]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "gimple.h"
62 #include "gimplify.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "params.h"
67 #include "bb-reorder.h"
68
69 /* So we can assign to cfun in this file. */
70 #undef cfun
71
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77
78 /* Round a value to the lowest integer less than it that is a multiple of
79 the required alignment. Avoid using division in case the value is
80 negative. Assume the alignment is a power of two. */
81 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
82
83 /* Similar, but round to the next highest integer that meets the
84 alignment. */
85 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
86
87 /* Nonzero once virtual register instantiation has been done.
88 assign_stack_local uses frame_pointer_rtx when this is nonzero.
89 calls.c:emit_library_call_value_1 uses it to set up
90 post-instantiation libcalls. */
91 int virtuals_instantiated;
92
93 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
94 static GTY(()) int funcdef_no;
95
96 /* These variables hold pointers to functions to create and destroy
97 target specific, per-function data structures. */
98 struct machine_function * (*init_machine_status) (void);
99
100 /* The currently compiled function. */
101 struct function *cfun = 0;
102
103 /* These hashes record the prologue and epilogue insns. */
104 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
105 htab_t prologue_insn_hash;
106 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
107 htab_t epilogue_insn_hash;
108 \f
109
110 htab_t types_used_by_vars_hash = NULL;
111 vec<tree, va_gc> *types_used_by_cur_var_decl;
112
113 /* Forward declarations. */
114
115 static struct temp_slot *find_temp_slot_from_address (rtx);
116 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
117 static void pad_below (struct args_size *, enum machine_mode, tree);
118 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
119 static int all_blocks (tree, tree *);
120 static tree *get_block_vector (tree, int *);
121 extern tree debug_find_var_in_block_tree (tree, tree);
122 /* We always define `record_insns' even if it's not used so that we
123 can always export `prologue_epilogue_contains'. */
124 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
125 static bool contains (const_rtx, htab_t);
126 static void prepare_function_start (void);
127 static void do_clobber_return_reg (rtx, void *);
128 static void do_use_return_reg (rtx, void *);
129 \f
130 /* Stack of nested functions. */
131 /* Keep track of the cfun stack. */
132
133 typedef struct function *function_p;
134
135 static vec<function_p> function_context_stack;
136
137 /* Save the current context for compilation of a nested function.
138 This is called from language-specific code. */
139
140 void
141 push_function_context (void)
142 {
143 if (cfun == 0)
144 allocate_struct_function (NULL, false);
145
146 function_context_stack.safe_push (cfun);
147 set_cfun (NULL);
148 }
149
150 /* Restore the last saved context, at the end of a nested function.
151 This function is called from language-specific code. */
152
153 void
154 pop_function_context (void)
155 {
156 struct function *p = function_context_stack.pop ();
157 set_cfun (p);
158 current_function_decl = p->decl;
159
160 /* Reset variables that have known state during rtx generation. */
161 virtuals_instantiated = 0;
162 generating_concat_p = 1;
163 }
164
165 /* Clear out all parts of the state in F that can safely be discarded
166 after the function has been parsed, but not compiled, to let
167 garbage collection reclaim the memory. */
168
169 void
170 free_after_parsing (struct function *f)
171 {
172 f->language = 0;
173 }
174
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been compiled, to let garbage collection
177 reclaim the memory. */
178
179 void
180 free_after_compilation (struct function *f)
181 {
182 prologue_insn_hash = NULL;
183 epilogue_insn_hash = NULL;
184
185 free (crtl->emit.regno_pointer_align);
186
187 memset (crtl, 0, sizeof (struct rtl_data));
188 f->eh = NULL;
189 f->machine = NULL;
190 f->cfg = NULL;
191
192 regno_reg_rtx = NULL;
193 }
194 \f
195 /* Return size needed for stack frame based on slots so far allocated.
196 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
197 the caller may have to do that. */
198
199 HOST_WIDE_INT
200 get_frame_size (void)
201 {
202 if (FRAME_GROWS_DOWNWARD)
203 return -frame_offset;
204 else
205 return frame_offset;
206 }
207
208 /* Issue an error message and return TRUE if frame OFFSET overflows in
209 the signed target pointer arithmetics for function FUNC. Otherwise
210 return FALSE. */
211
212 bool
213 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
214 {
215 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
216
217 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
218 /* Leave room for the fixed part of the frame. */
219 - 64 * UNITS_PER_WORD)
220 {
221 error_at (DECL_SOURCE_LOCATION (func),
222 "total size of local objects too large");
223 return TRUE;
224 }
225
226 return FALSE;
227 }
228
229 /* Return stack slot alignment in bits for TYPE and MODE. */
230
231 static unsigned int
232 get_stack_local_alignment (tree type, enum machine_mode mode)
233 {
234 unsigned int alignment;
235
236 if (mode == BLKmode)
237 alignment = BIGGEST_ALIGNMENT;
238 else
239 alignment = GET_MODE_ALIGNMENT (mode);
240
241 /* Allow the frond-end to (possibly) increase the alignment of this
242 stack slot. */
243 if (! type)
244 type = lang_hooks.types.type_for_mode (mode, 0);
245
246 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
247 }
248
249 /* Determine whether it is possible to fit a stack slot of size SIZE and
250 alignment ALIGNMENT into an area in the stack frame that starts at
251 frame offset START and has a length of LENGTH. If so, store the frame
252 offset to be used for the stack slot in *POFFSET and return true;
253 return false otherwise. This function will extend the frame size when
254 given a start/length pair that lies at the end of the frame. */
255
256 static bool
257 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
258 HOST_WIDE_INT size, unsigned int alignment,
259 HOST_WIDE_INT *poffset)
260 {
261 HOST_WIDE_INT this_frame_offset;
262 int frame_off, frame_alignment, frame_phase;
263
264 /* Calculate how many bytes the start of local variables is off from
265 stack alignment. */
266 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
267 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
268 frame_phase = frame_off ? frame_alignment - frame_off : 0;
269
270 /* Round the frame offset to the specified alignment. */
271
272 /* We must be careful here, since FRAME_OFFSET might be negative and
273 division with a negative dividend isn't as well defined as we might
274 like. So we instead assume that ALIGNMENT is a power of two and
275 use logical operations which are unambiguous. */
276 if (FRAME_GROWS_DOWNWARD)
277 this_frame_offset
278 = (FLOOR_ROUND (start + length - size - frame_phase,
279 (unsigned HOST_WIDE_INT) alignment)
280 + frame_phase);
281 else
282 this_frame_offset
283 = (CEIL_ROUND (start - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286
287 /* See if it fits. If this space is at the edge of the frame,
288 consider extending the frame to make it fit. Our caller relies on
289 this when allocating a new slot. */
290 if (frame_offset == start && this_frame_offset < frame_offset)
291 frame_offset = this_frame_offset;
292 else if (this_frame_offset < start)
293 return false;
294 else if (start + length == frame_offset
295 && this_frame_offset + size > start + length)
296 frame_offset = this_frame_offset + size;
297 else if (this_frame_offset + size > start + length)
298 return false;
299
300 *poffset = this_frame_offset;
301 return true;
302 }
303
304 /* Create a new frame_space structure describing free space in the stack
305 frame beginning at START and ending at END, and chain it into the
306 function's frame_space_list. */
307
308 static void
309 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
310 {
311 struct frame_space *space = ggc_alloc_frame_space ();
312 space->next = crtl->frame_space_list;
313 crtl->frame_space_list = space;
314 space->start = start;
315 space->length = end - start;
316 }
317
318 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
319 with machine mode MODE.
320
321 ALIGN controls the amount of alignment for the address of the slot:
322 0 means according to MODE,
323 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
324 -2 means use BITS_PER_UNIT,
325 positive specifies alignment boundary in bits.
326
327 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
328 alignment and ASLK_RECORD_PAD bit set if we should remember
329 extra space we allocated for alignment purposes. When we are
330 called from assign_stack_temp_for_type, it is not set so we don't
331 track the same stack slot in two independent lists.
332
333 We do not round to stack_boundary here. */
334
335 rtx
336 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
337 int align, int kind)
338 {
339 rtx x, addr;
340 int bigend_correction = 0;
341 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
342 unsigned int alignment, alignment_in_bits;
343
344 if (align == 0)
345 {
346 alignment = get_stack_local_alignment (NULL, mode);
347 alignment /= BITS_PER_UNIT;
348 }
349 else if (align == -1)
350 {
351 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
352 size = CEIL_ROUND (size, alignment);
353 }
354 else if (align == -2)
355 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
356 else
357 alignment = align / BITS_PER_UNIT;
358
359 alignment_in_bits = alignment * BITS_PER_UNIT;
360
361 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
362 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
363 {
364 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
365 alignment = alignment_in_bits / BITS_PER_UNIT;
366 }
367
368 if (SUPPORTS_STACK_ALIGNMENT)
369 {
370 if (crtl->stack_alignment_estimated < alignment_in_bits)
371 {
372 if (!crtl->stack_realign_processed)
373 crtl->stack_alignment_estimated = alignment_in_bits;
374 else
375 {
376 /* If stack is realigned and stack alignment value
377 hasn't been finalized, it is OK not to increase
378 stack_alignment_estimated. The bigger alignment
379 requirement is recorded in stack_alignment_needed
380 below. */
381 gcc_assert (!crtl->stack_realign_finalized);
382 if (!crtl->stack_realign_needed)
383 {
384 /* It is OK to reduce the alignment as long as the
385 requested size is 0 or the estimated stack
386 alignment >= mode alignment. */
387 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
388 || size == 0
389 || (crtl->stack_alignment_estimated
390 >= GET_MODE_ALIGNMENT (mode)));
391 alignment_in_bits = crtl->stack_alignment_estimated;
392 alignment = alignment_in_bits / BITS_PER_UNIT;
393 }
394 }
395 }
396 }
397
398 if (crtl->stack_alignment_needed < alignment_in_bits)
399 crtl->stack_alignment_needed = alignment_in_bits;
400 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
401 crtl->max_used_stack_slot_alignment = alignment_in_bits;
402
403 if (mode != BLKmode || size != 0)
404 {
405 if (kind & ASLK_RECORD_PAD)
406 {
407 struct frame_space **psp;
408
409 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
410 {
411 struct frame_space *space = *psp;
412 if (!try_fit_stack_local (space->start, space->length, size,
413 alignment, &slot_offset))
414 continue;
415 *psp = space->next;
416 if (slot_offset > space->start)
417 add_frame_space (space->start, slot_offset);
418 if (slot_offset + size < space->start + space->length)
419 add_frame_space (slot_offset + size,
420 space->start + space->length);
421 goto found_space;
422 }
423 }
424 }
425 else if (!STACK_ALIGNMENT_NEEDED)
426 {
427 slot_offset = frame_offset;
428 goto found_space;
429 }
430
431 old_frame_offset = frame_offset;
432
433 if (FRAME_GROWS_DOWNWARD)
434 {
435 frame_offset -= size;
436 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
437
438 if (kind & ASLK_RECORD_PAD)
439 {
440 if (slot_offset > frame_offset)
441 add_frame_space (frame_offset, slot_offset);
442 if (slot_offset + size < old_frame_offset)
443 add_frame_space (slot_offset + size, old_frame_offset);
444 }
445 }
446 else
447 {
448 frame_offset += size;
449 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
450
451 if (kind & ASLK_RECORD_PAD)
452 {
453 if (slot_offset > old_frame_offset)
454 add_frame_space (old_frame_offset, slot_offset);
455 if (slot_offset + size < frame_offset)
456 add_frame_space (slot_offset + size, frame_offset);
457 }
458 }
459
460 found_space:
461 /* On a big-endian machine, if we are allocating more space than we will use,
462 use the least significant bytes of those that are allocated. */
463 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
464 bigend_correction = size - GET_MODE_SIZE (mode);
465
466 /* If we have already instantiated virtual registers, return the actual
467 address relative to the frame pointer. */
468 if (virtuals_instantiated)
469 addr = plus_constant (Pmode, frame_pointer_rtx,
470 trunc_int_for_mode
471 (slot_offset + bigend_correction
472 + STARTING_FRAME_OFFSET, Pmode));
473 else
474 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction,
477 Pmode));
478
479 x = gen_rtx_MEM (mode, addr);
480 set_mem_align (x, alignment_in_bits);
481 MEM_NOTRAP_P (x) = 1;
482
483 stack_slot_list
484 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
485
486 if (frame_offset_overflow (frame_offset, current_function_decl))
487 frame_offset = 0;
488
489 return x;
490 }
491
492 /* Wrap up assign_stack_local_1 with last parameter as false. */
493
494 rtx
495 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
496 {
497 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
498 }
499 \f
500 /* In order to evaluate some expressions, such as function calls returning
501 structures in memory, we need to temporarily allocate stack locations.
502 We record each allocated temporary in the following structure.
503
504 Associated with each temporary slot is a nesting level. When we pop up
505 one level, all temporaries associated with the previous level are freed.
506 Normally, all temporaries are freed after the execution of the statement
507 in which they were created. However, if we are inside a ({...}) grouping,
508 the result may be in a temporary and hence must be preserved. If the
509 result could be in a temporary, we preserve it if we can determine which
510 one it is in. If we cannot determine which temporary may contain the
511 result, all temporaries are preserved. A temporary is preserved by
512 pretending it was allocated at the previous nesting level. */
513
514 struct GTY(()) temp_slot {
515 /* Points to next temporary slot. */
516 struct temp_slot *next;
517 /* Points to previous temporary slot. */
518 struct temp_slot *prev;
519 /* The rtx to used to reference the slot. */
520 rtx slot;
521 /* The size, in units, of the slot. */
522 HOST_WIDE_INT size;
523 /* The type of the object in the slot, or zero if it doesn't correspond
524 to a type. We use this to determine whether a slot can be reused.
525 It can be reused if objects of the type of the new slot will always
526 conflict with objects of the type of the old slot. */
527 tree type;
528 /* The alignment (in bits) of the slot. */
529 unsigned int align;
530 /* Nonzero if this temporary is currently in use. */
531 char in_use;
532 /* Nesting level at which this slot is being used. */
533 int level;
534 /* The offset of the slot from the frame_pointer, including extra space
535 for alignment. This info is for combine_temp_slots. */
536 HOST_WIDE_INT base_offset;
537 /* The size of the slot, including extra space for alignment. This
538 info is for combine_temp_slots. */
539 HOST_WIDE_INT full_size;
540 };
541
542 /* A table of addresses that represent a stack slot. The table is a mapping
543 from address RTXen to a temp slot. */
544 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
545 static size_t n_temp_slots_in_use;
546
547 /* Entry for the above hash table. */
548 struct GTY(()) temp_slot_address_entry {
549 hashval_t hash;
550 rtx address;
551 struct temp_slot *temp_slot;
552 };
553
554 /* Removes temporary slot TEMP from LIST. */
555
556 static void
557 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
558 {
559 if (temp->next)
560 temp->next->prev = temp->prev;
561 if (temp->prev)
562 temp->prev->next = temp->next;
563 else
564 *list = temp->next;
565
566 temp->prev = temp->next = NULL;
567 }
568
569 /* Inserts temporary slot TEMP to LIST. */
570
571 static void
572 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
573 {
574 temp->next = *list;
575 if (*list)
576 (*list)->prev = temp;
577 temp->prev = NULL;
578 *list = temp;
579 }
580
581 /* Returns the list of used temp slots at LEVEL. */
582
583 static struct temp_slot **
584 temp_slots_at_level (int level)
585 {
586 if (level >= (int) vec_safe_length (used_temp_slots))
587 vec_safe_grow_cleared (used_temp_slots, level + 1);
588
589 return &(*used_temp_slots)[level];
590 }
591
592 /* Returns the maximal temporary slot level. */
593
594 static int
595 max_slot_level (void)
596 {
597 if (!used_temp_slots)
598 return -1;
599
600 return used_temp_slots->length () - 1;
601 }
602
603 /* Moves temporary slot TEMP to LEVEL. */
604
605 static void
606 move_slot_to_level (struct temp_slot *temp, int level)
607 {
608 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
609 insert_slot_to_list (temp, temp_slots_at_level (level));
610 temp->level = level;
611 }
612
613 /* Make temporary slot TEMP available. */
614
615 static void
616 make_slot_available (struct temp_slot *temp)
617 {
618 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
619 insert_slot_to_list (temp, &avail_temp_slots);
620 temp->in_use = 0;
621 temp->level = -1;
622 n_temp_slots_in_use--;
623 }
624
625 /* Compute the hash value for an address -> temp slot mapping.
626 The value is cached on the mapping entry. */
627 static hashval_t
628 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
629 {
630 int do_not_record = 0;
631 return hash_rtx (t->address, GET_MODE (t->address),
632 &do_not_record, NULL, false);
633 }
634
635 /* Return the hash value for an address -> temp slot mapping. */
636 static hashval_t
637 temp_slot_address_hash (const void *p)
638 {
639 const struct temp_slot_address_entry *t;
640 t = (const struct temp_slot_address_entry *) p;
641 return t->hash;
642 }
643
644 /* Compare two address -> temp slot mapping entries. */
645 static int
646 temp_slot_address_eq (const void *p1, const void *p2)
647 {
648 const struct temp_slot_address_entry *t1, *t2;
649 t1 = (const struct temp_slot_address_entry *) p1;
650 t2 = (const struct temp_slot_address_entry *) p2;
651 return exp_equiv_p (t1->address, t2->address, 0, true);
652 }
653
654 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
655 static void
656 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
657 {
658 void **slot;
659 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
660 t->address = address;
661 t->temp_slot = temp_slot;
662 t->hash = temp_slot_address_compute_hash (t);
663 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
664 *slot = t;
665 }
666
667 /* Remove an address -> temp slot mapping entry if the temp slot is
668 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
669 static int
670 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
671 {
672 const struct temp_slot_address_entry *t;
673 t = (const struct temp_slot_address_entry *) *slot;
674 if (! t->temp_slot->in_use)
675 htab_clear_slot (temp_slot_address_table, slot);
676 return 1;
677 }
678
679 /* Remove all mappings of addresses to unused temp slots. */
680 static void
681 remove_unused_temp_slot_addresses (void)
682 {
683 /* Use quicker clearing if there aren't any active temp slots. */
684 if (n_temp_slots_in_use)
685 htab_traverse (temp_slot_address_table,
686 remove_unused_temp_slot_addresses_1,
687 NULL);
688 else
689 htab_empty (temp_slot_address_table);
690 }
691
692 /* Find the temp slot corresponding to the object at address X. */
693
694 static struct temp_slot *
695 find_temp_slot_from_address (rtx x)
696 {
697 struct temp_slot *p;
698 struct temp_slot_address_entry tmp, *t;
699
700 /* First try the easy way:
701 See if X exists in the address -> temp slot mapping. */
702 tmp.address = x;
703 tmp.temp_slot = NULL;
704 tmp.hash = temp_slot_address_compute_hash (&tmp);
705 t = (struct temp_slot_address_entry *)
706 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
707 if (t)
708 return t->temp_slot;
709
710 /* If we have a sum involving a register, see if it points to a temp
711 slot. */
712 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
713 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
714 return p;
715 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
716 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
717 return p;
718
719 /* Last resort: Address is a virtual stack var address. */
720 if (GET_CODE (x) == PLUS
721 && XEXP (x, 0) == virtual_stack_vars_rtx
722 && CONST_INT_P (XEXP (x, 1)))
723 {
724 int i;
725 for (i = max_slot_level (); i >= 0; i--)
726 for (p = *temp_slots_at_level (i); p; p = p->next)
727 {
728 if (INTVAL (XEXP (x, 1)) >= p->base_offset
729 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
730 return p;
731 }
732 }
733
734 return NULL;
735 }
736 \f
737 /* Allocate a temporary stack slot and record it for possible later
738 reuse.
739
740 MODE is the machine mode to be given to the returned rtx.
741
742 SIZE is the size in units of the space required. We do no rounding here
743 since assign_stack_local will do any required rounding.
744
745 TYPE is the type that will be used for the stack slot. */
746
747 rtx
748 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
749 tree type)
750 {
751 unsigned int align;
752 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
753 rtx slot;
754
755 /* If SIZE is -1 it means that somebody tried to allocate a temporary
756 of a variable size. */
757 gcc_assert (size != -1);
758
759 align = get_stack_local_alignment (type, mode);
760
761 /* Try to find an available, already-allocated temporary of the proper
762 mode which meets the size and alignment requirements. Choose the
763 smallest one with the closest alignment.
764
765 If assign_stack_temp is called outside of the tree->rtl expansion,
766 we cannot reuse the stack slots (that may still refer to
767 VIRTUAL_STACK_VARS_REGNUM). */
768 if (!virtuals_instantiated)
769 {
770 for (p = avail_temp_slots; p; p = p->next)
771 {
772 if (p->align >= align && p->size >= size
773 && GET_MODE (p->slot) == mode
774 && objects_must_conflict_p (p->type, type)
775 && (best_p == 0 || best_p->size > p->size
776 || (best_p->size == p->size && best_p->align > p->align)))
777 {
778 if (p->align == align && p->size == size)
779 {
780 selected = p;
781 cut_slot_from_list (selected, &avail_temp_slots);
782 best_p = 0;
783 break;
784 }
785 best_p = p;
786 }
787 }
788 }
789
790 /* Make our best, if any, the one to use. */
791 if (best_p)
792 {
793 selected = best_p;
794 cut_slot_from_list (selected, &avail_temp_slots);
795
796 /* If there are enough aligned bytes left over, make them into a new
797 temp_slot so that the extra bytes don't get wasted. Do this only
798 for BLKmode slots, so that we can be sure of the alignment. */
799 if (GET_MODE (best_p->slot) == BLKmode)
800 {
801 int alignment = best_p->align / BITS_PER_UNIT;
802 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
803
804 if (best_p->size - rounded_size >= alignment)
805 {
806 p = ggc_alloc_temp_slot ();
807 p->in_use = 0;
808 p->size = best_p->size - rounded_size;
809 p->base_offset = best_p->base_offset + rounded_size;
810 p->full_size = best_p->full_size - rounded_size;
811 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
812 p->align = best_p->align;
813 p->type = best_p->type;
814 insert_slot_to_list (p, &avail_temp_slots);
815
816 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
817 stack_slot_list);
818
819 best_p->size = rounded_size;
820 best_p->full_size = rounded_size;
821 }
822 }
823 }
824
825 /* If we still didn't find one, make a new temporary. */
826 if (selected == 0)
827 {
828 HOST_WIDE_INT frame_offset_old = frame_offset;
829
830 p = ggc_alloc_temp_slot ();
831
832 /* We are passing an explicit alignment request to assign_stack_local.
833 One side effect of that is assign_stack_local will not round SIZE
834 to ensure the frame offset remains suitably aligned.
835
836 So for requests which depended on the rounding of SIZE, we go ahead
837 and round it now. We also make sure ALIGNMENT is at least
838 BIGGEST_ALIGNMENT. */
839 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
840 p->slot = assign_stack_local_1 (mode,
841 (mode == BLKmode
842 ? CEIL_ROUND (size,
843 (int) align
844 / BITS_PER_UNIT)
845 : size),
846 align, 0);
847
848 p->align = align;
849
850 /* The following slot size computation is necessary because we don't
851 know the actual size of the temporary slot until assign_stack_local
852 has performed all the frame alignment and size rounding for the
853 requested temporary. Note that extra space added for alignment
854 can be either above or below this stack slot depending on which
855 way the frame grows. We include the extra space if and only if it
856 is above this slot. */
857 if (FRAME_GROWS_DOWNWARD)
858 p->size = frame_offset_old - frame_offset;
859 else
860 p->size = size;
861
862 /* Now define the fields used by combine_temp_slots. */
863 if (FRAME_GROWS_DOWNWARD)
864 {
865 p->base_offset = frame_offset;
866 p->full_size = frame_offset_old - frame_offset;
867 }
868 else
869 {
870 p->base_offset = frame_offset_old;
871 p->full_size = frame_offset - frame_offset_old;
872 }
873
874 selected = p;
875 }
876
877 p = selected;
878 p->in_use = 1;
879 p->type = type;
880 p->level = temp_slot_level;
881 n_temp_slots_in_use++;
882
883 pp = temp_slots_at_level (p->level);
884 insert_slot_to_list (p, pp);
885 insert_temp_slot_address (XEXP (p->slot, 0), p);
886
887 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
888 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
889 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
890
891 /* If we know the alias set for the memory that will be used, use
892 it. If there's no TYPE, then we don't know anything about the
893 alias set for the memory. */
894 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
895 set_mem_align (slot, align);
896
897 /* If a type is specified, set the relevant flags. */
898 if (type != 0)
899 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
900 MEM_NOTRAP_P (slot) = 1;
901
902 return slot;
903 }
904
905 /* Allocate a temporary stack slot and record it for possible later
906 reuse. First two arguments are same as in preceding function. */
907
908 rtx
909 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
910 {
911 return assign_stack_temp_for_type (mode, size, NULL_TREE);
912 }
913 \f
914 /* Assign a temporary.
915 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
916 and so that should be used in error messages. In either case, we
917 allocate of the given type.
918 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
919 it is 0 if a register is OK.
920 DONT_PROMOTE is 1 if we should not promote values in register
921 to wider modes. */
922
923 rtx
924 assign_temp (tree type_or_decl, int memory_required,
925 int dont_promote ATTRIBUTE_UNUSED)
926 {
927 tree type, decl;
928 enum machine_mode mode;
929 #ifdef PROMOTE_MODE
930 int unsignedp;
931 #endif
932
933 if (DECL_P (type_or_decl))
934 decl = type_or_decl, type = TREE_TYPE (decl);
935 else
936 decl = NULL, type = type_or_decl;
937
938 mode = TYPE_MODE (type);
939 #ifdef PROMOTE_MODE
940 unsignedp = TYPE_UNSIGNED (type);
941 #endif
942
943 if (mode == BLKmode || memory_required)
944 {
945 HOST_WIDE_INT size = int_size_in_bytes (type);
946 rtx tmp;
947
948 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
949 problems with allocating the stack space. */
950 if (size == 0)
951 size = 1;
952
953 /* Unfortunately, we don't yet know how to allocate variable-sized
954 temporaries. However, sometimes we can find a fixed upper limit on
955 the size, so try that instead. */
956 else if (size == -1)
957 size = max_int_size_in_bytes (type);
958
959 /* The size of the temporary may be too large to fit into an integer. */
960 /* ??? Not sure this should happen except for user silliness, so limit
961 this to things that aren't compiler-generated temporaries. The
962 rest of the time we'll die in assign_stack_temp_for_type. */
963 if (decl && size == -1
964 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
965 {
966 error ("size of variable %q+D is too large", decl);
967 size = 1;
968 }
969
970 tmp = assign_stack_temp_for_type (mode, size, type);
971 return tmp;
972 }
973
974 #ifdef PROMOTE_MODE
975 if (! dont_promote)
976 mode = promote_mode (type, mode, &unsignedp);
977 #endif
978
979 return gen_reg_rtx (mode);
980 }
981 \f
982 /* Combine temporary stack slots which are adjacent on the stack.
