREE_CHAIN (decl) = TREE_CHAIN (p);
2069 TREE_CHAIN (p) = decl;
2070 p = decl;
2071 }
2072 }
2073
2074 return args;
2075 }
2076
2077 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2078 the hidden struct return argument, and (abi willing) complex args.
2079 Return the new parameter list. */
2080
2081 static tree
2082 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2083 {
2084 tree fndecl = current_function_decl;
2085 tree fntype = TREE_TYPE (fndecl);
2086 tree fnargs = DECL_ARGUMENTS (fndecl);
2087
2088 /* If struct value address is treated as the first argument, make it so. */
2089 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2090 && ! current_function_returns_pcc_struct
2091 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2092 {
2093 tree type = build_pointer_type (TREE_TYPE (fntype));
2094 tree decl;
2095
2096 decl = build_decl (PARM_DECL, NULL_TREE, type);
2097 DECL_ARG_TYPE (decl) = type;
2098 DECL_ARTIFICIAL (decl) = 1;
2099 DECL_IGNORED_P (decl) = 1;
2100
2101 TREE_CHAIN (decl) = fnargs;
2102 fnargs = decl;
2103 all->function_result_decl = decl;
2104 }
2105
2106 all->orig_fnargs = fnargs;
2107
2108 /* If the target wants to split complex arguments into scalars, do so. */
2109 if (targetm.calls.split_complex_arg)
2110 fnargs = split_complex_args (fnargs);
2111
2112 return fnargs;
2113 }
2114
2115 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2116 data for the parameter. Incorporate ABI specifics such as pass-by-
2117 reference and type promotion. */
2118
2119 static void
2120 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2121 struct assign_parm_data_one *data)
2122 {
2123 tree nominal_type, passed_type;
2124 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2125
2126 memset (data, 0, sizeof (*data));
2127
2128 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2129 if (!current_function_stdarg)
2130 data->named_arg = 1; /* No varadic parms. */
2131 else if (TREE_CHAIN (parm))
2132 data->named_arg = 1; /* Not the last non-varadic parm. */
2133 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2134 data->named_arg = 1; /* Only varadic ones are unnamed. */
2135 else
2136 data->named_arg = 0; /* Treat as varadic. */
2137
2138 nominal_type = TREE_TYPE (parm);
2139 passed_type = DECL_ARG_TYPE (parm);
2140
2141 /* Look out for errors propagating this far. Also, if the parameter's
2142 type is void then its value doesn't matter. */
2143 if (TREE_TYPE (parm) == error_mark_node
2144 /* This can happen after weird syntax errors
2145 or if an enum type is defined among the parms. */
2146 || TREE_CODE (parm) != PARM_DECL
2147 || passed_type == NULL
2148 || VOID_TYPE_P (nominal_type))
2149 {
2150 nominal_type = passed_type = void_type_node;
2151 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2152 goto egress;
2153 }
2154
2155 /* Find mode of arg as it is passed, and mode of arg as it should be
2156 during execution of this function. */
2157 passed_mode = TYPE_MODE (passed_type);
2158 nominal_mode = TYPE_MODE (nominal_type);
2159
2160 /* If the parm is to be passed as a transparent union, use the type of
2161 the first field for the tests below. We have already verified that
2162 the modes are the same. */
2163 if (DECL_TRANSPARENT_UNION (parm)
2164 || (TREE_CODE (passed_type) == UNION_TYPE
2165 && TYPE_TRANSPARENT_UNION (passed_type)))
2166 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2167
2168 /* See if this arg was passed by invisible reference. */
2169 if (pass_by_reference (&all->args_so_far, passed_mode,
2170 passed_type, data->named_arg))
2171 {
2172 passed_type = nominal_type = build_pointer_type (passed_type);
2173 data->passed_pointer = true;
2174 passed_mode = nominal_mode = Pmode;
2175 }
2176
2177 /* Find mode as it is passed by the ABI. */
2178 promoted_mode = passed_mode;
2179 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2180 {
2181 int unsignedp = TYPE_UNSIGNED (passed_type);
2182 promoted_mode = promote_mode (passed_type, promoted_mode,
2183 &unsignedp, 1);
2184 }
2185
2186 egress:
2187 data->nominal_type = nominal_type;
2188 data->passed_type = passed_type;
2189 data->nominal_mode = nominal_mode;
2190 data->passed_mode = passed_mode;
2191 data->promoted_mode = promoted_mode;
2192 }
2193
2194 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2195
2196 static void
2197 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2198 struct assign_parm_data_one *data, bool no_rtl)
2199 {
2200 int varargs_pretend_bytes = 0;
2201
2202 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2203 data->promoted_mode,
2204 data->passed_type,
2205 &varargs_pretend_bytes, no_rtl);
2206
2207 /* If the back-end has requested extra stack space, record how much is
2208 needed. Do not change pretend_args_size otherwise since it may be
2209 nonzero from an earlier partial argument. */
2210 if (varargs_pretend_bytes > 0)
2211 all->pretend_args_size = varargs_pretend_bytes;
2212 }
2213
2214 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2215 the incoming location of the current parameter. */
2216
2217 static void
2218 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2219 struct assign_parm_data_one *data)
2220 {
2221 HOST_WIDE_INT pretend_bytes = 0;
2222 rtx entry_parm;
2223 bool in_regs;
2224
2225 if (data->promoted_mode == VOIDmode)
2226 {
2227 data->entry_parm = data->stack_parm = const0_rtx;
2228 return;
2229 }
2230
2231 #ifdef FUNCTION_INCOMING_ARG
2232 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2233 data->passed_type, data->named_arg);
2234 #else
2235 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2236 data->passed_type, data->named_arg);
2237 #endif
2238
2239 if (entry_parm == 0)
2240 data->promoted_mode = data->passed_mode;
2241
2242 /* Determine parm's home in the stack, in case it arrives in the stack
2243 or we should pretend it did. Compute the stack position and rtx where
2244 the argument arrives and its size.
2245
2246 There is one complexity here: If this was a parameter that would
2247 have been passed in registers, but wasn't only because it is
2248 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2249 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2250 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2251 as it was the previous time. */
2252 in_regs = entry_parm != 0;
2253 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2254 in_regs = true;
2255 #endif
2256 if (!in_regs && !data->named_arg)
2257 {
2258 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2259 {
2260 rtx tem;
2261 #ifdef FUNCTION_INCOMING_ARG
2262 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2263 data->passed_type, true);
2264 #else
2265 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2266 data->passed_type, true);
2267 #endif
2268 in_regs = tem != NULL;
2269 }
2270 }
2271
2272 /* If this parameter was passed both in registers and in the stack, use
2273 the copy on the stack. */
2274 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2275 data->passed_type))
2276 entry_parm = 0;
2277
2278 if (entry_parm)
2279 {
2280 int partial;
2281
2282 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2283 data->promoted_mode,
2284 data->passed_type,
2285 data->named_arg);
2286 data->partial = partial;
2287
2288 /* The caller might already have allocated stack space for the
2289 register parameters. */
2290 if (partial != 0 && all->reg_parm_stack_space == 0)
2291 {
2292 /* Part of this argument is passed in registers and part
2293 is passed on the stack. Ask the prologue code to extend
2294 the stack part so that we can recreate the full value.
2295
2296 PRETEND_BYTES is the size of the registers we need to store.
2297 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2298 stack space that the prologue should allocate.
2299
2300 Internally, gcc assumes that the argument pointer is aligned
2301 to STACK_BOUNDARY bits. This is used both for alignment
2302 optimizations (see init_emit) and to locate arguments that are
2303 aligned to more than PARM_BOUNDARY bits. We must preserve this
2304 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2305 a stack boundary. */
2306
2307 /* We assume at most one partial arg, and it must be the first
2308 argument on the stack. */
2309 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2310
2311 pretend_bytes = partial;
2312 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2313
2314 /* We want to align relative to the actual stack pointer, so
2315 don't include this in the stack size until later. */
2316 all->extra_pretend_bytes = all->pretend_args_size;
2317 }
2318 }
2319
2320 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2321 entry_parm ? data->partial : 0, current_function_decl,
2322 &all->stack_args_size, &data->locate);
2323
2324 /* Adjust offsets to include the pretend args. */
2325 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2326 data->locate.slot_offset.constant += pretend_bytes;
2327 data->locate.offset.constant += pretend_bytes;
2328
2329 data->entry_parm = entry_parm;
2330 }
2331
2332 /* A subroutine of assign_parms. If there is actually space on the stack
2333 for this parm, count it in stack_args_size and return true. */
2334
2335 static bool
2336 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2337 struct assign_parm_data_one *data)
2338 {
2339 /* Trivially true if we've no incoming register. */
2340 if (data->entry_parm == NULL)
2341 ;
2342 /* Also true if we're partially in registers and partially not,
2343 since we've arranged to drop the entire argument on the stack. */
2344 else if (data->partial != 0)
2345 ;
2346 /* Also true if the target says that it's passed in both registers
2347 and on the stack. */
2348 else if (GET_CODE (data->entry_parm) == PARALLEL
2349 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2350 ;
2351 /* Also true if the target says that there's stack allocated for
2352 all register parameters. */
2353 else if (all->reg_parm_stack_space > 0)
2354 ;
2355 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2356 else
2357 return false;
2358
2359 all->stack_args_size.constant += data->locate.size.constant;
2360 if (data->locate.size.var)
2361 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2362
2363 return true;
2364 }
2365
2366 /* A subroutine of assign_parms. Given that this parameter is allocated
2367 stack space by the ABI, find it. */
2368
2369 static void
2370 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2371 {
2372 rtx offset_rtx, stack_parm;
2373 unsigned int align, boundary;
2374
2375 /* If we're passing this arg using a reg, make its stack home the
2376 aligned stack slot. */
2377 if (data->entry_parm)
2378 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2379 else
2380 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2381
2382 stack_parm = current_function_internal_arg_pointer;
2383 if (offset_rtx != const0_rtx)
2384 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2385 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2386
2387 set_mem_attributes (stack_parm, parm, 1);
2388
2389 boundary = data->locate.boundary;
2390 align = BITS_PER_UNIT;
2391
2392 /* If we're padding upward, we know that the alignment of the slot
2393 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2394 intentionally forcing upward padding. Otherwise we have to come
2395 up with a guess at the alignment based on OFFSET_RTX. */
2396 if (data->locate.where_pad != downward || data->entry_parm)
2397 align = boundary;
2398 else if (GET_CODE (offset_rtx) == CONST_INT)
2399 {
2400 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2401 align = align & -align;
2402 }
2403 set_mem_align (stack_parm, align);
2404
2405 if (data->entry_parm)
2406 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2407
2408 data->stack_parm = stack_parm;
2409 }
2410
2411 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2412 always valid and contiguous. */
2413
2414 static void
2415 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2416 {
2417 rtx entry_parm = data->entry_parm;
2418 rtx stack_parm = data->stack_parm;
2419
2420 /* If this parm was passed part in regs and part in memory, pretend it
2421 arrived entirely in memory by pushing the register-part onto the stack.
