]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66
67 /* So we can assign to cfun in this file. */
68 #undef cfun
69
70 #ifndef STACK_ALIGNMENT_NEEDED
71 #define STACK_ALIGNMENT_NEEDED 1
72 #endif
73
74 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
75
76 /* Round a value to the lowest integer less than it that is a multiple of
77 the required alignment. Avoid using division in case the value is
78 negative. Assume the alignment is a power of two. */
79 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
80
81 /* Similar, but round to the next highest integer that meets the
82 alignment. */
83 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
84
85 /* Nonzero once virtual register instantiation has been done.
86 assign_stack_local uses frame_pointer_rtx when this is nonzero.
87 calls.c:emit_library_call_value_1 uses it to set up
88 post-instantiation libcalls. */
89 int virtuals_instantiated;
90
91 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
92 static GTY(()) int funcdef_no;
93
94 /* These variables hold pointers to functions to create and destroy
95 target specific, per-function data structures. */
96 struct machine_function * (*init_machine_status) (void);
97
98 /* The currently compiled function. */
99 struct function *cfun = 0;
100
101 /* These hashes record the prologue and epilogue insns. */
102 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
103 htab_t prologue_insn_hash;
104 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
105 htab_t epilogue_insn_hash;
106 \f
107
108 htab_t types_used_by_vars_hash = NULL;
109 vec<tree, va_gc> *types_used_by_cur_var_decl;
110
111 /* Forward declarations. */
112
113 static struct temp_slot *find_temp_slot_from_address (rtx);
114 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
115 static void pad_below (struct args_size *, enum machine_mode, tree);
116 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
117 static int all_blocks (tree, tree *);
118 static tree *get_block_vector (tree, int *);
119 extern tree debug_find_var_in_block_tree (tree, tree);
120 /* We always define `record_insns' even if it's not used so that we
121 can always export `prologue_epilogue_contains'. */
122 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
123 static bool contains (const_rtx, htab_t);
124 static void prepare_function_start (void);
125 static void do_clobber_return_reg (rtx, void *);
126 static void do_use_return_reg (rtx, void *);
127 \f
128 /* Stack of nested functions. */
129 /* Keep track of the cfun stack. */
130
131 typedef struct function *function_p;
132
133 static vec<function_p> function_context_stack;
134
135 /* Save the current context for compilation of a nested function.
136 This is called from language-specific code. */
137
138 void
139 push_function_context (void)
140 {
141 if (cfun == 0)
142 allocate_struct_function (NULL, false);
143
144 function_context_stack.safe_push (cfun);
145 set_cfun (NULL);
146 }
147
148 /* Restore the last saved context, at the end of a nested function.
149 This function is called from language-specific code. */
150
151 void
152 pop_function_context (void)
153 {
154 struct function *p = function_context_stack.pop ();
155 set_cfun (p);
156 current_function_decl = p->decl;
157
158 /* Reset variables that have known state during rtx generation. */
159 virtuals_instantiated = 0;
160 generating_concat_p = 1;
161 }
162
163 /* Clear out all parts of the state in F that can safely be discarded
164 after the function has been parsed, but not compiled, to let
165 garbage collection reclaim the memory. */
166
167 void
168 free_after_parsing (struct function *f)
169 {
170 f->language = 0;
171 }
172
173 /* Clear out all parts of the state in F that can safely be discarded
174 after the function has been compiled, to let garbage collection
175 reclaim the memory. */
176
177 void
178 free_after_compilation (struct function *f)
179 {
180 prologue_insn_hash = NULL;
181 epilogue_insn_hash = NULL;
182
183 free (crtl->emit.regno_pointer_align);
184
185 memset (crtl, 0, sizeof (struct rtl_data));
186 f->eh = NULL;
187 f->machine = NULL;
188 f->cfg = NULL;
189
190 regno_reg_rtx = NULL;
191 }
192 \f
193 /* Return size needed for stack frame based on slots so far allocated.
194 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
195 the caller may have to do that. */
196
197 HOST_WIDE_INT
198 get_frame_size (void)
199 {
200 if (FRAME_GROWS_DOWNWARD)
201 return -frame_offset;
202 else
203 return frame_offset;
204 }
205
206 /* Issue an error message and return TRUE if frame OFFSET overflows in
207 the signed target pointer arithmetics for function FUNC. Otherwise
208 return FALSE. */
209
210 bool
211 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
212 {
213 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
214
215 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
216 /* Leave room for the fixed part of the frame. */
217 - 64 * UNITS_PER_WORD)
218 {
219 error_at (DECL_SOURCE_LOCATION (func),
220 "total size of local objects too large");
221 return TRUE;
222 }
223
224 return FALSE;
225 }
226
227 /* Return stack slot alignment in bits for TYPE and MODE. */
228
229 static unsigned int
230 get_stack_local_alignment (tree type, enum machine_mode mode)
231 {
232 unsigned int alignment;
233
234 if (mode == BLKmode)
235 alignment = BIGGEST_ALIGNMENT;
236 else
237 alignment = GET_MODE_ALIGNMENT (mode);
238
239 /* Allow the frond-end to (possibly) increase the alignment of this
240 stack slot. */
241 if (! type)
242 type = lang_hooks.types.type_for_mode (mode, 0);
243
244 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
245 }
246
247 /* Determine whether it is possible to fit a stack slot of size SIZE and
248 alignment ALIGNMENT into an area in the stack frame that starts at
249 frame offset START and has a length of LENGTH. If so, store the frame
250 offset to be used for the stack slot in *POFFSET and return true;
251 return false otherwise. This function will extend the frame size when
252 given a start/length pair that lies at the end of the frame. */
253
254 static bool
255 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
256 HOST_WIDE_INT size, unsigned int alignment,
257 HOST_WIDE_INT *poffset)
258 {
259 HOST_WIDE_INT this_frame_offset;
260 int frame_off, frame_alignment, frame_phase;
261
262 /* Calculate how many bytes the start of local variables is off from
263 stack alignment. */
264 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
265 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
266 frame_phase = frame_off ? frame_alignment - frame_off : 0;
267
268 /* Round the frame offset to the specified alignment. */
269
270 /* We must be careful here, since FRAME_OFFSET might be negative and
271 division with a negative dividend isn't as well defined as we might
272 like. So we instead assume that ALIGNMENT is a power of two and
273 use logical operations which are unambiguous. */
274 if (FRAME_GROWS_DOWNWARD)
275 this_frame_offset
276 = (FLOOR_ROUND (start + length - size - frame_phase,
277 (unsigned HOST_WIDE_INT) alignment)
278 + frame_phase);
279 else
280 this_frame_offset
281 = (CEIL_ROUND (start - frame_phase,
282 (unsigned HOST_WIDE_INT) alignment)
283 + frame_phase);
284
285 /* See if it fits. If this space is at the edge of the frame,
286 consider extending the frame to make it fit. Our caller relies on
287 this when allocating a new slot. */
288 if (frame_offset == start && this_frame_offset < frame_offset)
289 frame_offset = this_frame_offset;
290 else if (this_frame_offset < start)
291 return false;
292 else if (start + length == frame_offset
293 && this_frame_offset + size > start + length)
294 frame_offset = this_frame_offset + size;
295 else if (this_frame_offset + size > start + length)
296 return false;
297
298 *poffset = this_frame_offset;
299 return true;
300 }
301
302 /* Create a new frame_space structure describing free space in the stack
303 frame beginning at START and ending at END, and chain it into the
304 function's frame_space_list. */
305
306 static void
307 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
308 {
309 struct frame_space *space = ggc_alloc_frame_space ();
310 space->next = crtl->frame_space_list;
311 crtl->frame_space_list = space;
312 space->start = start;
313 space->length = end - start;
314 }
315
316 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
317 with machine mode MODE.
318
319 ALIGN controls the amount of alignment for the address of the slot:
320 0 means according to MODE,
321 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
322 -2 means use BITS_PER_UNIT,
323 positive specifies alignment boundary in bits.
324
325 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
326 alignment and ASLK_RECORD_PAD bit set if we should remember
327 extra space we allocated for alignment purposes. When we are
328 called from assign_stack_temp_for_type, it is not set so we don't
329 track the same stack slot in two independent lists.
330
331 We do not round to stack_boundary here. */
332
333 rtx
334 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
335 int align, int kind)
336 {
337 rtx x, addr;
338 int bigend_correction = 0;
339 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
340 unsigned int alignment, alignment_in_bits;
341
342 if (align == 0)
343 {
344 alignment = get_stack_local_alignment (NULL, mode);
345 alignment /= BITS_PER_UNIT;
346 }
347 else if (align == -1)
348 {
349 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
350 size = CEIL_ROUND (size, alignment);
351 }
352 else if (align == -2)
353 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
354 else
355 alignment = align / BITS_PER_UNIT;
356
357 alignment_in_bits = alignment * BITS_PER_UNIT;
358
359 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
360 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
361 {
362 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
363 alignment = alignment_in_bits / BITS_PER_UNIT;
364 }
365
366 if (SUPPORTS_STACK_ALIGNMENT)
367 {
368 if (crtl->stack_alignment_estimated < alignment_in_bits)
369 {
370 if (!crtl->stack_realign_processed)
371 crtl->stack_alignment_estimated = alignment_in_bits;
372 else
373 {
374 /* If stack is realigned and stack alignment value
375 hasn't been finalized, it is OK not to increase
376 stack_alignment_estimated. The bigger alignment
377 requirement is recorded in stack_alignment_needed
378 below. */
379 gcc_assert (!crtl->stack_realign_finalized);
380 if (!crtl->stack_realign_needed)
381 {
382 /* It is OK to reduce the alignment as long as the
383 requested size is 0 or the estimated stack
384 alignment >= mode alignment. */
385 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
386 || size == 0
387 || (crtl->stack_alignment_estimated
388 >= GET_MODE_ALIGNMENT (mode)));
389 alignment_in_bits = crtl->stack_alignment_estimated;
390 alignment = alignment_in_bits / BITS_PER_UNIT;
391 }
392 }
393 }
394 }
395
396 if (crtl->stack_alignment_needed < alignment_in_bits)
397 crtl->stack_alignment_needed = alignment_in_bits;
398 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
399 crtl->max_used_stack_slot_alignment = alignment_in_bits;
400
401 if (mode != BLKmode || size != 0)
402 {
403 if (kind & ASLK_RECORD_PAD)
404 {
405 struct frame_space **psp;
406
407 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
408 {
409 struct frame_space *space = *psp;
410 if (!try_fit_stack_local (space->start, space->length, size,
411 alignment, &slot_offset))
412 continue;
413 *psp = space->next;
414 if (slot_offset > space->start)
415 add_frame_space (space->start, slot_offset);
416 if (slot_offset + size < space->start + space->length)
417 add_frame_space (slot_offset + size,
418 space->start + space->length);
419 goto found_space;
420 }
421 }
422 }
423 else if (!STACK_ALIGNMENT_NEEDED)
424 {
425 slot_offset = frame_offset;
426 goto found_space;
427 }
428
429 old_frame_offset = frame_offset;
430
431 if (FRAME_GROWS_DOWNWARD)
432 {
433 frame_offset -= size;
434 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
435
436 if (kind & ASLK_RECORD_PAD)
437 {
438 if (slot_offset > frame_offset)
439 add_frame_space (frame_offset, slot_offset);
440 if (slot_offset + size < old_frame_offset)
441 add_frame_space (slot_offset + size, old_frame_offset);
442 }
443 }
444 else
445 {
446 frame_offset += size;
447 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
448
449 if (kind & ASLK_RECORD_PAD)
450 {
451 if (slot_offset > old_frame_offset)
452 add_frame_space (old_frame_offset, slot_offset);
453 if (slot_offset + size < frame_offset)
454 add_frame_space (slot_offset + size, frame_offset);
455 }
456 }
457
458 found_space:
459 /* On a big-endian machine, if we are allocating more space than we will use,
460 use the least significant bytes of those that are allocated. */
461 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
462 bigend_correction = size - GET_MODE_SIZE (mode);
463
464 /* If we have already instantiated virtual registers, return the actual
465 address relative to the frame pointer. */
466 if (virtuals_instantiated)
467 addr = plus_constant (Pmode, frame_pointer_rtx,
468 trunc_int_for_mode
469 (slot_offset + bigend_correction
470 + STARTING_FRAME_OFFSET, Pmode));
471 else
472 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
473 trunc_int_for_mode
474 (slot_offset + bigend_correction,
475 Pmode));
476
477 x = gen_rtx_MEM (mode, addr);
478 set_mem_align (x, alignment_in_bits);
479 MEM_NOTRAP_P (x) = 1;
480
481 stack_slot_list
482 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
483
484 if (frame_offset_overflow (frame_offset, current_function_decl))
485 frame_offset = 0;
486
487 return x;
488 }
489
490 /* Wrap up assign_stack_local_1 with last parameter as false. */
491
492 rtx
493 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
494 {
495 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
496 }
497 \f
498 /* In order to evaluate some expressions, such as function calls returning
499 structures in memory, we need to temporarily allocate stack locations.
500 We record each allocated temporary in the following structure.
501
502 Associated with each temporary slot is a nesting level. When we pop up
503 one level, all temporaries associated with the previous level are freed.
504 Normally, all temporaries are freed after the execution of the statement
505 in which they were created. However, if we are inside a ({...}) grouping,
506 the result may be in a temporary and hence must be preserved. If the
507 result could be in a temporary, we preserve it if we can determine which
508 one it is in. If we cannot determine which temporary may contain the
509 result, all temporaries are preserved. A temporary is preserved by
510 pretending it was allocated at the previous nesting level. */
511
512 struct GTY(()) temp_slot {
513 /* Points to next temporary slot. */
514 struct temp_slot *next;
515 /* Points to previous temporary slot. */
516 struct temp_slot *prev;
517 /* The rtx to used to reference the slot. */
518 rtx slot;
519 /* The size, in units, of the slot. */
520 HOST_WIDE_INT size;
521 /* The type of the object in the slot, or zero if it doesn't correspond
522 to a type. We use this to determine whether a slot can be reused.
523 It can be reused if objects of the type of the new slot will always
524 conflict with objects of the type of the old slot. */
525 tree type;
526 /* The alignment (in bits) of the slot. */
527 unsigned int align;
528 /* Nonzero if this temporary is currently in use. */
529 char in_use;
530 /* Nesting level at which this slot is being used. */
531 int level;
532 /* The offset of the slot from the frame_pointer, including extra space
533 for alignment. This info is for combine_temp_slots. */
534 HOST_WIDE_INT base_offset;
535 /* The size of the slot, including extra space for alignment. This
536 info is for combine_temp_slots. */
537 HOST_WIDE_INT full_size;
538 };
539
540 /* A table of addresses that represent a stack slot. The table is a mapping
541 from address RTXen to a temp slot. */
542 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
543 static size_t n_temp_slots_in_use;
544
545 /* Entry for the above hash table. */
546 struct GTY(()) temp_slot_address_entry {
547 hashval_t hash;
548 rtx address;
549 struct temp_slot *temp_slot;
550 };
551
552 /* Removes temporary slot TEMP from LIST. */
553
554 static void
555 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
556 {
557 if (temp->next)
558 temp->next->prev = temp->prev;
559 if (temp->prev)
560 temp->prev->next = temp->next;
561 else
562 *list = temp->next;
563
564 temp->prev = temp->next = NULL;
565 }
566
567 /* Inserts temporary slot TEMP to LIST. */
568
569 static void
570 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
571 {
572 temp->next = *list;
573 if (*list)
574 (*list)->prev = temp;
575 temp->prev = NULL;
576 *list = temp;
577 }
578
579 /* Returns the list of used temp slots at LEVEL. */
580
581 static struct temp_slot **
582 temp_slots_at_level (int level)
583 {
584 if (level >= (int) vec_safe_length (used_temp_slots))
585 vec_safe_grow_cleared (used_temp_slots, level + 1);
586
587 return &(*used_temp_slots)[level];
588 }
589
590 /* Returns the maximal temporary slot level. */
591
592 static int
593 max_slot_level (void)
594 {
595 if (!used_temp_slots)
596 return -1;
597
598 return used_temp_slots->length () - 1;
599 }
600
601 /* Moves temporary slot TEMP to LEVEL. */
602
603 static void
604 move_slot_to_level (struct temp_slot *temp, int level)
605 {
606 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
607 insert_slot_to_list (temp, temp_slots_at_level (level));
608 temp->level = level;
609 }
610
611 /* Make temporary slot TEMP available. */
612
613 static void
614 make_slot_available (struct temp_slot *temp)
615 {
616 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
617 insert_slot_to_list (temp, &avail_temp_slots);
618 temp->in_use = 0;
619 temp->level = -1;
620 n_temp_slots_in_use--;
621 }
622
623 /* Compute the hash value for an address -> temp slot mapping.
624 The value is cached on the mapping entry. */
625 static hashval_t
626 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
627 {
628 int do_not_record = 0;
629 return hash_rtx (t->address, GET_MODE (t->address),
630 &do_not_record, NULL, false);
631 }
632
633 /* Return the hash value for an address -> temp slot mapping. */
634 static hashval_t
635 temp_slot_address_hash (const void *p)
636 {
637 const struct temp_slot_address_entry *t;
638 t = (const struct temp_slot_address_entry *) p;
639 return t->hash;
640 }
641
642 /* Compare two address -> temp slot mapping entries. */
643 static int
644 temp_slot_address_eq (const void *p1, const void *p2)
645 {
646 const struct temp_slot_address_entry *t1, *t2;
647 t1 = (const struct temp_slot_address_entry *) p1;
648 t2 = (const struct temp_slot_address_entry *) p2;
649 return exp_equiv_p (t1->address, t2->address, 0, true);
650 }
651
652 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
653 static void
654 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
655 {
656 void **slot;
657 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
658 t->address = address;
659 t->temp_slot = temp_slot;
660 t->hash = temp_slot_address_compute_hash (t);
661 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
662 *slot = t;
663 }
664
665 /* Remove an address -> temp slot mapping entry if the temp slot is
666 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
667 static int
668 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
669 {
670 const struct temp_slot_address_entry *t;
671 t = (const struct temp_slot_address_entry *) *slot;
672 if (! t->temp_slot->in_use)
673 htab_clear_slot (temp_slot_address_table, slot);
674 return 1;
675 }
676
677 /* Remove all mappings of addresses to unused temp slots. */
678 static void
679 remove_unused_temp_slot_addresses (void)
680 {
681 /* Use quicker clearing if there aren't any active temp slots. */
682 if (n_temp_slots_in_use)
683 htab_traverse (temp_slot_address_table,
684 remove_unused_temp_slot_addresses_1,
685 NULL);
686 else
687 htab_empty (temp_slot_address_table);
688 }
689
690 /* Find the temp slot corresponding to the object at address X. */
691
692 static struct temp_slot *
693 find_temp_slot_from_address (rtx x)
694 {
695 struct temp_slot *p;
696 struct temp_slot_address_entry tmp, *t;
697
698 /* First try the easy way:
699 See if X exists in the address -> temp slot mapping. */
700 tmp.address = x;
701 tmp.temp_slot = NULL;
702 tmp.hash = temp_slot_address_compute_hash (&tmp);
703 t = (struct temp_slot_address_entry *)
704 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
705 if (t)
706 return t->temp_slot;
707
708 /* If we have a sum involving a register, see if it points to a temp
709 slot. */
710 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
711 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
712 return p;
713 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
714 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
715 return p;
716
717 /* Last resort: Address is a virtual stack var address. */
718 if (GET_CODE (x) == PLUS
719 && XEXP (x, 0) == virtual_stack_vars_rtx
720 && CONST_INT_P (XEXP (x, 1)))
721 {
722 int i;
723 for (i = max_slot_level (); i >= 0; i--)
724 for (p = *temp_slots_at_level (i); p; p = p->next)
725 {
726 if (INTVAL (XEXP (x, 1)) >= p->base_offset
727 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
728 return p;
729 }
730 }
731
732 return NULL;
733 }
734 \f
735 /* Allocate a temporary stack slot and record it for possible later
736 reuse.
737
738 MODE is the machine mode to be given to the returned rtx.
739
740 SIZE is the size in units of the space required. We do no rounding here
741 since assign_stack_local will do any required rounding.
742
743 TYPE is the type that will be used for the stack slot. */
744
745 rtx
746 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
747 tree type)
748 {
749 unsigned int align;
750 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
751 rtx slot;
752
753 /* If SIZE is -1 it means that somebody tried to allocate a temporary
754 of a variable size. */
755 gcc_assert (size != -1);
756
757 align = get_stack_local_alignment (type, mode);
758
759 /* Try to find an available, already-allocated temporary of the proper
760 mode which meets the size and alignment requirements. Choose the
761 smallest one with the closest alignment.
762
763 If assign_stack_temp is called outside of the tree->rtl expansion,
764 we cannot reuse the stack slots (that may still refer to
765 VIRTUAL_STACK_VARS_REGNUM). */
766 if (!virtuals_instantiated)
767 {
768 for (p = avail_temp_slots; p; p = p->next)
769 {
770 if (p->align >= align && p->size >= size
771 && GET_MODE (p->slot) == mode
772 && objects_must_conflict_p (p->type, type)
773 && (best_p == 0 || best_p->size > p->size
774 || (best_p->size == p->size && best_p->align > p->align)))
775 {
776 if (p->align == align && p->size == size)
777 {
778 selected = p;
779 cut_slot_from_list (selected, &avail_temp_slots);
780 best_p = 0;
781 break;
782 }
783 best_p = p;
784 }
785 }
786 }
787
788 /* Make our best, if any, the one to use. */
789 if (best_p)
790 {
791 selected = best_p;
792 cut_slot_from_list (selected, &avail_temp_slots);
793
794 /* If there are enough aligned bytes left over, make them into a new
795 temp_slot so that the extra bytes don't get wasted. Do this only
796 for BLKmode slots, so that we can be sure of the alignment. */
797 if (GET_MODE (best_p->slot) == BLKmode)
798 {
799 int alignment = best_p->align / BITS_PER_UNIT;
800 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
801
802 if (best_p->size - rounded_size >= alignment)
803 {
804 p = ggc_alloc_temp_slot ();
805 p->in_use = 0;
806 p->size = best_p->size - rounded_size;
807 p->base_offset = best_p->base_offset + rounded_size;
808 p->full_size = best_p->full_size - rounded_size;
809 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
810 p->align = best_p->align;
811 p->type = best_p->type;
812 insert_slot_to_list (p, &avail_temp_slots);
813
814 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
815 stack_slot_list);
816
817 best_p->size = rounded_size;
818 best_p->full_size = rounded_size;
819 }
820 }
821 }
822
823 /* If we still didn't find one, make a new temporary. */
824 if (selected == 0)
825 {
826 HOST_WIDE_INT frame_offset_old = frame_offset;
827
828 p = ggc_alloc_temp_slot ();
829
830 /* We are passing an explicit alignment request to assign_stack_local.