983
984 This allows for better use of already allocated stack space. This is only
985 done for BLKmode slots because we can be sure that we won't have alignment
986 problems in this case. */
987
988 static void
989 combine_temp_slots (void)
990 {
991 struct temp_slot *p, *q, *next, *next_q;
992 int num_slots;
993
994 /* We can't combine slots, because the information about which slot
995 is in which alias set will be lost. */
996 if (flag_strict_aliasing)
997 return;
998
999 /* If there are a lot of temp slots, don't do anything unless
1000 high levels of optimization. */
1001 if (! flag_expensive_optimizations)
1002 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1003 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1004 return;
1005
1006 for (p = avail_temp_slots; p; p = next)
1007 {
1008 int delete_p = 0;
1009
1010 next = p->next;
1011
1012 if (GET_MODE (p->slot) != BLKmode)
1013 continue;
1014
1015 for (q = p->next; q; q = next_q)
1016 {
1017 int delete_q = 0;
1018
1019 next_q = q->next;
1020
1021 if (GET_MODE (q->slot) != BLKmode)
1022 continue;
1023
1024 if (p->base_offset + p->full_size == q->base_offset)
1025 {
1026 /* Q comes after P; combine Q into P. */
1027 p->size += q->size;
1028 p->full_size += q->full_size;
1029 delete_q = 1;
1030 }
1031 else if (q->base_offset + q->full_size == p->base_offset)
1032 {
1033 /* P comes after Q; combine P into Q. */
1034 q->size += p->size;
1035 q->full_size += p->full_size;
1036 delete_p = 1;
1037 break;
1038 }
1039 if (delete_q)
1040 cut_slot_from_list (q, &avail_temp_slots);
1041 }
1042
1043 /* Either delete P or advance past it. */
1044 if (delete_p)
1045 cut_slot_from_list (p, &avail_temp_slots);
1046 }
1047 }
1048 \f
1049 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1050 slot that previously was known by OLD_RTX. */
1051
1052 void
1053 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1054 {
1055 struct temp_slot *p;
1056
1057 if (rtx_equal_p (old_rtx, new_rtx))
1058 return;
1059
1060 p = find_temp_slot_from_address (old_rtx);
1061
1062 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1063 NEW_RTX is a register, see if one operand of the PLUS is a
1064 temporary location. If so, NEW_RTX points into it. Otherwise,
1065 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1066 in common between them. If so, try a recursive call on those
1067 values. */
1068 if (p == 0)
1069 {
1070 if (GET_CODE (old_rtx) != PLUS)
1071 return;
1072
1073 if (REG_P (new_rtx))
1074 {
1075 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1076 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1077 return;
1078 }
1079 else if (GET_CODE (new_rtx) != PLUS)
1080 return;
1081
1082 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1083 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1085 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1086 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1087 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1088 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1089 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1090
1091 return;
1092 }
1093
1094 /* Otherwise add an alias for the temp's address. */
1095 insert_temp_slot_address (new_rtx, p);
1096 }
1097
1098 /* If X could be a reference to a temporary slot, mark that slot as
1099 belonging to the to one level higher than the current level. If X
1100 matched one of our slots, just mark that one. Otherwise, we can't
1101 easily predict which it is, so upgrade all of them.
1102
1103 This is called when an ({...}) construct occurs and a statement
1104 returns a value in memory. */
1105
1106 void
1107 preserve_temp_slots (rtx x)
1108 {
1109 struct temp_slot *p = 0, *next;
1110
1111 if (x == 0)
1112 return;
1113
1114 /* If X is a register that is being used as a pointer, see if we have
1115 a temporary slot we know it points to. */
1116 if (REG_P (x) && REG_POINTER (x))
1117 p = find_temp_slot_from_address (x);
1118
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot. */
1121 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1122 return;
1123
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1127
1128 if (p != 0)
1129 {
1130 if (p->level == temp_slot_level)
1131 move_slot_to_level (p, temp_slot_level - 1);
1132 return;
1133 }
1134
1135 /* Otherwise, preserve all non-kept slots at this level. */
1136 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1137 {
1138 next = p->next;
1139 move_slot_to_level (p, temp_slot_level - 1);
1140 }
1141 }
1142
1143 /* Free all temporaries used so far. This is normally called at the
1144 end of generating code for a statement. */
1145
1146 void
1147 free_temp_slots (void)
1148 {
1149 struct temp_slot *p, *next;
1150 bool some_available = false;
1151
1152 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1153 {
1154 next = p->next;
1155 make_slot_available (p);
1156 some_available = true;
1157 }
1158
1159 if (some_available)
1160 {
1161 remove_unused_temp_slot_addresses ();
1162 combine_temp_slots ();
1163 }
1164 }
1165
1166 /* Push deeper into the nesting level for stack temporaries. */
1167
1168 void
1169 push_temp_slots (void)
1170 {
1171 temp_slot_level++;
1172 }
1173
1174 /* Pop a temporary nesting level. All slots in use in the current level
1175 are freed. */
1176
1177 void
1178 pop_temp_slots (void)
1179 {
1180 free_temp_slots ();
1181 temp_slot_level--;
1182 }
1183
1184 /* Initialize temporary slots. */
1185
1186 void
1187 init_temp_slots (void)
1188 {
1189 /* We have not allocated any temporaries yet. */
1190 avail_temp_slots = 0;
1191 vec_alloc (used_temp_slots, 0);
1192 temp_slot_level = 0;
1193 n_temp_slots_in_use = 0;
1194
1195 /* Set up the table to map addresses to temp slots. */
1196 if (! temp_slot_address_table)
1197 temp_slot_address_table = htab_create_ggc (32,
1198 temp_slot_address_hash,
1199 temp_slot_address_eq,
1200 NULL);
1201 else
1202 htab_empty (temp_slot_address_table);
1203 }
1204 \f
1205 /* Functions and data structures to keep track of the values hard regs
1206 had at the start of the function. */
1207
1208 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1209 and has_hard_reg_initial_val.. */
1210 typedef struct GTY(()) initial_value_pair {
1211 rtx hard_reg;
1212 rtx pseudo;
1213 } initial_value_pair;
1214 /* ??? This could be a VEC but there is currently no way to define an
1215 opaque VEC type. This could be worked around by defining struct
1216 initial_value_pair in function.h. */
1217 typedef struct GTY(()) initial_value_struct {
1218 int num_entries;
1219 int max_entries;
1220 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1221 } initial_value_struct;
1222
1223 /* If a pseudo represents an initial hard reg (or expression), return
1224 it, else return NULL_RTX. */
1225
1226 rtx
1227 get_hard_reg_initial_reg (rtx reg)
1228 {
1229 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1230 int i;
1231
1232 if (ivs == 0)
1233 return NULL_RTX;
1234
1235 for (i = 0; i < ivs->num_entries; i++)
1236 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1237 return ivs->entries[i].hard_reg;
1238
1239 return NULL_RTX;
1240 }
1241
1242 /* Make sure that there's a pseudo register of mode MODE that stores the
1243 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1244
1245 rtx
1246 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1247 {
1248 struct initial_value_struct *ivs;
1249 rtx rv;
1250
1251 rv = has_hard_reg_initial_val (mode, regno);
1252 if (rv)
1253 return rv;
1254
1255 ivs = crtl->hard_reg_initial_vals;
1256 if (ivs == 0)
1257 {
1258 ivs = ggc_alloc_initial_value_struct ();
1259 ivs->num_entries = 0;
1260 ivs->max_entries = 5;
1261 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1262 crtl->hard_reg_initial_vals = ivs;
1263 }
1264
1265 if (ivs->num_entries >= ivs->max_entries)
1266 {
1267 ivs->max_entries += 5;
1268 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1269 ivs->max_entries);
1270 }
1271
1272 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1273 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1274
1275 return ivs->entries[ivs->num_entries++].pseudo;
1276 }
1277
1278 /* See if get_hard_reg_initial_val has been used to create a pseudo
1279 for the initial value of hard register REGNO in mode MODE. Return
1280 the associated pseudo if so, otherwise return NULL. */
1281
1282 rtx
1283 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1284 {
1285 struct initial_value_struct *ivs;
1286 int i;
1287
1288 ivs = crtl->hard_reg_initial_vals;
1289 if (ivs != 0)
1290 for (i = 0; i < ivs->num_entries; i++)
1291 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1292 && REGNO (ivs->entries[i].hard_reg) == regno)
1293 return ivs->entries[i].pseudo;
1294
1295 return NULL_RTX;
1296 }
1297
1298 unsigned int
1299 emit_initial_value_sets (void)
1300 {
1301 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1302 int i;
1303 rtx seq;
1304
1305 if (ivs == 0)
1306 return 0;
1307
1308 start_sequence ();
1309 for (i = 0; i < ivs->num_entries; i++)
1310 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1311 seq = get_insns ();
1312 end_sequence ();
1313
1314 emit_insn_at_entry (seq);
1315 return 0;
1316 }
1317
1318 /* Return the hardreg-pseudoreg initial values pair entry I and
1319 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1320 bool
1321 initial_value_entry (int i, rtx *hreg, rtx *preg)
1322 {
1323 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1324 if (!ivs || i >= ivs->num_entries)
1325 return false;
1326
1327 *hreg = ivs->entries[i].hard_reg;
1328 *preg = ivs->entries[i].pseudo;
1329 return true;
1330 }
1331 \f
1332 /* These routines are responsible for converting virtual register references
1333 to the actual hard register references once RTL generation is complete.
1334
1335 The following four variables are used for communication between the
1336 routines. They contain the offsets of the virtual registers from their
1337 respective hard registers. */
1338
1339 static int in_arg_offset;
1340 static int var_offset;
1341 static int dynamic_offset;
1342 static int out_arg_offset;
1343 static int cfa_offset;
1344
1345 /* In most machines, the stack pointer register is equivalent to the bottom
1346 of the stack. */
1347
1348 #ifndef STACK_POINTER_OFFSET
1349 #define STACK_POINTER_OFFSET 0
1350 #endif
1351
1352 /* If not defined, pick an appropriate default for the offset of dynamically
1353 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1354 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1355
1356 #ifndef STACK_DYNAMIC_OFFSET
1357
1358 /* The bottom of the stack points to the actual arguments. If
1359 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1360 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1361 stack space for register parameters is not pushed by the caller, but
1362 rather part of the fixed stack areas and hence not included in
1363 `crtl->outgoing_args_size'. Nevertheless, we must allow
1364 for it when allocating stack dynamic objects. */
1365
1366 #if defined(REG_PARM_STACK_SPACE)
1367 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1368 ((ACCUMULATE_OUTGOING_ARGS \
1369 ? (crtl->outgoing_args_size \
1370 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1371 : REG_PARM_STACK_SPACE (FNDECL))) \
1372 : 0) + (STACK_POINTER_OFFSET))
1373 #else
1374 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1375 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1376 + (STACK_POINTER_OFFSET))
1377 #endif
1378 #endif
1379
1380 \f
1381 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1382 is a virtual register, return the equivalent hard register and set the
1383 offset indirectly through the pointer. Otherwise, return 0. */
1384
1385 static rtx
1386 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1387 {
1388 rtx new_rtx;
1389 HOST_WIDE_INT offset;
1390
1391 if (x == virtual_incoming_args_rtx)
1392 {
1393 if (stack_realign_drap)
1394 {
1395 /* Replace virtual_incoming_args_rtx with internal arg
1396 pointer if DRAP is used to realign stack. */
1397 new_rtx = crtl->args.internal_arg_pointer;
1398 offset = 0;
1399 }
1400 else
1401 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1402 }
1403 else if (x == virtual_stack_vars_rtx)
1404 new_rtx = frame_pointer_rtx, offset = var_offset;
1405 else if (x == virtual_stack_dynamic_rtx)
1406 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1407 else if (x == virtual_outgoing_args_rtx)
1408 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1409 else if (x == virtual_cfa_rtx)
1410 {
1411 #ifdef FRAME_POINTER_CFA_OFFSET
1412 new_rtx = frame_pointer_rtx;
1413 #else
1414 new_rtx = arg_pointer_rtx;
1415 #endif
1416 offset = cfa_offset;
1417 }
1418 else if (x == virtual_preferred_stack_boundary_rtx)
1419 {
1420 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1421 offset = 0;
1422 }
1423 else
1424 return NULL_RTX;
1425
1426 *poffset = offset;
1427 return new_rtx;
1428 }
1429
1430 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1431 Instantiate any virtual registers present inside of *LOC. The expression
1432 is simplified, as much as possible, but is not to be considered "valid"
1433 in any sense implied by the target. If any change is made, set CHANGED
1434 to true. */
1435
1436 static int
1437 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1438 {
1439 HOST_WIDE_INT offset;
1440 bool *changed = (bool *) data;
1441 rtx x, new_rtx;
1442
1443 x = *loc;
1444 if (x == 0)
1445 return 0;
1446
1447 switch (GET_CODE (x))
1448 {
1449 case REG:
1450 new_rtx = instantiate_new_reg (x, &offset);
1451 if (new_rtx)
1452 {
1453 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1454 if (changed)
1455 *changed = true;
1456 }
1457 return -1;
1458
1459 case PLUS:
1460 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1461 if (new_rtx)
1462 {
1463 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1464 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1465 if (changed)
1466 *changed = true;
1467 return -1;
1468 }
1469
1470 /* FIXME -- from old code */
1471 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1472 we can commute the PLUS and SUBREG because pointers into the
1473 frame are well-behaved. */
1474 break;
1475
1476 default:
1477 break;
1478 }
1479
1480 return 0;
1481 }
1482
1483 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1484 matches the predicate for insn CODE operand OPERAND. */
1485
1486 static int
1487 safe_insn_predicate (int code, int operand, rtx x)
1488 {
1489 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1490 }
1491
1492 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1493 registers present inside of insn. The result will be a valid insn. */
1494
1495 static void
1496 instantiate_virtual_regs_in_insn (rtx insn)
1497 {
1498 HOST_WIDE_INT offset;
1499 int insn_code, i;
1500 bool any_change = false;
1501 rtx set, new_rtx, x, seq;
1502
1503 /* There are some special cases to be handled first. */
1504 set = single_set (insn);
1505 if (set)
1506 {
1507 /* We're allowed to assign to a virtual register. This is interpreted
1508 to mean that the underlying register gets assigned the inverse
1509 transformation. This is used, for example, in the handling of
1510 non-local gotos. */
1511 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1512 if (new_rtx)
1513 {
1514 start_sequence ();
1515
1516 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1517 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1518 gen_int_mode (-offset, GET_MODE (new_rtx)));
1519 x = force_operand (x, new_rtx);
1520 if (x != new_rtx)
1521 emit_move_insn (new_rtx, x);
1522
1523 seq = get_insns ();
1524 end_sequence ();
1525
1526 emit_insn_before (seq, insn);
1527 delete_insn (insn);
1528 return;
1529 }
1530
1531 /* Handle a straight copy from a virtual register by generating a
1532 new add insn. The difference between this and falling through
1533 to the generic case is avoiding a new pseudo and eliminating a
1534 move insn in the initial rtl stream. */
1535 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1536 if (new_rtx && offset != 0
1537 && REG_P (SET_DEST (set))
1538 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1539 {
1540 start_sequence ();
1541
1542 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1543 gen_int_mode (offset,
1544 GET_MODE (SET_DEST (set))),
1545 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1546 if (x != SET_DEST (set))
1547 emit_move_insn (SET_DEST (set), x);
1548
1549 seq = get_insns ();
1550 end_sequence ();
1551
1552 emit_insn_before (seq, insn);
1553 delete_insn (insn);
1554 return;
1555 }
1556
1557 extract_insn (insn);
1558 insn_code = INSN_CODE (insn);
1559
1560 /* Handle a plus involving a virtual register by determining if the
1561 operands remain valid if they're modified in place. */
1562 if (GET_CODE (SET_SRC (set)) == PLUS
1563 && recog_data.n_operands >= 3
1564 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1565 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1566 && CONST_INT_P (recog_data.operand[2])
1567 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1568 {
1569 offset += INTVAL (recog_data.operand[2]);
1570
1571 /* If the sum is zero, then replace with a plain move. */
1572 if (offset == 0
1573 && REG_P (SET_DEST (set))
1574 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1575 {
1576 start_sequence ();
1577 emit_move_insn (SET_DEST (set), new_rtx);
1578 seq = get_insns ();
1579 end_sequence ();
1580
1581 emit_insn_before (seq, insn);
1582 delete_insn (insn);
1583 return;
1584 }
1585
1586 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1587
1588 /* Using validate_change and apply_change_group here leaves
1589 recog_data in an invalid state. Since we know exactly what
1590 we want to check, do those two by hand. */
1591 if (safe_insn_predicate (insn_code, 1, new_rtx)
1592 && safe_insn_predicate (insn_code, 2, x))
1593 {
1594 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1595 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1596 any_change = true;
1597
1598 /* Fall through into the regular operand fixup loop in
1599 order to take care of operands other than 1 and 2. */
1600 }
1601 }
1602 }
1603 else
1604 {
1605 extract_insn (insn);
1606 insn_code = INSN_CODE (insn);
1607 }
1608
1609 /* In the general case, we expect virtual registers to appear only in
1610 operands, and then only as either bare registers or inside memories. */
1611 for (i = 0; i < recog_data.n_operands; ++i)
1612 {
1613 x = recog_data.operand[i];
1614 switch (GET_CODE (x))
1615 {
1616 case MEM:
1617 {
1618 rtx addr = XEXP (x, 0);
1619 bool changed = false;
1620
1621 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1622 if (!changed)
1623 continue;
1624
1625 start_sequence ();
1626 x = replace_equiv_address (x, addr);
1627 /* It may happen that the address with the virtual reg
1628 was valid (e.g. based on the virtual stack reg, which might
1629 be acceptable to the predicates with all offsets), whereas
1630 the address now isn't anymore, for instance when the address
1631 is still offsetted, but the base reg isn't virtual-stack-reg
1632 anymore. Below we would do a force_reg on the whole operand,
1633 but this insn might actually only accept memory. Hence,
1634 before doing that last resort, try to reload the address into
1635 a register, so this operand stays a MEM. */
1636 if (!safe_insn_predicate (insn_code, i, x))
1637 {
1638 addr = force_reg (GET_MODE (addr), addr);
1639 x = replace_equiv_address (x, addr);
1640 }
1641 seq = get_insns ();
1642 end_sequence ();
1643 if (seq)
1644 emit_insn_before (seq, insn);
1645 }
1646 break;
1647
1648 case REG:
1649 new_rtx = instantiate_new_reg (x, &offset);
1650 if (new_rtx == NULL)
1651 continue;
1652 if (offset == 0)
1653 x = new_rtx;
1654 else
1655 {
1656 start_sequence ();
1657
1658 /* Careful, special mode predicates may have stuff in
1659 insn_data[insn_code].operand[i].mode that isn't useful
1660 to us for computing a new value. */
1661 /* ??? Recognize address_operand and/or "p" constraints
1662 to see if (plus new offset) is a valid before we put
1663 this through expand_simple_binop. */
1664 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1665 gen_int_mode (offset, GET_MODE (x)),
1666 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1667 seq = get_insns ();
1668 end_sequence ();
1669 emit_insn_before (seq, insn);
1670 }
1671 break;
1672
1673 case SUBREG:
1674 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1675 if (new_rtx == NULL)
1676 continue;
1677 if (offset != 0)
1678 {
1679 start_sequence ();
1680 new_rtx = expand_simple_binop
1681 (GET_MODE (new_rtx), PLUS, new_rtx,
1682 gen_int_mode (offset, GET_MODE (new_rtx)),
1683 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1684 seq = get_insns ();
1685 end_sequence ();
1686 emit_insn_before (seq, insn);
1687 }
1688 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1689 GET_MODE (new_rtx), SUBREG_BYTE (x));
1690 gcc_assert (x);
1691 break;
1692
1693 default:
1694 continue;
1695 }
1696
1697 /* At this point, X contains the new value for the operand.
1698 Validate the new value vs the insn predicate. Note that
1699 asm insns will have insn_code -1 here. */
1700 if (!safe_insn_predicate (insn_code, i, x))
1701 {
1702 start_sequence ();
1703 if (REG_P (x))
1704 {
1705 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1706 x = copy_to_reg (x);
1707 }
1708 else
1709 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1710 seq = get_insns ();
1711 end_sequence ();
1712 if (seq)
1713 emit_insn_before (seq, insn);
1714 }
1715
1716 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1717 any_change = true;
1718 }
1719
1720 if (any_change)
1721 {
1722 /* Propagate operand changes into the duplicates. */
1723 for (i = 0; i < recog_data.n_dups; ++i)
1724 *recog_data.dup_loc[i]
1725 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1726
1727 /* Force re-recognition of the instruction for validation. */
1728 INSN_CODE (insn) = -1;
1729 }
1730
1731 if (asm_noperands (PATTERN (insn)) >= 0)
1732 {
1733 if (!check_asm_operands (PATTERN (insn)))
1734 {
1735 error_for_asm (insn, "impossible constraint in %<asm%>");
1736 /* For asm goto, instead of fixing up all the edges
1737 just clear the template and clear input operands
1738 (asm goto doesn't have any output operands). */
1739 if (JUMP_P (insn))
1740 {
1741 rtx asm_op = extract_asm_operands (PATTERN (insn));
1742 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1743 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1744 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1745 }
1746 else
1747 delete_insn (insn);
1748 }
1749 }
1750 else
1751 {
1752 if (recog_memoized (insn) < 0)
1753 fatal_insn_not_found (insn);
1754 }
1755 }
1756
1757 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1758 do any instantiation required. */
1759
1760 void
1761 instantiate_decl_rtl (rtx x)
1762 {
1763 rtx addr;
1764
1765 if (x == 0)
1766 return;
1767
1768 /* If this is a CONCAT, recurse for the pieces. */
1769 if (GET_CODE (x) == CONCAT)
1770 {
1771 instantiate_decl_rtl (XEXP (x, 0));
1772 instantiate_decl_rtl (XEXP (x, 1));
1773 return;
1774 }
1775
1776 /* If this is not a MEM, no need to do anything. Similarly if the
1777 address is a constant or a register that is not a virtual register. */
1778 if (!MEM_P (x))
1779 return;
1780
1781 addr = XEXP (x, 0);
1782 if (CONSTANT_P (addr)
1783 || (REG_P (addr)
1784 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1785 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1786 return;
1787
1788 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1789 }
1790
1791 /* Helper for instantiate_decls called via walk_tree: Process all decls
1792 in the given DECL_VALUE_EXPR. */
1793
1794 static tree
1795 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1796 {
1797 tree t = *tp;
1798 if (! EXPR_P (t))
1799 {
1800 *walk_subtrees = 0;
1801 if (DECL_P (t))
1802 {
1803 if (DECL_RTL_SET_P (t))
1804 instantiate_decl_rtl (DECL_RTL (t));
1805 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1806 && DECL_INCOMING_RTL (t))
1807 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1808 if ((TREE_CODE (t) == VAR_DECL
1809 || TREE_CODE (t) == RESULT_DECL)
1810 && DECL_HAS_VALUE_EXPR_P (t))
1811 {
1812 tree v = DECL_VALUE_EXPR (t);
1813 walk_tree (&v, instantiate_expr, NULL, NULL);
1814 }
1815 }
1816 }
1817 return NULL;
1818 }
1819
1820 /* Subroutine of instantiate_decls: Process all decls in the given
1821 BLOCK node and all its subblocks. */
1822
1823 static void
1824 instantiate_decls_1 (tree let)
1825 {
1826 tree t;
1827
1828 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1829 {
1830 if (DECL_RTL_SET_P (t))
1831 instantiate_decl_rtl (DECL_RTL (t));
1832 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1833 {
1834 tree v = DECL_VALUE_EXPR (t);
1835 walk_tree (&v, instantiate_expr, NULL, NULL);
1836 }
1837 }
1838
1839 /* Process all subblocks. */
1840 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1841 instantiate_decls_1 (t);
1842 }
1843
1844 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1845 all virtual registers in their DECL_RTL's. */
1846
1847 static void
1848 instantiate_decls (tree fndecl)
1849 {
1850 tree decl;
1851 unsigned ix;
1852
1853 /* Process all parameters of the function. */
1854 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1855 {
1856 instantiate_decl_rtl (DECL_RTL (decl));
1857 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1858 if (DECL_HAS_VALUE_EXPR_P (decl))
1859 {
1860 tree v = DECL_VALUE_EXPR (decl);
1861 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 }
1863 }
1864
1865 if ((decl = DECL_RESULT (fndecl))
1866 && TREE_CODE (decl) == RESULT_DECL)
1867 {
1868 if (DECL_RTL_SET_P (decl))
1869 instantiate_decl_rtl (DECL_RTL (decl));
1870 if (DECL_HAS_VALUE_EXPR_P (decl))
1871 {
1872 tree v = DECL_VALUE_EXPR (decl);
1873 walk_tree (&v, instantiate_expr, NULL, NULL);
1874 }
1875 }
1876
1877 /* Now process all variables defined in the function or its subblocks. */
1878 instantiate_decls_1 (DECL_INITIAL (fndecl));
1879
1880 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1881 if (DECL_RTL_SET_P (decl))
1882 instantiate_decl_rtl (DECL_RTL (decl));
1883 vec_free (cfun->local_decls);
1884 }
1885
1886 /* Pass through the INSNS of function FNDECL and convert virtual register
1887 references to hard register references. */
1888
1889 static unsigned int
1890 instantiate_virtual_regs (void)
1891 {
1892 rtx insn;
1893
1894 /* Compute the offsets to use for this function. */
1895 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1896 var_offset = STARTING_FRAME_OFFSET;
1897 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1898 out_arg_offset = STACK_POINTER_OFFSET;
1899 #ifdef FRAME_POINTER_CFA_OFFSET
1900 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1901 #else
1902 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1903 #endif
1904
1905 /* Initialize recognition, indicating that volatile is OK. */
1906 init_recog ();
1907
1908 /* Scan through all the insns, instantiating every virtual register still
1909 present. */
1910 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1911 if (INSN_P (insn))
1912 {
1913 /* These patterns in the instruction stream can never be recognized.