2422 In the special case of a DImode or DFmode that is split, we could put
2423 it together in a pseudoreg directly, but for now that's not worth
2424 bothering with. */
2425 if (data->partial != 0)
2426 {
2427 /* Handle calls that pass values in multiple non-contiguous
2428 locations. The Irix 6 ABI has examples of this. */
2429 if (GET_CODE (entry_parm) == PARALLEL)
2430 emit_group_store (validize_mem (stack_parm), entry_parm,
2431 data->passed_type,
2432 int_size_in_bytes (data->passed_type));
2433 else
2434 {
2435 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2436 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2437 data->partial / UNITS_PER_WORD);
2438 }
2439
2440 entry_parm = stack_parm;
2441 }
2442
2443 /* If we didn't decide this parm came in a register, by default it came
2444 on the stack. */
2445 else if (entry_parm == NULL)
2446 entry_parm = stack_parm;
2447
2448 /* When an argument is passed in multiple locations, we can't make use
2449 of this information, but we can save some copying if the whole argument
2450 is passed in a single register. */
2451 else if (GET_CODE (entry_parm) == PARALLEL
2452 && data->nominal_mode != BLKmode
2453 && data->passed_mode != BLKmode)
2454 {
2455 size_t i, len = XVECLEN (entry_parm, 0);
2456
2457 for (i = 0; i < len; i++)
2458 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2459 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2460 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2461 == data->passed_mode)
2462 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2463 {
2464 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2465 break;
2466 }
2467 }
2468
2469 data->entry_parm = entry_parm;
2470 }
2471
2472 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2473 always valid and properly aligned. */
2474
2475 static void
2476 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2477 {
2478 rtx stack_parm = data->stack_parm;
2479
2480 /* If we can't trust the parm stack slot to be aligned enough for its
2481 ultimate type, don't use that slot after entry. We'll make another
2482 stack slot, if we need one. */
2483 if (stack_parm
2484 && ((STRICT_ALIGNMENT
2485 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2486 || (data->nominal_type
2487 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2488 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2489 stack_parm = NULL;
2490
2491 /* If parm was passed in memory, and we need to convert it on entry,
2492 don't store it back in that same slot. */
2493 else if (data->entry_parm == stack_parm
2494 && data->nominal_mode != BLKmode
2495 && data->nominal_mode != data->passed_mode)
2496 stack_parm = NULL;
2497
2498 data->stack_parm = stack_parm;
2499 }
2500
2501 /* A subroutine of assign_parms. Return true if the current parameter
2502 should be stored as a BLKmode in the current frame. */
2503
2504 static bool
2505 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2506 {
2507 if (data->nominal_mode == BLKmode)
2508 return true;
2509 if (GET_CODE (data->entry_parm) == PARALLEL)
2510 return true;
2511
2512 #ifdef BLOCK_REG_PADDING
2513 /* Only assign_parm_setup_block knows how to deal with register arguments
2514 that are padded at the least significant end. */
2515 if (REG_P (data->entry_parm)
2516 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2517 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2518 == (BYTES_BIG_ENDIAN ? upward : downward)))
2519 return true;
2520 #endif
2521
2522 return false;
2523 }
2524
2525 /* A subroutine of assign_parms. Arrange for the parameter to be
2526 present and valid in DATA->STACK_RTL. */
2527
2528 static void
2529 assign_parm_setup_block (struct assign_parm_data_all *all,
2530 tree parm, struct assign_parm_data_one *data)
2531 {
2532 rtx entry_parm = data->entry_parm;
2533 rtx stack_parm = data->stack_parm;
2534 HOST_WIDE_INT size;
2535 HOST_WIDE_INT size_stored;
2536 rtx orig_entry_parm = entry_parm;
2537
2538 if (GET_CODE (entry_parm) == PARALLEL)
2539 entry_parm = emit_group_move_into_temps (entry_parm);
2540
2541 /* If we've a non-block object that's nevertheless passed in parts,
2542 reconstitute it in register operations rather than on the stack. */
2543 if (GET_CODE (entry_parm) == PARALLEL
2544 && data->nominal_mode != BLKmode)
2545 {
2546 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2547
2548 if ((XVECLEN (entry_parm, 0) > 1
2549 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2550 && use_register_for_decl (parm))
2551 {
2552 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2553
2554 push_to_sequence (all->conversion_insns);
2555
2556 /* For values returned in multiple registers, handle possible
2557 incompatible calls to emit_group_store.
2558
2559 For example, the following would be invalid, and would have to
2560 be fixed by the conditional below:
2561
2562 emit_group_store ((reg:SF), (parallel:DF))
2563 emit_group_store ((reg:SI), (parallel:DI))
2564
2565 An example of this are doubles in e500 v2:
2566 (parallel:DF (expr_list (reg:SI) (const_int 0))
2567 (expr_list (reg:SI) (const_int 4))). */
2568 if (data->nominal_mode != data->passed_mode)
2569 {
2570 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2571 emit_group_store (t, entry_parm, NULL_TREE,
2572 GET_MODE_SIZE (GET_MODE (entry_parm)));
2573 convert_move (parmreg, t, 0);
2574 }
2575 else
2576 emit_group_store (parmreg, entry_parm, data->nominal_type,
2577 int_size_in_bytes (data->nominal_type));
2578
2579 all->conversion_insns = get_insns ();
2580 end_sequence ();
2581
2582 SET_DECL_RTL (parm, parmreg);
2583 return;
2584 }
2585 }
2586
2587 size = int_size_in_bytes (data->passed_type);
2588 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2589 if (stack_parm == 0)
2590 {
2591 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2592 stack_parm = assign_stack_local (BLKmode, size_stored,
2593 DECL_ALIGN (parm));
2594 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2595 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2596 set_mem_attributes (stack_parm, parm, 1);
2597 }
2598
2599 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2600 calls that pass values in multiple non-contiguous locations. */
2601 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2602 {
2603 rtx mem;
2604
2605 /* Note that we will be storing an integral number of words.
2606 So we have to be careful to ensure that we allocate an
2607 integral number of words. We do this above when we call
2608 assign_stack_local if space was not allocated in the argument
2609 list. If it was, this will not work if PARM_BOUNDARY is not
2610 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2611 if it becomes a problem. Exception is when BLKmode arrives
2612 with arguments not conforming to word_mode. */
2613
2614 if (data->stack_parm == 0)
2615 ;
2616 else if (GET_CODE (entry_parm) == PARALLEL)
2617 ;
2618 else
2619 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2620
2621 mem = validize_mem (stack_parm);
2622
2623 /* Handle values in multiple non-contiguous locations. */
2624 if (GET_CODE (entry_parm) == PARALLEL)
2625 {
2626 push_to_sequence (all->conversion_insns);
2627 emit_group_store (mem, entry_parm, data->passed_type, size);
2628 all->conversion_insns = get_insns ();
2629 end_sequence ();
2630 }
2631
2632 else if (size == 0)
2633 ;
2634
2635 /* If SIZE is that of a mode no bigger than a word, just use
2636 that mode's store operation. */
2637 else if (size <= UNITS_PER_WORD)
2638 {
2639 enum machine_mode mode
2640 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2641
2642 if (mode != BLKmode
2643 #ifdef BLOCK_REG_PADDING
2644 && (size == UNITS_PER_WORD
2645 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2646 != (BYTES_BIG_ENDIAN ? upward : downward)))
2647 #endif
2648 )
2649 {
2650 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2651 emit_move_insn (change_address (mem, mode, 0), reg);
2652 }
2653
2654 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2655 machine must be aligned to the left before storing
2656 to memory. Note that the previous test doesn't
2657 handle all cases (e.g. SIZE == 3). */
2658 else if (size != UNITS_PER_WORD
2659 #ifdef BLOCK_REG_PADDING
2660 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2661 == downward)
2662 #else
2663 && BYTES_BIG_ENDIAN
2664 #endif
2665 )
2666 {
2667 rtx tem, x;
2668 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2669 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2670
2671 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2672 build_int_cst (NULL_TREE, by),
2673 NULL_RTX, 1);
2674 tem = change_address (mem, word_mode, 0);
2675 emit_move_insn (tem, x);
2676 }
2677 else
2678 move_block_from_reg (REGNO (entry_parm), mem,
2679 size_stored / UNITS_PER_WORD);
2680 }
2681 else
2682 move_block_from_reg (REGNO (entry_parm), mem,
2683 size_stored / UNITS_PER_WORD);
2684 }
2685 else if (data->stack_parm == 0)
2686 {
2687 push_to_sequence (all->conversion_insns);
2688 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2689 BLOCK_OP_NORMAL);
2690 all->conversion_insns = get_insns ();
2691 end_sequence ();
2692 }
2693
2694 data->stack_parm = stack_parm;
2695 SET_DECL_RTL (parm, stack_parm);
2696 }
2697
2698 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2699 parameter. Get it there. Perform all ABI specified conversions. */
2700
2701 static void
2702 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2703 struct assign_parm_data_one *data)
2704 {
2705 rtx parmreg;
2706 enum machine_mode promoted_nominal_mode;
2707 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2708 bool did_conversion = false;
2709
2710 /* Store the parm in a pseudoregister during the function, but we may
2711 need to do it in a wider mode. */
2712
2713 promoted_nominal_mode
2714 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2715
2716 parmreg = gen_reg_rtx (promoted_nominal_mode);
2717
2718 if (!DECL_ARTIFICIAL (parm))
2719 mark_user_reg (parmreg);
2720
2721 /* If this was an item that we received a pointer to,
2722 set DECL_RTL appropriately. */
2723 if (data->passed_pointer)
2724 {
2725 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2726 set_mem_attributes (x, parm, 1);
2727 SET_DECL_RTL (parm, x);
2728 }
2729 else
2730 SET_DECL_RTL (parm, parmreg);
2731
2732 /* Copy the value into the register. */
2733 if (data->nominal_mode != data->passed_mode
2734 || promoted_nominal_mode != data->promoted_mode)
2735 {
2736 int save_tree_used;
2737
2738 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2739 mode, by the caller. We now have to convert it to
2740 NOMINAL_MODE, if different. However, PARMREG may be in
2741 a different mode than NOMINAL_MODE if it is being stored
2742 promoted.
2743
2744 If ENTRY_PARM is a hard register, it might be in a register
2745 not valid for operating in its mode (e.g., an odd-numbered
2746 register for a DFmode). In that case, moves are the only
2747 thing valid, so we can't do a convert from there. This
2748 occurs when the calling sequence allow such misaligned
2749 usages.
2750
2751 In addition, the conversion may involve a call, which could
2752 clobber parameters which haven't been copied to pseudo
2753 registers yet. Therefore, we must first copy the parm to
2754 a pseudo reg here, and save the conversion until after all
2755 parameters have been moved. */
2756
2757 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2758
2759 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2760
2761 push_to_sequence (all->conversion_insns);
2762 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2763
2764 if (GET_CODE (tempreg) == SUBREG
2765 && GET_MODE (tempreg) == data->nominal_mode
2766 && REG_P (SUBREG_REG (tempreg))
2767 && data->nominal_mode == data->passed_mode
2768 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2769 && GET_MODE_SIZE (GET_MODE (tempreg))
2770 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2771 {
2772 /* The argument is already sign/zero extended, so note it
2773 into the subreg. */
2774 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2775 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2776 }
2777
2778 /* TREE_USED gets set erroneously during expand_assignment. */
2779 save_tree_used = TREE_USED (parm);
2780 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2781 TREE_USED (parm) = save_tree_used;
2782 all->conversion_insns = get_insns ();
2783 end_sequence ();
2784
2785 did_conversion = true;
2786 }
2787 else
2788 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2789
2790 /* If we were passed a pointer but the actual value can safely live
2791 in a register, put it in one. */
2792 if (data->passed_pointer
2793 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2794 /* If by-reference argument was promoted, demote it. */
2795 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2796 || use_register_for_decl (parm)))
2797 {
2798 /* We can't use nominal_mode, because it will have been set to
2799 Pmode above. We must use the actual mode of the parm. */
2800 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2801 mark_user_reg (parmreg);
2802
2803 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2804 {
2805 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2806 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2807
2808 push_to_sequence (all->conversion_insns);
2809 emit_move_insn (tempreg, DECL_RTL (parm));
2810 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2811 emit_move_insn (parmreg, tempreg);
2812 all->conversion_insns = get_insns ();
2813 end_sequence ();
2814
2815 did_conversion = true;
2816 }
2817 else
2818 emit_move_insn (parmreg, DECL_RTL (parm));
2819
2820 SET_DECL_RTL (parm, parmreg);
2821
2822 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2823 now the parm. */
2824 data->stack_parm = NULL;
2825 }
2826
2827 /* Mark the register as eliminable if we did no conversion and it was
2828 copied from memory at a fixed offset, and the arg pointer was not
2829 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2830 offset formed an invalid address, such memory-equivalences as we
2831 make here would screw up life analysis for it. */
2832 if (data->nominal_mode == data->passed_mode
2833 && !did_conversion
2834 && data->stack_parm != 0
2835 && MEM_P (data->stack_parm)
2836 && data->locate.offset.var == 0
2837 && reg_mentioned_p (virtual_incoming_args_rtx,
2838 XEXP (data->stack_parm, 0)))
2839 {
2840 rtx linsn = get_last_insn ();
2841 rtx sinsn, set;
2842
2843 /* Mark complex types separately. */
2844 if (GET_CODE (parmreg) == CONCAT)
2845 {
2846 enum machine_mode submode
2847 = GET_MODE_INNER (GET_MODE (parmreg));
2848 int regnor = REGNO (XEXP (parmreg, 0));
2849 int regnoi = REGNO (XEXP (parmreg, 1));
2850 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2851 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2852 GET_MODE_SIZE (submode));
2853
2854 /* Scan backwards for the set of the real and
2855 imaginary parts. */
2856 for (sinsn = linsn; sinsn != 0;
2857 sinsn = prev_nonnote_insn (sinsn))
2858 {
2859 set = single_set (sinsn);
2860 if (set == 0)
2861 continue;
2862
2863 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2864 REG_NOTES (sinsn)
2865 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2866 REG_NOTES (sinsn));
2867 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2868 REG_NOTES (sinsn)
2869 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2870 REG_NOTES (sinsn));
2871 }
2872 }
2873 else if ((set = single_set (linsn)) != 0
2874 && SET_DEST (set) == parmreg)
2875 REG_NOTES (linsn)
2876 = gen_rtx_EXPR_LIST (REG_EQUIV,
