]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
re PR middle-end/34548 (GCC generates too many alignment adds for alloca)
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "langhooks.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "gimple.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "vecprim.h"
65 #include "params.h"
66 #include "bb-reorder.h"
67
68 /* So we can assign to cfun in this file. */
69 #undef cfun
70
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
74
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
76
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
84
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
89
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
93
94 /* Nonzero once virtual register instantiation has been done.
95 assign_stack_local uses frame_pointer_rtx when this is nonzero.
96 calls.c:emit_library_call_value_1 uses it to set up
97 post-instantiation libcalls. */
98 int virtuals_instantiated;
99
100 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
101 static GTY(()) int funcdef_no;
102
103 /* These variables hold pointers to functions to create and destroy
104 target specific, per-function data structures. */
105 struct machine_function * (*init_machine_status) (void);
106
107 /* The currently compiled function. */
108 struct function *cfun = 0;
109
110 /* These hashes record the prologue and epilogue insns. */
111 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
112 htab_t prologue_insn_hash;
113 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
114 htab_t epilogue_insn_hash;
115 \f
116
117 htab_t types_used_by_vars_hash = NULL;
118 VEC(tree,gc) *types_used_by_cur_var_decl;
119
120 /* Forward declarations. */
121
122 static struct temp_slot *find_temp_slot_from_address (rtx);
123 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
124 static void pad_below (struct args_size *, enum machine_mode, tree);
125 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
126 static int all_blocks (tree, tree *);
127 static tree *get_block_vector (tree, int *);
128 extern tree debug_find_var_in_block_tree (tree, tree);
129 /* We always define `record_insns' even if it's not used so that we
130 can always export `prologue_epilogue_contains'. */
131 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
132 static bool contains (const_rtx, htab_t);
133 static void prepare_function_start (void);
134 static void do_clobber_return_reg (rtx, void *);
135 static void do_use_return_reg (rtx, void *);
136 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
137 \f
138 /* Stack of nested functions. */
139 /* Keep track of the cfun stack. */
140
141 typedef struct function *function_p;
142
143 DEF_VEC_P(function_p);
144 DEF_VEC_ALLOC_P(function_p,heap);
145 static VEC(function_p,heap) *function_context_stack;
146
147 /* Save the current context for compilation of a nested function.
148 This is called from language-specific code. */
149
150 void
151 push_function_context (void)
152 {
153 if (cfun == 0)
154 allocate_struct_function (NULL, false);
155
156 VEC_safe_push (function_p, heap, function_context_stack, cfun);
157 set_cfun (NULL);
158 }
159
160 /* Restore the last saved context, at the end of a nested function.
161 This function is called from language-specific code. */
162
163 void
164 pop_function_context (void)
165 {
166 struct function *p = VEC_pop (function_p, function_context_stack);
167 set_cfun (p);
168 current_function_decl = p->decl;
169
170 /* Reset variables that have known state during rtx generation. */
171 virtuals_instantiated = 0;
172 generating_concat_p = 1;
173 }
174
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been parsed, but not compiled, to let
177 garbage collection reclaim the memory. */
178
179 void
180 free_after_parsing (struct function *f)
181 {
182 f->language = 0;
183 }
184
185 /* Clear out all parts of the state in F that can safely be discarded
186 after the function has been compiled, to let garbage collection
187 reclaim the memory. */
188
189 void
190 free_after_compilation (struct function *f)
191 {
192 prologue_insn_hash = NULL;
193 epilogue_insn_hash = NULL;
194
195 free (crtl->emit.regno_pointer_align);
196
197 memset (crtl, 0, sizeof (struct rtl_data));
198 f->eh = NULL;
199 f->machine = NULL;
200 f->cfg = NULL;
201
202 regno_reg_rtx = NULL;
203 insn_locators_free ();
204 }
205 \f
206 /* Return size needed for stack frame based on slots so far allocated.
207 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
208 the caller may have to do that. */
209
210 HOST_WIDE_INT
211 get_frame_size (void)
212 {
213 if (FRAME_GROWS_DOWNWARD)
214 return -frame_offset;
215 else
216 return frame_offset;
217 }
218
219 /* Issue an error message and return TRUE if frame OFFSET overflows in
220 the signed target pointer arithmetics for function FUNC. Otherwise
221 return FALSE. */
222
223 bool
224 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
225 {
226 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
227
228 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
229 /* Leave room for the fixed part of the frame. */
230 - 64 * UNITS_PER_WORD)
231 {
232 error_at (DECL_SOURCE_LOCATION (func),
233 "total size of local objects too large");
234 return TRUE;
235 }
236
237 return FALSE;
238 }
239
240 /* Return stack slot alignment in bits for TYPE and MODE. */
241
242 static unsigned int
243 get_stack_local_alignment (tree type, enum machine_mode mode)
244 {
245 unsigned int alignment;
246
247 if (mode == BLKmode)
248 alignment = BIGGEST_ALIGNMENT;
249 else
250 alignment = GET_MODE_ALIGNMENT (mode);
251
252 /* Allow the frond-end to (possibly) increase the alignment of this
253 stack slot. */
254 if (! type)
255 type = lang_hooks.types.type_for_mode (mode, 0);
256
257 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
258 }
259
260 /* Determine whether it is possible to fit a stack slot of size SIZE and
261 alignment ALIGNMENT into an area in the stack frame that starts at
262 frame offset START and has a length of LENGTH. If so, store the frame
263 offset to be used for the stack slot in *POFFSET and return true;
264 return false otherwise. This function will extend the frame size when
265 given a start/length pair that lies at the end of the frame. */
266
267 static bool
268 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
269 HOST_WIDE_INT size, unsigned int alignment,
270 HOST_WIDE_INT *poffset)
271 {
272 HOST_WIDE_INT this_frame_offset;
273 int frame_off, frame_alignment, frame_phase;
274
275 /* Calculate how many bytes the start of local variables is off from
276 stack alignment. */
277 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
278 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
279 frame_phase = frame_off ? frame_alignment - frame_off : 0;
280
281 /* Round the frame offset to the specified alignment. */
282
283 /* We must be careful here, since FRAME_OFFSET might be negative and
284 division with a negative dividend isn't as well defined as we might
285 like. So we instead assume that ALIGNMENT is a power of two and
286 use logical operations which are unambiguous. */
287 if (FRAME_GROWS_DOWNWARD)
288 this_frame_offset
289 = (FLOOR_ROUND (start + length - size - frame_phase,
290 (unsigned HOST_WIDE_INT) alignment)
291 + frame_phase);
292 else
293 this_frame_offset
294 = (CEIL_ROUND (start - frame_phase,
295 (unsigned HOST_WIDE_INT) alignment)
296 + frame_phase);
297
298 /* See if it fits. If this space is at the edge of the frame,
299 consider extending the frame to make it fit. Our caller relies on
300 this when allocating a new slot. */
301 if (frame_offset == start && this_frame_offset < frame_offset)
302 frame_offset = this_frame_offset;
303 else if (this_frame_offset < start)
304 return false;
305 else if (start + length == frame_offset
306 && this_frame_offset + size > start + length)
307 frame_offset = this_frame_offset + size;
308 else if (this_frame_offset + size > start + length)
309 return false;
310
311 *poffset = this_frame_offset;
312 return true;
313 }
314
315 /* Create a new frame_space structure describing free space in the stack
316 frame beginning at START and ending at END, and chain it into the
317 function's frame_space_list. */
318
319 static void
320 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
321 {
322 struct frame_space *space = ggc_alloc_frame_space ();
323 space->next = crtl->frame_space_list;
324 crtl->frame_space_list = space;
325 space->start = start;
326 space->length = end - start;
327 }
328
329 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
330 with machine mode MODE.
331
332 ALIGN controls the amount of alignment for the address of the slot:
333 0 means according to MODE,
334 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
335 -2 means use BITS_PER_UNIT,
336 positive specifies alignment boundary in bits.
337
338 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
339 alignment and ASLK_RECORD_PAD bit set if we should remember
340 extra space we allocated for alignment purposes. When we are
341 called from assign_stack_temp_for_type, it is not set so we don't
342 track the same stack slot in two independent lists.
343
344 We do not round to stack_boundary here. */
345
346 rtx
347 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
348 int align, int kind)
349 {
350 rtx x, addr;
351 int bigend_correction = 0;
352 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
353 unsigned int alignment, alignment_in_bits;
354
355 if (align == 0)
356 {
357 alignment = get_stack_local_alignment (NULL, mode);
358 alignment /= BITS_PER_UNIT;
359 }
360 else if (align == -1)
361 {
362 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
363 size = CEIL_ROUND (size, alignment);
364 }
365 else if (align == -2)
366 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
367 else
368 alignment = align / BITS_PER_UNIT;
369
370 alignment_in_bits = alignment * BITS_PER_UNIT;
371
372 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
373 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
374 {
375 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
376 alignment = alignment_in_bits / BITS_PER_UNIT;
377 }
378
379 if (SUPPORTS_STACK_ALIGNMENT)
380 {
381 if (crtl->stack_alignment_estimated < alignment_in_bits)
382 {
383 if (!crtl->stack_realign_processed)
384 crtl->stack_alignment_estimated = alignment_in_bits;
385 else
386 {
387 /* If stack is realigned and stack alignment value
388 hasn't been finalized, it is OK not to increase
389 stack_alignment_estimated. The bigger alignment
390 requirement is recorded in stack_alignment_needed
391 below. */
392 gcc_assert (!crtl->stack_realign_finalized);
393 if (!crtl->stack_realign_needed)
394 {
395 /* It is OK to reduce the alignment as long as the
396 requested size is 0 or the estimated stack
397 alignment >= mode alignment. */
398 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
399 || size == 0
400 || (crtl->stack_alignment_estimated
401 >= GET_MODE_ALIGNMENT (mode)));
402 alignment_in_bits = crtl->stack_alignment_estimated;
403 alignment = alignment_in_bits / BITS_PER_UNIT;
404 }
405 }
406 }
407 }
408
409 if (crtl->stack_alignment_needed < alignment_in_bits)
410 crtl->stack_alignment_needed = alignment_in_bits;
411 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
412 crtl->max_used_stack_slot_alignment = alignment_in_bits;
413
414 if (mode != BLKmode || size != 0)
415 {
416 if (kind & ASLK_RECORD_PAD)
417 {
418 struct frame_space **psp;
419
420 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
421 {
422 struct frame_space *space = *psp;
423 if (!try_fit_stack_local (space->start, space->length, size,
424 alignment, &slot_offset))
425 continue;
426 *psp = space->next;
427 if (slot_offset > space->start)
428 add_frame_space (space->start, slot_offset);
429 if (slot_offset + size < space->start + space->length)
430 add_frame_space (slot_offset + size,
431 space->start + space->length);
432 goto found_space;
433 }
434 }
435 }
436 else if (!STACK_ALIGNMENT_NEEDED)
437 {
438 slot_offset = frame_offset;
439 goto found_space;
440 }
441
442 old_frame_offset = frame_offset;
443
444 if (FRAME_GROWS_DOWNWARD)
445 {
446 frame_offset -= size;
447 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
448
449 if (kind & ASLK_RECORD_PAD)
450 {
451 if (slot_offset > frame_offset)
452 add_frame_space (frame_offset, slot_offset);
453 if (slot_offset + size < old_frame_offset)
454 add_frame_space (slot_offset + size, old_frame_offset);
455 }
456 }
457 else
458 {
459 frame_offset += size;
460 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
461
462 if (kind & ASLK_RECORD_PAD)
463 {
464 if (slot_offset > old_frame_offset)
465 add_frame_space (old_frame_offset, slot_offset);
466 if (slot_offset + size < frame_offset)
467 add_frame_space (slot_offset + size, frame_offset);
468 }
469 }
470
471 found_space:
472 /* On a big-endian machine, if we are allocating more space than we will use,
473 use the least significant bytes of those that are allocated. */
474 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
475 bigend_correction = size - GET_MODE_SIZE (mode);
476
477 /* If we have already instantiated virtual registers, return the actual
478 address relative to the frame pointer. */
479 if (virtuals_instantiated)
480 addr = plus_constant (Pmode, frame_pointer_rtx,
481 trunc_int_for_mode
482 (slot_offset + bigend_correction
483 + STARTING_FRAME_OFFSET, Pmode));
484 else
485 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
486 trunc_int_for_mode
487 (slot_offset + bigend_correction,
488 Pmode));
489
490 x = gen_rtx_MEM (mode, addr);
491 set_mem_align (x, alignment_in_bits);
492 MEM_NOTRAP_P (x) = 1;
493
494 stack_slot_list
495 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
496
497 if (frame_offset_overflow (frame_offset, current_function_decl))
498 frame_offset = 0;
499
500 return x;
501 }
502
503 /* Wrap up assign_stack_local_1 with last parameter as false. */
504
505 rtx
506 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
507 {
508 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
509 }
510 \f
511 /* In order to evaluate some expressions, such as function calls returning
512 structures in memory, we need to temporarily allocate stack locations.
513 We record each allocated temporary in the following structure.
514
515 Associated with each temporary slot is a nesting level. When we pop up
516 one level, all temporaries associated with the previous level are freed.
517 Normally, all temporaries are freed after the execution of the statement
518 in which they were created. However, if we are inside a ({...}) grouping,
519 the result may be in a temporary and hence must be preserved. If the
520 result could be in a temporary, we preserve it if we can determine which
521 one it is in. If we cannot determine which temporary may contain the
522 result, all temporaries are preserved. A temporary is preserved by
523 pretending it was allocated at the previous nesting level. */
524
525 struct GTY(()) temp_slot {
526 /* Points to next temporary slot. */
527 struct temp_slot *next;
528 /* Points to previous temporary slot. */
529 struct temp_slot *prev;
530 /* The rtx to used to reference the slot. */
531 rtx slot;
532 /* The size, in units, of the slot. */
533 HOST_WIDE_INT size;
534 /* The type of the object in the slot, or zero if it doesn't correspond
535 to a type. We use this to determine whether a slot can be reused.
536 It can be reused if objects of the type of the new slot will always
537 conflict with objects of the type of the old slot. */
538 tree type;
539 /* The alignment (in bits) of the slot. */
540 unsigned int align;
541 /* Nonzero if this temporary is currently in use. */
542 char in_use;
543 /* Nesting level at which this slot is being used. */
544 int level;
545 /* The offset of the slot from the frame_pointer, including extra space
546 for alignment. This info is for combine_temp_slots. */
547 HOST_WIDE_INT base_offset;
548 /* The size of the slot, including extra space for alignment. This
549 info is for combine_temp_slots. */
550 HOST_WIDE_INT full_size;
551 };
552
553 /* A table of addresses that represent a stack slot. The table is a mapping
554 from address RTXen to a temp slot. */
555 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
556 static size_t n_temp_slots_in_use;
557
558 /* Entry for the above hash table. */
559 struct GTY(()) temp_slot_address_entry {
560 hashval_t hash;
561 rtx address;
562 struct temp_slot *temp_slot;
563 };
564
565 /* Removes temporary slot TEMP from LIST. */
566
567 static void
568 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
569 {
570 if (temp->next)
571 temp->next->prev = temp->prev;
572 if (temp->prev)
573 temp->prev->next = temp->next;
574 else
575 *list = temp->next;
576
577 temp->prev = temp->next = NULL;
578 }
579
580 /* Inserts temporary slot TEMP to LIST. */
581
582 static void
583 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
584 {
585 temp->next = *list;
586 if (*list)
587 (*list)->prev = temp;
588 temp->prev = NULL;
589 *list = temp;
590 }
591
592 /* Returns the list of used temp slots at LEVEL. */
593
594 static struct temp_slot **
595 temp_slots_at_level (int level)
596 {
597 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
598 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
599
600 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
601 }
602
603 /* Returns the maximal temporary slot level. */
604
605 static int
606 max_slot_level (void)
607 {
608 if (!used_temp_slots)
609 return -1;
610
611 return VEC_length (temp_slot_p, used_temp_slots) - 1;
612 }
613
614 /* Moves temporary slot TEMP to LEVEL. */
615
616 static void
617 move_slot_to_level (struct temp_slot *temp, int level)
618 {
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, temp_slots_at_level (level));
621 temp->level = level;
622 }
623
624 /* Make temporary slot TEMP available. */
625
626 static void
627 make_slot_available (struct temp_slot *temp)
628 {
629 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
630 insert_slot_to_list (temp, &avail_temp_slots);
631 temp->in_use = 0;
632 temp->level = -1;
633 n_temp_slots_in_use--;
634 }
635
636 /* Compute the hash value for an address -> temp slot mapping.
637 The value is cached on the mapping entry. */
638 static hashval_t
639 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
640 {
641 int do_not_record = 0;
642 return hash_rtx (t->address, GET_MODE (t->address),
643 &do_not_record, NULL, false);
644 }
645
646 /* Return the hash value for an address -> temp slot mapping. */
647 static hashval_t
648 temp_slot_address_hash (const void *p)
649 {
650 const struct temp_slot_address_entry *t;
651 t = (const struct temp_slot_address_entry *) p;
652 return t->hash;
653 }
654
655 /* Compare two address -> temp slot mapping entries. */
656 static int
657 temp_slot_address_eq (const void *p1, const void *p2)
658 {
659 const struct temp_slot_address_entry *t1, *t2;
660 t1 = (const struct temp_slot_address_entry *) p1;
661 t2 = (const struct temp_slot_address_entry *) p2;
662 return exp_equiv_p (t1->address, t2->address, 0, true);
663 }
664
665 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
666 static void
667 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
668 {
669 void **slot;
670 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
671 t->address = address;
672 t->temp_slot = temp_slot;
673 t->hash = temp_slot_address_compute_hash (t);
674 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
675 *slot = t;
676 }
677
678 /* Remove an address -> temp slot mapping entry if the temp slot is
679 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
680 static int
681 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
682 {
683 const struct temp_slot_address_entry *t;
684 t = (const struct temp_slot_address_entry *) *slot;
685 if (! t->temp_slot->in_use)
686 htab_clear_slot (temp_slot_address_table, slot);
687 return 1;
688 }
689
690 /* Remove all mappings of addresses to unused temp slots. */
691 static void
692 remove_unused_temp_slot_addresses (void)
693 {
694 /* Use quicker clearing if there aren't any active temp slots. */
695 if (n_temp_slots_in_use)
696 htab_traverse (temp_slot_address_table,
697 remove_unused_temp_slot_addresses_1,
698 NULL);
699 else
700 htab_empty (temp_slot_address_table);
701 }
702
703 /* Find the temp slot corresponding to the object at address X. */
704
705 static struct temp_slot *
706 find_temp_slot_from_address (rtx x)
707 {
708 struct temp_slot *p;
709 struct temp_slot_address_entry tmp, *t;
710
711 /* First try the easy way:
712 See if X exists in the address -> temp slot mapping. */
713 tmp.address = x;
714 tmp.temp_slot = NULL;
715 tmp.hash = temp_slot_address_compute_hash (&tmp);
716 t = (struct temp_slot_address_entry *)
717 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
718 if (t)
719 return t->temp_slot;
720
721 /* If we have a sum involving a register, see if it points to a temp
722 slot. */
723 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
724 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
725 return p;
726 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
727 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
728 return p;
729
730 /* Last resort: Address is a virtual stack var address. */
731 if (GET_CODE (x) == PLUS
732 && XEXP (x, 0) == virtual_stack_vars_rtx
733 && CONST_INT_P (XEXP (x, 1)))
734 {
735 int i;
736 for (i = max_slot_level (); i >= 0; i--)
737 for (p = *temp_slots_at_level (i); p; p = p->next)
738 {
739 if (INTVAL (XEXP (x, 1)) >= p->base_offset
740 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
741 return p;
742 }
743 }
744
745 return NULL;
746 }
747 \f
748 /* Allocate a temporary stack slot and record it for possible later
749 reuse.
750
751 MODE is the machine mode to be given to the returned rtx.
752
753 SIZE is the size in units of the space required. We do no rounding here
754 since assign_stack_local will do any required rounding.
755
756 TYPE is the type that will be used for the stack slot. */
757
758 rtx
759 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
760 tree type)
761 {
762 unsigned int align;
763 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
764 rtx slot;
765
766 /* If SIZE is -1 it means that somebody tried to allocate a temporary
767 of a variable size. */
768 gcc_assert (size != -1);
769
770 align = get_stack_local_alignment (type, mode);
771
772 /* Try to find an available, already-allocated temporary of the proper
773 mode which meets the size and alignment requirements. Choose the
774 smallest one with the closest alignment.
775
776 If assign_stack_temp is called outside of the tree->rtl expansion,
777 we cannot reuse the stack slots (that may still refer to
778 VIRTUAL_STACK_VARS_REGNUM). */
779 if (!virtuals_instantiated)
780 {
781 for (p = avail_temp_slots; p; p = p->next)
782 {
783 if (p->align >= align && p->size >= size
784 && GET_MODE (p->slot) == mode
785 && objects_must_conflict_p (p->type, type)
786 && (best_p == 0 || best_p->size > p->size
787 || (best_p->size == p->size && best_p->align > p->align)))
788 {
789 if (p->align == align && p->size == size)
790 {
791 selected = p;
792 cut_slot_from_list (selected, &avail_temp_slots);
793 best_p = 0;
794 break;
795 }
796 best_p = p;
797 }
798 }
799 }
800
801 /* Make our best, if any, the one to use. */
802 if (best_p)
803 {
804 selected = best_p;
805 cut_slot_from_list (selected, &avail_temp_slots);
806
807 /* If there are enough aligned bytes left over, make them into a new
808 temp_slot so that the extra bytes don't get wasted. Do this only
809 for BLKmode slots, so that we can be sure of the alignment. */
810 if (GET_MODE (best_p->slot) == BLKmode)
811 {
812 int alignment = best_p->align / BITS_PER_UNIT;
813 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
814
815 if (best_p->size - rounded_size >= alignment)
816 {
817 p = ggc_alloc_temp_slot ();
818 p->in_use = 0;
819 p->size = best_p->size - rounded_size;
820 p->base_offset = best_p->base_offset + rounded_size;
821 p->full_size = best_p->full_size - rounded_size;
822 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
823 p->align = best_p->align;
824 p->type = best_p->type;
825 insert_slot_to_list (p, &avail_temp_slots);
826
827 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
828 stack_slot_list);
829
830 best_p->size = rounded_size;
831 best_p->full_size = rounded_size;
832 }
833 }
834 }
835
836 /* If we still didn't find one, make a new temporary. */
837 if (selected == 0)
838 {
839 HOST_WIDE_INT frame_offset_old = frame_offset;
840
841 p = ggc_alloc_temp_slot ();
842
843 /* We are passing an explicit alignment request to assign_stack_local.
844 One side effect of that is assign_stack_local will not round SIZE
845 to ensure the frame offset remains suitably aligned.
846
847 So for requests which depended on the rounding of SIZE, we go ahead
848 and round it now. We also make sure ALIGNMENT is at least
849 BIGGEST_ALIGNMENT. */
850 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
851 p->slot = assign_stack_local_1 (mode,
852 (mode == BLKmode
853 ? CEIL_ROUND (size,
854 (int) align
855 / BITS_PER_UNIT)
856 : size),
857 align, 0);
858
859 p->align = align;
860
861 /* The following slot size computation is necessary because we don't
862 know the actual size of the temporary slot until assign_stack_local
863 has performed all the frame alignment and size rounding for the
864 requested temporary. Note that extra space added for alignment
865 can be either above or below this stack slot depending on which
866 way the frame grows. We include the extra space if and only if it
867 is above this slot. */
868 if (FRAME_GROWS_DOWNWARD)
869 p->size = frame_offset_old - frame_offset;
870 else
871 p->size = size;
872
873 /* Now define the fields used by combine_temp_slots. */
874 if (FRAME_GROWS_DOWNWARD)
875 {
876 p->base_offset = frame_offset;
877 p->full_size = frame_offset_old - frame_offset;
878 }
879 else
880 {
881 p->base_offset = frame_offset_old;
882 p->full_size = frame_offset - frame_offset_old;
883 }
884
885 selected = p;
886 }
887
888 p = selected;
889 p->in_use = 1;
890 p->type = type;
891 p->level = temp_slot_level;
892 n_temp_slots_in_use++;
893
894 pp = temp_slots_at_level (p->level);
895 insert_slot_to_list (p, pp);
896 insert_temp_slot_address (XEXP (p->slot, 0), p);
897
898 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
899 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
900 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
901
902 /* If we know the alias set for the memory that will be used, use
903 it. If there's no TYPE, then we don't know anything about the
904 alias set for the memory. */
905 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
906 set_mem_align (slot, align);
907
908 /* If a type is specified, set the relevant flags. */
909 if (type != 0)
910 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
911 MEM_NOTRAP_P (slot) = 1;
912
913 return slot;
914 }
915
916 /* Allocate a temporary stack slot and record it for possible later
917 reuse. First two arguments are same as in preceding function. */
918
919 rtx
920 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
921 {
922 return assign_stack_temp_for_type (mode, size, NULL_TREE);
923 }
924 \f
925 /* Assign a temporary.
926 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
927 and so that should be used in error messages. In either case, we
928 allocate of the given type.
929 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
930 it is 0 if a register is OK.
931 DONT_PROMOTE is 1 if we should not promote values in register
932 to wider modes. */
933
934 rtx
935 assign_temp (tree type_or_decl, int memory_required,
936 int dont_promote ATTRIBUTE_UNUSED)
937 {
938 tree type, decl;
939 enum machine_mode mode;
940 #ifdef PROMOTE_MODE
941 int unsignedp;
942 #endif
943
944 if (DECL_P (type_or_decl))
945 decl = type_or_decl, type = TREE_TYPE (decl);
946 else
947 decl = NULL, type = type_or_decl;
948
949 mode = TYPE_MODE (type);
950 #ifdef PROMOTE_MODE
951 unsignedp = TYPE_UNSIGNED (type);
952 #endif
953
954 if (mode == BLKmode || memory_required)
955 {
956 HOST_WIDE_INT size = int_size_in_bytes (type);
957 rtx tmp;
958
959 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
960 problems with allocating the stack space. */
961 if (size == 0)
962 size = 1;
963
964 /* Unfortunately, we don't yet know how to allocate variable-sized
965 temporaries. However, sometimes we can find a fixed upper limit on
966 the size, so try that instead. */
967 else if (size == -1)
968 size = max_int_size_in_bytes (type);
969
970 /* The size of the temporary may be too large to fit into an integer. */
971 /* ??? Not sure this should happen except for user silliness, so limit
972 this to things that aren't compiler-generated temporaries. The
973 rest of the time we'll die in assign_stack_temp_for_type. */
974 if (decl && size == -1
975 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
976 {
977 error ("size of variable %q+D is too large", decl);
978 size = 1;
979 }
980
981 tmp = assign_stack_temp_for_type (mode, size, type);
982 return tmp;
983 }
984
985 #ifdef PROMOTE_MODE
986 if (! dont_promote)
987 mode = promote_mode (type, mode, &unsignedp);
988 #endif
989
990 return gen_reg_rtx (mode);
991 }
992 \f
993 /* Combine temporary stack slots which are adjacent on the stack.