1914 Fortunately, they shouldn't contain virtual registers either. */
1915 if (GET_CODE (PATTERN (insn)) == USE
1916 || GET_CODE (PATTERN (insn)) == CLOBBER
1917 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1918 continue;
1919 else if (DEBUG_INSN_P (insn))
1920 for_each_rtx (&INSN_VAR_LOCATION (insn),
1921 instantiate_virtual_regs_in_rtx, NULL);
1922 else
1923 instantiate_virtual_regs_in_insn (insn);
1924
1925 if (INSN_DELETED_P (insn))
1926 continue;
1927
1928 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1929
1930 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1931 if (CALL_P (insn))
1932 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1933 instantiate_virtual_regs_in_rtx, NULL);
1934 }
1935
1936 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1937 instantiate_decls (current_function_decl);
1938
1939 targetm.instantiate_decls ();
1940
1941 /* Indicate that, from now on, assign_stack_local should use
1942 frame_pointer_rtx. */
1943 virtuals_instantiated = 1;
1944
1945 return 0;
1946 }
1947
1948 namespace {
1949
1950 const pass_data pass_data_instantiate_virtual_regs =
1951 {
1952 RTL_PASS, /* type */
1953 "vregs", /* name */
1954 OPTGROUP_NONE, /* optinfo_flags */
1955 false, /* has_gate */
1956 true, /* has_execute */
1957 TV_NONE, /* tv_id */
1958 0, /* properties_required */
1959 0, /* properties_provided */
1960 0, /* properties_destroyed */
1961 0, /* todo_flags_start */
1962 0, /* todo_flags_finish */
1963 };
1964
1965 class pass_instantiate_virtual_regs : public rtl_opt_pass
1966 {
1967 public:
1968 pass_instantiate_virtual_regs (gcc::context *ctxt)
1969 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1970 {}
1971
1972 /* opt_pass methods: */
1973 unsigned int execute () { return instantiate_virtual_regs (); }
1974
1975 }; // class pass_instantiate_virtual_regs
1976
1977 } // anon namespace
1978
1979 rtl_opt_pass *
1980 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1981 {
1982 return new pass_instantiate_virtual_regs (ctxt);
1983 }
1984
1985 \f
1986 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1987 This means a type for which function calls must pass an address to the
1988 function or get an address back from the function.
1989 EXP may be a type node or an expression (whose type is tested). */
1990
1991 int
1992 aggregate_value_p (const_tree exp, const_tree fntype)
1993 {
1994 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1995 int i, regno, nregs;
1996 rtx reg;
1997
1998 if (fntype)
1999 switch (TREE_CODE (fntype))
2000 {
2001 case CALL_EXPR:
2002 {
2003 tree fndecl = get_callee_fndecl (fntype);
2004 fntype = (fndecl
2005 ? TREE_TYPE (fndecl)
2006 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2007 }
2008 break;
2009 case FUNCTION_DECL:
2010 fntype = TREE_TYPE (fntype);
2011 break;
2012 case FUNCTION_TYPE:
2013 case METHOD_TYPE:
2014 break;
2015 case IDENTIFIER_NODE:
2016 fntype = NULL_TREE;
2017 break;
2018 default:
2019 /* We don't expect other tree types here. */
2020 gcc_unreachable ();
2021 }
2022
2023 if (VOID_TYPE_P (type))
2024 return 0;
2025
2026 /* If a record should be passed the same as its first (and only) member
2027 don't pass it as an aggregate. */
2028 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2029 return aggregate_value_p (first_field (type), fntype);
2030
2031 /* If the front end has decided that this needs to be passed by
2032 reference, do so. */
2033 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2034 && DECL_BY_REFERENCE (exp))
2035 return 1;
2036
2037 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2038 if (fntype && TREE_ADDRESSABLE (fntype))
2039 return 1;
2040
2041 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2042 and thus can't be returned in registers. */
2043 if (TREE_ADDRESSABLE (type))
2044 return 1;
2045
2046 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2047 return 1;
2048
2049 if (targetm.calls.return_in_memory (type, fntype))
2050 return 1;
2051
2052 /* Make sure we have suitable call-clobbered regs to return
2053 the value in; if not, we must return it in memory. */
2054 reg = hard_function_value (type, 0, fntype, 0);
2055
2056 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2057 it is OK. */
2058 if (!REG_P (reg))
2059 return 0;
2060
2061 regno = REGNO (reg);
2062 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2063 for (i = 0; i < nregs; i++)
2064 if (! call_used_regs[regno + i])
2065 return 1;
2066
2067 return 0;
2068 }
2069 \f
2070 /* Return true if we should assign DECL a pseudo register; false if it
2071 should live on the local stack. */
2072
2073 bool
2074 use_register_for_decl (const_tree decl)
2075 {
2076 if (!targetm.calls.allocate_stack_slots_for_args ())
2077 return true;
2078
2079 /* Honor volatile. */
2080 if (TREE_SIDE_EFFECTS (decl))
2081 return false;
2082
2083 /* Honor addressability. */
2084 if (TREE_ADDRESSABLE (decl))
2085 return false;
2086
2087 /* Only register-like things go in registers. */
2088 if (DECL_MODE (decl) == BLKmode)
2089 return false;
2090
2091 /* If -ffloat-store specified, don't put explicit float variables
2092 into registers. */
2093 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2094 propagates values across these stores, and it probably shouldn't. */
2095 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2096 return false;
2097
2098 /* If we're not interested in tracking debugging information for
2099 this decl, then we can certainly put it in a register. */
2100 if (DECL_IGNORED_P (decl))
2101 return true;
2102
2103 if (optimize)
2104 return true;
2105
2106 if (!DECL_REGISTER (decl))
2107 return false;
2108
2109 switch (TREE_CODE (TREE_TYPE (decl)))
2110 {
2111 case RECORD_TYPE:
2112 case UNION_TYPE:
2113 case QUAL_UNION_TYPE:
2114 /* When not optimizing, disregard register keyword for variables with
2115 types containing methods, otherwise the methods won't be callable
2116 from the debugger. */
2117 if (TYPE_METHODS (TREE_TYPE (decl)))
2118 return false;
2119 break;
2120 default:
2121 break;
2122 }
2123
2124 return true;
2125 }
2126
2127 /* Return true if TYPE should be passed by invisible reference. */
2128
2129 bool
2130 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2131 tree type, bool named_arg)
2132 {
2133 if (type)
2134 {
2135 /* If this type contains non-trivial constructors, then it is
2136 forbidden for the middle-end to create any new copies. */
2137 if (TREE_ADDRESSABLE (type))
2138 return true;
2139
2140 /* GCC post 3.4 passes *all* variable sized types by reference. */
2141 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2142 return true;
2143
2144 /* If a record type should be passed the same as its first (and only)
2145 member, use the type and mode of that member. */
2146 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2147 {
2148 type = TREE_TYPE (first_field (type));
2149 mode = TYPE_MODE (type);
2150 }
2151 }
2152
2153 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2154 type, named_arg);
2155 }
2156
2157 /* Return true if TYPE, which is passed by reference, should be callee
2158 copied instead of caller copied. */
2159
2160 bool
2161 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2162 tree type, bool named_arg)
2163 {
2164 if (type && TREE_ADDRESSABLE (type))
2165 return false;
2166 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2167 named_arg);
2168 }
2169
2170 /* Structures to communicate between the subroutines of assign_parms.
2171 The first holds data persistent across all parameters, the second
2172 is cleared out for each parameter. */
2173
2174 struct assign_parm_data_all
2175 {
2176 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2177 should become a job of the target or otherwise encapsulated. */
2178 CUMULATIVE_ARGS args_so_far_v;
2179 cumulative_args_t args_so_far;
2180 struct args_size stack_args_size;
2181 tree function_result_decl;
2182 tree orig_fnargs;
2183 rtx first_conversion_insn;
2184 rtx last_conversion_insn;
2185 HOST_WIDE_INT pretend_args_size;
2186 HOST_WIDE_INT extra_pretend_bytes;
2187 int reg_parm_stack_space;
2188 };
2189
2190 struct assign_parm_data_one
2191 {
2192 tree nominal_type;
2193 tree passed_type;
2194 rtx entry_parm;
2195 rtx stack_parm;
2196 enum machine_mode nominal_mode;
2197 enum machine_mode passed_mode;
2198 enum machine_mode promoted_mode;
2199 struct locate_and_pad_arg_data locate;
2200 int partial;
2201 BOOL_BITFIELD named_arg : 1;
2202 BOOL_BITFIELD passed_pointer : 1;
2203 BOOL_BITFIELD on_stack : 1;
2204 BOOL_BITFIELD loaded_in_reg : 1;
2205 };
2206
2207 /* A subroutine of assign_parms. Initialize ALL. */
2208
2209 static void
2210 assign_parms_initialize_all (struct assign_parm_data_all *all)
2211 {
2212 tree fntype ATTRIBUTE_UNUSED;
2213
2214 memset (all, 0, sizeof (*all));
2215
2216 fntype = TREE_TYPE (current_function_decl);
2217
2218 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2219 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2220 #else
2221 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2222 current_function_decl, -1);
2223 #endif
2224 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2225
2226 #ifdef REG_PARM_STACK_SPACE
2227 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2228 #endif
2229 }
2230
2231 /* If ARGS contains entries with complex types, split the entry into two
2232 entries of the component type. Return a new list of substitutions are
2233 needed, else the old list. */
2234
2235 static void
2236 split_complex_args (vec<tree> *args)
2237 {
2238 unsigned i;
2239 tree p;
2240
2241 FOR_EACH_VEC_ELT (*args, i, p)
2242 {
2243 tree type = TREE_TYPE (p);
2244 if (TREE_CODE (type) == COMPLEX_TYPE
2245 && targetm.calls.split_complex_arg (type))
2246 {
2247 tree decl;
2248 tree subtype = TREE_TYPE (type);
2249 bool addressable = TREE_ADDRESSABLE (p);
2250
2251 /* Rewrite the PARM_DECL's type with its component. */
2252 p = copy_node (p);
2253 TREE_TYPE (p) = subtype;
2254 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2255 DECL_MODE (p) = VOIDmode;
2256 DECL_SIZE (p) = NULL;
2257 DECL_SIZE_UNIT (p) = NULL;
2258 /* If this arg must go in memory, put it in a pseudo here.
2259 We can't allow it to go in memory as per normal parms,
2260 because the usual place might not have the imag part
2261 adjacent to the real part. */
2262 DECL_ARTIFICIAL (p) = addressable;
2263 DECL_IGNORED_P (p) = addressable;
2264 TREE_ADDRESSABLE (p) = 0;
2265 layout_decl (p, 0);
2266 (*args)[i] = p;
2267
2268 /* Build a second synthetic decl. */
2269 decl = build_decl (EXPR_LOCATION (p),
2270 PARM_DECL, NULL_TREE, subtype);
2271 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2272 DECL_ARTIFICIAL (decl) = addressable;
2273 DECL_IGNORED_P (decl) = addressable;
2274 layout_decl (decl, 0);
2275 args->safe_insert (++i, decl);
2276 }
2277 }
2278 }
2279
2280 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2281 the hidden struct return argument, and (abi willing) complex args.
2282 Return the new parameter list. */
2283
2284 static vec<tree>
2285 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2286 {
2287 tree fndecl = current_function_decl;
2288 tree fntype = TREE_TYPE (fndecl);
2289 vec<tree> fnargs = vNULL;
2290 tree arg;
2291
2292 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2293 fnargs.safe_push (arg);
2294
2295 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2296
2297 /* If struct value address is treated as the first argument, make it so. */
2298 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2299 && ! cfun->returns_pcc_struct
2300 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2301 {
2302 tree type = build_pointer_type (TREE_TYPE (fntype));
2303 tree decl;
2304
2305 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2306 PARM_DECL, get_identifier (".result_ptr"), type);
2307 DECL_ARG_TYPE (decl) = type;
2308 DECL_ARTIFICIAL (decl) = 1;
2309 DECL_NAMELESS (decl) = 1;
2310 TREE_CONSTANT (decl) = 1;
2311
2312 DECL_CHAIN (decl) = all->orig_fnargs;
2313 all->orig_fnargs = decl;
2314 fnargs.safe_insert (0, decl);
2315
2316 all->function_result_decl = decl;
2317 }
2318
2319 /* If the target wants to split complex arguments into scalars, do so. */
2320 if (targetm.calls.split_complex_arg)
2321 split_complex_args (&fnargs);
2322
2323 return fnargs;
2324 }
2325
2326 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2327 data for the parameter. Incorporate ABI specifics such as pass-by-
2328 reference and type promotion. */
2329
2330 static void
2331 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2332 struct assign_parm_data_one *data)
2333 {
2334 tree nominal_type, passed_type;
2335 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2336 int unsignedp;
2337
2338 memset (data, 0, sizeof (*data));
2339
2340 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2341 if (!cfun->stdarg)
2342 data->named_arg = 1; /* No variadic parms. */
2343 else if (DECL_CHAIN (parm))
2344 data->named_arg = 1; /* Not the last non-variadic parm. */
2345 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2346 data->named_arg = 1; /* Only variadic ones are unnamed. */
2347 else
2348 data->named_arg = 0; /* Treat as variadic. */
2349
2350 nominal_type = TREE_TYPE (parm);
2351 passed_type = DECL_ARG_TYPE (parm);
2352
2353 /* Look out for errors propagating this far. Also, if the parameter's
2354 type is void then its value doesn't matter. */
2355 if (TREE_TYPE (parm) == error_mark_node
2356 /* This can happen after weird syntax errors
2357 or if an enum type is defined among the parms. */
2358 || TREE_CODE (parm) != PARM_DECL
2359 || passed_type == NULL
2360 || VOID_TYPE_P (nominal_type))
2361 {
2362 nominal_type = passed_type = void_type_node;
2363 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2364 goto egress;
2365 }
2366
2367 /* Find mode of arg as it is passed, and mode of arg as it should be
2368 during execution of this function. */
2369 passed_mode = TYPE_MODE (passed_type);
2370 nominal_mode = TYPE_MODE (nominal_type);
2371
2372 /* If the parm is to be passed as a transparent union or record, use the
2373 type of the first field for the tests below. We have already verified
2374 that the modes are the same. */
2375 if ((TREE_CODE (passed_type) == UNION_TYPE
2376 || TREE_CODE (passed_type) == RECORD_TYPE)
2377 && TYPE_TRANSPARENT_AGGR (passed_type))
2378 passed_type = TREE_TYPE (first_field (passed_type));
2379
2380 /* See if this arg was passed by invisible reference. */
2381 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2382 passed_type, data->named_arg))
2383 {
2384 passed_type = nominal_type = build_pointer_type (passed_type);
2385 data->passed_pointer = true;
2386 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2387 }
2388
2389 /* Find mode as it is passed by the ABI. */
2390 unsignedp = TYPE_UNSIGNED (passed_type);
2391 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2392 TREE_TYPE (current_function_decl), 0);
2393
2394 egress:
2395 data->nominal_type = nominal_type;
2396 data->passed_type = passed_type;
2397 data->nominal_mode = nominal_mode;
2398 data->passed_mode = passed_mode;
2399 data->promoted_mode = promoted_mode;
2400 }
2401
2402 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2403
2404 static void
2405 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2406 struct assign_parm_data_one *data, bool no_rtl)
2407 {
2408 int varargs_pretend_bytes = 0;
2409
2410 targetm.calls.setup_incoming_varargs (all->args_so_far,
2411 data->promoted_mode,
2412 data->passed_type,
2413 &varargs_pretend_bytes, no_rtl);
2414
2415 /* If the back-end has requested extra stack space, record how much is
2416 needed. Do not change pretend_args_size otherwise since it may be
2417 nonzero from an earlier partial argument. */
2418 if (varargs_pretend_bytes > 0)
2419 all->pretend_args_size = varargs_pretend_bytes;
2420 }
2421
2422 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2423 the incoming location of the current parameter. */
2424
2425 static void
2426 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2427 struct assign_parm_data_one *data)
2428 {
2429 HOST_WIDE_INT pretend_bytes = 0;
2430 rtx entry_parm;
2431 bool in_regs;
2432
2433 if (data->promoted_mode == VOIDmode)
2434 {
2435 data->entry_parm = data->stack_parm = const0_rtx;
2436 return;
2437 }
2438
2439 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2440 data->promoted_mode,
2441 data->passed_type,
2442 data->named_arg);
2443
2444 if (entry_parm == 0)
2445 data->promoted_mode = data->passed_mode;
2446
2447 /* Determine parm's home in the stack, in case it arrives in the stack
2448 or we should pretend it did. Compute the stack position and rtx where
2449 the argument arrives and its size.
2450
2451 There is one complexity here: If this was a parameter that would
2452 have been passed in registers, but wasn't only because it is
2453 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2454 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2455 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2456 as it was the previous time. */
2457 in_regs = entry_parm != 0;
2458 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2459 in_regs = true;
2460 #endif
2461 if (!in_regs && !data->named_arg)
2462 {
2463 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2464 {
2465 rtx tem;
2466 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2467 data->promoted_mode,
2468 data->passed_type, true);
2469 in_regs = tem != NULL;
2470 }
2471 }
2472
2473 /* If this parameter was passed both in registers and in the stack, use
2474 the copy on the stack. */
2475 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2476 data->passed_type))
2477 entry_parm = 0;
2478
2479 if (entry_parm)
2480 {
2481 int partial;
2482
2483 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2484 data->promoted_mode,
2485 data->passed_type,
2486 data->named_arg);
2487 data->partial = partial;
2488
2489 /* The caller might already have allocated stack space for the
2490 register parameters. */
2491 if (partial != 0 && all->reg_parm_stack_space == 0)
2492 {
2493 /* Part of this argument is passed in registers and part
2494 is passed on the stack. Ask the prologue code to extend
2495 the stack part so that we can recreate the full value.
2496
2497 PRETEND_BYTES is the size of the registers we need to store.
2498 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2499 stack space that the prologue should allocate.
2500
2501 Internally, gcc assumes that the argument pointer is aligned
2502 to STACK_BOUNDARY bits. This is used both for alignment
2503 optimizations (see init_emit) and to locate arguments that are
2504 aligned to more than PARM_BOUNDARY bits. We must preserve this
2505 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2506 a stack boundary. */
2507
2508 /* We assume at most one partial arg, and it must be the first
2509 argument on the stack. */
2510 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2511
2512 pretend_bytes = partial;
2513 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2514
2515 /* We want to align relative to the actual stack pointer, so
2516 don't include this in the stack size until later. */
2517 all->extra_pretend_bytes = all->pretend_args_size;
2518 }
2519 }
2520
2521 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2522 all->reg_parm_stack_space,
2523 entry_parm ? data->partial : 0, current_function_decl,
2524 &all->stack_args_size, &data->locate);
2525
2526 /* Update parm_stack_boundary if this parameter is passed in the
2527 stack. */
2528 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2529 crtl->parm_stack_boundary = data->locate.boundary;
2530
2531 /* Adjust offsets to include the pretend args. */
2532 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2533 data->locate.slot_offset.constant += pretend_bytes;
2534 data->locate.offset.constant += pretend_bytes;
2535
2536 data->entry_parm = entry_parm;
2537 }
2538
2539 /* A subroutine of assign_parms. If there is actually space on the stack
2540 for this parm, count it in stack_args_size and return true. */
2541
2542 static bool
2543 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2544 struct assign_parm_data_one *data)
2545 {
2546 /* Trivially true if we've no incoming register. */
2547 if (data->entry_parm == NULL)
2548 ;
2549 /* Also true if we're partially in registers and partially not,
2550 since we've arranged to drop the entire argument on the stack. */
2551 else if (data->partial != 0)
2552 ;
2553 /* Also true if the target says that it's passed in both registers
2554 and on the stack. */
2555 else if (GET_CODE (data->entry_parm) == PARALLEL
2556 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2557 ;
2558 /* Also true if the target says that there's stack allocated for
2559 all register parameters. */
2560 else if (all->reg_parm_stack_space > 0)
2561 ;
2562 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2563 else
2564 return false;
2565
2566 all->stack_args_size.constant += data->locate.size.constant;
2567 if (data->locate.size.var)
2568 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2569
2570 return true;
2571 }
2572
2573 /* A subroutine of assign_parms. Given that this parameter is allocated
2574 stack space by the ABI, find it. */
2575
2576 static void
2577 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2578 {
2579 rtx offset_rtx, stack_parm;
2580 unsigned int align, boundary;
2581
2582 /* If we're passing this arg using a reg, make its stack home the
2583 aligned stack slot. */
2584 if (data->entry_parm)
2585 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2586 else
2587 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2588
2589 stack_parm = crtl->args.internal_arg_pointer;
2590 if (offset_rtx != const0_rtx)
2591 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2592 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2593
2594 if (!data->passed_pointer)
2595 {
2596 set_mem_attributes (stack_parm, parm, 1);
2597 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2598 while promoted mode's size is needed. */
2599 if (data->promoted_mode != BLKmode
2600 && data->promoted_mode != DECL_MODE (parm))
2601 {
2602 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2603 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2604 {
2605 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2606 data->promoted_mode);
2607 if (offset)
2608 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2609 }
2610 }
2611 }
2612
2613 boundary = data->locate.boundary;
2614 align = BITS_PER_UNIT;
2615
2616 /* If we're padding upward, we know that the alignment of the slot
2617 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2618 intentionally forcing upward padding. Otherwise we have to come
2619 up with a guess at the alignment based on OFFSET_RTX. */
2620 if (data->locate.where_pad != downward || data->entry_parm)
2621 align = boundary;
2622 else if (CONST_INT_P (offset_rtx))
2623 {
2624 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2625 align = align & -align;
2626 }
2627 set_mem_align (stack_parm, align);
2628
2629 if (data->entry_parm)
2630 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2631
2632 data->stack_parm = stack_parm;
2633 }
2634
2635 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2636 always valid and contiguous. */
2637
2638 static void
2639 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2640 {
2641 rtx entry_parm = data->entry_parm;
2642 rtx stack_parm = data->stack_parm;
2643
2644 /* If this parm was passed part in regs and part in memory, pretend it
2645 arrived entirely in memory by pushing the register-part onto the stack.
2646 In the special case of a DImode or DFmode that is split, we could put
2647 it together in a pseudoreg directly, but for now that's not worth
2648 bothering with. */
2649 if (data->partial != 0)
2650 {
2651 /* Handle calls that pass values in multiple non-contiguous
2652 locations. The Irix 6 ABI has examples of this. */
2653 if (GET_CODE (entry_parm) == PARALLEL)
2654 emit_group_store (validize_mem (stack_parm), entry_parm,
2655 data->passed_type,
2656 int_size_in_bytes (data->passed_type));
2657 else
2658 {
2659 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2660 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2661 data->partial / UNITS_PER_WORD);
2662 }
2663
2664 entry_parm = stack_parm;
2665 }
2666
2667 /* If we didn't decide this parm came in a register, by default it came
2668 on the stack. */
2669 else if (entry_parm == NULL)
2670 entry_parm = stack_parm;
2671
2672 /* When an argument is passed in multiple locations, we can't make use
2673 of this information, but we can save some copying if the whole argument
2674 is passed in a single register. */
2675 else if (GET_CODE (entry_parm) == PARALLEL
2676 && data->nominal_mode != BLKmode
2677 && data->passed_mode != BLKmode)
2678 {
2679 size_t i, len = XVECLEN (entry_parm, 0);
2680
2681 for (i = 0; i < len; i++)
2682 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2683 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2684 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2685 == data->passed_mode)
2686 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2687 {
2688 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2689 break;
2690 }
2691 }
2692
2693 data->entry_parm = entry_parm;
2694 }
2695
2696 /* A subroutine of assign_parms. Reconstitute any values which were
2697 passed in multiple registers and would fit in a single register. */
2698
2699 static void
2700 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2701 {
2702 rtx entry_parm = data->entry_parm;
2703
2704 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2705 This can be done with register operations rather than on the
2706 stack, even if we will store the reconstituted parameter on the
2707 stack later. */
2708 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2709 {
2710 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2711 emit_group_store (parmreg, entry_parm, data->passed_type,
2712 GET_MODE_SIZE (GET_MODE (entry_parm)));
2713 entry_parm = parmreg;
2714 }
2715
2716 data->entry_parm = entry_parm;
2717 }
2718
2719 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2720 always valid and properly aligned. */
2721
2722 static void
2723 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2724 {
2725 rtx stack_parm = data->stack_parm;
2726
2727 /* If we can't trust the parm stack slot to be aligned enough for its
2728 ultimate type, don't use that slot after entry. We'll make another
2729 stack slot, if we need one. */
2730 if (stack_parm
2731 && ((STRICT_ALIGNMENT
2732 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2733 || (data->nominal_type
2734 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2735 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2736 stack_parm = NULL;
2737
2738 /* If parm was passed in memory, and we need to convert it on entry,
2739 don't store it back in that same slot. */
2740 else if (data->entry_parm == stack_parm
2741 && data->nominal_mode != BLKmode
2742 && data->nominal_mode != data->passed_mode)
2743 stack_parm = NULL;
2744
2745 /* If stack protection is in effect for this function, don't leave any
2746 pointers in their passed stack slots. */
2747 else if (crtl->stack_protect_guard
2748 && (flag_stack_protect == 2
2749 || data->passed_pointer
2750 || POINTER_TYPE_P (data->nominal_type)))
2751 stack_parm = NULL;
2752
2753 data->stack_parm = stack_parm;
2754 }
2755
2756 /* A subroutine of assign_parms. Return true if the current parameter
2757 should be stored as a BLKmode in the current frame. */
2758
2759 static bool
2760 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2761 {
2762 if (data->nominal_mode == BLKmode)
2763 return true;
2764 if (GET_MODE (data->entry_parm) == BLKmode)
2765 return true;
2766
2767 #ifdef BLOCK_REG_PADDING
2768 /* Only assign_parm_setup_block knows how to deal with register arguments
2769 that are padded at the least significant end. */
2770 if (REG_P (data->entry_parm)
2771 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2772 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2773 == (BYTES_BIG_ENDIAN ? upward : downward)))
2774 return true;
2775 #endif
2776
2777 return false;
2778 }
2779
2780 /* A subroutine of assign_parms. Arrange for the parameter to be
2781 present and valid in DATA->STACK_RTL. */
2782
2783 static void
2784 assign_parm_setup_block (struct assign_parm_data_all *all,
2785 tree parm, struct assign_parm_data_one *data)
2786 {
2787 rtx entry_parm = data->entry_parm;
2788 rtx stack_parm = data->stack_parm;
2789 HOST_WIDE_INT size;
2790 HOST_WIDE_INT size_stored;
2791
2792 if (GET_CODE (entry_parm) == PARALLEL)
2793 entry_parm = emit_group_move_into_temps (entry_parm);
2794
2795 size = int_size_in_bytes (data->passed_type);
2796 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2797 if (stack_parm == 0)
2798 {
2799 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2800 stack_parm = assign_stack_local (BLKmode, size_stored,
2801 DECL_ALIGN (parm));
2802 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2803 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2804 set_mem_attributes (stack_parm, parm, 1);
2805 }
2806
2807 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2808 calls that pass values in multiple non-contiguous locations. */
2809 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2810 {
2811 rtx mem;
2812
2813 /* Note that we will be storing an integral number of words.