831 One side effect of that is assign_stack_local will not round SIZE
832 to ensure the frame offset remains suitably aligned.
833
834 So for requests which depended on the rounding of SIZE, we go ahead
835 and round it now. We also make sure ALIGNMENT is at least
836 BIGGEST_ALIGNMENT. */
837 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
838 p->slot = assign_stack_local_1 (mode,
839 (mode == BLKmode
840 ? CEIL_ROUND (size,
841 (int) align
842 / BITS_PER_UNIT)
843 : size),
844 align, 0);
845
846 p->align = align;
847
848 /* The following slot size computation is necessary because we don't
849 know the actual size of the temporary slot until assign_stack_local
850 has performed all the frame alignment and size rounding for the
851 requested temporary. Note that extra space added for alignment
852 can be either above or below this stack slot depending on which
853 way the frame grows. We include the extra space if and only if it
854 is above this slot. */
855 if (FRAME_GROWS_DOWNWARD)
856 p->size = frame_offset_old - frame_offset;
857 else
858 p->size = size;
859
860 /* Now define the fields used by combine_temp_slots. */
861 if (FRAME_GROWS_DOWNWARD)
862 {
863 p->base_offset = frame_offset;
864 p->full_size = frame_offset_old - frame_offset;
865 }
866 else
867 {
868 p->base_offset = frame_offset_old;
869 p->full_size = frame_offset - frame_offset_old;
870 }
871
872 selected = p;
873 }
874
875 p = selected;
876 p->in_use = 1;
877 p->type = type;
878 p->level = temp_slot_level;
879 n_temp_slots_in_use++;
880
881 pp = temp_slots_at_level (p->level);
882 insert_slot_to_list (p, pp);
883 insert_temp_slot_address (XEXP (p->slot, 0), p);
884
885 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
886 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
887 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
888
889 /* If we know the alias set for the memory that will be used, use
890 it. If there's no TYPE, then we don't know anything about the
891 alias set for the memory. */
892 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
893 set_mem_align (slot, align);
894
895 /* If a type is specified, set the relevant flags. */
896 if (type != 0)
897 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
898 MEM_NOTRAP_P (slot) = 1;
899
900 return slot;
901 }
902
903 /* Allocate a temporary stack slot and record it for possible later
904 reuse. First two arguments are same as in preceding function. */
905
906 rtx
907 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
908 {
909 return assign_stack_temp_for_type (mode, size, NULL_TREE);
910 }
911 \f
912 /* Assign a temporary.
913 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
914 and so that should be used in error messages. In either case, we
915 allocate of the given type.
916 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
917 it is 0 if a register is OK.
918 DONT_PROMOTE is 1 if we should not promote values in register
919 to wider modes. */
920
921 rtx
922 assign_temp (tree type_or_decl, int memory_required,
923 int dont_promote ATTRIBUTE_UNUSED)
924 {
925 tree type, decl;
926 enum machine_mode mode;
927 #ifdef PROMOTE_MODE
928 int unsignedp;
929 #endif
930
931 if (DECL_P (type_or_decl))
932 decl = type_or_decl, type = TREE_TYPE (decl);
933 else
934 decl = NULL, type = type_or_decl;
935
936 mode = TYPE_MODE (type);
937 #ifdef PROMOTE_MODE
938 unsignedp = TYPE_UNSIGNED (type);
939 #endif
940
941 if (mode == BLKmode || memory_required)
942 {
943 HOST_WIDE_INT size = int_size_in_bytes (type);
944 rtx tmp;
945
946 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
947 problems with allocating the stack space. */
948 if (size == 0)
949 size = 1;
950
951 /* Unfortunately, we don't yet know how to allocate variable-sized
952 temporaries. However, sometimes we can find a fixed upper limit on
953 the size, so try that instead. */
954 else if (size == -1)
955 size = max_int_size_in_bytes (type);
956
957 /* The size of the temporary may be too large to fit into an integer. */
958 /* ??? Not sure this should happen except for user silliness, so limit
959 this to things that aren't compiler-generated temporaries. The
960 rest of the time we'll die in assign_stack_temp_for_type. */
961 if (decl && size == -1
962 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
963 {
964 error ("size of variable %q+D is too large", decl);
965 size = 1;
966 }
967
968 tmp = assign_stack_temp_for_type (mode, size, type);
969 return tmp;
970 }
971
972 #ifdef PROMOTE_MODE
973 if (! dont_promote)
974 mode = promote_mode (type, mode, &unsignedp);
975 #endif
976
977 return gen_reg_rtx (mode);
978 }
979 \f
980 /* Combine temporary stack slots which are adjacent on the stack.
981
982 This allows for better use of already allocated stack space. This is only
983 done for BLKmode slots because we can be sure that we won't have alignment
984 problems in this case. */
985
986 static void
987 combine_temp_slots (void)
988 {
989 struct temp_slot *p, *q, *next, *next_q;
990 int num_slots;
991
992 /* We can't combine slots, because the information about which slot
993 is in which alias set will be lost. */
994 if (flag_strict_aliasing)
995 return;
996
997 /* If there are a lot of temp slots, don't do anything unless
998 high levels of optimization. */
999 if (! flag_expensive_optimizations)
1000 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1001 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1002 return;
1003
1004 for (p = avail_temp_slots; p; p = next)
1005 {
1006 int delete_p = 0;
1007
1008 next = p->next;
1009
1010 if (GET_MODE (p->slot) != BLKmode)
1011 continue;
1012
1013 for (q = p->next; q; q = next_q)
1014 {
1015 int delete_q = 0;
1016
1017 next_q = q->next;
1018
1019 if (GET_MODE (q->slot) != BLKmode)
1020 continue;
1021
1022 if (p->base_offset + p->full_size == q->base_offset)
1023 {
1024 /* Q comes after P; combine Q into P. */
1025 p->size += q->size;
1026 p->full_size += q->full_size;
1027 delete_q = 1;
1028 }
1029 else if (q->base_offset + q->full_size == p->base_offset)
1030 {
1031 /* P comes after Q; combine P into Q. */
1032 q->size += p->size;
1033 q->full_size += p->full_size;
1034 delete_p = 1;
1035 break;
1036 }
1037 if (delete_q)
1038 cut_slot_from_list (q, &avail_temp_slots);
1039 }
1040
1041 /* Either delete P or advance past it. */
1042 if (delete_p)
1043 cut_slot_from_list (p, &avail_temp_slots);
1044 }
1045 }
1046 \f
1047 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1048 slot that previously was known by OLD_RTX. */
1049
1050 void
1051 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1052 {
1053 struct temp_slot *p;
1054
1055 if (rtx_equal_p (old_rtx, new_rtx))
1056 return;
1057
1058 p = find_temp_slot_from_address (old_rtx);
1059
1060 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1061 NEW_RTX is a register, see if one operand of the PLUS is a
1062 temporary location. If so, NEW_RTX points into it. Otherwise,
1063 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1064 in common between them. If so, try a recursive call on those
1065 values. */
1066 if (p == 0)
1067 {
1068 if (GET_CODE (old_rtx) != PLUS)
1069 return;
1070
1071 if (REG_P (new_rtx))
1072 {
1073 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1074 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1075 return;
1076 }
1077 else if (GET_CODE (new_rtx) != PLUS)
1078 return;
1079
1080 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1081 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1082 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1083 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1085 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1086 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1087 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1088
1089 return;
1090 }
1091
1092 /* Otherwise add an alias for the temp's address. */
1093 insert_temp_slot_address (new_rtx, p);
1094 }
1095
1096 /* If X could be a reference to a temporary slot, mark that slot as
1097 belonging to the to one level higher than the current level. If X
1098 matched one of our slots, just mark that one. Otherwise, we can't
1099 easily predict which it is, so upgrade all of them.
1100
1101 This is called when an ({...}) construct occurs and a statement
1102 returns a value in memory. */
1103
1104 void
1105 preserve_temp_slots (rtx x)
1106 {
1107 struct temp_slot *p = 0, *next;
1108
1109 if (x == 0)
1110 return;
1111
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. */
1114 if (REG_P (x) && REG_POINTER (x))
1115 p = find_temp_slot_from_address (x);
1116
1117 /* If X is not in memory or is at a constant address, it cannot be in
1118 a temporary slot. */
1119 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1120 return;
1121
1122 /* First see if we can find a match. */
1123 if (p == 0)
1124 p = find_temp_slot_from_address (XEXP (x, 0));
1125
1126 if (p != 0)
1127 {
1128 if (p->level == temp_slot_level)
1129 move_slot_to_level (p, temp_slot_level - 1);
1130 return;
1131 }
1132
1133 /* Otherwise, preserve all non-kept slots at this level. */
1134 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1135 {
1136 next = p->next;
1137 move_slot_to_level (p, temp_slot_level - 1);
1138 }
1139 }
1140
1141 /* Free all temporaries used so far. This is normally called at the
1142 end of generating code for a statement. */
1143
1144 void
1145 free_temp_slots (void)
1146 {
1147 struct temp_slot *p, *next;
1148 bool some_available = false;
1149
1150 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1151 {
1152 next = p->next;
1153 make_slot_available (p);
1154 some_available = true;
1155 }
1156
1157 if (some_available)
1158 {
1159 remove_unused_temp_slot_addresses ();
1160 combine_temp_slots ();
1161 }
1162 }
1163
1164 /* Push deeper into the nesting level for stack temporaries. */
1165
1166 void
1167 push_temp_slots (void)
1168 {
1169 temp_slot_level++;
1170 }
1171
1172 /* Pop a temporary nesting level. All slots in use in the current level
1173 are freed. */
1174
1175 void
1176 pop_temp_slots (void)
1177 {
1178 free_temp_slots ();
1179 temp_slot_level--;
1180 }
1181
1182 /* Initialize temporary slots. */
1183
1184 void
1185 init_temp_slots (void)
1186 {
1187 /* We have not allocated any temporaries yet. */
1188 avail_temp_slots = 0;
1189 vec_alloc (used_temp_slots, 0);
1190 temp_slot_level = 0;
1191 n_temp_slots_in_use = 0;
1192
1193 /* Set up the table to map addresses to temp slots. */
1194 if (! temp_slot_address_table)
1195 temp_slot_address_table = htab_create_ggc (32,
1196 temp_slot_address_hash,
1197 temp_slot_address_eq,
1198 NULL);
1199 else
1200 htab_empty (temp_slot_address_table);
1201 }
1202 \f
1203 /* Functions and data structures to keep track of the values hard regs
1204 had at the start of the function. */
1205
1206 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1207 and has_hard_reg_initial_val.. */
1208 typedef struct GTY(()) initial_value_pair {
1209 rtx hard_reg;
1210 rtx pseudo;
1211 } initial_value_pair;
1212 /* ??? This could be a VEC but there is currently no way to define an
1213 opaque VEC type. This could be worked around by defining struct
1214 initial_value_pair in function.h. */
1215 typedef struct GTY(()) initial_value_struct {
1216 int num_entries;
1217 int max_entries;
1218 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1219 } initial_value_struct;
1220
1221 /* If a pseudo represents an initial hard reg (or expression), return
1222 it, else return NULL_RTX. */
1223
1224 rtx
1225 get_hard_reg_initial_reg (rtx reg)
1226 {
1227 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1228 int i;
1229
1230 if (ivs == 0)
1231 return NULL_RTX;
1232
1233 for (i = 0; i < ivs->num_entries; i++)
1234 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1235 return ivs->entries[i].hard_reg;
1236
1237 return NULL_RTX;
1238 }
1239
1240 /* Make sure that there's a pseudo register of mode MODE that stores the
1241 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1242
1243 rtx
1244 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1245 {
1246 struct initial_value_struct *ivs;
1247 rtx rv;
1248
1249 rv = has_hard_reg_initial_val (mode, regno);
1250 if (rv)
1251 return rv;
1252
1253 ivs = crtl->hard_reg_initial_vals;
1254 if (ivs == 0)
1255 {
1256 ivs = ggc_alloc_initial_value_struct ();
1257 ivs->num_entries = 0;
1258 ivs->max_entries = 5;
1259 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1260 crtl->hard_reg_initial_vals = ivs;
1261 }
1262
1263 if (ivs->num_entries >= ivs->max_entries)
1264 {
1265 ivs->max_entries += 5;
1266 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1267 ivs->max_entries);
1268 }
1269
1270 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1271 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1272
1273 return ivs->entries[ivs->num_entries++].pseudo;
1274 }
1275
1276 /* See if get_hard_reg_initial_val has been used to create a pseudo
1277 for the initial value of hard register REGNO in mode MODE. Return
1278 the associated pseudo if so, otherwise return NULL. */
1279
1280 rtx
1281 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1282 {
1283 struct initial_value_struct *ivs;
1284 int i;
1285
1286 ivs = crtl->hard_reg_initial_vals;
1287 if (ivs != 0)
1288 for (i = 0; i < ivs->num_entries; i++)
1289 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1290 && REGNO (ivs->entries[i].hard_reg) == regno)
1291 return ivs->entries[i].pseudo;
1292
1293 return NULL_RTX;
1294 }
1295
1296 unsigned int
1297 emit_initial_value_sets (void)
1298 {
1299 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1300 int i;
1301 rtx seq;
1302
1303 if (ivs == 0)
1304 return 0;
1305
1306 start_sequence ();
1307 for (i = 0; i < ivs->num_entries; i++)
1308 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1309 seq = get_insns ();
1310 end_sequence ();
1311
1312 emit_insn_at_entry (seq);
1313 return 0;
1314 }
1315
1316 /* Return the hardreg-pseudoreg initial values pair entry I and
1317 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1318 bool
1319 initial_value_entry (int i, rtx *hreg, rtx *preg)
1320 {
1321 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1322 if (!ivs || i >= ivs->num_entries)
1323 return false;
1324
1325 *hreg = ivs->entries[i].hard_reg;
1326 *preg = ivs->entries[i].pseudo;
1327 return true;
1328 }
1329 \f
1330 /* These routines are responsible for converting virtual register references
1331 to the actual hard register references once RTL generation is complete.
1332
1333 The following four variables are used for communication between the
1334 routines. They contain the offsets of the virtual registers from their
1335 respective hard registers. */
1336
1337 static int in_arg_offset;
1338 static int var_offset;
1339 static int dynamic_offset;
1340 static int out_arg_offset;
1341 static int cfa_offset;
1342
1343 /* In most machines, the stack pointer register is equivalent to the bottom
1344 of the stack. */
1345
1346 #ifndef STACK_POINTER_OFFSET
1347 #define STACK_POINTER_OFFSET 0
1348 #endif
1349
1350 /* If not defined, pick an appropriate default for the offset of dynamically
1351 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1352 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1353
1354 #ifndef STACK_DYNAMIC_OFFSET
1355
1356 /* The bottom of the stack points to the actual arguments. If
1357 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1358 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1359 stack space for register parameters is not pushed by the caller, but
1360 rather part of the fixed stack areas and hence not included in
1361 `crtl->outgoing_args_size'. Nevertheless, we must allow
1362 for it when allocating stack dynamic objects. */
1363
1364 #if defined(REG_PARM_STACK_SPACE)
1365 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1366 ((ACCUMULATE_OUTGOING_ARGS \
1367 ? (crtl->outgoing_args_size \
1368 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1369 : REG_PARM_STACK_SPACE (FNDECL))) \
1370 : 0) + (STACK_POINTER_OFFSET))
1371 #else
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1374 + (STACK_POINTER_OFFSET))
1375 #endif
1376 #endif
1377
1378 \f
1379 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1380 is a virtual register, return the equivalent hard register and set the
1381 offset indirectly through the pointer. Otherwise, return 0. */
1382
1383 static rtx
1384 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1385 {
1386 rtx new_rtx;
1387 HOST_WIDE_INT offset;
1388
1389 if (x == virtual_incoming_args_rtx)
1390 {
1391 if (stack_realign_drap)
1392 {
1393 /* Replace virtual_incoming_args_rtx with internal arg
1394 pointer if DRAP is used to realign stack. */
1395 new_rtx = crtl->args.internal_arg_pointer;
1396 offset = 0;
1397 }
1398 else
1399 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1400 }
1401 else if (x == virtual_stack_vars_rtx)
1402 new_rtx = frame_pointer_rtx, offset = var_offset;
1403 else if (x == virtual_stack_dynamic_rtx)
1404 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1405 else if (x == virtual_outgoing_args_rtx)
1406 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1407 else if (x == virtual_cfa_rtx)
1408 {
1409 #ifdef FRAME_POINTER_CFA_OFFSET
1410 new_rtx = frame_pointer_rtx;
1411 #else
1412 new_rtx = arg_pointer_rtx;
1413 #endif
1414 offset = cfa_offset;
1415 }
1416 else if (x == virtual_preferred_stack_boundary_rtx)
1417 {
1418 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1419 offset = 0;
1420 }
1421 else
1422 return NULL_RTX;
1423
1424 *poffset = offset;
1425 return new_rtx;
1426 }
1427
1428 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1429 Instantiate any virtual registers present inside of *LOC. The expression
1430 is simplified, as much as possible, but is not to be considered "valid"
1431 in any sense implied by the target. If any change is made, set CHANGED
1432 to true. */
1433
1434 static int
1435 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1436 {
1437 HOST_WIDE_INT offset;
1438 bool *changed = (bool *) data;
1439 rtx x, new_rtx;
1440
1441 x = *loc;
1442 if (x == 0)
1443 return 0;
1444
1445 switch (GET_CODE (x))
1446 {
1447 case REG:
1448 new_rtx = instantiate_new_reg (x, &offset);
1449 if (new_rtx)
1450 {
1451 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1452 if (changed)
1453 *changed = true;
1454 }
1455 return -1;
1456
1457 case PLUS:
1458 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1459 if (new_rtx)
1460 {
1461 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1462 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1463 if (changed)
1464 *changed = true;
1465 return -1;
1466 }
1467
1468 /* FIXME -- from old code */
1469 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1470 we can commute the PLUS and SUBREG because pointers into the
1471 frame are well-behaved. */
1472 break;
1473
1474 default:
1475 break;
1476 }
1477
1478 return 0;
1479 }
1480
1481 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1482 matches the predicate for insn CODE operand OPERAND. */
1483
1484 static int
1485 safe_insn_predicate (int code, int operand, rtx x)
1486 {
1487 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1488 }
1489
1490 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1491 registers present inside of insn. The result will be a valid insn. */
1492
1493 static void
1494 instantiate_virtual_regs_in_insn (rtx insn)
1495 {
1496 HOST_WIDE_INT offset;
1497 int insn_code, i;
1498 bool any_change = false;
1499 rtx set, new_rtx, x, seq;
1500
1501 /* There are some special cases to be handled first. */
1502 set = single_set (insn);
1503 if (set)
1504 {
1505 /* We're allowed to assign to a virtual register. This is interpreted
1506 to mean that the underlying register gets assigned the inverse
1507 transformation. This is used, for example, in the handling of
1508 non-local gotos. */
1509 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1510 if (new_rtx)
1511 {
1512 start_sequence ();
1513
1514 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1515 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1516 gen_int_mode (-offset, GET_MODE (new_rtx)));
1517 x = force_operand (x, new_rtx);
1518 if (x != new_rtx)
1519 emit_move_insn (new_rtx, x);
1520
1521 seq = get_insns ();
1522 end_sequence ();
1523
1524 emit_insn_before (seq, insn);
1525 delete_insn (insn);
1526 return;
1527 }
1528
1529 /* Handle a straight copy from a virtual register by generating a
1530 new add insn. The difference between this and falling through
1531 to the generic case is avoiding a new pseudo and eliminating a
1532 move insn in the initial rtl stream. */
1533 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1534 if (new_rtx && offset != 0
1535 && REG_P (SET_DEST (set))
1536 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1537 {
1538 start_sequence ();
1539
1540 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1541 gen_int_mode (offset,
1542 GET_MODE (SET_DEST (set))),
1543 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1544 if (x != SET_DEST (set))
1545 emit_move_insn (SET_DEST (set), x);
1546
1547 seq = get_insns ();
1548 end_sequence ();
1549
1550 emit_insn_before (seq, insn);
1551 delete_insn (insn);
1552 return;
1553 }
1554
1555 extract_insn (insn);
1556 insn_code = INSN_CODE (insn);
1557
1558 /* Handle a plus involving a virtual register by determining if the
1559 operands remain valid if they're modified in place. */
1560 if (GET_CODE (SET_SRC (set)) == PLUS
1561 && recog_data.n_operands >= 3
1562 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1563 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1564 && CONST_INT_P (recog_data.operand[2])
1565 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1566 {
1567 offset += INTVAL (recog_data.operand[2]);
1568
1569 /* If the sum is zero, then replace with a plain move. */
1570 if (offset == 0
1571 && REG_P (SET_DEST (set))
1572 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1573 {
1574 start_sequence ();
1575 emit_move_insn (SET_DEST (set), new_rtx);
1576 seq = get_insns ();
1577 end_sequence ();
1578
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1582 }
1583
1584 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1585
1586 /* Using validate_change and apply_change_group here leaves
1587 recog_data in an invalid state. Since we know exactly what
1588 we want to check, do those two by hand. */
1589 if (safe_insn_predicate (insn_code, 1, new_rtx)
1590 && safe_insn_predicate (insn_code, 2, x))
1591 {
1592 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1593 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1594 any_change = true;
1595
1596 /* Fall through into the regular operand fixup loop in
1597 order to take care of operands other than 1 and 2. */
1598 }
1599 }
1600 }
1601 else
1602 {
1603 extract_insn (insn);
1604 insn_code = INSN_CODE (insn);
1605 }
1606
1607 /* In the general case, we expect virtual registers to appear only in
1608 operands, and then only as either bare registers or inside memories. */
1609 for (i = 0; i < recog_data.n_operands; ++i)
1610 {
1611 x = recog_data.operand[i];
1612 switch (GET_CODE (x))
1613 {
1614 case MEM:
1615 {
1616 rtx addr = XEXP (x, 0);
1617 bool changed = false;
1618
1619 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1620 if (!changed)
1621 continue;
1622
1623 start_sequence ();
1624 x = replace_equiv_address (x, addr);
1625 /* It may happen that the address with the virtual reg
1626 was valid (e.g. based on the virtual stack reg, which might
1627 be acceptable to the predicates with all offsets), whereas
1628 the address now isn't anymore, for instance when the address
1629 is still offsetted, but the base reg isn't virtual-stack-reg
1630 anymore. Below we would do a force_reg on the whole operand,
1631 but this insn might actually only accept memory. Hence,
1632 before doing that last resort, try to reload the address into
1633 a register, so this operand stays a MEM. */
1634 if (!safe_insn_predicate (insn_code, i, x))
1635 {
1636 addr = force_reg (GET_MODE (addr), addr);
1637 x = replace_equiv_address (x, addr);
1638 }
1639 seq = get_insns ();
1640 end_sequence ();
1641 if (seq)
1642 emit_insn_before (seq, insn);
1643 }
1644 break;
1645
1646 case REG:
1647 new_rtx = instantiate_new_reg (x, &offset);
1648 if (new_rtx == NULL)
1649 continue;
1650 if (offset == 0)
1651 x = new_rtx;
1652 else
1653 {
1654 start_sequence ();
1655
1656 /* Careful, special mode predicates may have stuff in
1657 insn_data[insn_code].operand[i].mode that isn't useful
1658 to us for computing a new value. */
1659 /* ??? Recognize address_operand and/or "p" constraints
1660 to see if (plus new offset) is a valid before we put
1661 this through expand_simple_binop. */
1662 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1663 gen_int_mode (offset, GET_MODE (x)),
1664 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1665 seq = get_insns ();
1666 end_sequence ();
1667 emit_insn_before (seq, insn);
1668 }
1669 break;
1670
1671 case SUBREG:
1672 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset != 0)
1676 {
1677 start_sequence ();
1678 new_rtx = expand_simple_binop
1679 (GET_MODE (new_rtx), PLUS, new_rtx,
1680 gen_int_mode (offset, GET_MODE (new_rtx)),
1681 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1682 seq = get_insns ();
1683 end_sequence ();
1684 emit_insn_before (seq, insn);
1685 }
1686 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1687 GET_MODE (new_rtx), SUBREG_BYTE (x));
1688 gcc_assert (x);
1689 break;
1690
1691 default:
1692 continue;
1693 }
1694
1695 /* At this point, X contains the new value for the operand.