994
995 This allows for better use of already allocated stack space. This is only
996 done for BLKmode slots because we can be sure that we won't have alignment
997 problems in this case. */
998
999 static void
1000 combine_temp_slots (void)
1001 {
1002 struct temp_slot *p, *q, *next, *next_q;
1003 int num_slots;
1004
1005 /* We can't combine slots, because the information about which slot
1006 is in which alias set will be lost. */
1007 if (flag_strict_aliasing)
1008 return;
1009
1010 /* If there are a lot of temp slots, don't do anything unless
1011 high levels of optimization. */
1012 if (! flag_expensive_optimizations)
1013 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1014 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1015 return;
1016
1017 for (p = avail_temp_slots; p; p = next)
1018 {
1019 int delete_p = 0;
1020
1021 next = p->next;
1022
1023 if (GET_MODE (p->slot) != BLKmode)
1024 continue;
1025
1026 for (q = p->next; q; q = next_q)
1027 {
1028 int delete_q = 0;
1029
1030 next_q = q->next;
1031
1032 if (GET_MODE (q->slot) != BLKmode)
1033 continue;
1034
1035 if (p->base_offset + p->full_size == q->base_offset)
1036 {
1037 /* Q comes after P; combine Q into P. */
1038 p->size += q->size;
1039 p->full_size += q->full_size;
1040 delete_q = 1;
1041 }
1042 else if (q->base_offset + q->full_size == p->base_offset)
1043 {
1044 /* P comes after Q; combine P into Q. */
1045 q->size += p->size;
1046 q->full_size += p->full_size;
1047 delete_p = 1;
1048 break;
1049 }
1050 if (delete_q)
1051 cut_slot_from_list (q, &avail_temp_slots);
1052 }
1053
1054 /* Either delete P or advance past it. */
1055 if (delete_p)
1056 cut_slot_from_list (p, &avail_temp_slots);
1057 }
1058 }
1059 \f
1060 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1061 slot that previously was known by OLD_RTX. */
1062
1063 void
1064 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1065 {
1066 struct temp_slot *p;
1067
1068 if (rtx_equal_p (old_rtx, new_rtx))
1069 return;
1070
1071 p = find_temp_slot_from_address (old_rtx);
1072
1073 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1074 NEW_RTX is a register, see if one operand of the PLUS is a
1075 temporary location. If so, NEW_RTX points into it. Otherwise,
1076 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1077 in common between them. If so, try a recursive call on those
1078 values. */
1079 if (p == 0)
1080 {
1081 if (GET_CODE (old_rtx) != PLUS)
1082 return;
1083
1084 if (REG_P (new_rtx))
1085 {
1086 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1087 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1088 return;
1089 }
1090 else if (GET_CODE (new_rtx) != PLUS)
1091 return;
1092
1093 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1094 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1095 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1096 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1097 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1098 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1099 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1100 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1101
1102 return;
1103 }
1104
1105 /* Otherwise add an alias for the temp's address. */
1106 insert_temp_slot_address (new_rtx, p);
1107 }
1108
1109 /* If X could be a reference to a temporary slot, mark that slot as
1110 belonging to the to one level higher than the current level. If X
1111 matched one of our slots, just mark that one. Otherwise, we can't
1112 easily predict which it is, so upgrade all of them.
1113
1114 This is called when an ({...}) construct occurs and a statement
1115 returns a value in memory. */
1116
1117 void
1118 preserve_temp_slots (rtx x)
1119 {
1120 struct temp_slot *p = 0, *next;
1121
1122 if (x == 0)
1123 return;
1124
1125 /* If X is a register that is being used as a pointer, see if we have
1126 a temporary slot we know it points to. */
1127 if (REG_P (x) && REG_POINTER (x))
1128 p = find_temp_slot_from_address (x);
1129
1130 /* If X is not in memory or is at a constant address, it cannot be in
1131 a temporary slot. */
1132 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1133 return;
1134
1135 /* First see if we can find a match. */
1136 if (p == 0)
1137 p = find_temp_slot_from_address (XEXP (x, 0));
1138
1139 if (p != 0)
1140 {
1141 if (p->level == temp_slot_level)
1142 move_slot_to_level (p, temp_slot_level - 1);
1143 return;
1144 }
1145
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1148 {
1149 next = p->next;
1150 move_slot_to_level (p, temp_slot_level - 1);
1151 }
1152 }
1153
1154 /* Free all temporaries used so far. This is normally called at the
1155 end of generating code for a statement. */
1156
1157 void
1158 free_temp_slots (void)
1159 {
1160 struct temp_slot *p, *next;
1161 bool some_available = false;
1162
1163 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1164 {
1165 next = p->next;
1166 make_slot_available (p);
1167 some_available = true;
1168 }
1169
1170 if (some_available)
1171 {
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1174 }
1175 }
1176
1177 /* Push deeper into the nesting level for stack temporaries. */
1178
1179 void
1180 push_temp_slots (void)
1181 {
1182 temp_slot_level++;
1183 }
1184
1185 /* Pop a temporary nesting level. All slots in use in the current level
1186 are freed. */
1187
1188 void
1189 pop_temp_slots (void)
1190 {
1191 free_temp_slots ();
1192 temp_slot_level--;
1193 }
1194
1195 /* Initialize temporary slots. */
1196
1197 void
1198 init_temp_slots (void)
1199 {
1200 /* We have not allocated any temporaries yet. */
1201 avail_temp_slots = 0;
1202 used_temp_slots = 0;
1203 temp_slot_level = 0;
1204 n_temp_slots_in_use = 0;
1205
1206 /* Set up the table to map addresses to temp slots. */
1207 if (! temp_slot_address_table)
1208 temp_slot_address_table = htab_create_ggc (32,
1209 temp_slot_address_hash,
1210 temp_slot_address_eq,
1211 NULL);
1212 else
1213 htab_empty (temp_slot_address_table);
1214 }
1215 \f
1216 /* Functions and data structures to keep track of the values hard regs
1217 had at the start of the function. */
1218
1219 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1220 and has_hard_reg_initial_val.. */
1221 typedef struct GTY(()) initial_value_pair {
1222 rtx hard_reg;
1223 rtx pseudo;
1224 } initial_value_pair;
1225 /* ??? This could be a VEC but there is currently no way to define an
1226 opaque VEC type. This could be worked around by defining struct
1227 initial_value_pair in function.h. */
1228 typedef struct GTY(()) initial_value_struct {
1229 int num_entries;
1230 int max_entries;
1231 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1232 } initial_value_struct;
1233
1234 /* If a pseudo represents an initial hard reg (or expression), return
1235 it, else return NULL_RTX. */
1236
1237 rtx
1238 get_hard_reg_initial_reg (rtx reg)
1239 {
1240 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1241 int i;
1242
1243 if (ivs == 0)
1244 return NULL_RTX;
1245
1246 for (i = 0; i < ivs->num_entries; i++)
1247 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1248 return ivs->entries[i].hard_reg;
1249
1250 return NULL_RTX;
1251 }
1252
1253 /* Make sure that there's a pseudo register of mode MODE that stores the
1254 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1255
1256 rtx
1257 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1258 {
1259 struct initial_value_struct *ivs;
1260 rtx rv;
1261
1262 rv = has_hard_reg_initial_val (mode, regno);
1263 if (rv)
1264 return rv;
1265
1266 ivs = crtl->hard_reg_initial_vals;
1267 if (ivs == 0)
1268 {
1269 ivs = ggc_alloc_initial_value_struct ();
1270 ivs->num_entries = 0;
1271 ivs->max_entries = 5;
1272 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1273 crtl->hard_reg_initial_vals = ivs;
1274 }
1275
1276 if (ivs->num_entries >= ivs->max_entries)
1277 {
1278 ivs->max_entries += 5;
1279 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1280 ivs->max_entries);
1281 }
1282
1283 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1284 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1285
1286 return ivs->entries[ivs->num_entries++].pseudo;
1287 }
1288
1289 /* See if get_hard_reg_initial_val has been used to create a pseudo
1290 for the initial value of hard register REGNO in mode MODE. Return
1291 the associated pseudo if so, otherwise return NULL. */
1292
1293 rtx
1294 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1295 {
1296 struct initial_value_struct *ivs;
1297 int i;
1298
1299 ivs = crtl->hard_reg_initial_vals;
1300 if (ivs != 0)
1301 for (i = 0; i < ivs->num_entries; i++)
1302 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1303 && REGNO (ivs->entries[i].hard_reg) == regno)
1304 return ivs->entries[i].pseudo;
1305
1306 return NULL_RTX;
1307 }
1308
1309 unsigned int
1310 emit_initial_value_sets (void)
1311 {
1312 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1313 int i;
1314 rtx seq;
1315
1316 if (ivs == 0)
1317 return 0;
1318
1319 start_sequence ();
1320 for (i = 0; i < ivs->num_entries; i++)
1321 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1322 seq = get_insns ();
1323 end_sequence ();
1324
1325 emit_insn_at_entry (seq);
1326 return 0;
1327 }
1328
1329 /* Return the hardreg-pseudoreg initial values pair entry I and
1330 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1331 bool
1332 initial_value_entry (int i, rtx *hreg, rtx *preg)
1333 {
1334 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1335 if (!ivs || i >= ivs->num_entries)
1336 return false;
1337
1338 *hreg = ivs->entries[i].hard_reg;
1339 *preg = ivs->entries[i].pseudo;
1340 return true;
1341 }
1342 \f
1343 /* These routines are responsible for converting virtual register references
1344 to the actual hard register references once RTL generation is complete.
1345
1346 The following four variables are used for communication between the
1347 routines. They contain the offsets of the virtual registers from their
1348 respective hard registers. */
1349
1350 static int in_arg_offset;
1351 static int var_offset;
1352 static int dynamic_offset;
1353 static int out_arg_offset;
1354 static int cfa_offset;
1355
1356 /* In most machines, the stack pointer register is equivalent to the bottom
1357 of the stack. */
1358
1359 #ifndef STACK_POINTER_OFFSET
1360 #define STACK_POINTER_OFFSET 0
1361 #endif
1362
1363 /* If not defined, pick an appropriate default for the offset of dynamically
1364 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1365 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1366
1367 #ifndef STACK_DYNAMIC_OFFSET
1368
1369 /* The bottom of the stack points to the actual arguments. If
1370 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1371 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1372 stack space for register parameters is not pushed by the caller, but
1373 rather part of the fixed stack areas and hence not included in
1374 `crtl->outgoing_args_size'. Nevertheless, we must allow
1375 for it when allocating stack dynamic objects. */
1376
1377 #if defined(REG_PARM_STACK_SPACE)
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS \
1380 ? (crtl->outgoing_args_size \
1381 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1382 : REG_PARM_STACK_SPACE (FNDECL))) \
1383 : 0) + (STACK_POINTER_OFFSET))
1384 #else
1385 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1386 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1387 + (STACK_POINTER_OFFSET))
1388 #endif
1389 #endif
1390
1391 \f
1392 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1393 is a virtual register, return the equivalent hard register and set the
1394 offset indirectly through the pointer. Otherwise, return 0. */
1395
1396 static rtx
1397 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1398 {
1399 rtx new_rtx;
1400 HOST_WIDE_INT offset;
1401
1402 if (x == virtual_incoming_args_rtx)
1403 {
1404 if (stack_realign_drap)
1405 {
1406 /* Replace virtual_incoming_args_rtx with internal arg
1407 pointer if DRAP is used to realign stack. */
1408 new_rtx = crtl->args.internal_arg_pointer;
1409 offset = 0;
1410 }
1411 else
1412 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1413 }
1414 else if (x == virtual_stack_vars_rtx)
1415 new_rtx = frame_pointer_rtx, offset = var_offset;
1416 else if (x == virtual_stack_dynamic_rtx)
1417 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1418 else if (x == virtual_outgoing_args_rtx)
1419 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1420 else if (x == virtual_cfa_rtx)
1421 {
1422 #ifdef FRAME_POINTER_CFA_OFFSET
1423 new_rtx = frame_pointer_rtx;
1424 #else
1425 new_rtx = arg_pointer_rtx;
1426 #endif
1427 offset = cfa_offset;
1428 }
1429 else if (x == virtual_preferred_stack_boundary_rtx)
1430 {
1431 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1432 offset = 0;
1433 }
1434 else
1435 return NULL_RTX;
1436
1437 *poffset = offset;
1438 return new_rtx;
1439 }
1440
1441 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1442 Instantiate any virtual registers present inside of *LOC. The expression
1443 is simplified, as much as possible, but is not to be considered "valid"
1444 in any sense implied by the target. If any change is made, set CHANGED
1445 to true. */
1446
1447 static int
1448 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1449 {
1450 HOST_WIDE_INT offset;
1451 bool *changed = (bool *) data;
1452 rtx x, new_rtx;
1453
1454 x = *loc;
1455 if (x == 0)
1456 return 0;
1457
1458 switch (GET_CODE (x))
1459 {
1460 case REG:
1461 new_rtx = instantiate_new_reg (x, &offset);
1462 if (new_rtx)
1463 {
1464 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1465 if (changed)
1466 *changed = true;
1467 }
1468 return -1;
1469
1470 case PLUS:
1471 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1472 if (new_rtx)
1473 {
1474 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1475 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1476 if (changed)
1477 *changed = true;
1478 return -1;
1479 }
1480
1481 /* FIXME -- from old code */
1482 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1483 we can commute the PLUS and SUBREG because pointers into the
1484 frame are well-behaved. */
1485 break;
1486
1487 default:
1488 break;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1495 matches the predicate for insn CODE operand OPERAND. */
1496
1497 static int
1498 safe_insn_predicate (int code, int operand, rtx x)
1499 {
1500 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1501 }
1502
1503 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1504 registers present inside of insn. The result will be a valid insn. */
1505
1506 static void
1507 instantiate_virtual_regs_in_insn (rtx insn)
1508 {
1509 HOST_WIDE_INT offset;
1510 int insn_code, i;
1511 bool any_change = false;
1512 rtx set, new_rtx, x, seq;
1513
1514 /* There are some special cases to be handled first. */
1515 set = single_set (insn);
1516 if (set)
1517 {
1518 /* We're allowed to assign to a virtual register. This is interpreted
1519 to mean that the underlying register gets assigned the inverse
1520 transformation. This is used, for example, in the handling of
1521 non-local gotos. */
1522 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1523 if (new_rtx)
1524 {
1525 start_sequence ();
1526
1527 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1528 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1529 GEN_INT (-offset));
1530 x = force_operand (x, new_rtx);
1531 if (x != new_rtx)
1532 emit_move_insn (new_rtx, x);
1533
1534 seq = get_insns ();
1535 end_sequence ();
1536
1537 emit_insn_before (seq, insn);
1538 delete_insn (insn);
1539 return;
1540 }
1541
1542 /* Handle a straight copy from a virtual register by generating a
1543 new add insn. The difference between this and falling through
1544 to the generic case is avoiding a new pseudo and eliminating a
1545 move insn in the initial rtl stream. */
1546 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1547 if (new_rtx && offset != 0
1548 && REG_P (SET_DEST (set))
1549 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1550 {
1551 start_sequence ();
1552
1553 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1554 new_rtx, GEN_INT (offset), SET_DEST (set),
1555 1, OPTAB_LIB_WIDEN);
1556 if (x != SET_DEST (set))
1557 emit_move_insn (SET_DEST (set), x);
1558
1559 seq = get_insns ();
1560 end_sequence ();
1561
1562 emit_insn_before (seq, insn);
1563 delete_insn (insn);
1564 return;
1565 }
1566
1567 extract_insn (insn);
1568 insn_code = INSN_CODE (insn);
1569
1570 /* Handle a plus involving a virtual register by determining if the
1571 operands remain valid if they're modified in place. */
1572 if (GET_CODE (SET_SRC (set)) == PLUS
1573 && recog_data.n_operands >= 3
1574 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1575 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1576 && CONST_INT_P (recog_data.operand[2])
1577 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1578 {
1579 offset += INTVAL (recog_data.operand[2]);
1580
1581 /* If the sum is zero, then replace with a plain move. */
1582 if (offset == 0
1583 && REG_P (SET_DEST (set))
1584 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1585 {
1586 start_sequence ();
1587 emit_move_insn (SET_DEST (set), new_rtx);
1588 seq = get_insns ();
1589 end_sequence ();
1590
1591 emit_insn_before (seq, insn);
1592 delete_insn (insn);
1593 return;
1594 }
1595
1596 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1597
1598 /* Using validate_change and apply_change_group here leaves
1599 recog_data in an invalid state. Since we know exactly what
1600 we want to check, do those two by hand. */
1601 if (safe_insn_predicate (insn_code, 1, new_rtx)
1602 && safe_insn_predicate (insn_code, 2, x))
1603 {
1604 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1605 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1606 any_change = true;
1607
1608 /* Fall through into the regular operand fixup loop in
1609 order to take care of operands other than 1 and 2. */
1610 }
1611 }
1612 }
1613 else
1614 {
1615 extract_insn (insn);
1616 insn_code = INSN_CODE (insn);
1617 }
1618
1619 /* In the general case, we expect virtual registers to appear only in
1620 operands, and then only as either bare registers or inside memories. */
1621 for (i = 0; i < recog_data.n_operands; ++i)
1622 {
1623 x = recog_data.operand[i];
1624 switch (GET_CODE (x))
1625 {
1626 case MEM:
1627 {
1628 rtx addr = XEXP (x, 0);
1629 bool changed = false;
1630
1631 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1632 if (!changed)
1633 continue;
1634
1635 start_sequence ();
1636 x = replace_equiv_address (x, addr);
1637 /* It may happen that the address with the virtual reg
1638 was valid (e.g. based on the virtual stack reg, which might
1639 be acceptable to the predicates with all offsets), whereas
1640 the address now isn't anymore, for instance when the address
1641 is still offsetted, but the base reg isn't virtual-stack-reg
1642 anymore. Below we would do a force_reg on the whole operand,
1643 but this insn might actually only accept memory. Hence,
1644 before doing that last resort, try to reload the address into
1645 a register, so this operand stays a MEM. */
1646 if (!safe_insn_predicate (insn_code, i, x))
1647 {
1648 addr = force_reg (GET_MODE (addr), addr);
1649 x = replace_equiv_address (x, addr);
1650 }
1651 seq = get_insns ();
1652 end_sequence ();
1653 if (seq)
1654 emit_insn_before (seq, insn);
1655 }
1656 break;
1657
1658 case REG:
1659 new_rtx = instantiate_new_reg (x, &offset);
1660 if (new_rtx == NULL)
1661 continue;
1662 if (offset == 0)
1663 x = new_rtx;
1664 else
1665 {
1666 start_sequence ();
1667
1668 /* Careful, special mode predicates may have stuff in
1669 insn_data[insn_code].operand[i].mode that isn't useful
1670 to us for computing a new value. */
1671 /* ??? Recognize address_operand and/or "p" constraints
1672 to see if (plus new offset) is a valid before we put
1673 this through expand_simple_binop. */
1674 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1675 GEN_INT (offset), NULL_RTX,
1676 1, OPTAB_LIB_WIDEN);
1677 seq = get_insns ();
1678 end_sequence ();
1679 emit_insn_before (seq, insn);
1680 }
1681 break;
1682
1683 case SUBREG:
1684 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1685 if (new_rtx == NULL)
1686 continue;
1687 if (offset != 0)
1688 {
1689 start_sequence ();
1690 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1691 GEN_INT (offset), NULL_RTX,
1692 1, OPTAB_LIB_WIDEN);
1693 seq = get_insns ();
1694 end_sequence ();
1695 emit_insn_before (seq, insn);
1696 }
1697 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1698 GET_MODE (new_rtx), SUBREG_BYTE (x));
1699 gcc_assert (x);
1700 break;
1701
1702 default:
1703 continue;
1704 }
1705
1706 /* At this point, X contains the new value for the operand.
1707 Validate the new value vs the insn predicate. Note that
1708 asm insns will have insn_code -1 here. */
1709 if (!safe_insn_predicate (insn_code, i, x))
1710 {
1711 start_sequence ();
1712 if (REG_P (x))
1713 {
1714 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1715 x = copy_to_reg (x);
1716 }
1717 else
1718 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1719 seq = get_insns ();
1720 end_sequence ();
1721 if (seq)
1722 emit_insn_before (seq, insn);
1723 }
1724
1725 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1726 any_change = true;
1727 }
1728
1729 if (any_change)
1730 {
1731 /* Propagate operand changes into the duplicates. */
1732 for (i = 0; i < recog_data.n_dups; ++i)
1733 *recog_data.dup_loc[i]
1734 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1735
1736 /* Force re-recognition of the instruction for validation. */
1737 INSN_CODE (insn) = -1;
1738 }
1739
1740 if (asm_noperands (PATTERN (insn)) >= 0)
1741 {
1742 if (!check_asm_operands (PATTERN (insn)))
1743 {
1744 error_for_asm (insn, "impossible constraint in %<asm%>");
1745 delete_insn_and_edges (insn);
1746 }
1747 }
1748 else
1749 {
1750 if (recog_memoized (insn) < 0)
1751 fatal_insn_not_found (insn);
1752 }
1753 }
1754
1755 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1756 do any instantiation required. */
1757
1758 void
1759 instantiate_decl_rtl (rtx x)
1760 {
1761 rtx addr;
1762
1763 if (x == 0)
1764 return;
1765
1766 /* If this is a CONCAT, recurse for the pieces. */
1767 if (GET_CODE (x) == CONCAT)
1768 {
1769 instantiate_decl_rtl (XEXP (x, 0));
1770 instantiate_decl_rtl (XEXP (x, 1));
1771 return;
1772 }
1773
1774 /* If this is not a MEM, no need to do anything. Similarly if the
1775 address is a constant or a register that is not a virtual register. */
1776 if (!MEM_P (x))
1777 return;
1778
1779 addr = XEXP (x, 0);
1780 if (CONSTANT_P (addr)
1781 || (REG_P (addr)
1782 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1783 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1784 return;
1785
1786 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1787 }
1788
1789 /* Helper for instantiate_decls called via walk_tree: Process all decls
1790 in the given DECL_VALUE_EXPR. */
1791
1792 static tree
1793 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1794 {
1795 tree t = *tp;
1796 if (! EXPR_P (t))
1797 {
1798 *walk_subtrees = 0;
1799 if (DECL_P (t))
1800 {
1801 if (DECL_RTL_SET_P (t))
1802 instantiate_decl_rtl (DECL_RTL (t));
1803 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1804 && DECL_INCOMING_RTL (t))
1805 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1806 if ((TREE_CODE (t) == VAR_DECL
1807 || TREE_CODE (t) == RESULT_DECL)
1808 && DECL_HAS_VALUE_EXPR_P (t))
1809 {
1810 tree v = DECL_VALUE_EXPR (t);
1811 walk_tree (&v, instantiate_expr, NULL, NULL);
1812 }
1813 }
1814 }
1815 return NULL;
1816 }
1817
1818 /* Subroutine of instantiate_decls: Process all decls in the given
1819 BLOCK node and all its subblocks. */
1820
1821 static void
1822 instantiate_decls_1 (tree let)
1823 {
1824 tree t;
1825
1826 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1827 {
1828 if (DECL_RTL_SET_P (t))
1829 instantiate_decl_rtl (DECL_RTL (t));
1830 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1831 {
1832 tree v = DECL_VALUE_EXPR (t);
1833 walk_tree (&v, instantiate_expr, NULL, NULL);
1834 }
1835 }
1836
1837 /* Process all subblocks. */
1838 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1839 instantiate_decls_1 (t);
1840 }
1841
1842 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1843 all virtual registers in their DECL_RTL's. */
1844
1845 static void
1846 instantiate_decls (tree fndecl)
1847 {
1848 tree decl;
1849 unsigned ix;
1850
1851 /* Process all parameters of the function. */
1852 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1853 {
1854 instantiate_decl_rtl (DECL_RTL (decl));
1855 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1856 if (DECL_HAS_VALUE_EXPR_P (decl))
1857 {
1858 tree v = DECL_VALUE_EXPR (decl);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1860 }
1861 }
1862
1863 if ((decl = DECL_RESULT (fndecl))
1864 && TREE_CODE (decl) == RESULT_DECL)
1865 {
1866 if (DECL_RTL_SET_P (decl))
1867 instantiate_decl_rtl (DECL_RTL (decl));
1868 if (DECL_HAS_VALUE_EXPR_P (decl))
1869 {
1870 tree v = DECL_VALUE_EXPR (decl);
1871 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 }
1873 }
1874
1875 /* Now process all variables defined in the function or its subblocks. */
1876 instantiate_decls_1 (DECL_INITIAL (fndecl));
1877
1878 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1879 if (DECL_RTL_SET_P (decl))
1880 instantiate_decl_rtl (DECL_RTL (decl));
1881 VEC_free (tree, gc, cfun->local_decls);
1882 }
1883
1884 /* Pass through the INSNS of function FNDECL and convert virtual register
1885 references to hard register references. */
1886
1887 static unsigned int
1888 instantiate_virtual_regs (void)
1889 {
1890 rtx insn;
1891
1892 /* Compute the offsets to use for this function. */
1893 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1894 var_offset = STARTING_FRAME_OFFSET;
1895
1896 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1897 if (crtl->max_dynamic_stack_alignment)
1898 {
1899 int align = crtl->max_dynamic_stack_alignment / BITS_PER_UNIT;
1900 dynamic_offset = (dynamic_offset + align - 1) & -align;
1901 }
1902
1903 out_arg_offset = STACK_POINTER_OFFSET;
1904 #ifdef FRAME_POINTER_CFA_OFFSET
1905 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1906 #else
1907 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1908 #endif
1909
1910 /* Initialize recognition, indicating that volatile is OK. */
1911 init_recog ();
1912
1913 /* Scan through all the insns, instantiating every virtual register still
1914 present. */
1915 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1916 if (INSN_P (insn))
1917 {
1918 /* These patterns in the instruction stream can never be recognized.