2877 data->stack_parm, REG_NOTES (linsn));
2878 }
2879
2880 /* For pointer data type, suggest pointer register. */
2881 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2882 mark_reg_pointer (parmreg,
2883 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2884 }
2885
2886 /* A subroutine of assign_parms. Allocate stack space to hold the current
2887 parameter. Get it there. Perform all ABI specified conversions. */
2888
2889 static void
2890 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2891 struct assign_parm_data_one *data)
2892 {
2893 /* Value must be stored in the stack slot STACK_PARM during function
2894 execution. */
2895 bool to_conversion = false;
2896
2897 if (data->promoted_mode != data->nominal_mode)
2898 {
2899 /* Conversion is required. */
2900 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2901
2902 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2903
2904 push_to_sequence (all->conversion_insns);
2905 to_conversion = true;
2906
2907 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2908 TYPE_UNSIGNED (TREE_TYPE (parm)));
2909
2910 if (data->stack_parm)
2911 /* ??? This may need a big-endian conversion on sparc64. */
2912 data->stack_parm
2913 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2914 }
2915
2916 if (data->entry_parm != data->stack_parm)
2917 {
2918 rtx src, dest;
2919
2920 if (data->stack_parm == 0)
2921 {
2922 data->stack_parm
2923 = assign_stack_local (GET_MODE (data->entry_parm),
2924 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2925 TYPE_ALIGN (data->passed_type));
2926 set_mem_attributes (data->stack_parm, parm, 1);
2927 }
2928
2929 dest = validize_mem (data->stack_parm);
2930 src = validize_mem (data->entry_parm);
2931
2932 if (MEM_P (src))
2933 {
2934 /* Use a block move to handle potentially misaligned entry_parm. */
2935 if (!to_conversion)
2936 push_to_sequence (all->conversion_insns);
2937 to_conversion = true;
2938
2939 emit_block_move (dest, src,
2940 GEN_INT (int_size_in_bytes (data->passed_type)),
2941 BLOCK_OP_NORMAL);
2942 }
2943 else
2944 emit_move_insn (dest, src);
2945 }
2946
2947 if (to_conversion)
2948 {
2949 all->conversion_insns = get_insns ();
2950 end_sequence ();
2951 }
2952
2953 SET_DECL_RTL (parm, data->stack_parm);
2954 }
2955
2956 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2957 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2958
2959 static void
2960 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2961 {
2962 tree parm;
2963 tree orig_fnargs = all->orig_fnargs;
2964
2965 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2966 {
2967 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2968 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2969 {
2970 rtx tmp, real, imag;
2971 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2972
2973 real = DECL_RTL (fnargs);
2974 imag = DECL_RTL (TREE_CHAIN (fnargs));
2975 if (inner != GET_MODE (real))
2976 {
2977 real = gen_lowpart_SUBREG (inner, real);
2978 imag = gen_lowpart_SUBREG (inner, imag);
2979 }
2980
2981 if (TREE_ADDRESSABLE (parm))
2982 {
2983 rtx rmem, imem;
2984 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2985
2986 /* split_complex_arg put the real and imag parts in
2987 pseudos. Move them to memory. */
2988 tmp = assign_stack_local (DECL_MODE (parm), size,
2989 TYPE_ALIGN (TREE_TYPE (parm)));
2990 set_mem_attributes (tmp, parm, 1);
2991 rmem = adjust_address_nv (tmp, inner, 0);
2992 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2993 push_to_sequence (all->conversion_insns);
2994 emit_move_insn (rmem, real);
2995 emit_move_insn (imem, imag);
2996 all->conversion_insns = get_insns ();
2997 end_sequence ();
2998 }
2999 else
3000 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3001 SET_DECL_RTL (parm, tmp);
3002
3003 real = DECL_INCOMING_RTL (fnargs);
3004 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3005 if (inner != GET_MODE (real))
3006 {
3007 real = gen_lowpart_SUBREG (inner, real);
3008 imag = gen_lowpart_SUBREG (inner, imag);
3009 }
3010 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3011 set_decl_incoming_rtl (parm, tmp);
3012 fnargs = TREE_CHAIN (fnargs);
3013 }
3014 else
3015 {
3016 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3017 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
3018
3019 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3020 instead of the copy of decl, i.e. FNARGS. */
3021 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3022 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3023 }
3024
3025 fnargs = TREE_CHAIN (fnargs);
3026 }
3027 }
3028
3029 /* Assign RTL expressions to the function's parameters. This may involve
3030 copying them into registers and using those registers as the DECL_RTL. */
3031
3032 static void
3033 assign_parms (tree fndecl)
3034 {
3035 struct assign_parm_data_all all;
3036 tree fnargs, parm;
3037 rtx internal_arg_pointer;
3038
3039 /* If the reg that the virtual arg pointer will be translated into is
3040 not a fixed reg or is the stack pointer, make a copy of the virtual
3041 arg pointer, and address parms via the copy. The frame pointer is
3042 considered fixed even though it is not marked as such.
3043
3044 The second time through, simply use ap to avoid generating rtx. */
3045
3046 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3047 || ! (fixed_regs[ARG_POINTER_REGNUM]
3048 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3049 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3050 else
3051 internal_arg_pointer = virtual_incoming_args_rtx;
3052 current_function_internal_arg_pointer = internal_arg_pointer;
3053
3054 assign_parms_initialize_all (&all);
3055 fnargs = assign_parms_augmented_arg_list (&all);
3056
3057 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3058 {
3059 struct assign_parm_data_one data;
3060
3061 /* Extract the type of PARM; adjust it according to ABI. */
3062 assign_parm_find_data_types (&all, parm, &data);
3063
3064 /* Early out for errors and void parameters. */
3065 if (data.passed_mode == VOIDmode)
3066 {
3067 SET_DECL_RTL (parm, const0_rtx);
3068 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3069 continue;
3070 }
3071
3072 if (current_function_stdarg && !TREE_CHAIN (parm))
3073 assign_parms_setup_varargs (&all, &data, false);
3074
3075 /* Find out where the parameter arrives in this function. */
3076 assign_parm_find_entry_rtl (&all, &data);
3077
3078 /* Find out where stack space for this parameter might be. */
3079 if (assign_parm_is_stack_parm (&all, &data))
3080 {
3081 assign_parm_find_stack_rtl (parm, &data);
3082 assign_parm_adjust_entry_rtl (&data);
3083 }
3084
3085 /* Record permanently how this parm was passed. */
3086 set_decl_incoming_rtl (parm, data.entry_parm);
3087
3088 /* Update info on where next arg arrives in registers. */
3089 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3090 data.passed_type, data.named_arg);
3091
3092 assign_parm_adjust_stack_rtl (&data);
3093
3094 if (assign_parm_setup_block_p (&data))
3095 assign_parm_setup_block (&all, parm, &data);
3096 else if (data.passed_pointer || use_register_for_decl (parm))
3097 assign_parm_setup_reg (&all, parm, &data);
3098 else
3099 assign_parm_setup_stack (&all, parm, &data);
3100 }
3101
3102 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3103 assign_parms_unsplit_complex (&all, fnargs);
3104
3105 /* Output all parameter conversion instructions (possibly including calls)
3106 now that all parameters have been copied out of hard registers. */
3107 emit_insn (all.conversion_insns);
3108
3109 /* If we are receiving a struct value address as the first argument, set up
3110 the RTL for the function result. As this might require code to convert
3111 the transmitted address to Pmode, we do this here to ensure that possible
3112 preliminary conversions of the address have been emitted already. */
3113 if (all.function_result_decl)
3114 {
3115 tree result = DECL_RESULT (current_function_decl);
3116 rtx addr = DECL_RTL (all.function_result_decl);
3117 rtx x;
3118
3119 if (DECL_BY_REFERENCE (result))
3120 x = addr;
3121 else
3122 {
3123 addr = convert_memory_address (Pmode, addr);
3124 x = gen_rtx_MEM (DECL_MODE (result), addr);
3125 set_mem_attributes (x, result, 1);
3126 }
3127 SET_DECL_RTL (result, x);
3128 }
3129
3130 /* We have aligned all the args, so add space for the pretend args. */
3131 current_function_pretend_args_size = all.pretend_args_size;
3132 all.stack_args_size.constant += all.extra_pretend_bytes;
3133 current_function_args_size = all.stack_args_size.constant;
3134
3135 /* Adjust function incoming argument size for alignment and
3136 minimum length. */
3137
3138 #ifdef REG_PARM_STACK_SPACE
3139 current_function_args_size = MAX (current_function_args_size,
3140 REG_PARM_STACK_SPACE (fndecl));
3141 #endif
3142
3143 current_function_args_size
3144 = ((current_function_args_size + STACK_BYTES - 1)
3145 / STACK_BYTES) * STACK_BYTES;
3146
3147 #ifdef ARGS_GROW_DOWNWARD
3148 current_function_arg_offset_rtx
3149 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3150 : expand_expr (size_diffop (all.stack_args_size.var,
3151 size_int (-all.stack_args_size.constant)),
3152 NULL_RTX, VOIDmode, 0));
3153 #else
3154 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3155 #endif
3156
3157 /* See how many bytes, if any, of its args a function should try to pop
3158 on return. */
3159
3160 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3161 current_function_args_size);
3162
3163 /* For stdarg.h function, save info about
3164 regs and stack space used by the named args. */
3165
3166 current_function_args_info = all.args_so_far;
3167
3168 /* Set the rtx used for the function return value. Put this in its
3169 own variable so any optimizers that need this information don't have
3170 to include tree.h. Do this here so it gets done when an inlined
3171 function gets output. */
3172
3173 current_function_return_rtx
3174 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3175 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3176
3177 /* If scalar return value was computed in a pseudo-reg, or was a named
3178 return value that got dumped to the stack, copy that to the hard
3179 return register. */
3180 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3181 {
3182 tree decl_result = DECL_RESULT (fndecl);
3183 rtx decl_rtl = DECL_RTL (decl_result);
3184
3185 if (REG_P (decl_rtl)
3186 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3187 : DECL_REGISTER (decl_result))
3188 {
3189 rtx real_decl_rtl;
3190
3191 #ifdef FUNCTION_OUTGOING_VALUE
3192 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3193 fndecl);
3194 #else
3195 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3196 fndecl);
3197 #endif
3198 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3199 /* The delay slot scheduler assumes that current_function_return_rtx
3200 holds the hard register containing the return value, not a
3201 temporary pseudo. */
3202 current_function_return_rtx = real_decl_rtl;
3203 }
3204 }
3205 }
3206
3207 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3208 For all seen types, gimplify their sizes. */
3209
3210 static tree
3211 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3212 {
3213 tree t = *tp;
3214
3215 *walk_subtrees = 0;
3216 if (TYPE_P (t))
3217 {
3218 if (POINTER_TYPE_P (t))
3219 *walk_subtrees = 1;
3220 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3221 && !TYPE_SIZES_GIMPLIFIED (t))
3222 {
3223 gimplify_type_sizes (t, (tree *) data);
3224 *walk_subtrees = 1;
3225 }
3226 }
3227
3228 return NULL;
3229 }
3230
3231 /* Gimplify the parameter list for current_function_decl. This involves
3232 evaluating SAVE_EXPRs of variable sized parameters and generating code
3233 to implement callee-copies reference parameters. Returns a list of
3234 statements to add to the beginning of the function, or NULL if nothing
3235 to do. */
3236
3237 tree
3238 gimplify_parameters (void)
3239 {
3240 struct assign_parm_data_all all;
3241 tree fnargs, parm, stmts = NULL;
3242
3243 assign_parms_initialize_all (&all);
3244 fnargs = assign_parms_augmented_arg_list (&all);
3245
3246 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3247 {
3248 struct assign_parm_data_one data;
3249
3250 /* Extract the type of PARM; adjust it according to ABI. */
3251 assign_parm_find_data_types (&all, parm, &data);
3252
3253 /* Early out for errors and void parameters. */
3254 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3255 continue;
3256
3257 /* Update info on where next arg arrives in registers. */
3258 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3259 data.passed_type, data.named_arg);
3260
3261 /* ??? Once upon a time variable_size stuffed parameter list
3262 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3263 turned out to be less than manageable in the gimple world.
3264 Now we have to hunt them down ourselves. */
3265 walk_tree_without_duplicates (&data.passed_type,
3266 gimplify_parm_type, &stmts);
3267
3268 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3269 {
3270 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3271 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3272 }
3273
3274 if (data.passed_pointer)
3275 {
3276 tree type = TREE_TYPE (data.passed_type);
3277 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3278 type, data.named_arg))
3279 {
3280 tree local, t;
3281
3282 /* For constant sized objects, this is trivial; for
3283 variable-sized objects, we have to play games. */
3284 if (TREE_CONSTANT (DECL_SIZE (parm)))
3285 {
3286 local = create_tmp_var (type, get_name (parm));
3287 DECL_IGNORED_P (local) = 0;
3288 }
3289 else
3290 {
3291 tree ptr_type, addr, args;
3292
3293 ptr_type = build_pointer_type (type);
3294 addr = create_tmp_var (ptr_type, get_name (parm));
3295 DECL_IGNORED_P (addr) = 0;
3296 local = build_fold_indirect_ref (addr);
3297
3298 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3299 t = built_in_decls[BUILT_IN_ALLOCA];
3300 t = build_function_call_expr (t, args);
3301 t = fold_convert (ptr_type, t);
3302 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3303 gimplify_and_add (t, &stmts);
3304 }
3305
3306 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3307 gimplify_and_add (t, &stmts);
3308
3309 DECL_VALUE_EXPR (parm) = local;
3310 }
3311 }
3312 }
3313
3314 return stmts;
3315 }
3316 \f
3317 /* Indicate whether REGNO is an incoming argument to the current function
3318 that was promoted to a wider mode. If so, return the RTX for the
3319 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3320 that REGNO is promoted from and whether the promotion was signed or
3321 unsigned. */
3322
3323 rtx
3324 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3325 {
3326 tree arg;
3327
3328 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3329 arg = TREE_CHAIN (arg))
3330 if (REG_P (DECL_INCOMING_RTL (arg))
3331 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3332 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3333 {
3334 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3335 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3336
3337 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3338 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3339 && mode != DECL_MODE (arg))
3340 {
3341 *pmode = DECL_MODE (arg);
3342 *punsignedp = unsignedp;
3343 return DECL_INCOMING_RTL (arg);
3344 }
3345 }
3346
3347 return 0;
3348 }
3349
3350 \f
3351 /* Compute the size and offset from the start of the stacked arguments for a
3352 parm passed in mode PASSED_MODE and with type TYPE.