1696 Validate the new value vs the insn predicate. Note that
1697 asm insns will have insn_code -1 here. */
1698 if (!safe_insn_predicate (insn_code, i, x))
1699 {
1700 start_sequence ();
1701 if (REG_P (x))
1702 {
1703 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1704 x = copy_to_reg (x);
1705 }
1706 else
1707 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1708 seq = get_insns ();
1709 end_sequence ();
1710 if (seq)
1711 emit_insn_before (seq, insn);
1712 }
1713
1714 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1715 any_change = true;
1716 }
1717
1718 if (any_change)
1719 {
1720 /* Propagate operand changes into the duplicates. */
1721 for (i = 0; i < recog_data.n_dups; ++i)
1722 *recog_data.dup_loc[i]
1723 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1724
1725 /* Force re-recognition of the instruction for validation. */
1726 INSN_CODE (insn) = -1;
1727 }
1728
1729 if (asm_noperands (PATTERN (insn)) >= 0)
1730 {
1731 if (!check_asm_operands (PATTERN (insn)))
1732 {
1733 error_for_asm (insn, "impossible constraint in %<asm%>");
1734 /* For asm goto, instead of fixing up all the edges
1735 just clear the template and clear input operands
1736 (asm goto doesn't have any output operands). */
1737 if (JUMP_P (insn))
1738 {
1739 rtx asm_op = extract_asm_operands (PATTERN (insn));
1740 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1741 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1742 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1743 }
1744 else
1745 delete_insn (insn);
1746 }
1747 }
1748 else
1749 {
1750 if (recog_memoized (insn) < 0)
1751 fatal_insn_not_found (insn);
1752 }
1753 }
1754
1755 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1756 do any instantiation required. */
1757
1758 void
1759 instantiate_decl_rtl (rtx x)
1760 {
1761 rtx addr;
1762
1763 if (x == 0)
1764 return;
1765
1766 /* If this is a CONCAT, recurse for the pieces. */
1767 if (GET_CODE (x) == CONCAT)
1768 {
1769 instantiate_decl_rtl (XEXP (x, 0));
1770 instantiate_decl_rtl (XEXP (x, 1));
1771 return;
1772 }
1773
1774 /* If this is not a MEM, no need to do anything. Similarly if the
1775 address is a constant or a register that is not a virtual register. */
1776 if (!MEM_P (x))
1777 return;
1778
1779 addr = XEXP (x, 0);
1780 if (CONSTANT_P (addr)
1781 || (REG_P (addr)
1782 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1783 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1784 return;
1785
1786 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1787 }
1788
1789 /* Helper for instantiate_decls called via walk_tree: Process all decls
1790 in the given DECL_VALUE_EXPR. */
1791
1792 static tree
1793 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1794 {
1795 tree t = *tp;
1796 if (! EXPR_P (t))
1797 {
1798 *walk_subtrees = 0;
1799 if (DECL_P (t))
1800 {
1801 if (DECL_RTL_SET_P (t))
1802 instantiate_decl_rtl (DECL_RTL (t));
1803 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1804 && DECL_INCOMING_RTL (t))
1805 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1806 if ((TREE_CODE (t) == VAR_DECL
1807 || TREE_CODE (t) == RESULT_DECL)
1808 && DECL_HAS_VALUE_EXPR_P (t))
1809 {
1810 tree v = DECL_VALUE_EXPR (t);
1811 walk_tree (&v, instantiate_expr, NULL, NULL);
1812 }
1813 }
1814 }
1815 return NULL;
1816 }
1817
1818 /* Subroutine of instantiate_decls: Process all decls in the given
1819 BLOCK node and all its subblocks. */
1820
1821 static void
1822 instantiate_decls_1 (tree let)
1823 {
1824 tree t;
1825
1826 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1827 {
1828 if (DECL_RTL_SET_P (t))
1829 instantiate_decl_rtl (DECL_RTL (t));
1830 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1831 {
1832 tree v = DECL_VALUE_EXPR (t);
1833 walk_tree (&v, instantiate_expr, NULL, NULL);
1834 }
1835 }
1836
1837 /* Process all subblocks. */
1838 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1839 instantiate_decls_1 (t);
1840 }
1841
1842 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1843 all virtual registers in their DECL_RTL's. */
1844
1845 static void
1846 instantiate_decls (tree fndecl)
1847 {
1848 tree decl;
1849 unsigned ix;
1850
1851 /* Process all parameters of the function. */
1852 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1853 {
1854 instantiate_decl_rtl (DECL_RTL (decl));
1855 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1856 if (DECL_HAS_VALUE_EXPR_P (decl))
1857 {
1858 tree v = DECL_VALUE_EXPR (decl);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1860 }
1861 }
1862
1863 if ((decl = DECL_RESULT (fndecl))
1864 && TREE_CODE (decl) == RESULT_DECL)
1865 {
1866 if (DECL_RTL_SET_P (decl))
1867 instantiate_decl_rtl (DECL_RTL (decl));
1868 if (DECL_HAS_VALUE_EXPR_P (decl))
1869 {
1870 tree v = DECL_VALUE_EXPR (decl);
1871 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 }
1873 }
1874
1875 /* Now process all variables defined in the function or its subblocks. */
1876 instantiate_decls_1 (DECL_INITIAL (fndecl));
1877
1878 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1879 if (DECL_RTL_SET_P (decl))
1880 instantiate_decl_rtl (DECL_RTL (decl));
1881 vec_free (cfun->local_decls);
1882 }
1883
1884 /* Pass through the INSNS of function FNDECL and convert virtual register
1885 references to hard register references. */
1886
1887 static unsigned int
1888 instantiate_virtual_regs (void)
1889 {
1890 rtx insn;
1891
1892 /* Compute the offsets to use for this function. */
1893 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1894 var_offset = STARTING_FRAME_OFFSET;
1895 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1896 out_arg_offset = STACK_POINTER_OFFSET;
1897 #ifdef FRAME_POINTER_CFA_OFFSET
1898 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1899 #else
1900 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1901 #endif
1902
1903 /* Initialize recognition, indicating that volatile is OK. */
1904 init_recog ();
1905
1906 /* Scan through all the insns, instantiating every virtual register still
1907 present. */
1908 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1909 if (INSN_P (insn))
1910 {
1911 /* These patterns in the instruction stream can never be recognized.
1912 Fortunately, they shouldn't contain virtual registers either. */
1913 if (GET_CODE (PATTERN (insn)) == USE
1914 || GET_CODE (PATTERN (insn)) == CLOBBER
1915 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1916 continue;
1917 else if (DEBUG_INSN_P (insn))
1918 for_each_rtx (&INSN_VAR_LOCATION (insn),
1919 instantiate_virtual_regs_in_rtx, NULL);
1920 else
1921 instantiate_virtual_regs_in_insn (insn);
1922
1923 if (INSN_DELETED_P (insn))
1924 continue;
1925
1926 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1927
1928 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1929 if (CALL_P (insn))
1930 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1931 instantiate_virtual_regs_in_rtx, NULL);
1932 }
1933
1934 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1935 instantiate_decls (current_function_decl);
1936
1937 targetm.instantiate_decls ();
1938
1939 /* Indicate that, from now on, assign_stack_local should use
1940 frame_pointer_rtx. */
1941 virtuals_instantiated = 1;
1942
1943 return 0;
1944 }
1945
1946 namespace {
1947
1948 const pass_data pass_data_instantiate_virtual_regs =
1949 {
1950 RTL_PASS, /* type */
1951 "vregs", /* name */
1952 OPTGROUP_NONE, /* optinfo_flags */
1953 false, /* has_gate */
1954 true, /* has_execute */
1955 TV_NONE, /* tv_id */
1956 0, /* properties_required */
1957 0, /* properties_provided */
1958 0, /* properties_destroyed */
1959 0, /* todo_flags_start */
1960 0, /* todo_flags_finish */
1961 };
1962
1963 class pass_instantiate_virtual_regs : public rtl_opt_pass
1964 {
1965 public:
1966 pass_instantiate_virtual_regs (gcc::context *ctxt)
1967 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1968 {}
1969
1970 /* opt_pass methods: */
1971 unsigned int execute () { return instantiate_virtual_regs (); }
1972
1973 }; // class pass_instantiate_virtual_regs
1974
1975 } // anon namespace
1976
1977 rtl_opt_pass *
1978 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1979 {
1980 return new pass_instantiate_virtual_regs (ctxt);
1981 }
1982
1983 \f
1984 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1985 This means a type for which function calls must pass an address to the
1986 function or get an address back from the function.
1987 EXP may be a type node or an expression (whose type is tested). */
1988
1989 int
1990 aggregate_value_p (const_tree exp, const_tree fntype)
1991 {
1992 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1993 int i, regno, nregs;
1994 rtx reg;
1995
1996 if (fntype)
1997 switch (TREE_CODE (fntype))
1998 {
1999 case CALL_EXPR:
2000 {
2001 tree fndecl = get_callee_fndecl (fntype);
2002 fntype = (fndecl
2003 ? TREE_TYPE (fndecl)
2004 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2005 }
2006 break;
2007 case FUNCTION_DECL:
2008 fntype = TREE_TYPE (fntype);
2009 break;
2010 case FUNCTION_TYPE:
2011 case METHOD_TYPE:
2012 break;
2013 case IDENTIFIER_NODE:
2014 fntype = NULL_TREE;
2015 break;
2016 default:
2017 /* We don't expect other tree types here. */
2018 gcc_unreachable ();
2019 }
2020
2021 if (VOID_TYPE_P (type))
2022 return 0;
2023
2024 /* If a record should be passed the same as its first (and only) member
2025 don't pass it as an aggregate. */
2026 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2027 return aggregate_value_p (first_field (type), fntype);
2028
2029 /* If the front end has decided that this needs to be passed by
2030 reference, do so. */
2031 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2032 && DECL_BY_REFERENCE (exp))
2033 return 1;
2034
2035 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2036 if (fntype && TREE_ADDRESSABLE (fntype))
2037 return 1;
2038
2039 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2040 and thus can't be returned in registers. */
2041 if (TREE_ADDRESSABLE (type))
2042 return 1;
2043
2044 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2045 return 1;
2046
2047 if (targetm.calls.return_in_memory (type, fntype))
2048 return 1;
2049
2050 /* Make sure we have suitable call-clobbered regs to return
2051 the value in; if not, we must return it in memory. */
2052 reg = hard_function_value (type, 0, fntype, 0);
2053
2054 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2055 it is OK. */
2056 if (!REG_P (reg))
2057 return 0;
2058
2059 regno = REGNO (reg);
2060 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2061 for (i = 0; i < nregs; i++)
2062 if (! call_used_regs[regno + i])
2063 return 1;
2064
2065 return 0;
2066 }
2067 \f
2068 /* Return true if we should assign DECL a pseudo register; false if it
2069 should live on the local stack. */
2070
2071 bool
2072 use_register_for_decl (const_tree decl)
2073 {
2074 if (!targetm.calls.allocate_stack_slots_for_args ())
2075 return true;
2076
2077 /* Honor volatile. */
2078 if (TREE_SIDE_EFFECTS (decl))
2079 return false;
2080
2081 /* Honor addressability. */
2082 if (TREE_ADDRESSABLE (decl))
2083 return false;
2084
2085 /* Only register-like things go in registers. */
2086 if (DECL_MODE (decl) == BLKmode)
2087 return false;
2088
2089 /* If -ffloat-store specified, don't put explicit float variables
2090 into registers. */
2091 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2092 propagates values across these stores, and it probably shouldn't. */
2093 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2094 return false;
2095
2096 /* If we're not interested in tracking debugging information for
2097 this decl, then we can certainly put it in a register. */
2098 if (DECL_IGNORED_P (decl))
2099 return true;
2100
2101 if (optimize)
2102 return true;
2103
2104 if (!DECL_REGISTER (decl))
2105 return false;
2106
2107 switch (TREE_CODE (TREE_TYPE (decl)))
2108 {
2109 case RECORD_TYPE:
2110 case UNION_TYPE:
2111 case QUAL_UNION_TYPE:
2112 /* When not optimizing, disregard register keyword for variables with
2113 types containing methods, otherwise the methods won't be callable
2114 from the debugger. */
2115 if (TYPE_METHODS (TREE_TYPE (decl)))
2116 return false;
2117 break;
2118 default:
2119 break;
2120 }
2121
2122 return true;
2123 }
2124
2125 /* Return true if TYPE should be passed by invisible reference. */
2126
2127 bool
2128 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2129 tree type, bool named_arg)
2130 {
2131 if (type)
2132 {
2133 /* If this type contains non-trivial constructors, then it is
2134 forbidden for the middle-end to create any new copies. */
2135 if (TREE_ADDRESSABLE (type))
2136 return true;
2137
2138 /* GCC post 3.4 passes *all* variable sized types by reference. */
2139 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2140 return true;
2141
2142 /* If a record type should be passed the same as its first (and only)
2143 member, use the type and mode of that member. */
2144 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2145 {
2146 type = TREE_TYPE (first_field (type));
2147 mode = TYPE_MODE (type);
2148 }
2149 }
2150
2151 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2152 type, named_arg);
2153 }
2154
2155 /* Return true if TYPE, which is passed by reference, should be callee
2156 copied instead of caller copied. */
2157
2158 bool
2159 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2160 tree type, bool named_arg)
2161 {
2162 if (type && TREE_ADDRESSABLE (type))
2163 return false;
2164 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2165 named_arg);
2166 }
2167
2168 /* Structures to communicate between the subroutines of assign_parms.
2169 The first holds data persistent across all parameters, the second
2170 is cleared out for each parameter. */
2171
2172 struct assign_parm_data_all
2173 {
2174 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2175 should become a job of the target or otherwise encapsulated. */
2176 CUMULATIVE_ARGS args_so_far_v;
2177 cumulative_args_t args_so_far;
2178 struct args_size stack_args_size;
2179 tree function_result_decl;
2180 tree orig_fnargs;
2181 rtx first_conversion_insn;
2182 rtx last_conversion_insn;
2183 HOST_WIDE_INT pretend_args_size;
2184 HOST_WIDE_INT extra_pretend_bytes;
2185 int reg_parm_stack_space;
2186 };
2187
2188 struct assign_parm_data_one
2189 {
2190 tree nominal_type;
2191 tree passed_type;
2192 rtx entry_parm;
2193 rtx stack_parm;
2194 enum machine_mode nominal_mode;
2195 enum machine_mode passed_mode;
2196 enum machine_mode promoted_mode;
2197 struct locate_and_pad_arg_data locate;
2198 int partial;
2199 BOOL_BITFIELD named_arg : 1;
2200 BOOL_BITFIELD passed_pointer : 1;
2201 BOOL_BITFIELD on_stack : 1;
2202 BOOL_BITFIELD loaded_in_reg : 1;
2203 };
2204
2205 /* A subroutine of assign_parms. Initialize ALL. */
2206
2207 static void
2208 assign_parms_initialize_all (struct assign_parm_data_all *all)
2209 {
2210 tree fntype ATTRIBUTE_UNUSED;
2211
2212 memset (all, 0, sizeof (*all));
2213
2214 fntype = TREE_TYPE (current_function_decl);
2215
2216 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2217 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2218 #else
2219 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2220 current_function_decl, -1);
2221 #endif
2222 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2223
2224 #ifdef REG_PARM_STACK_SPACE
2225 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2226 #endif
2227 }
2228
2229 /* If ARGS contains entries with complex types, split the entry into two
2230 entries of the component type. Return a new list of substitutions are
2231 needed, else the old list. */
2232
2233 static void
2234 split_complex_args (vec<tree> *args)
2235 {
2236 unsigned i;
2237 tree p;
2238
2239 FOR_EACH_VEC_ELT (*args, i, p)
2240 {
2241 tree type = TREE_TYPE (p);
2242 if (TREE_CODE (type) == COMPLEX_TYPE
2243 && targetm.calls.split_complex_arg (type))
2244 {
2245 tree decl;
2246 tree subtype = TREE_TYPE (type);
2247 bool addressable = TREE_ADDRESSABLE (p);
2248
2249 /* Rewrite the PARM_DECL's type with its component. */
2250 p = copy_node (p);
2251 TREE_TYPE (p) = subtype;
2252 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2253 DECL_MODE (p) = VOIDmode;
2254 DECL_SIZE (p) = NULL;
2255 DECL_SIZE_UNIT (p) = NULL;
2256 /* If this arg must go in memory, put it in a pseudo here.
2257 We can't allow it to go in memory as per normal parms,
2258 because the usual place might not have the imag part
2259 adjacent to the real part. */
2260 DECL_ARTIFICIAL (p) = addressable;
2261 DECL_IGNORED_P (p) = addressable;
2262 TREE_ADDRESSABLE (p) = 0;
2263 layout_decl (p, 0);
2264 (*args)[i] = p;
2265
2266 /* Build a second synthetic decl. */
2267 decl = build_decl (EXPR_LOCATION (p),
2268 PARM_DECL, NULL_TREE, subtype);
2269 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2270 DECL_ARTIFICIAL (decl) = addressable;
2271 DECL_IGNORED_P (decl) = addressable;
2272 layout_decl (decl, 0);
2273 args->safe_insert (++i, decl);
2274 }
2275 }
2276 }
2277
2278 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2279 the hidden struct return argument, and (abi willing) complex args.