1919 Fortunately, they shouldn't contain virtual registers either. */
1920 if (GET_CODE (PATTERN (insn)) == USE
1921 || GET_CODE (PATTERN (insn)) == CLOBBER
1922 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1923 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1924 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1925 continue;
1926 else if (DEBUG_INSN_P (insn))
1927 for_each_rtx (&INSN_VAR_LOCATION (insn),
1928 instantiate_virtual_regs_in_rtx, NULL);
1929 else
1930 instantiate_virtual_regs_in_insn (insn);
1931
1932 if (INSN_DELETED_P (insn))
1933 continue;
1934
1935 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1936
1937 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1938 if (CALL_P (insn))
1939 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1940 instantiate_virtual_regs_in_rtx, NULL);
1941 }
1942
1943 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1944 instantiate_decls (current_function_decl);
1945
1946 targetm.instantiate_decls ();
1947
1948 /* Indicate that, from now on, assign_stack_local should use
1949 frame_pointer_rtx. */
1950 virtuals_instantiated = 1;
1951
1952 return 0;
1953 }
1954
1955 struct rtl_opt_pass pass_instantiate_virtual_regs =
1956 {
1957 {
1958 RTL_PASS,
1959 "vregs", /* name */
1960 NULL, /* gate */
1961 instantiate_virtual_regs, /* execute */
1962 NULL, /* sub */
1963 NULL, /* next */
1964 0, /* static_pass_number */
1965 TV_NONE, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 0 /* todo_flags_finish */
1971 }
1972 };
1973
1974 \f
1975 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1976 This means a type for which function calls must pass an address to the
1977 function or get an address back from the function.
1978 EXP may be a type node or an expression (whose type is tested). */
1979
1980 int
1981 aggregate_value_p (const_tree exp, const_tree fntype)
1982 {
1983 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1984 int i, regno, nregs;
1985 rtx reg;
1986
1987 if (fntype)
1988 switch (TREE_CODE (fntype))
1989 {
1990 case CALL_EXPR:
1991 {
1992 tree fndecl = get_callee_fndecl (fntype);
1993 fntype = (fndecl
1994 ? TREE_TYPE (fndecl)
1995 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1996 }
1997 break;
1998 case FUNCTION_DECL:
1999 fntype = TREE_TYPE (fntype);
2000 break;
2001 case FUNCTION_TYPE:
2002 case METHOD_TYPE:
2003 break;
2004 case IDENTIFIER_NODE:
2005 fntype = NULL_TREE;
2006 break;
2007 default:
2008 /* We don't expect other tree types here. */
2009 gcc_unreachable ();
2010 }
2011
2012 if (VOID_TYPE_P (type))
2013 return 0;
2014
2015 /* If a record should be passed the same as its first (and only) member
2016 don't pass it as an aggregate. */
2017 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2018 return aggregate_value_p (first_field (type), fntype);
2019
2020 /* If the front end has decided that this needs to be passed by
2021 reference, do so. */
2022 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2023 && DECL_BY_REFERENCE (exp))
2024 return 1;
2025
2026 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2027 if (fntype && TREE_ADDRESSABLE (fntype))
2028 return 1;
2029
2030 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2031 and thus can't be returned in registers. */
2032 if (TREE_ADDRESSABLE (type))
2033 return 1;
2034
2035 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2036 return 1;
2037
2038 if (targetm.calls.return_in_memory (type, fntype))
2039 return 1;
2040
2041 /* Make sure we have suitable call-clobbered regs to return
2042 the value in; if not, we must return it in memory. */
2043 reg = hard_function_value (type, 0, fntype, 0);
2044
2045 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2046 it is OK. */
2047 if (!REG_P (reg))
2048 return 0;
2049
2050 regno = REGNO (reg);
2051 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2052 for (i = 0; i < nregs; i++)
2053 if (! call_used_regs[regno + i])
2054 return 1;
2055
2056 return 0;
2057 }
2058 \f
2059 /* Return true if we should assign DECL a pseudo register; false if it
2060 should live on the local stack. */
2061
2062 bool
2063 use_register_for_decl (const_tree decl)
2064 {
2065 if (!targetm.calls.allocate_stack_slots_for_args())
2066 return true;
2067
2068 /* Honor volatile. */
2069 if (TREE_SIDE_EFFECTS (decl))
2070 return false;
2071
2072 /* Honor addressability. */
2073 if (TREE_ADDRESSABLE (decl))
2074 return false;
2075
2076 /* Only register-like things go in registers. */
2077 if (DECL_MODE (decl) == BLKmode)
2078 return false;
2079
2080 /* If -ffloat-store specified, don't put explicit float variables
2081 into registers. */
2082 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2083 propagates values across these stores, and it probably shouldn't. */
2084 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2085 return false;
2086
2087 /* If we're not interested in tracking debugging information for
2088 this decl, then we can certainly put it in a register. */
2089 if (DECL_IGNORED_P (decl))
2090 return true;
2091
2092 if (optimize)
2093 return true;
2094
2095 if (!DECL_REGISTER (decl))
2096 return false;
2097
2098 switch (TREE_CODE (TREE_TYPE (decl)))
2099 {
2100 case RECORD_TYPE:
2101 case UNION_TYPE:
2102 case QUAL_UNION_TYPE:
2103 /* When not optimizing, disregard register keyword for variables with
2104 types containing methods, otherwise the methods won't be callable
2105 from the debugger. */
2106 if (TYPE_METHODS (TREE_TYPE (decl)))
2107 return false;
2108 break;
2109 default:
2110 break;
2111 }
2112
2113 return true;
2114 }
2115
2116 /* Return true if TYPE should be passed by invisible reference. */
2117
2118 bool
2119 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2120 tree type, bool named_arg)
2121 {
2122 if (type)
2123 {
2124 /* If this type contains non-trivial constructors, then it is
2125 forbidden for the middle-end to create any new copies. */
2126 if (TREE_ADDRESSABLE (type))
2127 return true;
2128
2129 /* GCC post 3.4 passes *all* variable sized types by reference. */
2130 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2131 return true;
2132
2133 /* If a record type should be passed the same as its first (and only)
2134 member, use the type and mode of that member. */
2135 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2136 {
2137 type = TREE_TYPE (first_field (type));
2138 mode = TYPE_MODE (type);
2139 }
2140 }
2141
2142 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2143 type, named_arg);
2144 }
2145
2146 /* Return true if TYPE, which is passed by reference, should be callee
2147 copied instead of caller copied. */
2148
2149 bool
2150 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2151 tree type, bool named_arg)
2152 {
2153 if (type && TREE_ADDRESSABLE (type))
2154 return false;
2155 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2156 named_arg);
2157 }
2158
2159 /* Structures to communicate between the subroutines of assign_parms.
2160 The first holds data persistent across all parameters, the second
2161 is cleared out for each parameter. */
2162
2163 struct assign_parm_data_all
2164 {
2165 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2166 should become a job of the target or otherwise encapsulated. */
2167 CUMULATIVE_ARGS args_so_far_v;
2168 cumulative_args_t args_so_far;
2169 struct args_size stack_args_size;
2170 tree function_result_decl;
2171 tree orig_fnargs;
2172 rtx first_conversion_insn;
2173 rtx last_conversion_insn;
2174 HOST_WIDE_INT pretend_args_size;
2175 HOST_WIDE_INT extra_pretend_bytes;
2176 int reg_parm_stack_space;
2177 };
2178
2179 struct assign_parm_data_one
2180 {
2181 tree nominal_type;
2182 tree passed_type;
2183 rtx entry_parm;
2184 rtx stack_parm;
2185 enum machine_mode nominal_mode;
2186 enum machine_mode passed_mode;
2187 enum machine_mode promoted_mode;
2188 struct locate_and_pad_arg_data locate;
2189 int partial;
2190 BOOL_BITFIELD named_arg : 1;
2191 BOOL_BITFIELD passed_pointer : 1;
2192 BOOL_BITFIELD on_stack : 1;
2193 BOOL_BITFIELD loaded_in_reg : 1;
2194 };
2195
2196 /* A subroutine of assign_parms. Initialize ALL. */
2197
2198 static void
2199 assign_parms_initialize_all (struct assign_parm_data_all *all)
2200 {
2201 tree fntype ATTRIBUTE_UNUSED;
2202
2203 memset (all, 0, sizeof (*all));
2204
2205 fntype = TREE_TYPE (current_function_decl);
2206
2207 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2208 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2209 #else
2210 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2211 current_function_decl, -1);
2212 #endif
2213 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2214
2215 #ifdef REG_PARM_STACK_SPACE
2216 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2217 #endif
2218 }
2219
2220 /* If ARGS contains entries with complex types, split the entry into two
2221 entries of the component type. Return a new list of substitutions are
2222 needed, else the old list. */
2223
2224 static void
2225 split_complex_args (VEC(tree, heap) **args)
2226 {
2227 unsigned i;
2228 tree p;
2229
2230 FOR_EACH_VEC_ELT (tree, *args, i, p)
2231 {
2232 tree type = TREE_TYPE (p);
2233 if (TREE_CODE (type) == COMPLEX_TYPE
2234 && targetm.calls.split_complex_arg (type))
2235 {
2236 tree decl;
2237 tree subtype = TREE_TYPE (type);
2238 bool addressable = TREE_ADDRESSABLE (p);
2239
2240 /* Rewrite the PARM_DECL's type with its component. */
2241 p = copy_node (p);
2242 TREE_TYPE (p) = subtype;
2243 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2244 DECL_MODE (p) = VOIDmode;
2245 DECL_SIZE (p) = NULL;
2246 DECL_SIZE_UNIT (p) = NULL;
2247 /* If this arg must go in memory, put it in a pseudo here.
2248 We can't allow it to go in memory as per normal parms,
2249 because the usual place might not have the imag part
2250 adjacent to the real part. */
2251 DECL_ARTIFICIAL (p) = addressable;
2252 DECL_IGNORED_P (p) = addressable;
2253 TREE_ADDRESSABLE (p) = 0;
2254 layout_decl (p, 0);
2255 VEC_replace (tree, *args, i, p);
2256
2257 /* Build a second synthetic decl. */
2258 decl = build_decl (EXPR_LOCATION (p),
2259 PARM_DECL, NULL_TREE, subtype);
2260 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2261 DECL_ARTIFICIAL (decl) = addressable;
2262 DECL_IGNORED_P (decl) = addressable;
2263 layout_decl (decl, 0);
2264 VEC_safe_insert (tree, heap, *args, ++i, decl);
2265 }
2266 }
2267 }
2268
2269 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2270 the hidden struct return argument, and (abi willing) complex args.
2271 Return the new parameter list. */
2272
2273 static VEC(tree, heap) *
2274 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2275 {
2276 tree fndecl = current_function_decl;
2277 tree fntype = TREE_TYPE (fndecl);
2278 VEC(tree, heap) *fnargs = NULL;
2279 tree arg;
2280
2281 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2282 VEC_safe_push (tree, heap, fnargs, arg);
2283
2284 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2285
2286 /* If struct value address is treated as the first argument, make it so. */
2287 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2288 && ! cfun->returns_pcc_struct
2289 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2290 {
2291 tree type = build_pointer_type (TREE_TYPE (fntype));
2292 tree decl;
2293
2294 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2295 PARM_DECL, get_identifier (".result_ptr"), type);
2296 DECL_ARG_TYPE (decl) = type;
2297 DECL_ARTIFICIAL (decl) = 1;
2298 DECL_NAMELESS (decl) = 1;
2299 TREE_CONSTANT (decl) = 1;
2300
2301 DECL_CHAIN (decl) = all->orig_fnargs;
2302 all->orig_fnargs = decl;
2303 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2304
2305 all->function_result_decl = decl;
2306 }
2307
2308 /* If the target wants to split complex arguments into scalars, do so. */
2309 if (targetm.calls.split_complex_arg)
2310 split_complex_args (&fnargs);
2311
2312 return fnargs;
2313 }
2314
2315 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2316 data for the parameter. Incorporate ABI specifics such as pass-by-
2317 reference and type promotion. */
2318
2319 static void
2320 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2321 struct assign_parm_data_one *data)
2322 {
2323 tree nominal_type, passed_type;
2324 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2325 int unsignedp;
2326
2327 memset (data, 0, sizeof (*data));
2328
2329 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2330 if (!cfun->stdarg)
2331 data->named_arg = 1; /* No variadic parms. */
2332 else if (DECL_CHAIN (parm))
2333 data->named_arg = 1; /* Not the last non-variadic parm. */
2334 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2335 data->named_arg = 1; /* Only variadic ones are unnamed. */
2336 else
2337 data->named_arg = 0; /* Treat as variadic. */
2338
2339 nominal_type = TREE_TYPE (parm);
2340 passed_type = DECL_ARG_TYPE (parm);
2341
2342 /* Look out for errors propagating this far. Also, if the parameter's
2343 type is void then its value doesn't matter. */
2344 if (TREE_TYPE (parm) == error_mark_node
2345 /* This can happen after weird syntax errors
2346 or if an enum type is defined among the parms. */
2347 || TREE_CODE (parm) != PARM_DECL
2348 || passed_type == NULL
2349 || VOID_TYPE_P (nominal_type))
2350 {
2351 nominal_type = passed_type = void_type_node;
2352 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2353 goto egress;
2354 }
2355
2356 /* Find mode of arg as it is passed, and mode of arg as it should be
2357 during execution of this function. */
2358 passed_mode = TYPE_MODE (passed_type);
2359 nominal_mode = TYPE_MODE (nominal_type);
2360
2361 /* If the parm is to be passed as a transparent union or record, use the
2362 type of the first field for the tests below. We have already verified
2363 that the modes are the same. */
2364 if ((TREE_CODE (passed_type) == UNION_TYPE
2365 || TREE_CODE (passed_type) == RECORD_TYPE)
2366 && TYPE_TRANSPARENT_AGGR (passed_type))
2367 passed_type = TREE_TYPE (first_field (passed_type));
2368
2369 /* See if this arg was passed by invisible reference. */
2370 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2371 passed_type, data->named_arg))
2372 {
2373 passed_type = nominal_type = build_pointer_type (passed_type);
2374 data->passed_pointer = true;
2375 passed_mode = nominal_mode = Pmode;
2376 }
2377
2378 /* Find mode as it is passed by the ABI. */
2379 unsignedp = TYPE_UNSIGNED (passed_type);
2380 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2381 TREE_TYPE (current_function_decl), 0);
2382
2383 egress:
2384 data->nominal_type = nominal_type;
2385 data->passed_type = passed_type;
2386 data->nominal_mode = nominal_mode;
2387 data->passed_mode = passed_mode;
2388 data->promoted_mode = promoted_mode;
2389 }
2390
2391 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2392
2393 static void
2394 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2395 struct assign_parm_data_one *data, bool no_rtl)
2396 {
2397 int varargs_pretend_bytes = 0;
2398
2399 targetm.calls.setup_incoming_varargs (all->args_so_far,
2400 data->promoted_mode,
2401 data->passed_type,
2402 &varargs_pretend_bytes, no_rtl);
2403
2404 /* If the back-end has requested extra stack space, record how much is
2405 needed. Do not change pretend_args_size otherwise since it may be
2406 nonzero from an earlier partial argument. */
2407 if (varargs_pretend_bytes > 0)
2408 all->pretend_args_size = varargs_pretend_bytes;
2409 }
2410
2411 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2412 the incoming location of the current parameter. */
2413
2414 static void
2415 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2416 struct assign_parm_data_one *data)
2417 {
2418 HOST_WIDE_INT pretend_bytes = 0;
2419 rtx entry_parm;
2420 bool in_regs;
2421
2422 if (data->promoted_mode == VOIDmode)
2423 {
2424 data->entry_parm = data->stack_parm = const0_rtx;
2425 return;
2426 }
2427
2428 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2429 data->promoted_mode,
2430 data->passed_type,
2431 data->named_arg);
2432
2433 if (entry_parm == 0)
2434 data->promoted_mode = data->passed_mode;
2435
2436 /* Determine parm's home in the stack, in case it arrives in the stack
2437 or we should pretend it did. Compute the stack position and rtx where
2438 the argument arrives and its size.
2439
2440 There is one complexity here: If this was a parameter that would
2441 have been passed in registers, but wasn't only because it is
2442 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2443 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2444 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2445 as it was the previous time. */
2446 in_regs = entry_parm != 0;
2447 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2448 in_regs = true;
2449 #endif
2450 if (!in_regs && !data->named_arg)
2451 {
2452 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2453 {
2454 rtx tem;
2455 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2456 data->promoted_mode,
2457 data->passed_type, true);
2458 in_regs = tem != NULL;
2459 }
2460 }
2461
2462 /* If this parameter was passed both in registers and in the stack, use
2463 the copy on the stack. */
2464 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2465 data->passed_type))
2466 entry_parm = 0;
2467
2468 if (entry_parm)
2469 {
2470 int partial;
2471
2472 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2473 data->promoted_mode,
2474 data->passed_type,
2475 data->named_arg);
2476 data->partial = partial;
2477
2478 /* The caller might already have allocated stack space for the
2479 register parameters. */
2480 if (partial != 0 && all->reg_parm_stack_space == 0)
2481 {
2482 /* Part of this argument is passed in registers and part
2483 is passed on the stack. Ask the prologue code to extend
2484 the stack part so that we can recreate the full value.
2485
2486 PRETEND_BYTES is the size of the registers we need to store.
2487 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2488 stack space that the prologue should allocate.
2489
2490 Internally, gcc assumes that the argument pointer is aligned
2491 to STACK_BOUNDARY bits. This is used both for alignment
2492 optimizations (see init_emit) and to locate arguments that are
2493 aligned to more than PARM_BOUNDARY bits. We must preserve this
2494 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2495 a stack boundary. */
2496
2497 /* We assume at most one partial arg, and it must be the first
2498 argument on the stack. */
2499 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2500
2501 pretend_bytes = partial;
2502 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2503
2504 /* We want to align relative to the actual stack pointer, so
2505 don't include this in the stack size until later. */
2506 all->extra_pretend_bytes = all->pretend_args_size;
2507 }
2508 }
2509
2510 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2511 entry_parm ? data->partial : 0, current_function_decl,
2512 &all->stack_args_size, &data->locate);
2513
2514 /* Update parm_stack_boundary if this parameter is passed in the
2515 stack. */
2516 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2517 crtl->parm_stack_boundary = data->locate.boundary;
2518
2519 /* Adjust offsets to include the pretend args. */
2520 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2521 data->locate.slot_offset.constant += pretend_bytes;
2522 data->locate.offset.constant += pretend_bytes;
2523
2524 data->entry_parm = entry_parm;
2525 }
2526
2527 /* A subroutine of assign_parms. If there is actually space on the stack
2528 for this parm, count it in stack_args_size and return true. */
2529
2530 static bool
2531 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2532 struct assign_parm_data_one *data)
2533 {
2534 /* Trivially true if we've no incoming register. */
2535 if (data->entry_parm == NULL)
2536 ;
2537 /* Also true if we're partially in registers and partially not,
2538 since we've arranged to drop the entire argument on the stack. */
2539 else if (data->partial != 0)
2540 ;
2541 /* Also true if the target says that it's passed in both registers
2542 and on the stack. */
2543 else if (GET_CODE (data->entry_parm) == PARALLEL
2544 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2545 ;
2546 /* Also true if the target says that there's stack allocated for
2547 all register parameters. */
2548 else if (all->reg_parm_stack_space > 0)
2549 ;
2550 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2551 else
2552 return false;
2553
2554 all->stack_args_size.constant += data->locate.size.constant;
2555 if (data->locate.size.var)
2556 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2557
2558 return true;
2559 }
2560
2561 /* A subroutine of assign_parms. Given that this parameter is allocated
2562 stack space by the ABI, find it. */
2563
2564 static void
2565 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2566 {
2567 rtx offset_rtx, stack_parm;
2568 unsigned int align, boundary;
2569
2570 /* If we're passing this arg using a reg, make its stack home the
2571 aligned stack slot. */
2572 if (data->entry_parm)
2573 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2574 else
2575 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2576
2577 stack_parm = crtl->args.internal_arg_pointer;
2578 if (offset_rtx != const0_rtx)
2579 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2580 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2581
2582 if (!data->passed_pointer)
2583 {
2584 set_mem_attributes (stack_parm, parm, 1);
2585 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2586 while promoted mode's size is needed. */
2587 if (data->promoted_mode != BLKmode
2588 && data->promoted_mode != DECL_MODE (parm))
2589 {
2590 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2591 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2592 {
2593 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2594 data->promoted_mode);
2595 if (offset)
2596 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2597 }
2598 }
2599 }
2600
2601 boundary = data->locate.boundary;
2602 align = BITS_PER_UNIT;
2603
2604 /* If we're padding upward, we know that the alignment of the slot
2605 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2606 intentionally forcing upward padding. Otherwise we have to come
2607 up with a guess at the alignment based on OFFSET_RTX. */
2608 if (data->locate.where_pad != downward || data->entry_parm)
2609 align = boundary;
2610 else if (CONST_INT_P (offset_rtx))
2611 {
2612 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2613 align = align & -align;
2614 }
2615 set_mem_align (stack_parm, align);
2616
2617 if (data->entry_parm)
2618 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2619
2620 data->stack_parm = stack_parm;
2621 }
2622
2623 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2624 always valid and contiguous. */
2625
2626 static void
2627 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2628 {
2629 rtx entry_parm = data->entry_parm;
2630 rtx stack_parm = data->stack_parm;
2631
2632 /* If this parm was passed part in regs and part in memory, pretend it
2633 arrived entirely in memory by pushing the register-part onto the stack.
2634 In the special case of a DImode or DFmode that is split, we could put
2635 it together in a pseudoreg directly, but for now that's not worth
2636 bothering with. */
2637 if (data->partial != 0)
2638 {
2639 /* Handle calls that pass values in multiple non-contiguous
2640 locations. The Irix 6 ABI has examples of this. */
2641 if (GET_CODE (entry_parm) == PARALLEL)
2642 emit_group_store (validize_mem (stack_parm), entry_parm,
2643 data->passed_type,
2644 int_size_in_bytes (data->passed_type));
2645 else
2646 {
2647 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2648 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2649 data->partial / UNITS_PER_WORD);
2650 }
2651
2652 entry_parm = stack_parm;
2653 }
2654
2655 /* If we didn't decide this parm came in a register, by default it came
2656 on the stack. */
2657 else if (entry_parm == NULL)
2658 entry_parm = stack_parm;
2659
2660 /* When an argument is passed in multiple locations, we can't make use
2661 of this information, but we can save some copying if the whole argument
2662 is passed in a single register. */
2663 else if (GET_CODE (entry_parm) == PARALLEL
2664 && data->nominal_mode != BLKmode
2665 && data->passed_mode != BLKmode)
2666 {
2667 size_t i, len = XVECLEN (entry_parm, 0);
2668
2669 for (i = 0; i < len; i++)
2670 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2671 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2672 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2673 == data->passed_mode)
2674 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2675 {
2676 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2677 break;
2678 }
2679 }
2680
2681 data->entry_parm = entry_parm;
2682 }
2683
2684 /* A subroutine of assign_parms. Reconstitute any values which were
2685 passed in multiple registers and would fit in a single register. */
2686
2687 static void
2688 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2689 {
2690 rtx entry_parm = data->entry_parm;
2691
2692 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2693 This can be done with register operations rather than on the
2694 stack, even if we will store the reconstituted parameter on the
2695 stack later. */
2696 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2697 {
2698 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2699 emit_group_store (parmreg, entry_parm, data->passed_type,
2700 GET_MODE_SIZE (GET_MODE (entry_parm)));
2701 entry_parm = parmreg;
2702 }
2703
2704 data->entry_parm = entry_parm;
2705 }
2706
2707 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2708 always valid and properly aligned. */
2709
2710 static void
2711 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2712 {
2713 rtx stack_parm = data->stack_parm;
2714
2715 /* If we can't trust the parm stack slot to be aligned enough for its
2716 ultimate type, don't use that slot after entry. We'll make another
2717 stack slot, if we need one. */
2718 if (stack_parm
2719 && ((STRICT_ALIGNMENT
2720 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2721 || (data->nominal_type
2722 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2723 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2724 stack_parm = NULL;
2725
2726 /* If parm was passed in memory, and we need to convert it on entry,
2727 don't store it back in that same slot. */
2728 else if (data->entry_parm == stack_parm
2729 && data->nominal_mode != BLKmode
2730 && data->nominal_mode != data->passed_mode)
2731 stack_parm = NULL;
2732
2733 /* If stack protection is in effect for this function, don't leave any
2734 pointers in their passed stack slots. */
2735 else if (crtl->stack_protect_guard
2736 && (flag_stack_protect == 2
2737 || data->passed_pointer
2738 || POINTER_TYPE_P (data->nominal_type)))
2739 stack_parm = NULL;
2740
2741 data->stack_parm = stack_parm;
2742 }
2743
2744 /* A subroutine of assign_parms. Return true if the current parameter
2745 should be stored as a BLKmode in the current frame. */
2746
2747 static bool
2748 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2749 {
2750 if (data->nominal_mode == BLKmode)
2751 return true;
2752 if (GET_MODE (data->entry_parm) == BLKmode)
2753 return true;
2754
2755 #ifdef BLOCK_REG_PADDING
2756 /* Only assign_parm_setup_block knows how to deal with register arguments
2757 that are padded at the least significant end. */
2758 if (REG_P (data->entry_parm)
2759 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2760 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2761 == (BYTES_BIG_ENDIAN ? upward : downward)))
2762 return true;
2763 #endif
2764
2765 return false;
2766 }
2767
2768 /* A subroutine of assign_parms. Arrange for the parameter to be
2769 present and valid in DATA->STACK_RTL. */
2770
2771 static void
2772 assign_parm_setup_block (struct assign_parm_data_all *all,
2773 tree parm, struct assign_parm_data_one *data)
2774 {
2775 rtx entry_parm = data->entry_parm;
2776 rtx stack_parm = data->stack_parm;
2777 HOST_WIDE_INT size;
2778 HOST_WIDE_INT size_stored;
2779
2780 if (GET_CODE (entry_parm) == PARALLEL)
2781 entry_parm = emit_group_move_into_temps (entry_parm);
2782
2783 size = int_size_in_bytes (data->passed_type);
2784 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2785 if (stack_parm == 0)
2786 {
2787 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2788 stack_parm = assign_stack_local (BLKmode, size_stored,
2789 DECL_ALIGN (parm));
2790 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2791 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2792 set_mem_attributes (stack_parm, parm, 1);
2793 }
2794
2795 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2796 calls that pass values in multiple non-contiguous locations. */
2797 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2798 {
2799 rtx mem;
2800
2801 /* Note that we will be storing an integral number of words.