3353
3354 INITIAL_OFFSET_PTR points to the current offset into the stacked
3355 arguments.
3356
3357 The starting offset and size for this parm are returned in
3358 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3359 nonzero, the offset is that of stack slot, which is returned in
3360 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3361 padding required from the initial offset ptr to the stack slot.
3362
3363 IN_REGS is nonzero if the argument will be passed in registers. It will
3364 never be set if REG_PARM_STACK_SPACE is not defined.
3365
3366 FNDECL is the function in which the argument was defined.
3367
3368 There are two types of rounding that are done. The first, controlled by
3369 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3370 list to be aligned to the specific boundary (in bits). This rounding
3371 affects the initial and starting offsets, but not the argument size.
3372
3373 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3374 optionally rounds the size of the parm to PARM_BOUNDARY. The
3375 initial offset is not affected by this rounding, while the size always
3376 is and the starting offset may be. */
3377
3378 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3379 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3380 callers pass in the total size of args so far as
3381 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3382
3383 void
3384 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3385 int partial, tree fndecl ATTRIBUTE_UNUSED,
3386 struct args_size *initial_offset_ptr,
3387 struct locate_and_pad_arg_data *locate)
3388 {
3389 tree sizetree;
3390 enum direction where_pad;
3391 int boundary;
3392 int reg_parm_stack_space = 0;
3393 int part_size_in_regs;
3394
3395 #ifdef REG_PARM_STACK_SPACE
3396 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3397
3398 /* If we have found a stack parm before we reach the end of the
3399 area reserved for registers, skip that area. */
3400 if (! in_regs)
3401 {
3402 if (reg_parm_stack_space > 0)
3403 {
3404 if (initial_offset_ptr->var)
3405 {
3406 initial_offset_ptr->var
3407 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3408 ssize_int (reg_parm_stack_space));
3409 initial_offset_ptr->constant = 0;
3410 }
3411 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3412 initial_offset_ptr->constant = reg_parm_stack_space;
3413 }
3414 }
3415 #endif /* REG_PARM_STACK_SPACE */
3416
3417 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3418
3419 sizetree
3420 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3421 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3422 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3423 locate->where_pad = where_pad;
3424 locate->boundary = boundary;
3425
3426 #ifdef ARGS_GROW_DOWNWARD
3427 locate->slot_offset.constant = -initial_offset_ptr->constant;
3428 if (initial_offset_ptr->var)
3429 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3430 initial_offset_ptr->var);
3431
3432 {
3433 tree s2 = sizetree;
3434 if (where_pad != none
3435 && (!host_integerp (sizetree, 1)
3436 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3437 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3438 SUB_PARM_SIZE (locate->slot_offset, s2);
3439 }
3440
3441 locate->slot_offset.constant += part_size_in_regs;
3442
3443 if (!in_regs
3444 #ifdef REG_PARM_STACK_SPACE
3445 || REG_PARM_STACK_SPACE (fndecl) > 0
3446 #endif
3447 )
3448 pad_to_arg_alignment (&locate->slot_offset, boundary,
3449 &locate->alignment_pad);
3450
3451 locate->size.constant = (-initial_offset_ptr->constant
3452 - locate->slot_offset.constant);
3453 if (initial_offset_ptr->var)
3454 locate->size.var = size_binop (MINUS_EXPR,
3455 size_binop (MINUS_EXPR,
3456 ssize_int (0),
3457 initial_offset_ptr->var),
3458 locate->slot_offset.var);
3459
3460 /* Pad_below needs the pre-rounded size to know how much to pad
3461 below. */
3462 locate->offset = locate->slot_offset;
3463 if (where_pad == downward)
3464 pad_below (&locate->offset, passed_mode, sizetree);
3465
3466 #else /* !ARGS_GROW_DOWNWARD */
3467 if (!in_regs
3468 #ifdef REG_PARM_STACK_SPACE
3469 || REG_PARM_STACK_SPACE (fndecl) > 0
3470 #endif
3471 )
3472 pad_to_arg_alignment (initial_offset_ptr, boundary,
3473 &locate->alignment_pad);
3474 locate->slot_offset = *initial_offset_ptr;
3475
3476 #ifdef PUSH_ROUNDING
3477 if (passed_mode != BLKmode)
3478 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3479 #endif
3480
3481 /* Pad_below needs the pre-rounded size to know how much to pad below
3482 so this must be done before rounding up. */
3483 locate->offset = locate->slot_offset;
3484 if (where_pad == downward)
3485 pad_below (&locate->offset, passed_mode, sizetree);
3486
3487 if (where_pad != none
3488 && (!host_integerp (sizetree, 1)
3489 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3490 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3491
3492 ADD_PARM_SIZE (locate->size, sizetree);
3493
3494 locate->size.constant -= part_size_in_regs;
3495 #endif /* ARGS_GROW_DOWNWARD */
3496 }
3497
3498 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3499 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3500
3501 static void
3502 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3503 struct args_size *alignment_pad)
3504 {
3505 tree save_var = NULL_TREE;
3506 HOST_WIDE_INT save_constant = 0;
3507 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3508 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3509
3510 #ifdef SPARC_STACK_BOUNDARY_HACK
3511 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3512 higher than the real alignment of %sp. However, when it does this,
3513 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3514 This is a temporary hack while the sparc port is fixed. */
3515 if (SPARC_STACK_BOUNDARY_HACK)
3516 sp_offset = 0;
3517 #endif
3518
3519 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3520 {
3521 save_var = offset_ptr->var;
3522 save_constant = offset_ptr->constant;
3523 }
3524
3525 alignment_pad->var = NULL_TREE;
3526 alignment_pad->constant = 0;
3527
3528 if (boundary > BITS_PER_UNIT)
3529 {
3530 if (offset_ptr->var)
3531 {
3532 tree sp_offset_tree = ssize_int (sp_offset);
3533 tree offset = size_binop (PLUS_EXPR,
3534 ARGS_SIZE_TREE (*offset_ptr),
3535 sp_offset_tree);
3536 #ifdef ARGS_GROW_DOWNWARD
3537 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3538 #else
3539 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3540 #endif
3541
3542 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3543 /* ARGS_SIZE_TREE includes constant term. */
3544 offset_ptr->constant = 0;
3545 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3546 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3547 save_var);
3548 }
3549 else
3550 {
3551 offset_ptr->constant = -sp_offset +
3552 #ifdef ARGS_GROW_DOWNWARD
3553 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3554 #else
3555 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3556 #endif
3557 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3558 alignment_pad->constant = offset_ptr->constant - save_constant;
3559 }
3560 }
3561 }
3562
3563 static void
3564 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3565 {
3566 if (passed_mode != BLKmode)
3567 {
3568 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3569 offset_ptr->constant
3570 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3571 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3572 - GET_MODE_SIZE (passed_mode));
3573 }
3574 else
3575 {
3576 if (TREE_CODE (sizetree) != INTEGER_CST
3577 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3578 {
3579 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3580 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3581 /* Add it in. */
3582 ADD_PARM_SIZE (*offset_ptr, s2);
3583 SUB_PARM_SIZE (*offset_ptr, sizetree);
3584 }
3585 }
3586 }
3587 \f
3588 /* Walk the tree of blocks describing the binding levels within a function
3589 and warn about variables the might be killed by setjmp or vfork.
3590 This is done after calling flow_analysis and before global_alloc
3591 clobbers the pseudo-regs to hard regs. */
3592
3593 void
3594 setjmp_vars_warning (tree block)
3595 {
3596 tree decl, sub;
3597
3598 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3599 {
3600 if (TREE_CODE (decl) == VAR_DECL
3601 && DECL_RTL_SET_P (decl)
3602 && REG_P (DECL_RTL (decl))
3603 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3604 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3605 " or %<vfork%>",
3606 decl, decl);
3607 }
3608
3609 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3610 setjmp_vars_warning (sub);
3611 }
3612
3613 /* Do the appropriate part of setjmp_vars_warning
3614 but for arguments instead of local variables. */
3615
3616 void
3617 setjmp_args_warning (void)
3618 {
3619 tree decl;
3620 for (decl = DECL_ARGUMENTS (current_function_decl);
3621 decl; decl = TREE_CHAIN (decl))
3622 if (DECL_RTL (decl) != 0
3623 && REG_P (DECL_RTL (decl))
3624 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3625 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3626 decl, decl);
3627 }
3628
3629 \f
3630 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3631 and create duplicate blocks. */
3632 /* ??? Need an option to either create block fragments or to create
3633 abstract origin duplicates of a source block. It really depends
3634 on what optimization has been performed. */
3635
3636 void
3637 reorder_blocks (void)
3638 {
3639 tree block = DECL_INITIAL (current_function_decl);
3640 varray_type block_stack;
3641
3642 if (block == NULL_TREE)
3643 return;
3644
3645 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3646
3647 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3648 clear_block_marks (block);
3649
3650 /* Prune the old trees away, so that they don't get in the way. */
3651 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3652 BLOCK_CHAIN (block) = NULL_TREE;
3653
3654 /* Recreate the block tree from the note nesting. */
3655 reorder_blocks_1 (get_insns (), block, &block_stack);
3656 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3657
3658 /* Remove deleted blocks from the block fragment chains. */
3659 reorder_fix_fragments (block);
3660 }
3661
3662 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3663
3664 void
3665 clear_block_marks (tree block)
3666 {
3667 while (block)
3668 {
3669 TREE_ASM_WRITTEN (block) = 0;
3670 clear_block_marks (BLOCK_SUBBLOCKS (block));
3671 block = BLOCK_CHAIN (block);
3672 }
3673 }
3674
3675 static void
3676 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3677 {
3678 rtx insn;
3679
3680 for (insn = insns; insn; insn = NEXT_INSN (insn))
3681 {
3682 if (NOTE_P (insn))
3683 {
3684 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3685 {
3686 tree block = NOTE_BLOCK (insn);
3687
3688 /* If we have seen this block before, that means it now
3689 spans multiple address regions. Create a new fragment. */
3690 if (TREE_ASM_WRITTEN (block))
3691 {
3692 tree new_block = copy_node (block);
3693 tree origin;
3694
3695 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3696 ? BLOCK_FRAGMENT_ORIGIN (block)
3697 : block);
3698 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3699 BLOCK_FRAGMENT_CHAIN (new_block)
3700 = BLOCK_FRAGMENT_CHAIN (origin);
3701 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3702
3703 NOTE_BLOCK (insn) = new_block;
3704 block = new_block;
3705 }
3706
3707 BLOCK_SUBBLOCKS (block) = 0;
3708 TREE_ASM_WRITTEN (block) = 1;
3709 /* When there's only one block for the entire function,
3710 current_block == block and we mustn't do this, it
3711 will cause infinite recursion. */
3712 if (block != current_block)
3713 {
3714 BLOCK_SUPERCONTEXT (block) = current_block;
3715 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3716 BLOCK_SUBBLOCKS (current_block) = block;
3717 current_block = block;
3718 }
3719 VARRAY_PUSH_TREE (*p_block_stack, block);
3720 }
3721 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3722 {
3723 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3724 VARRAY_POP (*p_block_stack);
3725 BLOCK_SUBBLOCKS (current_block)
3726 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3727 current_block = BLOCK_SUPERCONTEXT (current_block);
3728 }
3729 }
3730 }
3731 }
3732
3733 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3734 appears in the block tree, select one of the fragments to become
3735 the new origin block. */
3736
3737 static void
3738 reorder_fix_fragments (tree block)
3739 {
3740 while (block)
3741 {
3742 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3743 tree new_origin = NULL_TREE;
3744
3745 if (dup_origin)
3746 {
3747 if (! TREE_ASM_WRITTEN (dup_origin))
3748 {
3749 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3750
3751 /* Find the first of the remaining fragments. There must
3752 be at least one -- the current block. */
3753 while (! TREE_ASM_WRITTEN (new_origin))
3754 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3755 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3756 }
3757 }
3758 else if (! dup_origin)
3759 new_origin = block;
3760
3761 /* Re-root the rest of the fragments to the new origin. In the
3762 case that DUP_ORIGIN was null, that means BLOCK was the origin
3763 of a chain of fragments and we want to remove those fragments
3764 that didn't make it to the output. */
3765 if (new_origin)
3766 {
3767 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3768 tree chain = *pp;
3769
3770 while (chain)
3771 {
3772 if (TREE_ASM_WRITTEN (chain))
3773 {
3774 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3775 *pp = chain;
3776 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3777 }
3778 chain = BLOCK_FRAGMENT_CHAIN (chain);
3779 }
3780 *pp = NULL_TREE;
3781 }
3782
3783 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3784 block = BLOCK_CHAIN (block);