2814 So we have to be careful to ensure that we allocate an
2815 integral number of words. We do this above when we call
2816 assign_stack_local if space was not allocated in the argument
2817 list. If it was, this will not work if PARM_BOUNDARY is not
2818 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2819 if it becomes a problem. Exception is when BLKmode arrives
2820 with arguments not conforming to word_mode. */
2821
2822 if (data->stack_parm == 0)
2823 ;
2824 else if (GET_CODE (entry_parm) == PARALLEL)
2825 ;
2826 else
2827 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2828
2829 mem = validize_mem (stack_parm);
2830
2831 /* Handle values in multiple non-contiguous locations. */
2832 if (GET_CODE (entry_parm) == PARALLEL)
2833 {
2834 push_to_sequence2 (all->first_conversion_insn,
2835 all->last_conversion_insn);
2836 emit_group_store (mem, entry_parm, data->passed_type, size);
2837 all->first_conversion_insn = get_insns ();
2838 all->last_conversion_insn = get_last_insn ();
2839 end_sequence ();
2840 }
2841
2842 else if (size == 0)
2843 ;
2844
2845 /* If SIZE is that of a mode no bigger than a word, just use
2846 that mode's store operation. */
2847 else if (size <= UNITS_PER_WORD)
2848 {
2849 enum machine_mode mode
2850 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2851
2852 if (mode != BLKmode
2853 #ifdef BLOCK_REG_PADDING
2854 && (size == UNITS_PER_WORD
2855 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2856 != (BYTES_BIG_ENDIAN ? upward : downward)))
2857 #endif
2858 )
2859 {
2860 rtx reg;
2861
2862 /* We are really truncating a word_mode value containing
2863 SIZE bytes into a value of mode MODE. If such an
2864 operation requires no actual instructions, we can refer
2865 to the value directly in mode MODE, otherwise we must
2866 start with the register in word_mode and explicitly
2867 convert it. */
2868 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2869 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2870 else
2871 {
2872 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2873 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2874 }
2875 emit_move_insn (change_address (mem, mode, 0), reg);
2876 }
2877
2878 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2879 machine must be aligned to the left before storing
2880 to memory. Note that the previous test doesn't
2881 handle all cases (e.g. SIZE == 3). */
2882 else if (size != UNITS_PER_WORD
2883 #ifdef BLOCK_REG_PADDING
2884 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2885 == downward)
2886 #else
2887 && BYTES_BIG_ENDIAN
2888 #endif
2889 )
2890 {
2891 rtx tem, x;
2892 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2893 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2894
2895 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2896 tem = change_address (mem, word_mode, 0);
2897 emit_move_insn (tem, x);
2898 }
2899 else
2900 move_block_from_reg (REGNO (entry_parm), mem,
2901 size_stored / UNITS_PER_WORD);
2902 }
2903 else
2904 move_block_from_reg (REGNO (entry_parm), mem,
2905 size_stored / UNITS_PER_WORD);
2906 }
2907 else if (data->stack_parm == 0)
2908 {
2909 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2910 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2911 BLOCK_OP_NORMAL);
2912 all->first_conversion_insn = get_insns ();
2913 all->last_conversion_insn = get_last_insn ();
2914 end_sequence ();
2915 }
2916
2917 data->stack_parm = stack_parm;
2918 SET_DECL_RTL (parm, stack_parm);
2919 }
2920
2921 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2922 parameter. Get it there. Perform all ABI specified conversions. */
2923
2924 static void
2925 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2926 struct assign_parm_data_one *data)
2927 {
2928 rtx parmreg, validated_mem;
2929 rtx equiv_stack_parm;
2930 enum machine_mode promoted_nominal_mode;
2931 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2932 bool did_conversion = false;
2933 bool need_conversion, moved;
2934
2935 /* Store the parm in a pseudoregister during the function, but we may
2936 need to do it in a wider mode. Using 2 here makes the result
2937 consistent with promote_decl_mode and thus expand_expr_real_1. */
2938 promoted_nominal_mode
2939 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2940 TREE_TYPE (current_function_decl), 2);
2941
2942 parmreg = gen_reg_rtx (promoted_nominal_mode);
2943
2944 if (!DECL_ARTIFICIAL (parm))
2945 mark_user_reg (parmreg);
2946
2947 /* If this was an item that we received a pointer to,
2948 set DECL_RTL appropriately. */
2949 if (data->passed_pointer)
2950 {
2951 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2952 set_mem_attributes (x, parm, 1);
2953 SET_DECL_RTL (parm, x);
2954 }
2955 else
2956 SET_DECL_RTL (parm, parmreg);
2957
2958 assign_parm_remove_parallels (data);
2959
2960 /* Copy the value into the register, thus bridging between
2961 assign_parm_find_data_types and expand_expr_real_1. */
2962
2963 equiv_stack_parm = data->stack_parm;
2964 validated_mem = validize_mem (data->entry_parm);
2965
2966 need_conversion = (data->nominal_mode != data->passed_mode
2967 || promoted_nominal_mode != data->promoted_mode);
2968 moved = false;
2969
2970 if (need_conversion
2971 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2972 && data->nominal_mode == data->passed_mode
2973 && data->nominal_mode == GET_MODE (data->entry_parm))
2974 {
2975 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2976 mode, by the caller. We now have to convert it to
2977 NOMINAL_MODE, if different. However, PARMREG may be in
2978 a different mode than NOMINAL_MODE if it is being stored
2979 promoted.
2980
2981 If ENTRY_PARM is a hard register, it might be in a register
2982 not valid for operating in its mode (e.g., an odd-numbered
2983 register for a DFmode). In that case, moves are the only
2984 thing valid, so we can't do a convert from there. This
2985 occurs when the calling sequence allow such misaligned
2986 usages.
2987
2988 In addition, the conversion may involve a call, which could
2989 clobber parameters which haven't been copied to pseudo
2990 registers yet.
2991
2992 First, we try to emit an insn which performs the necessary
2993 conversion. We verify that this insn does not clobber any
2994 hard registers. */
2995
2996 enum insn_code icode;
2997 rtx op0, op1;
2998
2999 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3000 unsignedp);
3001
3002 op0 = parmreg;
3003 op1 = validated_mem;
3004 if (icode != CODE_FOR_nothing
3005 && insn_operand_matches (icode, 0, op0)
3006 && insn_operand_matches (icode, 1, op1))
3007 {
3008 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3009 rtx insn, insns, t = op1;
3010 HARD_REG_SET hardregs;
3011
3012 start_sequence ();
3013 /* If op1 is a hard register that is likely spilled, first
3014 force it into a pseudo, otherwise combiner might extend
3015 its lifetime too much. */
3016 if (GET_CODE (t) == SUBREG)
3017 t = SUBREG_REG (t);
3018 if (REG_P (t)
3019 && HARD_REGISTER_P (t)
3020 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3021 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3022 {
3023 t = gen_reg_rtx (GET_MODE (op1));
3024 emit_move_insn (t, op1);
3025 }
3026 else
3027 t = op1;
3028 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3029 data->passed_mode, unsignedp);
3030 emit_insn (insn);
3031 insns = get_insns ();
3032
3033 moved = true;
3034 CLEAR_HARD_REG_SET (hardregs);
3035 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3036 {
3037 if (INSN_P (insn))
3038 note_stores (PATTERN (insn), record_hard_reg_sets,
3039 &hardregs);
3040 if (!hard_reg_set_empty_p (hardregs))
3041 moved = false;
3042 }
3043
3044 end_sequence ();
3045
3046 if (moved)
3047 {
3048 emit_insn (insns);
3049 if (equiv_stack_parm != NULL_RTX)
3050 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3051 equiv_stack_parm);
3052 }
3053 }
3054 }
3055
3056 if (moved)
3057 /* Nothing to do. */
3058 ;
3059 else if (need_conversion)
3060 {
3061 /* We did not have an insn to convert directly, or the sequence
3062 generated appeared unsafe. We must first copy the parm to a
3063 pseudo reg, and save the conversion until after all
3064 parameters have been moved. */
3065
3066 int save_tree_used;
3067 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3068
3069 emit_move_insn (tempreg, validated_mem);
3070
3071 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3072 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3073
3074 if (GET_CODE (tempreg) == SUBREG
3075 && GET_MODE (tempreg) == data->nominal_mode
3076 && REG_P (SUBREG_REG (tempreg))
3077 && data->nominal_mode == data->passed_mode
3078 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3079 && GET_MODE_SIZE (GET_MODE (tempreg))
3080 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3081 {
3082 /* The argument is already sign/zero extended, so note it
3083 into the subreg. */
3084 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3085 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3086 }
3087
3088 /* TREE_USED gets set erroneously during expand_assignment. */
3089 save_tree_used = TREE_USED (parm);
3090 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3091 TREE_USED (parm) = save_tree_used;
3092 all->first_conversion_insn = get_insns ();
3093 all->last_conversion_insn = get_last_insn ();
3094 end_sequence ();
3095
3096 did_conversion = true;
3097 }
3098 else
3099 emit_move_insn (parmreg, validated_mem);
3100
3101 /* If we were passed a pointer but the actual value can safely live
3102 in a register, retrieve it and use it directly. */
3103 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3104 {
3105 /* We can't use nominal_mode, because it will have been set to
3106 Pmode above. We must use the actual mode of the parm. */
3107 if (use_register_for_decl (parm))
3108 {
3109 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3110 mark_user_reg (parmreg);
3111 }
3112 else
3113 {
3114 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3115 TYPE_MODE (TREE_TYPE (parm)),
3116 TYPE_ALIGN (TREE_TYPE (parm)));
3117 parmreg
3118 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3119 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3120 align);
3121 set_mem_attributes (parmreg, parm, 1);
3122 }
3123
3124 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3125 {
3126 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3127 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3128
3129 push_to_sequence2 (all->first_conversion_insn,
3130 all->last_conversion_insn);
3131 emit_move_insn (tempreg, DECL_RTL (parm));
3132 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3133 emit_move_insn (parmreg, tempreg);
3134 all->first_conversion_insn = get_insns ();
3135 all->last_conversion_insn = get_last_insn ();
3136 end_sequence ();
3137
3138 did_conversion = true;
3139 }
3140 else
3141 emit_move_insn (parmreg, DECL_RTL (parm));
3142
3143 SET_DECL_RTL (parm, parmreg);
3144
3145 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3146 now the parm. */
3147 data->stack_parm = NULL;
3148 }
3149
3150 /* Mark the register as eliminable if we did no conversion and it was
3151 copied from memory at a fixed offset, and the arg pointer was not
3152 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3153 offset formed an invalid address, such memory-equivalences as we
3154 make here would screw up life analysis for it. */
3155 if (data->nominal_mode == data->passed_mode
3156 && !did_conversion
3157 && data->stack_parm != 0
3158 && MEM_P (data->stack_parm)
3159 && data->locate.offset.var == 0
3160 && reg_mentioned_p (virtual_incoming_args_rtx,
3161 XEXP (data->stack_parm, 0)))
3162 {
3163 rtx linsn = get_last_insn ();
3164 rtx sinsn, set;
3165
3166 /* Mark complex types separately. */
3167 if (GET_CODE (parmreg) == CONCAT)
3168 {
3169 enum machine_mode submode
3170 = GET_MODE_INNER (GET_MODE (parmreg));
3171 int regnor = REGNO (XEXP (parmreg, 0));
3172 int regnoi = REGNO (XEXP (parmreg, 1));
3173 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3174 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3175 GET_MODE_SIZE (submode));
3176
3177 /* Scan backwards for the set of the real and
3178 imaginary parts. */
3179 for (sinsn = linsn; sinsn != 0;
3180 sinsn = prev_nonnote_insn (sinsn))
3181 {
3182 set = single_set (sinsn);
3183 if (set == 0)
3184 continue;
3185
3186 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3187 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3188 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3189 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3190 }
3191 }
3192 else
3193 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3194 }
3195
3196 /* For pointer data type, suggest pointer register. */
3197 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3198 mark_reg_pointer (parmreg,
3199 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3200 }
3201
3202 /* A subroutine of assign_parms. Allocate stack space to hold the current
3203 parameter. Get it there. Perform all ABI specified conversions. */
3204
3205 static void
3206 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3207 struct assign_parm_data_one *data)
3208 {
3209 /* Value must be stored in the stack slot STACK_PARM during function
3210 execution. */
3211 bool to_conversion = false;
3212
3213 assign_parm_remove_parallels (data);
3214
3215 if (data->promoted_mode != data->nominal_mode)
3216 {
3217 /* Conversion is required. */
3218 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3219
3220 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3221
3222 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3223 to_conversion = true;
3224
3225 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3226 TYPE_UNSIGNED (TREE_TYPE (parm)));
3227
3228 if (data->stack_parm)
3229 {
3230 int offset = subreg_lowpart_offset (data->nominal_mode,
3231 GET_MODE (data->stack_parm));
3232 /* ??? This may need a big-endian conversion on sparc64. */
3233 data->stack_parm
3234 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3235 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3236 set_mem_offset (data->stack_parm,
3237 MEM_OFFSET (data->stack_parm) + offset);
3238 }
3239 }
3240
3241 if (data->entry_parm != data->stack_parm)
3242 {
3243 rtx src, dest;
3244
3245 if (data->stack_parm == 0)
3246 {
3247 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3248 GET_MODE (data->entry_parm),
3249 TYPE_ALIGN (data->passed_type));
3250 data->stack_parm
3251 = assign_stack_local (GET_MODE (data->entry_parm),
3252 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3253 align);
3254 set_mem_attributes (data->stack_parm, parm, 1);
3255 }
3256
3257 dest = validize_mem (data->stack_parm);
3258 src = validize_mem (data->entry_parm);
3259
3260 if (MEM_P (src))
3261 {
3262 /* Use a block move to handle potentially misaligned entry_parm. */
3263 if (!to_conversion)
3264 push_to_sequence2 (all->first_conversion_insn,
3265 all->last_conversion_insn);
3266 to_conversion = true;
3267
3268 emit_block_move (dest, src,
3269 GEN_INT (int_size_in_bytes (data->passed_type)),
3270 BLOCK_OP_NORMAL);
3271 }
3272 else
3273 emit_move_insn (dest, src);
3274 }
3275
3276 if (to_conversion)
3277 {
3278 all->first_conversion_insn = get_insns ();
3279 all->last_conversion_insn = get_last_insn ();
3280 end_sequence ();
3281 }
3282
3283 SET_DECL_RTL (parm, data->stack_parm);
3284 }
3285
3286 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3287 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3288
3289 static void
3290 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3291 vec<tree> fnargs)
3292 {
3293 tree parm;
3294 tree orig_fnargs = all->orig_fnargs;
3295 unsigned i = 0;
3296
3297 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3298 {
3299 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3300 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3301 {
3302 rtx tmp, real, imag;
3303 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3304
3305 real = DECL_RTL (fnargs[i]);
3306 imag = DECL_RTL (fnargs[i + 1]);
3307 if (inner != GET_MODE (real))
3308 {
3309 real = gen_lowpart_SUBREG (inner, real);
3310 imag = gen_lowpart_SUBREG (inner, imag);
3311 }
3312
3313 if (TREE_ADDRESSABLE (parm))
3314 {
3315 rtx rmem, imem;
3316 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3317 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3318 DECL_MODE (parm),
3319 TYPE_ALIGN (TREE_TYPE (parm)));
3320
3321 /* split_complex_arg put the real and imag parts in
3322 pseudos. Move them to memory. */
3323 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3324 set_mem_attributes (tmp, parm, 1);
3325 rmem = adjust_address_nv (tmp, inner, 0);
3326 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3327 push_to_sequence2 (all->first_conversion_insn,
3328 all->last_conversion_insn);
3329 emit_move_insn (rmem, real);
3330 emit_move_insn (imem, imag);
3331 all->first_conversion_insn = get_insns ();
3332 all->last_conversion_insn = get_last_insn ();
3333 end_sequence ();
3334 }
3335 else
3336 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3337 SET_DECL_RTL (parm, tmp);
3338
3339 real = DECL_INCOMING_RTL (fnargs[i]);
3340 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3341 if (inner != GET_MODE (real))
3342 {
3343 real = gen_lowpart_SUBREG (inner, real);
3344 imag = gen_lowpart_SUBREG (inner, imag);
3345 }
3346 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3347 set_decl_incoming_rtl (parm, tmp, false);
3348 i++;
3349 }
3350 }
3351 }
3352
3353 /* Assign RTL expressions to the function's parameters. This may involve
3354 copying them into registers and using those registers as the DECL_RTL. */
3355
3356 static void
3357 assign_parms (tree fndecl)
3358 {
3359 struct assign_parm_data_all all;
3360 tree parm;
3361 vec<tree> fnargs;
3362 unsigned i;
3363
3364 crtl->args.internal_arg_pointer
3365 = targetm.calls.internal_arg_pointer ();
3366
3367 assign_parms_initialize_all (&all);
3368 fnargs = assign_parms_augmented_arg_list (&all);
3369
3370 FOR_EACH_VEC_ELT (fnargs, i, parm)
3371 {
3372 struct assign_parm_data_one data;
3373
3374 /* Extract the type of PARM; adjust it according to ABI. */
3375 assign_parm_find_data_types (&all, parm, &data);
3376
3377 /* Early out for errors and void parameters. */
3378 if (data.passed_mode == VOIDmode)
3379 {
3380 SET_DECL_RTL (parm, const0_rtx);
3381 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3382 continue;
3383 }
3384
3385 /* Estimate stack alignment from parameter alignment. */
3386 if (SUPPORTS_STACK_ALIGNMENT)
3387 {
3388 unsigned int align
3389 = targetm.calls.function_arg_boundary (data.promoted_mode,
3390 data.passed_type);
3391 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3392 align);
3393 if (TYPE_ALIGN (data.nominal_type) > align)
3394 align = MINIMUM_ALIGNMENT (data.nominal_type,
3395 TYPE_MODE (data.nominal_type),
3396 TYPE_ALIGN (data.nominal_type));
3397 if (crtl->stack_alignment_estimated < align)
3398 {
3399 gcc_assert (!crtl->stack_realign_processed);
3400 crtl->stack_alignment_estimated = align;
3401 }
3402 }
3403
3404 if (cfun->stdarg && !DECL_CHAIN (parm))
3405 assign_parms_setup_varargs (&all, &data, false);
3406
3407 /* Find out where the parameter arrives in this function. */
3408 assign_parm_find_entry_rtl (&all, &data);
3409
3410 /* Find out where stack space for this parameter might be. */
3411 if (assign_parm_is_stack_parm (&all, &data))
3412 {
3413 assign_parm_find_stack_rtl (parm, &data);
3414 assign_parm_adjust_entry_rtl (&data);
3415 }
3416
3417 /* Record permanently how this parm was passed. */
3418 if (data.passed_pointer)
3419 {
3420 rtx incoming_rtl
3421 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3422 data.entry_parm);
3423 set_decl_incoming_rtl (parm, incoming_rtl, true);
3424 }
3425 else
3426 set_decl_incoming_rtl (parm, data.entry_parm, false);
3427
3428 /* Update info on where next arg arrives in registers. */
3429 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3430 data.passed_type, data.named_arg);
3431
3432 assign_parm_adjust_stack_rtl (&data);
3433
3434 if (assign_parm_setup_block_p (&data))
3435 assign_parm_setup_block (&all, parm, &data);
3436 else if (data.passed_pointer || use_register_for_decl (parm))
3437 assign_parm_setup_reg (&all, parm, &data);
3438 else
3439 assign_parm_setup_stack (&all, parm, &data);
3440 }
3441
3442 if (targetm.calls.split_complex_arg)
3443 assign_parms_unsplit_complex (&all, fnargs);
3444
3445 fnargs.release ();
3446
3447 /* Output all parameter conversion instructions (possibly including calls)
3448 now that all parameters have been copied out of hard registers. */
3449 emit_insn (all.first_conversion_insn);
3450
3451 /* Estimate reload stack alignment from scalar return mode. */
3452 if (SUPPORTS_STACK_ALIGNMENT)
3453 {
3454 if (DECL_RESULT (fndecl))
3455 {
3456 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3457 enum machine_mode mode = TYPE_MODE (type);
3458
3459 if (mode != BLKmode
3460 && mode != VOIDmode
3461 && !AGGREGATE_TYPE_P (type))
3462 {
3463 unsigned int align = GET_MODE_ALIGNMENT (mode);
3464 if (crtl->stack_alignment_estimated < align)
3465 {
3466 gcc_assert (!crtl->stack_realign_processed);
3467 crtl->stack_alignment_estimated = align;
3468 }
3469 }
3470 }
3471 }
3472
3473 /* If we are receiving a struct value address as the first argument, set up
3474 the RTL for the function result. As this might require code to convert
3475 the transmitted address to Pmode, we do this here to ensure that possible
3476 preliminary conversions of the address have been emitted already. */
3477 if (all.function_result_decl)
3478 {
3479 tree result = DECL_RESULT (current_function_decl);
3480 rtx addr = DECL_RTL (all.function_result_decl);
3481 rtx x;
3482
3483 if (DECL_BY_REFERENCE (result))
3484 {
3485 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3486 x = addr;
3487 }
3488 else
3489 {
3490 SET_DECL_VALUE_EXPR (result,
3491 build1 (INDIRECT_REF, TREE_TYPE (result),
3492 all.function_result_decl));
3493 addr = convert_memory_address (Pmode, addr);
3494 x = gen_rtx_MEM (DECL_MODE (result), addr);
3495 set_mem_attributes (x, result, 1);
3496 }
3497
3498 DECL_HAS_VALUE_EXPR_P (result) = 1;
3499
3500 SET_DECL_RTL (result, x);
3501 }
3502
3503 /* We have aligned all the args, so add space for the pretend args. */
3504 crtl->args.pretend_args_size = all.pretend_args_size;
3505 all.stack_args_size.constant += all.extra_pretend_bytes;
3506 crtl->args.size = all.stack_args_size.constant;
3507
3508 /* Adjust function incoming argument size for alignment and
3509 minimum length. */
3510
3511 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3512 crtl->args.size = CEIL_ROUND (crtl->args.size,
3513 PARM_BOUNDARY / BITS_PER_UNIT);
3514
3515 #ifdef ARGS_GROW_DOWNWARD
3516 crtl->args.arg_offset_rtx
3517 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3518 : expand_expr (size_diffop (all.stack_args_size.var,
3519 size_int (-all.stack_args_size.constant)),
3520 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3521 #else
3522 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3523 #endif
3524
3525 /* See how many bytes, if any, of its args a function should try to pop
3526 on return. */
3527
3528 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3529 TREE_TYPE (fndecl),
3530 crtl->args.size);
3531
3532 /* For stdarg.h function, save info about
3533 regs and stack space used by the named args. */
3534
3535 crtl->args.info = all.args_so_far_v;
3536
3537 /* Set the rtx used for the function return value. Put this in its
3538 own variable so any optimizers that need this information don't have
3539 to include tree.h. Do this here so it gets done when an inlined
3540 function gets output. */
3541
3542 crtl->return_rtx
3543 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3544 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3545
3546 /* If scalar return value was computed in a pseudo-reg, or was a named
3547 return value that got dumped to the stack, copy that to the hard
3548 return register. */
3549 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3550 {
3551 tree decl_result = DECL_RESULT (fndecl);
3552 rtx decl_rtl = DECL_RTL (decl_result);
3553
3554 if (REG_P (decl_rtl)
3555 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3556 : DECL_REGISTER (decl_result))
3557 {
3558 rtx real_decl_rtl;
3559
3560 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3561 fndecl, true);
3562 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3563 /* The delay slot scheduler assumes that crtl->return_rtx
3564 holds the hard register containing the return value, not a
3565 temporary pseudo. */
3566 crtl->return_rtx = real_decl_rtl;
3567 }
3568 }
3569 }
3570
3571 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3572 For all seen types, gimplify their sizes. */
3573
3574 static tree
3575 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3576 {
3577 tree t = *tp;
3578
3579 *walk_subtrees = 0;
3580 if (TYPE_P (t))
3581 {
3582 if (POINTER_TYPE_P (t))
3583 *walk_subtrees = 1;
3584 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3585 && !TYPE_SIZES_GIMPLIFIED (t))
3586 {
3587 gimplify_type_sizes (t, (gimple_seq *) data);
3588 *walk_subtrees = 1;
3589 }
3590 }
3591
3592 return NULL;
3593 }
3594
3595 /* Gimplify the parameter list for current_function_decl. This involves
3596 evaluating SAVE_EXPRs of variable sized parameters and generating code
3597 to implement callee-copies reference parameters. Returns a sequence of
3598 statements to add to the beginning of the function. */
3599
3600 gimple_seq
3601 gimplify_parameters (void)
3602 {
3603 struct assign_parm_data_all all;
3604 tree parm;
3605 gimple_seq stmts = NULL;
3606 vec<tree> fnargs;
3607 unsigned i;
3608
3609 assign_parms_initialize_all (&all);
3610 fnargs = assign_parms_augmented_arg_list (&all);
3611
3612 FOR_EACH_VEC_ELT (fnargs, i, parm)
3613 {
3614 struct assign_parm_data_one data;
3615
3616 /* Extract the type of PARM; adjust it according to ABI. */
3617 assign_parm_find_data_types (&all, parm, &data);
3618
3619 /* Early out for errors and void parameters. */
3620 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3621 continue;
3622
3623 /* Update info on where next arg arrives in registers. */
3624 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3625 data.passed_type, data.named_arg);
3626
3627 /* ??? Once upon a time variable_size stuffed parameter list
3628 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3629 turned out to be less than manageable in the gimple world.
3630 Now we have to hunt them down ourselves. */
3631 walk_tree_without_duplicates (&data.passed_type,
3632 gimplify_parm_type, &stmts);
3633
3634 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3635 {
3636 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3637 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3638 }
3639
3640 if (data.passed_pointer)
3641 {
3642 tree type = TREE_TYPE (data.passed_type);
3643 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3644 type, data.named_arg))
3645 {
3646 tree local, t;
3647
3648 /* For constant-sized objects, this is trivial; for
3649 variable-sized objects, we have to play games. */
3650 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3651 && !(flag_stack_check == GENERIC_STACK_CHECK
3652 && compare_tree_int (DECL_SIZE_UNIT (parm),
3653 STACK_CHECK_MAX_VAR_SIZE) > 0))
3654 {
3655 local = create_tmp_var (type, get_name (parm));
3656 DECL_IGNORED_P (local) = 0;
3657 /* If PARM was addressable, move that flag over
3658 to the local copy, as its address will be taken,
3659 not the PARMs. Keep the parms address taken
3660 as we'll query that flag during gimplification. */
3661 if (TREE_ADDRESSABLE (parm))
3662 TREE_ADDRESSABLE (local) = 1;
3663 else if (TREE_CODE (type) == COMPLEX_TYPE
3664 || TREE_CODE (type) == VECTOR_TYPE)
3665 DECL_GIMPLE_REG_P (local) = 1;
3666 }
3667 else
3668 {
3669 tree ptr_type, addr;
3670
3671 ptr_type = build_pointer_type (type);
3672 addr = create_tmp_reg (ptr_type, get_name (parm));
3673 DECL_IGNORED_P (addr) = 0;
3674 local = build_fold_indirect_ref (addr);
3675
3676 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3677 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3678 size_int (DECL_ALIGN (parm)));
3679
3680 /* The call has been built for a variable-sized object. */
3681 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3682 t = fold_convert (ptr_type, t);
3683 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3684 gimplify_and_add (t, &stmts);
3685 }
3686
3687 gimplify_assign (local, parm, &stmts);
3688
3689 SET_DECL_VALUE_EXPR (parm, local);
3690 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3691 }
3692 }
3693 }
3694
3695 fnargs.release ();
3696
3697 return stmts;
3698 }
3699 \f
3700 /* Compute the size and offset from the start of the stacked arguments for a
3701 parm passed in mode PASSED_MODE and with type TYPE.