2802 So we have to be careful to ensure that we allocate an
2803 integral number of words. We do this above when we call
2804 assign_stack_local if space was not allocated in the argument
2805 list. If it was, this will not work if PARM_BOUNDARY is not
2806 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2807 if it becomes a problem. Exception is when BLKmode arrives
2808 with arguments not conforming to word_mode. */
2809
2810 if (data->stack_parm == 0)
2811 ;
2812 else if (GET_CODE (entry_parm) == PARALLEL)
2813 ;
2814 else
2815 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2816
2817 mem = validize_mem (stack_parm);
2818
2819 /* Handle values in multiple non-contiguous locations. */
2820 if (GET_CODE (entry_parm) == PARALLEL)
2821 {
2822 push_to_sequence2 (all->first_conversion_insn,
2823 all->last_conversion_insn);
2824 emit_group_store (mem, entry_parm, data->passed_type, size);
2825 all->first_conversion_insn = get_insns ();
2826 all->last_conversion_insn = get_last_insn ();
2827 end_sequence ();
2828 }
2829
2830 else if (size == 0)
2831 ;
2832
2833 /* If SIZE is that of a mode no bigger than a word, just use
2834 that mode's store operation. */
2835 else if (size <= UNITS_PER_WORD)
2836 {
2837 enum machine_mode mode
2838 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2839
2840 if (mode != BLKmode
2841 #ifdef BLOCK_REG_PADDING
2842 && (size == UNITS_PER_WORD
2843 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2844 != (BYTES_BIG_ENDIAN ? upward : downward)))
2845 #endif
2846 )
2847 {
2848 rtx reg;
2849
2850 /* We are really truncating a word_mode value containing
2851 SIZE bytes into a value of mode MODE. If such an
2852 operation requires no actual instructions, we can refer
2853 to the value directly in mode MODE, otherwise we must
2854 start with the register in word_mode and explicitly
2855 convert it. */
2856 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2857 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2858 else
2859 {
2860 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2861 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2862 }
2863 emit_move_insn (change_address (mem, mode, 0), reg);
2864 }
2865
2866 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2867 machine must be aligned to the left before storing
2868 to memory. Note that the previous test doesn't
2869 handle all cases (e.g. SIZE == 3). */
2870 else if (size != UNITS_PER_WORD
2871 #ifdef BLOCK_REG_PADDING
2872 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2873 == downward)
2874 #else
2875 && BYTES_BIG_ENDIAN
2876 #endif
2877 )
2878 {
2879 rtx tem, x;
2880 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2881 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2882
2883 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2884 tem = change_address (mem, word_mode, 0);
2885 emit_move_insn (tem, x);
2886 }
2887 else
2888 move_block_from_reg (REGNO (entry_parm), mem,
2889 size_stored / UNITS_PER_WORD);
2890 }
2891 else
2892 move_block_from_reg (REGNO (entry_parm), mem,
2893 size_stored / UNITS_PER_WORD);
2894 }
2895 else if (data->stack_parm == 0)
2896 {
2897 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2898 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2899 BLOCK_OP_NORMAL);
2900 all->first_conversion_insn = get_insns ();
2901 all->last_conversion_insn = get_last_insn ();
2902 end_sequence ();
2903 }
2904
2905 data->stack_parm = stack_parm;
2906 SET_DECL_RTL (parm, stack_parm);
2907 }
2908
2909 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2910 parameter. Get it there. Perform all ABI specified conversions. */
2911
2912 static void
2913 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2914 struct assign_parm_data_one *data)
2915 {
2916 rtx parmreg, validated_mem;
2917 rtx equiv_stack_parm;
2918 enum machine_mode promoted_nominal_mode;
2919 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2920 bool did_conversion = false;
2921 bool need_conversion, moved;
2922
2923 /* Store the parm in a pseudoregister during the function, but we may
2924 need to do it in a wider mode. Using 2 here makes the result
2925 consistent with promote_decl_mode and thus expand_expr_real_1. */
2926 promoted_nominal_mode
2927 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2928 TREE_TYPE (current_function_decl), 2);
2929
2930 parmreg = gen_reg_rtx (promoted_nominal_mode);
2931
2932 if (!DECL_ARTIFICIAL (parm))
2933 mark_user_reg (parmreg);
2934
2935 /* If this was an item that we received a pointer to,
2936 set DECL_RTL appropriately. */
2937 if (data->passed_pointer)
2938 {
2939 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2940 set_mem_attributes (x, parm, 1);
2941 SET_DECL_RTL (parm, x);
2942 }
2943 else
2944 SET_DECL_RTL (parm, parmreg);
2945
2946 assign_parm_remove_parallels (data);
2947
2948 /* Copy the value into the register, thus bridging between
2949 assign_parm_find_data_types and expand_expr_real_1. */
2950
2951 equiv_stack_parm = data->stack_parm;
2952 validated_mem = validize_mem (data->entry_parm);
2953
2954 need_conversion = (data->nominal_mode != data->passed_mode
2955 || promoted_nominal_mode != data->promoted_mode);
2956 moved = false;
2957
2958 if (need_conversion
2959 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2960 && data->nominal_mode == data->passed_mode
2961 && data->nominal_mode == GET_MODE (data->entry_parm))
2962 {
2963 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2964 mode, by the caller. We now have to convert it to
2965 NOMINAL_MODE, if different. However, PARMREG may be in
2966 a different mode than NOMINAL_MODE if it is being stored
2967 promoted.
2968
2969 If ENTRY_PARM is a hard register, it might be in a register
2970 not valid for operating in its mode (e.g., an odd-numbered
2971 register for a DFmode). In that case, moves are the only
2972 thing valid, so we can't do a convert from there. This
2973 occurs when the calling sequence allow such misaligned
2974 usages.
2975
2976 In addition, the conversion may involve a call, which could
2977 clobber parameters which haven't been copied to pseudo
2978 registers yet.
2979
2980 First, we try to emit an insn which performs the necessary
2981 conversion. We verify that this insn does not clobber any
2982 hard registers. */
2983
2984 enum insn_code icode;
2985 rtx op0, op1;
2986
2987 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2988 unsignedp);
2989
2990 op0 = parmreg;
2991 op1 = validated_mem;
2992 if (icode != CODE_FOR_nothing
2993 && insn_operand_matches (icode, 0, op0)
2994 && insn_operand_matches (icode, 1, op1))
2995 {
2996 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2997 rtx insn, insns, t = op1;
2998 HARD_REG_SET hardregs;
2999
3000 start_sequence ();
3001 /* If op1 is a hard register that is likely spilled, first
3002 force it into a pseudo, otherwise combiner might extend
3003 its lifetime too much. */
3004 if (GET_CODE (t) == SUBREG)
3005 t = SUBREG_REG (t);
3006 if (REG_P (t)
3007 && HARD_REGISTER_P (t)
3008 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3009 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3010 {
3011 t = gen_reg_rtx (GET_MODE (op1));
3012 emit_move_insn (t, op1);
3013 }
3014 else
3015 t = op1;
3016 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3017 data->passed_mode, unsignedp);
3018 emit_insn (insn);
3019 insns = get_insns ();
3020
3021 moved = true;
3022 CLEAR_HARD_REG_SET (hardregs);
3023 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3024 {
3025 if (INSN_P (insn))
3026 note_stores (PATTERN (insn), record_hard_reg_sets,
3027 &hardregs);
3028 if (!hard_reg_set_empty_p (hardregs))
3029 moved = false;
3030 }
3031
3032 end_sequence ();
3033
3034 if (moved)
3035 {
3036 emit_insn (insns);
3037 if (equiv_stack_parm != NULL_RTX)
3038 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3039 equiv_stack_parm);
3040 }
3041 }
3042 }
3043
3044 if (moved)
3045 /* Nothing to do. */
3046 ;
3047 else if (need_conversion)
3048 {
3049 /* We did not have an insn to convert directly, or the sequence
3050 generated appeared unsafe. We must first copy the parm to a
3051 pseudo reg, and save the conversion until after all
3052 parameters have been moved. */
3053
3054 int save_tree_used;
3055 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3056
3057 emit_move_insn (tempreg, validated_mem);
3058
3059 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3060 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3061
3062 if (GET_CODE (tempreg) == SUBREG
3063 && GET_MODE (tempreg) == data->nominal_mode
3064 && REG_P (SUBREG_REG (tempreg))
3065 && data->nominal_mode == data->passed_mode
3066 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3067 && GET_MODE_SIZE (GET_MODE (tempreg))
3068 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3069 {
3070 /* The argument is already sign/zero extended, so note it
3071 into the subreg. */
3072 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3073 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3074 }
3075
3076 /* TREE_USED gets set erroneously during expand_assignment. */
3077 save_tree_used = TREE_USED (parm);
3078 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3079 TREE_USED (parm) = save_tree_used;
3080 all->first_conversion_insn = get_insns ();
3081 all->last_conversion_insn = get_last_insn ();
3082 end_sequence ();
3083
3084 did_conversion = true;
3085 }
3086 else
3087 emit_move_insn (parmreg, validated_mem);
3088
3089 /* If we were passed a pointer but the actual value can safely live
3090 in a register, put it in one. */
3091 if (data->passed_pointer
3092 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3093 /* If by-reference argument was promoted, demote it. */
3094 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3095 || use_register_for_decl (parm)))
3096 {
3097 /* We can't use nominal_mode, because it will have been set to
3098 Pmode above. We must use the actual mode of the parm. */
3099 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3100 mark_user_reg (parmreg);
3101
3102 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3103 {
3104 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3105 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3106
3107 push_to_sequence2 (all->first_conversion_insn,
3108 all->last_conversion_insn);
3109 emit_move_insn (tempreg, DECL_RTL (parm));
3110 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3111 emit_move_insn (parmreg, tempreg);
3112 all->first_conversion_insn = get_insns ();
3113 all->last_conversion_insn = get_last_insn ();
3114 end_sequence ();
3115
3116 did_conversion = true;
3117 }
3118 else
3119 emit_move_insn (parmreg, DECL_RTL (parm));
3120
3121 SET_DECL_RTL (parm, parmreg);
3122
3123 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3124 now the parm. */
3125 data->stack_parm = NULL;
3126 }
3127
3128 /* Mark the register as eliminable if we did no conversion and it was
3129 copied from memory at a fixed offset, and the arg pointer was not
3130 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3131 offset formed an invalid address, such memory-equivalences as we
3132 make here would screw up life analysis for it. */
3133 if (data->nominal_mode == data->passed_mode
3134 && !did_conversion
3135 && data->stack_parm != 0
3136 && MEM_P (data->stack_parm)
3137 && data->locate.offset.var == 0
3138 && reg_mentioned_p (virtual_incoming_args_rtx,
3139 XEXP (data->stack_parm, 0)))
3140 {
3141 rtx linsn = get_last_insn ();
3142 rtx sinsn, set;
3143
3144 /* Mark complex types separately. */
3145 if (GET_CODE (parmreg) == CONCAT)
3146 {
3147 enum machine_mode submode
3148 = GET_MODE_INNER (GET_MODE (parmreg));
3149 int regnor = REGNO (XEXP (parmreg, 0));
3150 int regnoi = REGNO (XEXP (parmreg, 1));
3151 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3152 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3153 GET_MODE_SIZE (submode));
3154
3155 /* Scan backwards for the set of the real and
3156 imaginary parts. */
3157 for (sinsn = linsn; sinsn != 0;
3158 sinsn = prev_nonnote_insn (sinsn))
3159 {
3160 set = single_set (sinsn);
3161 if (set == 0)
3162 continue;
3163
3164 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3165 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3166 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3167 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3168 }
3169 }
3170 else
3171 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3172 }
3173
3174 /* For pointer data type, suggest pointer register. */
3175 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3176 mark_reg_pointer (parmreg,
3177 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3178 }
3179
3180 /* A subroutine of assign_parms. Allocate stack space to hold the current
3181 parameter. Get it there. Perform all ABI specified conversions. */
3182
3183 static void
3184 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3185 struct assign_parm_data_one *data)
3186 {
3187 /* Value must be stored in the stack slot STACK_PARM during function
3188 execution. */
3189 bool to_conversion = false;
3190
3191 assign_parm_remove_parallels (data);
3192
3193 if (data->promoted_mode != data->nominal_mode)
3194 {
3195 /* Conversion is required. */
3196 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3197
3198 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3199
3200 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3201 to_conversion = true;
3202
3203 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3204 TYPE_UNSIGNED (TREE_TYPE (parm)));
3205
3206 if (data->stack_parm)
3207 {
3208 int offset = subreg_lowpart_offset (data->nominal_mode,
3209 GET_MODE (data->stack_parm));
3210 /* ??? This may need a big-endian conversion on sparc64. */
3211 data->stack_parm
3212 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3213 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3214 set_mem_offset (data->stack_parm,
3215 MEM_OFFSET (data->stack_parm) + offset);
3216 }
3217 }
3218
3219 if (data->entry_parm != data->stack_parm)
3220 {
3221 rtx src, dest;
3222
3223 if (data->stack_parm == 0)
3224 {
3225 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3226 GET_MODE (data->entry_parm),
3227 TYPE_ALIGN (data->passed_type));
3228 data->stack_parm
3229 = assign_stack_local (GET_MODE (data->entry_parm),
3230 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3231 align);
3232 set_mem_attributes (data->stack_parm, parm, 1);
3233 }
3234
3235 dest = validize_mem (data->stack_parm);
3236 src = validize_mem (data->entry_parm);
3237
3238 if (MEM_P (src))
3239 {
3240 /* Use a block move to handle potentially misaligned entry_parm. */
3241 if (!to_conversion)
3242 push_to_sequence2 (all->first_conversion_insn,
3243 all->last_conversion_insn);
3244 to_conversion = true;
3245
3246 emit_block_move (dest, src,
3247 GEN_INT (int_size_in_bytes (data->passed_type)),
3248 BLOCK_OP_NORMAL);
3249 }
3250 else
3251 emit_move_insn (dest, src);
3252 }
3253
3254 if (to_conversion)
3255 {
3256 all->first_conversion_insn = get_insns ();
3257 all->last_conversion_insn = get_last_insn ();
3258 end_sequence ();
3259 }
3260
3261 SET_DECL_RTL (parm, data->stack_parm);
3262 }
3263
3264 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3265 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3266
3267 static void
3268 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3269 VEC(tree, heap) *fnargs)
3270 {
3271 tree parm;
3272 tree orig_fnargs = all->orig_fnargs;
3273 unsigned i = 0;
3274
3275 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3276 {
3277 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3278 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3279 {
3280 rtx tmp, real, imag;
3281 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3282
3283 real = DECL_RTL (VEC_index (tree, fnargs, i));
3284 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3285 if (inner != GET_MODE (real))
3286 {
3287 real = gen_lowpart_SUBREG (inner, real);
3288 imag = gen_lowpart_SUBREG (inner, imag);
3289 }
3290
3291 if (TREE_ADDRESSABLE (parm))
3292 {
3293 rtx rmem, imem;
3294 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3295 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3296 DECL_MODE (parm),
3297 TYPE_ALIGN (TREE_TYPE (parm)));
3298
3299 /* split_complex_arg put the real and imag parts in
3300 pseudos. Move them to memory. */
3301 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3302 set_mem_attributes (tmp, parm, 1);
3303 rmem = adjust_address_nv (tmp, inner, 0);
3304 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3305 push_to_sequence2 (all->first_conversion_insn,
3306 all->last_conversion_insn);
3307 emit_move_insn (rmem, real);
3308 emit_move_insn (imem, imag);
3309 all->first_conversion_insn = get_insns ();
3310 all->last_conversion_insn = get_last_insn ();
3311 end_sequence ();
3312 }
3313 else
3314 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3315 SET_DECL_RTL (parm, tmp);
3316
3317 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3318 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3319 if (inner != GET_MODE (real))
3320 {
3321 real = gen_lowpart_SUBREG (inner, real);
3322 imag = gen_lowpart_SUBREG (inner, imag);
3323 }
3324 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3325 set_decl_incoming_rtl (parm, tmp, false);
3326 i++;
3327 }
3328 }
3329 }
3330
3331 /* Assign RTL expressions to the function's parameters. This may involve
3332 copying them into registers and using those registers as the DECL_RTL. */
3333
3334 static void
3335 assign_parms (tree fndecl)
3336 {
3337 struct assign_parm_data_all all;
3338 tree parm;
3339 VEC(tree, heap) *fnargs;
3340 unsigned i;
3341
3342 crtl->args.internal_arg_pointer
3343 = targetm.calls.internal_arg_pointer ();
3344
3345 assign_parms_initialize_all (&all);
3346 fnargs = assign_parms_augmented_arg_list (&all);
3347
3348 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3349 {
3350 struct assign_parm_data_one data;
3351
3352 /* Extract the type of PARM; adjust it according to ABI. */
3353 assign_parm_find_data_types (&all, parm, &data);
3354
3355 /* Early out for errors and void parameters. */
3356 if (data.passed_mode == VOIDmode)
3357 {
3358 SET_DECL_RTL (parm, const0_rtx);
3359 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3360 continue;
3361 }
3362
3363 /* Estimate stack alignment from parameter alignment. */
3364 if (SUPPORTS_STACK_ALIGNMENT)
3365 {
3366 unsigned int align
3367 = targetm.calls.function_arg_boundary (data.promoted_mode,
3368 data.passed_type);
3369 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3370 align);
3371 if (TYPE_ALIGN (data.nominal_type) > align)
3372 align = MINIMUM_ALIGNMENT (data.nominal_type,
3373 TYPE_MODE (data.nominal_type),
3374 TYPE_ALIGN (data.nominal_type));
3375 if (crtl->stack_alignment_estimated < align)
3376 {
3377 gcc_assert (!crtl->stack_realign_processed);
3378 crtl->stack_alignment_estimated = align;
3379 }
3380 }
3381
3382 if (cfun->stdarg && !DECL_CHAIN (parm))
3383 assign_parms_setup_varargs (&all, &data, false);
3384
3385 /* Find out where the parameter arrives in this function. */
3386 assign_parm_find_entry_rtl (&all, &data);
3387
3388 /* Find out where stack space for this parameter might be. */
3389 if (assign_parm_is_stack_parm (&all, &data))
3390 {
3391 assign_parm_find_stack_rtl (parm, &data);
3392 assign_parm_adjust_entry_rtl (&data);
3393 }
3394
3395 /* Record permanently how this parm was passed. */
3396 if (data.passed_pointer)
3397 {
3398 rtx incoming_rtl
3399 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3400 data.entry_parm);
3401 set_decl_incoming_rtl (parm, incoming_rtl, true);
3402 }
3403 else
3404 set_decl_incoming_rtl (parm, data.entry_parm, false);
3405
3406 /* Update info on where next arg arrives in registers. */
3407 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3408 data.passed_type, data.named_arg);
3409
3410 assign_parm_adjust_stack_rtl (&data);
3411
3412 if (assign_parm_setup_block_p (&data))
3413 assign_parm_setup_block (&all, parm, &data);
3414 else if (data.passed_pointer || use_register_for_decl (parm))
3415 assign_parm_setup_reg (&all, parm, &data);
3416 else
3417 assign_parm_setup_stack (&all, parm, &data);
3418 }
3419
3420 if (targetm.calls.split_complex_arg)
3421 assign_parms_unsplit_complex (&all, fnargs);
3422
3423 VEC_free (tree, heap, fnargs);
3424
3425 /* Output all parameter conversion instructions (possibly including calls)
3426 now that all parameters have been copied out of hard registers. */
3427 emit_insn (all.first_conversion_insn);
3428
3429 /* Estimate reload stack alignment from scalar return mode. */
3430 if (SUPPORTS_STACK_ALIGNMENT)
3431 {
3432 if (DECL_RESULT (fndecl))
3433 {
3434 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3435 enum machine_mode mode = TYPE_MODE (type);
3436
3437 if (mode != BLKmode
3438 && mode != VOIDmode
3439 && !AGGREGATE_TYPE_P (type))
3440 {
3441 unsigned int align = GET_MODE_ALIGNMENT (mode);
3442 if (crtl->stack_alignment_estimated < align)
3443 {
3444 gcc_assert (!crtl->stack_realign_processed);
3445 crtl->stack_alignment_estimated = align;
3446 }
3447 }
3448 }
3449 }
3450
3451 /* If we are receiving a struct value address as the first argument, set up
3452 the RTL for the function result. As this might require code to convert
3453 the transmitted address to Pmode, we do this here to ensure that possible
3454 preliminary conversions of the address have been emitted already. */
3455 if (all.function_result_decl)
3456 {
3457 tree result = DECL_RESULT (current_function_decl);
3458 rtx addr = DECL_RTL (all.function_result_decl);
3459 rtx x;
3460
3461 if (DECL_BY_REFERENCE (result))
3462 {
3463 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3464 x = addr;
3465 }
3466 else
3467 {
3468 SET_DECL_VALUE_EXPR (result,
3469 build1 (INDIRECT_REF, TREE_TYPE (result),
3470 all.function_result_decl));
3471 addr = convert_memory_address (Pmode, addr);
3472 x = gen_rtx_MEM (DECL_MODE (result), addr);
3473 set_mem_attributes (x, result, 1);
3474 }
3475
3476 DECL_HAS_VALUE_EXPR_P (result) = 1;
3477
3478 SET_DECL_RTL (result, x);
3479 }
3480
3481 /* We have aligned all the args, so add space for the pretend args. */
3482 crtl->args.pretend_args_size = all.pretend_args_size;
3483 all.stack_args_size.constant += all.extra_pretend_bytes;
3484 crtl->args.size = all.stack_args_size.constant;
3485
3486 /* Adjust function incoming argument size for alignment and
3487 minimum length. */
3488
3489 #ifdef REG_PARM_STACK_SPACE
3490 crtl->args.size = MAX (crtl->args.size,
3491 REG_PARM_STACK_SPACE (fndecl));
3492 #endif
3493
3494 crtl->args.size = CEIL_ROUND (crtl->args.size,
3495 PARM_BOUNDARY / BITS_PER_UNIT);
3496
3497 #ifdef ARGS_GROW_DOWNWARD
3498 crtl->args.arg_offset_rtx
3499 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3500 : expand_expr (size_diffop (all.stack_args_size.var,
3501 size_int (-all.stack_args_size.constant)),
3502 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3503 #else
3504 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3505 #endif
3506
3507 /* See how many bytes, if any, of its args a function should try to pop
3508 on return. */
3509
3510 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3511 TREE_TYPE (fndecl),
3512 crtl->args.size);
3513
3514 /* For stdarg.h function, save info about
3515 regs and stack space used by the named args. */
3516
3517 crtl->args.info = all.args_so_far_v;
3518
3519 /* Set the rtx used for the function return value. Put this in its
3520 own variable so any optimizers that need this information don't have
3521 to include tree.h. Do this here so it gets done when an inlined
3522 function gets output. */
3523
3524 crtl->return_rtx
3525 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3526 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3527
3528 /* If scalar return value was computed in a pseudo-reg, or was a named
3529 return value that got dumped to the stack, copy that to the hard
3530 return register. */
3531 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3532 {
3533 tree decl_result = DECL_RESULT (fndecl);
3534 rtx decl_rtl = DECL_RTL (decl_result);
3535
3536 if (REG_P (decl_rtl)
3537 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3538 : DECL_REGISTER (decl_result))
3539 {
3540 rtx real_decl_rtl;
3541
3542 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3543 fndecl, true);
3544 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3545 /* The delay slot scheduler assumes that crtl->return_rtx
3546 holds the hard register containing the return value, not a
3547 temporary pseudo. */
3548 crtl->return_rtx = real_decl_rtl;
3549 }
3550 }
3551 }
3552
3553 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3554 For all seen types, gimplify their sizes. */
3555
3556 static tree
3557 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3558 {
3559 tree t = *tp;
3560
3561 *walk_subtrees = 0;
3562 if (TYPE_P (t))
3563 {
3564 if (POINTER_TYPE_P (t))
3565 *walk_subtrees = 1;
3566 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3567 && !TYPE_SIZES_GIMPLIFIED (t))
3568 {
3569 gimplify_type_sizes (t, (gimple_seq *) data);
3570 *walk_subtrees = 1;
3571 }
3572 }
3573
3574 return NULL;
3575 }
3576
3577 /* Gimplify the parameter list for current_function_decl. This involves
3578 evaluating SAVE_EXPRs of variable sized parameters and generating code
3579 to implement callee-copies reference parameters. Returns a sequence of
3580 statements to add to the beginning of the function. */
3581
3582 gimple_seq
3583 gimplify_parameters (void)
3584 {
3585 struct assign_parm_data_all all;
3586 tree parm;
3587 gimple_seq stmts = NULL;
3588 VEC(tree, heap) *fnargs;
3589 unsigned i;
3590
3591 assign_parms_initialize_all (&all);
3592 fnargs = assign_parms_augmented_arg_list (&all);
3593
3594 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3595 {
3596 struct assign_parm_data_one data;
3597
3598 /* Extract the type of PARM; adjust it according to ABI. */
3599 assign_parm_find_data_types (&all, parm, &data);
3600
3601 /* Early out for errors and void parameters. */
3602 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3603 continue;
3604
3605 /* Update info on where next arg arrives in registers. */
3606 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3607 data.passed_type, data.named_arg);
3608
3609 /* ??? Once upon a time variable_size stuffed parameter list
3610 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3611 turned out to be less than manageable in the gimple world.
3612 Now we have to hunt them down ourselves. */
3613 walk_tree_without_duplicates (&data.passed_type,
3614 gimplify_parm_type, &stmts);
3615
3616 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3617 {
3618 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3619 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3620 }
3621
3622 if (data.passed_pointer)
3623 {
3624 tree type = TREE_TYPE (data.passed_type);
3625 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3626 type, data.named_arg))
3627 {
3628 tree local, t;
3629
3630 /* For constant-sized objects, this is trivial; for
3631 variable-sized objects, we have to play games. */
3632 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3633 && !(flag_stack_check == GENERIC_STACK_CHECK
3634 && compare_tree_int (DECL_SIZE_UNIT (parm),
3635 STACK_CHECK_MAX_VAR_SIZE) > 0))
3636 {
3637 local = create_tmp_var (type, get_name (parm));
3638 DECL_IGNORED_P (local) = 0;
3639 /* If PARM was addressable, move that flag over
3640 to the local copy, as its address will be taken,
3641 not the PARMs. Keep the parms address taken
3642 as we'll query that flag during gimplification. */
3643 if (TREE_ADDRESSABLE (parm))
3644 TREE_ADDRESSABLE (local) = 1;
3645 else if (TREE_CODE (type) == COMPLEX_TYPE
3646 || TREE_CODE (type) == VECTOR_TYPE)
3647 DECL_GIMPLE_REG_P (local) = 1;
3648 }
3649 else
3650 {
3651 tree ptr_type, addr;
3652
3653 ptr_type = build_pointer_type (type);
3654 addr = create_tmp_reg (ptr_type, get_name (parm));
3655 DECL_IGNORED_P (addr) = 0;
3656 local = build_fold_indirect_ref (addr);
3657
3658 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3659 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3660 size_int (DECL_ALIGN (parm)));
3661
3662 /* The call has been built for a variable-sized object. */
3663 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3664 t = fold_convert (ptr_type, t);
3665 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3666 gimplify_and_add (t, &stmts);
3667 }
3668
3669 gimplify_assign (local, parm, &stmts);
3670
3671 SET_DECL_VALUE_EXPR (parm, local);
3672 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3673 }
3674 }
3675 }
3676
3677 VEC_free (tree, heap, fnargs);
3678
3679 return stmts;
3680 }
3681 \f
3682 /* Compute the size and offset from the start of the stacked arguments for a
3683 parm passed in mode PASSED_MODE and with type TYPE.