3785 }
3786 }
3787
3788 /* Reverse the order of elements in the chain T of blocks,
3789 and return the new head of the chain (old last element). */
3790
3791 tree
3792 blocks_nreverse (tree t)
3793 {
3794 tree prev = 0, decl, next;
3795 for (decl = t; decl; decl = next)
3796 {
3797 next = BLOCK_CHAIN (decl);
3798 BLOCK_CHAIN (decl) = prev;
3799 prev = decl;
3800 }
3801 return prev;
3802 }
3803
3804 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3805 non-NULL, list them all into VECTOR, in a depth-first preorder
3806 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3807 blocks. */
3808
3809 static int
3810 all_blocks (tree block, tree *vector)
3811 {
3812 int n_blocks = 0;
3813
3814 while (block)
3815 {
3816 TREE_ASM_WRITTEN (block) = 0;
3817
3818 /* Record this block. */
3819 if (vector)
3820 vector[n_blocks] = block;
3821
3822 ++n_blocks;
3823
3824 /* Record the subblocks, and their subblocks... */
3825 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3826 vector ? vector + n_blocks : 0);
3827 block = BLOCK_CHAIN (block);
3828 }
3829
3830 return n_blocks;
3831 }
3832
3833 /* Return a vector containing all the blocks rooted at BLOCK. The
3834 number of elements in the vector is stored in N_BLOCKS_P. The
3835 vector is dynamically allocated; it is the caller's responsibility
3836 to call `free' on the pointer returned. */
3837
3838 static tree *
3839 get_block_vector (tree block, int *n_blocks_p)
3840 {
3841 tree *block_vector;
3842
3843 *n_blocks_p = all_blocks (block, NULL);
3844 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3845 all_blocks (block, block_vector);
3846
3847 return block_vector;
3848 }
3849
3850 static GTY(()) int next_block_index = 2;
3851
3852 /* Set BLOCK_NUMBER for all the blocks in FN. */
3853
3854 void
3855 number_blocks (tree fn)
3856 {
3857 int i;
3858 int n_blocks;
3859 tree *block_vector;
3860
3861 /* For SDB and XCOFF debugging output, we start numbering the blocks
3862 from 1 within each function, rather than keeping a running
3863 count. */
3864 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3865 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3866 next_block_index = 1;
3867 #endif
3868
3869 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3870
3871 /* The top-level BLOCK isn't numbered at all. */
3872 for (i = 1; i < n_blocks; ++i)
3873 /* We number the blocks from two. */
3874 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3875
3876 free (block_vector);
3877
3878 return;
3879 }
3880
3881 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3882
3883 tree
3884 debug_find_var_in_block_tree (tree var, tree block)
3885 {
3886 tree t;
3887
3888 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3889 if (t == var)
3890 return block;
3891
3892 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3893 {
3894 tree ret = debug_find_var_in_block_tree (var, t);
3895 if (ret)
3896 return ret;
3897 }
3898
3899 return NULL_TREE;
3900 }
3901 \f
3902 /* Allocate a function structure for FNDECL and set its contents
3903 to the defaults. */
3904
3905 void
3906 allocate_struct_function (tree fndecl)
3907 {
3908 tree result;
3909 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3910
3911 cfun = ggc_alloc_cleared (sizeof (struct function));
3912 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
3913
3914 n_edges = 0;
3915
3916 cfun->stack_alignment_needed = STACK_BOUNDARY;
3917 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3918
3919 current_function_funcdef_no = funcdef_no++;
3920
3921 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3922
3923 init_eh_for_function ();
3924
3925 lang_hooks.function.init (cfun);
3926 if (init_machine_status)
3927 cfun->machine = (*init_machine_status) ();
3928
3929 if (fndecl == NULL)
3930 return;
3931
3932 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3933 cfun->decl = fndecl;
3934
3935 result = DECL_RESULT (fndecl);
3936 if (aggregate_value_p (result, fndecl))
3937 {
3938 #ifdef PCC_STATIC_STRUCT_RETURN
3939 current_function_returns_pcc_struct = 1;
3940 #endif
3941 current_function_returns_struct = 1;
3942 }
3943
3944 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3945
3946 current_function_stdarg
3947 = (fntype
3948 && TYPE_ARG_TYPES (fntype) != 0
3949 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3950 != void_type_node));
3951
3952 /* Assume all registers in stdarg functions need to be saved. */
3953 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3954 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3955 }
3956
3957 /* Reset cfun, and other non-struct-function variables to defaults as
3958 appropriate for emitting rtl at the start of a function. */
3959
3960 static void
3961 prepare_function_start (tree fndecl)
3962 {
3963 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3964 cfun = DECL_STRUCT_FUNCTION (fndecl);
3965 else
3966 allocate_struct_function (fndecl);
3967 init_emit ();
3968 init_varasm_status (cfun);
3969 init_expr ();
3970
3971 cse_not_expected = ! optimize;
3972
3973 /* Caller save not needed yet. */
3974 caller_save_needed = 0;
3975
3976 /* We haven't done register allocation yet. */
3977 reg_renumber = 0;
3978
3979 /* Indicate that we have not instantiated virtual registers yet. */
3980 virtuals_instantiated = 0;
3981
3982 /* Indicate that we want CONCATs now. */
3983 generating_concat_p = 1;
3984
3985 /* Indicate we have no need of a frame pointer yet. */
3986 frame_pointer_needed = 0;
3987 }
3988
3989 /* Initialize the rtl expansion mechanism so that we can do simple things
3990 like generate sequences. This is used to provide a context during global
3991 initialization of some passes. */
3992 void
3993 init_dummy_function_start (void)
3994 {
3995 prepare_function_start (NULL);
3996 }
3997
3998 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3999 and initialize static variables for generating RTL for the statements
4000 of the function. */
4001
4002 void
4003 init_function_start (tree subr)
4004 {
4005 prepare_function_start (subr);
4006
4007 /* Prevent ever trying to delete the first instruction of a
4008 function. Also tell final how to output a linenum before the
4009 function prologue. Note linenums could be missing, e.g. when
4010 compiling a Java .class file. */
4011 if (! DECL_IS_BUILTIN (subr))
4012 emit_line_note (DECL_SOURCE_LOCATION (subr));
4013
4014 /* Make sure first insn is a note even if we don't want linenums.
4015 This makes sure the first insn will never be deleted.
4016 Also, final expects a note to appear there. */
4017 emit_note (NOTE_INSN_DELETED);
4018
4019 /* Warn if this value is an aggregate type,
4020 regardless of which calling convention we are using for it. */
4021 if (warn_aggregate_return
4022 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4023 warning ("function returns an aggregate");
4024 }
4025
4026 /* Make sure all values used by the optimization passes have sane
4027 defaults. */
4028 void
4029 init_function_for_compilation (void)
4030 {
4031 reg_renumber = 0;
4032
4033 /* No prologue/epilogue insns yet. */
4034 VARRAY_GROW (prologue, 0);
4035 VARRAY_GROW (epilogue, 0);
4036 VARRAY_GROW (sibcall_epilogue, 0);
4037 }
4038
4039 /* Expand a call to __main at the beginning of a possible main function. */
4040
4041 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
4042 #undef HAS_INIT_SECTION
4043 #define HAS_INIT_SECTION
4044 #endif
4045
4046 void
4047 expand_main_function (void)
4048 {
4049 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
4050 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
4051 {
4052 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
4053 rtx tmp, seq;
4054
4055 start_sequence ();
4056 /* Forcibly align the stack. */
4057 #ifdef STACK_GROWS_DOWNWARD
4058 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
4059 stack_pointer_rtx, 1, OPTAB_WIDEN);
4060 #else
4061 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4062 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
4063 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
4064 stack_pointer_rtx, 1, OPTAB_WIDEN);
4065 #endif
4066 if (tmp != stack_pointer_rtx)
4067 emit_move_insn (stack_pointer_rtx, tmp);
4068
4069 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
4070 tmp = force_reg (Pmode, const0_rtx);
4071 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
4072 seq = get_insns ();
4073 end_sequence ();
4074
4075 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
4076 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
4077 break;
4078 if (tmp)
4079 emit_insn_before (seq, tmp);
4080 else
4081 emit_insn (seq);
4082 }
4083 #endif
4084
4085 #ifndef HAS_INIT_SECTION
4086 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4087 #endif
4088 }
4089 \f
4090 /* Start the RTL for a new function, and set variables used for
4091 emitting RTL.
4092 SUBR is the FUNCTION_DECL node.
4093 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4094 the function's parameters, which must be run at any return statement. */
4095
4096 void
4097 expand_function_start (tree subr)
4098 {
4099 /* Make sure volatile mem refs aren't considered
4100 valid operands of arithmetic insns. */
4101 init_recog_no_volatile ();
4102
4103 current_function_profile
4104 = (profile_flag
4105 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4106
4107 current_function_limit_stack
4108 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4109
4110 /* Make the label for return statements to jump to. Do not special
4111 case machines with special return instructions -- they will be
4112 handled later during jump, ifcvt, or epilogue creation. */
4113 return_label = gen_label_rtx ();
4114
4115 /* Initialize rtx used to return the value. */
4116 /* Do this before assign_parms so that we copy the struct value address
4117 before any library calls that assign parms might generate. */
4118
4119 /* Decide whether to return the value in memory or in a register. */
4120 if (aggregate_value_p (DECL_RESULT (subr), subr))
4121 {
4122 /* Returning something that won't go in a register. */
4123 rtx value_address = 0;
4124
4125 #ifdef PCC_STATIC_STRUCT_RETURN
4126 if (current_function_returns_pcc_struct)
4127 {
4128 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4129 value_address = assemble_static_space (size);
4130 }
4131 else
4132 #endif
4133 {
4134 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4135 /* Expect to be passed the address of a place to store the value.
4136 If it is passed as an argument, assign_parms will take care of
4137 it. */
4138 if (sv)
4139 {
4140 value_address = gen_reg_rtx (Pmode);
4141 emit_move_insn (value_address, sv);
4142 }
4143 }
4144 if (value_address)
4145 {
4146 rtx x = value_address;
4147 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4148 {
4149 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4150 set_mem_attributes (x, DECL_RESULT (subr), 1);
4151 }
4152 SET_DECL_RTL (DECL_RESULT (subr), x);
4153 }
4154 }
4155 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4156 /* If return mode is void, this decl rtl should not be used. */
4157 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4158 else
4159 {
4160 /* Compute the return values into a pseudo reg, which we will copy
4161 into the true return register after the cleanups are done. */
4162 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4163 if (TYPE_MODE (return_type) != BLKmode
4164 && targetm.calls.return_in_msb (return_type))
4165 /* expand_function_end will insert the appropriate padding in
4166 this case. Use the return value's natural (unpadded) mode
4167 within the function proper. */
4168 SET_DECL_RTL (DECL_RESULT (subr),
4169 gen_reg_rtx (TYPE_MODE (return_type)));
4170 else
4171 {
4172 /* In order to figure out what mode to use for the pseudo, we
4173 figure out what the mode of the eventual return register will
4174 actually be, and use that. */
4175 rtx hard_reg = hard_function_value (return_type, subr, 1);
4176
4177 /* Structures that are returned in registers are not
4178 aggregate_value_p, so we may see a PARALLEL or a REG. */
4179 if (REG_P (hard_reg))
4180 SET_DECL_RTL (DECL_RESULT (subr),
4181 gen_reg_rtx (GET_MODE (hard_reg)));
4182 else
4183 {
4184 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4185 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4186 }
4187 }
4188
4189 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4190 result to the real return register(s). */
4191 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4192 }
4193
4194 /* Initialize rtx for parameters and local variables.
4195 In some cases this requires emitting insns. */
4196 assign_parms (subr);
4197
4198 /* If function gets a static chain arg, store it. */
4199 if (cfun->static_chain_decl)
4200 {
4201 tree parm = cfun->static_chain_decl;
4202 rtx local = gen_reg_rtx (Pmode);
4203
4204 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4205 SET_DECL_RTL (parm, local);
4206 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4207
4208 emit_move_insn (local, static_chain_incoming_rtx);
4209 }
4210
4211 /* If the function receives a non-local goto, then store the
4212 bits we need to restore the frame pointer. */
4213 if (cfun->nonlocal_goto_save_area)
4214 {
4215 tree t_save;
4216 rtx r_save;
4217
4218 /* ??? We need to do this save early. Unfortunately here is
4219 before the frame variable gets declared. Help out... */
4220 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4221
4222 t_save = build4 (ARRAY_REF, ptr_type_node,
4223 cfun->nonlocal_goto_save_area,
4224 integer_zero_node, NULL_TREE, NULL_TREE);
4225 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4226 r_save = convert_memory_address (Pmode, r_save);
4227
4228 emit_move_insn (r_save, virtual_stack_vars_rtx);
4229 update_nonlocal_goto_save_area ();
4230 }
4231
4232 /* The following was moved from init_function_start.