2280 Return the new parameter list. */
2281
2282 static vec<tree>
2283 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2284 {
2285 tree fndecl = current_function_decl;
2286 tree fntype = TREE_TYPE (fndecl);
2287 vec<tree> fnargs = vNULL;
2288 tree arg;
2289
2290 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2291 fnargs.safe_push (arg);
2292
2293 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2294
2295 /* If struct value address is treated as the first argument, make it so. */
2296 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2297 && ! cfun->returns_pcc_struct
2298 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2299 {
2300 tree type = build_pointer_type (TREE_TYPE (fntype));
2301 tree decl;
2302
2303 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2304 PARM_DECL, get_identifier (".result_ptr"), type);
2305 DECL_ARG_TYPE (decl) = type;
2306 DECL_ARTIFICIAL (decl) = 1;
2307 DECL_NAMELESS (decl) = 1;
2308 TREE_CONSTANT (decl) = 1;
2309
2310 DECL_CHAIN (decl) = all->orig_fnargs;
2311 all->orig_fnargs = decl;
2312 fnargs.safe_insert (0, decl);
2313
2314 all->function_result_decl = decl;
2315 }
2316
2317 /* If the target wants to split complex arguments into scalars, do so. */
2318 if (targetm.calls.split_complex_arg)
2319 split_complex_args (&fnargs);
2320
2321 return fnargs;
2322 }
2323
2324 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2325 data for the parameter. Incorporate ABI specifics such as pass-by-
2326 reference and type promotion. */
2327
2328 static void
2329 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2330 struct assign_parm_data_one *data)
2331 {
2332 tree nominal_type, passed_type;
2333 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2334 int unsignedp;
2335
2336 memset (data, 0, sizeof (*data));
2337
2338 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2339 if (!cfun->stdarg)
2340 data->named_arg = 1; /* No variadic parms. */
2341 else if (DECL_CHAIN (parm))
2342 data->named_arg = 1; /* Not the last non-variadic parm. */
2343 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2344 data->named_arg = 1; /* Only variadic ones are unnamed. */
2345 else
2346 data->named_arg = 0; /* Treat as variadic. */
2347
2348 nominal_type = TREE_TYPE (parm);
2349 passed_type = DECL_ARG_TYPE (parm);
2350
2351 /* Look out for errors propagating this far. Also, if the parameter's
2352 type is void then its value doesn't matter. */
2353 if (TREE_TYPE (parm) == error_mark_node
2354 /* This can happen after weird syntax errors
2355 or if an enum type is defined among the parms. */
2356 || TREE_CODE (parm) != PARM_DECL
2357 || passed_type == NULL
2358 || VOID_TYPE_P (nominal_type))
2359 {
2360 nominal_type = passed_type = void_type_node;
2361 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2362 goto egress;
2363 }
2364
2365 /* Find mode of arg as it is passed, and mode of arg as it should be
2366 during execution of this function. */
2367 passed_mode = TYPE_MODE (passed_type);
2368 nominal_mode = TYPE_MODE (nominal_type);
2369
2370 /* If the parm is to be passed as a transparent union or record, use the
2371 type of the first field for the tests below. We have already verified
2372 that the modes are the same. */
2373 if ((TREE_CODE (passed_type) == UNION_TYPE
2374 || TREE_CODE (passed_type) == RECORD_TYPE)
2375 && TYPE_TRANSPARENT_AGGR (passed_type))
2376 passed_type = TREE_TYPE (first_field (passed_type));
2377
2378 /* See if this arg was passed by invisible reference. */
2379 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2380 passed_type, data->named_arg))
2381 {
2382 passed_type = nominal_type = build_pointer_type (passed_type);
2383 data->passed_pointer = true;
2384 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2385 }
2386
2387 /* Find mode as it is passed by the ABI. */
2388 unsignedp = TYPE_UNSIGNED (passed_type);
2389 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2390 TREE_TYPE (current_function_decl), 0);
2391
2392 egress:
2393 data->nominal_type = nominal_type;
2394 data->passed_type = passed_type;
2395 data->nominal_mode = nominal_mode;
2396 data->passed_mode = passed_mode;
2397 data->promoted_mode = promoted_mode;
2398 }
2399
2400 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2401
2402 static void
2403 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2404 struct assign_parm_data_one *data, bool no_rtl)
2405 {
2406 int varargs_pretend_bytes = 0;
2407
2408 targetm.calls.setup_incoming_varargs (all->args_so_far,
2409 data->promoted_mode,
2410 data->passed_type,
2411 &varargs_pretend_bytes, no_rtl);
2412
2413 /* If the back-end has requested extra stack space, record how much is
2414 needed. Do not change pretend_args_size otherwise since it may be
2415 nonzero from an earlier partial argument. */
2416 if (varargs_pretend_bytes > 0)
2417 all->pretend_args_size = varargs_pretend_bytes;
2418 }
2419
2420 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2421 the incoming location of the current parameter. */
2422
2423 static void
2424 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2425 struct assign_parm_data_one *data)
2426 {
2427 HOST_WIDE_INT pretend_bytes = 0;
2428 rtx entry_parm;
2429 bool in_regs;
2430
2431 if (data->promoted_mode == VOIDmode)
2432 {
2433 data->entry_parm = data->stack_parm = const0_rtx;
2434 return;
2435 }
2436
2437 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2438 data->promoted_mode,
2439 data->passed_type,
2440 data->named_arg);
2441
2442 if (entry_parm == 0)
2443 data->promoted_mode = data->passed_mode;
2444
2445 /* Determine parm's home in the stack, in case it arrives in the stack
2446 or we should pretend it did. Compute the stack position and rtx where
2447 the argument arrives and its size.
2448
2449 There is one complexity here: If this was a parameter that would
2450 have been passed in registers, but wasn't only because it is
2451 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2452 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2453 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2454 as it was the previous time. */
2455 in_regs = entry_parm != 0;
2456 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2457 in_regs = true;
2458 #endif
2459 if (!in_regs && !data->named_arg)
2460 {
2461 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2462 {
2463 rtx tem;
2464 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2465 data->promoted_mode,
2466 data->passed_type, true);
2467 in_regs = tem != NULL;
2468 }
2469 }
2470
2471 /* If this parameter was passed both in registers and in the stack, use
2472 the copy on the stack. */
2473 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2474 data->passed_type))
2475 entry_parm = 0;
2476
2477 if (entry_parm)
2478 {
2479 int partial;
2480
2481 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2482 data->promoted_mode,
2483 data->passed_type,
2484 data->named_arg);
2485 data->partial = partial;
2486
2487 /* The caller might already have allocated stack space for the
2488 register parameters. */
2489 if (partial != 0 && all->reg_parm_stack_space == 0)
2490 {
2491 /* Part of this argument is passed in registers and part
2492 is passed on the stack. Ask the prologue code to extend
2493 the stack part so that we can recreate the full value.
2494
2495 PRETEND_BYTES is the size of the registers we need to store.
2496 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2497 stack space that the prologue should allocate.
2498
2499 Internally, gcc assumes that the argument pointer is aligned
2500 to STACK_BOUNDARY bits. This is used both for alignment
2501 optimizations (see init_emit) and to locate arguments that are
2502 aligned to more than PARM_BOUNDARY bits. We must preserve this
2503 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2504 a stack boundary. */
2505
2506 /* We assume at most one partial arg, and it must be the first
2507 argument on the stack. */
2508 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2509
2510 pretend_bytes = partial;
2511 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2512
2513 /* We want to align relative to the actual stack pointer, so
2514 don't include this in the stack size until later. */
2515 all->extra_pretend_bytes = all->pretend_args_size;
2516 }
2517 }
2518
2519 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2520 all->reg_parm_stack_space,
2521 entry_parm ? data->partial : 0, current_function_decl,
2522 &all->stack_args_size, &data->locate);
2523
2524 /* Update parm_stack_boundary if this parameter is passed in the
2525 stack. */
2526 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2527 crtl->parm_stack_boundary = data->locate.boundary;
2528
2529 /* Adjust offsets to include the pretend args. */
2530 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2531 data->locate.slot_offset.constant += pretend_bytes;
2532 data->locate.offset.constant += pretend_bytes;
2533
2534 data->entry_parm = entry_parm;
2535 }
2536
2537 /* A subroutine of assign_parms. If there is actually space on the stack
2538 for this parm, count it in stack_args_size and return true. */
2539
2540 static bool
2541 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2542 struct assign_parm_data_one *data)
2543 {
2544 /* Trivially true if we've no incoming register. */
2545 if (data->entry_parm == NULL)
2546 ;
2547 /* Also true if we're partially in registers and partially not,
2548 since we've arranged to drop the entire argument on the stack. */
2549 else if (data->partial != 0)
2550 ;
2551 /* Also true if the target says that it's passed in both registers
2552 and on the stack. */
2553 else if (GET_CODE (data->entry_parm) == PARALLEL
2554 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2555 ;
2556 /* Also true if the target says that there's stack allocated for
2557 all register parameters. */
2558 else if (all->reg_parm_stack_space > 0)
2559 ;
2560 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2561 else
2562 return false;
2563
2564 all->stack_args_size.constant += data->locate.size.constant;
2565 if (data->locate.size.var)
2566 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2567
2568 return true;
2569 }
2570
2571 /* A subroutine of assign_parms. Given that this parameter is allocated
2572 stack space by the ABI, find it. */
2573
2574 static void
2575 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2576 {
2577 rtx offset_rtx, stack_parm;
2578 unsigned int align, boundary;
2579
2580 /* If we're passing this arg using a reg, make its stack home the
2581 aligned stack slot. */
2582 if (data->entry_parm)
2583 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2584 else
2585 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2586
2587 stack_parm = crtl->args.internal_arg_pointer;
2588 if (offset_rtx != const0_rtx)
2589 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2590 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2591
2592 if (!data->passed_pointer)
2593 {
2594 set_mem_attributes (stack_parm, parm, 1);
2595 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2596 while promoted mode's size is needed. */
2597 if (data->promoted_mode != BLKmode
2598 && data->promoted_mode != DECL_MODE (parm))
2599 {
2600 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2601 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2602 {
2603 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2604 data->promoted_mode);
2605 if (offset)
2606 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2607 }
2608 }
2609 }
2610
2611 boundary = data->locate.boundary;
2612 align = BITS_PER_UNIT;
2613
2614 /* If we're padding upward, we know that the alignment of the slot
2615 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2616 intentionally forcing upward padding. Otherwise we have to come
2617 up with a guess at the alignment based on OFFSET_RTX. */
2618 if (data->locate.where_pad != downward || data->entry_parm)
2619 align = boundary;
2620 else if (CONST_INT_P (offset_rtx))
2621 {
2622 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2623 align = align & -align;
2624 }
2625 set_mem_align (stack_parm, align);
2626
2627 if (data->entry_parm)
2628 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2629
2630 data->stack_parm = stack_parm;
2631 }
2632
2633 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2634 always valid and contiguous. */
2635
2636 static void
2637 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2638 {
2639 rtx entry_parm = data->entry_parm;
2640 rtx stack_parm = data->stack_parm;
2641
2642 /* If this parm was passed part in regs and part in memory, pretend it
2643 arrived entirely in memory by pushing the register-part onto the stack.
2644 In the special case of a DImode or DFmode that is split, we could put
2645 it together in a pseudoreg directly, but for now that's not worth
2646 bothering with. */
2647 if (data->partial != 0)
2648 {
2649 /* Handle calls that pass values in multiple non-contiguous
2650 locations. The Irix 6 ABI has examples of this. */
2651 if (GET_CODE (entry_parm) == PARALLEL)
2652 emit_group_store (validize_mem (stack_parm), entry_parm,
2653 data->passed_type,
2654 int_size_in_bytes (data->passed_type));
2655 else
2656 {
2657 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2658 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2659 data->partial / UNITS_PER_WORD);
2660 }
2661
2662 entry_parm = stack_parm;
2663 }
2664
2665 /* If we didn't decide this parm came in a register, by default it came
2666 on the stack. */
2667 else if (entry_parm == NULL)
2668 entry_parm = stack_parm;
2669
2670 /* When an argument is passed in multiple locations, we can't make use
2671 of this information, but we can save some copying if the whole argument
2672 is passed in a single register. */
2673 else if (GET_CODE (entry_parm) == PARALLEL
2674 && data->nominal_mode != BLKmode
2675 && data->passed_mode != BLKmode)
2676 {
2677 size_t i, len = XVECLEN (entry_parm, 0);
2678
2679 for (i = 0; i < len; i++)
2680 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2681 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2682 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2683 == data->passed_mode)
2684 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2685 {
2686 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2687 break;
2688 }
2689 }
2690
2691 data->entry_parm = entry_parm;
2692 }
2693
2694 /* A subroutine of assign_parms. Reconstitute any values which were
2695 passed in multiple registers and would fit in a single register. */
2696
2697 static void
2698 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2699 {
2700 rtx entry_parm = data->entry_parm;
2701
2702 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2703 This can be done with register operations rather than on the
2704 stack, even if we will store the reconstituted parameter on the
2705 stack later. */
2706 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2707 {
2708 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2709 emit_group_store (parmreg, entry_parm, data->passed_type,
2710 GET_MODE_SIZE (GET_MODE (entry_parm)));
2711 entry_parm = parmreg;
2712 }
2713
2714 data->entry_parm = entry_parm;
2715 }
2716
2717 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2718 always valid and properly aligned. */
2719
2720 static void
2721 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2722 {
2723 rtx stack_parm = data->stack_parm;
2724
2725 /* If we can't trust the parm stack slot to be aligned enough for its
2726 ultimate type, don't use that slot after entry. We'll make another
2727 stack slot, if we need one. */
2728 if (stack_parm
2729 && ((STRICT_ALIGNMENT
2730 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2731 || (data->nominal_type
2732 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2733 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2734 stack_parm = NULL;
2735
2736 /* If parm was passed in memory, and we need to convert it on entry,
2737 don't store it back in that same slot. */
2738 else if (data->entry_parm == stack_parm
2739 && data->nominal_mode != BLKmode
2740 && data->nominal_mode != data->passed_mode)
2741 stack_parm = NULL;
2742
2743 /* If stack protection is in effect for this function, don't leave any
2744 pointers in their passed stack slots. */
2745 else if (crtl->stack_protect_guard
2746 && (flag_stack_protect == 2
2747 || data->passed_pointer
2748 || POINTER_TYPE_P (data->nominal_type)))
2749 stack_parm = NULL;
2750
2751 data->stack_parm = stack_parm;
2752 }
2753
2754 /* A subroutine of assign_parms. Return true if the current parameter
2755 should be stored as a BLKmode in the current frame. */
2756
2757 static bool
2758 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2759 {
2760 if (data->nominal_mode == BLKmode)
2761 return true;
2762 if (GET_MODE (data->entry_parm) == BLKmode)
2763 return true;
2764
2765 #ifdef BLOCK_REG_PADDING
2766 /* Only assign_parm_setup_block knows how to deal with register arguments
2767 that are padded at the least significant end. */
2768 if (REG_P (data->entry_parm)
2769 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2770 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2771 == (BYTES_BIG_ENDIAN ? upward : downward)))
2772 return true;
2773 #endif
2774
2775 return false;
2776 }
2777
2778 /* A subroutine of assign_parms. Arrange for the parameter to be
2779 present and valid in DATA->STACK_RTL. */
2780
2781 static void
2782 assign_parm_setup_block (struct assign_parm_data_all *all,
2783 tree parm, struct assign_parm_data_one *data)
2784 {
2785 rtx entry_parm = data->entry_parm;
2786 rtx stack_parm = data->stack_parm;
2787 HOST_WIDE_INT size;
2788 HOST_WIDE_INT size_stored;
2789
2790 if (GET_CODE (entry_parm) == PARALLEL)
2791 entry_parm = emit_group_move_into_temps (entry_parm);
2792
2793 size = int_size_in_bytes (data->passed_type);
2794 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2795 if (stack_parm == 0)
2796 {
2797 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2798 stack_parm = assign_stack_local (BLKmode, size_stored,
2799 DECL_ALIGN (parm));
2800 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2801 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2802 set_mem_attributes (stack_parm, parm, 1);
2803 }
2804
2805 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2806 calls that pass values in multiple non-contiguous locations. */
2807 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2808 {
2809 rtx mem;
2810
2811 /* Note that we will be storing an integral number of words.
2812 So we have to be careful to ensure that we allocate an
2813 integral number of words. We do this above when we call
2814 assign_stack_local if space was not allocated in the argument
2815 list. If it was, this will not work if PARM_BOUNDARY is not
2816 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2817 if it becomes a problem. Exception is when BLKmode arrives
2818 with arguments not conforming to word_mode. */
2819
2820 if (data->stack_parm == 0)
2821 ;
2822 else if (GET_CODE (entry_parm) == PARALLEL)
2823 ;
2824 else
2825 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2826
2827 mem = validize_mem (stack_parm);
2828
2829 /* Handle values in multiple non-contiguous locations. */
2830 if (GET_CODE (entry_parm) == PARALLEL)
2831 {
2832 push_to_sequence2 (all->first_conversion_insn,
2833 all->last_conversion_insn);
2834 emit_group_store (mem, entry_parm, data->passed_type, size);
2835 all->first_conversion_insn = get_insns ();
2836 all->last_conversion_insn = get_last_insn ();
2837 end_sequence ();
2838 }
2839
2840 else if (size == 0)
2841 ;
2842
2843 /* If SIZE is that of a mode no bigger than a word, just use
2844 that mode's store operation. */
2845 else if (size <= UNITS_PER_WORD)
2846 {
2847 enum machine_mode mode
2848 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2849
2850 if (mode != BLKmode
2851 #ifdef BLOCK_REG_PADDING
2852 && (size == UNITS_PER_WORD
2853 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2854 != (BYTES_BIG_ENDIAN ? upward : downward)))
2855 #endif
2856 )
2857 {
2858 rtx reg;
2859
2860 /* We are really truncating a word_mode value containing
2861 SIZE bytes into a value of mode MODE. If such an
2862 operation requires no actual instructions, we can refer
2863 to the value directly in mode MODE, otherwise we must
2864 start with the register in word_mode and explicitly
2865 convert it. */
2866 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2867 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2868 else
2869 {
2870 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2871 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2872 }
2873 emit_move_insn (change_address (mem, mode, 0), reg);
2874 }
2875
2876 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2877 machine must be aligned to the left before storing
2878 to memory. Note that the previous test doesn't
2879 handle all cases (e.g. SIZE == 3). */
2880 else if (size != UNITS_PER_WORD
2881 #ifdef BLOCK_REG_PADDING
2882 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2883 == downward)
2884 #else
2885 && BYTES_BIG_ENDIAN
2886 #endif
2887 )
2888 {
2889 rtx tem, x;
2890 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2891 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2892
2893 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2894 tem = change_address (mem, word_mode, 0);
2895 emit_move_insn (tem, x);
2896 }
2897 else
2898 move_block_from_reg (REGNO (entry_parm), mem,
2899 size_stored / UNITS_PER_WORD);
2900 }
2901 else
2902 move_block_from_reg (REGNO (entry_parm), mem,
2903 size_stored / UNITS_PER_WORD);
2904 }
2905 else if (data->stack_parm == 0)
2906 {
2907 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2908 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2909 BLOCK_OP_NORMAL);
2910 all->first_conversion_insn = get_insns ();
2911 all->last_conversion_insn = get_last_insn ();
2912 end_sequence ();
2913 }
2914
2915 data->stack_parm = stack_parm;
2916 SET_DECL_RTL (parm, stack_parm);
2917 }
2918
2919 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2920 parameter. Get it there. Perform all ABI specified conversions. */
2921
2922 static void
2923 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2924 struct assign_parm_data_one *data)
2925 {
2926 rtx parmreg, validated_mem;
2927 rtx equiv_stack_parm;
2928 enum machine_mode promoted_nominal_mode;
2929 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2930 bool did_conversion = false;
2931 bool need_conversion, moved;
2932
2933 /* Store the parm in a pseudoregister during the function, but we may
2934 need to do it in a wider mode. Using 2 here makes the result
2935 consistent with promote_decl_mode and thus expand_expr_real_1. */
2936 promoted_nominal_mode
2937 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2938 TREE_TYPE (current_function_decl), 2);
2939
2940 parmreg = gen_reg_rtx (promoted_nominal_mode);
2941
2942 if (!DECL_ARTIFICIAL (parm))
2943 mark_user_reg (parmreg);
2944
2945 /* If this was an item that we received a pointer to,
2946 set DECL_RTL appropriately. */
2947 if (data->passed_pointer)
2948 {
2949 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2950 set_mem_attributes (x, parm, 1);
2951 SET_DECL_RTL (parm, x);
2952 }
2953 else
2954 SET_DECL_RTL (parm, parmreg);
2955
2956 assign_parm_remove_parallels (data);
2957
2958 /* Copy the value into the register, thus bridging between
2959 assign_parm_find_data_types and expand_expr_real_1. */
2960
2961 equiv_stack_parm = data->stack_parm;
2962 validated_mem = validize_mem (data->entry_parm);
2963
2964 need_conversion = (data->nominal_mode != data->passed_mode
2965 || promoted_nominal_mode != data->promoted_mode);
2966 moved = false;
2967
2968 if (need_conversion
2969 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2970 && data->nominal_mode == data->passed_mode
2971 && data->nominal_mode == GET_MODE (data->entry_parm))
2972 {
2973 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2974 mode, by the caller. We now have to convert it to
2975 NOMINAL_MODE, if different. However, PARMREG may be in
2976 a different mode than NOMINAL_MODE if it is being stored
2977 promoted.
2978
2979 If ENTRY_PARM is a hard register, it might be in a register
2980 not valid for operating in its mode (e.g., an odd-numbered
2981 register for a DFmode). In that case, moves are the only
2982 thing valid, so we can't do a convert from there. This
2983 occurs when the calling sequence allow such misaligned
2984 usages.
2985
2986 In addition, the conversion may involve a call, which could
2987 clobber parameters which haven't been copied to pseudo
2988 registers yet.