3684
3685 INITIAL_OFFSET_PTR points to the current offset into the stacked
3686 arguments.
3687
3688 The starting offset and size for this parm are returned in
3689 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3690 nonzero, the offset is that of stack slot, which is returned in
3691 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3692 padding required from the initial offset ptr to the stack slot.
3693
3694 IN_REGS is nonzero if the argument will be passed in registers. It will
3695 never be set if REG_PARM_STACK_SPACE is not defined.
3696
3697 FNDECL is the function in which the argument was defined.
3698
3699 There are two types of rounding that are done. The first, controlled by
3700 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3701 argument list to be aligned to the specific boundary (in bits). This
3702 rounding affects the initial and starting offsets, but not the argument
3703 size.
3704
3705 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3706 optionally rounds the size of the parm to PARM_BOUNDARY. The
3707 initial offset is not affected by this rounding, while the size always
3708 is and the starting offset may be. */
3709
3710 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3711 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3712 callers pass in the total size of args so far as
3713 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3714
3715 void
3716 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3717 int partial, tree fndecl ATTRIBUTE_UNUSED,
3718 struct args_size *initial_offset_ptr,
3719 struct locate_and_pad_arg_data *locate)
3720 {
3721 tree sizetree;
3722 enum direction where_pad;
3723 unsigned int boundary, round_boundary;
3724 int reg_parm_stack_space = 0;
3725 int part_size_in_regs;
3726
3727 #ifdef REG_PARM_STACK_SPACE
3728 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3729
3730 /* If we have found a stack parm before we reach the end of the
3731 area reserved for registers, skip that area. */
3732 if (! in_regs)
3733 {
3734 if (reg_parm_stack_space > 0)
3735 {
3736 if (initial_offset_ptr->var)
3737 {
3738 initial_offset_ptr->var
3739 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3740 ssize_int (reg_parm_stack_space));
3741 initial_offset_ptr->constant = 0;
3742 }
3743 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3744 initial_offset_ptr->constant = reg_parm_stack_space;
3745 }
3746 }
3747 #endif /* REG_PARM_STACK_SPACE */
3748
3749 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3750
3751 sizetree
3752 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3753 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3754 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3755 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3756 type);
3757 locate->where_pad = where_pad;
3758
3759 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3760 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3761 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3762
3763 locate->boundary = boundary;
3764
3765 if (SUPPORTS_STACK_ALIGNMENT)
3766 {
3767 /* stack_alignment_estimated can't change after stack has been
3768 realigned. */
3769 if (crtl->stack_alignment_estimated < boundary)
3770 {
3771 if (!crtl->stack_realign_processed)
3772 crtl->stack_alignment_estimated = boundary;
3773 else
3774 {
3775 /* If stack is realigned and stack alignment value
3776 hasn't been finalized, it is OK not to increase
3777 stack_alignment_estimated. The bigger alignment
3778 requirement is recorded in stack_alignment_needed
3779 below. */
3780 gcc_assert (!crtl->stack_realign_finalized
3781 && crtl->stack_realign_needed);
3782 }
3783 }
3784 }
3785
3786 /* Remember if the outgoing parameter requires extra alignment on the
3787 calling function side. */
3788 if (crtl->stack_alignment_needed < boundary)
3789 crtl->stack_alignment_needed = boundary;
3790 if (crtl->preferred_stack_boundary < boundary)
3791 crtl->preferred_stack_boundary = boundary;
3792
3793 #ifdef ARGS_GROW_DOWNWARD
3794 locate->slot_offset.constant = -initial_offset_ptr->constant;
3795 if (initial_offset_ptr->var)
3796 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3797 initial_offset_ptr->var);
3798
3799 {
3800 tree s2 = sizetree;
3801 if (where_pad != none
3802 && (!host_integerp (sizetree, 1)
3803 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3804 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3805 SUB_PARM_SIZE (locate->slot_offset, s2);
3806 }
3807
3808 locate->slot_offset.constant += part_size_in_regs;
3809
3810 if (!in_regs
3811 #ifdef REG_PARM_STACK_SPACE
3812 || REG_PARM_STACK_SPACE (fndecl) > 0
3813 #endif
3814 )
3815 pad_to_arg_alignment (&locate->slot_offset, boundary,
3816 &locate->alignment_pad);
3817
3818 locate->size.constant = (-initial_offset_ptr->constant
3819 - locate->slot_offset.constant);
3820 if (initial_offset_ptr->var)
3821 locate->size.var = size_binop (MINUS_EXPR,
3822 size_binop (MINUS_EXPR,
3823 ssize_int (0),
3824 initial_offset_ptr->var),
3825 locate->slot_offset.var);
3826
3827 /* Pad_below needs the pre-rounded size to know how much to pad
3828 below. */
3829 locate->offset = locate->slot_offset;
3830 if (where_pad == downward)
3831 pad_below (&locate->offset, passed_mode, sizetree);
3832
3833 #else /* !ARGS_GROW_DOWNWARD */
3834 if (!in_regs
3835 #ifdef REG_PARM_STACK_SPACE
3836 || REG_PARM_STACK_SPACE (fndecl) > 0
3837 #endif
3838 )
3839 pad_to_arg_alignment (initial_offset_ptr, boundary,
3840 &locate->alignment_pad);
3841 locate->slot_offset = *initial_offset_ptr;
3842
3843 #ifdef PUSH_ROUNDING
3844 if (passed_mode != BLKmode)
3845 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3846 #endif
3847
3848 /* Pad_below needs the pre-rounded size to know how much to pad below
3849 so this must be done before rounding up. */
3850 locate->offset = locate->slot_offset;
3851 if (where_pad == downward)
3852 pad_below (&locate->offset, passed_mode, sizetree);
3853
3854 if (where_pad != none
3855 && (!host_integerp (sizetree, 1)
3856 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3857 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3858
3859 ADD_PARM_SIZE (locate->size, sizetree);
3860
3861 locate->size.constant -= part_size_in_regs;
3862 #endif /* ARGS_GROW_DOWNWARD */
3863
3864 #ifdef FUNCTION_ARG_OFFSET
3865 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3866 #endif
3867 }
3868
3869 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3870 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3871
3872 static void
3873 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3874 struct args_size *alignment_pad)
3875 {
3876 tree save_var = NULL_TREE;
3877 HOST_WIDE_INT save_constant = 0;
3878 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3879 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3880
3881 #ifdef SPARC_STACK_BOUNDARY_HACK
3882 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3883 the real alignment of %sp. However, when it does this, the
3884 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3885 if (SPARC_STACK_BOUNDARY_HACK)
3886 sp_offset = 0;
3887 #endif
3888
3889 if (boundary > PARM_BOUNDARY)
3890 {
3891 save_var = offset_ptr->var;
3892 save_constant = offset_ptr->constant;
3893 }
3894
3895 alignment_pad->var = NULL_TREE;
3896 alignment_pad->constant = 0;
3897
3898 if (boundary > BITS_PER_UNIT)
3899 {
3900 if (offset_ptr->var)
3901 {
3902 tree sp_offset_tree = ssize_int (sp_offset);
3903 tree offset = size_binop (PLUS_EXPR,
3904 ARGS_SIZE_TREE (*offset_ptr),
3905 sp_offset_tree);
3906 #ifdef ARGS_GROW_DOWNWARD
3907 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3908 #else
3909 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3910 #endif
3911
3912 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3913 /* ARGS_SIZE_TREE includes constant term. */
3914 offset_ptr->constant = 0;
3915 if (boundary > PARM_BOUNDARY)
3916 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3917 save_var);
3918 }
3919 else
3920 {
3921 offset_ptr->constant = -sp_offset +
3922 #ifdef ARGS_GROW_DOWNWARD
3923 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3924 #else
3925 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3926 #endif
3927 if (boundary > PARM_BOUNDARY)
3928 alignment_pad->constant = offset_ptr->constant - save_constant;
3929 }
3930 }
3931 }
3932
3933 static void
3934 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3935 {
3936 if (passed_mode != BLKmode)
3937 {
3938 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3939 offset_ptr->constant
3940 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3941 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3942 - GET_MODE_SIZE (passed_mode));
3943 }
3944 else
3945 {
3946 if (TREE_CODE (sizetree) != INTEGER_CST
3947 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3948 {
3949 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3950 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3951 /* Add it in. */
3952 ADD_PARM_SIZE (*offset_ptr, s2);
3953 SUB_PARM_SIZE (*offset_ptr, sizetree);
3954 }
3955 }
3956 }
3957 \f
3958
3959 /* True if register REGNO was alive at a place where `setjmp' was
3960 called and was set more than once or is an argument. Such regs may
3961 be clobbered by `longjmp'. */
3962
3963 static bool
3964 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3965 {
3966 /* There appear to be cases where some local vars never reach the
3967 backend but have bogus regnos. */
3968 if (regno >= max_reg_num ())
3969 return false;
3970
3971 return ((REG_N_SETS (regno) > 1
3972 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3973 && REGNO_REG_SET_P (setjmp_crosses, regno));
3974 }
3975
3976 /* Walk the tree of blocks describing the binding levels within a
3977 function and warn about variables the might be killed by setjmp or
3978 vfork. This is done after calling flow_analysis before register
3979 allocation since that will clobber the pseudo-regs to hard
3980 regs. */
3981
3982 static void
3983 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3984 {
3985 tree decl, sub;
3986
3987 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3988 {
3989 if (TREE_CODE (decl) == VAR_DECL
3990 && DECL_RTL_SET_P (decl)
3991 && REG_P (DECL_RTL (decl))
3992 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3993 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3994 " %<longjmp%> or %<vfork%>", decl);
3995 }
3996
3997 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3998 setjmp_vars_warning (setjmp_crosses, sub);
3999 }
4000
4001 /* Do the appropriate part of setjmp_vars_warning
4002 but for arguments instead of local variables. */
4003
4004 static void
4005 setjmp_args_warning (bitmap setjmp_crosses)
4006 {
4007 tree decl;
4008 for (decl = DECL_ARGUMENTS (current_function_decl);
4009 decl; decl = DECL_CHAIN (decl))
4010 if (DECL_RTL (decl) != 0
4011 && REG_P (DECL_RTL (decl))
4012 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4013 warning (OPT_Wclobbered,
4014 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4015 decl);
4016 }
4017
4018 /* Generate warning messages for variables live across setjmp. */
4019
4020 void
4021 generate_setjmp_warnings (void)
4022 {
4023 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4024
4025 if (n_basic_blocks == NUM_FIXED_BLOCKS
4026 || bitmap_empty_p (setjmp_crosses))
4027 return;
4028
4029 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4030 setjmp_args_warning (setjmp_crosses);
4031 }
4032
4033 \f
4034 /* Reverse the order of elements in the fragment chain T of blocks,
4035 and return the new head of the chain (old last element).
4036 In addition to that clear BLOCK_SAME_RANGE flags when needed
4037 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4038 its super fragment origin. */
4039
4040 static tree
4041 block_fragments_nreverse (tree t)
4042 {
4043 tree prev = 0, block, next, prev_super = 0;
4044 tree super = BLOCK_SUPERCONTEXT (t);
4045 if (BLOCK_FRAGMENT_ORIGIN (super))
4046 super = BLOCK_FRAGMENT_ORIGIN (super);
4047 for (block = t; block; block = next)
4048 {
4049 next = BLOCK_FRAGMENT_CHAIN (block);
4050 BLOCK_FRAGMENT_CHAIN (block) = prev;
4051 if ((prev && !BLOCK_SAME_RANGE (prev))
4052 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4053 != prev_super))
4054 BLOCK_SAME_RANGE (block) = 0;
4055 prev_super = BLOCK_SUPERCONTEXT (block);
4056 BLOCK_SUPERCONTEXT (block) = super;
4057 prev = block;
4058 }
4059 t = BLOCK_FRAGMENT_ORIGIN (t);
4060 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4061 != prev_super)
4062 BLOCK_SAME_RANGE (t) = 0;
4063 BLOCK_SUPERCONTEXT (t) = super;
4064 return prev;
4065 }
4066
4067 /* Reverse the order of elements in the chain T of blocks,
4068 and return the new head of the chain (old last element).
4069 Also do the same on subblocks and reverse the order of elements
4070 in BLOCK_FRAGMENT_CHAIN as well. */
4071
4072 static tree
4073 blocks_nreverse_all (tree t)
4074 {
4075 tree prev = 0, block, next;
4076 for (block = t; block; block = next)
4077 {
4078 next = BLOCK_CHAIN (block);
4079 BLOCK_CHAIN (block) = prev;
4080 if (BLOCK_FRAGMENT_CHAIN (block)
4081 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4082 {
4083 BLOCK_FRAGMENT_CHAIN (block)
4084 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4085 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4086 BLOCK_SAME_RANGE (block) = 0;
4087 }
4088 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4089 prev = block;
4090 }
4091 return prev;
4092 }
4093
4094
4095 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4096 and create duplicate blocks. */
4097 /* ??? Need an option to either create block fragments or to create
4098 abstract origin duplicates of a source block. It really depends
4099 on what optimization has been performed. */
4100
4101 void
4102 reorder_blocks (void)
4103 {
4104 tree block = DECL_INITIAL (current_function_decl);
4105 VEC(tree,heap) *block_stack;
4106
4107 if (block == NULL_TREE)
4108 return;
4109
4110 block_stack = VEC_alloc (tree, heap, 10);
4111
4112 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4113 clear_block_marks (block);
4114
4115 /* Prune the old trees away, so that they don't get in the way. */
4116 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4117 BLOCK_CHAIN (block) = NULL_TREE;
4118
4119 /* Recreate the block tree from the note nesting. */
4120 reorder_blocks_1 (get_insns (), block, &block_stack);
4121 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4122
4123 VEC_free (tree, heap, block_stack);
4124 }
4125
4126 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4127
4128 void
4129 clear_block_marks (tree block)
4130 {
4131 while (block)
4132 {
4133 TREE_ASM_WRITTEN (block) = 0;
4134 clear_block_marks (BLOCK_SUBBLOCKS (block));
4135 block = BLOCK_CHAIN (block);
4136 }
4137 }
4138
4139 static void
4140 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4141 {
4142 rtx insn;
4143 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4144
4145 for (insn = insns; insn; insn = NEXT_INSN (insn))
4146 {
4147 if (NOTE_P (insn))
4148 {
4149 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4150 {
4151 tree block = NOTE_BLOCK (insn);
4152 tree origin;
4153
4154 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4155 origin = block;
4156
4157 if (prev_end)
4158 BLOCK_SAME_RANGE (prev_end) = 0;
4159 prev_end = NULL_TREE;
4160
4161 /* If we have seen this block before, that means it now
4162 spans multiple address regions. Create a new fragment. */
4163 if (TREE_ASM_WRITTEN (block))
4164 {
4165 tree new_block = copy_node (block);
4166
4167 BLOCK_SAME_RANGE (new_block) = 0;
4168 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4169 BLOCK_FRAGMENT_CHAIN (new_block)
4170 = BLOCK_FRAGMENT_CHAIN (origin);
4171 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4172
4173 NOTE_BLOCK (insn) = new_block;
4174 block = new_block;
4175 }
4176
4177 if (prev_beg == current_block && prev_beg)
4178 BLOCK_SAME_RANGE (block) = 1;
4179
4180 prev_beg = origin;
4181
4182 BLOCK_SUBBLOCKS (block) = 0;
4183 TREE_ASM_WRITTEN (block) = 1;
4184 /* When there's only one block for the entire function,
4185 current_block == block and we mustn't do this, it
4186 will cause infinite recursion. */
4187 if (block != current_block)
4188 {
4189 tree super;
4190 if (block != origin)
4191 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4192 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4193 (origin))
4194 == current_block);
4195 if (VEC_empty (tree, *p_block_stack))
4196 super = current_block;
4197 else
4198 {
4199 super = VEC_last (tree, *p_block_stack);
4200 gcc_assert (super == current_block
4201 || BLOCK_FRAGMENT_ORIGIN (super)
4202 == current_block);
4203 }
4204 BLOCK_SUPERCONTEXT (block) = super;
4205 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4206 BLOCK_SUBBLOCKS (current_block) = block;
4207 current_block = origin;
4208 }
4209 VEC_safe_push (tree, heap, *p_block_stack, block);
4210 }
4211 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4212 {
4213 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4214 current_block = BLOCK_SUPERCONTEXT (current_block);
4215 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4216 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4217 prev_beg = NULL_TREE;
4218 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4219 ? NOTE_BLOCK (insn) : NULL_TREE;
4220 }
4221 }
4222 else
4223 {
4224 prev_beg = NULL_TREE;
4225 if (prev_end)
4226 BLOCK_SAME_RANGE (prev_end) = 0;
4227 prev_end = NULL_TREE;
4228 }
4229 }
4230 }
4231
4232 /* Reverse the order of elements in the chain T of blocks,
4233 and return the new head of the chain (old last element). */
4234
4235 tree
4236 blocks_nreverse (tree t)
4237 {
4238 tree prev = 0, block, next;
4239 for (block = t; block; block = next)
4240 {
4241 next = BLOCK_CHAIN (block);
4242 BLOCK_CHAIN (block) = prev;
4243 prev = block;
4244 }
4245 return prev;
4246 }
4247
4248 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4249 by modifying the last node in chain 1 to point to chain 2. */
4250
4251 tree
4252 block_chainon (tree op1, tree op2)
4253 {
4254 tree t1;
4255
4256 if (!op1)
4257 return op2;
4258 if (!op2)
4259 return op1;
4260
4261 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4262 continue;
4263 BLOCK_CHAIN (t1) = op2;
4264
4265 #ifdef ENABLE_TREE_CHECKING
4266 {
4267 tree t2;
4268 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4269 gcc_assert (t2 != t1);
4270 }
4271 #endif
4272
4273 return op1;
4274 }
4275
4276 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4277 non-NULL, list them all into VECTOR, in a depth-first preorder
4278 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4279 blocks. */
4280
4281 static int
4282 all_blocks (tree block, tree *vector)
4283 {
4284 int n_blocks = 0;
4285
4286 while (block)
4287 {
4288 TREE_ASM_WRITTEN (block) = 0;
4289
4290 /* Record this block. */
4291 if (vector)
4292 vector[n_blocks] = block;
4293
4294 ++n_blocks;
4295
4296 /* Record the subblocks, and their subblocks... */
4297 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4298 vector ? vector + n_blocks : 0);
4299 block = BLOCK_CHAIN (block);
4300 }
4301
4302 return n_blocks;
4303 }
4304
4305 /* Return a vector containing all the blocks rooted at BLOCK. The
4306 number of elements in the vector is stored in N_BLOCKS_P. The
4307 vector is dynamically allocated; it is the caller's responsibility
4308 to call `free' on the pointer returned. */
4309
4310 static tree *
4311 get_block_vector (tree block, int *n_blocks_p)
4312 {
4313 tree *block_vector;
4314
4315 *n_blocks_p = all_blocks (block, NULL);
4316 block_vector = XNEWVEC (tree, *n_blocks_p);
4317 all_blocks (block, block_vector);
4318
4319 return block_vector;
4320 }
4321
4322 static GTY(()) int next_block_index = 2;
4323
4324 /* Set BLOCK_NUMBER for all the blocks in FN. */
4325
4326 void
4327 number_blocks (tree fn)
4328 {
4329 int i;
4330 int n_blocks;
4331 tree *block_vector;
4332
4333 /* For SDB and XCOFF debugging output, we start numbering the blocks
4334 from 1 within each function, rather than keeping a running
4335 count. */
4336 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4337 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4338 next_block_index = 1;
4339 #endif
4340
4341 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4342
4343 /* The top-level BLOCK isn't numbered at all. */
4344 for (i = 1; i < n_blocks; ++i)
4345 /* We number the blocks from two. */
4346 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4347
4348 free (block_vector);
4349
4350 return;
4351 }
4352
4353 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4354
4355 DEBUG_FUNCTION tree
4356 debug_find_var_in_block_tree (tree var, tree block)
4357 {
4358 tree t;
4359
4360 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4361 if (t == var)
4362 return block;
4363
4364 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4365 {
4366 tree ret = debug_find_var_in_block_tree (var, t);
4367 if (ret)
4368 return ret;
4369 }
4370
4371 return NULL_TREE;
4372 }
4373 \f
4374 /* Keep track of whether we're in a dummy function context. If we are,
4375 we don't want to invoke the set_current_function hook, because we'll
4376 get into trouble if the hook calls target_reinit () recursively or
4377 when the initial initialization is not yet complete. */
4378
4379 static bool in_dummy_function;
4380
4381 /* Invoke the target hook when setting cfun. Update the optimization options
4382 if the function uses different options than the default. */
4383
4384 static void
4385 invoke_set_current_function_hook (tree fndecl)
4386 {
4387 if (!in_dummy_function)
4388 {
4389 tree opts = ((fndecl)
4390 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4391 : optimization_default_node);
4392
4393 if (!opts)
4394 opts = optimization_default_node;
4395
4396 /* Change optimization options if needed. */
4397 if (optimization_current_node != opts)
4398 {
4399 optimization_current_node = opts;
4400 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4401 }
4402
4403 targetm.set_current_function (fndecl);
4404 }
4405 }
4406
4407 /* cfun should never be set directly; use this function. */
4408
4409 void
4410 set_cfun (struct function *new_cfun)
4411 {
4412 if (cfun != new_cfun)
4413 {
4414 cfun = new_cfun;
4415 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4416 }
4417 }
4418
4419 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4420
4421 static VEC(function_p,heap) *cfun_stack;
4422
4423 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4424
4425 void
4426 push_cfun (struct function *new_cfun)
4427 {
4428 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4429 set_cfun (new_cfun);
4430 }
4431
4432 /* Pop cfun from the stack. */
4433
4434 void
4435 pop_cfun (void)
4436 {
4437 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4438 set_cfun (new_cfun);
4439 }
4440
4441 /* Return value of funcdef and increase it. */
4442 int
4443 get_next_funcdef_no (void)
4444 {
4445 return funcdef_no++;
4446 }
4447
4448 /* Return value of funcdef. */
4449 int
4450 get_last_funcdef_no (void)
4451 {
4452 return funcdef_no;
4453 }
4454
4455 /* Allocate a function structure for FNDECL and set its contents
4456 to the defaults. Set cfun to the newly-allocated object.
4457 Some of the helper functions invoked during initialization assume
4458 that cfun has already been set. Therefore, assign the new object
4459 directly into cfun and invoke the back end hook explicitly at the
4460 very end, rather than initializing a temporary and calling set_cfun
4461 on it.