3702
3703 INITIAL_OFFSET_PTR points to the current offset into the stacked
3704 arguments.
3705
3706 The starting offset and size for this parm are returned in
3707 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3708 nonzero, the offset is that of stack slot, which is returned in
3709 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3710 padding required from the initial offset ptr to the stack slot.
3711
3712 IN_REGS is nonzero if the argument will be passed in registers. It will
3713 never be set if REG_PARM_STACK_SPACE is not defined.
3714
3715 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3716 for arguments which are passed in registers.
3717
3718 FNDECL is the function in which the argument was defined.
3719
3720 There are two types of rounding that are done. The first, controlled by
3721 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3722 argument list to be aligned to the specific boundary (in bits). This
3723 rounding affects the initial and starting offsets, but not the argument
3724 size.
3725
3726 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3727 optionally rounds the size of the parm to PARM_BOUNDARY. The
3728 initial offset is not affected by this rounding, while the size always
3729 is and the starting offset may be. */
3730
3731 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3732 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3733 callers pass in the total size of args so far as
3734 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3735
3736 void
3737 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3738 int reg_parm_stack_space, int partial,
3739 tree fndecl ATTRIBUTE_UNUSED,
3740 struct args_size *initial_offset_ptr,
3741 struct locate_and_pad_arg_data *locate)
3742 {
3743 tree sizetree;
3744 enum direction where_pad;
3745 unsigned int boundary, round_boundary;
3746 int part_size_in_regs;
3747
3748 /* If we have found a stack parm before we reach the end of the
3749 area reserved for registers, skip that area. */
3750 if (! in_regs)
3751 {
3752 if (reg_parm_stack_space > 0)
3753 {
3754 if (initial_offset_ptr->var)
3755 {
3756 initial_offset_ptr->var
3757 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3758 ssize_int (reg_parm_stack_space));
3759 initial_offset_ptr->constant = 0;
3760 }
3761 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3762 initial_offset_ptr->constant = reg_parm_stack_space;
3763 }
3764 }
3765
3766 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3767
3768 sizetree
3769 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3770 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3771 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3772 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3773 type);
3774 locate->where_pad = where_pad;
3775
3776 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3777 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3778 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3779
3780 locate->boundary = boundary;
3781
3782 if (SUPPORTS_STACK_ALIGNMENT)
3783 {
3784 /* stack_alignment_estimated can't change after stack has been
3785 realigned. */
3786 if (crtl->stack_alignment_estimated < boundary)
3787 {
3788 if (!crtl->stack_realign_processed)
3789 crtl->stack_alignment_estimated = boundary;
3790 else
3791 {
3792 /* If stack is realigned and stack alignment value
3793 hasn't been finalized, it is OK not to increase
3794 stack_alignment_estimated. The bigger alignment
3795 requirement is recorded in stack_alignment_needed
3796 below. */
3797 gcc_assert (!crtl->stack_realign_finalized
3798 && crtl->stack_realign_needed);
3799 }
3800 }
3801 }
3802
3803 /* Remember if the outgoing parameter requires extra alignment on the
3804 calling function side. */
3805 if (crtl->stack_alignment_needed < boundary)
3806 crtl->stack_alignment_needed = boundary;
3807 if (crtl->preferred_stack_boundary < boundary)
3808 crtl->preferred_stack_boundary = boundary;
3809
3810 #ifdef ARGS_GROW_DOWNWARD
3811 locate->slot_offset.constant = -initial_offset_ptr->constant;
3812 if (initial_offset_ptr->var)
3813 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3814 initial_offset_ptr->var);
3815
3816 {
3817 tree s2 = sizetree;
3818 if (where_pad != none
3819 && (!tree_fits_uhwi_p (sizetree)
3820 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3821 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3822 SUB_PARM_SIZE (locate->slot_offset, s2);
3823 }
3824
3825 locate->slot_offset.constant += part_size_in_regs;
3826
3827 if (!in_regs || reg_parm_stack_space > 0)
3828 pad_to_arg_alignment (&locate->slot_offset, boundary,
3829 &locate->alignment_pad);
3830
3831 locate->size.constant = (-initial_offset_ptr->constant
3832 - locate->slot_offset.constant);
3833 if (initial_offset_ptr->var)
3834 locate->size.var = size_binop (MINUS_EXPR,
3835 size_binop (MINUS_EXPR,
3836 ssize_int (0),
3837 initial_offset_ptr->var),
3838 locate->slot_offset.var);
3839
3840 /* Pad_below needs the pre-rounded size to know how much to pad
3841 below. */
3842 locate->offset = locate->slot_offset;
3843 if (where_pad == downward)
3844 pad_below (&locate->offset, passed_mode, sizetree);
3845
3846 #else /* !ARGS_GROW_DOWNWARD */
3847 if (!in_regs || reg_parm_stack_space > 0)
3848 pad_to_arg_alignment (initial_offset_ptr, boundary,
3849 &locate->alignment_pad);
3850 locate->slot_offset = *initial_offset_ptr;
3851
3852 #ifdef PUSH_ROUNDING
3853 if (passed_mode != BLKmode)
3854 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3855 #endif
3856
3857 /* Pad_below needs the pre-rounded size to know how much to pad below
3858 so this must be done before rounding up. */
3859 locate->offset = locate->slot_offset;
3860 if (where_pad == downward)
3861 pad_below (&locate->offset, passed_mode, sizetree);
3862
3863 if (where_pad != none
3864 && (!tree_fits_uhwi_p (sizetree)
3865 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3866 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3867
3868 ADD_PARM_SIZE (locate->size, sizetree);
3869
3870 locate->size.constant -= part_size_in_regs;
3871 #endif /* ARGS_GROW_DOWNWARD */
3872
3873 #ifdef FUNCTION_ARG_OFFSET
3874 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3875 #endif
3876 }
3877
3878 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3879 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3880
3881 static void
3882 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3883 struct args_size *alignment_pad)
3884 {
3885 tree save_var = NULL_TREE;
3886 HOST_WIDE_INT save_constant = 0;
3887 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3888 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3889
3890 #ifdef SPARC_STACK_BOUNDARY_HACK
3891 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3892 the real alignment of %sp. However, when it does this, the
3893 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3894 if (SPARC_STACK_BOUNDARY_HACK)
3895 sp_offset = 0;
3896 #endif
3897
3898 if (boundary > PARM_BOUNDARY)
3899 {
3900 save_var = offset_ptr->var;
3901 save_constant = offset_ptr->constant;
3902 }
3903
3904 alignment_pad->var = NULL_TREE;
3905 alignment_pad->constant = 0;
3906
3907 if (boundary > BITS_PER_UNIT)
3908 {
3909 if (offset_ptr->var)
3910 {
3911 tree sp_offset_tree = ssize_int (sp_offset);
3912 tree offset = size_binop (PLUS_EXPR,
3913 ARGS_SIZE_TREE (*offset_ptr),
3914 sp_offset_tree);
3915 #ifdef ARGS_GROW_DOWNWARD
3916 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3917 #else
3918 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3919 #endif
3920
3921 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3922 /* ARGS_SIZE_TREE includes constant term. */
3923 offset_ptr->constant = 0;
3924 if (boundary > PARM_BOUNDARY)
3925 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3926 save_var);
3927 }
3928 else
3929 {
3930 offset_ptr->constant = -sp_offset +
3931 #ifdef ARGS_GROW_DOWNWARD
3932 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3933 #else
3934 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3935 #endif
3936 if (boundary > PARM_BOUNDARY)
3937 alignment_pad->constant = offset_ptr->constant - save_constant;
3938 }
3939 }
3940 }
3941
3942 static void
3943 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3944 {
3945 if (passed_mode != BLKmode)
3946 {
3947 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3948 offset_ptr->constant
3949 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3950 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3951 - GET_MODE_SIZE (passed_mode));
3952 }
3953 else
3954 {
3955 if (TREE_CODE (sizetree) != INTEGER_CST
3956 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3957 {
3958 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3959 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3960 /* Add it in. */
3961 ADD_PARM_SIZE (*offset_ptr, s2);
3962 SUB_PARM_SIZE (*offset_ptr, sizetree);
3963 }
3964 }
3965 }
3966 \f
3967
3968 /* True if register REGNO was alive at a place where `setjmp' was
3969 called and was set more than once or is an argument. Such regs may
3970 be clobbered by `longjmp'. */
3971
3972 static bool
3973 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3974 {
3975 /* There appear to be cases where some local vars never reach the
3976 backend but have bogus regnos. */
3977 if (regno >= max_reg_num ())
3978 return false;
3979
3980 return ((REG_N_SETS (regno) > 1
3981 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3982 && REGNO_REG_SET_P (setjmp_crosses, regno));
3983 }
3984
3985 /* Walk the tree of blocks describing the binding levels within a
3986 function and warn about variables the might be killed by setjmp or
3987 vfork. This is done after calling flow_analysis before register
3988 allocation since that will clobber the pseudo-regs to hard
3989 regs. */
3990
3991 static void
3992 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3993 {
3994 tree decl, sub;
3995
3996 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3997 {
3998 if (TREE_CODE (decl) == VAR_DECL
3999 && DECL_RTL_SET_P (decl)
4000 && REG_P (DECL_RTL (decl))
4001 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4002 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4003 " %<longjmp%> or %<vfork%>", decl);
4004 }
4005
4006 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4007 setjmp_vars_warning (setjmp_crosses, sub);
4008 }
4009
4010 /* Do the appropriate part of setjmp_vars_warning
4011 but for arguments instead of local variables. */
4012
4013 static void
4014 setjmp_args_warning (bitmap setjmp_crosses)
4015 {
4016 tree decl;
4017 for (decl = DECL_ARGUMENTS (current_function_decl);
4018 decl; decl = DECL_CHAIN (decl))
4019 if (DECL_RTL (decl) != 0
4020 && REG_P (DECL_RTL (decl))
4021 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4022 warning (OPT_Wclobbered,
4023 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4024 decl);
4025 }
4026
4027 /* Generate warning messages for variables live across setjmp. */
4028
4029 void
4030 generate_setjmp_warnings (void)
4031 {
4032 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4033
4034 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4035 || bitmap_empty_p (setjmp_crosses))
4036 return;
4037
4038 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4039 setjmp_args_warning (setjmp_crosses);
4040 }
4041
4042 \f
4043 /* Reverse the order of elements in the fragment chain T of blocks,
4044 and return the new head of the chain (old last element).
4045 In addition to that clear BLOCK_SAME_RANGE flags when needed
4046 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4047 its super fragment origin. */
4048
4049 static tree
4050 block_fragments_nreverse (tree t)
4051 {
4052 tree prev = 0, block, next, prev_super = 0;
4053 tree super = BLOCK_SUPERCONTEXT (t);
4054 if (BLOCK_FRAGMENT_ORIGIN (super))
4055 super = BLOCK_FRAGMENT_ORIGIN (super);
4056 for (block = t; block; block = next)
4057 {
4058 next = BLOCK_FRAGMENT_CHAIN (block);
4059 BLOCK_FRAGMENT_CHAIN (block) = prev;
4060 if ((prev && !BLOCK_SAME_RANGE (prev))
4061 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4062 != prev_super))
4063 BLOCK_SAME_RANGE (block) = 0;
4064 prev_super = BLOCK_SUPERCONTEXT (block);
4065 BLOCK_SUPERCONTEXT (block) = super;
4066 prev = block;
4067 }
4068 t = BLOCK_FRAGMENT_ORIGIN (t);
4069 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4070 != prev_super)
4071 BLOCK_SAME_RANGE (t) = 0;
4072 BLOCK_SUPERCONTEXT (t) = super;
4073 return prev;
4074 }
4075
4076 /* Reverse the order of elements in the chain T of blocks,
4077 and return the new head of the chain (old last element).
4078 Also do the same on subblocks and reverse the order of elements
4079 in BLOCK_FRAGMENT_CHAIN as well. */
4080
4081 static tree
4082 blocks_nreverse_all (tree t)
4083 {
4084 tree prev = 0, block, next;
4085 for (block = t; block; block = next)
4086 {
4087 next = BLOCK_CHAIN (block);
4088 BLOCK_CHAIN (block) = prev;
4089 if (BLOCK_FRAGMENT_CHAIN (block)
4090 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4091 {
4092 BLOCK_FRAGMENT_CHAIN (block)
4093 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4094 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4095 BLOCK_SAME_RANGE (block) = 0;
4096 }
4097 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4098 prev = block;
4099 }
4100 return prev;
4101 }
4102
4103
4104 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4105 and create duplicate blocks. */
4106 /* ??? Need an option to either create block fragments or to create
4107 abstract origin duplicates of a source block. It really depends
4108 on what optimization has been performed. */
4109
4110 void
4111 reorder_blocks (void)
4112 {
4113 tree block = DECL_INITIAL (current_function_decl);
4114
4115 if (block == NULL_TREE)
4116 return;
4117
4118 stack_vec<tree, 10> block_stack;
4119
4120 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4121 clear_block_marks (block);
4122
4123 /* Prune the old trees away, so that they don't get in the way. */
4124 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4125 BLOCK_CHAIN (block) = NULL_TREE;
4126
4127 /* Recreate the block tree from the note nesting. */
4128 reorder_blocks_1 (get_insns (), block, &block_stack);
4129 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4130 }
4131
4132 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4133
4134 void
4135 clear_block_marks (tree block)
4136 {
4137 while (block)
4138 {
4139 TREE_ASM_WRITTEN (block) = 0;
4140 clear_block_marks (BLOCK_SUBBLOCKS (block));
4141 block = BLOCK_CHAIN (block);
4142 }
4143 }
4144
4145 static void
4146 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4147 {
4148 rtx insn;
4149 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4150
4151 for (insn = insns; insn; insn = NEXT_INSN (insn))
4152 {
4153 if (NOTE_P (insn))
4154 {
4155 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4156 {
4157 tree block = NOTE_BLOCK (insn);
4158 tree origin;
4159
4160 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4161 origin = block;
4162
4163 if (prev_end)
4164 BLOCK_SAME_RANGE (prev_end) = 0;
4165 prev_end = NULL_TREE;
4166
4167 /* If we have seen this block before, that means it now
4168 spans multiple address regions. Create a new fragment. */
4169 if (TREE_ASM_WRITTEN (block))
4170 {
4171 tree new_block = copy_node (block);
4172
4173 BLOCK_SAME_RANGE (new_block) = 0;
4174 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4175 BLOCK_FRAGMENT_CHAIN (new_block)
4176 = BLOCK_FRAGMENT_CHAIN (origin);
4177 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4178
4179 NOTE_BLOCK (insn) = new_block;
4180 block = new_block;
4181 }
4182
4183 if (prev_beg == current_block && prev_beg)
4184 BLOCK_SAME_RANGE (block) = 1;
4185
4186 prev_beg = origin;
4187
4188 BLOCK_SUBBLOCKS (block) = 0;
4189 TREE_ASM_WRITTEN (block) = 1;
4190 /* When there's only one block for the entire function,
4191 current_block == block and we mustn't do this, it
4192 will cause infinite recursion. */
4193 if (block != current_block)
4194 {
4195 tree super;
4196 if (block != origin)
4197 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4198 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4199 (origin))
4200 == current_block);
4201 if (p_block_stack->is_empty ())
4202 super = current_block;
4203 else
4204 {
4205 super = p_block_stack->last ();
4206 gcc_assert (super == current_block
4207 || BLOCK_FRAGMENT_ORIGIN (super)
4208 == current_block);
4209 }
4210 BLOCK_SUPERCONTEXT (block) = super;
4211 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4212 BLOCK_SUBBLOCKS (current_block) = block;
4213 current_block = origin;
4214 }
4215 p_block_stack->safe_push (block);
4216 }
4217 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4218 {
4219 NOTE_BLOCK (insn) = p_block_stack->pop ();
4220 current_block = BLOCK_SUPERCONTEXT (current_block);
4221 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4222 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4223 prev_beg = NULL_TREE;
4224 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4225 ? NOTE_BLOCK (insn) : NULL_TREE;
4226 }
4227 }
4228 else
4229 {
4230 prev_beg = NULL_TREE;
4231 if (prev_end)
4232 BLOCK_SAME_RANGE (prev_end) = 0;
4233 prev_end = NULL_TREE;
4234 }
4235 }
4236 }
4237
4238 /* Reverse the order of elements in the chain T of blocks,
4239 and return the new head of the chain (old last element). */
4240
4241 tree
4242 blocks_nreverse (tree t)
4243 {
4244 tree prev = 0, block, next;
4245 for (block = t; block; block = next)
4246 {
4247 next = BLOCK_CHAIN (block);
4248 BLOCK_CHAIN (block) = prev;
4249 prev = block;
4250 }
4251 return prev;
4252 }
4253
4254 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4255 by modifying the last node in chain 1 to point to chain 2. */
4256
4257 tree
4258 block_chainon (tree op1, tree op2)
4259 {
4260 tree t1;
4261
4262 if (!op1)
4263 return op2;
4264 if (!op2)
4265 return op1;
4266
4267 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4268 continue;
4269 BLOCK_CHAIN (t1) = op2;
4270
4271 #ifdef ENABLE_TREE_CHECKING
4272 {
4273 tree t2;
4274 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4275 gcc_assert (t2 != t1);
4276 }
4277 #endif
4278
4279 return op1;
4280 }
4281
4282 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4283 non-NULL, list them all into VECTOR, in a depth-first preorder
4284 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4285 blocks. */
4286
4287 static int
4288 all_blocks (tree block, tree *vector)
4289 {
4290 int n_blocks = 0;
4291
4292 while (block)
4293 {
4294 TREE_ASM_WRITTEN (block) = 0;
4295
4296 /* Record this block. */
4297 if (vector)
4298 vector[n_blocks] = block;
4299
4300 ++n_blocks;
4301
4302 /* Record the subblocks, and their subblocks... */
4303 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4304 vector ? vector + n_blocks : 0);
4305 block = BLOCK_CHAIN (block);
4306 }
4307
4308 return n_blocks;
4309 }
4310
4311 /* Return a vector containing all the blocks rooted at BLOCK. The
4312 number of elements in the vector is stored in N_BLOCKS_P. The
4313 vector is dynamically allocated; it is the caller's responsibility
4314 to call `free' on the pointer returned. */
4315
4316 static tree *
4317 get_block_vector (tree block, int *n_blocks_p)
4318 {
4319 tree *block_vector;
4320
4321 *n_blocks_p = all_blocks (block, NULL);
4322 block_vector = XNEWVEC (tree, *n_blocks_p);
4323 all_blocks (block, block_vector);
4324
4325 return block_vector;
4326 }
4327
4328 static GTY(()) int next_block_index = 2;
4329
4330 /* Set BLOCK_NUMBER for all the blocks in FN. */
4331
4332 void
4333 number_blocks (tree fn)
4334 {
4335 int i;
4336 int n_blocks;
4337 tree *block_vector;
4338
4339 /* For SDB and XCOFF debugging output, we start numbering the blocks
4340 from 1 within each function, rather than keeping a running
4341 count. */
4342 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4343 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4344 next_block_index = 1;
4345 #endif
4346
4347 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4348
4349 /* The top-level BLOCK isn't numbered at all. */
4350 for (i = 1; i < n_blocks; ++i)
4351 /* We number the blocks from two. */
4352 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4353
4354 free (block_vector);
4355
4356 return;
4357 }
4358
4359 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4360
4361 DEBUG_FUNCTION tree
4362 debug_find_var_in_block_tree (tree var, tree block)
4363 {
4364 tree t;
4365
4366 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4367 if (t == var)
4368 return block;
4369
4370 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4371 {
4372 tree ret = debug_find_var_in_block_tree (var, t);
4373 if (ret)
4374 return ret;
4375 }
4376
4377 return NULL_TREE;
4378 }
4379 \f
4380 /* Keep track of whether we're in a dummy function context. If we are,
4381 we don't want to invoke the set_current_function hook, because we'll
4382 get into trouble if the hook calls target_reinit () recursively or
4383 when the initial initialization is not yet complete. */
4384
4385 static bool in_dummy_function;
4386
4387 /* Invoke the target hook when setting cfun. Update the optimization options
4388 if the function uses different options than the default. */
4389
4390 static void
4391 invoke_set_current_function_hook (tree fndecl)
4392 {
4393 if (!in_dummy_function)
4394 {
4395 tree opts = ((fndecl)
4396 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4397 : optimization_default_node);
4398
4399 if (!opts)
4400 opts = optimization_default_node;
4401
4402 /* Change optimization options if needed. */
4403 if (optimization_current_node != opts)
4404 {
4405 optimization_current_node = opts;
4406 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4407 }
4408
4409 targetm.set_current_function (fndecl);
4410 this_fn_optabs = this_target_optabs;
4411
4412 if (opts != optimization_default_node)
4413 {
4414 init_tree_optimization_optabs (opts);
4415 if (TREE_OPTIMIZATION_OPTABS (opts))
4416 this_fn_optabs = (struct target_optabs *)
4417 TREE_OPTIMIZATION_OPTABS (opts);
4418 }
4419 }
4420 }
4421
4422 /* cfun should never be set directly; use this function. */
4423
4424 void
4425 set_cfun (struct function *new_cfun)
4426 {
4427 if (cfun != new_cfun)
4428 {
4429 cfun = new_cfun;
4430 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4431 }
4432 }
4433
4434 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4435
4436 static vec<function_p> cfun_stack;
4437
4438 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4439 current_function_decl accordingly. */
4440
4441 void
4442 push_cfun (struct function *new_cfun)
4443 {
4444 gcc_assert ((!cfun && !current_function_decl)
4445 || (cfun && current_function_decl == cfun->decl));
4446 cfun_stack.safe_push (cfun);
4447 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4448 set_cfun (new_cfun);
4449 }
4450
4451 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4452
4453 void
4454 pop_cfun (void)
4455 {
4456 struct function *new_cfun = cfun_stack.pop ();
4457 /* When in_dummy_function, we do have a cfun but current_function_decl is
4458 NULL. We also allow pushing NULL cfun and subsequently changing
4459 current_function_decl to something else and have both restored by
4460 pop_cfun. */
4461 gcc_checking_assert (in_dummy_function
4462 || !cfun
4463 || current_function_decl == cfun->decl);
4464 set_cfun (new_cfun);
4465 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4466 }
4467
4468 /* Return value of funcdef and increase it. */
4469 int
4470 get_next_funcdef_no (void)
4471 {
4472 return funcdef_no++;
4473 }
4474
4475 /* Return value of funcdef. */
4476 int
4477 get_last_funcdef_no (void)
4478 {
4479 return funcdef_no;
4480 }
4481
4482 /* Allocate a function structure for FNDECL and set its contents
4483 to the defaults. Set cfun to the newly-allocated object.
4484 Some of the helper functions invoked during initialization assume
4485 that cfun has already been set. Therefore, assign the new object
4486 directly into cfun and invoke the back end hook explicitly at the
4487 very end, rather than initializing a temporary and calling set_cfun
4488 on it.
4489
4490 ABSTRACT_P is true if this is a function that will never be seen by
4491 the middle-end. Such functions are front-end concepts (like C++
4492 function templates) that do not correspond directly to functions
4493 placed in object files. */
4494
4495 void
4496 allocate_struct_function (tree fndecl, bool abstract_p)
4497 {
4498 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4499
4500 cfun = ggc_alloc_cleared_function ();
4501
4502 init_eh_for_function ();
4503
4504 if (init_machine_status)
4505 cfun->machine = (*init_machine_status) ();
4506
4507 #ifdef OVERRIDE_ABI_FORMAT
4508 OVERRIDE_ABI_FORMAT (fndecl);
4509 #endif
4510
4511 if (fndecl != NULL_TREE)
4512 {
4513 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4514 cfun->decl = fndecl;
4515 current_function_funcdef_no = get_next_funcdef_no ();
4516 }
4517
4518 invoke_set_current_function_hook (fndecl);
4519
4520 if (fndecl != NULL_TREE)
4521 {
4522 tree result = DECL_RESULT (fndecl);
4523 if (!abstract_p && aggregate_value_p (result, fndecl))
4524 {
4525 #ifdef PCC_STATIC_STRUCT_RETURN
4526 cfun->returns_pcc_struct = 1;
4527 #endif
4528 cfun->returns_struct = 1;
4529 }
4530
4531 cfun->stdarg = stdarg_p (fntype);
4532
4533 /* Assume all registers in stdarg functions need to be saved. */
4534 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4535 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4536
4537 /* ??? This could be set on a per-function basis by the front-end
4538 but is this worth the hassle? */
4539 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4540 }
4541 }
4542
4543 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4544 instead of just setting it. */
4545
4546 void
4547 push_struct_function (tree fndecl)
4548 {
4549 /* When in_dummy_function we might be in the middle of a pop_cfun and
4550 current_function_decl and cfun may not match. */
4551 gcc_assert (in_dummy_function
4552 || (!cfun && !current_function_decl)
4553 || (cfun && current_function_decl == cfun->decl));
4554 cfun_stack.safe_push (cfun);
4555 current_function_decl = fndecl;
4556 allocate_struct_function (fndecl, false);
4557 }
4558
4559 /* Reset crtl and other non-struct-function variables to defaults as
4560 appropriate for emitting rtl at the start of a function. */
4561
4562 static void
4563 prepare_function_start (void)
4564 {
4565 gcc_assert (!crtl->emit.x_last_insn);
4566 init_temp_slots ();
4567 init_emit ();
4568 init_varasm_status ();
4569 init_expr ();
4570 default_rtl_profile ();
4571
4572 if (flag_stack_usage_info)
4573 {
4574 cfun->su = ggc_alloc_cleared_stack_usage ();
4575 cfun->su->static_stack_size = -1;
4576 }
4577
4578 cse_not_expected = ! optimize;
4579
4580 /* Caller save not needed yet. */
4581 caller_save_needed = 0;
4582
4583 /* We haven't done register allocation yet. */
4584 reg_renumber = 0;
4585
4586 /* Indicate that we have not instantiated virtual registers yet. */
4587 virtuals_instantiated = 0;
4588
4589 /* Indicate that we want CONCATs now. */
4590 generating_concat_p = 1;
4591
4592 /* Indicate we have no need of a frame pointer yet. */
4593 frame_pointer_needed = 0;
4594 }
4595
4596 /* Initialize the rtl expansion mechanism so that we can do simple things
4597 like generate sequences. This is used to provide a context during global
4598 initialization of some passes. You must call expand_dummy_function_end
4599 to exit this context. */
4600
4601 void
4602 init_dummy_function_start (void)
4603 {
4604 gcc_assert (!in_dummy_function);
4605 in_dummy_function = true;
4606 push_struct_function (NULL_TREE);
4607 prepare_function_start ();
4608 }
4609
4610 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4611 and initialize static variables for generating RTL for the statements
4612 of the function. */
4613
4614 void
4615 init_function_start (tree subr)
4616 {
4617 if (subr && DECL_STRUCT_FUNCTION (subr))
4618 set_cfun (DECL_STRUCT_FUNCTION (subr));
4619 else
4620 allocate_struct_function (subr, false);
4621 prepare_function_start ();
4622 decide_function_section (subr);
4623
4624 /* Warn if this value is an aggregate type,
4625 regardless of which calling convention we are using for it. */
4626 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4627 warning (OPT_Waggregate_return, "function returns an aggregate");
4628 }
4629
4630 /* Expand code to verify the stack_protect_guard. This is invoked at
4631 the end of a function to be protected. */
4632
4633 #ifndef HAVE_stack_protect_test
4634 # define HAVE_stack_protect_test 0
4635 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4636 #endif
4637
4638 void
4639 stack_protect_epilogue (void)
4640 {
4641 tree guard_decl = targetm.stack_protect_guard ();
4642 rtx label = gen_label_rtx ();
4643 rtx x, y, tmp;
4644
4645 x = expand_normal (crtl->stack_protect_guard);
4646 y = expand_normal (guard_decl);
4647
4648 /* Allow the target to compare Y with X without leaking either into
4649 a register. */
4650 switch (HAVE_stack_protect_test != 0)
4651 {
4652 case 1:
4653 tmp = gen_stack_protect_test (x, y, label);
4654 if (tmp)
4655 {
4656 emit_insn (tmp);
4657 break;
4658 }
4659 /* FALLTHRU */
4660
4661 default:
4662 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4663 break;
4664 }
4665
4666 /* The noreturn predictor has been moved to the tree level. The rtl-level
4667 predictors estimate this branch about 20%, which isn't enough to get
4668 things moved out of line. Since this is the only extant case of adding
4669 a noreturn function at the rtl level, it doesn't seem worth doing ought
4670 except adding the prediction by hand. */
4671 tmp = get_last_insn ();
4672 if (JUMP_P (tmp))
4673 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4674
4675 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4676 free_temp_slots ();
4677 emit_label (label);
4678 }
4679 \f
4680 /* Start the RTL for a new function, and set variables used for
4681 emitting RTL.