2989
2990 First, we try to emit an insn which performs the necessary
2991 conversion. We verify that this insn does not clobber any
2992 hard registers. */
2993
2994 enum insn_code icode;
2995 rtx op0, op1;
2996
2997 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2998 unsignedp);
2999
3000 op0 = parmreg;
3001 op1 = validated_mem;
3002 if (icode != CODE_FOR_nothing
3003 && insn_operand_matches (icode, 0, op0)
3004 && insn_operand_matches (icode, 1, op1))
3005 {
3006 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3007 rtx insn, insns, t = op1;
3008 HARD_REG_SET hardregs;
3009
3010 start_sequence ();
3011 /* If op1 is a hard register that is likely spilled, first
3012 force it into a pseudo, otherwise combiner might extend
3013 its lifetime too much. */
3014 if (GET_CODE (t) == SUBREG)
3015 t = SUBREG_REG (t);
3016 if (REG_P (t)
3017 && HARD_REGISTER_P (t)
3018 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3019 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3020 {
3021 t = gen_reg_rtx (GET_MODE (op1));
3022 emit_move_insn (t, op1);
3023 }
3024 else
3025 t = op1;
3026 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3027 data->passed_mode, unsignedp);
3028 emit_insn (insn);
3029 insns = get_insns ();
3030
3031 moved = true;
3032 CLEAR_HARD_REG_SET (hardregs);
3033 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3034 {
3035 if (INSN_P (insn))
3036 note_stores (PATTERN (insn), record_hard_reg_sets,
3037 &hardregs);
3038 if (!hard_reg_set_empty_p (hardregs))
3039 moved = false;
3040 }
3041
3042 end_sequence ();
3043
3044 if (moved)
3045 {
3046 emit_insn (insns);
3047 if (equiv_stack_parm != NULL_RTX)
3048 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3049 equiv_stack_parm);
3050 }
3051 }
3052 }
3053
3054 if (moved)
3055 /* Nothing to do. */
3056 ;
3057 else if (need_conversion)
3058 {
3059 /* We did not have an insn to convert directly, or the sequence
3060 generated appeared unsafe. We must first copy the parm to a
3061 pseudo reg, and save the conversion until after all
3062 parameters have been moved. */
3063
3064 int save_tree_used;
3065 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3066
3067 emit_move_insn (tempreg, validated_mem);
3068
3069 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3070 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3071
3072 if (GET_CODE (tempreg) == SUBREG
3073 && GET_MODE (tempreg) == data->nominal_mode
3074 && REG_P (SUBREG_REG (tempreg))
3075 && data->nominal_mode == data->passed_mode
3076 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3077 && GET_MODE_SIZE (GET_MODE (tempreg))
3078 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3079 {
3080 /* The argument is already sign/zero extended, so note it
3081 into the subreg. */
3082 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3083 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3084 }
3085
3086 /* TREE_USED gets set erroneously during expand_assignment. */
3087 save_tree_used = TREE_USED (parm);
3088 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3089 TREE_USED (parm) = save_tree_used;
3090 all->first_conversion_insn = get_insns ();
3091 all->last_conversion_insn = get_last_insn ();
3092 end_sequence ();
3093
3094 did_conversion = true;
3095 }
3096 else
3097 emit_move_insn (parmreg, validated_mem);
3098
3099 /* If we were passed a pointer but the actual value can safely live
3100 in a register, retrieve it and use it directly. */
3101 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3102 {
3103 /* We can't use nominal_mode, because it will have been set to
3104 Pmode above. We must use the actual mode of the parm. */
3105 if (use_register_for_decl (parm))
3106 {
3107 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3108 mark_user_reg (parmreg);
3109 }
3110 else
3111 {
3112 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3113 TYPE_MODE (TREE_TYPE (parm)),
3114 TYPE_ALIGN (TREE_TYPE (parm)));
3115 parmreg
3116 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3117 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3118 align);
3119 set_mem_attributes (parmreg, parm, 1);
3120 }
3121
3122 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3123 {
3124 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3125 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3126
3127 push_to_sequence2 (all->first_conversion_insn,
3128 all->last_conversion_insn);
3129 emit_move_insn (tempreg, DECL_RTL (parm));
3130 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3131 emit_move_insn (parmreg, tempreg);
3132 all->first_conversion_insn = get_insns ();
3133 all->last_conversion_insn = get_last_insn ();
3134 end_sequence ();
3135
3136 did_conversion = true;
3137 }
3138 else
3139 emit_move_insn (parmreg, DECL_RTL (parm));
3140
3141 SET_DECL_RTL (parm, parmreg);
3142
3143 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3144 now the parm. */
3145 data->stack_parm = NULL;
3146 }
3147
3148 /* Mark the register as eliminable if we did no conversion and it was
3149 copied from memory at a fixed offset, and the arg pointer was not
3150 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3151 offset formed an invalid address, such memory-equivalences as we
3152 make here would screw up life analysis for it. */
3153 if (data->nominal_mode == data->passed_mode
3154 && !did_conversion
3155 && data->stack_parm != 0
3156 && MEM_P (data->stack_parm)
3157 && data->locate.offset.var == 0
3158 && reg_mentioned_p (virtual_incoming_args_rtx,
3159 XEXP (data->stack_parm, 0)))
3160 {
3161 rtx linsn = get_last_insn ();
3162 rtx sinsn, set;
3163
3164 /* Mark complex types separately. */
3165 if (GET_CODE (parmreg) == CONCAT)
3166 {
3167 enum machine_mode submode
3168 = GET_MODE_INNER (GET_MODE (parmreg));
3169 int regnor = REGNO (XEXP (parmreg, 0));
3170 int regnoi = REGNO (XEXP (parmreg, 1));
3171 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3172 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3173 GET_MODE_SIZE (submode));
3174
3175 /* Scan backwards for the set of the real and
3176 imaginary parts. */
3177 for (sinsn = linsn; sinsn != 0;
3178 sinsn = prev_nonnote_insn (sinsn))
3179 {
3180 set = single_set (sinsn);
3181 if (set == 0)
3182 continue;
3183
3184 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3185 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3186 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3187 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3188 }
3189 }
3190 else
3191 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3192 }
3193
3194 /* For pointer data type, suggest pointer register. */
3195 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3196 mark_reg_pointer (parmreg,
3197 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3198 }
3199
3200 /* A subroutine of assign_parms. Allocate stack space to hold the current
3201 parameter. Get it there. Perform all ABI specified conversions. */
3202
3203 static void
3204 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3205 struct assign_parm_data_one *data)
3206 {
3207 /* Value must be stored in the stack slot STACK_PARM during function
3208 execution. */
3209 bool to_conversion = false;
3210
3211 assign_parm_remove_parallels (data);
3212
3213 if (data->promoted_mode != data->nominal_mode)
3214 {
3215 /* Conversion is required. */
3216 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3217
3218 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3219
3220 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3221 to_conversion = true;
3222
3223 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3224 TYPE_UNSIGNED (TREE_TYPE (parm)));
3225
3226 if (data->stack_parm)
3227 {
3228 int offset = subreg_lowpart_offset (data->nominal_mode,
3229 GET_MODE (data->stack_parm));
3230 /* ??? This may need a big-endian conversion on sparc64. */
3231 data->stack_parm
3232 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3233 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3234 set_mem_offset (data->stack_parm,
3235 MEM_OFFSET (data->stack_parm) + offset);
3236 }
3237 }
3238
3239 if (data->entry_parm != data->stack_parm)
3240 {
3241 rtx src, dest;
3242
3243 if (data->stack_parm == 0)
3244 {
3245 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3246 GET_MODE (data->entry_parm),
3247 TYPE_ALIGN (data->passed_type));
3248 data->stack_parm
3249 = assign_stack_local (GET_MODE (data->entry_parm),
3250 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3251 align);
3252 set_mem_attributes (data->stack_parm, parm, 1);
3253 }
3254
3255 dest = validize_mem (data->stack_parm);
3256 src = validize_mem (data->entry_parm);
3257
3258 if (MEM_P (src))
3259 {
3260 /* Use a block move to handle potentially misaligned entry_parm. */
3261 if (!to_conversion)
3262 push_to_sequence2 (all->first_conversion_insn,
3263 all->last_conversion_insn);
3264 to_conversion = true;
3265
3266 emit_block_move (dest, src,
3267 GEN_INT (int_size_in_bytes (data->passed_type)),
3268 BLOCK_OP_NORMAL);
3269 }
3270 else
3271 emit_move_insn (dest, src);
3272 }
3273
3274 if (to_conversion)
3275 {
3276 all->first_conversion_insn = get_insns ();
3277 all->last_conversion_insn = get_last_insn ();
3278 end_sequence ();
3279 }
3280
3281 SET_DECL_RTL (parm, data->stack_parm);
3282 }
3283
3284 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3285 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3286
3287 static void
3288 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3289 vec<tree> fnargs)
3290 {
3291 tree parm;
3292 tree orig_fnargs = all->orig_fnargs;
3293 unsigned i = 0;
3294
3295 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3296 {
3297 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3298 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3299 {
3300 rtx tmp, real, imag;
3301 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3302
3303 real = DECL_RTL (fnargs[i]);
3304 imag = DECL_RTL (fnargs[i + 1]);
3305 if (inner != GET_MODE (real))
3306 {
3307 real = gen_lowpart_SUBREG (inner, real);
3308 imag = gen_lowpart_SUBREG (inner, imag);
3309 }
3310
3311 if (TREE_ADDRESSABLE (parm))
3312 {
3313 rtx rmem, imem;
3314 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3315 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3316 DECL_MODE (parm),
3317 TYPE_ALIGN (TREE_TYPE (parm)));
3318
3319 /* split_complex_arg put the real and imag parts in
3320 pseudos. Move them to memory. */
3321 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3322 set_mem_attributes (tmp, parm, 1);
3323 rmem = adjust_address_nv (tmp, inner, 0);
3324 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3325 push_to_sequence2 (all->first_conversion_insn,
3326 all->last_conversion_insn);
3327 emit_move_insn (rmem, real);
3328 emit_move_insn (imem, imag);
3329 all->first_conversion_insn = get_insns ();
3330 all->last_conversion_insn = get_last_insn ();
3331 end_sequence ();
3332 }
3333 else
3334 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3335 SET_DECL_RTL (parm, tmp);
3336
3337 real = DECL_INCOMING_RTL (fnargs[i]);
3338 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3339 if (inner != GET_MODE (real))
3340 {
3341 real = gen_lowpart_SUBREG (inner, real);
3342 imag = gen_lowpart_SUBREG (inner, imag);
3343 }
3344 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3345 set_decl_incoming_rtl (parm, tmp, false);
3346 i++;
3347 }
3348 }
3349 }
3350
3351 /* Assign RTL expressions to the function's parameters. This may involve
3352 copying them into registers and using those registers as the DECL_RTL. */
3353
3354 static void
3355 assign_parms (tree fndecl)
3356 {
3357 struct assign_parm_data_all all;
3358 tree parm;
3359 vec<tree> fnargs;
3360 unsigned i;
3361
3362 crtl->args.internal_arg_pointer
3363 = targetm.calls.internal_arg_pointer ();
3364
3365 assign_parms_initialize_all (&all);
3366 fnargs = assign_parms_augmented_arg_list (&all);
3367
3368 FOR_EACH_VEC_ELT (fnargs, i, parm)
3369 {
3370 struct assign_parm_data_one data;
3371
3372 /* Extract the type of PARM; adjust it according to ABI. */
3373 assign_parm_find_data_types (&all, parm, &data);
3374
3375 /* Early out for errors and void parameters. */
3376 if (data.passed_mode == VOIDmode)
3377 {
3378 SET_DECL_RTL (parm, const0_rtx);
3379 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3380 continue;
3381 }
3382
3383 /* Estimate stack alignment from parameter alignment. */
3384 if (SUPPORTS_STACK_ALIGNMENT)
3385 {
3386 unsigned int align
3387 = targetm.calls.function_arg_boundary (data.promoted_mode,
3388 data.passed_type);
3389 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3390 align);
3391 if (TYPE_ALIGN (data.nominal_type) > align)
3392 align = MINIMUM_ALIGNMENT (data.nominal_type,
3393 TYPE_MODE (data.nominal_type),
3394 TYPE_ALIGN (data.nominal_type));
3395 if (crtl->stack_alignment_estimated < align)
3396 {
3397 gcc_assert (!crtl->stack_realign_processed);
3398 crtl->stack_alignment_estimated = align;
3399 }
3400 }
3401
3402 if (cfun->stdarg && !DECL_CHAIN (parm))
3403 assign_parms_setup_varargs (&all, &data, false);
3404
3405 /* Find out where the parameter arrives in this function. */
3406 assign_parm_find_entry_rtl (&all, &data);
3407
3408 /* Find out where stack space for this parameter might be. */
3409 if (assign_parm_is_stack_parm (&all, &data))
3410 {
3411 assign_parm_find_stack_rtl (parm, &data);
3412 assign_parm_adjust_entry_rtl (&data);
3413 }
3414
3415 /* Record permanently how this parm was passed. */
3416 if (data.passed_pointer)
3417 {
3418 rtx incoming_rtl
3419 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3420 data.entry_parm);
3421 set_decl_incoming_rtl (parm, incoming_rtl, true);
3422 }
3423 else
3424 set_decl_incoming_rtl (parm, data.entry_parm, false);
3425
3426 /* Update info on where next arg arrives in registers. */
3427 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3428 data.passed_type, data.named_arg);
3429
3430 assign_parm_adjust_stack_rtl (&data);
3431
3432 if (assign_parm_setup_block_p (&data))
3433 assign_parm_setup_block (&all, parm, &data);
3434 else if (data.passed_pointer || use_register_for_decl (parm))
3435 assign_parm_setup_reg (&all, parm, &data);
3436 else
3437 assign_parm_setup_stack (&all, parm, &data);
3438 }
3439
3440 if (targetm.calls.split_complex_arg)
3441 assign_parms_unsplit_complex (&all, fnargs);
3442
3443 fnargs.release ();
3444
3445 /* Output all parameter conversion instructions (possibly including calls)
3446 now that all parameters have been copied out of hard registers. */
3447 emit_insn (all.first_conversion_insn);
3448
3449 /* Estimate reload stack alignment from scalar return mode. */
3450 if (SUPPORTS_STACK_ALIGNMENT)
3451 {
3452 if (DECL_RESULT (fndecl))
3453 {
3454 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3455 enum machine_mode mode = TYPE_MODE (type);
3456
3457 if (mode != BLKmode
3458 && mode != VOIDmode
3459 && !AGGREGATE_TYPE_P (type))
3460 {
3461 unsigned int align = GET_MODE_ALIGNMENT (mode);
3462 if (crtl->stack_alignment_estimated < align)
3463 {
3464 gcc_assert (!crtl->stack_realign_processed);
3465 crtl->stack_alignment_estimated = align;
3466 }
3467 }
3468 }
3469 }
3470
3471 /* If we are receiving a struct value address as the first argument, set up
3472 the RTL for the function result. As this might require code to convert
3473 the transmitted address to Pmode, we do this here to ensure that possible
3474 preliminary conversions of the address have been emitted already. */
3475 if (all.function_result_decl)
3476 {
3477 tree result = DECL_RESULT (current_function_decl);
3478 rtx addr = DECL_RTL (all.function_result_decl);
3479 rtx x;
3480
3481 if (DECL_BY_REFERENCE (result))
3482 {
3483 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3484 x = addr;
3485 }
3486 else
3487 {
3488 SET_DECL_VALUE_EXPR (result,
3489 build1 (INDIRECT_REF, TREE_TYPE (result),
3490 all.function_result_decl));
3491 addr = convert_memory_address (Pmode, addr);
3492 x = gen_rtx_MEM (DECL_MODE (result), addr);
3493 set_mem_attributes (x, result, 1);
3494 }
3495
3496 DECL_HAS_VALUE_EXPR_P (result) = 1;
3497
3498 SET_DECL_RTL (result, x);
3499 }
3500
3501 /* We have aligned all the args, so add space for the pretend args. */
3502 crtl->args.pretend_args_size = all.pretend_args_size;
3503 all.stack_args_size.constant += all.extra_pretend_bytes;
3504 crtl->args.size = all.stack_args_size.constant;
3505
3506 /* Adjust function incoming argument size for alignment and
3507 minimum length. */
3508
3509 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3510 crtl->args.size = CEIL_ROUND (crtl->args.size,
3511 PARM_BOUNDARY / BITS_PER_UNIT);
3512
3513 #ifdef ARGS_GROW_DOWNWARD
3514 crtl->args.arg_offset_rtx
3515 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3516 : expand_expr (size_diffop (all.stack_args_size.var,
3517 size_int (-all.stack_args_size.constant)),
3518 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3519 #else
3520 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3521 #endif
3522
3523 /* See how many bytes, if any, of its args a function should try to pop
3524 on return. */
3525
3526 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3527 TREE_TYPE (fndecl),
3528 crtl->args.size);
3529
3530 /* For stdarg.h function, save info about
3531 regs and stack space used by the named args. */
3532
3533 crtl->args.info = all.args_so_far_v;
3534
3535 /* Set the rtx used for the function return value. Put this in its
3536 own variable so any optimizers that need this information don't have
3537 to include tree.h. Do this here so it gets done when an inlined
3538 function gets output. */
3539
3540 crtl->return_rtx
3541 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3542 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3543
3544 /* If scalar return value was computed in a pseudo-reg, or was a named
3545 return value that got dumped to the stack, copy that to the hard
3546 return register. */
3547 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3548 {
3549 tree decl_result = DECL_RESULT (fndecl);
3550 rtx decl_rtl = DECL_RTL (decl_result);
3551
3552 if (REG_P (decl_rtl)
3553 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3554 : DECL_REGISTER (decl_result))
3555 {
3556 rtx real_decl_rtl;
3557
3558 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3559 fndecl, true);
3560 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3561 /* The delay slot scheduler assumes that crtl->return_rtx
3562 holds the hard register containing the return value, not a
3563 temporary pseudo. */
3564 crtl->return_rtx = real_decl_rtl;
3565 }
3566 }
3567 }
3568
3569 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3570 For all seen types, gimplify their sizes. */
3571
3572 static tree
3573 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3574 {
3575 tree t = *tp;
3576
3577 *walk_subtrees = 0;
3578 if (TYPE_P (t))
3579 {
3580 if (POINTER_TYPE_P (t))
3581 *walk_subtrees = 1;
3582 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3583 && !TYPE_SIZES_GIMPLIFIED (t))
3584 {
3585 gimplify_type_sizes (t, (gimple_seq *) data);
3586 *walk_subtrees = 1;
3587 }
3588 }
3589
3590 return NULL;
3591 }
3592
3593 /* Gimplify the parameter list for current_function_decl. This involves
3594 evaluating SAVE_EXPRs of variable sized parameters and generating code
3595 to implement callee-copies reference parameters. Returns a sequence of
3596 statements to add to the beginning of the function. */
3597
3598 gimple_seq
3599 gimplify_parameters (void)
3600 {
3601 struct assign_parm_data_all all;
3602 tree parm;
3603 gimple_seq stmts = NULL;
3604 vec<tree> fnargs;
3605 unsigned i;
3606
3607 assign_parms_initialize_all (&all);
3608 fnargs = assign_parms_augmented_arg_list (&all);
3609
3610 FOR_EACH_VEC_ELT (fnargs, i, parm)
3611 {
3612 struct assign_parm_data_one data;
3613
3614 /* Extract the type of PARM; adjust it according to ABI. */
3615 assign_parm_find_data_types (&all, parm, &data);
3616
3617 /* Early out for errors and void parameters. */
3618 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3619 continue;
3620
3621 /* Update info on where next arg arrives in registers. */
3622 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3623 data.passed_type, data.named_arg);
3624
3625 /* ??? Once upon a time variable_size stuffed parameter list
3626 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3627 turned out to be less than manageable in the gimple world.
3628 Now we have to hunt them down ourselves. */
3629 walk_tree_without_duplicates (&data.passed_type,
3630 gimplify_parm_type, &stmts);
3631
3632 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3633 {
3634 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3635 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3636 }
3637
3638 if (data.passed_pointer)
3639 {
3640 tree type = TREE_TYPE (data.passed_type);
3641 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3642 type, data.named_arg))
3643 {
3644 tree local, t;
3645
3646 /* For constant-sized objects, this is trivial; for
3647 variable-sized objects, we have to play games. */
3648 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3649 && !(flag_stack_check == GENERIC_STACK_CHECK
3650 && compare_tree_int (DECL_SIZE_UNIT (parm),
3651 STACK_CHECK_MAX_VAR_SIZE) > 0))
3652 {
3653 local = create_tmp_var (type, get_name (parm));
3654 DECL_IGNORED_P (local) = 0;
3655 /* If PARM was addressable, move that flag over
3656 to the local copy, as its address will be taken,
3657 not the PARMs. Keep the parms address taken
3658 as we'll query that flag during gimplification. */
3659 if (TREE_ADDRESSABLE (parm))
3660 TREE_ADDRESSABLE (local) = 1;
3661 else if (TREE_CODE (type) == COMPLEX_TYPE
3662 || TREE_CODE (type) == VECTOR_TYPE)
3663 DECL_GIMPLE_REG_P (local) = 1;
3664 }
3665 else
3666 {
3667 tree ptr_type, addr;
3668
3669 ptr_type = build_pointer_type (type);
3670 addr = create_tmp_reg (ptr_type, get_name (parm));
3671 DECL_IGNORED_P (addr) = 0;
3672 local = build_fold_indirect_ref (addr);
3673
3674 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3675 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3676 size_int (DECL_ALIGN (parm)));
3677
3678 /* The call has been built for a variable-sized object. */
3679 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3680 t = fold_convert (ptr_type, t);
3681 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3682 gimplify_and_add (t, &stmts);
3683 }
3684
3685 gimplify_assign (local, parm, &stmts);
3686
3687 SET_DECL_VALUE_EXPR (parm, local);
3688 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3689 }
3690 }
3691 }
3692
3693 fnargs.release ();
3694
3695 return stmts;
3696 }
3697 \f
3698 /* Compute the size and offset from the start of the stacked arguments for a
3699 parm passed in mode PASSED_MODE and with type TYPE.
3700
3701 INITIAL_OFFSET_PTR points to the current offset into the stacked
3702 arguments.
3703
3704 The starting offset and size for this parm are returned in
3705 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3706 nonzero, the offset is that of stack slot, which is returned in
3707 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3708 padding required from the initial offset ptr to the stack slot.
3709
3710 IN_REGS is nonzero if the argument will be passed in registers. It will
3711 never be set if REG_PARM_STACK_SPACE is not defined.
3712
3713 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3714 for arguments which are passed in registers.
3715
3716 FNDECL is the function in which the argument was defined.
3717
3718 There are two types of rounding that are done. The first, controlled by
3719 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3720 argument list to be aligned to the specific boundary (in bits). This
3721 rounding affects the initial and starting offsets, but not the argument
3722 size.