4462
4463 ABSTRACT_P is true if this is a function that will never be seen by
4464 the middle-end. Such functions are front-end concepts (like C++
4465 function templates) that do not correspond directly to functions
4466 placed in object files. */
4467
4468 void
4469 allocate_struct_function (tree fndecl, bool abstract_p)
4470 {
4471 tree result;
4472 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4473
4474 cfun = ggc_alloc_cleared_function ();
4475
4476 init_eh_for_function ();
4477
4478 if (init_machine_status)
4479 cfun->machine = (*init_machine_status) ();
4480
4481 #ifdef OVERRIDE_ABI_FORMAT
4482 OVERRIDE_ABI_FORMAT (fndecl);
4483 #endif
4484
4485 invoke_set_current_function_hook (fndecl);
4486
4487 if (fndecl != NULL_TREE)
4488 {
4489 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4490 cfun->decl = fndecl;
4491 current_function_funcdef_no = get_next_funcdef_no ();
4492
4493 result = DECL_RESULT (fndecl);
4494 if (!abstract_p && aggregate_value_p (result, fndecl))
4495 {
4496 #ifdef PCC_STATIC_STRUCT_RETURN
4497 cfun->returns_pcc_struct = 1;
4498 #endif
4499 cfun->returns_struct = 1;
4500 }
4501
4502 cfun->stdarg = stdarg_p (fntype);
4503
4504 /* Assume all registers in stdarg functions need to be saved. */
4505 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4506 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4507
4508 /* ??? This could be set on a per-function basis by the front-end
4509 but is this worth the hassle? */
4510 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4511 }
4512 }
4513
4514 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4515 instead of just setting it. */
4516
4517 void
4518 push_struct_function (tree fndecl)
4519 {
4520 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4521 allocate_struct_function (fndecl, false);
4522 }
4523
4524 /* Reset crtl and other non-struct-function variables to defaults as
4525 appropriate for emitting rtl at the start of a function. */
4526
4527 static void
4528 prepare_function_start (void)
4529 {
4530 gcc_assert (!crtl->emit.x_last_insn);
4531 init_temp_slots ();
4532 init_emit ();
4533 init_varasm_status ();
4534 init_expr ();
4535 default_rtl_profile ();
4536
4537 if (flag_stack_usage_info)
4538 {
4539 cfun->su = ggc_alloc_cleared_stack_usage ();
4540 cfun->su->static_stack_size = -1;
4541 }
4542
4543 cse_not_expected = ! optimize;
4544
4545 /* Caller save not needed yet. */
4546 caller_save_needed = 0;
4547
4548 /* We haven't done register allocation yet. */
4549 reg_renumber = 0;
4550
4551 /* Indicate that we have not instantiated virtual registers yet. */
4552 virtuals_instantiated = 0;
4553
4554 /* Indicate that we want CONCATs now. */
4555 generating_concat_p = 1;
4556
4557 /* Indicate we have no need of a frame pointer yet. */
4558 frame_pointer_needed = 0;
4559 }
4560
4561 /* Initialize the rtl expansion mechanism so that we can do simple things
4562 like generate sequences. This is used to provide a context during global
4563 initialization of some passes. You must call expand_dummy_function_end
4564 to exit this context. */
4565
4566 void
4567 init_dummy_function_start (void)
4568 {
4569 gcc_assert (!in_dummy_function);
4570 in_dummy_function = true;
4571 push_struct_function (NULL_TREE);
4572 prepare_function_start ();
4573 }
4574
4575 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4576 and initialize static variables for generating RTL for the statements
4577 of the function. */
4578
4579 void
4580 init_function_start (tree subr)
4581 {
4582 if (subr && DECL_STRUCT_FUNCTION (subr))
4583 set_cfun (DECL_STRUCT_FUNCTION (subr));
4584 else
4585 allocate_struct_function (subr, false);
4586 prepare_function_start ();
4587 decide_function_section (subr);
4588
4589 /* Warn if this value is an aggregate type,
4590 regardless of which calling convention we are using for it. */
4591 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4592 warning (OPT_Waggregate_return, "function returns an aggregate");
4593 }
4594
4595
4596 void
4597 expand_main_function (void)
4598 {
4599 #if (defined(INVOKE__main) \
4600 || (!defined(HAS_INIT_SECTION) \
4601 && !defined(INIT_SECTION_ASM_OP) \
4602 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4603 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4604 #endif
4605 }
4606 \f
4607 /* Expand code to initialize the stack_protect_guard. This is invoked at
4608 the beginning of a function to be protected. */
4609
4610 #ifndef HAVE_stack_protect_set
4611 # define HAVE_stack_protect_set 0
4612 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4613 #endif
4614
4615 void
4616 stack_protect_prologue (void)
4617 {
4618 tree guard_decl = targetm.stack_protect_guard ();
4619 rtx x, y;
4620
4621 x = expand_normal (crtl->stack_protect_guard);
4622 y = expand_normal (guard_decl);
4623
4624 /* Allow the target to copy from Y to X without leaking Y into a
4625 register. */
4626 if (HAVE_stack_protect_set)
4627 {
4628 rtx insn = gen_stack_protect_set (x, y);
4629 if (insn)
4630 {
4631 emit_insn (insn);
4632 return;
4633 }
4634 }
4635
4636 /* Otherwise do a straight move. */
4637 emit_move_insn (x, y);
4638 }
4639
4640 /* Expand code to verify the stack_protect_guard. This is invoked at
4641 the end of a function to be protected. */
4642
4643 #ifndef HAVE_stack_protect_test
4644 # define HAVE_stack_protect_test 0
4645 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4646 #endif
4647
4648 void
4649 stack_protect_epilogue (void)
4650 {
4651 tree guard_decl = targetm.stack_protect_guard ();
4652 rtx label = gen_label_rtx ();
4653 rtx x, y, tmp;
4654
4655 x = expand_normal (crtl->stack_protect_guard);
4656 y = expand_normal (guard_decl);
4657
4658 /* Allow the target to compare Y with X without leaking either into
4659 a register. */
4660 switch (HAVE_stack_protect_test != 0)
4661 {
4662 case 1:
4663 tmp = gen_stack_protect_test (x, y, label);
4664 if (tmp)
4665 {
4666 emit_insn (tmp);
4667 break;
4668 }
4669 /* FALLTHRU */
4670
4671 default:
4672 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4673 break;
4674 }
4675
4676 /* The noreturn predictor has been moved to the tree level. The rtl-level
4677 predictors estimate this branch about 20%, which isn't enough to get
4678 things moved out of line. Since this is the only extant case of adding
4679 a noreturn function at the rtl level, it doesn't seem worth doing ought
4680 except adding the prediction by hand. */
4681 tmp = get_last_insn ();
4682 if (JUMP_P (tmp))
4683 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4684
4685 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4686 free_temp_slots ();
4687 emit_label (label);
4688 }
4689 \f
4690 /* Start the RTL for a new function, and set variables used for
4691 emitting RTL.
4692 SUBR is the FUNCTION_DECL node.
4693 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4694 the function's parameters, which must be run at any return statement. */
4695
4696 void
4697 expand_function_start (tree subr)
4698 {
4699 /* Make sure volatile mem refs aren't considered
4700 valid operands of arithmetic insns. */
4701 init_recog_no_volatile ();
4702
4703 crtl->profile
4704 = (profile_flag
4705 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4706
4707 crtl->limit_stack
4708 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4709
4710 /* Make the label for return statements to jump to. Do not special
4711 case machines with special return instructions -- they will be
4712 handled later during jump, ifcvt, or epilogue creation. */
4713 return_label = gen_label_rtx ();
4714
4715 /* Initialize rtx used to return the value. */
4716 /* Do this before assign_parms so that we copy the struct value address
4717 before any library calls that assign parms might generate. */
4718
4719 /* Decide whether to return the value in memory or in a register. */
4720 if (aggregate_value_p (DECL_RESULT (subr), subr))
4721 {
4722 /* Returning something that won't go in a register. */
4723 rtx value_address = 0;
4724
4725 #ifdef PCC_STATIC_STRUCT_RETURN
4726 if (cfun->returns_pcc_struct)
4727 {
4728 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4729 value_address = assemble_static_space (size);
4730 }
4731 else
4732 #endif
4733 {
4734 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4735 /* Expect to be passed the address of a place to store the value.
4736 If it is passed as an argument, assign_parms will take care of
4737 it. */
4738 if (sv)
4739 {
4740 value_address = gen_reg_rtx (Pmode);
4741 emit_move_insn (value_address, sv);
4742 }
4743 }
4744 if (value_address)
4745 {
4746 rtx x = value_address;
4747 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4748 {
4749 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4750 set_mem_attributes (x, DECL_RESULT (subr), 1);
4751 }
4752 SET_DECL_RTL (DECL_RESULT (subr), x);
4753 }
4754 }
4755 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4756 /* If return mode is void, this decl rtl should not be used. */
4757 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4758 else
4759 {
4760 /* Compute the return values into a pseudo reg, which we will copy
4761 into the true return register after the cleanups are done. */
4762 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4763 if (TYPE_MODE (return_type) != BLKmode
4764 && targetm.calls.return_in_msb (return_type))
4765 /* expand_function_end will insert the appropriate padding in
4766 this case. Use the return value's natural (unpadded) mode
4767 within the function proper. */
4768 SET_DECL_RTL (DECL_RESULT (subr),
4769 gen_reg_rtx (TYPE_MODE (return_type)));
4770 else
4771 {
4772 /* In order to figure out what mode to use for the pseudo, we
4773 figure out what the mode of the eventual return register will
4774 actually be, and use that. */
4775 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4776
4777 /* Structures that are returned in registers are not
4778 aggregate_value_p, so we may see a PARALLEL or a REG. */
4779 if (REG_P (hard_reg))
4780 SET_DECL_RTL (DECL_RESULT (subr),
4781 gen_reg_rtx (GET_MODE (hard_reg)));
4782 else
4783 {
4784 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4785 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4786 }
4787 }
4788
4789 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4790 result to the real return register(s). */
4791 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4792 }
4793
4794 /* Initialize rtx for parameters and local variables.
4795 In some cases this requires emitting insns. */
4796 assign_parms (subr);
4797
4798 /* If function gets a static chain arg, store it. */
4799 if (cfun->static_chain_decl)
4800 {
4801 tree parm = cfun->static_chain_decl;
4802 rtx local, chain, insn;
4803
4804 local = gen_reg_rtx (Pmode);
4805 chain = targetm.calls.static_chain (current_function_decl, true);
4806
4807 set_decl_incoming_rtl (parm, chain, false);
4808 SET_DECL_RTL (parm, local);
4809 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4810
4811 insn = emit_move_insn (local, chain);
4812
4813 /* Mark the register as eliminable, similar to parameters. */
4814 if (MEM_P (chain)
4815 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4816 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4817 }
4818
4819 /* If the function receives a non-local goto, then store the
4820 bits we need to restore the frame pointer. */
4821 if (cfun->nonlocal_goto_save_area)
4822 {
4823 tree t_save;
4824 rtx r_save;
4825
4826 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4827 gcc_assert (DECL_RTL_SET_P (var));
4828
4829 t_save = build4 (ARRAY_REF,
4830 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4831 cfun->nonlocal_goto_save_area,
4832 integer_zero_node, NULL_TREE, NULL_TREE);
4833 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4834 gcc_assert (GET_MODE (r_save) == Pmode);
4835
4836 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4837 update_nonlocal_goto_save_area ();
4838 }
4839
4840 /* The following was moved from init_function_start.
4841 The move is supposed to make sdb output more accurate. */
4842 /* Indicate the beginning of the function body,
4843 as opposed to parm setup. */
4844 emit_note (NOTE_INSN_FUNCTION_BEG);
4845
4846 gcc_assert (NOTE_P (get_last_insn ()));
4847
4848 parm_birth_insn = get_last_insn ();
4849
4850 if (crtl->profile)
4851 {
4852 #ifdef PROFILE_HOOK
4853 PROFILE_HOOK (current_function_funcdef_no);
4854 #endif
4855 }
4856
4857 /* If we are doing generic stack checking, the probe should go here. */
4858 if (flag_stack_check == GENERIC_STACK_CHECK)
4859 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4860 }
4861 \f
4862 /* Undo the effects of init_dummy_function_start. */
4863 void
4864 expand_dummy_function_end (void)
4865 {
4866 gcc_assert (in_dummy_function);
4867
4868 /* End any sequences that failed to be closed due to syntax errors. */
4869 while (in_sequence_p ())
4870 end_sequence ();
4871
4872 /* Outside function body, can't compute type's actual size
4873 until next function's body starts. */
4874
4875 free_after_parsing (cfun);
4876 free_after_compilation (cfun);
4877 pop_cfun ();
4878 in_dummy_function = false;
4879 }
4880
4881 /* Call DOIT for each hard register used as a return value from
4882 the current function. */
4883
4884 void
4885 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4886 {
4887 rtx outgoing = crtl->return_rtx;
4888
4889 if (! outgoing)
4890 return;
4891
4892 if (REG_P (outgoing))
4893 (*doit) (outgoing, arg);
4894 else if (GET_CODE (outgoing) == PARALLEL)
4895 {
4896 int i;
4897
4898 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4899 {
4900 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4901
4902 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4903 (*doit) (x, arg);
4904 }
4905 }
4906 }
4907
4908 static void
4909 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4910 {
4911 emit_clobber (reg);
4912 }
4913
4914 void
4915 clobber_return_register (void)
4916 {
4917 diddle_return_value (do_clobber_return_reg, NULL);
4918
4919 /* In case we do use pseudo to return value, clobber it too. */
4920 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4921 {
4922 tree decl_result = DECL_RESULT (current_function_decl);
4923 rtx decl_rtl = DECL_RTL (decl_result);
4924 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4925 {
4926 do_clobber_return_reg (decl_rtl, NULL);
4927 }
4928 }
4929 }
4930
4931 static void
4932 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4933 {
4934 emit_use (reg);
4935 }
4936
4937 static void
4938 use_return_register (void)
4939 {
4940 diddle_return_value (do_use_return_reg, NULL);
4941 }
4942
4943 /* Possibly warn about unused parameters. */
4944 void
4945 do_warn_unused_parameter (tree fn)
4946 {
4947 tree decl;
4948
4949 for (decl = DECL_ARGUMENTS (fn);
4950 decl; decl = DECL_CHAIN (decl))
4951 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4952 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4953 && !TREE_NO_WARNING (decl))
4954 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4955 }
4956
4957 static GTY(()) rtx initial_trampoline;
4958
4959 /* Generate RTL for the end of the current function. */
4960
4961 void
4962 expand_function_end (void)
4963 {
4964 rtx clobber_after;
4965
4966 /* If arg_pointer_save_area was referenced only from a nested
4967 function, we will not have initialized it yet. Do that now. */
4968 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4969 get_arg_pointer_save_area ();
4970
4971 /* If we are doing generic stack checking and this function makes calls,
4972 do a stack probe at the start of the function to ensure we have enough
4973 space for another stack frame. */
4974 if (flag_stack_check == GENERIC_STACK_CHECK)
4975 {
4976 rtx insn, seq;
4977
4978 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4979 if (CALL_P (insn))
4980 {
4981 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4982 start_sequence ();
4983 if (STACK_CHECK_MOVING_SP)
4984 anti_adjust_stack_and_probe (max_frame_size, true);
4985 else
4986 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4987 seq = get_insns ();
4988 end_sequence ();
4989 set_insn_locators (seq, prologue_locator);
4990 emit_insn_before (seq, stack_check_probe_note);
4991 break;
4992 }
4993 }
4994
4995 /* End any sequences that failed to be closed due to syntax errors. */
4996 while (in_sequence_p ())
4997 end_sequence ();
4998
4999 clear_pending_stack_adjust ();
5000 do_pending_stack_adjust ();
5001
5002 /* Output a linenumber for the end of the function.
5003 SDB depends on this. */
5004 set_curr_insn_source_location (input_location);
5005
5006 /* Before the return label (if any), clobber the return
5007 registers so that they are not propagated live to the rest of
5008 the function. This can only happen with functions that drop
5009 through; if there had been a return statement, there would
5010 have either been a return rtx, or a jump to the return label.
5011
5012 We delay actual code generation after the current_function_value_rtx
5013 is computed. */
5014 clobber_after = get_last_insn ();
5015
5016 /* Output the label for the actual return from the function. */
5017 emit_label (return_label);
5018
5019 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5020 {
5021 /* Let except.c know where it should emit the call to unregister
5022 the function context for sjlj exceptions. */
5023 if (flag_exceptions)
5024 sjlj_emit_function_exit_after (get_last_insn ());
5025 }
5026 else
5027 {
5028 /* We want to ensure that instructions that may trap are not
5029 moved into the epilogue by scheduling, because we don't
5030 always emit unwind information for the epilogue. */
5031 if (cfun->can_throw_non_call_exceptions)
5032 emit_insn (gen_blockage ());
5033 }
5034
5035 /* If this is an implementation of throw, do what's necessary to
5036 communicate between __builtin_eh_return and the epilogue. */
5037 expand_eh_return ();
5038
5039 /* If scalar return value was computed in a pseudo-reg, or was a named
5040 return value that got dumped to the stack, copy that to the hard
5041 return register. */
5042 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5043 {
5044 tree decl_result = DECL_RESULT (current_function_decl);
5045 rtx decl_rtl = DECL_RTL (decl_result);
5046
5047 if (REG_P (decl_rtl)
5048 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5049 : DECL_REGISTER (decl_result))
5050 {
5051 rtx real_decl_rtl = crtl->return_rtx;
5052
5053 /* This should be set in assign_parms. */
5054 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5055
5056 /* If this is a BLKmode structure being returned in registers,
5057 then use the mode computed in expand_return. Note that if
5058 decl_rtl is memory, then its mode may have been changed,
5059 but that crtl->return_rtx has not. */
5060 if (GET_MODE (real_decl_rtl) == BLKmode)
5061 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5062
5063 /* If a non-BLKmode return value should be padded at the least
5064 significant end of the register, shift it left by the appropriate
5065 amount. BLKmode results are handled using the group load/store
5066 machinery. */
5067 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5068 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5069 {
5070 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5071 REGNO (real_decl_rtl)),
5072 decl_rtl);
5073 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5074 }
5075 /* If a named return value dumped decl_return to memory, then
5076 we may need to re-do the PROMOTE_MODE signed/unsigned
5077 extension. */
5078 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5079 {
5080 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5081 promote_function_mode (TREE_TYPE (decl_result),
5082 GET_MODE (decl_rtl), &unsignedp,
5083 TREE_TYPE (current_function_decl), 1);
5084
5085 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5086 }
5087 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5088 {
5089 /* If expand_function_start has created a PARALLEL for decl_rtl,
5090 move the result to the real return registers. Otherwise, do
5091 a group load from decl_rtl for a named return. */
5092 if (GET_CODE (decl_rtl) == PARALLEL)
5093 emit_group_move (real_decl_rtl, decl_rtl);
5094 else
5095 emit_group_load (real_decl_rtl, decl_rtl,
5096 TREE_TYPE (decl_result),
5097 int_size_in_bytes (TREE_TYPE (decl_result)));
5098 }
5099 /* In the case of complex integer modes smaller than a word, we'll
5100 need to generate some non-trivial bitfield insertions. Do that
5101 on a pseudo and not the hard register. */
5102 else if (GET_CODE (decl_rtl) == CONCAT
5103 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5104 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5105 {
5106 int old_generating_concat_p;
5107 rtx tmp;
5108
5109 old_generating_concat_p = generating_concat_p;
5110 generating_concat_p = 0;
5111 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5112 generating_concat_p = old_generating_concat_p;
5113
5114 emit_move_insn (tmp, decl_rtl);
5115 emit_move_insn (real_decl_rtl, tmp);
5116 }
5117 else
5118 emit_move_insn (real_decl_rtl, decl_rtl);
5119 }
5120 }
5121
5122 /* If returning a structure, arrange to return the address of the value
5123 in a place where debuggers expect to find it.
5124
5125 If returning a structure PCC style,
5126 the caller also depends on this value.
5127 And cfun->returns_pcc_struct is not necessarily set. */
5128 if (cfun->returns_struct
5129 || cfun->returns_pcc_struct)
5130 {
5131 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5132 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5133 rtx outgoing;
5134
5135 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5136 type = TREE_TYPE (type);
5137 else
5138 value_address = XEXP (value_address, 0);
5139
5140 outgoing = targetm.calls.function_value (build_pointer_type (type),
5141 current_function_decl, true);
5142
5143 /* Mark this as a function return value so integrate will delete the
5144 assignment and USE below when inlining this function. */
5145 REG_FUNCTION_VALUE_P (outgoing) = 1;
5146
5147 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5148 value_address = convert_memory_address (GET_MODE (outgoing),
5149 value_address);
5150
5151 emit_move_insn (outgoing, value_address);
5152
5153 /* Show return register used to hold result (in this case the address
5154 of the result. */
5155 crtl->return_rtx = outgoing;
5156 }
5157
5158 /* Emit the actual code to clobber return register. */
5159 {
5160 rtx seq;
5161
5162 start_sequence ();
5163 clobber_return_register ();
5164 seq = get_insns ();
5165 end_sequence ();
5166
5167 emit_insn_after (seq, clobber_after);
5168 }
5169
5170 /* Output the label for the naked return from the function. */
5171 if (naked_return_label)
5172 emit_label (naked_return_label);
5173
5174 /* @@@ This is a kludge. We want to ensure that instructions that
5175 may trap are not moved into the epilogue by scheduling, because
5176 we don't always emit unwind information for the epilogue. */
5177 if (cfun->can_throw_non_call_exceptions
5178 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5179 emit_insn (gen_blockage ());
5180
5181 /* If stack protection is enabled for this function, check the guard. */
5182 if (crtl->stack_protect_guard)
5183 stack_protect_epilogue ();
5184
5185 /* If we had calls to alloca, and this machine needs
5186 an accurate stack pointer to exit the function,
5187 insert some code to save and restore the stack pointer. */
5188 if (! EXIT_IGNORE_STACK
5189 && cfun->calls_alloca)
5190 {
5191 rtx tem = 0, seq;
5192
5193 start_sequence ();
5194 emit_stack_save (SAVE_FUNCTION, &tem);
5195 seq = get_insns ();
5196 end_sequence ();
5197 emit_insn_before (seq, parm_birth_insn);
5198
5199 emit_stack_restore (SAVE_FUNCTION, tem);
5200 }
5201
5202 /* ??? This should no longer be necessary since stupid is no longer with
5203 us, but there are some parts of the compiler (eg reload_combine, and
5204 sh mach_dep_reorg) that still try and compute their own lifetime info
5205 instead of using the general framework. */
5206 use_return_register ();
5207 }
5208
5209 rtx
5210 get_arg_pointer_save_area (void)
5211 {
5212 rtx ret = arg_pointer_save_area;
5213
5214 if (! ret)
5215 {
5216 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5217 arg_pointer_save_area = ret;
5218 }
5219
5220 if (! crtl->arg_pointer_save_area_init)
5221 {
5222 rtx seq;
5223
5224 /* Save the arg pointer at the beginning of the function. The
5225 generated stack slot may not be a valid memory address, so we
5226 have to check it and fix it if necessary. */
5227 start_sequence ();
5228 emit_move_insn (validize_mem (ret),
5229 crtl->args.internal_arg_pointer);
5230 seq = get_insns ();
5231 end_sequence ();
5232
5233 push_topmost_sequence ();
5234 emit_insn_after (seq, entry_of_function ());
5235 pop_topmost_sequence ();
5236
5237 crtl->arg_pointer_save_area_init = true;
5238 }
5239
5240 return ret;
5241 }
5242 \f
5243 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5244 for the first time. */
5245
5246 static void
5247 record_insns (rtx insns, rtx end, htab_t *hashp)
5248 {
5249 rtx tmp;
5250 htab_t hash = *hashp;
5251
5252 if (hash == NULL)
5253 *hashp = hash
5254 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5255
5256 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5257 {
5258 void **slot = htab_find_slot (hash, tmp, INSERT);
5259 gcc_assert (*slot == NULL);
5260 *slot = tmp;
5261 }
5262 }
5263
5264 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5265 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5266 insn, then record COPY as well. */
5267
5268 void
5269 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5270 {
5271 htab_t hash;
5272 void **slot;
5273
5274 hash = epilogue_insn_hash;
5275 if (!hash || !htab_find (hash, insn))
5276 {
5277 hash = prologue_insn_hash;
5278 if (!hash || !htab_find (hash, insn))
5279 return;
5280 }
5281
5282 slot = htab_find_slot (hash, copy, INSERT);
5283 gcc_assert (*slot == NULL);
5284 *slot = copy;
5285 }
5286
5287 /* Set the locator of the insn chain starting at INSN to LOC. */
5288 static void
5289 set_insn_locators (rtx insn, int loc)
5290 {
5291 while (insn != NULL_RTX)
5292 {
5293 if (INSN_P (insn))
5294 INSN_LOCATOR (insn) = loc;
5295 insn = NEXT_INSN (insn);
5296 }
5297 }
5298
5299 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5300 we can be running after reorg, SEQUENCE rtl is possible. */
5301
5302 static bool
5303 contains (const_rtx insn, htab_t hash)
5304 {
5305 if (hash == NULL)
5306 return false;
5307
5308 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5309 {
5310 int i;
5311 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5312 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5313 return true;
5314 return false;
5315 }
5316
5317 return htab_find (hash, insn) != NULL;
5318 }
5319
5320 int
5321 prologue_epilogue_contains (const_rtx insn)
5322 {
5323 if (contains (insn, prologue_insn_hash))
5324 return 1;
5325 if (contains (insn, epilogue_insn_hash))
5326 return 1;
5327 return 0;
5328 }
5329
5330 #ifdef HAVE_simple_return
5331
5332 /* Return true if INSN requires the stack frame to be set up.
5333 PROLOGUE_USED contains the hard registers used in the function
5334 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5335 prologue to set up for the function. */
5336 bool
5337 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5338 HARD_REG_SET set_up_by_prologue)
5339 {
5340 df_ref *df_rec;
5341 HARD_REG_SET hardregs;
5342 unsigned regno;
5343
5344 if (CALL_P (insn))
5345 return !SIBLING_CALL_P (insn);
5346
5347 /* We need a frame to get the unique CFA expected by the unwinder. */
5348 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5349 return true;
5350
5351 CLEAR_HARD_REG_SET (hardregs);
5352 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5353 {
5354 rtx dreg = DF_REF_REG (*df_rec);
5355
5356 if (!REG_P (dreg))
5357 continue;
5358
5359 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5360 REGNO (dreg));
5361 }
5362 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5363 return true;
5364 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5365 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5366 if (TEST_HARD_REG_BIT (hardregs, regno)
5367 && df_regs_ever_live_p (regno))
5368 return true;
5369
5370 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5371 {
5372 rtx reg = DF_REF_REG (*df_rec);
5373
5374 if (!REG_P (reg))
5375 continue;
5376
5377 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5378 REGNO (reg));
5379 }
5380 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5381 return true;
5382
5383 return false;
5384 }
5385
5386 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5387 and if BB is its only predecessor. Return that block if so,
5388 otherwise return null. */
5389
5390 static basic_block
5391 next_block_for_reg (basic_block bb, int regno, int end_regno)
5392 {
5393 edge e, live_edge;
5394 edge_iterator ei;
5395 bitmap live;
5396 int i;
5397
5398 live_edge = NULL;
5399 FOR_EACH_EDGE (e, ei, bb->succs)
5400 {
5401 live = df_get_live_in (e->dest);
5402 for (i = regno; i < end_regno; i++)
5403 if (REGNO_REG_SET_P (live, i))
5404 {
5405 if (live_edge && live_edge != e)
5406 return NULL;
5407 live_edge = e;
5408 }
5409 }
5410
5411 /* We can sometimes encounter dead code. Don't try to move it
5412 into the exit block. */
5413 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5414 return NULL;
5415
5416 /* Reject targets of abnormal edges. This is needed for correctness
5417 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5418 exception edges even though it is generally treated as call-saved
5419 for the majority of the compilation. Moving across abnormal edges
5420 isn't going to be interesting for shrink-wrap usage anyway. */
5421 if (live_edge->flags & EDGE_ABNORMAL)
5422 return NULL;
5423
5424 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5425 return NULL;
5426
5427 return live_edge->dest;
5428 }
5429
5430 /* Try to move INSN from BB to a successor. Return true on success.