4233 The move is supposed to make sdb output more accurate. */
4234 /* Indicate the beginning of the function body,
4235 as opposed to parm setup. */
4236 emit_note (NOTE_INSN_FUNCTION_BEG);
4237
4238 if (!NOTE_P (get_last_insn ()))
4239 emit_note (NOTE_INSN_DELETED);
4240 parm_birth_insn = get_last_insn ();
4241
4242 if (current_function_profile)
4243 {
4244 #ifdef PROFILE_HOOK
4245 PROFILE_HOOK (current_function_funcdef_no);
4246 #endif
4247 }
4248
4249 /* After the display initializations is where the tail-recursion label
4250 should go, if we end up needing one. Ensure we have a NOTE here
4251 since some things (like trampolines) get placed before this. */
4252 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4253
4254 /* Make sure there is a line number after the function entry setup code. */
4255 force_next_line_note ();
4256 }
4257 \f
4258 /* Undo the effects of init_dummy_function_start. */
4259 void
4260 expand_dummy_function_end (void)
4261 {
4262 /* End any sequences that failed to be closed due to syntax errors. */
4263 while (in_sequence_p ())
4264 end_sequence ();
4265
4266 /* Outside function body, can't compute type's actual size
4267 until next function's body starts. */
4268
4269 free_after_parsing (cfun);
4270 free_after_compilation (cfun);
4271 cfun = 0;
4272 }
4273
4274 /* Call DOIT for each hard register used as a return value from
4275 the current function. */
4276
4277 void
4278 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4279 {
4280 rtx outgoing = current_function_return_rtx;
4281
4282 if (! outgoing)
4283 return;
4284
4285 if (REG_P (outgoing))
4286 (*doit) (outgoing, arg);
4287 else if (GET_CODE (outgoing) == PARALLEL)
4288 {
4289 int i;
4290
4291 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4292 {
4293 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4294
4295 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4296 (*doit) (x, arg);
4297 }
4298 }
4299 }
4300
4301 static void
4302 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4303 {
4304 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4305 }
4306
4307 void
4308 clobber_return_register (void)
4309 {
4310 diddle_return_value (do_clobber_return_reg, NULL);
4311
4312 /* In case we do use pseudo to return value, clobber it too. */
4313 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4314 {
4315 tree decl_result = DECL_RESULT (current_function_decl);
4316 rtx decl_rtl = DECL_RTL (decl_result);
4317 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4318 {
4319 do_clobber_return_reg (decl_rtl, NULL);
4320 }
4321 }
4322 }
4323
4324 static void
4325 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4326 {
4327 emit_insn (gen_rtx_USE (VOIDmode, reg));
4328 }
4329
4330 void
4331 use_return_register (void)
4332 {
4333 diddle_return_value (do_use_return_reg, NULL);
4334 }
4335
4336 /* Possibly warn about unused parameters. */
4337 void
4338 do_warn_unused_parameter (tree fn)
4339 {
4340 tree decl;
4341
4342 for (decl = DECL_ARGUMENTS (fn);
4343 decl; decl = TREE_CHAIN (decl))
4344 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4345 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4346 warning ("%Junused parameter %qD", decl, decl);
4347 }
4348
4349 static GTY(()) rtx initial_trampoline;
4350
4351 /* Generate RTL for the end of the current function. */
4352
4353 void
4354 expand_function_end (void)
4355 {
4356 rtx clobber_after;
4357
4358 /* If arg_pointer_save_area was referenced only from a nested
4359 function, we will not have initialized it yet. Do that now. */
4360 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4361 get_arg_pointer_save_area (cfun);
4362
4363 /* If we are doing stack checking and this function makes calls,
4364 do a stack probe at the start of the function to ensure we have enough
4365 space for another stack frame. */
4366 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4367 {
4368 rtx insn, seq;
4369
4370 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4371 if (CALL_P (insn))
4372 {
4373 start_sequence ();
4374 probe_stack_range (STACK_CHECK_PROTECT,
4375 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4376 seq = get_insns ();
4377 end_sequence ();
4378 emit_insn_before (seq, tail_recursion_reentry);
4379 break;
4380 }
4381 }
4382
4383 /* Possibly warn about unused parameters.
4384 When frontend does unit-at-a-time, the warning is already
4385 issued at finalization time. */
4386 if (warn_unused_parameter
4387 && !lang_hooks.callgraph.expand_function)
4388 do_warn_unused_parameter (current_function_decl);
4389
4390 /* End any sequences that failed to be closed due to syntax errors. */
4391 while (in_sequence_p ())
4392 end_sequence ();
4393
4394 clear_pending_stack_adjust ();
4395 do_pending_stack_adjust ();
4396
4397 /* @@@ This is a kludge. We want to ensure that instructions that
4398 may trap are not moved into the epilogue by scheduling, because
4399 we don't always emit unwind information for the epilogue.
4400 However, not all machine descriptions define a blockage insn, so
4401 emit an ASM_INPUT to act as one. */
4402 if (flag_non_call_exceptions)
4403 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4404
4405 /* Mark the end of the function body.
4406 If control reaches this insn, the function can drop through
4407 without returning a value. */
4408 emit_note (NOTE_INSN_FUNCTION_END);
4409
4410 /* Must mark the last line number note in the function, so that the test
4411 coverage code can avoid counting the last line twice. This just tells
4412 the code to ignore the immediately following line note, since there
4413 already exists a copy of this note somewhere above. This line number
4414 note is still needed for debugging though, so we can't delete it. */
4415 if (flag_test_coverage)
4416 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4417
4418 /* Output a linenumber for the end of the function.
4419 SDB depends on this. */
4420 force_next_line_note ();
4421 emit_line_note (input_location);
4422
4423 /* Before the return label (if any), clobber the return
4424 registers so that they are not propagated live to the rest of
4425 the function. This can only happen with functions that drop
4426 through; if there had been a return statement, there would
4427 have either been a return rtx, or a jump to the return label.
4428
4429 We delay actual code generation after the current_function_value_rtx
4430 is computed. */
4431 clobber_after = get_last_insn ();
4432
4433 /* Output the label for the actual return from the function. */
4434 emit_label (return_label);
4435
4436 /* Let except.c know where it should emit the call to unregister
4437 the function context for sjlj exceptions. */
4438 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4439 sjlj_emit_function_exit_after (get_last_insn ());
4440
4441 /* If scalar return value was computed in a pseudo-reg, or was a named
4442 return value that got dumped to the stack, copy that to the hard
4443 return register. */
4444 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4445 {
4446 tree decl_result = DECL_RESULT (current_function_decl);
4447 rtx decl_rtl = DECL_RTL (decl_result);
4448
4449 if (REG_P (decl_rtl)
4450 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4451 : DECL_REGISTER (decl_result))
4452 {
4453 rtx real_decl_rtl = current_function_return_rtx;
4454
4455 /* This should be set in assign_parms. */
4456 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4457
4458 /* If this is a BLKmode structure being returned in registers,
4459 then use the mode computed in expand_return. Note that if
4460 decl_rtl is memory, then its mode may have been changed,
4461 but that current_function_return_rtx has not. */
4462 if (GET_MODE (real_decl_rtl) == BLKmode)
4463 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4464
4465 /* If a non-BLKmode return value should be padded at the least
4466 significant end of the register, shift it left by the appropriate
4467 amount. BLKmode results are handled using the group load/store
4468 machinery. */
4469 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4470 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4471 {
4472 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4473 REGNO (real_decl_rtl)),
4474 decl_rtl);
4475 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4476 }
4477 /* If a named return value dumped decl_return to memory, then
4478 we may need to re-do the PROMOTE_MODE signed/unsigned
4479 extension. */
4480 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4481 {
4482 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4483
4484 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4485 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4486 &unsignedp, 1);
4487
4488 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4489 }
4490 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4491 {
4492 /* If expand_function_start has created a PARALLEL for decl_rtl,
4493 move the result to the real return registers. Otherwise, do
4494 a group load from decl_rtl for a named return. */
4495 if (GET_CODE (decl_rtl) == PARALLEL)
4496 emit_group_move (real_decl_rtl, decl_rtl);
4497 else
4498 emit_group_load (real_decl_rtl, decl_rtl,
4499 TREE_TYPE (decl_result),
4500 int_size_in_bytes (TREE_TYPE (decl_result)));
4501 }
4502 else
4503 emit_move_insn (real_decl_rtl, decl_rtl);
4504 }
4505 }
4506
4507 /* If returning a structure, arrange to return the address of the value
4508 in a place where debuggers expect to find it.
4509
4510 If returning a structure PCC style,
4511 the caller also depends on this value.
4512 And current_function_returns_pcc_struct is not necessarily set. */
4513 if (current_function_returns_struct
4514 || current_function_returns_pcc_struct)
4515 {
4516 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4517 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4518 rtx outgoing;
4519
4520 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4521 type = TREE_TYPE (type);
4522 else
4523 value_address = XEXP (value_address, 0);
4524
4525 #ifdef FUNCTION_OUTGOING_VALUE
4526 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4527 current_function_decl);
4528 #else
4529 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4530 current_function_decl);
4531 #endif
4532
4533 /* Mark this as a function return value so integrate will delete the
4534 assignment and USE below when inlining this function. */
4535 REG_FUNCTION_VALUE_P (outgoing) = 1;
4536
4537 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4538 value_address = convert_memory_address (GET_MODE (outgoing),
4539 value_address);
4540
4541 emit_move_insn (outgoing, value_address);
4542
4543 /* Show return register used to hold result (in this case the address
4544 of the result. */
4545 current_function_return_rtx = outgoing;
4546 }
4547
4548 /* If this is an implementation of throw, do what's necessary to
4549 communicate between __builtin_eh_return and the epilogue. */
4550 expand_eh_return ();
4551
4552 /* Emit the actual code to clobber return register. */
4553 {
4554 rtx seq;
4555
4556 start_sequence ();
4557 clobber_return_register ();
4558 expand_naked_return ();
4559 seq = get_insns ();
4560 end_sequence ();
4561
4562 emit_insn_after (seq, clobber_after);
4563 }
4564
4565 /* Output the label for the naked return from the function. */
4566 emit_label (naked_return_label);
4567
4568 /* If we had calls to alloca, and this machine needs
4569 an accurate stack pointer to exit the function,
4570 insert some code to save and restore the stack pointer. */
4571 if (! EXIT_IGNORE_STACK
4572 && current_function_calls_alloca)
4573 {
4574 rtx tem = 0;
4575
4576 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4577 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4578 }
4579
4580 /* ??? This should no longer be necessary since stupid is no longer with
4581 us, but there are some parts of the compiler (eg reload_combine, and
4582 sh mach_dep_reorg) that still try and compute their own lifetime info
4583 instead of using the general framework. */
4584 use_return_register ();
4585 }
4586
4587 rtx
4588 get_arg_pointer_save_area (struct function *f)
4589 {
4590 rtx ret = f->x_arg_pointer_save_area;
4591
4592 if (! ret)
4593 {
4594 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4595 f->x_arg_pointer_save_area = ret;
4596 }
4597
4598 if (f == cfun && ! f->arg_pointer_save_area_init)
4599 {
4600 rtx seq;
4601
4602 /* Save the arg pointer at the beginning of the function. The
4603 generated stack slot may not be a valid memory address, so we
4604 have to check it and fix it if necessary. */
4605 start_sequence ();
4606 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4607 seq = get_insns ();
4608 end_sequence ();
4609
4610 push_topmost_sequence ();
4611 emit_insn_after (seq, entry_of_function ());
4612 pop_topmost_sequence ();
4613 }
4614
4615 return ret;
4616 }
4617 \f
4618 /* Extend a vector that records the INSN_UIDs of INSNS
4619 (a list of one or more insns). */
4620
4621 static void
4622 record_insns (rtx insns, varray_type *vecp)
4623 {
4624 int i, len;
4625 rtx tmp;
4626
4627 tmp = insns;
4628 len = 0;
4629 while (tmp != NULL_RTX)
4630 {
4631 len++;
4632 tmp = NEXT_INSN (tmp);
4633 }
4634
4635 i = VARRAY_SIZE (*vecp);
4636 VARRAY_GROW (*vecp, i + len);
4637 tmp = insns;
4638 while (tmp != NULL_RTX)
4639 {
4640 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4641 i++;
4642 tmp = NEXT_INSN (tmp);
4643 }
4644 }
4645
4646 /* Set the locator of the insn chain starting at INSN to LOC. */
4647 static void
4648 set_insn_locators (rtx insn, int loc)
4649 {
4650 while (insn != NULL_RTX)
4651 {
4652 if (INSN_P (insn))
4653 INSN_LOCATOR (insn) = loc;
4654 insn = NEXT_INSN (insn);
4655 }
4656 }
4657
4658 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4659 be running after reorg, SEQUENCE rtl is possible. */
4660
4661 static int
4662 contains (rtx insn, varray_type vec)
4663 {
4664 int i, j;
4665
4666 if (NONJUMP_INSN_P (insn)
4667 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4668 {
4669 int count = 0;
4670 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4671 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4672 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4673 count++;
4674 return count;
4675 }
4676 else
4677 {
4678 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4679 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4680 return 1;
4681 }
4682 return 0;
4683 }
4684
4685 int
4686 prologue_epilogue_contains (rtx insn)
4687 {
4688 if (contains (insn, prologue))
4689 return 1;
4690 if (contains (insn, epilogue))
4691 return 1;
4692 return 0;
4693 }
4694
4695 int
4696 sibcall_epilogue_contains (rtx insn)
4697 {
4698 if (sibcall_epilogue)
4699 return contains (insn, sibcall_epilogue);
4700 return 0;
4701 }
4702
4703 #ifdef HAVE_return
4704 /* Insert gen_return at the end of block BB. This also means updating
4705 block_for_insn appropriately. */
4706
4707 static void
4708 emit_return_into_block (basic_block bb, rtx line_note)
4709 {
4710 emit_jump_insn_after (gen_return (), BB_END (bb));
4711 if (line_note)
4712 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4713 }
4714 #endif /* HAVE_return */
4715
4716 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4717
4718 /* These functions convert the epilogue into a variant that does not
4719 modify the stack pointer. This is used in cases where a function
4720 returns an object whose size is not known until it is computed.