3723
3724 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3725 optionally rounds the size of the parm to PARM_BOUNDARY. The
3726 initial offset is not affected by this rounding, while the size always
3727 is and the starting offset may be. */
3728
3729 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3730 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3731 callers pass in the total size of args so far as
3732 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3733
3734 void
3735 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3736 int reg_parm_stack_space, int partial,
3737 tree fndecl ATTRIBUTE_UNUSED,
3738 struct args_size *initial_offset_ptr,
3739 struct locate_and_pad_arg_data *locate)
3740 {
3741 tree sizetree;
3742 enum direction where_pad;
3743 unsigned int boundary, round_boundary;
3744 int part_size_in_regs;
3745
3746 /* If we have found a stack parm before we reach the end of the
3747 area reserved for registers, skip that area. */
3748 if (! in_regs)
3749 {
3750 if (reg_parm_stack_space > 0)
3751 {
3752 if (initial_offset_ptr->var)
3753 {
3754 initial_offset_ptr->var
3755 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3756 ssize_int (reg_parm_stack_space));
3757 initial_offset_ptr->constant = 0;
3758 }
3759 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3760 initial_offset_ptr->constant = reg_parm_stack_space;
3761 }
3762 }
3763
3764 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3765
3766 sizetree
3767 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3768 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3769 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3770 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3771 type);
3772 locate->where_pad = where_pad;
3773
3774 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3775 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3776 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3777
3778 locate->boundary = boundary;
3779
3780 if (SUPPORTS_STACK_ALIGNMENT)
3781 {
3782 /* stack_alignment_estimated can't change after stack has been
3783 realigned. */
3784 if (crtl->stack_alignment_estimated < boundary)
3785 {
3786 if (!crtl->stack_realign_processed)
3787 crtl->stack_alignment_estimated = boundary;
3788 else
3789 {
3790 /* If stack is realigned and stack alignment value
3791 hasn't been finalized, it is OK not to increase
3792 stack_alignment_estimated. The bigger alignment
3793 requirement is recorded in stack_alignment_needed
3794 below. */
3795 gcc_assert (!crtl->stack_realign_finalized
3796 && crtl->stack_realign_needed);
3797 }
3798 }
3799 }
3800
3801 /* Remember if the outgoing parameter requires extra alignment on the
3802 calling function side. */
3803 if (crtl->stack_alignment_needed < boundary)
3804 crtl->stack_alignment_needed = boundary;
3805 if (crtl->preferred_stack_boundary < boundary)
3806 crtl->preferred_stack_boundary = boundary;
3807
3808 #ifdef ARGS_GROW_DOWNWARD
3809 locate->slot_offset.constant = -initial_offset_ptr->constant;
3810 if (initial_offset_ptr->var)
3811 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3812 initial_offset_ptr->var);
3813
3814 {
3815 tree s2 = sizetree;
3816 if (where_pad != none
3817 && (!tree_fits_uhwi_p (sizetree)
3818 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3819 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3820 SUB_PARM_SIZE (locate->slot_offset, s2);
3821 }
3822
3823 locate->slot_offset.constant += part_size_in_regs;
3824
3825 if (!in_regs || reg_parm_stack_space > 0)
3826 pad_to_arg_alignment (&locate->slot_offset, boundary,
3827 &locate->alignment_pad);
3828
3829 locate->size.constant = (-initial_offset_ptr->constant
3830 - locate->slot_offset.constant);
3831 if (initial_offset_ptr->var)
3832 locate->size.var = size_binop (MINUS_EXPR,
3833 size_binop (MINUS_EXPR,
3834 ssize_int (0),
3835 initial_offset_ptr->var),
3836 locate->slot_offset.var);
3837
3838 /* Pad_below needs the pre-rounded size to know how much to pad
3839 below. */
3840 locate->offset = locate->slot_offset;
3841 if (where_pad == downward)
3842 pad_below (&locate->offset, passed_mode, sizetree);
3843
3844 #else /* !ARGS_GROW_DOWNWARD */
3845 if (!in_regs || reg_parm_stack_space > 0)
3846 pad_to_arg_alignment (initial_offset_ptr, boundary,
3847 &locate->alignment_pad);
3848 locate->slot_offset = *initial_offset_ptr;
3849
3850 #ifdef PUSH_ROUNDING
3851 if (passed_mode != BLKmode)
3852 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3853 #endif
3854
3855 /* Pad_below needs the pre-rounded size to know how much to pad below
3856 so this must be done before rounding up. */
3857 locate->offset = locate->slot_offset;
3858 if (where_pad == downward)
3859 pad_below (&locate->offset, passed_mode, sizetree);
3860
3861 if (where_pad != none
3862 && (!tree_fits_uhwi_p (sizetree)
3863 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3864 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3865
3866 ADD_PARM_SIZE (locate->size, sizetree);
3867
3868 locate->size.constant -= part_size_in_regs;
3869 #endif /* ARGS_GROW_DOWNWARD */
3870
3871 #ifdef FUNCTION_ARG_OFFSET
3872 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3873 #endif
3874 }
3875
3876 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3877 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3878
3879 static void
3880 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3881 struct args_size *alignment_pad)
3882 {
3883 tree save_var = NULL_TREE;
3884 HOST_WIDE_INT save_constant = 0;
3885 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3886 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3887
3888 #ifdef SPARC_STACK_BOUNDARY_HACK
3889 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3890 the real alignment of %sp. However, when it does this, the
3891 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3892 if (SPARC_STACK_BOUNDARY_HACK)
3893 sp_offset = 0;
3894 #endif
3895
3896 if (boundary > PARM_BOUNDARY)
3897 {
3898 save_var = offset_ptr->var;
3899 save_constant = offset_ptr->constant;
3900 }
3901
3902 alignment_pad->var = NULL_TREE;
3903 alignment_pad->constant = 0;
3904
3905 if (boundary > BITS_PER_UNIT)
3906 {
3907 if (offset_ptr->var)
3908 {
3909 tree sp_offset_tree = ssize_int (sp_offset);
3910 tree offset = size_binop (PLUS_EXPR,
3911 ARGS_SIZE_TREE (*offset_ptr),
3912 sp_offset_tree);
3913 #ifdef ARGS_GROW_DOWNWARD
3914 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3915 #else
3916 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3917 #endif
3918
3919 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3920 /* ARGS_SIZE_TREE includes constant term. */
3921 offset_ptr->constant = 0;
3922 if (boundary > PARM_BOUNDARY)
3923 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3924 save_var);
3925 }
3926 else
3927 {
3928 offset_ptr->constant = -sp_offset +
3929 #ifdef ARGS_GROW_DOWNWARD
3930 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3931 #else
3932 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3933 #endif
3934 if (boundary > PARM_BOUNDARY)
3935 alignment_pad->constant = offset_ptr->constant - save_constant;
3936 }
3937 }
3938 }
3939
3940 static void
3941 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3942 {
3943 if (passed_mode != BLKmode)
3944 {
3945 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3946 offset_ptr->constant
3947 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3948 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3949 - GET_MODE_SIZE (passed_mode));
3950 }
3951 else
3952 {
3953 if (TREE_CODE (sizetree) != INTEGER_CST
3954 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3955 {
3956 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3957 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3958 /* Add it in. */
3959 ADD_PARM_SIZE (*offset_ptr, s2);
3960 SUB_PARM_SIZE (*offset_ptr, sizetree);
3961 }
3962 }
3963 }
3964 \f
3965
3966 /* True if register REGNO was alive at a place where `setjmp' was
3967 called and was set more than once or is an argument. Such regs may
3968 be clobbered by `longjmp'. */
3969
3970 static bool
3971 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3972 {
3973 /* There appear to be cases where some local vars never reach the
3974 backend but have bogus regnos. */
3975 if (regno >= max_reg_num ())
3976 return false;
3977
3978 return ((REG_N_SETS (regno) > 1
3979 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3980 regno))
3981 && REGNO_REG_SET_P (setjmp_crosses, regno));
3982 }
3983
3984 /* Walk the tree of blocks describing the binding levels within a
3985 function and warn about variables the might be killed by setjmp or
3986 vfork. This is done after calling flow_analysis before register
3987 allocation since that will clobber the pseudo-regs to hard
3988 regs. */
3989
3990 static void
3991 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3992 {
3993 tree decl, sub;
3994
3995 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3996 {
3997 if (TREE_CODE (decl) == VAR_DECL
3998 && DECL_RTL_SET_P (decl)
3999 && REG_P (DECL_RTL (decl))
4000 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4001 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4002 " %<longjmp%> or %<vfork%>", decl);
4003 }
4004
4005 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4006 setjmp_vars_warning (setjmp_crosses, sub);
4007 }
4008
4009 /* Do the appropriate part of setjmp_vars_warning
4010 but for arguments instead of local variables. */
4011
4012 static void
4013 setjmp_args_warning (bitmap setjmp_crosses)
4014 {
4015 tree decl;
4016 for (decl = DECL_ARGUMENTS (current_function_decl);
4017 decl; decl = DECL_CHAIN (decl))
4018 if (DECL_RTL (decl) != 0
4019 && REG_P (DECL_RTL (decl))
4020 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4021 warning (OPT_Wclobbered,
4022 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4023 decl);
4024 }
4025
4026 /* Generate warning messages for variables live across setjmp. */
4027
4028 void
4029 generate_setjmp_warnings (void)
4030 {
4031 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4032
4033 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4034 || bitmap_empty_p (setjmp_crosses))
4035 return;
4036
4037 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4038 setjmp_args_warning (setjmp_crosses);
4039 }
4040
4041 \f
4042 /* Reverse the order of elements in the fragment chain T of blocks,
4043 and return the new head of the chain (old last element).
4044 In addition to that clear BLOCK_SAME_RANGE flags when needed
4045 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4046 its super fragment origin. */
4047
4048 static tree
4049 block_fragments_nreverse (tree t)
4050 {
4051 tree prev = 0, block, next, prev_super = 0;
4052 tree super = BLOCK_SUPERCONTEXT (t);
4053 if (BLOCK_FRAGMENT_ORIGIN (super))
4054 super = BLOCK_FRAGMENT_ORIGIN (super);
4055 for (block = t; block; block = next)
4056 {
4057 next = BLOCK_FRAGMENT_CHAIN (block);
4058 BLOCK_FRAGMENT_CHAIN (block) = prev;
4059 if ((prev && !BLOCK_SAME_RANGE (prev))
4060 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4061 != prev_super))
4062 BLOCK_SAME_RANGE (block) = 0;
4063 prev_super = BLOCK_SUPERCONTEXT (block);
4064 BLOCK_SUPERCONTEXT (block) = super;
4065 prev = block;
4066 }
4067 t = BLOCK_FRAGMENT_ORIGIN (t);
4068 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4069 != prev_super)
4070 BLOCK_SAME_RANGE (t) = 0;
4071 BLOCK_SUPERCONTEXT (t) = super;
4072 return prev;
4073 }
4074
4075 /* Reverse the order of elements in the chain T of blocks,
4076 and return the new head of the chain (old last element).
4077 Also do the same on subblocks and reverse the order of elements
4078 in BLOCK_FRAGMENT_CHAIN as well. */
4079
4080 static tree
4081 blocks_nreverse_all (tree t)
4082 {
4083 tree prev = 0, block, next;
4084 for (block = t; block; block = next)
4085 {
4086 next = BLOCK_CHAIN (block);
4087 BLOCK_CHAIN (block) = prev;
4088 if (BLOCK_FRAGMENT_CHAIN (block)
4089 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4090 {
4091 BLOCK_FRAGMENT_CHAIN (block)
4092 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4093 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4094 BLOCK_SAME_RANGE (block) = 0;
4095 }
4096 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4097 prev = block;
4098 }
4099 return prev;
4100 }
4101
4102
4103 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4104 and create duplicate blocks. */
4105 /* ??? Need an option to either create block fragments or to create
4106 abstract origin duplicates of a source block. It really depends
4107 on what optimization has been performed. */
4108
4109 void
4110 reorder_blocks (void)
4111 {
4112 tree block = DECL_INITIAL (current_function_decl);
4113
4114 if (block == NULL_TREE)
4115 return;
4116
4117 auto_vec<tree, 10> block_stack;
4118
4119 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4120 clear_block_marks (block);
4121
4122 /* Prune the old trees away, so that they don't get in the way. */
4123 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4124 BLOCK_CHAIN (block) = NULL_TREE;
4125
4126 /* Recreate the block tree from the note nesting. */
4127 reorder_blocks_1 (get_insns (), block, &block_stack);
4128 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4129 }
4130
4131 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4132
4133 void
4134 clear_block_marks (tree block)
4135 {
4136 while (block)
4137 {
4138 TREE_ASM_WRITTEN (block) = 0;
4139 clear_block_marks (BLOCK_SUBBLOCKS (block));
4140 block = BLOCK_CHAIN (block);
4141 }
4142 }
4143
4144 static void
4145 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4146 {
4147 rtx insn;
4148 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4149
4150 for (insn = insns; insn; insn = NEXT_INSN (insn))
4151 {
4152 if (NOTE_P (insn))
4153 {
4154 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4155 {
4156 tree block = NOTE_BLOCK (insn);
4157 tree origin;
4158
4159 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4160 origin = block;
4161
4162 if (prev_end)
4163 BLOCK_SAME_RANGE (prev_end) = 0;
4164 prev_end = NULL_TREE;
4165
4166 /* If we have seen this block before, that means it now
4167 spans multiple address regions. Create a new fragment. */
4168 if (TREE_ASM_WRITTEN (block))
4169 {
4170 tree new_block = copy_node (block);
4171
4172 BLOCK_SAME_RANGE (new_block) = 0;
4173 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4174 BLOCK_FRAGMENT_CHAIN (new_block)
4175 = BLOCK_FRAGMENT_CHAIN (origin);
4176 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4177
4178 NOTE_BLOCK (insn) = new_block;
4179 block = new_block;
4180 }
4181
4182 if (prev_beg == current_block && prev_beg)
4183 BLOCK_SAME_RANGE (block) = 1;
4184
4185 prev_beg = origin;
4186
4187 BLOCK_SUBBLOCKS (block) = 0;
4188 TREE_ASM_WRITTEN (block) = 1;
4189 /* When there's only one block for the entire function,
4190 current_block == block and we mustn't do this, it
4191 will cause infinite recursion. */
4192 if (block != current_block)
4193 {
4194 tree super;
4195 if (block != origin)
4196 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4197 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4198 (origin))
4199 == current_block);
4200 if (p_block_stack->is_empty ())
4201 super = current_block;
4202 else
4203 {
4204 super = p_block_stack->last ();
4205 gcc_assert (super == current_block
4206 || BLOCK_FRAGMENT_ORIGIN (super)
4207 == current_block);
4208 }
4209 BLOCK_SUPERCONTEXT (block) = super;
4210 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4211 BLOCK_SUBBLOCKS (current_block) = block;
4212 current_block = origin;
4213 }
4214 p_block_stack->safe_push (block);
4215 }
4216 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4217 {
4218 NOTE_BLOCK (insn) = p_block_stack->pop ();
4219 current_block = BLOCK_SUPERCONTEXT (current_block);
4220 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4221 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4222 prev_beg = NULL_TREE;
4223 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4224 ? NOTE_BLOCK (insn) : NULL_TREE;
4225 }
4226 }
4227 else
4228 {
4229 prev_beg = NULL_TREE;
4230 if (prev_end)
4231 BLOCK_SAME_RANGE (prev_end) = 0;
4232 prev_end = NULL_TREE;
4233 }
4234 }
4235 }
4236
4237 /* Reverse the order of elements in the chain T of blocks,
4238 and return the new head of the chain (old last element). */
4239
4240 tree
4241 blocks_nreverse (tree t)
4242 {
4243 tree prev = 0, block, next;
4244 for (block = t; block; block = next)
4245 {
4246 next = BLOCK_CHAIN (block);
4247 BLOCK_CHAIN (block) = prev;
4248 prev = block;
4249 }
4250 return prev;
4251 }
4252
4253 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4254 by modifying the last node in chain 1 to point to chain 2. */
4255
4256 tree
4257 block_chainon (tree op1, tree op2)
4258 {
4259 tree t1;
4260
4261 if (!op1)
4262 return op2;
4263 if (!op2)
4264 return op1;
4265
4266 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4267 continue;
4268 BLOCK_CHAIN (t1) = op2;
4269
4270 #ifdef ENABLE_TREE_CHECKING
4271 {
4272 tree t2;
4273 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4274 gcc_assert (t2 != t1);
4275 }
4276 #endif
4277
4278 return op1;
4279 }
4280
4281 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4282 non-NULL, list them all into VECTOR, in a depth-first preorder
4283 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4284 blocks. */
4285
4286 static int
4287 all_blocks (tree block, tree *vector)
4288 {
4289 int n_blocks = 0;
4290
4291 while (block)
4292 {
4293 TREE_ASM_WRITTEN (block) = 0;
4294
4295 /* Record this block. */
4296 if (vector)
4297 vector[n_blocks] = block;
4298
4299 ++n_blocks;
4300
4301 /* Record the subblocks, and their subblocks... */
4302 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4303 vector ? vector + n_blocks : 0);
4304 block = BLOCK_CHAIN (block);
4305 }
4306
4307 return n_blocks;
4308 }
4309
4310 /* Return a vector containing all the blocks rooted at BLOCK. The
4311 number of elements in the vector is stored in N_BLOCKS_P. The
4312 vector is dynamically allocated; it is the caller's responsibility
4313 to call `free' on the pointer returned. */
4314
4315 static tree *
4316 get_block_vector (tree block, int *n_blocks_p)
4317 {
4318 tree *block_vector;
4319
4320 *n_blocks_p = all_blocks (block, NULL);
4321 block_vector = XNEWVEC (tree, *n_blocks_p);
4322 all_blocks (block, block_vector);
4323
4324 return block_vector;
4325 }
4326
4327 static GTY(()) int next_block_index = 2;
4328
4329 /* Set BLOCK_NUMBER for all the blocks in FN. */
4330
4331 void
4332 number_blocks (tree fn)
4333 {
4334 int i;
4335 int n_blocks;
4336 tree *block_vector;
4337
4338 /* For SDB and XCOFF debugging output, we start numbering the blocks
4339 from 1 within each function, rather than keeping a running
4340 count. */
4341 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4342 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4343 next_block_index = 1;
4344 #endif
4345
4346 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4347
4348 /* The top-level BLOCK isn't numbered at all. */
4349 for (i = 1; i < n_blocks; ++i)
4350 /* We number the blocks from two. */
4351 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4352
4353 free (block_vector);
4354
4355 return;
4356 }
4357
4358 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4359
4360 DEBUG_FUNCTION tree
4361 debug_find_var_in_block_tree (tree var, tree block)
4362 {
4363 tree t;
4364
4365 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4366 if (t == var)
4367 return block;
4368
4369 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4370 {
4371 tree ret = debug_find_var_in_block_tree (var, t);
4372 if (ret)
4373 return ret;
4374 }
4375
4376 return NULL_TREE;
4377 }
4378 \f
4379 /* Keep track of whether we're in a dummy function context. If we are,
4380 we don't want to invoke the set_current_function hook, because we'll
4381 get into trouble if the hook calls target_reinit () recursively or
4382 when the initial initialization is not yet complete. */
4383
4384 static bool in_dummy_function;
4385
4386 /* Invoke the target hook when setting cfun. Update the optimization options
4387 if the function uses different options than the default. */
4388
4389 static void
4390 invoke_set_current_function_hook (tree fndecl)
4391 {
4392 if (!in_dummy_function)
4393 {
4394 tree opts = ((fndecl)
4395 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4396 : optimization_default_node);
4397
4398 if (!opts)
4399 opts = optimization_default_node;
4400
4401 /* Change optimization options if needed. */
4402 if (optimization_current_node != opts)
4403 {
4404 optimization_current_node = opts;
4405 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4406 }
4407
4408 this_fn_optabs = this_target_optabs;
4409
4410 if (opts != optimization_default_node)
4411 {
4412 init_tree_optimization_optabs (opts);
4413 if (TREE_OPTIMIZATION_OPTABS (opts))
4414 this_fn_optabs = (struct target_optabs *)
4415 TREE_OPTIMIZATION_OPTABS (opts);
4416 }
4417
4418 targetm.set_current_function (fndecl);
4419 }
4420 }
4421
4422 /* cfun should never be set directly; use this function. */
4423
4424 void
4425 set_cfun (struct function *new_cfun)
4426 {
4427 if (cfun != new_cfun)
4428 {
4429 cfun = new_cfun;
4430 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4431 }
4432 }
4433
4434 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4435
4436 static vec<function_p> cfun_stack;
4437
4438 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4439 current_function_decl accordingly. */
4440
4441 void
4442 push_cfun (struct function *new_cfun)
4443 {
4444 gcc_assert ((!cfun && !current_function_decl)
4445 || (cfun && current_function_decl == cfun->decl));
4446 cfun_stack.safe_push (cfun);
4447 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4448 set_cfun (new_cfun);
4449 }
4450
4451 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4452
4453 void
4454 pop_cfun (void)
4455 {
4456 struct function *new_cfun = cfun_stack.pop ();
4457 /* When in_dummy_function, we do have a cfun but current_function_decl is
4458 NULL. We also allow pushing NULL cfun and subsequently changing
4459 current_function_decl to something else and have both restored by
4460 pop_cfun. */
4461 gcc_checking_assert (in_dummy_function
4462 || !cfun
4463 || current_function_decl == cfun->decl);
4464 set_cfun (new_cfun);
4465 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4466 }
4467
4468 /* Return value of funcdef and increase it. */
4469 int
4470 get_next_funcdef_no (void)
4471 {
4472 return funcdef_no++;
4473 }
4474
4475 /* Return value of funcdef. */
4476 int
4477 get_last_funcdef_no (void)
4478 {
4479 return funcdef_no;
4480 }
4481
4482 /* Allocate a function structure for FNDECL and set its contents
4483 to the defaults. Set cfun to the newly-allocated object.
4484 Some of the helper functions invoked during initialization assume
4485 that cfun has already been set. Therefore, assign the new object
4486 directly into cfun and invoke the back end hook explicitly at the
4487 very end, rather than initializing a temporary and calling set_cfun
4488 on it.