5431 USES and DEFS are the set of registers that are used and defined
5432 after INSN in BB. */
5433
5434 static bool
5435 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5436 const HARD_REG_SET uses,
5437 const HARD_REG_SET defs)
5438 {
5439 rtx set, src, dest;
5440 bitmap live_out, live_in, bb_uses, bb_defs;
5441 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5442 basic_block next_block;
5443
5444 /* Look for a simple register copy. */
5445 set = single_set (insn);
5446 if (!set)
5447 return false;
5448 src = SET_SRC (set);
5449 dest = SET_DEST (set);
5450 if (!REG_P (dest) || !REG_P (src))
5451 return false;
5452
5453 /* Make sure that the source register isn't defined later in BB. */
5454 sregno = REGNO (src);
5455 end_sregno = END_REGNO (src);
5456 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5457 return false;
5458
5459 /* Make sure that the destination register isn't referenced later in BB. */
5460 dregno = REGNO (dest);
5461 end_dregno = END_REGNO (dest);
5462 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5463 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5464 return false;
5465
5466 /* See whether there is a successor block to which we could move INSN. */
5467 next_block = next_block_for_reg (bb, dregno, end_dregno);
5468 if (!next_block)
5469 return false;
5470
5471 /* At this point we are committed to moving INSN, but let's try to
5472 move it as far as we can. */
5473 do
5474 {
5475 live_out = df_get_live_out (bb);
5476 live_in = df_get_live_in (next_block);
5477 bb = next_block;
5478
5479 /* Check whether BB uses DEST or clobbers DEST. We need to add
5480 INSN to BB if so. Either way, DEST is no longer live on entry,
5481 except for any part that overlaps SRC (next loop). */
5482 bb_uses = &DF_LR_BB_INFO (bb)->use;
5483 bb_defs = &DF_LR_BB_INFO (bb)->def;
5484 for (i = dregno; i < end_dregno; i++)
5485 {
5486 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5487 next_block = NULL;
5488 CLEAR_REGNO_REG_SET (live_out, i);
5489 CLEAR_REGNO_REG_SET (live_in, i);
5490 }
5491
5492 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5493 Either way, SRC is now live on entry. */
5494 for (i = sregno; i < end_sregno; i++)
5495 {
5496 if (REGNO_REG_SET_P (bb_defs, i))
5497 next_block = NULL;
5498 SET_REGNO_REG_SET (live_out, i);
5499 SET_REGNO_REG_SET (live_in, i);
5500 }
5501
5502 /* If we don't need to add the move to BB, look for a single
5503 successor block. */
5504 if (next_block)
5505 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5506 }
5507 while (next_block);
5508
5509 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5510 (next loop). */
5511 for (i = dregno; i < end_dregno; i++)
5512 {
5513 CLEAR_REGNO_REG_SET (bb_uses, i);
5514 SET_REGNO_REG_SET (bb_defs, i);
5515 }
5516
5517 /* BB now uses SRC. */
5518 for (i = sregno; i < end_sregno; i++)
5519 SET_REGNO_REG_SET (bb_uses, i);
5520
5521 emit_insn_after (PATTERN (insn), bb_note (bb));
5522 delete_insn (insn);
5523 return true;
5524 }
5525
5526 /* Look for register copies in the first block of the function, and move
5527 them down into successor blocks if the register is used only on one
5528 path. This exposes more opportunities for shrink-wrapping. These
5529 kinds of sets often occur when incoming argument registers are moved
5530 to call-saved registers because their values are live across one or
5531 more calls during the function. */
5532
5533 static void
5534 prepare_shrink_wrap (basic_block entry_block)
5535 {
5536 rtx insn, curr, x;
5537 HARD_REG_SET uses, defs;
5538 df_ref *ref;
5539
5540 CLEAR_HARD_REG_SET (uses);
5541 CLEAR_HARD_REG_SET (defs);
5542 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5543 if (NONDEBUG_INSN_P (insn)
5544 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5545 {
5546 /* Add all defined registers to DEFs. */
5547 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5548 {
5549 x = DF_REF_REG (*ref);
5550 if (REG_P (x) && HARD_REGISTER_P (x))
5551 SET_HARD_REG_BIT (defs, REGNO (x));
5552 }
5553
5554 /* Add all used registers to USESs. */
5555 for (ref = DF_INSN_USES (insn); *ref; ref++)
5556 {
5557 x = DF_REF_REG (*ref);
5558 if (REG_P (x) && HARD_REGISTER_P (x))
5559 SET_HARD_REG_BIT (uses, REGNO (x));
5560 }
5561 }
5562 }
5563
5564 #endif
5565
5566 #ifdef HAVE_return
5567 /* Insert use of return register before the end of BB. */
5568
5569 static void
5570 emit_use_return_register_into_block (basic_block bb)
5571 {
5572 rtx seq;
5573 start_sequence ();
5574 use_return_register ();
5575 seq = get_insns ();
5576 end_sequence ();
5577 emit_insn_before (seq, BB_END (bb));
5578 }
5579
5580
5581 /* Create a return pattern, either simple_return or return, depending on
5582 simple_p. */
5583
5584 static rtx
5585 gen_return_pattern (bool simple_p)
5586 {
5587 #ifdef HAVE_simple_return
5588 return simple_p ? gen_simple_return () : gen_return ();
5589 #else
5590 gcc_assert (!simple_p);
5591 return gen_return ();
5592 #endif
5593 }
5594
5595 /* Insert an appropriate return pattern at the end of block BB. This
5596 also means updating block_for_insn appropriately. SIMPLE_P is
5597 the same as in gen_return_pattern and passed to it. */
5598
5599 static void
5600 emit_return_into_block (bool simple_p, basic_block bb)
5601 {
5602 rtx jump, pat;
5603 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5604 pat = PATTERN (jump);
5605 if (GET_CODE (pat) == PARALLEL)
5606 pat = XVECEXP (pat, 0, 0);
5607 gcc_assert (ANY_RETURN_P (pat));
5608 JUMP_LABEL (jump) = pat;
5609 }
5610 #endif
5611
5612 /* Set JUMP_LABEL for a return insn. */
5613
5614 void
5615 set_return_jump_label (rtx returnjump)
5616 {
5617 rtx pat = PATTERN (returnjump);
5618 if (GET_CODE (pat) == PARALLEL)
5619 pat = XVECEXP (pat, 0, 0);
5620 if (ANY_RETURN_P (pat))
5621 JUMP_LABEL (returnjump) = pat;
5622 else
5623 JUMP_LABEL (returnjump) = ret_rtx;
5624 }
5625
5626 #ifdef HAVE_simple_return
5627 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5628 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5629 static void
5630 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5631 bitmap_head *need_prologue)
5632 {
5633 edge_iterator ei;
5634 edge e;
5635 rtx insn = BB_END (bb);
5636
5637 /* We know BB has a single successor, so there is no need to copy a
5638 simple jump at the end of BB. */
5639 if (simplejump_p (insn))
5640 insn = PREV_INSN (insn);
5641
5642 start_sequence ();
5643 duplicate_insn_chain (BB_HEAD (bb), insn);
5644 if (dump_file)
5645 {
5646 unsigned count = 0;
5647 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5648 if (active_insn_p (insn))
5649 ++count;
5650 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5651 bb->index, copy_bb->index, count);
5652 }
5653 insn = get_insns ();
5654 end_sequence ();
5655 emit_insn_before (insn, before);
5656
5657 /* Redirect all the paths that need no prologue into copy_bb. */
5658 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5659 if (!bitmap_bit_p (need_prologue, e->src->index))
5660 {
5661 redirect_edge_and_branch_force (e, copy_bb);
5662 continue;
5663 }
5664 else
5665 ei_next (&ei);
5666 }
5667 #endif
5668
5669 #if defined (HAVE_return) || defined (HAVE_simple_return)
5670 /* Return true if there are any active insns between HEAD and TAIL. */
5671 static bool
5672 active_insn_between (rtx head, rtx tail)
5673 {
5674 while (tail)
5675 {
5676 if (active_insn_p (tail))
5677 return true;
5678 if (tail == head)
5679 return false;
5680 tail = PREV_INSN (tail);
5681 }
5682 return false;
5683 }
5684
5685 /* LAST_BB is a block that exits, and empty of active instructions.
5686 Examine its predecessors for jumps that can be converted to
5687 (conditional) returns. */
5688 static VEC (edge, heap) *
5689 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5690 VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
5691 {
5692 int i;
5693 basic_block bb;
5694 rtx label;
5695 edge_iterator ei;
5696 edge e;
5697 VEC(basic_block,heap) *src_bbs;
5698
5699 src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
5700 FOR_EACH_EDGE (e, ei, last_bb->preds)
5701 if (e->src != ENTRY_BLOCK_PTR)
5702 VEC_quick_push (basic_block, src_bbs, e->src);
5703
5704 label = BB_HEAD (last_bb);
5705
5706 FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
5707 {
5708 rtx jump = BB_END (bb);
5709
5710 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5711 continue;
5712
5713 e = find_edge (bb, last_bb);
5714
5715 /* If we have an unconditional jump, we can replace that
5716 with a simple return instruction. */
5717 if (simplejump_p (jump))
5718 {
5719 /* The use of the return register might be present in the exit
5720 fallthru block. Either:
5721 - removing the use is safe, and we should remove the use in
5722 the exit fallthru block, or
5723 - removing the use is not safe, and we should add it here.
5724 For now, we conservatively choose the latter. Either of the
5725 2 helps in crossjumping. */
5726 emit_use_return_register_into_block (bb);
5727
5728 emit_return_into_block (simple_p, bb);
5729 delete_insn (jump);
5730 }
5731
5732 /* If we have a conditional jump branching to the last
5733 block, we can try to replace that with a conditional
5734 return instruction. */
5735 else if (condjump_p (jump))
5736 {
5737 rtx dest;
5738
5739 if (simple_p)
5740 dest = simple_return_rtx;
5741 else
5742 dest = ret_rtx;
5743 if (!redirect_jump (jump, dest, 0))
5744 {
5745 #ifdef HAVE_simple_return
5746 if (simple_p)
5747 {
5748 if (dump_file)
5749 fprintf (dump_file,
5750 "Failed to redirect bb %d branch.\n", bb->index);
5751 VEC_safe_push (edge, heap, unconverted, e);
5752 }
5753 #endif
5754 continue;
5755 }
5756
5757 /* See comment in simplejump_p case above. */
5758 emit_use_return_register_into_block (bb);
5759
5760 /* If this block has only one successor, it both jumps
5761 and falls through to the fallthru block, so we can't
5762 delete the edge. */
5763 if (single_succ_p (bb))
5764 continue;
5765 }
5766 else
5767 {
5768 #ifdef HAVE_simple_return
5769 if (simple_p)
5770 {
5771 if (dump_file)
5772 fprintf (dump_file,
5773 "Failed to redirect bb %d branch.\n", bb->index);
5774 VEC_safe_push (edge, heap, unconverted, e);
5775 }
5776 #endif
5777 continue;
5778 }
5779
5780 /* Fix up the CFG for the successful change we just made. */
5781 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5782 e->flags &= ~EDGE_CROSSING;
5783 }
5784 VEC_free (basic_block, heap, src_bbs);
5785 return unconverted;
5786 }
5787
5788 /* Emit a return insn for the exit fallthru block. */
5789 static basic_block
5790 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5791 {
5792 basic_block last_bb = exit_fallthru_edge->src;
5793
5794 if (JUMP_P (BB_END (last_bb)))
5795 {
5796 last_bb = split_edge (exit_fallthru_edge);
5797 exit_fallthru_edge = single_succ_edge (last_bb);
5798 }
5799 emit_barrier_after (BB_END (last_bb));
5800 emit_return_into_block (simple_p, last_bb);
5801 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5802 return last_bb;
5803 }
5804 #endif
5805
5806
5807 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5808 this into place with notes indicating where the prologue ends and where
5809 the epilogue begins. Update the basic block information when possible.
5810
5811 Notes on epilogue placement:
5812 There are several kinds of edges to the exit block:
5813 * a single fallthru edge from LAST_BB
5814 * possibly, edges from blocks containing sibcalls
5815 * possibly, fake edges from infinite loops
5816
5817 The epilogue is always emitted on the fallthru edge from the last basic
5818 block in the function, LAST_BB, into the exit block.
5819
5820 If LAST_BB is empty except for a label, it is the target of every
5821 other basic block in the function that ends in a return. If a
5822 target has a return or simple_return pattern (possibly with
5823 conditional variants), these basic blocks can be changed so that a
5824 return insn is emitted into them, and their target is adjusted to
5825 the real exit block.
5826
5827 Notes on shrink wrapping: We implement a fairly conservative
5828 version of shrink-wrapping rather than the textbook one. We only
5829 generate a single prologue and a single epilogue. This is
5830 sufficient to catch a number of interesting cases involving early
5831 exits.
5832
5833 First, we identify the blocks that require the prologue to occur before
5834 them. These are the ones that modify a call-saved register, or reference
5835 any of the stack or frame pointer registers. To simplify things, we then
5836 mark everything reachable from these blocks as also requiring a prologue.
5837 This takes care of loops automatically, and avoids the need to examine
5838 whether MEMs reference the frame, since it is sufficient to check for
5839 occurrences of the stack or frame pointer.
5840
5841 We then compute the set of blocks for which the need for a prologue
5842 is anticipatable (borrowing terminology from the shrink-wrapping
5843 description in Muchnick's book). These are the blocks which either
5844 require a prologue themselves, or those that have only successors
5845 where the prologue is anticipatable. The prologue needs to be
5846 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5847 is not. For the moment, we ensure that only one such edge exists.
5848
5849 The epilogue is placed as described above, but we make a
5850 distinction between inserting return and simple_return patterns
5851 when modifying other blocks that end in a return. Blocks that end
5852 in a sibcall omit the sibcall_epilogue if the block is not in
5853 ANTIC. */
5854
5855 static void
5856 thread_prologue_and_epilogue_insns (void)
5857 {
5858 bool inserted;
5859 #ifdef HAVE_simple_return
5860 VEC (edge, heap) *unconverted_simple_returns = NULL;
5861 bool nonempty_prologue;
5862 bitmap_head bb_flags;
5863 unsigned max_grow_size;
5864 #endif
5865 rtx returnjump;
5866 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5867 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5868 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5869 edge_iterator ei;
5870
5871 df_analyze ();
5872
5873 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5874
5875 inserted = false;
5876 seq = NULL_RTX;
5877 epilogue_end = NULL_RTX;
5878 returnjump = NULL_RTX;
5879
5880 /* Can't deal with multiple successors of the entry block at the
5881 moment. Function should always have at least one entry
5882 point. */
5883 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5884 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5885 orig_entry_edge = entry_edge;
5886
5887 split_prologue_seq = NULL_RTX;
5888 if (flag_split_stack
5889 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5890 == NULL))
5891 {
5892 #ifndef HAVE_split_stack_prologue
5893 gcc_unreachable ();
5894 #else
5895 gcc_assert (HAVE_split_stack_prologue);
5896
5897 start_sequence ();
5898 emit_insn (gen_split_stack_prologue ());
5899 split_prologue_seq = get_insns ();
5900 end_sequence ();
5901
5902 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5903 set_insn_locators (split_prologue_seq, prologue_locator);
5904 #endif
5905 }
5906
5907 prologue_seq = NULL_RTX;
5908 #ifdef HAVE_prologue
5909 if (HAVE_prologue)
5910 {
5911 start_sequence ();
5912 seq = gen_prologue ();
5913 emit_insn (seq);
5914
5915 /* Insert an explicit USE for the frame pointer
5916 if the profiling is on and the frame pointer is required. */
5917 if (crtl->profile && frame_pointer_needed)
5918 emit_use (hard_frame_pointer_rtx);
5919
5920 /* Retain a map of the prologue insns. */
5921 record_insns (seq, NULL, &prologue_insn_hash);
5922 emit_note (NOTE_INSN_PROLOGUE_END);
5923
5924 /* Ensure that instructions are not moved into the prologue when
5925 profiling is on. The call to the profiling routine can be
5926 emitted within the live range of a call-clobbered register. */
5927 if (!targetm.profile_before_prologue () && crtl->profile)
5928 emit_insn (gen_blockage ());
5929
5930 prologue_seq = get_insns ();
5931 end_sequence ();
5932 set_insn_locators (prologue_seq, prologue_locator);
5933 }
5934 #endif
5935
5936 #ifdef HAVE_simple_return
5937 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5938
5939 /* Try to perform a kind of shrink-wrapping, making sure the
5940 prologue/epilogue is emitted only around those parts of the
5941 function that require it. */
5942
5943 nonempty_prologue = false;
5944 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5945 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5946 {
5947 nonempty_prologue = true;
5948 break;
5949 }
5950
5951 if (flag_shrink_wrap && HAVE_simple_return
5952 && (targetm.profile_before_prologue () || !crtl->profile)
5953 && nonempty_prologue && !crtl->calls_eh_return)
5954 {
5955 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5956 struct hard_reg_set_container set_up_by_prologue;
5957 rtx p_insn;
5958 VEC(basic_block, heap) *vec;
5959 basic_block bb;
5960 bitmap_head bb_antic_flags;
5961 bitmap_head bb_on_list;
5962 bitmap_head bb_tail;
5963
5964 if (dump_file)
5965 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5966
5967 /* Compute the registers set and used in the prologue. */
5968 CLEAR_HARD_REG_SET (prologue_clobbered);
5969 CLEAR_HARD_REG_SET (prologue_used);
5970 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5971 {
5972 HARD_REG_SET this_used;
5973 if (!NONDEBUG_INSN_P (p_insn))
5974 continue;
5975
5976 CLEAR_HARD_REG_SET (this_used);
5977 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5978 &this_used);
5979 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
5980 IOR_HARD_REG_SET (prologue_used, this_used);
5981 note_stores (PATTERN (p_insn), record_hard_reg_sets,
5982 &prologue_clobbered);
5983 }
5984
5985 prepare_shrink_wrap (entry_edge->dest);
5986
5987 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
5988 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
5989 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
5990
5991 /* Find the set of basic blocks that require a stack frame,
5992 and blocks that are too big to be duplicated. */
5993
5994 vec = VEC_alloc (basic_block, heap, n_basic_blocks);
5995
5996 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
5997 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5998 STACK_POINTER_REGNUM);
5999 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6000 if (frame_pointer_needed)
6001 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6002 HARD_FRAME_POINTER_REGNUM);
6003 if (pic_offset_table_rtx)
6004 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6005 PIC_OFFSET_TABLE_REGNUM);
6006 if (stack_realign_drap && crtl->drap_reg)
6007 add_to_hard_reg_set (&set_up_by_prologue.set,
6008 GET_MODE (crtl->drap_reg),
6009 REGNO (crtl->drap_reg));
6010 if (targetm.set_up_by_prologue)
6011 targetm.set_up_by_prologue (&set_up_by_prologue);
6012
6013 /* We don't use a different max size depending on
6014 optimize_bb_for_speed_p because increasing shrink-wrapping
6015 opportunities by duplicating tail blocks can actually result
6016 in an overall decrease in code size. */
6017 max_grow_size = get_uncond_jump_length ();
6018 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6019
6020 FOR_EACH_BB (bb)
6021 {
6022 rtx insn;
6023 unsigned size = 0;
6024
6025 FOR_BB_INSNS (bb, insn)
6026 if (NONDEBUG_INSN_P (insn))
6027 {
6028 if (requires_stack_frame_p (insn, prologue_used,
6029 set_up_by_prologue.set))
6030 {
6031 if (bb == entry_edge->dest)
6032 goto fail_shrinkwrap;
6033 bitmap_set_bit (&bb_flags, bb->index);
6034 VEC_quick_push (basic_block, vec, bb);
6035 break;
6036 }
6037 else if (size <= max_grow_size)
6038 {
6039 size += get_attr_min_length (insn);
6040 if (size > max_grow_size)
6041 bitmap_set_bit (&bb_on_list, bb->index);
6042 }
6043 }
6044 }
6045
6046 /* Blocks that really need a prologue, or are too big for tails. */
6047 bitmap_ior_into (&bb_on_list, &bb_flags);
6048
6049 /* For every basic block that needs a prologue, mark all blocks
6050 reachable from it, so as to ensure they are also seen as
6051 requiring a prologue. */
6052 while (!VEC_empty (basic_block, vec))
6053 {
6054 basic_block tmp_bb = VEC_pop (basic_block, vec);
6055
6056 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6057 if (e->dest != EXIT_BLOCK_PTR
6058 && bitmap_set_bit (&bb_flags, e->dest->index))
6059 VEC_quick_push (basic_block, vec, e->dest);
6060 }
6061
6062 /* Find the set of basic blocks that need no prologue, have a
6063 single successor, can be duplicated, meet a max size
6064 requirement, and go to the exit via like blocks. */
6065 VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
6066 while (!VEC_empty (basic_block, vec))
6067 {
6068 basic_block tmp_bb = VEC_pop (basic_block, vec);
6069
6070 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6071 if (single_succ_p (e->src)
6072 && !bitmap_bit_p (&bb_on_list, e->src->index)
6073 && can_duplicate_block_p (e->src))
6074 {
6075 edge pe;
6076 edge_iterator pei;
6077
6078 /* If there is predecessor of e->src which doesn't
6079 need prologue and the edge is complex,
6080 we might not be able to redirect the branch
6081 to a copy of e->src. */
6082 FOR_EACH_EDGE (pe, pei, e->src->preds)
6083 if ((pe->flags & EDGE_COMPLEX) != 0
6084 && !bitmap_bit_p (&bb_flags, pe->src->index))
6085 break;
6086 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6087 VEC_quick_push (basic_block, vec, e->src);
6088 }
6089 }
6090
6091 /* Now walk backwards from every block that is marked as needing
6092 a prologue to compute the bb_antic_flags bitmap. Exclude
6093 tail blocks; They can be duplicated to be used on paths not
6094 needing a prologue. */
6095 bitmap_clear (&bb_on_list);
6096 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6097 FOR_EACH_BB (bb)
6098 {
6099 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6100 continue;
6101 FOR_EACH_EDGE (e, ei, bb->preds)
6102 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6103 && bitmap_set_bit (&bb_on_list, e->src->index))
6104 VEC_quick_push (basic_block, vec, e->src);
6105 }
6106 while (!VEC_empty (basic_block, vec))
6107 {
6108 basic_block tmp_bb = VEC_pop (basic_block, vec);
6109 bool all_set = true;
6110
6111 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6112 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6113 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6114 {
6115 all_set = false;
6116 break;
6117 }
6118
6119 if (all_set)
6120 {
6121 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6122 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6123 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6124 && bitmap_set_bit (&bb_on_list, e->src->index))
6125 VEC_quick_push (basic_block, vec, e->src);
6126 }
6127 }
6128 /* Find exactly one edge that leads to a block in ANTIC from
6129 a block that isn't. */
6130 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6131 FOR_EACH_BB (bb)
6132 {
6133 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6134 continue;
6135 FOR_EACH_EDGE (e, ei, bb->preds)
6136 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6137 {
6138 if (entry_edge != orig_entry_edge)
6139 {
6140 entry_edge = orig_entry_edge;
6141 if (dump_file)
6142 fprintf (dump_file, "More than one candidate edge.\n");
6143 goto fail_shrinkwrap;
6144 }
6145 if (dump_file)
6146 fprintf (dump_file, "Found candidate edge for "
6147 "shrink-wrapping, %d->%d.\n", e->src->index,
6148 e->dest->index);
6149 entry_edge = e;
6150 }
6151 }
6152
6153 if (entry_edge != orig_entry_edge)
6154 {
6155 /* Test whether the prologue is known to clobber any register
6156 (other than FP or SP) which are live on the edge. */
6157 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6158 if (frame_pointer_needed)
6159 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6160 CLEAR_HARD_REG_SET (live_on_edge);
6161 reg_set_to_hard_reg_set (&live_on_edge,
6162 df_get_live_in (entry_edge->dest));
6163 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6164 {
6165 entry_edge = orig_entry_edge;
6166 if (dump_file)
6167 fprintf (dump_file,
6168 "Shrink-wrapping aborted due to clobber.\n");
6169 }
6170 }
6171 if (entry_edge != orig_entry_edge)
6172 {
6173 crtl->shrink_wrapped = true;
6174 if (dump_file)
6175 fprintf (dump_file, "Performing shrink-wrapping.\n");
6176
6177 /* Find tail blocks reachable from both blocks needing a
6178 prologue and blocks not needing a prologue. */
6179 if (!bitmap_empty_p (&bb_tail))
6180 FOR_EACH_BB (bb)
6181 {
6182 bool some_pro, some_no_pro;
6183 if (!bitmap_bit_p (&bb_tail, bb->index))
6184 continue;
6185 some_pro = some_no_pro = false;
6186 FOR_EACH_EDGE (e, ei, bb->preds)
6187 {
6188 if (bitmap_bit_p (&bb_flags, e->src->index))
6189 some_pro = true;
6190 else
6191 some_no_pro = true;
6192 }
6193 if (some_pro && some_no_pro)
6194 VEC_quick_push (basic_block, vec, bb);
6195 else
6196 bitmap_clear_bit (&bb_tail, bb->index);
6197 }
6198 /* Find the head of each tail. */
6199 while (!VEC_empty (basic_block, vec))
6200 {
6201 basic_block tbb = VEC_pop (basic_block, vec);
6202
6203 if (!bitmap_bit_p (&bb_tail, tbb->index))
6204 continue;
6205
6206 while (single_succ_p (tbb))
6207 {
6208 tbb = single_succ (tbb);
6209 bitmap_clear_bit (&bb_tail, tbb->index);
6210 }
6211 }
6212 /* Now duplicate the tails. */
6213 if (!bitmap_empty_p (&bb_tail))
6214 FOR_EACH_BB_REVERSE (bb)
6215 {
6216 basic_block copy_bb, tbb;
6217 rtx insert_point;
6218 int eflags;
6219
6220 if (!bitmap_clear_bit (&bb_tail, bb->index))
6221 continue;
6222
6223 /* Create a copy of BB, instructions and all, for
6224 use on paths that don't need a prologue.