4721 The called function leaves the object on the stack, leaves the
4722 stack depressed, and returns a pointer to the object.
4723
4724 What we need to do is track all modifications and references to the
4725 stack pointer, deleting the modifications and changing the
4726 references to point to the location the stack pointer would have
4727 pointed to had the modifications taken place.
4728
4729 These functions need to be portable so we need to make as few
4730 assumptions about the epilogue as we can. However, the epilogue
4731 basically contains three things: instructions to reset the stack
4732 pointer, instructions to reload registers, possibly including the
4733 frame pointer, and an instruction to return to the caller.
4734
4735 We must be sure of what a relevant epilogue insn is doing. We also
4736 make no attempt to validate the insns we make since if they are
4737 invalid, we probably can't do anything valid. The intent is that
4738 these routines get "smarter" as more and more machines start to use
4739 them and they try operating on different epilogues.
4740
4741 We use the following structure to track what the part of the
4742 epilogue that we've already processed has done. We keep two copies
4743 of the SP equivalence, one for use during the insn we are
4744 processing and one for use in the next insn. The difference is
4745 because one part of a PARALLEL may adjust SP and the other may use
4746 it. */
4747
4748 struct epi_info
4749 {
4750 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4751 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4752 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4753 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4754 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4755 should be set to once we no longer need
4756 its value. */
4757 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4758 for registers. */
4759 };
4760
4761 static void handle_epilogue_set (rtx, struct epi_info *);
4762 static void update_epilogue_consts (rtx, rtx, void *);
4763 static void emit_equiv_load (struct epi_info *);
4764
4765 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4766 no modifications to the stack pointer. Return the new list of insns. */
4767
4768 static rtx
4769 keep_stack_depressed (rtx insns)
4770 {
4771 int j;
4772 struct epi_info info;
4773 rtx insn, next;
4774
4775 /* If the epilogue is just a single instruction, it must be OK as is. */
4776 if (NEXT_INSN (insns) == NULL_RTX)
4777 return insns;
4778
4779 /* Otherwise, start a sequence, initialize the information we have, and
4780 process all the insns we were given. */
4781 start_sequence ();
4782
4783 info.sp_equiv_reg = stack_pointer_rtx;
4784 info.sp_offset = 0;
4785 info.equiv_reg_src = 0;
4786
4787 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4788 info.const_equiv[j] = 0;
4789
4790 insn = insns;
4791 next = NULL_RTX;
4792 while (insn != NULL_RTX)
4793 {
4794 next = NEXT_INSN (insn);
4795
4796 if (!INSN_P (insn))
4797 {
4798 add_insn (insn);
4799 insn = next;
4800 continue;
4801 }
4802
4803 /* If this insn references the register that SP is equivalent to and
4804 we have a pending load to that register, we must force out the load
4805 first and then indicate we no longer know what SP's equivalent is. */
4806 if (info.equiv_reg_src != 0
4807 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4808 {
4809 emit_equiv_load (&info);
4810 info.sp_equiv_reg = 0;
4811 }
4812
4813 info.new_sp_equiv_reg = info.sp_equiv_reg;
4814 info.new_sp_offset = info.sp_offset;
4815
4816 /* If this is a (RETURN) and the return address is on the stack,
4817 update the address and change to an indirect jump. */
4818 if (GET_CODE (PATTERN (insn)) == RETURN
4819 || (GET_CODE (PATTERN (insn)) == PARALLEL
4820 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4821 {
4822 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4823 rtx base = 0;
4824 HOST_WIDE_INT offset = 0;
4825 rtx jump_insn, jump_set;
4826
4827 /* If the return address is in a register, we can emit the insn
4828 unchanged. Otherwise, it must be a MEM and we see what the
4829 base register and offset are. In any case, we have to emit any
4830 pending load to the equivalent reg of SP, if any. */
4831 if (REG_P (retaddr))
4832 {
4833 emit_equiv_load (&info);
4834 add_insn (insn);
4835 insn = next;
4836 continue;
4837 }
4838 else
4839 {
4840 rtx ret_ptr;
4841 gcc_assert (MEM_P (retaddr));
4842
4843 ret_ptr = XEXP (retaddr, 0);
4844
4845 if (REG_P (ret_ptr))
4846 {
4847 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4848 offset = 0;
4849 }
4850 else
4851 {
4852 gcc_assert (GET_CODE (ret_ptr) == PLUS
4853 && REG_P (XEXP (ret_ptr, 0))
4854 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4855 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4856 offset = INTVAL (XEXP (ret_ptr, 1));
4857 }
4858 }
4859
4860 /* If the base of the location containing the return pointer
4861 is SP, we must update it with the replacement address. Otherwise,
4862 just build the necessary MEM. */
4863 retaddr = plus_constant (base, offset);
4864 if (base == stack_pointer_rtx)
4865 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4866 plus_constant (info.sp_equiv_reg,
4867 info.sp_offset));
4868
4869 retaddr = gen_rtx_MEM (Pmode, retaddr);
4870
4871 /* If there is a pending load to the equivalent register for SP
4872 and we reference that register, we must load our address into
4873 a scratch register and then do that load. */
4874 if (info.equiv_reg_src
4875 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4876 {
4877 unsigned int regno;
4878 rtx reg;
4879
4880 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4881 if (HARD_REGNO_MODE_OK (regno, Pmode)
4882 && !fixed_regs[regno]
4883 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4884 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4885 regno)
4886 && !refers_to_regno_p (regno,
4887 regno + hard_regno_nregs[regno]
4888 [Pmode],
4889 info.equiv_reg_src, NULL)
4890 && info.const_equiv[regno] == 0)
4891 break;
4892
4893 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4894
4895 reg = gen_rtx_REG (Pmode, regno);
4896 emit_move_insn (reg, retaddr);
4897 retaddr = reg;
4898 }
4899
4900 emit_equiv_load (&info);
4901 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4902
4903 /* Show the SET in the above insn is a RETURN. */
4904 jump_set = single_set (jump_insn);
4905 gcc_assert (jump_set);
4906 SET_IS_RETURN_P (jump_set) = 1;
4907 }
4908
4909 /* If SP is not mentioned in the pattern and its equivalent register, if
4910 any, is not modified, just emit it. Otherwise, if neither is set,
4911 replace the reference to SP and emit the insn. If none of those are
4912 true, handle each SET individually. */
4913 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4914 && (info.sp_equiv_reg == stack_pointer_rtx
4915 || !reg_set_p (info.sp_equiv_reg, insn)))
4916 add_insn (insn);
4917 else if (! reg_set_p (stack_pointer_rtx, insn)
4918 && (info.sp_equiv_reg == stack_pointer_rtx
4919 || !reg_set_p (info.sp_equiv_reg, insn)))
4920 {
4921 int changed;
4922
4923 changed = validate_replace_rtx (stack_pointer_rtx,
4924 plus_constant (info.sp_equiv_reg,
4925 info.sp_offset),
4926 insn);
4927 gcc_assert (changed);
4928
4929 add_insn (insn);
4930 }
4931 else if (GET_CODE (PATTERN (insn)) == SET)
4932 handle_epilogue_set (PATTERN (insn), &info);
4933 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4934 {
4935 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4936 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4937 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4938 }
4939 else
4940 add_insn (insn);
4941
4942 info.sp_equiv_reg = info.new_sp_equiv_reg;
4943 info.sp_offset = info.new_sp_offset;
4944
4945 /* Now update any constants this insn sets. */
4946 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4947 insn = next;
4948 }
4949
4950 insns = get_insns ();
4951 end_sequence ();
4952 return insns;
4953 }
4954
4955 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4956 structure that contains information about what we've seen so far. We
4957 process this SET by either updating that data or by emitting one or
4958 more insns. */
4959
4960 static void
4961 handle_epilogue_set (rtx set, struct epi_info *p)
4962 {
4963 /* First handle the case where we are setting SP. Record what it is being
4964 set from, which we must be able to determine */
4965 if (reg_set_p (stack_pointer_rtx, set))
4966 {
4967 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4968
4969 if (GET_CODE (SET_SRC (set)) == PLUS)
4970 {
4971 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4972 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4973 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4974 else
4975 {
4976 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4977 && (REGNO (XEXP (SET_SRC (set), 1))
4978 < FIRST_PSEUDO_REGISTER)
4979 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4980 p->new_sp_offset
4981 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4982 }
4983 }
4984 else
4985 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4986
4987 /* If we are adjusting SP, we adjust from the old data. */
4988 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4989 {
4990 p->new_sp_equiv_reg = p->sp_equiv_reg;
4991 p->new_sp_offset += p->sp_offset;
4992 }
4993
4994 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4995
4996 return;
4997 }
4998
4999 /* Next handle the case where we are setting SP's equivalent
5000 register. We must not already have a value to set it to. We
5001 could update, but there seems little point in handling that case.
5002 Note that we have to allow for the case where we are setting the
5003 register set in the previous part of a PARALLEL inside a single
5004 insn. But use the old offset for any updates within this insn.