4489
4490 ABSTRACT_P is true if this is a function that will never be seen by
4491 the middle-end. Such functions are front-end concepts (like C++
4492 function templates) that do not correspond directly to functions
4493 placed in object files. */
4494
4495 void
4496 allocate_struct_function (tree fndecl, bool abstract_p)
4497 {
4498 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4499
4500 cfun = ggc_alloc_cleared_function ();
4501
4502 init_eh_for_function ();
4503
4504 if (init_machine_status)
4505 cfun->machine = (*init_machine_status) ();
4506
4507 #ifdef OVERRIDE_ABI_FORMAT
4508 OVERRIDE_ABI_FORMAT (fndecl);
4509 #endif
4510
4511 if (fndecl != NULL_TREE)
4512 {
4513 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4514 cfun->decl = fndecl;
4515 current_function_funcdef_no = get_next_funcdef_no ();
4516 }
4517
4518 invoke_set_current_function_hook (fndecl);
4519
4520 if (fndecl != NULL_TREE)
4521 {
4522 tree result = DECL_RESULT (fndecl);
4523 if (!abstract_p && aggregate_value_p (result, fndecl))
4524 {
4525 #ifdef PCC_STATIC_STRUCT_RETURN
4526 cfun->returns_pcc_struct = 1;
4527 #endif
4528 cfun->returns_struct = 1;
4529 }
4530
4531 cfun->stdarg = stdarg_p (fntype);
4532
4533 /* Assume all registers in stdarg functions need to be saved. */
4534 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4535 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4536
4537 /* ??? This could be set on a per-function basis by the front-end
4538 but is this worth the hassle? */
4539 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4540 }
4541 }
4542
4543 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4544 instead of just setting it. */
4545
4546 void
4547 push_struct_function (tree fndecl)
4548 {
4549 /* When in_dummy_function we might be in the middle of a pop_cfun and
4550 current_function_decl and cfun may not match. */
4551 gcc_assert (in_dummy_function
4552 || (!cfun && !current_function_decl)
4553 || (cfun && current_function_decl == cfun->decl));
4554 cfun_stack.safe_push (cfun);
4555 current_function_decl = fndecl;
4556 allocate_struct_function (fndecl, false);
4557 }
4558
4559 /* Reset crtl and other non-struct-function variables to defaults as
4560 appropriate for emitting rtl at the start of a function. */
4561
4562 static void
4563 prepare_function_start (void)
4564 {
4565 gcc_assert (!crtl->emit.x_last_insn);
4566 init_temp_slots ();
4567 init_emit ();
4568 init_varasm_status ();
4569 init_expr ();
4570 default_rtl_profile ();
4571
4572 if (flag_stack_usage_info)
4573 {
4574 cfun->su = ggc_alloc_cleared_stack_usage ();
4575 cfun->su->static_stack_size = -1;
4576 }
4577
4578 cse_not_expected = ! optimize;
4579
4580 /* Caller save not needed yet. */
4581 caller_save_needed = 0;
4582
4583 /* We haven't done register allocation yet. */
4584 reg_renumber = 0;
4585
4586 /* Indicate that we have not instantiated virtual registers yet. */
4587 virtuals_instantiated = 0;
4588
4589 /* Indicate that we want CONCATs now. */
4590 generating_concat_p = 1;
4591
4592 /* Indicate we have no need of a frame pointer yet. */
4593 frame_pointer_needed = 0;
4594 }
4595
4596 /* Initialize the rtl expansion mechanism so that we can do simple things
4597 like generate sequences. This is used to provide a context during global
4598 initialization of some passes. You must call expand_dummy_function_end
4599 to exit this context. */
4600
4601 void
4602 init_dummy_function_start (void)
4603 {
4604 gcc_assert (!in_dummy_function);
4605 in_dummy_function = true;
4606 push_struct_function (NULL_TREE);
4607 prepare_function_start ();
4608 }
4609
4610 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4611 and initialize static variables for generating RTL for the statements
4612 of the function. */
4613
4614 void
4615 init_function_start (tree subr)
4616 {
4617 if (subr && DECL_STRUCT_FUNCTION (subr))
4618 set_cfun (DECL_STRUCT_FUNCTION (subr));
4619 else
4620 allocate_struct_function (subr, false);
4621 prepare_function_start ();
4622 decide_function_section (subr);
4623
4624 /* Warn if this value is an aggregate type,
4625 regardless of which calling convention we are using for it. */
4626 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4627 warning (OPT_Waggregate_return, "function returns an aggregate");
4628 }
4629
4630 /* Expand code to verify the stack_protect_guard. This is invoked at
4631 the end of a function to be protected. */
4632
4633 #ifndef HAVE_stack_protect_test
4634 # define HAVE_stack_protect_test 0
4635 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4636 #endif
4637
4638 void
4639 stack_protect_epilogue (void)
4640 {
4641 tree guard_decl = targetm.stack_protect_guard ();
4642 rtx label = gen_label_rtx ();
4643 rtx x, y, tmp;
4644
4645 x = expand_normal (crtl->stack_protect_guard);
4646 y = expand_normal (guard_decl);
4647
4648 /* Allow the target to compare Y with X without leaking either into
4649 a register. */
4650 switch (HAVE_stack_protect_test != 0)
4651 {
4652 case 1:
4653 tmp = gen_stack_protect_test (x, y, label);
4654 if (tmp)
4655 {
4656 emit_insn (tmp);
4657 break;
4658 }
4659 /* FALLTHRU */
4660
4661 default:
4662 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4663 break;
4664 }
4665
4666 /* The noreturn predictor has been moved to the tree level. The rtl-level
4667 predictors estimate this branch about 20%, which isn't enough to get
4668 things moved out of line. Since this is the only extant case of adding
4669 a noreturn function at the rtl level, it doesn't seem worth doing ought
4670 except adding the prediction by hand. */
4671 tmp = get_last_insn ();
4672 if (JUMP_P (tmp))
4673 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4674
4675 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4676 free_temp_slots ();
4677 emit_label (label);
4678 }
4679 \f
4680 /* Start the RTL for a new function, and set variables used for
4681 emitting RTL.
4682 SUBR is the FUNCTION_DECL node.
4683 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4684 the function's parameters, which must be run at any return statement. */
4685
4686 void
4687 expand_function_start (tree subr)
4688 {
4689 /* Make sure volatile mem refs aren't considered
4690 valid operands of arithmetic insns. */
4691 init_recog_no_volatile ();
4692
4693 crtl->profile
4694 = (profile_flag
4695 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4696
4697 crtl->limit_stack
4698 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4699
4700 /* Make the label for return statements to jump to. Do not special
4701 case machines with special return instructions -- they will be
4702 handled later during jump, ifcvt, or epilogue creation. */
4703 return_label = gen_label_rtx ();
4704
4705 /* Initialize rtx used to return the value. */
4706 /* Do this before assign_parms so that we copy the struct value address
4707 before any library calls that assign parms might generate. */
4708
4709 /* Decide whether to return the value in memory or in a register. */
4710 if (aggregate_value_p (DECL_RESULT (subr), subr))
4711 {
4712 /* Returning something that won't go in a register. */
4713 rtx value_address = 0;
4714
4715 #ifdef PCC_STATIC_STRUCT_RETURN
4716 if (cfun->returns_pcc_struct)
4717 {
4718 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4719 value_address = assemble_static_space (size);
4720 }
4721 else
4722 #endif
4723 {
4724 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4725 /* Expect to be passed the address of a place to store the value.
4726 If it is passed as an argument, assign_parms will take care of
4727 it. */
4728 if (sv)
4729 {
4730 value_address = gen_reg_rtx (Pmode);
4731 emit_move_insn (value_address, sv);
4732 }
4733 }
4734 if (value_address)
4735 {
4736 rtx x = value_address;
4737 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4738 {
4739 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4740 set_mem_attributes (x, DECL_RESULT (subr), 1);
4741 }
4742 SET_DECL_RTL (DECL_RESULT (subr), x);
4743 }
4744 }
4745 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4746 /* If return mode is void, this decl rtl should not be used. */
4747 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4748 else
4749 {
4750 /* Compute the return values into a pseudo reg, which we will copy
4751 into the true return register after the cleanups are done. */
4752 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4753 if (TYPE_MODE (return_type) != BLKmode
4754 && targetm.calls.return_in_msb (return_type))
4755 /* expand_function_end will insert the appropriate padding in
4756 this case. Use the return value's natural (unpadded) mode
4757 within the function proper. */
4758 SET_DECL_RTL (DECL_RESULT (subr),
4759 gen_reg_rtx (TYPE_MODE (return_type)));
4760 else
4761 {
4762 /* In order to figure out what mode to use for the pseudo, we
4763 figure out what the mode of the eventual return register will
4764 actually be, and use that. */
4765 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4766
4767 /* Structures that are returned in registers are not
4768 aggregate_value_p, so we may see a PARALLEL or a REG. */
4769 if (REG_P (hard_reg))
4770 SET_DECL_RTL (DECL_RESULT (subr),
4771 gen_reg_rtx (GET_MODE (hard_reg)));
4772 else
4773 {
4774 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4775 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4776 }
4777 }
4778
4779 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4780 result to the real return register(s). */
4781 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4782 }
4783
4784 /* Initialize rtx for parameters and local variables.
4785 In some cases this requires emitting insns. */
4786 assign_parms (subr);
4787
4788 /* If function gets a static chain arg, store it. */
4789 if (cfun->static_chain_decl)
4790 {
4791 tree parm = cfun->static_chain_decl;
4792 rtx local, chain, insn;
4793
4794 local = gen_reg_rtx (Pmode);
4795 chain = targetm.calls.static_chain (current_function_decl, true);
4796
4797 set_decl_incoming_rtl (parm, chain, false);
4798 SET_DECL_RTL (parm, local);
4799 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4800
4801 insn = emit_move_insn (local, chain);
4802
4803 /* Mark the register as eliminable, similar to parameters. */
4804 if (MEM_P (chain)
4805 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4806 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4807 }
4808
4809 /* If the function receives a non-local goto, then store the
4810 bits we need to restore the frame pointer. */
4811 if (cfun->nonlocal_goto_save_area)
4812 {
4813 tree t_save;
4814 rtx r_save;
4815
4816 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4817 gcc_assert (DECL_RTL_SET_P (var));
4818
4819 t_save = build4 (ARRAY_REF,
4820 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4821 cfun->nonlocal_goto_save_area,
4822 integer_zero_node, NULL_TREE, NULL_TREE);
4823 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4824 gcc_assert (GET_MODE (r_save) == Pmode);
4825
4826 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4827 update_nonlocal_goto_save_area ();
4828 }
4829
4830 /* The following was moved from init_function_start.
4831 The move is supposed to make sdb output more accurate. */
4832 /* Indicate the beginning of the function body,
4833 as opposed to parm setup. */
4834 emit_note (NOTE_INSN_FUNCTION_BEG);
4835
4836 gcc_assert (NOTE_P (get_last_insn ()));
4837
4838 parm_birth_insn = get_last_insn ();
4839
4840 if (crtl->profile)
4841 {
4842 #ifdef PROFILE_HOOK
4843 PROFILE_HOOK (current_function_funcdef_no);
4844 #endif
4845 }
4846
4847 /* If we are doing generic stack checking, the probe should go here. */
4848 if (flag_stack_check == GENERIC_STACK_CHECK)
4849 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4850 }
4851 \f
4852 /* Undo the effects of init_dummy_function_start. */
4853 void
4854 expand_dummy_function_end (void)
4855 {
4856 gcc_assert (in_dummy_function);
4857
4858 /* End any sequences that failed to be closed due to syntax errors. */
4859 while (in_sequence_p ())
4860 end_sequence ();
4861
4862 /* Outside function body, can't compute type's actual size
4863 until next function's body starts. */
4864
4865 free_after_parsing (cfun);
4866 free_after_compilation (cfun);
4867 pop_cfun ();
4868 in_dummy_function = false;
4869 }
4870
4871 /* Call DOIT for each hard register used as a return value from
4872 the current function. */
4873
4874 void
4875 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4876 {
4877 rtx outgoing = crtl->return_rtx;
4878
4879 if (! outgoing)
4880 return;
4881
4882 if (REG_P (outgoing))
4883 (*doit) (outgoing, arg);
4884 else if (GET_CODE (outgoing) == PARALLEL)
4885 {
4886 int i;
4887
4888 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4889 {
4890 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4891
4892 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4893 (*doit) (x, arg);
4894 }
4895 }
4896 }
4897
4898 static void
4899 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4900 {
4901 emit_clobber (reg);
4902 }
4903
4904 void
4905 clobber_return_register (void)
4906 {
4907 diddle_return_value (do_clobber_return_reg, NULL);
4908
4909 /* In case we do use pseudo to return value, clobber it too. */
4910 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4911 {
4912 tree decl_result = DECL_RESULT (current_function_decl);
4913 rtx decl_rtl = DECL_RTL (decl_result);
4914 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4915 {
4916 do_clobber_return_reg (decl_rtl, NULL);
4917 }
4918 }
4919 }
4920
4921 static void
4922 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4923 {
4924 emit_use (reg);
4925 }
4926
4927 static void
4928 use_return_register (void)
4929 {
4930 diddle_return_value (do_use_return_reg, NULL);
4931 }
4932
4933 /* Possibly warn about unused parameters. */
4934 void
4935 do_warn_unused_parameter (tree fn)
4936 {
4937 tree decl;
4938
4939 for (decl = DECL_ARGUMENTS (fn);
4940 decl; decl = DECL_CHAIN (decl))
4941 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4942 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4943 && !TREE_NO_WARNING (decl))
4944 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4945 }
4946
4947 /* Set the location of the insn chain starting at INSN to LOC. */
4948
4949 static void
4950 set_insn_locations (rtx insn, int loc)
4951 {
4952 while (insn != NULL_RTX)
4953 {
4954 if (INSN_P (insn))
4955 INSN_LOCATION (insn) = loc;
4956 insn = NEXT_INSN (insn);
4957 }
4958 }
4959
4960 /* Generate RTL for the end of the current function. */
4961
4962 void
4963 expand_function_end (void)
4964 {
4965 rtx clobber_after;
4966
4967 /* If arg_pointer_save_area was referenced only from a nested
4968 function, we will not have initialized it yet. Do that now. */
4969 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4970 get_arg_pointer_save_area ();
4971
4972 /* If we are doing generic stack checking and this function makes calls,
4973 do a stack probe at the start of the function to ensure we have enough
4974 space for another stack frame. */
4975 if (flag_stack_check == GENERIC_STACK_CHECK)
4976 {
4977 rtx insn, seq;
4978
4979 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4980 if (CALL_P (insn))
4981 {
4982 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4983 start_sequence ();
4984 if (STACK_CHECK_MOVING_SP)
4985 anti_adjust_stack_and_probe (max_frame_size, true);
4986 else
4987 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4988 seq = get_insns ();
4989 end_sequence ();
4990 set_insn_locations (seq, prologue_location);
4991 emit_insn_before (seq, stack_check_probe_note);
4992 break;
4993 }
4994 }
4995
4996 /* End any sequences that failed to be closed due to syntax errors. */
4997 while (in_sequence_p ())
4998 end_sequence ();
4999
5000 clear_pending_stack_adjust ();
5001 do_pending_stack_adjust ();
5002
5003 /* Output a linenumber for the end of the function.
5004 SDB depends on this. */
5005 set_curr_insn_location (input_location);
5006
5007 /* Before the return label (if any), clobber the return
5008 registers so that they are not propagated live to the rest of
5009 the function. This can only happen with functions that drop
5010 through; if there had been a return statement, there would
5011 have either been a return rtx, or a jump to the return label.
5012
5013 We delay actual code generation after the current_function_value_rtx
5014 is computed. */
5015 clobber_after = get_last_insn ();
5016
5017 /* Output the label for the actual return from the function. */
5018 emit_label (return_label);
5019
5020 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5021 {
5022 /* Let except.c know where it should emit the call to unregister
5023 the function context for sjlj exceptions. */
5024 if (flag_exceptions)
5025 sjlj_emit_function_exit_after (get_last_insn ());
5026 }
5027 else
5028 {
5029 /* We want to ensure that instructions that may trap are not
5030 moved into the epilogue by scheduling, because we don't
5031 always emit unwind information for the epilogue. */
5032 if (cfun->can_throw_non_call_exceptions)
5033 emit_insn (gen_blockage ());
5034 }
5035
5036 /* If this is an implementation of throw, do what's necessary to
5037 communicate between __builtin_eh_return and the epilogue. */
5038 expand_eh_return ();
5039
5040 /* If scalar return value was computed in a pseudo-reg, or was a named
5041 return value that got dumped to the stack, copy that to the hard
5042 return register. */
5043 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5044 {
5045 tree decl_result = DECL_RESULT (current_function_decl);
5046 rtx decl_rtl = DECL_RTL (decl_result);
5047
5048 if (REG_P (decl_rtl)
5049 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5050 : DECL_REGISTER (decl_result))
5051 {
5052 rtx real_decl_rtl = crtl->return_rtx;
5053
5054 /* This should be set in assign_parms. */
5055 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5056
5057 /* If this is a BLKmode structure being returned in registers,
5058 then use the mode computed in expand_return. Note that if
5059 decl_rtl is memory, then its mode may have been changed,
5060 but that crtl->return_rtx has not. */
5061 if (GET_MODE (real_decl_rtl) == BLKmode)
5062 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5063
5064 /* If a non-BLKmode return value should be padded at the least
5065 significant end of the register, shift it left by the appropriate
5066 amount. BLKmode results are handled using the group load/store
5067 machinery. */
5068 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5069 && REG_P (real_decl_rtl)
5070 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5071 {
5072 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5073 REGNO (real_decl_rtl)),
5074 decl_rtl);
5075 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5076 }
5077 /* If a named return value dumped decl_return to memory, then
5078 we may need to re-do the PROMOTE_MODE signed/unsigned
5079 extension. */
5080 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5081 {
5082 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5083 promote_function_mode (TREE_TYPE (decl_result),
5084 GET_MODE (decl_rtl), &unsignedp,
5085 TREE_TYPE (current_function_decl), 1);
5086
5087 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5088 }
5089 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5090 {
5091 /* If expand_function_start has created a PARALLEL for decl_rtl,
5092 move the result to the real return registers. Otherwise, do
5093 a group load from decl_rtl for a named return. */
5094 if (GET_CODE (decl_rtl) == PARALLEL)
5095 emit_group_move (real_decl_rtl, decl_rtl);
5096 else
5097 emit_group_load (real_decl_rtl, decl_rtl,
5098 TREE_TYPE (decl_result),
5099 int_size_in_bytes (TREE_TYPE (decl_result)));
5100 }
5101 /* In the case of complex integer modes smaller than a word, we'll
5102 need to generate some non-trivial bitfield insertions. Do that
5103 on a pseudo and not the hard register. */
5104 else if (GET_CODE (decl_rtl) == CONCAT
5105 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5106 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5107 {
5108 int old_generating_concat_p;
5109 rtx tmp;
5110
5111 old_generating_concat_p = generating_concat_p;
5112 generating_concat_p = 0;
5113 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5114 generating_concat_p = old_generating_concat_p;
5115
5116 emit_move_insn (tmp, decl_rtl);
5117 emit_move_insn (real_decl_rtl, tmp);
5118 }
5119 else
5120 emit_move_insn (real_decl_rtl, decl_rtl);
5121 }
5122 }
5123
5124 /* If returning a structure, arrange to return the address of the value
5125 in a place where debuggers expect to find it.
5126
5127 If returning a structure PCC style,
5128 the caller also depends on this value.
5129 And cfun->returns_pcc_struct is not necessarily set. */
5130 if (cfun->returns_struct
5131 || cfun->returns_pcc_struct)
5132 {
5133 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5134 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5135 rtx outgoing;
5136
5137 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5138 type = TREE_TYPE (type);
5139 else
5140 value_address = XEXP (value_address, 0);
5141
5142 outgoing = targetm.calls.function_value (build_pointer_type (type),
5143 current_function_decl, true);
5144
5145 /* Mark this as a function return value so integrate will delete the
5146 assignment and USE below when inlining this function. */
5147 REG_FUNCTION_VALUE_P (outgoing) = 1;
5148
5149 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5150 value_address = convert_memory_address (GET_MODE (outgoing),
5151 value_address);
5152
5153 emit_move_insn (outgoing, value_address);
5154
5155 /* Show return register used to hold result (in this case the address
5156 of the result. */
5157 crtl->return_rtx = outgoing;
5158 }
5159
5160 /* Emit the actual code to clobber return register. */
5161 {
5162 rtx seq;
5163
5164 start_sequence ();
5165 clobber_return_register ();
5166 seq = get_insns ();
5167 end_sequence ();
5168
5169 emit_insn_after (seq, clobber_after);
5170 }
5171
5172 /* Output the label for the naked return from the function. */
5173 if (naked_return_label)
5174 emit_label (naked_return_label);
5175
5176 /* @@@ This is a kludge. We want to ensure that instructions that
5177 may trap are not moved into the epilogue by scheduling, because
5178 we don't always emit unwind information for the epilogue. */
5179 if (cfun->can_throw_non_call_exceptions
5180 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5181 emit_insn (gen_blockage ());
5182
5183 /* If stack protection is enabled for this function, check the guard. */
5184 if (crtl->stack_protect_guard)
5185 stack_protect_epilogue ();
5186
5187 /* If we had calls to alloca, and this machine needs
5188 an accurate stack pointer to exit the function,
5189 insert some code to save and restore the stack pointer. */
5190 if (! EXIT_IGNORE_STACK
5191 && cfun->calls_alloca)
5192 {
5193 rtx tem = 0, seq;
5194
5195 start_sequence ();
5196 emit_stack_save (SAVE_FUNCTION, &tem);
5197 seq = get_insns ();
5198 end_sequence ();
5199 emit_insn_before (seq, parm_birth_insn);
5200
5201 emit_stack_restore (SAVE_FUNCTION, tem);
5202 }
5203
5204 /* ??? This should no longer be necessary since stupid is no longer with
5205 us, but there are some parts of the compiler (eg reload_combine, and
5206 sh mach_dep_reorg) that still try and compute their own lifetime info
5207 instead of using the general framework. */
5208 use_return_register ();
5209 }
5210
5211 rtx
5212 get_arg_pointer_save_area (void)
5213 {
5214 rtx ret = arg_pointer_save_area;
5215
5216 if (! ret)
5217 {
5218 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5219 arg_pointer_save_area = ret;
5220 }
5221
5222 if (! crtl->arg_pointer_save_area_init)
5223 {
5224 rtx seq;
5225
5226 /* Save the arg pointer at the beginning of the function. The
5227 generated stack slot may not be a valid memory address, so we
5228 have to check it and fix it if necessary. */
5229 start_sequence ();
5230 emit_move_insn (validize_mem (ret),
5231 crtl->args.internal_arg_pointer);
5232 seq = get_insns ();
5233 end_sequence ();
5234
5235 push_topmost_sequence ();
5236 emit_insn_after (seq, entry_of_function ());
5237 pop_topmost_sequence ();
5238
5239 crtl->arg_pointer_save_area_init = true;
5240 }
5241
5242 return ret;
5243 }
5244 \f
5245 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5246 for the first time. */
5247
5248 static void
5249 record_insns (rtx insns, rtx end, htab_t *hashp)
5250 {
5251 rtx tmp;
5252 htab_t hash = *hashp;
5253
5254 if (hash == NULL)
5255 *hashp = hash
5256 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5257
5258 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5259 {
5260 void **slot = htab_find_slot (hash, tmp, INSERT);
5261 gcc_assert (*slot == NULL);
5262 *slot = tmp;
5263 }
5264 }
5265
5266 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5267 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5268 insn, then record COPY as well. */
5269
5270 void
5271 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5272 {
5273 htab_t hash;
5274 void **slot;
5275
5276 hash = epilogue_insn_hash;
5277 if (!hash || !htab_find (hash, insn))
5278 {
5279 hash = prologue_insn_hash;
5280 if (!hash || !htab_find (hash, insn))
5281 return;
5282 }
5283
5284 slot = htab_find_slot (hash, copy, INSERT);
5285 gcc_assert (*slot == NULL);
5286 *slot = copy;
5287 }
5288
5289 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5290 we can be running after reorg, SEQUENCE rtl is possible. */
5291
5292 static bool
5293 contains (const_rtx insn, htab_t hash)
5294 {
5295 if (hash == NULL)
5296 return false;
5297
5298 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5299 {
5300 int i;
5301 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5302 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5303 return true;
5304 return false;
5305 }
5306
5307 return htab_find (hash, insn) != NULL;
5308 }
5309
5310 int
5311 prologue_epilogue_contains (const_rtx insn)
5312 {
5313 if (contains (insn, prologue_insn_hash))
5314 return 1;
5315 if (contains (insn, epilogue_insn_hash))
5316 return 1;
5317 return 0;
5318 }
5319
5320 #ifdef HAVE_simple_return
5321
5322 /* Return true if INSN requires the stack frame to be set up.