4682 SUBR is the FUNCTION_DECL node.
4683 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4684 the function's parameters, which must be run at any return statement. */
4685
4686 void
4687 expand_function_start (tree subr)
4688 {
4689 /* Make sure volatile mem refs aren't considered
4690 valid operands of arithmetic insns. */
4691 init_recog_no_volatile ();
4692
4693 crtl->profile
4694 = (profile_flag
4695 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4696
4697 crtl->limit_stack
4698 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4699
4700 /* Make the label for return statements to jump to. Do not special
4701 case machines with special return instructions -- they will be
4702 handled later during jump, ifcvt, or epilogue creation. */
4703 return_label = gen_label_rtx ();
4704
4705 /* Initialize rtx used to return the value. */
4706 /* Do this before assign_parms so that we copy the struct value address
4707 before any library calls that assign parms might generate. */
4708
4709 /* Decide whether to return the value in memory or in a register. */
4710 if (aggregate_value_p (DECL_RESULT (subr), subr))
4711 {
4712 /* Returning something that won't go in a register. */
4713 rtx value_address = 0;
4714
4715 #ifdef PCC_STATIC_STRUCT_RETURN
4716 if (cfun->returns_pcc_struct)
4717 {
4718 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4719 value_address = assemble_static_space (size);
4720 }
4721 else
4722 #endif
4723 {
4724 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4725 /* Expect to be passed the address of a place to store the value.
4726 If it is passed as an argument, assign_parms will take care of
4727 it. */
4728 if (sv)
4729 {
4730 value_address = gen_reg_rtx (Pmode);
4731 emit_move_insn (value_address, sv);
4732 }
4733 }
4734 if (value_address)
4735 {
4736 rtx x = value_address;
4737 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4738 {
4739 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4740 set_mem_attributes (x, DECL_RESULT (subr), 1);
4741 }
4742 SET_DECL_RTL (DECL_RESULT (subr), x);
4743 }
4744 }
4745 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4746 /* If return mode is void, this decl rtl should not be used. */
4747 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4748 else
4749 {
4750 /* Compute the return values into a pseudo reg, which we will copy
4751 into the true return register after the cleanups are done. */
4752 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4753 if (TYPE_MODE (return_type) != BLKmode
4754 && targetm.calls.return_in_msb (return_type))
4755 /* expand_function_end will insert the appropriate padding in
4756 this case. Use the return value's natural (unpadded) mode
4757 within the function proper. */
4758 SET_DECL_RTL (DECL_RESULT (subr),
4759 gen_reg_rtx (TYPE_MODE (return_type)));
4760 else
4761 {
4762 /* In order to figure out what mode to use for the pseudo, we
4763 figure out what the mode of the eventual return register will
4764 actually be, and use that. */
4765 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4766
4767 /* Structures that are returned in registers are not
4768 aggregate_value_p, so we may see a PARALLEL or a REG. */
4769 if (REG_P (hard_reg))
4770 SET_DECL_RTL (DECL_RESULT (subr),
4771 gen_reg_rtx (GET_MODE (hard_reg)));
4772 else
4773 {
4774 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4775 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4776 }
4777 }
4778
4779 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4780 result to the real return register(s). */
4781 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4782 }
4783
4784 /* Initialize rtx for parameters and local variables.
4785 In some cases this requires emitting insns. */
4786 assign_parms (subr);
4787
4788 /* If function gets a static chain arg, store it. */
4789 if (cfun->static_chain_decl)
4790 {
4791 tree parm = cfun->static_chain_decl;
4792 rtx local, chain, insn;
4793
4794 local = gen_reg_rtx (Pmode);
4795 chain = targetm.calls.static_chain (current_function_decl, true);
4796
4797 set_decl_incoming_rtl (parm, chain, false);
4798 SET_DECL_RTL (parm, local);
4799 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4800
4801 insn = emit_move_insn (local, chain);
4802
4803 /* Mark the register as eliminable, similar to parameters. */
4804 if (MEM_P (chain)
4805 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4806 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4807 }
4808
4809 /* If the function receives a non-local goto, then store the
4810 bits we need to restore the frame pointer. */
4811 if (cfun->nonlocal_goto_save_area)
4812 {
4813 tree t_save;
4814 rtx r_save;
4815
4816 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4817 gcc_assert (DECL_RTL_SET_P (var));
4818
4819 t_save = build4 (ARRAY_REF,
4820 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4821 cfun->nonlocal_goto_save_area,
4822 integer_zero_node, NULL_TREE, NULL_TREE);
4823 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4824 gcc_assert (GET_MODE (r_save) == Pmode);
4825
4826 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4827 update_nonlocal_goto_save_area ();
4828 }
4829
4830 /* The following was moved from init_function_start.
4831 The move is supposed to make sdb output more accurate. */
4832 /* Indicate the beginning of the function body,
4833 as opposed to parm setup. */
4834 emit_note (NOTE_INSN_FUNCTION_BEG);
4835
4836 gcc_assert (NOTE_P (get_last_insn ()));
4837
4838 parm_birth_insn = get_last_insn ();
4839
4840 if (crtl->profile)
4841 {
4842 #ifdef PROFILE_HOOK
4843 PROFILE_HOOK (current_function_funcdef_no);
4844 #endif
4845 }
4846
4847 /* If we are doing generic stack checking, the probe should go here. */
4848 if (flag_stack_check == GENERIC_STACK_CHECK)
4849 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4850 }
4851 \f
4852 /* Undo the effects of init_dummy_function_start. */
4853 void
4854 expand_dummy_function_end (void)
4855 {
4856 gcc_assert (in_dummy_function);
4857
4858 /* End any sequences that failed to be closed due to syntax errors. */
4859 while (in_sequence_p ())
4860 end_sequence ();
4861
4862 /* Outside function body, can't compute type's actual size
4863 until next function's body starts. */
4864
4865 free_after_parsing (cfun);
4866 free_after_compilation (cfun);
4867 pop_cfun ();
4868 in_dummy_function = false;
4869 }
4870
4871 /* Call DOIT for each hard register used as a return value from
4872 the current function. */
4873
4874 void
4875 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4876 {
4877 rtx outgoing = crtl->return_rtx;
4878
4879 if (! outgoing)
4880 return;
4881
4882 if (REG_P (outgoing))
4883 (*doit) (outgoing, arg);
4884 else if (GET_CODE (outgoing) == PARALLEL)
4885 {
4886 int i;
4887
4888 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4889 {
4890 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4891
4892 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4893 (*doit) (x, arg);
4894 }
4895 }
4896 }
4897
4898 static void
4899 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4900 {
4901 emit_clobber (reg);
4902 }
4903
4904 void
4905 clobber_return_register (void)
4906 {
4907 diddle_return_value (do_clobber_return_reg, NULL);
4908
4909 /* In case we do use pseudo to return value, clobber it too. */
4910 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4911 {
4912 tree decl_result = DECL_RESULT (current_function_decl);
4913 rtx decl_rtl = DECL_RTL (decl_result);
4914 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4915 {
4916 do_clobber_return_reg (decl_rtl, NULL);
4917 }
4918 }
4919 }
4920
4921 static void
4922 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4923 {
4924 emit_use (reg);
4925 }
4926
4927 static void
4928 use_return_register (void)
4929 {
4930 diddle_return_value (do_use_return_reg, NULL);
4931 }
4932
4933 /* Possibly warn about unused parameters. */
4934 void
4935 do_warn_unused_parameter (tree fn)
4936 {
4937 tree decl;
4938
4939 for (decl = DECL_ARGUMENTS (fn);
4940 decl; decl = DECL_CHAIN (decl))
4941 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4942 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4943 && !TREE_NO_WARNING (decl))
4944 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4945 }
4946
4947 /* Set the location of the insn chain starting at INSN to LOC. */
4948
4949 static void
4950 set_insn_locations (rtx insn, int loc)
4951 {
4952 while (insn != NULL_RTX)
4953 {
4954 if (INSN_P (insn))
4955 INSN_LOCATION (insn) = loc;
4956 insn = NEXT_INSN (insn);
4957 }
4958 }
4959
4960 /* Generate RTL for the end of the current function. */
4961
4962 void
4963 expand_function_end (void)
4964 {
4965 rtx clobber_after;
4966
4967 /* If arg_pointer_save_area was referenced only from a nested
4968 function, we will not have initialized it yet. Do that now. */
4969 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4970 get_arg_pointer_save_area ();
4971
4972 /* If we are doing generic stack checking and this function makes calls,
4973 do a stack probe at the start of the function to ensure we have enough
4974 space for another stack frame. */
4975 if (flag_stack_check == GENERIC_STACK_CHECK)
4976 {
4977 rtx insn, seq;
4978
4979 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4980 if (CALL_P (insn))
4981 {
4982 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4983 start_sequence ();
4984 if (STACK_CHECK_MOVING_SP)
4985 anti_adjust_stack_and_probe (max_frame_size, true);
4986 else
4987 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4988 seq = get_insns ();
4989 end_sequence ();
4990 set_insn_locations (seq, prologue_location);
4991 emit_insn_before (seq, stack_check_probe_note);
4992 break;
4993 }
4994 }
4995
4996 /* End any sequences that failed to be closed due to syntax errors. */
4997 while (in_sequence_p ())
4998 end_sequence ();
4999
5000 clear_pending_stack_adjust ();
5001 do_pending_stack_adjust ();
5002
5003 /* Output a linenumber for the end of the function.
5004 SDB depends on this. */
5005 set_curr_insn_location (input_location);
5006
5007 /* Before the return label (if any), clobber the return
5008 registers so that they are not propagated live to the rest of
5009 the function. This can only happen with functions that drop
5010 through; if there had been a return statement, there would
5011 have either been a return rtx, or a jump to the return label.
5012
5013 We delay actual code generation after the current_function_value_rtx
5014 is computed. */
5015 clobber_after = get_last_insn ();
5016
5017 /* Output the label for the actual return from the function. */
5018 emit_label (return_label);
5019
5020 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5021 {
5022 /* Let except.c know where it should emit the call to unregister
5023 the function context for sjlj exceptions. */
5024 if (flag_exceptions)
5025 sjlj_emit_function_exit_after (get_last_insn ());
5026 }
5027 else
5028 {
5029 /* We want to ensure that instructions that may trap are not
5030 moved into the epilogue by scheduling, because we don't
5031 always emit unwind information for the epilogue. */
5032 if (cfun->can_throw_non_call_exceptions)
5033 emit_insn (gen_blockage ());
5034 }
5035
5036 /* If this is an implementation of throw, do what's necessary to
5037 communicate between __builtin_eh_return and the epilogue. */
5038 expand_eh_return ();
5039
5040 /* If scalar return value was computed in a pseudo-reg, or was a named
5041 return value that got dumped to the stack, copy that to the hard
5042 return register. */
5043 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5044 {
5045 tree decl_result = DECL_RESULT (current_function_decl);
5046 rtx decl_rtl = DECL_RTL (decl_result);
5047
5048 if (REG_P (decl_rtl)
5049 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5050 : DECL_REGISTER (decl_result))
5051 {
5052 rtx real_decl_rtl = crtl->return_rtx;
5053
5054 /* This should be set in assign_parms. */
5055 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5056
5057 /* If this is a BLKmode structure being returned in registers,
5058 then use the mode computed in expand_return. Note that if
5059 decl_rtl is memory, then its mode may have been changed,
5060 but that crtl->return_rtx has not. */
5061 if (GET_MODE (real_decl_rtl) == BLKmode)
5062 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5063
5064 /* If a non-BLKmode return value should be padded at the least
5065 significant end of the register, shift it left by the appropriate
5066 amount. BLKmode results are handled using the group load/store
5067 machinery. */
5068 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5069 && REG_P (real_decl_rtl)
5070 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5071 {
5072 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5073 REGNO (real_decl_rtl)),
5074 decl_rtl);
5075 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5076 }
5077 /* If a named return value dumped decl_return to memory, then
5078 we may need to re-do the PROMOTE_MODE signed/unsigned
5079 extension. */
5080 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5081 {
5082 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5083 promote_function_mode (TREE_TYPE (decl_result),
5084 GET_MODE (decl_rtl), &unsignedp,
5085 TREE_TYPE (current_function_decl), 1);
5086
5087 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5088 }
5089 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5090 {
5091 /* If expand_function_start has created a PARALLEL for decl_rtl,
5092 move the result to the real return registers. Otherwise, do
5093 a group load from decl_rtl for a named return. */
5094 if (GET_CODE (decl_rtl) == PARALLEL)
5095 emit_group_move (real_decl_rtl, decl_rtl);
5096 else
5097 emit_group_load (real_decl_rtl, decl_rtl,
5098 TREE_TYPE (decl_result),
5099 int_size_in_bytes (TREE_TYPE (decl_result)));
5100 }
5101 /* In the case of complex integer modes smaller than a word, we'll
5102 need to generate some non-trivial bitfield insertions. Do that
5103 on a pseudo and not the hard register. */
5104 else if (GET_CODE (decl_rtl) == CONCAT
5105 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5106 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5107 {
5108 int old_generating_concat_p;
5109 rtx tmp;
5110
5111 old_generating_concat_p = generating_concat_p;
5112 generating_concat_p = 0;
5113 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5114 generating_concat_p = old_generating_concat_p;
5115
5116 emit_move_insn (tmp, decl_rtl);
5117 emit_move_insn (real_decl_rtl, tmp);
5118 }
5119 else
5120 emit_move_insn (real_decl_rtl, decl_rtl);
5121 }
5122 }
5123
5124 /* If returning a structure, arrange to return the address of the value
5125 in a place where debuggers expect to find it.
5126
5127 If returning a structure PCC style,
5128 the caller also depends on this value.
5129 And cfun->returns_pcc_struct is not necessarily set. */
5130 if (cfun->returns_struct
5131 || cfun->returns_pcc_struct)
5132 {
5133 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5134 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5135 rtx outgoing;
5136
5137 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5138 type = TREE_TYPE (type);
5139 else
5140 value_address = XEXP (value_address, 0);
5141
5142 outgoing = targetm.calls.function_value (build_pointer_type (type),
5143 current_function_decl, true);
5144
5145 /* Mark this as a function return value so integrate will delete the
5146 assignment and USE below when inlining this function. */
5147 REG_FUNCTION_VALUE_P (outgoing) = 1;
5148
5149 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5150 value_address = convert_memory_address (GET_MODE (outgoing),
5151 value_address);
5152
5153 emit_move_insn (outgoing, value_address);
5154
5155 /* Show return register used to hold result (in this case the address
5156 of the result. */
5157 crtl->return_rtx = outgoing;
5158 }
5159
5160 /* Emit the actual code to clobber return register. */
5161 {
5162 rtx seq;
5163
5164 start_sequence ();
5165 clobber_return_register ();
5166 seq = get_insns ();
5167 end_sequence ();
5168
5169 emit_insn_after (seq, clobber_after);
5170 }
5171
5172 /* Output the label for the naked return from the function. */
5173 if (naked_return_label)
5174 emit_label (naked_return_label);
5175
5176 /* @@@ This is a kludge. We want to ensure that instructions that
5177 may trap are not moved into the epilogue by scheduling, because
5178 we don't always emit unwind information for the epilogue. */
5179 if (cfun->can_throw_non_call_exceptions
5180 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5181 emit_insn (gen_blockage ());
5182
5183 /* If stack protection is enabled for this function, check the guard. */
5184 if (crtl->stack_protect_guard)
5185 stack_protect_epilogue ();
5186
5187 /* If we had calls to alloca, and this machine needs
5188 an accurate stack pointer to exit the function,
5189 insert some code to save and restore the stack pointer. */
5190 if (! EXIT_IGNORE_STACK
5191 && cfun->calls_alloca)
5192 {
5193 rtx tem = 0, seq;
5194
5195 start_sequence ();
5196 emit_stack_save (SAVE_FUNCTION, &tem);
5197 seq = get_insns ();
5198 end_sequence ();
5199 emit_insn_before (seq, parm_birth_insn);
5200
5201 emit_stack_restore (SAVE_FUNCTION, tem);
5202 }
5203
5204 /* ??? This should no longer be necessary since stupid is no longer with
5205 us, but there are some parts of the compiler (eg reload_combine, and
5206 sh mach_dep_reorg) that still try and compute their own lifetime info
5207 instead of using the general framework. */
5208 use_return_register ();
5209 }
5210
5211 rtx
5212 get_arg_pointer_save_area (void)
5213 {
5214 rtx ret = arg_pointer_save_area;
5215
5216 if (! ret)
5217 {
5218 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5219 arg_pointer_save_area = ret;
5220 }
5221
5222 if (! crtl->arg_pointer_save_area_init)
5223 {
5224 rtx seq;
5225
5226 /* Save the arg pointer at the beginning of the function. The
5227 generated stack slot may not be a valid memory address, so we
5228 have to check it and fix it if necessary. */
5229 start_sequence ();
5230 emit_move_insn (validize_mem (ret),
5231 crtl->args.internal_arg_pointer);
5232 seq = get_insns ();
5233 end_sequence ();
5234
5235 push_topmost_sequence ();
5236 emit_insn_after (seq, entry_of_function ());
5237 pop_topmost_sequence ();
5238
5239 crtl->arg_pointer_save_area_init = true;
5240 }
5241
5242 return ret;
5243 }
5244 \f
5245 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5246 for the first time. */
5247
5248 static void
5249 record_insns (rtx insns, rtx end, htab_t *hashp)
5250 {
5251 rtx tmp;
5252 htab_t hash = *hashp;
5253
5254 if (hash == NULL)
5255 *hashp = hash
5256 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5257
5258 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5259 {
5260 void **slot = htab_find_slot (hash, tmp, INSERT);
5261 gcc_assert (*slot == NULL);
5262 *slot = tmp;
5263 }
5264 }
5265
5266 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5267 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5268 insn, then record COPY as well. */
5269
5270 void
5271 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5272 {
5273 htab_t hash;
5274 void **slot;
5275
5276 hash = epilogue_insn_hash;
5277 if (!hash || !htab_find (hash, insn))
5278 {
5279 hash = prologue_insn_hash;
5280 if (!hash || !htab_find (hash, insn))
5281 return;
5282 }
5283
5284 slot = htab_find_slot (hash, copy, INSERT);
5285 gcc_assert (*slot == NULL);
5286 *slot = copy;
5287 }
5288
5289 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5290 we can be running after reorg, SEQUENCE rtl is possible. */
5291
5292 static bool
5293 contains (const_rtx insn, htab_t hash)
5294 {
5295 if (hash == NULL)
5296 return false;
5297
5298 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5299 {
5300 int i;
5301 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5302 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5303 return true;
5304 return false;
5305 }
5306
5307 return htab_find (hash, insn) != NULL;
5308 }
5309
5310 int
5311 prologue_epilogue_contains (const_rtx insn)
5312 {
5313 if (contains (insn, prologue_insn_hash))
5314 return 1;
5315 if (contains (insn, epilogue_insn_hash))
5316 return 1;
5317 return 0;
5318 }
5319
5320 #ifdef HAVE_simple_return
5321
5322 /* Return true if INSN requires the stack frame to be set up.
5323 PROLOGUE_USED contains the hard registers used in the function
5324 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5325 prologue to set up for the function. */
5326 bool
5327 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5328 HARD_REG_SET set_up_by_prologue)
5329 {
5330 df_ref *df_rec;
5331 HARD_REG_SET hardregs;
5332 unsigned regno;
5333
5334 if (CALL_P (insn))
5335 return !SIBLING_CALL_P (insn);
5336
5337 /* We need a frame to get the unique CFA expected by the unwinder. */
5338 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5339 return true;
5340
5341 CLEAR_HARD_REG_SET (hardregs);
5342 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5343 {
5344 rtx dreg = DF_REF_REG (*df_rec);
5345
5346 if (!REG_P (dreg))
5347 continue;
5348
5349 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5350 REGNO (dreg));
5351 }
5352 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5353 return true;
5354 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5355 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5356 if (TEST_HARD_REG_BIT (hardregs, regno)
5357 && df_regs_ever_live_p (regno))
5358 return true;
5359
5360 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5361 {
5362 rtx reg = DF_REF_REG (*df_rec);
5363
5364 if (!REG_P (reg))
5365 continue;
5366
5367 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5368 REGNO (reg));
5369 }
5370 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5371 return true;
5372
5373 return false;
5374 }
5375
5376 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5377 and if BB is its only predecessor. Return that block if so,
5378 otherwise return null. */
5379
5380 static basic_block
5381 next_block_for_reg (basic_block bb, int regno, int end_regno)
5382 {
5383 edge e, live_edge;
5384 edge_iterator ei;
5385 bitmap live;
5386 int i;
5387
5388 live_edge = NULL;
5389 FOR_EACH_EDGE (e, ei, bb->succs)
5390 {
5391 live = df_get_live_in (e->dest);
5392 for (i = regno; i < end_regno; i++)
5393 if (REGNO_REG_SET_P (live, i))
5394 {
5395 if (live_edge && live_edge != e)
5396 return NULL;
5397 live_edge = e;
5398 }
5399 }
5400
5401 /* We can sometimes encounter dead code. Don't try to move it
5402 into the exit block. */
5403 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5404 return NULL;
5405
5406 /* Reject targets of abnormal edges. This is needed for correctness
5407 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5408 exception edges even though it is generally treated as call-saved
5409 for the majority of the compilation. Moving across abnormal edges
5410 isn't going to be interesting for shrink-wrap usage anyway. */
5411 if (live_edge->flags & EDGE_ABNORMAL)
5412 return NULL;
5413
5414 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5415 return NULL;
5416
5417 return live_edge->dest;
5418 }
5419
5420 /* Try to move INSN from BB to a successor. Return true on success.