5005 We must allow for the case where the register is being set in a
5006 different (usually wider) mode than Pmode). */
5007 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5008 {
5009 gcc_assert (!p->equiv_reg_src
5010 && REG_P (p->new_sp_equiv_reg)
5011 && REG_P (SET_DEST (set))
5012 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5013 <= BITS_PER_WORD)
5014 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5015 p->equiv_reg_src
5016 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5017 plus_constant (p->sp_equiv_reg,
5018 p->sp_offset));
5019 }
5020
5021 /* Otherwise, replace any references to SP in the insn to its new value
5022 and emit the insn. */
5023 else
5024 {
5025 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5026 plus_constant (p->sp_equiv_reg,
5027 p->sp_offset));
5028 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5029 plus_constant (p->sp_equiv_reg,
5030 p->sp_offset));
5031 emit_insn (set);
5032 }
5033 }
5034
5035 /* Update the tracking information for registers set to constants. */
5036
5037 static void
5038 update_epilogue_consts (rtx dest, rtx x, void *data)
5039 {
5040 struct epi_info *p = (struct epi_info *) data;
5041 rtx new;
5042
5043 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5044 return;
5045
5046 /* If we are either clobbering a register or doing a partial set,
5047 show we don't know the value. */
5048 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5049 p->const_equiv[REGNO (dest)] = 0;
5050
5051 /* If we are setting it to a constant, record that constant. */
5052 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5053 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5054
5055 /* If this is a binary operation between a register we have been tracking
5056 and a constant, see if we can compute a new constant value. */
5057 else if (ARITHMETIC_P (SET_SRC (x))
5058 && REG_P (XEXP (SET_SRC (x), 0))
5059 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5060 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5061 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5062 && 0 != (new = simplify_binary_operation
5063 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5064 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5065 XEXP (SET_SRC (x), 1)))
5066 && GET_CODE (new) == CONST_INT)
5067 p->const_equiv[REGNO (dest)] = new;
5068
5069 /* Otherwise, we can't do anything with this value. */
5070 else
5071 p->const_equiv[REGNO (dest)] = 0;
5072 }
5073
5074 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5075
5076 static void
5077 emit_equiv_load (struct epi_info *p)
5078 {
5079 if (p->equiv_reg_src != 0)
5080 {
5081 rtx dest = p->sp_equiv_reg;
5082
5083 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5084 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5085 REGNO (p->sp_equiv_reg));
5086
5087 emit_move_insn (dest, p->equiv_reg_src);
5088 p->equiv_reg_src = 0;
5089 }
5090 }
5091 #endif
5092
5093 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5094 this into place with notes indicating where the prologue ends and where
5095 the epilogue begins. Update the basic block information when possible. */
5096
5097 void
5098 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5099 {
5100 int inserted = 0;
5101 edge e;
5102 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5103 rtx seq;
5104 #endif
5105 #ifdef HAVE_prologue
5106 rtx prologue_end = NULL_RTX;
5107 #endif
5108 #if defined (HAVE_epilogue) || defined(HAVE_return)
5109 rtx epilogue_end = NULL_RTX;
5110 #endif
5111 edge_iterator ei;
5112
5113 #ifdef HAVE_prologue
5114 if (HAVE_prologue)
5115 {
5116 start_sequence ();
5117 seq = gen_prologue ();
5118 emit_insn (seq);
5119
5120 /* Retain a map of the prologue insns. */
5121 record_insns (seq, &prologue);
5122 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5123
5124 seq = get_insns ();
5125 end_sequence ();
5126 set_insn_locators (seq, prologue_locator);
5127
5128 /* Can't deal with multiple successors of the entry block
5129 at the moment. Function should always have at least one
5130 entry point. */
5131 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5132
5133 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5134 inserted = 1;
5135 }
5136 #endif
5137
5138 /* If the exit block has no non-fake predecessors, we don't need
5139 an epilogue. */
5140 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5141 if ((e->flags & EDGE_FAKE) == 0)
5142 break;
5143 if (e == NULL)
5144 goto epilogue_done;
5145
5146 #ifdef HAVE_return
5147 if (optimize && HAVE_return)
5148 {
5149 /* If we're allowed to generate a simple return instruction,
5150 then by definition we don't need a full epilogue. Examine
5151 the block that falls through to EXIT. If it does not
5152 contain any code, examine its predecessors and try to
5153 emit (conditional) return instructions. */
5154
5155 basic_block last;
5156 rtx label;
5157
5158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5159 if (e->flags & EDGE_FALLTHRU)
5160 break;
5161 if (e == NULL)
5162 goto epilogue_done;
5163 last = e->src;
5164
5165 /* Verify that there are no active instructions in the last block. */
5166 label = BB_END (last);
5167 while (label && !LABEL_P (label))
5168 {
5169 if (active_insn_p (label))
5170 break;
5171 label = PREV_INSN (label);
5172 }
5173
5174 if (BB_HEAD (last) == label && LABEL_P (label))
5175 {
5176 edge_iterator ei2;
5177 rtx epilogue_line_note = NULL_RTX;
5178
5179 /* Locate the line number associated with the closing brace,
5180 if we can find one. */
5181 for (seq = get_last_insn ();
5182 seq && ! active_insn_p (seq);
5183 seq = PREV_INSN (seq))
5184 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5185 {
5186 epilogue_line_note = seq;
5187 break;
5188 }
5189
5190 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5191 {
5192 basic_block bb = e->src;
5193 rtx jump;
5194
5195 if (bb == ENTRY_BLOCK_PTR)
5196 {
5197 ei_next (&ei2);
5198 continue;
5199 }
5200
5201 jump = BB_END (bb);
5202 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5203 {
5204 ei_next (&ei2);
5205 continue;
5206 }
5207
5208 /* If we have an unconditional jump, we can replace that
5209 with a simple return instruction. */
5210 if (simplejump_p (jump))
5211 {
5212 emit_return_into_block (bb, epilogue_line_note);
5213 delete_insn (jump);
5214 }
5215
5216 /* If we have a conditional jump, we can try to replace
5217 that with a conditional return instruction. */
5218 else if (condjump_p (jump))
5219 {
5220 if (! redirect_jump (jump, 0, 0))
5221 {
5222 ei_next (&ei2);
5223 continue;
5224 }
5225
5226 /* If this block has only one successor, it both jumps
5227 and falls through to the fallthru block, so we can't
5228 delete the edge. */
5229 if (single_succ_p (bb))
5230 {
5231 ei_next (&ei2);
5232 continue;
5233 }
5234 }
5235 else
5236 {
5237 ei_next (&ei2);
5238 continue;
5239 }
5240
5241 /* Fix up the CFG for the successful change we just made. */
5242 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5243 }
5244
5245 /* Emit a return insn for the exit fallthru block. Whether
5246 this is still reachable will be determined later. */
5247
5248 emit_barrier_after (BB_END (last));
5249 emit_return_into_block (last, epilogue_line_note);
5250 epilogue_end = BB_END (last);
5251 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5252 goto epilogue_done;
5253 }
5254 }
5255 #endif
5256 /* Find the edge that falls through to EXIT. Other edges may exist
5257 due to RETURN instructions, but those don't need epilogues.
5258 There really shouldn't be a mixture -- either all should have
5259 been converted or none, however... */
5260
5261 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5262 if (e->flags & EDGE_FALLTHRU)
5263 break;
5264 if (e == NULL)
5265 goto epilogue_done;
5266
5267 #ifdef HAVE_epilogue
5268 if (HAVE_epilogue)
5269 {
5270 start_sequence ();
5271 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5272
5273 seq = gen_epilogue ();
5274
5275 #ifdef INCOMING_RETURN_ADDR_RTX
5276 /* If this function returns with the stack depressed and we can support
5277 it, massage the epilogue to actually do that. */
5278 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5279 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5280 seq = keep_stack_depressed (seq);
5281 #endif
5282
5283 emit_jump_insn (seq);
5284
5285 /* Retain a map of the epilogue insns. */
5286 record_insns (seq, &epilogue);
5287 set_insn_locators (seq, epilogue_locator);
5288
5289 seq = get_insns ();
5290 end_sequence ();
5291
5292 insert_insn_on_edge (seq, e);
5293 inserted = 1;
5294 }
5295 else
5296 #endif
5297 {
5298 basic_block cur_bb;
5299
5300 if (! next_active_insn (BB_END (e->src)))
5301 goto epilogue_done;
5302 /* We have a fall-through edge to the exit block, the source is not
5303 at the end of the function, and there will be an assembler epilogue
5304 at the end of the function.
5305 We can't use force_nonfallthru here, because that would try to
5306 use return. Inserting a jump 'by hand' is extremely messy, so
5307 we take advantage of cfg_layout_finalize using
5308 fixup_fallthru_exit_predecessor. */
5309 cfg_layout_initialize (0);
5310 FOR_EACH_BB (cur_bb)
5311 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5312 cur_bb->rbi->next = cur_bb->next_bb;
5313 cfg_layout_finalize ();
5314 }
5315 epilogue_done:
5316
5317 if (inserted)
5318 commit_edge_insertions ();
5319
5320 #ifdef HAVE_sibcall_epilogue
5321 /* Emit sibling epilogues before any sibling call sites. */
5322 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5323 {
5324 basic_block bb = e->src;
5325 rtx insn = BB_END (bb);
5326
5327 if (!CALL_P (insn)
5328 || ! SIBLING_CALL_P (insn))
5329 {
5330 ei_next (&ei);
5331 continue;
5332 }
5333
5334 start_sequence ();
5335 emit_insn (gen_sibcall_epilogue ());
5336 seq = get_insns ();
5337 end_sequence ();
5338
5339 /* Retain a map of the epilogue insns. Used in life analysis to
5340 avoid getting rid of sibcall epilogue insns. Do this before we
5341 actually emit the sequence. */
5342 record_insns (seq, &sibcall_epilogue);
5343 set_insn_locators (seq, epilogue_locator);
5344
5345 emit_insn_before (seq, insn);
5346 ei_next (&ei);
5347 }
5348 #endif
5349
5350 #ifdef HAVE_prologue
5351 /* This is probably all useless now that we use locators. */
5352 if (prologue_end)
5353 {
5354 rtx insn, prev;
5355
5356 /* GDB handles `break f' by setting a breakpoint on the first
5357 line note after the prologue. Which means (1) that if
5358 there are line number notes before where we inserted the
5359 prologue we should move them, and (2) we should generate a
5360 note before the end of the first basic block, if there isn't
5361 one already there.
5362
5363 ??? This behavior is completely broken when dealing with
5364 multiple entry functions. We simply place the note always
5365 into first basic block and let alternate entry points
5366 to be missed.
5367 */
5368
5369 for (insn = prologue_end; insn; insn = prev)
5370 {
5371 prev = PREV_INSN (insn);
5372 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5373 {
5374 /* Note that we cannot reorder the first insn in the
5375 chain, since rest_of_compilation relies on that
5376 remaining constant. */
5377 if (prev == NULL)
5378 break;
5379 reorder_insns (insn, insn, prologue_end);
5380 }
5381 }
5382
5383 /* Find the last line number note in the first block. */
5384 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5385 insn != prologue_end && insn;
5386 insn = PREV_INSN (insn))
5387 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5388 break;
5389
5390 /* If we didn't find one, make a copy of the first line number
5391 we run across. */
5392 if (! insn)
5393 {
5394 for (insn = next_active_insn (prologue_end);
5395 insn;
5396 insn = PREV_INSN (insn))
5397 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5398 {
5399 emit_note_copy_after (insn, prologue_end);
5400 break;
5401 }
5402 }
5403 }
5404 #endif
5405 #ifdef HAVE_epilogue
5406 if (epilogue_end)
5407 {
5408 rtx insn, next;
5409
5410 /* Similarly, move any line notes that appear after the epilogue.
5411 There is no need, however, to be quite so anal about the existence
5412 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5413 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5414 info generation. */
5415 for (insn = epilogue_end; insn; insn = next)
5416 {
5417 next = NEXT_INSN (insn);
5418 if (NOTE_P (insn)
5419 && (NOTE_LINE_NUMBER (insn) > 0
5420 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5421 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5422 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5423 }
5424 }
5425 #endif
5426 }
5427
5428 /* Reposition the prologue-end and epilogue-begin notes after instruction
5429 scheduling and delayed branch scheduling. */
5430
5431 void
5432 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5433 {
5434 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5435 rtx insn, last, note;
5436 int len;
5437
5438 if ((len = VARRAY_SIZE (prologue)) > 0)
5439 {
5440 last = 0, note = 0;
5441
5442 /* Scan from the beginning until we reach the last prologue insn.
5443 We apparently can't depend on basic_block_{head,end} after
5444 reorg has run. */
5445 for (insn = f; insn; insn = NEXT_INSN (insn))
5446 {
5447 if (NOTE_P (insn))
5448 {
5449 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5450 note = insn;
5451 }
5452 else if (contains (insn, prologue))
5453 {
5454 last = insn;
5455 if (--len == 0)
5456 break;
5457 }
5458 }
5459
5460 if (last)
5461 {
5462 /* Find the prologue-end note if we haven't already, and
5463 move it to just after the last prologue insn. */
5464 if (note == 0)
5465 {
5466 for (note = last; (note = NEXT_INSN (note));)
5467 if (NOTE_P (note)
5468 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5469 break;
5470 }
5471
5472 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5473 if (LABEL_P (last))
5474 last = NEXT_INSN (last);
5475 reorder_insns (note, note, last);
5476 }
5477 }
5478
5479 if ((len = VARRAY_SIZE (epilogue)) > 0)
5480 {
5481 last = 0, note = 0;
5482
5483 /* Scan from the end until we reach the first epilogue insn.
5484 We apparently can't depend on basic_block_{head,end} after
5485 reorg has run. */
5486 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5487 {
5488 if (NOTE_P (insn))
5489 {
5490 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5491 note = insn;
5492 }
5493 else if (contains (insn, epilogue))
5494 {
5495 last = insn;
5496 if (--len == 0)
5497 break;
5498 }
5499 }
5500
5501 if (last)
5502 {
5503 /* Find the epilogue-begin note if we haven't already, and
5504 move it to just before the first epilogue insn. */
5505 if (note == 0)
5506 {
5507 for (note = insn; (note = PREV_INSN (note));)
5508 if (NOTE_P (note)
5509 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5510 break;
5511 }
5512
5513 if (PREV_INSN (last) != note)
5514 reorder_insns (note, note, PREV_INSN (last));
5515 }
5516 }
5517 #endif /* HAVE_prologue or HAVE_epilogue */
5518 }
5519
5520 /* Called once, at initialization, to initialize function.c. */
5521
5522 void
5523 init_function_once (void)
5524 {
5525 VARRAY_INT_INIT (prologue, 0, "prologue");
5526 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5527 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5528 }
5529
5530 /* Resets insn_block_boundaries array. */
5531
5532 void
5533 reset_block_changes (void)
5534 {
5535 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5536 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5537 }
5538
5539 /* Record the boundary for BLOCK. */
5540 void
5541 record_block_change (tree block)
5542 {
5543 int i, n;
5544 tree last_block;
5545
5546 if (!block)
5547 return;
5548
5549 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5550 VARRAY_POP (cfun->ib_boundaries_block);
5551 n = get_max_uid ();
5552 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5553 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5554
5555 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5556 }
5557
5558 /* Finishes record of boundaries. */
5559 void finalize_block_changes (void)
5560 {
5561 record_block_change (DECL_INITIAL (current_function_decl));
5562 }
5563
5564 /* For INSN return the BLOCK it belongs to. */
5565 void
5566 check_block_change (rtx insn, tree *block)
5567 {
5568 unsigned uid = INSN_UID (insn);
5569
5570 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5571 return;
5572
5573 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5574 }
5575
5576 /* Releases the ib_boundaries_block records. */
5577 void
5578 free_block_changes (void)
5579 {
5580 cfun->ib_boundaries_block = NULL;
5581 }
5582
5583 /* Returns the name of the current function. */
5584 const char *
5585 current_function_name (void)
5586 {
5587 return lang_hooks.decl_printable_name (cfun->decl, 2);
5588 }
5589
5590 #include "gt-function.h"