6225 Ideal placement of the copy is on a fall-thru edge
6226 or after a block that would jump to the copy. */
6227 FOR_EACH_EDGE (e, ei, bb->preds)
6228 if (!bitmap_bit_p (&bb_flags, e->src->index)
6229 && single_succ_p (e->src))
6230 break;
6231 if (e)
6232 {
6233 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6234 NULL_RTX, e->src);
6235 BB_COPY_PARTITION (copy_bb, e->src);
6236 }
6237 else
6238 {
6239 /* Otherwise put the copy at the end of the function. */
6240 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6241 EXIT_BLOCK_PTR->prev_bb);
6242 BB_COPY_PARTITION (copy_bb, bb);
6243 }
6244
6245 insert_point = emit_note_after (NOTE_INSN_DELETED,
6246 BB_END (copy_bb));
6247 emit_barrier_after (BB_END (copy_bb));
6248
6249 tbb = bb;
6250 while (1)
6251 {
6252 dup_block_and_redirect (tbb, copy_bb, insert_point,
6253 &bb_flags);
6254 tbb = single_succ (tbb);
6255 if (tbb == EXIT_BLOCK_PTR)
6256 break;
6257 e = split_block (copy_bb, PREV_INSN (insert_point));
6258 copy_bb = e->dest;
6259 }
6260
6261 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6262 We have yet to add a simple_return to the tails,
6263 as we'd like to first convert_jumps_to_returns in
6264 case the block is no longer used after that. */
6265 eflags = EDGE_FAKE;
6266 if (CALL_P (PREV_INSN (insert_point))
6267 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6268 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6269 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6270
6271 /* verify_flow_info doesn't like a note after a
6272 sibling call. */
6273 delete_insn (insert_point);
6274 if (bitmap_empty_p (&bb_tail))
6275 break;
6276 }
6277 }
6278
6279 fail_shrinkwrap:
6280 bitmap_clear (&bb_tail);
6281 bitmap_clear (&bb_antic_flags);
6282 bitmap_clear (&bb_on_list);
6283 VEC_free (basic_block, heap, vec);
6284 }
6285 #endif
6286
6287 if (split_prologue_seq != NULL_RTX)
6288 {
6289 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6290 inserted = true;
6291 }
6292 if (prologue_seq != NULL_RTX)
6293 {
6294 insert_insn_on_edge (prologue_seq, entry_edge);
6295 inserted = true;
6296 }
6297
6298 /* If the exit block has no non-fake predecessors, we don't need
6299 an epilogue. */
6300 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6301 if ((e->flags & EDGE_FAKE) == 0)
6302 break;
6303 if (e == NULL)
6304 goto epilogue_done;
6305
6306 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6307
6308 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6309
6310 /* If we're allowed to generate a simple return instruction, then by
6311 definition we don't need a full epilogue. If the last basic
6312 block before the exit block does not contain active instructions,
6313 examine its predecessors and try to emit (conditional) return
6314 instructions. */
6315 #ifdef HAVE_simple_return
6316 if (entry_edge != orig_entry_edge)
6317 {
6318 if (optimize)
6319 {
6320 unsigned i, last;
6321
6322 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6323 (but won't remove). Stop at end of current preds. */
6324 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6325 for (i = 0; i < last; i++)
6326 {
6327 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6328 if (LABEL_P (BB_HEAD (e->src))
6329 && !bitmap_bit_p (&bb_flags, e->src->index)
6330 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6331 unconverted_simple_returns
6332 = convert_jumps_to_returns (e->src, true,
6333 unconverted_simple_returns);
6334 }
6335 }
6336
6337 if (exit_fallthru_edge != NULL
6338 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6339 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6340 {
6341 basic_block last_bb;
6342
6343 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6344 returnjump = BB_END (last_bb);
6345 exit_fallthru_edge = NULL;
6346 }
6347 }
6348 #endif
6349 #ifdef HAVE_return
6350 if (HAVE_return)
6351 {
6352 if (exit_fallthru_edge == NULL)
6353 goto epilogue_done;
6354
6355 if (optimize)
6356 {
6357 basic_block last_bb = exit_fallthru_edge->src;
6358
6359 if (LABEL_P (BB_HEAD (last_bb))
6360 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6361 convert_jumps_to_returns (last_bb, false, NULL);
6362
6363 if (EDGE_COUNT (last_bb->preds) != 0
6364 && single_succ_p (last_bb))
6365 {
6366 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6367 epilogue_end = returnjump = BB_END (last_bb);
6368 #ifdef HAVE_simple_return
6369 /* Emitting the return may add a basic block.
6370 Fix bb_flags for the added block. */
6371 if (last_bb != exit_fallthru_edge->src)
6372 bitmap_set_bit (&bb_flags, last_bb->index);
6373 #endif
6374 goto epilogue_done;
6375 }
6376 }
6377 }
6378 #endif
6379
6380 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6381 this marker for the splits of EH_RETURN patterns, and nothing else
6382 uses the flag in the meantime. */
6383 epilogue_completed = 1;
6384
6385 #ifdef HAVE_eh_return
6386 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6387 some targets, these get split to a special version of the epilogue
6388 code. In order to be able to properly annotate these with unwind
6389 info, try to split them now. If we get a valid split, drop an
6390 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6391 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6392 {
6393 rtx prev, last, trial;
6394
6395 if (e->flags & EDGE_FALLTHRU)
6396 continue;
6397 last = BB_END (e->src);
6398 if (!eh_returnjump_p (last))
6399 continue;
6400
6401 prev = PREV_INSN (last);
6402 trial = try_split (PATTERN (last), last, 1);
6403 if (trial == last)
6404 continue;
6405
6406 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6407 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6408 }
6409 #endif
6410
6411 /* If nothing falls through into the exit block, we don't need an
6412 epilogue. */
6413
6414 if (exit_fallthru_edge == NULL)
6415 goto epilogue_done;
6416
6417 #ifdef HAVE_epilogue
6418 if (HAVE_epilogue)
6419 {
6420 start_sequence ();
6421 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6422 seq = gen_epilogue ();
6423 if (seq)
6424 emit_jump_insn (seq);
6425
6426 /* Retain a map of the epilogue insns. */
6427 record_insns (seq, NULL, &epilogue_insn_hash);
6428 set_insn_locators (seq, epilogue_locator);
6429
6430 seq = get_insns ();
6431 returnjump = get_last_insn ();
6432 end_sequence ();
6433
6434 insert_insn_on_edge (seq, exit_fallthru_edge);
6435 inserted = true;
6436
6437 if (JUMP_P (returnjump))
6438 set_return_jump_label (returnjump);
6439 }
6440 else
6441 #endif
6442 {
6443 basic_block cur_bb;
6444
6445 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6446 goto epilogue_done;
6447 /* We have a fall-through edge to the exit block, the source is not
6448 at the end of the function, and there will be an assembler epilogue
6449 at the end of the function.
6450 We can't use force_nonfallthru here, because that would try to
6451 use return. Inserting a jump 'by hand' is extremely messy, so
6452 we take advantage of cfg_layout_finalize using
6453 fixup_fallthru_exit_predecessor. */
6454 cfg_layout_initialize (0);
6455 FOR_EACH_BB (cur_bb)
6456 if (cur_bb->index >= NUM_FIXED_BLOCKS
6457 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6458 cur_bb->aux = cur_bb->next_bb;
6459 cfg_layout_finalize ();
6460 }
6461
6462 epilogue_done:
6463
6464 default_rtl_profile ();
6465
6466 if (inserted)
6467 {
6468 sbitmap blocks;
6469
6470 commit_edge_insertions ();
6471
6472 /* Look for basic blocks within the prologue insns. */
6473 blocks = sbitmap_alloc (last_basic_block);
6474 sbitmap_zero (blocks);
6475 SET_BIT (blocks, entry_edge->dest->index);
6476 SET_BIT (blocks, orig_entry_edge->dest->index);
6477 find_many_sub_basic_blocks (blocks);
6478 sbitmap_free (blocks);
6479
6480 /* The epilogue insns we inserted may cause the exit edge to no longer
6481 be fallthru. */
6482 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6483 {
6484 if (((e->flags & EDGE_FALLTHRU) != 0)
6485 && returnjump_p (BB_END (e->src)))
6486 e->flags &= ~EDGE_FALLTHRU;
6487 }
6488 }
6489
6490 #ifdef HAVE_simple_return
6491 /* If there were branches to an empty LAST_BB which we tried to
6492 convert to conditional simple_returns, but couldn't for some
6493 reason, create a block to hold a simple_return insn and redirect
6494 those remaining edges. */
6495 if (!VEC_empty (edge, unconverted_simple_returns))
6496 {
6497 basic_block simple_return_block_hot = NULL;
6498 basic_block simple_return_block_cold = NULL;
6499 edge pending_edge_hot = NULL;
6500 edge pending_edge_cold = NULL;
6501 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6502 int i;
6503
6504 gcc_assert (entry_edge != orig_entry_edge);
6505
6506 /* See if we can reuse the last insn that was emitted for the
6507 epilogue. */
6508 if (returnjump != NULL_RTX
6509 && JUMP_LABEL (returnjump) == simple_return_rtx)
6510 {
6511 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6512 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6513 simple_return_block_hot = e->dest;
6514 else
6515 simple_return_block_cold = e->dest;
6516 }
6517
6518 /* Also check returns we might need to add to tail blocks. */
6519 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6520 if (EDGE_COUNT (e->src->preds) != 0
6521 && (e->flags & EDGE_FAKE) != 0
6522 && !bitmap_bit_p (&bb_flags, e->src->index))
6523 {
6524 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6525 pending_edge_hot = e;
6526 else
6527 pending_edge_cold = e;
6528 }
6529
6530 FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
6531 {
6532 basic_block *pdest_bb;
6533 edge pending;
6534
6535 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6536 {
6537 pdest_bb = &simple_return_block_hot;
6538 pending = pending_edge_hot;
6539 }
6540 else
6541 {
6542 pdest_bb = &simple_return_block_cold;
6543 pending = pending_edge_cold;
6544 }
6545
6546 if (*pdest_bb == NULL && pending != NULL)
6547 {
6548 emit_return_into_block (true, pending->src);
6549 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6550 *pdest_bb = pending->src;
6551 }
6552 else if (*pdest_bb == NULL)
6553 {
6554 basic_block bb;
6555 rtx start;
6556
6557 bb = create_basic_block (NULL, NULL, exit_pred);
6558 BB_COPY_PARTITION (bb, e->src);
6559 start = emit_jump_insn_after (gen_simple_return (),
6560 BB_END (bb));
6561 JUMP_LABEL (start) = simple_return_rtx;
6562 emit_barrier_after (start);
6563
6564 *pdest_bb = bb;
6565 make_edge (bb, EXIT_BLOCK_PTR, 0);
6566 }
6567 redirect_edge_and_branch_force (e, *pdest_bb);
6568 }
6569 VEC_free (edge, heap, unconverted_simple_returns);
6570 }
6571
6572 if (entry_edge != orig_entry_edge)
6573 {
6574 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6575 if (EDGE_COUNT (e->src->preds) != 0
6576 && (e->flags & EDGE_FAKE) != 0
6577 && !bitmap_bit_p (&bb_flags, e->src->index))
6578 {
6579 emit_return_into_block (true, e->src);
6580 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6581 }
6582 }
6583 #endif
6584
6585 #ifdef HAVE_sibcall_epilogue
6586 /* Emit sibling epilogues before any sibling call sites. */
6587 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6588 {
6589 basic_block bb = e->src;
6590 rtx insn = BB_END (bb);
6591 rtx ep_seq;
6592
6593 if (!CALL_P (insn)
6594 || ! SIBLING_CALL_P (insn)
6595 #ifdef HAVE_simple_return
6596 || (entry_edge != orig_entry_edge
6597 && !bitmap_bit_p (&bb_flags, bb->index))
6598 #endif
6599 )
6600 {
6601 ei_next (&ei);
6602 continue;
6603 }
6604
6605 ep_seq = gen_sibcall_epilogue ();
6606 if (ep_seq)
6607 {
6608 start_sequence ();
6609 emit_note (NOTE_INSN_EPILOGUE_BEG);
6610 emit_insn (ep_seq);
6611 seq = get_insns ();
6612 end_sequence ();
6613
6614 /* Retain a map of the epilogue insns. Used in life analysis to
6615 avoid getting rid of sibcall epilogue insns. Do this before we
6616 actually emit the sequence. */
6617 record_insns (seq, NULL, &epilogue_insn_hash);
6618 set_insn_locators (seq, epilogue_locator);
6619
6620 emit_insn_before (seq, insn);
6621 }
6622 ei_next (&ei);
6623 }
6624 #endif
6625
6626 #ifdef HAVE_epilogue
6627 if (epilogue_end)
6628 {
6629 rtx insn, next;
6630
6631 /* Similarly, move any line notes that appear after the epilogue.
6632 There is no need, however, to be quite so anal about the existence
6633 of such a note. Also possibly move
6634 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6635 info generation. */
6636 for (insn = epilogue_end; insn; insn = next)
6637 {
6638 next = NEXT_INSN (insn);
6639 if (NOTE_P (insn)
6640 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6641 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6642 }
6643 }
6644 #endif
6645
6646 #ifdef HAVE_simple_return
6647 bitmap_clear (&bb_flags);
6648 #endif
6649
6650 /* Threading the prologue and epilogue changes the artificial refs
6651 in the entry and exit blocks. */
6652 epilogue_completed = 1;
6653 df_update_entry_exit_and_calls ();
6654 }
6655
6656 /* Reposition the prologue-end and epilogue-begin notes after
6657 instruction scheduling. */
6658
6659 void
6660 reposition_prologue_and_epilogue_notes (void)
6661 {
6662 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6663 || defined (HAVE_sibcall_epilogue)
6664 /* Since the hash table is created on demand, the fact that it is
6665 non-null is a signal that it is non-empty. */
6666 if (prologue_insn_hash != NULL)
6667 {
6668 size_t len = htab_elements (prologue_insn_hash);
6669 rtx insn, last = NULL, note = NULL;
6670
6671 /* Scan from the beginning until we reach the last prologue insn. */
6672 /* ??? While we do have the CFG intact, there are two problems:
6673 (1) The prologue can contain loops (typically probing the stack),
6674 which means that the end of the prologue isn't in the first bb.
6675 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6676 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6677 {
6678 if (NOTE_P (insn))
6679 {
6680 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6681 note = insn;
6682 }
6683 else if (contains (insn, prologue_insn_hash))
6684 {
6685 last = insn;
6686 if (--len == 0)
6687 break;
6688 }
6689 }
6690
6691 if (last)
6692 {
6693 if (note == NULL)
6694 {
6695 /* Scan forward looking for the PROLOGUE_END note. It should
6696 be right at the beginning of the block, possibly with other
6697 insn notes that got moved there. */
6698 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6699 {
6700 if (NOTE_P (note)
6701 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6702 break;
6703 }
6704 }
6705
6706 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6707 if (LABEL_P (last))
6708 last = NEXT_INSN (last);
6709 reorder_insns (note, note, last);
6710 }
6711 }
6712
6713 if (epilogue_insn_hash != NULL)
6714 {
6715 edge_iterator ei;
6716 edge e;
6717
6718 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6719 {
6720 rtx insn, first = NULL, note = NULL;
6721 basic_block bb = e->src;
6722
6723 /* Scan from the beginning until we reach the first epilogue insn. */
6724 FOR_BB_INSNS (bb, insn)
6725 {
6726 if (NOTE_P (insn))
6727 {
6728 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6729 {
6730 note = insn;
6731 if (first != NULL)
6732 break;
6733 }
6734 }
6735 else if (first == NULL && contains (insn, epilogue_insn_hash))
6736 {
6737 first = insn;
6738 if (note != NULL)
6739 break;
6740 }
6741 }
6742
6743 if (note)
6744 {
6745 /* If the function has a single basic block, and no real
6746 epilogue insns (e.g. sibcall with no cleanup), the
6747 epilogue note can get scheduled before the prologue
6748 note. If we have frame related prologue insns, having
6749 them scanned during the epilogue will result in a crash.
6750 In this case re-order the epilogue note to just before
6751 the last insn in the block. */
6752 if (first == NULL)
6753 first = BB_END (bb);
6754
6755 if (PREV_INSN (first) != note)
6756 reorder_insns (note, note, PREV_INSN (first));
6757 }
6758 }
6759 }
6760 #endif /* HAVE_prologue or HAVE_epilogue */
6761 }
6762
6763 /* Returns the name of function FN. */
6764 const char *
6765 function_name (struct function *fn)
6766 {
6767 if (fn == NULL)
6768 return "(nofn)";
6769 return lang_hooks.decl_printable_name (fn->decl, 2);
6770 }
6771
6772 /* Returns the name of the current function. */
6773 const char *
6774 current_function_name (void)
6775 {
6776 return function_name (cfun);
6777 }
6778 \f
6779
6780 static unsigned int
6781 rest_of_handle_check_leaf_regs (void)
6782 {
6783 #ifdef LEAF_REGISTERS
6784 crtl->uses_only_leaf_regs
6785 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6786 #endif
6787 return 0;
6788 }
6789
6790 /* Insert a TYPE into the used types hash table of CFUN. */
6791
6792 static void
6793 used_types_insert_helper (tree type, struct function *func)
6794 {
6795 if (type != NULL && func != NULL)
6796 {
6797 void **slot;
6798
6799 if (func->used_types_hash == NULL)
6800 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6801 htab_eq_pointer, NULL);
6802 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6803 if (*slot == NULL)
6804 *slot = type;
6805 }
6806 }
6807
6808 /* Given a type, insert it into the used hash table in cfun. */
6809 void
6810 used_types_insert (tree t)
6811 {
6812 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6813 if (TYPE_NAME (t))
6814 break;
6815 else
6816 t = TREE_TYPE (t);
6817 if (TREE_CODE (t) == ERROR_MARK)
6818 return;
6819 if (TYPE_NAME (t) == NULL_TREE
6820 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6821 t = TYPE_MAIN_VARIANT (t);
6822 if (debug_info_level > DINFO_LEVEL_NONE)
6823 {
6824 if (cfun)
6825 used_types_insert_helper (t, cfun);
6826 else
6827 /* So this might be a type referenced by a global variable.
6828 Record that type so that we can later decide to emit its debug
6829 information. */
6830 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
6831 }
6832 }
6833
6834 /* Helper to Hash a struct types_used_by_vars_entry. */
6835
6836 static hashval_t
6837 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6838 {
6839 gcc_assert (entry && entry->var_decl && entry->type);
6840
6841 return iterative_hash_object (entry->type,
6842 iterative_hash_object (entry->var_decl, 0));
6843 }
6844
6845 /* Hash function of the types_used_by_vars_entry hash table. */
6846
6847 hashval_t
6848 types_used_by_vars_do_hash (const void *x)
6849 {
6850 const struct types_used_by_vars_entry *entry =
6851 (const struct types_used_by_vars_entry *) x;
6852
6853 return hash_types_used_by_vars_entry (entry);
6854 }
6855
6856 /*Equality function of the types_used_by_vars_entry hash table. */
6857
6858 int
6859 types_used_by_vars_eq (const void *x1, const void *x2)
6860 {
6861 const struct types_used_by_vars_entry *e1 =
6862 (const struct types_used_by_vars_entry *) x1;
6863 const struct types_used_by_vars_entry *e2 =
6864 (const struct types_used_by_vars_entry *)x2;
6865
6866 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6867 }
6868
6869 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6870
6871 void
6872 types_used_by_var_decl_insert (tree type, tree var_decl)
6873 {
6874 if (type != NULL && var_decl != NULL)
6875 {
6876 void **slot;
6877 struct types_used_by_vars_entry e;
6878 e.var_decl = var_decl;
6879 e.type = type;
6880 if (types_used_by_vars_hash == NULL)
6881 types_used_by_vars_hash =
6882 htab_create_ggc (37, types_used_by_vars_do_hash,
6883 types_used_by_vars_eq, NULL);
6884 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6885 hash_types_used_by_vars_entry (&e), INSERT);
6886 if (*slot == NULL)
6887 {
6888 struct types_used_by_vars_entry *entry;
6889 entry = ggc_alloc_types_used_by_vars_entry ();
6890 entry->type = type;
6891 entry->var_decl = var_decl;
6892 *slot = entry;
6893 }
6894 }
6895 }
6896
6897 struct rtl_opt_pass pass_leaf_regs =
6898 {
6899 {
6900 RTL_PASS,
6901 "*leaf_regs", /* name */
6902 NULL, /* gate */
6903 rest_of_handle_check_leaf_regs, /* execute */
6904 NULL, /* sub */
6905 NULL, /* next */
6906 0, /* static_pass_number */
6907 TV_NONE, /* tv_id */
6908 0, /* properties_required */
6909 0, /* properties_provided */
6910 0, /* properties_destroyed */
6911 0, /* todo_flags_start */
6912 0 /* todo_flags_finish */
6913 }
6914 };
6915
6916 static unsigned int
6917 rest_of_handle_thread_prologue_and_epilogue (void)
6918 {
6919 if (optimize)
6920 cleanup_cfg (CLEANUP_EXPENSIVE);
6921
6922 /* On some machines, the prologue and epilogue code, or parts thereof,
6923 can be represented as RTL. Doing so lets us schedule insns between
6924 it and the rest of the code and also allows delayed branch
6925 scheduling to operate in the epilogue. */
6926 thread_prologue_and_epilogue_insns ();
6927
6928 /* The stack usage info is finalized during prologue expansion. */
6929 if (flag_stack_usage_info)
6930 output_stack_usage ();
6931
6932 return 0;
6933 }
6934
6935 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6936 {
6937 {
6938 RTL_PASS,
6939 "pro_and_epilogue", /* name */
6940 NULL, /* gate */
6941 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6942 NULL, /* sub */
6943 NULL, /* next */
6944 0, /* static_pass_number */
6945 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6946 0, /* properties_required */
6947 0, /* properties_provided */
6948 0, /* properties_destroyed */
6949 TODO_verify_flow, /* todo_flags_start */
6950 TODO_df_verify |
6951 TODO_df_finish | TODO_verify_rtl_sharing |
6952 TODO_ggc_collect /* todo_flags_finish */
6953 }
6954 };
6955 \f
6956
6957 /* This mini-pass fixes fall-out from SSA in asm statements that have
6958 in-out constraints. Say you start with
6959
6960 orig = inout;
6961 asm ("": "+mr" (inout));
6962 use (orig);
6963
6964 which is transformed very early to use explicit output and match operands:
6965
6966 orig = inout;
6967 asm ("": "=mr" (inout) : "0" (inout));
6968 use (orig);
6969
6970 Or, after SSA and copyprop,
6971
6972 asm ("": "=mr" (inout_2) : "0" (inout_1));
6973 use (inout_1);
6974
6975 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6976 they represent two separate values, so they will get different pseudo
6977 registers during expansion. Then, since the two operands need to match
6978 per the constraints, but use different pseudo registers, reload can
6979 only register a reload for these operands. But reloads can only be
6980 satisfied by hardregs, not by memory, so we need a register for this
6981 reload, just because we are presented with non-matching operands.
6982 So, even though we allow memory for this operand, no memory can be
6983 used for it, just because the two operands don't match. This can
6984 cause reload failures on register-starved targets.
6985
6986 So it's a symptom of reload not being able to use memory for reloads
6987 or, alternatively it's also a symptom of both operands not coming into
6988 reload as matching (in which case the pseudo could go to memory just
6989 fine, as the alternative allows it, and no reload would be necessary).
6990 We fix the latter problem here, by transforming
6991
6992 asm ("": "=mr" (inout_2) : "0" (inout_1));
6993
6994 back to
6995
6996 inout_2 = inout_1;
6997 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6998
6999 static void
7000 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7001 {
7002 int i;
7003 bool changed = false;
7004 rtx op = SET_SRC (p_sets[0]);
7005 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7006 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7007 bool *output_matched = XALLOCAVEC (bool, noutputs);
7008
7009 memset (output_matched, 0, noutputs * sizeof (bool));
7010 for (i = 0; i < ninputs; i++)
7011 {
7012 rtx input, output, insns;
7013 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7014 char *end;
7015 int match, j;
7016
7017 if (*constraint == '%')
7018 constraint++;
7019
7020 match = strtoul (constraint, &end, 10);
7021 if (end == constraint)
7022 continue;
7023
7024 gcc_assert (match < noutputs);
7025 output = SET_DEST (p_sets[match]);
7026 input = RTVEC_ELT (inputs, i);
7027 /* Only do the transformation for pseudos. */
7028 if (! REG_P (output)
7029 || rtx_equal_p (output, input)
7030 || (GET_MODE (input) != VOIDmode
7031 && GET_MODE (input) != GET_MODE (output)))
7032 continue;
7033
7034 /* We can't do anything if the output is also used as input,
7035 as we're going to overwrite it. */
7036 for (j = 0; j < ninputs; j++)
7037 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7038 break;
7039 if (j != ninputs)
7040 continue;
7041
7042 /* Avoid changing the same input several times. For
7043 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7044 only change in once (to out1), rather than changing it
7045 first to out1 and afterwards to out2. */
7046 if (i > 0)
7047 {
7048 for (j = 0; j < noutputs; j++)
7049 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7050 break;
7051 if (j != noutputs)
7052 continue;
7053 }
7054 output_matched[match] = true;
7055
7056 start_sequence ();
7057 emit_move_insn (output, input);
7058 insns = get_insns ();
7059 end_sequence ();
7060 emit_insn_before (insns, insn);
7061
7062 /* Now replace all mentions of the input with output. We can't
7063 just replace the occurrence in inputs[i], as the register might
7064 also be used in some other input (or even in an address of an
7065 output), which would mean possibly increasing the number of
7066 inputs by one (namely 'output' in addition), which might pose
7067 a too complicated problem for reload to solve. E.g. this situation:
7068
7069 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7070
7071 Here 'input' is used in two occurrences as input (once for the
7072 input operand, once for the address in the second output operand).
7073 If we would replace only the occurrence of the input operand (to
7074 make the matching) we would be left with this:
7075
7076 output = input
7077 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7078
7079 Now we suddenly have two different input values (containing the same
7080 value, but different pseudos) where we formerly had only one.
7081 With more complicated asms this might lead to reload failures
7082 which wouldn't have happen without this pass. So, iterate over
7083 all operands and replace all occurrences of the register used. */
7084 for (j = 0; j < noutputs; j++)
7085 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7086 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7087 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7088 input, output);
7089 for (j = 0; j < ninputs; j++)
7090 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7091 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7092 input, output);
7093
7094 changed = true;
7095 }
7096
7097 if (changed)
7098 df_insn_rescan (insn);
7099 }
7100
7101 static unsigned
7102 rest_of_match_asm_constraints (void)
7103 {
7104 basic_block bb;
7105 rtx insn, pat, *p_sets;
7106 int noutputs;
7107
7108 if (!crtl->has_asm_statement)
7109 return 0;
7110
7111 df_set_flags (DF_DEFER_INSN_RESCAN);
7112 FOR_EACH_BB (bb)
7113 {
7114 FOR_BB_INSNS (bb, insn)
7115 {
7116 if (!INSN_P (insn))
7117 continue;
7118
7119 pat = PATTERN (insn);
7120 if (GET_CODE (pat) == PARALLEL)
7121 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7122 else if (GET_CODE (pat) == SET)
7123 p_sets = &PATTERN (insn), noutputs = 1;
7124 else
7125 continue;
7126
7127 if (GET_CODE (*p_sets) == SET
7128 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7129 match_asm_constraints_1 (insn, p_sets, noutputs);
7130 }
7131 }
7132
7133 return TODO_df_finish;
7134 }
7135
7136 struct rtl_opt_pass pass_match_asm_constraints =
7137 {
7138 {
7139 RTL_PASS,
7140 "asmcons", /* name */
7141 NULL, /* gate */
7142 rest_of_match_asm_constraints, /* execute */
7143 NULL, /* sub */
7144 NULL, /* next */
7145 0, /* static_pass_number */
7146 TV_NONE, /* tv_id */
7147 0, /* properties_required */
7148 0, /* properties_provided */
7149 0, /* properties_destroyed */
7150 0, /* todo_flags_start */
7151 0 /* todo_flags_finish */
7152 }
7153 };
7154
7155
7156 #include "gt-function.h"