5421 USES and DEFS are the set of registers that are used and defined
5422 after INSN in BB. */
5423
5424 static bool
5425 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5426 const HARD_REG_SET uses,
5427 const HARD_REG_SET defs)
5428 {
5429 rtx set, src, dest;
5430 bitmap live_out, live_in, bb_uses, bb_defs;
5431 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5432 basic_block next_block;
5433
5434 /* Look for a simple register copy. */
5435 set = single_set (insn);
5436 if (!set)
5437 return false;
5438 src = SET_SRC (set);
5439 dest = SET_DEST (set);
5440 if (!REG_P (dest) || !REG_P (src))
5441 return false;
5442
5443 /* Make sure that the source register isn't defined later in BB. */
5444 sregno = REGNO (src);
5445 end_sregno = END_REGNO (src);
5446 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5447 return false;
5448
5449 /* Make sure that the destination register isn't referenced later in BB. */
5450 dregno = REGNO (dest);
5451 end_dregno = END_REGNO (dest);
5452 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5453 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5454 return false;
5455
5456 /* See whether there is a successor block to which we could move INSN. */
5457 next_block = next_block_for_reg (bb, dregno, end_dregno);
5458 if (!next_block)
5459 return false;
5460
5461 /* At this point we are committed to moving INSN, but let's try to
5462 move it as far as we can. */
5463 do
5464 {
5465 live_out = df_get_live_out (bb);
5466 live_in = df_get_live_in (next_block);
5467 bb = next_block;
5468
5469 /* Check whether BB uses DEST or clobbers DEST. We need to add
5470 INSN to BB if so. Either way, DEST is no longer live on entry,
5471 except for any part that overlaps SRC (next loop). */
5472 bb_uses = &DF_LR_BB_INFO (bb)->use;
5473 bb_defs = &DF_LR_BB_INFO (bb)->def;
5474 if (df_live)
5475 {
5476 for (i = dregno; i < end_dregno; i++)
5477 {
5478 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5479 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5480 next_block = NULL;
5481 CLEAR_REGNO_REG_SET (live_out, i);
5482 CLEAR_REGNO_REG_SET (live_in, i);
5483 }
5484
5485 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5486 Either way, SRC is now live on entry. */
5487 for (i = sregno; i < end_sregno; i++)
5488 {
5489 if (REGNO_REG_SET_P (bb_defs, i)
5490 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5491 next_block = NULL;
5492 SET_REGNO_REG_SET (live_out, i);
5493 SET_REGNO_REG_SET (live_in, i);
5494 }
5495 }
5496 else
5497 {
5498 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5499 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5500 at -O1, just give up searching NEXT_BLOCK. */
5501 next_block = NULL;
5502 for (i = dregno; i < end_dregno; i++)
5503 {
5504 CLEAR_REGNO_REG_SET (live_out, i);
5505 CLEAR_REGNO_REG_SET (live_in, i);
5506 }
5507
5508 for (i = sregno; i < end_sregno; i++)
5509 {
5510 SET_REGNO_REG_SET (live_out, i);
5511 SET_REGNO_REG_SET (live_in, i);
5512 }
5513 }
5514
5515 /* If we don't need to add the move to BB, look for a single
5516 successor block. */
5517 if (next_block)
5518 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5519 }
5520 while (next_block);
5521
5522 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5523 (next loop). */
5524 for (i = dregno; i < end_dregno; i++)
5525 {
5526 CLEAR_REGNO_REG_SET (bb_uses, i);
5527 SET_REGNO_REG_SET (bb_defs, i);
5528 }
5529
5530 /* BB now uses SRC. */
5531 for (i = sregno; i < end_sregno; i++)
5532 SET_REGNO_REG_SET (bb_uses, i);
5533
5534 emit_insn_after (PATTERN (insn), bb_note (bb));
5535 delete_insn (insn);
5536 return true;
5537 }
5538
5539 /* Look for register copies in the first block of the function, and move
5540 them down into successor blocks if the register is used only on one
5541 path. This exposes more opportunities for shrink-wrapping. These
5542 kinds of sets often occur when incoming argument registers are moved
5543 to call-saved registers because their values are live across one or
5544 more calls during the function. */
5545
5546 static void
5547 prepare_shrink_wrap (basic_block entry_block)
5548 {
5549 rtx insn, curr, x;
5550 HARD_REG_SET uses, defs;
5551 df_ref *ref;
5552
5553 CLEAR_HARD_REG_SET (uses);
5554 CLEAR_HARD_REG_SET (defs);
5555 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5556 if (NONDEBUG_INSN_P (insn)
5557 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5558 {
5559 /* Add all defined registers to DEFs. */
5560 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5561 {
5562 x = DF_REF_REG (*ref);
5563 if (REG_P (x) && HARD_REGISTER_P (x))
5564 SET_HARD_REG_BIT (defs, REGNO (x));
5565 }
5566
5567 /* Add all used registers to USESs. */
5568 for (ref = DF_INSN_USES (insn); *ref; ref++)
5569 {
5570 x = DF_REF_REG (*ref);
5571 if (REG_P (x) && HARD_REGISTER_P (x))
5572 SET_HARD_REG_BIT (uses, REGNO (x));
5573 }
5574 }
5575 }
5576
5577 #endif
5578
5579 #ifdef HAVE_return
5580 /* Insert use of return register before the end of BB. */
5581
5582 static void
5583 emit_use_return_register_into_block (basic_block bb)
5584 {
5585 rtx seq, insn;
5586 start_sequence ();
5587 use_return_register ();
5588 seq = get_insns ();
5589 end_sequence ();
5590 insn = BB_END (bb);
5591 #ifdef HAVE_cc0
5592 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5593 insn = prev_cc0_setter (insn);
5594 #endif
5595 emit_insn_before (seq, insn);
5596 }
5597
5598
5599 /* Create a return pattern, either simple_return or return, depending on
5600 simple_p. */
5601
5602 static rtx
5603 gen_return_pattern (bool simple_p)
5604 {
5605 #ifdef HAVE_simple_return
5606 return simple_p ? gen_simple_return () : gen_return ();
5607 #else
5608 gcc_assert (!simple_p);
5609 return gen_return ();
5610 #endif
5611 }
5612
5613 /* Insert an appropriate return pattern at the end of block BB. This
5614 also means updating block_for_insn appropriately. SIMPLE_P is
5615 the same as in gen_return_pattern and passed to it. */
5616
5617 static void
5618 emit_return_into_block (bool simple_p, basic_block bb)
5619 {
5620 rtx jump, pat;
5621 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5622 pat = PATTERN (jump);
5623 if (GET_CODE (pat) == PARALLEL)
5624 pat = XVECEXP (pat, 0, 0);
5625 gcc_assert (ANY_RETURN_P (pat));
5626 JUMP_LABEL (jump) = pat;
5627 }
5628 #endif
5629
5630 /* Set JUMP_LABEL for a return insn. */
5631
5632 void
5633 set_return_jump_label (rtx returnjump)
5634 {
5635 rtx pat = PATTERN (returnjump);
5636 if (GET_CODE (pat) == PARALLEL)
5637 pat = XVECEXP (pat, 0, 0);
5638 if (ANY_RETURN_P (pat))
5639 JUMP_LABEL (returnjump) = pat;
5640 else
5641 JUMP_LABEL (returnjump) = ret_rtx;
5642 }
5643
5644 #ifdef HAVE_simple_return
5645 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5646 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5647 static void
5648 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5649 bitmap_head *need_prologue)
5650 {
5651 edge_iterator ei;
5652 edge e;
5653 rtx insn = BB_END (bb);
5654
5655 /* We know BB has a single successor, so there is no need to copy a
5656 simple jump at the end of BB. */
5657 if (simplejump_p (insn))
5658 insn = PREV_INSN (insn);
5659
5660 start_sequence ();
5661 duplicate_insn_chain (BB_HEAD (bb), insn);
5662 if (dump_file)
5663 {
5664 unsigned count = 0;
5665 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5666 if (active_insn_p (insn))
5667 ++count;
5668 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5669 bb->index, copy_bb->index, count);
5670 }
5671 insn = get_insns ();
5672 end_sequence ();
5673 emit_insn_before (insn, before);
5674
5675 /* Redirect all the paths that need no prologue into copy_bb. */
5676 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5677 if (!bitmap_bit_p (need_prologue, e->src->index))
5678 {
5679 int freq = EDGE_FREQUENCY (e);
5680 copy_bb->count += e->count;
5681 copy_bb->frequency += EDGE_FREQUENCY (e);
5682 e->dest->count -= e->count;
5683 if (e->dest->count < 0)
5684 e->dest->count = 0;
5685 e->dest->frequency -= freq;
5686 if (e->dest->frequency < 0)
5687 e->dest->frequency = 0;
5688 redirect_edge_and_branch_force (e, copy_bb);
5689 continue;
5690 }
5691 else
5692 ei_next (&ei);
5693 }
5694 #endif
5695
5696 #if defined (HAVE_return) || defined (HAVE_simple_return)
5697 /* Return true if there are any active insns between HEAD and TAIL. */
5698 static bool
5699 active_insn_between (rtx head, rtx tail)
5700 {
5701 while (tail)
5702 {
5703 if (active_insn_p (tail))
5704 return true;
5705 if (tail == head)
5706 return false;
5707 tail = PREV_INSN (tail);
5708 }
5709 return false;
5710 }
5711
5712 /* LAST_BB is a block that exits, and empty of active instructions.
5713 Examine its predecessors for jumps that can be converted to
5714 (conditional) returns. */
5715 static vec<edge>
5716 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5717 vec<edge> unconverted ATTRIBUTE_UNUSED)
5718 {
5719 int i;
5720 basic_block bb;
5721 rtx label;
5722 edge_iterator ei;
5723 edge e;
5724 vec<basic_block> src_bbs;
5725
5726 src_bbs.create (EDGE_COUNT (last_bb->preds));
5727 FOR_EACH_EDGE (e, ei, last_bb->preds)
5728 if (e->src != ENTRY_BLOCK_PTR)
5729 src_bbs.quick_push (e->src);
5730
5731 label = BB_HEAD (last_bb);
5732
5733 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5734 {
5735 rtx jump = BB_END (bb);
5736
5737 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5738 continue;
5739
5740 e = find_edge (bb, last_bb);
5741
5742 /* If we have an unconditional jump, we can replace that
5743 with a simple return instruction. */
5744 if (simplejump_p (jump))
5745 {
5746 /* The use of the return register might be present in the exit
5747 fallthru block. Either:
5748 - removing the use is safe, and we should remove the use in
5749 the exit fallthru block, or
5750 - removing the use is not safe, and we should add it here.
5751 For now, we conservatively choose the latter. Either of the
5752 2 helps in crossjumping. */
5753 emit_use_return_register_into_block (bb);
5754
5755 emit_return_into_block (simple_p, bb);
5756 delete_insn (jump);
5757 }
5758
5759 /* If we have a conditional jump branching to the last
5760 block, we can try to replace that with a conditional
5761 return instruction. */
5762 else if (condjump_p (jump))
5763 {
5764 rtx dest;
5765
5766 if (simple_p)
5767 dest = simple_return_rtx;
5768 else
5769 dest = ret_rtx;
5770 if (!redirect_jump (jump, dest, 0))
5771 {
5772 #ifdef HAVE_simple_return
5773 if (simple_p)
5774 {
5775 if (dump_file)
5776 fprintf (dump_file,
5777 "Failed to redirect bb %d branch.\n", bb->index);
5778 unconverted.safe_push (e);
5779 }
5780 #endif
5781 continue;
5782 }
5783
5784 /* See comment in simplejump_p case above. */
5785 emit_use_return_register_into_block (bb);
5786
5787 /* If this block has only one successor, it both jumps
5788 and falls through to the fallthru block, so we can't
5789 delete the edge. */
5790 if (single_succ_p (bb))
5791 continue;
5792 }
5793 else
5794 {
5795 #ifdef HAVE_simple_return
5796 if (simple_p)
5797 {
5798 if (dump_file)
5799 fprintf (dump_file,
5800 "Failed to redirect bb %d branch.\n", bb->index);
5801 unconverted.safe_push (e);
5802 }
5803 #endif
5804 continue;
5805 }
5806
5807 /* Fix up the CFG for the successful change we just made. */
5808 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5809 e->flags &= ~EDGE_CROSSING;
5810 }
5811 src_bbs.release ();
5812 return unconverted;
5813 }
5814
5815 /* Emit a return insn for the exit fallthru block. */
5816 static basic_block
5817 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5818 {
5819 basic_block last_bb = exit_fallthru_edge->src;
5820
5821 if (JUMP_P (BB_END (last_bb)))
5822 {
5823 last_bb = split_edge (exit_fallthru_edge);
5824 exit_fallthru_edge = single_succ_edge (last_bb);
5825 }
5826 emit_barrier_after (BB_END (last_bb));
5827 emit_return_into_block (simple_p, last_bb);
5828 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5829 return last_bb;
5830 }
5831 #endif
5832
5833
5834 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5835 this into place with notes indicating where the prologue ends and where
5836 the epilogue begins. Update the basic block information when possible.
5837
5838 Notes on epilogue placement:
5839 There are several kinds of edges to the exit block:
5840 * a single fallthru edge from LAST_BB
5841 * possibly, edges from blocks containing sibcalls
5842 * possibly, fake edges from infinite loops
5843
5844 The epilogue is always emitted on the fallthru edge from the last basic
5845 block in the function, LAST_BB, into the exit block.
5846
5847 If LAST_BB is empty except for a label, it is the target of every
5848 other basic block in the function that ends in a return. If a
5849 target has a return or simple_return pattern (possibly with
5850 conditional variants), these basic blocks can be changed so that a
5851 return insn is emitted into them, and their target is adjusted to
5852 the real exit block.
5853
5854 Notes on shrink wrapping: We implement a fairly conservative
5855 version of shrink-wrapping rather than the textbook one. We only
5856 generate a single prologue and a single epilogue. This is
5857 sufficient to catch a number of interesting cases involving early
5858 exits.
5859
5860 First, we identify the blocks that require the prologue to occur before
5861 them. These are the ones that modify a call-saved register, or reference
5862 any of the stack or frame pointer registers. To simplify things, we then
5863 mark everything reachable from these blocks as also requiring a prologue.
5864 This takes care of loops automatically, and avoids the need to examine
5865 whether MEMs reference the frame, since it is sufficient to check for
5866 occurrences of the stack or frame pointer.
5867
5868 We then compute the set of blocks for which the need for a prologue
5869 is anticipatable (borrowing terminology from the shrink-wrapping
5870 description in Muchnick's book). These are the blocks which either
5871 require a prologue themselves, or those that have only successors
5872 where the prologue is anticipatable. The prologue needs to be
5873 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5874 is not. For the moment, we ensure that only one such edge exists.
5875
5876 The epilogue is placed as described above, but we make a
5877 distinction between inserting return and simple_return patterns
5878 when modifying other blocks that end in a return. Blocks that end
5879 in a sibcall omit the sibcall_epilogue if the block is not in
5880 ANTIC. */
5881
5882 static void
5883 thread_prologue_and_epilogue_insns (void)
5884 {
5885 bool inserted;
5886 #ifdef HAVE_simple_return
5887 vec<edge> unconverted_simple_returns = vNULL;
5888 bool nonempty_prologue;
5889 bitmap_head bb_flags;
5890 unsigned max_grow_size;
5891 #endif
5892 rtx returnjump;
5893 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5894 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5895 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5896 edge_iterator ei;
5897
5898 df_analyze ();
5899
5900 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5901
5902 inserted = false;
5903 seq = NULL_RTX;
5904 epilogue_end = NULL_RTX;
5905 returnjump = NULL_RTX;
5906
5907 /* Can't deal with multiple successors of the entry block at the
5908 moment. Function should always have at least one entry
5909 point. */
5910 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5911 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5912 orig_entry_edge = entry_edge;
5913
5914 split_prologue_seq = NULL_RTX;
5915 if (flag_split_stack
5916 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5917 == NULL))
5918 {
5919 #ifndef HAVE_split_stack_prologue
5920 gcc_unreachable ();
5921 #else
5922 gcc_assert (HAVE_split_stack_prologue);
5923
5924 start_sequence ();
5925 emit_insn (gen_split_stack_prologue ());
5926 split_prologue_seq = get_insns ();
5927 end_sequence ();
5928
5929 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5930 set_insn_locations (split_prologue_seq, prologue_location);
5931 #endif
5932 }
5933
5934 prologue_seq = NULL_RTX;
5935 #ifdef HAVE_prologue
5936 if (HAVE_prologue)
5937 {
5938 start_sequence ();
5939 seq = gen_prologue ();
5940 emit_insn (seq);
5941
5942 /* Insert an explicit USE for the frame pointer
5943 if the profiling is on and the frame pointer is required. */
5944 if (crtl->profile && frame_pointer_needed)
5945 emit_use (hard_frame_pointer_rtx);
5946
5947 /* Retain a map of the prologue insns. */
5948 record_insns (seq, NULL, &prologue_insn_hash);
5949 emit_note (NOTE_INSN_PROLOGUE_END);
5950
5951 /* Ensure that instructions are not moved into the prologue when
5952 profiling is on. The call to the profiling routine can be
5953 emitted within the live range of a call-clobbered register. */
5954 if (!targetm.profile_before_prologue () && crtl->profile)
5955 emit_insn (gen_blockage ());
5956
5957 prologue_seq = get_insns ();
5958 end_sequence ();
5959 set_insn_locations (prologue_seq, prologue_location);
5960 }
5961 #endif
5962
5963 #ifdef HAVE_simple_return
5964 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5965
5966 /* Try to perform a kind of shrink-wrapping, making sure the
5967 prologue/epilogue is emitted only around those parts of the
5968 function that require it. */
5969
5970 nonempty_prologue = false;
5971 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5972 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5973 {
5974 nonempty_prologue = true;
5975 break;
5976 }
5977
5978 if (flag_shrink_wrap && HAVE_simple_return
5979 && (targetm.profile_before_prologue () || !crtl->profile)
5980 && nonempty_prologue && !crtl->calls_eh_return)
5981 {
5982 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5983 struct hard_reg_set_container set_up_by_prologue;
5984 rtx p_insn;
5985 vec<basic_block> vec;
5986 basic_block bb;
5987 bitmap_head bb_antic_flags;
5988 bitmap_head bb_on_list;
5989 bitmap_head bb_tail;
5990
5991 if (dump_file)
5992 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5993
5994 /* Compute the registers set and used in the prologue. */
5995 CLEAR_HARD_REG_SET (prologue_clobbered);
5996 CLEAR_HARD_REG_SET (prologue_used);
5997 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5998 {
5999 HARD_REG_SET this_used;
6000 if (!NONDEBUG_INSN_P (p_insn))
6001 continue;
6002
6003 CLEAR_HARD_REG_SET (this_used);
6004 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6005 &this_used);
6006 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6007 IOR_HARD_REG_SET (prologue_used, this_used);
6008 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6009 &prologue_clobbered);
6010 }
6011
6012 prepare_shrink_wrap (entry_edge->dest);
6013
6014 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6015 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6016 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6017
6018 /* Find the set of basic blocks that require a stack frame,
6019 and blocks that are too big to be duplicated. */
6020
6021 vec.create (n_basic_blocks_for_fn (cfun));
6022
6023 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6024 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6025 STACK_POINTER_REGNUM);
6026 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6027 if (frame_pointer_needed)
6028 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6029 HARD_FRAME_POINTER_REGNUM);
6030 if (pic_offset_table_rtx)
6031 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6032 PIC_OFFSET_TABLE_REGNUM);
6033 if (crtl->drap_reg)
6034 add_to_hard_reg_set (&set_up_by_prologue.set,
6035 GET_MODE (crtl->drap_reg),
6036 REGNO (crtl->drap_reg));
6037 if (targetm.set_up_by_prologue)
6038 targetm.set_up_by_prologue (&set_up_by_prologue);
6039
6040 /* We don't use a different max size depending on
6041 optimize_bb_for_speed_p because increasing shrink-wrapping
6042 opportunities by duplicating tail blocks can actually result
6043 in an overall decrease in code size. */
6044 max_grow_size = get_uncond_jump_length ();
6045 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6046
6047 FOR_EACH_BB (bb)
6048 {
6049 rtx insn;
6050 unsigned size = 0;
6051
6052 FOR_BB_INSNS (bb, insn)
6053 if (NONDEBUG_INSN_P (insn))
6054 {
6055 if (requires_stack_frame_p (insn, prologue_used,
6056 set_up_by_prologue.set))
6057 {
6058 if (bb == entry_edge->dest)
6059 goto fail_shrinkwrap;
6060 bitmap_set_bit (&bb_flags, bb->index);
6061 vec.quick_push (bb);
6062 break;
6063 }
6064 else if (size <= max_grow_size)
6065 {
6066 size += get_attr_min_length (insn);
6067 if (size > max_grow_size)
6068 bitmap_set_bit (&bb_on_list, bb->index);
6069 }
6070 }
6071 }
6072
6073 /* Blocks that really need a prologue, or are too big for tails. */
6074 bitmap_ior_into (&bb_on_list, &bb_flags);
6075
6076 /* For every basic block that needs a prologue, mark all blocks
6077 reachable from it, so as to ensure they are also seen as
6078 requiring a prologue. */
6079 while (!vec.is_empty ())
6080 {
6081 basic_block tmp_bb = vec.pop ();
6082
6083 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6084 if (e->dest != EXIT_BLOCK_PTR
6085 && bitmap_set_bit (&bb_flags, e->dest->index))
6086 vec.quick_push (e->dest);
6087 }
6088
6089 /* Find the set of basic blocks that need no prologue, have a
6090 single successor, can be duplicated, meet a max size
6091 requirement, and go to the exit via like blocks. */
6092 vec.quick_push (EXIT_BLOCK_PTR);
6093 while (!vec.is_empty ())
6094 {
6095 basic_block tmp_bb = vec.pop ();
6096
6097 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6098 if (single_succ_p (e->src)
6099 && !bitmap_bit_p (&bb_on_list, e->src->index)
6100 && can_duplicate_block_p (e->src))
6101 {
6102 edge pe;
6103 edge_iterator pei;
6104
6105 /* If there is predecessor of e->src which doesn't
6106 need prologue and the edge is complex,
6107 we might not be able to redirect the branch
6108 to a copy of e->src. */
6109 FOR_EACH_EDGE (pe, pei, e->src->preds)
6110 if ((pe->flags & EDGE_COMPLEX) != 0
6111 && !bitmap_bit_p (&bb_flags, pe->src->index))
6112 break;
6113 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6114 vec.quick_push (e->src);
6115 }
6116 }
6117
6118 /* Now walk backwards from every block that is marked as needing
6119 a prologue to compute the bb_antic_flags bitmap. Exclude
6120 tail blocks; They can be duplicated to be used on paths not
6121 needing a prologue. */
6122 bitmap_clear (&bb_on_list);
6123 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6124 FOR_EACH_BB (bb)
6125 {
6126 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6127 continue;
6128 FOR_EACH_EDGE (e, ei, bb->preds)
6129 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6130 && bitmap_set_bit (&bb_on_list, e->src->index))
6131 vec.quick_push (e->src);
6132 }
6133 while (!vec.is_empty ())
6134 {
6135 basic_block tmp_bb = vec.pop ();
6136 bool all_set = true;
6137
6138 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6139 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6140 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6141 {
6142 all_set = false;
6143 break;
6144 }
6145
6146 if (all_set)
6147 {
6148 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6149 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6150 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6151 && bitmap_set_bit (&bb_on_list, e->src->index))
6152 vec.quick_push (e->src);
6153 }
6154 }
6155 /* Find exactly one edge that leads to a block in ANTIC from
6156 a block that isn't. */
6157 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6158 FOR_EACH_BB (bb)
6159 {
6160 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6161 continue;
6162 FOR_EACH_EDGE (e, ei, bb->preds)
6163 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6164 {
6165 if (entry_edge != orig_entry_edge)
6166 {
6167 entry_edge = orig_entry_edge;
6168 if (dump_file)
6169 fprintf (dump_file, "More than one candidate edge.\n");
6170 goto fail_shrinkwrap;
6171 }
6172 if (dump_file)
6173 fprintf (dump_file, "Found candidate edge for "
6174 "shrink-wrapping, %d->%d.\n", e->src->index,
6175 e->dest->index);
6176 entry_edge = e;
6177 }
6178 }
6179
6180 if (entry_edge != orig_entry_edge)
6181 {
6182 /* Test whether the prologue is known to clobber any register
6183 (other than FP or SP) which are live on the edge. */
6184 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6185 if (frame_pointer_needed)
6186 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6187 REG_SET_TO_HARD_REG_SET (live_on_edge,
6188 df_get_live_in (entry_edge->dest));
6189 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6190 {
6191 entry_edge = orig_entry_edge;
6192 if (dump_file)
6193 fprintf (dump_file,
6194 "Shrink-wrapping aborted due to clobber.\n");
6195 }
6196 }
6197 if (entry_edge != orig_entry_edge)
6198 {
6199 crtl->shrink_wrapped = true;
6200 if (dump_file)
6201 fprintf (dump_file, "Performing shrink-wrapping.\n");
6202
6203 /* Find tail blocks reachable from both blocks needing a
6204 prologue and blocks not needing a prologue. */
6205 if (!bitmap_empty_p (&bb_tail))
6206 FOR_EACH_BB (bb)
6207 {
6208 bool some_pro, some_no_pro;
6209 if (!bitmap_bit_p (&bb_tail, bb->index))
6210 continue;
6211 some_pro = some_no_pro = false;
6212 FOR_EACH_EDGE (e, ei, bb->preds)
6213 {
6214 if (bitmap_bit_p (&bb_flags, e->src->index))
6215 some_pro = true;
6216 else
6217 some_no_pro = true;
6218 }
6219 if (some_pro && some_no_pro)
6220 vec.quick_push (bb);
6221 else
6222 bitmap_clear_bit (&bb_tail, bb->index);
6223 }
6224 /* Find the head of each tail. */
6225 while (!vec.is_empty ())
6226 {
6227 basic_block tbb = vec.pop ();
6228
6229 if (!bitmap_bit_p (&bb_tail, tbb->index))
6230 continue;
6231
6232 while (single_succ_p (tbb))
6233 {
6234 tbb = single_succ (tbb);
6235 bitmap_clear_bit (&bb_tail, tbb->index);
6236 }
6237 }
6238 /* Now duplicate the tails. */
6239 if (!bitmap_empty_p (&bb_tail))
6240 FOR_EACH_BB_REVERSE (bb)
6241 {
6242 basic_block copy_bb, tbb;
6243 rtx insert_point;
6244 int eflags;
6245
6246 if (!bitmap_clear_bit (&bb_tail, bb->index))
6247 continue;
6248
6249 /* Create a copy of BB, instructions and all, for
6250 use on paths that don't need a prologue.
6251 Ideal placement of the copy is on a fall-thru edge
6252 or after a block that would jump to the copy. */
6253 FOR_EACH_EDGE (e, ei, bb->preds)
6254 if (!bitmap_bit_p (&bb_flags, e->src->index)
6255 && single_succ_p (e->src))
6256 break;
6257 if (e)
6258 {
6259 /* Make sure we insert after any barriers. */
6260 rtx end = get_last_bb_insn (e->src);
6261 copy_bb = create_basic_block (NEXT_INSN (end),
6262 NULL_RTX, e->src);
6263 BB_COPY_PARTITION (copy_bb, e->src);
6264 }
6265 else
6266 {
6267 /* Otherwise put the copy at the end of the function. */
6268 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6269 EXIT_BLOCK_PTR->prev_bb);
6270 BB_COPY_PARTITION (copy_bb, bb);
6271 }
6272
6273 insert_point = emit_note_after (NOTE_INSN_DELETED,
6274 BB_END (copy_bb));
6275 emit_barrier_after (BB_END (copy_bb));
6276
6277 tbb = bb;
6278 while (1)
6279 {
6280 dup_block_and_redirect (tbb, copy_bb, insert_point,
6281 &bb_flags);
6282 tbb = single_succ (tbb);
6283 if (tbb == EXIT_BLOCK_PTR)
6284 break;
6285 e = split_block (copy_bb, PREV_INSN (insert_point));
6286 copy_bb = e->dest;
6287 }
6288
6289 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6290 We have yet to add a simple_return to the tails,
6291 as we'd like to first convert_jumps_to_returns in
6292 case the block is no longer used after that. */
6293 eflags = EDGE_FAKE;
6294 if (CALL_P (PREV_INSN (insert_point))
6295 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6296 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6297 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6298
6299 /* verify_flow_info doesn't like a note after a
6300 sibling call. */
6301 delete_insn (insert_point);
6302 if (bitmap_empty_p (&bb_tail))
6303 break;
6304 }
6305 }
6306
6307 fail_shrinkwrap:
6308 bitmap_clear (&bb_tail);
6309 bitmap_clear (&bb_antic_flags);
6310 bitmap_clear (&bb_on_list);
6311 vec.release ();
6312 }
6313 #endif
6314
6315 if (split_prologue_seq != NULL_RTX)
6316 {
6317 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6318 inserted = true;
6319 }
6320 if (prologue_seq != NULL_RTX)
6321 {
6322 insert_insn_on_edge (prologue_seq, entry_edge);
6323 inserted = true;
6324 }
6325
6326 /* If the exit block has no non-fake predecessors, we don't need
6327 an epilogue. */
6328 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6329 if ((e->flags & EDGE_FAKE) == 0)
6330 break;
6331 if (e == NULL)
6332 goto epilogue_done;
6333
6334 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6335
6336 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6337
6338 /* If we're allowed to generate a simple return instruction, then by
6339 definition we don't need a full epilogue. If the last basic
6340 block before the exit block does not contain active instructions,
6341 examine its predecessors and try to emit (conditional) return
6342 instructions. */
6343 #ifdef HAVE_simple_return
6344 if (entry_edge != orig_entry_edge)
6345 {
6346 if (optimize)
6347 {
6348 unsigned i, last;
6349
6350 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6351 (but won't remove). Stop at end of current preds. */
6352 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6353 for (i = 0; i < last; i++)
6354 {
6355 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6356 if (LABEL_P (BB_HEAD (e->src))
6357 && !bitmap_bit_p (&bb_flags, e->src->index)
6358 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6359 unconverted_simple_returns
6360 = convert_jumps_to_returns (e->src, true,
6361 unconverted_simple_returns);
6362 }
6363 }
6364
6365 if (exit_fallthru_edge != NULL
6366 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6367 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6368 {
6369 basic_block last_bb;
6370
6371 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6372 returnjump = BB_END (last_bb);
6373 exit_fallthru_edge = NULL;
6374 }
6375 }
6376 #endif
6377 #ifdef HAVE_return
6378 if (HAVE_return)
6379 {
6380 if (exit_fallthru_edge == NULL)
6381 goto epilogue_done;
6382
6383 if (optimize)
6384 {
6385 basic_block last_bb = exit_fallthru_edge->src;
6386
6387 if (LABEL_P (BB_HEAD (last_bb))
6388 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6389 convert_jumps_to_returns (last_bb, false, vNULL);
6390
6391 if (EDGE_COUNT (last_bb->preds) != 0
6392 && single_succ_p (last_bb))
6393 {
6394 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6395 epilogue_end = returnjump = BB_END (last_bb);
6396 #ifdef HAVE_simple_return
6397 /* Emitting the return may add a basic block.
6398 Fix bb_flags for the added block. */
6399 if (last_bb != exit_fallthru_edge->src)
6400 bitmap_set_bit (&bb_flags, last_bb->index);
6401 #endif
6402 goto epilogue_done;
6403 }
6404 }
6405 }
6406 #endif
6407
6408 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6409 this marker for the splits of EH_RETURN patterns, and nothing else
6410 uses the flag in the meantime. */
6411 epilogue_completed = 1;
6412
6413 #ifdef HAVE_eh_return
6414 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6415 some targets, these get split to a special version of the epilogue
6416 code. In order to be able to properly annotate these with unwind
6417 info, try to split them now. If we get a valid split, drop an
6418 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6419 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6420 {
6421 rtx prev, last, trial;
6422
6423 if (e->flags & EDGE_FALLTHRU)
6424 continue;
6425 last = BB_END (e->src);
6426 if (!eh_returnjump_p (last))
6427 continue;
6428
6429 prev = PREV_INSN (last);
6430 trial = try_split (PATTERN (last), last, 1);
6431 if (trial == last)
6432 continue;
6433
6434 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6435 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6436 }
6437 #endif
6438
6439 /* If nothing falls through into the exit block, we don't need an
6440 epilogue. */
6441
6442 if (exit_fallthru_edge == NULL)
6443 goto epilogue_done;
6444
6445 #ifdef HAVE_epilogue
6446 if (HAVE_epilogue)
6447 {
6448 start_sequence ();
6449 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6450 seq = gen_epilogue ();
6451 if (seq)
6452 emit_jump_insn (seq);
6453
6454 /* Retain a map of the epilogue insns. */
6455 record_insns (seq, NULL, &epilogue_insn_hash);
6456 set_insn_locations (seq, epilogue_location);
6457
6458 seq = get_insns ();
6459 returnjump = get_last_insn ();
6460 end_sequence ();
6461
6462 insert_insn_on_edge (seq, exit_fallthru_edge);
6463 inserted = true;
6464
6465 if (JUMP_P (returnjump))
6466 set_return_jump_label (returnjump);
6467 }
6468 else
6469 #endif
6470 {
6471 basic_block cur_bb;
6472
6473 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6474 goto epilogue_done;
6475 /* We have a fall-through edge to the exit block, the source is not
6476 at the end of the function, and there will be an assembler epilogue
6477 at the end of the function.
6478 We can't use force_nonfallthru here, because that would try to
6479 use return. Inserting a jump 'by hand' is extremely messy, so
6480 we take advantage of cfg_layout_finalize using
6481 fixup_fallthru_exit_predecessor. */
6482 cfg_layout_initialize (0);
6483 FOR_EACH_BB (cur_bb)
6484 if (cur_bb->index >= NUM_FIXED_BLOCKS
6485 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6486 cur_bb->aux = cur_bb->next_bb;
6487 cfg_layout_finalize ();
6488 }
6489
6490 epilogue_done:
6491
6492 default_rtl_profile ();
6493
6494 if (inserted)
6495 {
6496 sbitmap blocks;
6497
6498 commit_edge_insertions ();
6499
6500 /* Look for basic blocks within the prologue insns. */
6501 blocks = sbitmap_alloc (last_basic_block);
6502 bitmap_clear (blocks);
6503 bitmap_set_bit (blocks, entry_edge->dest->index);
6504 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6505 find_many_sub_basic_blocks (blocks);
6506 sbitmap_free (blocks);
6507
6508 /* The epilogue insns we inserted may cause the exit edge to no longer
6509 be fallthru. */
6510 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6511 {
6512 if (((e->flags & EDGE_FALLTHRU) != 0)
6513 && returnjump_p (BB_END (e->src)))
6514 e->flags &= ~EDGE_FALLTHRU;
6515 }
6516 }
6517
6518 #ifdef HAVE_simple_return
6519 /* If there were branches to an empty LAST_BB which we tried to
6520 convert to conditional simple_returns, but couldn't for some
6521 reason, create a block to hold a simple_return insn and redirect
6522 those remaining edges. */
6523 if (!unconverted_simple_returns.is_empty ())
6524 {
6525 basic_block simple_return_block_hot = NULL;
6526 basic_block simple_return_block_cold = NULL;
6527 edge pending_edge_hot = NULL;
6528 edge pending_edge_cold = NULL;
6529 basic_block exit_pred;
6530 int i;
6531
6532 gcc_assert (entry_edge != orig_entry_edge);
6533
6534 /* See if we can reuse the last insn that was emitted for the
6535 epilogue. */
6536 if (returnjump != NULL_RTX
6537 && JUMP_LABEL (returnjump) == simple_return_rtx)
6538 {
6539 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6540 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6541 simple_return_block_hot = e->dest;
6542 else
6543 simple_return_block_cold = e->dest;
6544 }
6545
6546 /* Also check returns we might need to add to tail blocks. */
6547 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6548 if (EDGE_COUNT (e->src->preds) != 0
6549 && (e->flags & EDGE_FAKE) != 0
6550 && !bitmap_bit_p (&bb_flags, e->src->index))
6551 {
6552 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6553 pending_edge_hot = e;
6554 else
6555 pending_edge_cold = e;
6556 }
6557
6558 /* Save a pointer to the exit's predecessor BB for use in
6559 inserting new BBs at the end of the function. Do this
6560 after the call to split_block above which may split
6561 the original exit pred. */
6562 exit_pred = EXIT_BLOCK_PTR->prev_bb;
6563
6564 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6565 {
6566 basic_block *pdest_bb;
6567 edge pending;
6568
6569 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6570 {
6571 pdest_bb = &simple_return_block_hot;
6572 pending = pending_edge_hot;
6573 }
6574 else
6575 {
6576 pdest_bb = &simple_return_block_cold;
6577 pending = pending_edge_cold;
6578 }
6579
6580 if (*pdest_bb == NULL && pending != NULL)
6581 {
6582 emit_return_into_block (true, pending->src);
6583 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6584 *pdest_bb = pending->src;
6585 }
6586 else if (*pdest_bb == NULL)
6587 {
6588 basic_block bb;
6589 rtx start;
6590
6591 bb = create_basic_block (NULL, NULL, exit_pred);
6592 BB_COPY_PARTITION (bb, e->src);
6593 start = emit_jump_insn_after (gen_simple_return (),
6594 BB_END (bb));
6595 JUMP_LABEL (start) = simple_return_rtx;
6596 emit_barrier_after (start);
6597
6598 *pdest_bb = bb;
6599 make_edge (bb, EXIT_BLOCK_PTR, 0);
6600 }
6601 redirect_edge_and_branch_force (e, *pdest_bb);
6602 }
6603 unconverted_simple_returns.release ();
6604 }
6605
6606 if (entry_edge != orig_entry_edge)
6607 {
6608 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6609 if (EDGE_COUNT (e->src->preds) != 0
6610 && (e->flags & EDGE_FAKE) != 0
6611 && !bitmap_bit_p (&bb_flags, e->src->index))
6612 {
6613 emit_return_into_block (true, e->src);
6614 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6615 }
6616 }
6617 #endif
6618
6619 #ifdef HAVE_sibcall_epilogue
6620 /* Emit sibling epilogues before any sibling call sites. */
6621 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6622 {
6623 basic_block bb = e->src;
6624 rtx insn = BB_END (bb);
6625 rtx ep_seq;
6626
6627 if (!CALL_P (insn)
6628 || ! SIBLING_CALL_P (insn)
6629 #ifdef HAVE_simple_return
6630 || (entry_edge != orig_entry_edge
6631 && !bitmap_bit_p (&bb_flags, bb->index))
6632 #endif
6633 )
6634 {
6635 ei_next (&ei);
6636 continue;
6637 }
6638
6639 ep_seq = gen_sibcall_epilogue ();
6640 if (ep_seq)
6641 {
6642 start_sequence ();
6643 emit_note (NOTE_INSN_EPILOGUE_BEG);
6644 emit_insn (ep_seq);
6645 seq = get_insns ();
6646 end_sequence ();
6647
6648 /* Retain a map of the epilogue insns. Used in life analysis to
6649 avoid getting rid of sibcall epilogue insns. Do this before we
6650 actually emit the sequence. */
6651 record_insns (seq, NULL, &epilogue_insn_hash);
6652 set_insn_locations (seq, epilogue_location);
6653
6654 emit_insn_before (seq, insn);
6655 }
6656 ei_next (&ei);
6657 }
6658 #endif
6659
6660 #ifdef HAVE_epilogue
6661 if (epilogue_end)
6662 {
6663 rtx insn, next;
6664
6665 /* Similarly, move any line notes that appear after the epilogue.
6666 There is no need, however, to be quite so anal about the existence
6667 of such a note. Also possibly move
6668 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6669 info generation. */
6670 for (insn = epilogue_end; insn; insn = next)
6671 {
6672 next = NEXT_INSN (insn);
6673 if (NOTE_P (insn)
6674 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6675 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6676 }
6677 }
6678 #endif
6679
6680 #ifdef HAVE_simple_return
6681 bitmap_clear (&bb_flags);
6682 #endif
6683
6684 /* Threading the prologue and epilogue changes the artificial refs
6685 in the entry and exit blocks. */
6686 epilogue_completed = 1;
6687 df_update_entry_exit_and_calls ();
6688 }
6689
6690 /* Reposition the prologue-end and epilogue-begin notes after
6691 instruction scheduling. */
6692
6693 void
6694 reposition_prologue_and_epilogue_notes (void)
6695 {
6696 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6697 || defined (HAVE_sibcall_epilogue)
6698 /* Since the hash table is created on demand, the fact that it is
6699 non-null is a signal that it is non-empty. */
6700 if (prologue_insn_hash != NULL)
6701 {
6702 size_t len = htab_elements (prologue_insn_hash);
6703 rtx insn, last = NULL, note = NULL;
6704
6705 /* Scan from the beginning until we reach the last prologue insn. */
6706 /* ??? While we do have the CFG intact, there are two problems:
6707 (1) The prologue can contain loops (typically probing the stack),
6708 which means that the end of the prologue isn't in the first bb.
6709 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6710 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6711 {
6712 if (NOTE_P (insn))
6713 {
6714 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6715 note = insn;
6716 }
6717 else if (contains (insn, prologue_insn_hash))
6718 {
6719 last = insn;
6720 if (--len == 0)
6721 break;
6722 }
6723 }
6724
6725 if (last)
6726 {
6727 if (note == NULL)
6728 {
6729 /* Scan forward looking for the PROLOGUE_END note. It should
6730 be right at the beginning of the block, possibly with other
6731 insn notes that got moved there. */
6732 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6733 {
6734 if (NOTE_P (note)
6735 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6736 break;
6737 }
6738 }
6739
6740 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6741 if (LABEL_P (last))
6742 last = NEXT_INSN (last);
6743 reorder_insns (note, note, last);
6744 }
6745 }
6746
6747 if (epilogue_insn_hash != NULL)
6748 {
6749 edge_iterator ei;
6750 edge e;
6751
6752 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6753 {
6754 rtx insn, first = NULL, note = NULL;
6755 basic_block bb = e->src;
6756
6757 /* Scan from the beginning until we reach the first epilogue insn. */
6758 FOR_BB_INSNS (bb, insn)
6759 {
6760 if (NOTE_P (insn))
6761 {
6762 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6763 {
6764 note = insn;
6765 if (first != NULL)
6766 break;
6767 }
6768 }
6769 else if (first == NULL && contains (insn, epilogue_insn_hash))
6770 {
6771 first = insn;
6772 if (note != NULL)
6773 break;
6774 }
6775 }
6776
6777 if (note)
6778 {
6779 /* If the function has a single basic block, and no real
6780 epilogue insns (e.g. sibcall with no cleanup), the
6781 epilogue note can get scheduled before the prologue
6782 note. If we have frame related prologue insns, having
6783 them scanned during the epilogue will result in a crash.
6784 In this case re-order the epilogue note to just before
6785 the last insn in the block. */
6786 if (first == NULL)
6787 first = BB_END (bb);
6788
6789 if (PREV_INSN (first) != note)
6790 reorder_insns (note, note, PREV_INSN (first));
6791 }
6792 }
6793 }
6794 #endif /* HAVE_prologue or HAVE_epilogue */
6795 }
6796
6797 /* Returns the name of function declared by FNDECL. */
6798 const char *
6799 fndecl_name (tree fndecl)
6800 {
6801 if (fndecl == NULL)
6802 return "(nofn)";
6803 return lang_hooks.decl_printable_name (fndecl, 2);
6804 }
6805
6806 /* Returns the name of function FN. */
6807 const char *
6808 function_name (struct function *fn)
6809 {
6810 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6811 return fndecl_name (fndecl);
6812 }
6813
6814 /* Returns the name of the current function. */
6815 const char *
6816 current_function_name (void)
6817 {
6818 return function_name (cfun);
6819 }
6820 \f
6821
6822 static unsigned int
6823 rest_of_handle_check_leaf_regs (void)
6824 {
6825 #ifdef LEAF_REGISTERS
6826 crtl->uses_only_leaf_regs
6827 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6828 #endif
6829 return 0;
6830 }
6831
6832 /* Insert a TYPE into the used types hash table of CFUN. */
6833
6834 static void
6835 used_types_insert_helper (tree type, struct function *func)
6836 {
6837 if (type != NULL && func != NULL)
6838 {
6839 void **slot;
6840
6841 if (func->used_types_hash == NULL)
6842 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6843 htab_eq_pointer, NULL);
6844 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6845 if (*slot == NULL)
6846 *slot = type;
6847 }
6848 }
6849
6850 /* Given a type, insert it into the used hash table in cfun. */
6851 void
6852 used_types_insert (tree t)
6853 {
6854 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6855 if (TYPE_NAME (t))
6856 break;
6857 else
6858 t = TREE_TYPE (t);
6859 if (TREE_CODE (t) == ERROR_MARK)
6860 return;
6861 if (TYPE_NAME (t) == NULL_TREE
6862 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6863 t = TYPE_MAIN_VARIANT (t);
6864 if (debug_info_level > DINFO_LEVEL_NONE)
6865 {
6866 if (cfun)
6867 used_types_insert_helper (t, cfun);
6868 else
6869 {
6870 /* So this might be a type referenced by a global variable.
6871 Record that type so that we can later decide to emit its
6872 debug information. */
6873 vec_safe_push (types_used_by_cur_var_decl, t);
6874 }
6875 }
6876 }
6877
6878 /* Helper to Hash a struct types_used_by_vars_entry. */
6879
6880 static hashval_t
6881 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6882 {
6883 gcc_assert (entry && entry->var_decl && entry->type);
6884
6885 return iterative_hash_object (entry->type,
6886 iterative_hash_object (entry->var_decl, 0));
6887 }
6888
6889 /* Hash function of the types_used_by_vars_entry hash table. */
6890
6891 hashval_t
6892 types_used_by_vars_do_hash (const void *x)
6893 {
6894 const struct types_used_by_vars_entry *entry =
6895 (const struct types_used_by_vars_entry *) x;
6896
6897 return hash_types_used_by_vars_entry (entry);
6898 }
6899
6900 /*Equality function of the types_used_by_vars_entry hash table. */
6901
6902 int
6903 types_used_by_vars_eq (const void *x1, const void *x2)
6904 {
6905 const struct types_used_by_vars_entry *e1 =
6906 (const struct types_used_by_vars_entry *) x1;
6907 const struct types_used_by_vars_entry *e2 =
6908 (const struct types_used_by_vars_entry *)x2;
6909
6910 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6911 }
6912
6913 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6914
6915 void
6916 types_used_by_var_decl_insert (tree type, tree var_decl)
6917 {
6918 if (type != NULL && var_decl != NULL)
6919 {
6920 void **slot;
6921 struct types_used_by_vars_entry e;
6922 e.var_decl = var_decl;
6923 e.type = type;
6924 if (types_used_by_vars_hash == NULL)
6925 types_used_by_vars_hash =
6926 htab_create_ggc (37, types_used_by_vars_do_hash,
6927 types_used_by_vars_eq, NULL);
6928 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6929 hash_types_used_by_vars_entry (&e), INSERT);
6930 if (*slot == NULL)
6931 {
6932 struct types_used_by_vars_entry *entry;
6933 entry = ggc_alloc_types_used_by_vars_entry ();
6934 entry->type = type;
6935 entry->var_decl = var_decl;
6936 *slot = entry;
6937 }
6938 }
6939 }
6940
6941 namespace {
6942
6943 const pass_data pass_data_leaf_regs =
6944 {
6945 RTL_PASS, /* type */
6946 "*leaf_regs", /* name */
6947 OPTGROUP_NONE, /* optinfo_flags */
6948 false, /* has_gate */
6949 true, /* has_execute */
6950 TV_NONE, /* tv_id */
6951 0, /* properties_required */
6952 0, /* properties_provided */
6953 0, /* properties_destroyed */
6954 0, /* todo_flags_start */
6955 0, /* todo_flags_finish */
6956 };
6957
6958 class pass_leaf_regs : public rtl_opt_pass
6959 {
6960 public:
6961 pass_leaf_regs (gcc::context *ctxt)
6962 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6963 {}
6964
6965 /* opt_pass methods: */
6966 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
6967
6968 }; // class pass_leaf_regs
6969
6970 } // anon namespace
6971
6972 rtl_opt_pass *
6973 make_pass_leaf_regs (gcc::context *ctxt)
6974 {
6975 return new pass_leaf_regs (ctxt);
6976 }
6977
6978 static unsigned int
6979 rest_of_handle_thread_prologue_and_epilogue (void)
6980 {
6981 if (optimize)
6982 cleanup_cfg (CLEANUP_EXPENSIVE);
6983
6984 /* On some machines, the prologue and epilogue code, or parts thereof,
6985 can be represented as RTL. Doing so lets us schedule insns between
6986 it and the rest of the code and also allows delayed branch
6987 scheduling to operate in the epilogue. */
6988 thread_prologue_and_epilogue_insns ();
6989
6990 /* The stack usage info is finalized during prologue expansion. */
6991 if (flag_stack_usage_info)
6992 output_stack_usage ();
6993
6994 return 0;
6995 }
6996
6997 namespace {
6998
6999 const pass_data pass_data_thread_prologue_and_epilogue =
7000 {
7001 RTL_PASS, /* type */
7002 "pro_and_epilogue", /* name */
7003 OPTGROUP_NONE, /* optinfo_flags */
7004 false, /* has_gate */
7005 true, /* has_execute */
7006 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7007 0, /* properties_required */
7008 0, /* properties_provided */
7009 0, /* properties_destroyed */
7010 TODO_verify_flow, /* todo_flags_start */
7011 ( TODO_df_verify | TODO_df_finish
7012 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7013 };
7014
7015 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7016 {
7017 public:
7018 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7019 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
7020 {}
7021
7022 /* opt_pass methods: */
7023 unsigned int execute () {
7024 return rest_of_handle_thread_prologue_and_epilogue ();
7025 }
7026
7027 }; // class pass_thread_prologue_and_epilogue
7028
7029 } // anon namespace
7030
7031 rtl_opt_pass *
7032 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7033 {
7034 return new pass_thread_prologue_and_epilogue (ctxt);
7035 }
7036 \f
7037
7038 /* This mini-pass fixes fall-out from SSA in asm statements that have
7039 in-out constraints. Say you start with
7040
7041 orig = inout;
7042 asm ("": "+mr" (inout));
7043 use (orig);
7044
7045 which is transformed very early to use explicit output and match operands:
7046
7047 orig = inout;
7048 asm ("": "=mr" (inout) : "0" (inout));
7049 use (orig);
7050
7051 Or, after SSA and copyprop,
7052
7053 asm ("": "=mr" (inout_2) : "0" (inout_1));
7054 use (inout_1);
7055
7056 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7057 they represent two separate values, so they will get different pseudo
7058 registers during expansion. Then, since the two operands need to match
7059 per the constraints, but use different pseudo registers, reload can
7060 only register a reload for these operands. But reloads can only be
7061 satisfied by hardregs, not by memory, so we need a register for this
7062 reload, just because we are presented with non-matching operands.
7063 So, even though we allow memory for this operand, no memory can be
7064 used for it, just because the two operands don't match. This can
7065 cause reload failures on register-starved targets.
7066
7067 So it's a symptom of reload not being able to use memory for reloads
7068 or, alternatively it's also a symptom of both operands not coming into
7069 reload as matching (in which case the pseudo could go to memory just
7070 fine, as the alternative allows it, and no reload would be necessary).
7071 We fix the latter problem here, by transforming
7072
7073 asm ("": "=mr" (inout_2) : "0" (inout_1));
7074
7075 back to
7076
7077 inout_2 = inout_1;
7078 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7079
7080 static void
7081 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7082 {
7083 int i;
7084 bool changed = false;
7085 rtx op = SET_SRC (p_sets[0]);
7086 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7087 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7088 bool *output_matched = XALLOCAVEC (bool, noutputs);
7089
7090 memset (output_matched, 0, noutputs * sizeof (bool));
7091 for (i = 0; i < ninputs; i++)
7092 {
7093 rtx input, output, insns;
7094 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7095 char *end;
7096 int match, j;
7097
7098 if (*constraint == '%')
7099 constraint++;
7100
7101 match = strtoul (constraint, &end, 10);
7102 if (end == constraint)
7103 continue;
7104
7105 gcc_assert (match < noutputs);
7106 output = SET_DEST (p_sets[match]);
7107 input = RTVEC_ELT (inputs, i);
7108 /* Only do the transformation for pseudos. */
7109 if (! REG_P (output)
7110 || rtx_equal_p (output, input)
7111 || (GET_MODE (input) != VOIDmode
7112 && GET_MODE (input) != GET_MODE (output)))
7113 continue;
7114
7115 /* We can't do anything if the output is also used as input,
7116 as we're going to overwrite it. */
7117 for (j = 0; j < ninputs; j++)
7118 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7119 break;
7120 if (j != ninputs)
7121 continue;
7122
7123 /* Avoid changing the same input several times. For
7124 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7125 only change in once (to out1), rather than changing it
7126 first to out1 and afterwards to out2. */
7127 if (i > 0)
7128 {
7129 for (j = 0; j < noutputs; j++)
7130 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7131 break;
7132 if (j != noutputs)
7133 continue;
7134 }
7135 output_matched[match] = true;
7136
7137 start_sequence ();
7138 emit_move_insn (output, input);
7139 insns = get_insns ();
7140 end_sequence ();
7141 emit_insn_before (insns, insn);
7142
7143 /* Now replace all mentions of the input with output. We can't
7144 just replace the occurrence in inputs[i], as the register might
7145 also be used in some other input (or even in an address of an
7146 output), which would mean possibly increasing the number of
7147 inputs by one (namely 'output' in addition), which might pose
7148 a too complicated problem for reload to solve. E.g. this situation:
7149
7150 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7151
7152 Here 'input' is used in two occurrences as input (once for the
7153 input operand, once for the address in the second output operand).
7154 If we would replace only the occurrence of the input operand (to
7155 make the matching) we would be left with this:
7156
7157 output = input
7158 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7159
7160 Now we suddenly have two different input values (containing the same
7161 value, but different pseudos) where we formerly had only one.
7162 With more complicated asms this might lead to reload failures
7163 which wouldn't have happen without this pass. So, iterate over
7164 all operands and replace all occurrences of the register used. */
7165 for (j = 0; j < noutputs; j++)
7166 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7167 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7168 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7169 input, output);
7170 for (j = 0; j < ninputs; j++)
7171 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7172 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7173 input, output);
7174
7175 changed = true;
7176 }
7177
7178 if (changed)
7179 df_insn_rescan (insn);
7180 }
7181
7182 static unsigned
7183 rest_of_match_asm_constraints (void)
7184 {
7185 basic_block bb;
7186 rtx insn, pat, *p_sets;
7187 int noutputs;
7188
7189 if (!crtl->has_asm_statement)
7190 return 0;
7191
7192 df_set_flags (DF_DEFER_INSN_RESCAN);
7193 FOR_EACH_BB (bb)
7194 {
7195 FOR_BB_INSNS (bb, insn)
7196 {
7197 if (!INSN_P (insn))
7198 continue;
7199
7200 pat = PATTERN (insn);
7201 if (GET_CODE (pat) == PARALLEL)
7202 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7203 else if (GET_CODE (pat) == SET)
7204 p_sets = &PATTERN (insn), noutputs = 1;
7205 else
7206 continue;
7207
7208 if (GET_CODE (*p_sets) == SET
7209 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7210 match_asm_constraints_1 (insn, p_sets, noutputs);
7211 }
7212 }
7213
7214 return TODO_df_finish;
7215 }
7216
7217 namespace {
7218
7219 const pass_data pass_data_match_asm_constraints =
7220 {
7221 RTL_PASS, /* type */
7222 "asmcons", /* name */
7223 OPTGROUP_NONE, /* optinfo_flags */
7224 false, /* has_gate */
7225 true, /* has_execute */
7226 TV_NONE, /* tv_id */
7227 0, /* properties_required */
7228 0, /* properties_provided */
7229 0, /* properties_destroyed */
7230 0, /* todo_flags_start */
7231 0, /* todo_flags_finish */
7232 };
7233
7234 class pass_match_asm_constraints : public rtl_opt_pass
7235 {
7236 public:
7237 pass_match_asm_constraints (gcc::context *ctxt)
7238 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7239 {}
7240
7241 /* opt_pass methods: */
7242 unsigned int execute () { return rest_of_match_asm_constraints (); }
7243
7244 }; // class pass_match_asm_constraints
7245
7246 } // anon namespace
7247
7248 rtl_opt_pass *
7249 make_pass_match_asm_constraints (gcc::context *ctxt)
7250 {
7251 return new pass_match_asm_constraints (ctxt);
7252 }
7253
7254
7255 #include "gt-function.h"