5323 PROLOGUE_USED contains the hard registers used in the function
5324 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5325 prologue to set up for the function. */
5326 bool
5327 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5328 HARD_REG_SET set_up_by_prologue)
5329 {
5330 df_ref *df_rec;
5331 HARD_REG_SET hardregs;
5332 unsigned regno;
5333
5334 if (CALL_P (insn))
5335 return !SIBLING_CALL_P (insn);
5336
5337 /* We need a frame to get the unique CFA expected by the unwinder. */
5338 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5339 return true;
5340
5341 CLEAR_HARD_REG_SET (hardregs);
5342 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5343 {
5344 rtx dreg = DF_REF_REG (*df_rec);
5345
5346 if (!REG_P (dreg))
5347 continue;
5348
5349 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5350 REGNO (dreg));
5351 }
5352 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5353 return true;
5354 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5355 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5356 if (TEST_HARD_REG_BIT (hardregs, regno)
5357 && df_regs_ever_live_p (regno))
5358 return true;
5359
5360 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5361 {
5362 rtx reg = DF_REF_REG (*df_rec);
5363
5364 if (!REG_P (reg))
5365 continue;
5366
5367 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5368 REGNO (reg));
5369 }
5370 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5371 return true;
5372
5373 return false;
5374 }
5375
5376 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5377 and if BB is its only predecessor. Return that block if so,
5378 otherwise return null. */
5379
5380 static basic_block
5381 next_block_for_reg (basic_block bb, int regno, int end_regno)
5382 {
5383 edge e, live_edge;
5384 edge_iterator ei;
5385 bitmap live;
5386 int i;
5387
5388 live_edge = NULL;
5389 FOR_EACH_EDGE (e, ei, bb->succs)
5390 {
5391 live = df_get_live_in (e->dest);
5392 for (i = regno; i < end_regno; i++)
5393 if (REGNO_REG_SET_P (live, i))
5394 {
5395 if (live_edge && live_edge != e)
5396 return NULL;
5397 live_edge = e;
5398 }
5399 }
5400
5401 /* We can sometimes encounter dead code. Don't try to move it
5402 into the exit block. */
5403 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5404 return NULL;
5405
5406 /* Reject targets of abnormal edges. This is needed for correctness
5407 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5408 exception edges even though it is generally treated as call-saved
5409 for the majority of the compilation. Moving across abnormal edges
5410 isn't going to be interesting for shrink-wrap usage anyway. */
5411 if (live_edge->flags & EDGE_ABNORMAL)
5412 return NULL;
5413
5414 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5415 return NULL;
5416
5417 return live_edge->dest;
5418 }
5419
5420 /* Try to move INSN from BB to a successor. Return true on success.
5421 USES and DEFS are the set of registers that are used and defined
5422 after INSN in BB. */
5423
5424 static bool
5425 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5426 const HARD_REG_SET uses,
5427 const HARD_REG_SET defs)
5428 {
5429 rtx set, src, dest;
5430 bitmap live_out, live_in, bb_uses, bb_defs;
5431 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5432 basic_block next_block;
5433
5434 /* Look for a simple register copy. */
5435 set = single_set (insn);
5436 if (!set)
5437 return false;
5438 src = SET_SRC (set);
5439 dest = SET_DEST (set);
5440 if (!REG_P (dest) || !REG_P (src))
5441 return false;
5442
5443 /* Make sure that the source register isn't defined later in BB. */
5444 sregno = REGNO (src);
5445 end_sregno = END_REGNO (src);
5446 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5447 return false;
5448
5449 /* Make sure that the destination register isn't referenced later in BB. */
5450 dregno = REGNO (dest);
5451 end_dregno = END_REGNO (dest);
5452 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5453 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5454 return false;
5455
5456 /* See whether there is a successor block to which we could move INSN. */
5457 next_block = next_block_for_reg (bb, dregno, end_dregno);
5458 if (!next_block)
5459 return false;
5460
5461 /* At this point we are committed to moving INSN, but let's try to
5462 move it as far as we can. */
5463 do
5464 {
5465 live_out = df_get_live_out (bb);
5466 live_in = df_get_live_in (next_block);
5467 bb = next_block;
5468
5469 /* Check whether BB uses DEST or clobbers DEST. We need to add
5470 INSN to BB if so. Either way, DEST is no longer live on entry,
5471 except for any part that overlaps SRC (next loop). */
5472 bb_uses = &DF_LR_BB_INFO (bb)->use;
5473 bb_defs = &DF_LR_BB_INFO (bb)->def;
5474 if (df_live)
5475 {
5476 for (i = dregno; i < end_dregno; i++)
5477 {
5478 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5479 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5480 next_block = NULL;
5481 CLEAR_REGNO_REG_SET (live_out, i);
5482 CLEAR_REGNO_REG_SET (live_in, i);
5483 }
5484
5485 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5486 Either way, SRC is now live on entry. */
5487 for (i = sregno; i < end_sregno; i++)
5488 {
5489 if (REGNO_REG_SET_P (bb_defs, i)
5490 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5491 next_block = NULL;
5492 SET_REGNO_REG_SET (live_out, i);
5493 SET_REGNO_REG_SET (live_in, i);
5494 }
5495 }
5496 else
5497 {
5498 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5499 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5500 at -O1, just give up searching NEXT_BLOCK. */
5501 next_block = NULL;
5502 for (i = dregno; i < end_dregno; i++)
5503 {
5504 CLEAR_REGNO_REG_SET (live_out, i);
5505 CLEAR_REGNO_REG_SET (live_in, i);
5506 }
5507
5508 for (i = sregno; i < end_sregno; i++)
5509 {
5510 SET_REGNO_REG_SET (live_out, i);
5511 SET_REGNO_REG_SET (live_in, i);
5512 }
5513 }
5514
5515 /* If we don't need to add the move to BB, look for a single
5516 successor block. */
5517 if (next_block)
5518 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5519 }
5520 while (next_block);
5521
5522 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5523 (next loop). */
5524 for (i = dregno; i < end_dregno; i++)
5525 {
5526 CLEAR_REGNO_REG_SET (bb_uses, i);
5527 SET_REGNO_REG_SET (bb_defs, i);
5528 }
5529
5530 /* BB now uses SRC. */
5531 for (i = sregno; i < end_sregno; i++)
5532 SET_REGNO_REG_SET (bb_uses, i);
5533
5534 emit_insn_after (PATTERN (insn), bb_note (bb));
5535 delete_insn (insn);
5536 return true;
5537 }
5538
5539 /* Look for register copies in the first block of the function, and move
5540 them down into successor blocks if the register is used only on one
5541 path. This exposes more opportunities for shrink-wrapping. These
5542 kinds of sets often occur when incoming argument registers are moved
5543 to call-saved registers because their values are live across one or
5544 more calls during the function. */
5545
5546 static void
5547 prepare_shrink_wrap (basic_block entry_block)
5548 {
5549 rtx insn, curr, x;
5550 HARD_REG_SET uses, defs;
5551 df_ref *ref;
5552
5553 CLEAR_HARD_REG_SET (uses);
5554 CLEAR_HARD_REG_SET (defs);
5555 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5556 if (NONDEBUG_INSN_P (insn)
5557 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5558 {
5559 /* Add all defined registers to DEFs. */
5560 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5561 {
5562 x = DF_REF_REG (*ref);
5563 if (REG_P (x) && HARD_REGISTER_P (x))
5564 SET_HARD_REG_BIT (defs, REGNO (x));
5565 }
5566
5567 /* Add all used registers to USESs. */
5568 for (ref = DF_INSN_USES (insn); *ref; ref++)
5569 {
5570 x = DF_REF_REG (*ref);
5571 if (REG_P (x) && HARD_REGISTER_P (x))
5572 SET_HARD_REG_BIT (uses, REGNO (x));
5573 }
5574 }
5575 }
5576
5577 #endif
5578
5579 #ifdef HAVE_return
5580 /* Insert use of return register before the end of BB. */
5581
5582 static void
5583 emit_use_return_register_into_block (basic_block bb)
5584 {
5585 rtx seq, insn;
5586 start_sequence ();
5587 use_return_register ();
5588 seq = get_insns ();
5589 end_sequence ();
5590 insn = BB_END (bb);
5591 #ifdef HAVE_cc0
5592 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5593 insn = prev_cc0_setter (insn);
5594 #endif
5595 emit_insn_before (seq, insn);
5596 }
5597
5598
5599 /* Create a return pattern, either simple_return or return, depending on
5600 simple_p. */
5601
5602 static rtx
5603 gen_return_pattern (bool simple_p)
5604 {
5605 #ifdef HAVE_simple_return
5606 return simple_p ? gen_simple_return () : gen_return ();
5607 #else
5608 gcc_assert (!simple_p);
5609 return gen_return ();
5610 #endif
5611 }
5612
5613 /* Insert an appropriate return pattern at the end of block BB. This
5614 also means updating block_for_insn appropriately. SIMPLE_P is
5615 the same as in gen_return_pattern and passed to it. */
5616
5617 static void
5618 emit_return_into_block (bool simple_p, basic_block bb)
5619 {
5620 rtx jump, pat;
5621 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5622 pat = PATTERN (jump);
5623 if (GET_CODE (pat) == PARALLEL)
5624 pat = XVECEXP (pat, 0, 0);
5625 gcc_assert (ANY_RETURN_P (pat));
5626 JUMP_LABEL (jump) = pat;
5627 }
5628 #endif
5629
5630 /* Set JUMP_LABEL for a return insn. */
5631
5632 void
5633 set_return_jump_label (rtx returnjump)
5634 {
5635 rtx pat = PATTERN (returnjump);
5636 if (GET_CODE (pat) == PARALLEL)
5637 pat = XVECEXP (pat, 0, 0);
5638 if (ANY_RETURN_P (pat))
5639 JUMP_LABEL (returnjump) = pat;
5640 else
5641 JUMP_LABEL (returnjump) = ret_rtx;
5642 }
5643
5644 #ifdef HAVE_simple_return
5645 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5646 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5647 static void
5648 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5649 bitmap_head *need_prologue)
5650 {
5651 edge_iterator ei;
5652 edge e;
5653 rtx insn = BB_END (bb);
5654
5655 /* We know BB has a single successor, so there is no need to copy a
5656 simple jump at the end of BB. */
5657 if (simplejump_p (insn))
5658 insn = PREV_INSN (insn);
5659
5660 start_sequence ();
5661 duplicate_insn_chain (BB_HEAD (bb), insn);
5662 if (dump_file)
5663 {
5664 unsigned count = 0;
5665 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5666 if (active_insn_p (insn))
5667 ++count;
5668 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5669 bb->index, copy_bb->index, count);
5670 }
5671 insn = get_insns ();
5672 end_sequence ();
5673 emit_insn_before (insn, before);
5674
5675 /* Redirect all the paths that need no prologue into copy_bb. */
5676 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5677 if (!bitmap_bit_p (need_prologue, e->src->index))
5678 {
5679 int freq = EDGE_FREQUENCY (e);
5680 copy_bb->count += e->count;
5681 copy_bb->frequency += EDGE_FREQUENCY (e);
5682 e->dest->count -= e->count;
5683 if (e->dest->count < 0)
5684 e->dest->count = 0;
5685 e->dest->frequency -= freq;
5686 if (e->dest->frequency < 0)
5687 e->dest->frequency = 0;
5688 redirect_edge_and_branch_force (e, copy_bb);
5689 continue;
5690 }
5691 else
5692 ei_next (&ei);
5693 }
5694 #endif
5695
5696 #if defined (HAVE_return) || defined (HAVE_simple_return)
5697 /* Return true if there are any active insns between HEAD and TAIL. */
5698 static bool
5699 active_insn_between (rtx head, rtx tail)
5700 {
5701 while (tail)
5702 {
5703 if (active_insn_p (tail))
5704 return true;
5705 if (tail == head)
5706 return false;
5707 tail = PREV_INSN (tail);
5708 }
5709 return false;
5710 }
5711
5712 /* LAST_BB is a block that exits, and empty of active instructions.
5713 Examine its predecessors for jumps that can be converted to
5714 (conditional) returns. */
5715 static vec<edge>
5716 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5717 vec<edge> unconverted ATTRIBUTE_UNUSED)
5718 {
5719 int i;
5720 basic_block bb;
5721 rtx label;
5722 edge_iterator ei;
5723 edge e;
5724 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5725
5726 FOR_EACH_EDGE (e, ei, last_bb->preds)
5727 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5728 src_bbs.quick_push (e->src);
5729
5730 label = BB_HEAD (last_bb);
5731
5732 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5733 {
5734 rtx jump = BB_END (bb);
5735
5736 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5737 continue;
5738
5739 e = find_edge (bb, last_bb);
5740
5741 /* If we have an unconditional jump, we can replace that
5742 with a simple return instruction. */
5743 if (simplejump_p (jump))
5744 {
5745 /* The use of the return register might be present in the exit
5746 fallthru block. Either:
5747 - removing the use is safe, and we should remove the use in
5748 the exit fallthru block, or
5749 - removing the use is not safe, and we should add it here.
5750 For now, we conservatively choose the latter. Either of the
5751 2 helps in crossjumping. */
5752 emit_use_return_register_into_block (bb);
5753
5754 emit_return_into_block (simple_p, bb);
5755 delete_insn (jump);
5756 }
5757
5758 /* If we have a conditional jump branching to the last
5759 block, we can try to replace that with a conditional
5760 return instruction. */
5761 else if (condjump_p (jump))
5762 {
5763 rtx dest;
5764
5765 if (simple_p)
5766 dest = simple_return_rtx;
5767 else
5768 dest = ret_rtx;
5769 if (!redirect_jump (jump, dest, 0))
5770 {
5771 #ifdef HAVE_simple_return
5772 if (simple_p)
5773 {
5774 if (dump_file)
5775 fprintf (dump_file,
5776 "Failed to redirect bb %d branch.\n", bb->index);
5777 unconverted.safe_push (e);
5778 }
5779 #endif
5780 continue;
5781 }
5782
5783 /* See comment in simplejump_p case above. */
5784 emit_use_return_register_into_block (bb);
5785
5786 /* If this block has only one successor, it both jumps
5787 and falls through to the fallthru block, so we can't
5788 delete the edge. */
5789 if (single_succ_p (bb))
5790 continue;
5791 }
5792 else
5793 {
5794 #ifdef HAVE_simple_return
5795 if (simple_p)
5796 {
5797 if (dump_file)
5798 fprintf (dump_file,
5799 "Failed to redirect bb %d branch.\n", bb->index);
5800 unconverted.safe_push (e);
5801 }
5802 #endif
5803 continue;
5804 }
5805
5806 /* Fix up the CFG for the successful change we just made. */
5807 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5808 e->flags &= ~EDGE_CROSSING;
5809 }
5810 src_bbs.release ();
5811 return unconverted;
5812 }
5813
5814 /* Emit a return insn for the exit fallthru block. */
5815 static basic_block
5816 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5817 {
5818 basic_block last_bb = exit_fallthru_edge->src;
5819
5820 if (JUMP_P (BB_END (last_bb)))
5821 {
5822 last_bb = split_edge (exit_fallthru_edge);
5823 exit_fallthru_edge = single_succ_edge (last_bb);
5824 }
5825 emit_barrier_after (BB_END (last_bb));
5826 emit_return_into_block (simple_p, last_bb);
5827 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5828 return last_bb;
5829 }
5830 #endif
5831
5832
5833 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5834 this into place with notes indicating where the prologue ends and where
5835 the epilogue begins. Update the basic block information when possible.
5836
5837 Notes on epilogue placement:
5838 There are several kinds of edges to the exit block:
5839 * a single fallthru edge from LAST_BB
5840 * possibly, edges from blocks containing sibcalls
5841 * possibly, fake edges from infinite loops
5842
5843 The epilogue is always emitted on the fallthru edge from the last basic
5844 block in the function, LAST_BB, into the exit block.
5845
5846 If LAST_BB is empty except for a label, it is the target of every
5847 other basic block in the function that ends in a return. If a
5848 target has a return or simple_return pattern (possibly with
5849 conditional variants), these basic blocks can be changed so that a
5850 return insn is emitted into them, and their target is adjusted to
5851 the real exit block.
5852
5853 Notes on shrink wrapping: We implement a fairly conservative
5854 version of shrink-wrapping rather than the textbook one. We only
5855 generate a single prologue and a single epilogue. This is
5856 sufficient to catch a number of interesting cases involving early
5857 exits.
5858
5859 First, we identify the blocks that require the prologue to occur before
5860 them. These are the ones that modify a call-saved register, or reference
5861 any of the stack or frame pointer registers. To simplify things, we then
5862 mark everything reachable from these blocks as also requiring a prologue.
5863 This takes care of loops automatically, and avoids the need to examine
5864 whether MEMs reference the frame, since it is sufficient to check for
5865 occurrences of the stack or frame pointer.
5866
5867 We then compute the set of blocks for which the need for a prologue
5868 is anticipatable (borrowing terminology from the shrink-wrapping
5869 description in Muchnick's book). These are the blocks which either
5870 require a prologue themselves, or those that have only successors
5871 where the prologue is anticipatable. The prologue needs to be
5872 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5873 is not. For the moment, we ensure that only one such edge exists.
5874
5875 The epilogue is placed as described above, but we make a
5876 distinction between inserting return and simple_return patterns
5877 when modifying other blocks that end in a return. Blocks that end
5878 in a sibcall omit the sibcall_epilogue if the block is not in
5879 ANTIC. */
5880
5881 static void
5882 thread_prologue_and_epilogue_insns (void)
5883 {
5884 bool inserted;
5885 #ifdef HAVE_simple_return
5886 vec<edge> unconverted_simple_returns = vNULL;
5887 bool nonempty_prologue;
5888 bitmap_head bb_flags;
5889 unsigned max_grow_size;
5890 #endif
5891 rtx returnjump;
5892 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5893 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5894 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5895 edge_iterator ei;
5896
5897 df_analyze ();
5898
5899 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5900
5901 inserted = false;
5902 seq = NULL_RTX;
5903 epilogue_end = NULL_RTX;
5904 returnjump = NULL_RTX;
5905
5906 /* Can't deal with multiple successors of the entry block at the
5907 moment. Function should always have at least one entry
5908 point. */
5909 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5910 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5911 orig_entry_edge = entry_edge;
5912
5913 split_prologue_seq = NULL_RTX;
5914 if (flag_split_stack
5915 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5916 == NULL))
5917 {
5918 #ifndef HAVE_split_stack_prologue
5919 gcc_unreachable ();
5920 #else
5921 gcc_assert (HAVE_split_stack_prologue);
5922
5923 start_sequence ();
5924 emit_insn (gen_split_stack_prologue ());
5925 split_prologue_seq = get_insns ();
5926 end_sequence ();
5927
5928 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5929 set_insn_locations (split_prologue_seq, prologue_location);
5930 #endif
5931 }
5932
5933 prologue_seq = NULL_RTX;
5934 #ifdef HAVE_prologue
5935 if (HAVE_prologue)
5936 {
5937 start_sequence ();
5938 seq = gen_prologue ();
5939 emit_insn (seq);
5940
5941 /* Insert an explicit USE for the frame pointer
5942 if the profiling is on and the frame pointer is required. */
5943 if (crtl->profile && frame_pointer_needed)
5944 emit_use (hard_frame_pointer_rtx);
5945
5946 /* Retain a map of the prologue insns. */
5947 record_insns (seq, NULL, &prologue_insn_hash);
5948 emit_note (NOTE_INSN_PROLOGUE_END);
5949
5950 /* Ensure that instructions are not moved into the prologue when
5951 profiling is on. The call to the profiling routine can be
5952 emitted within the live range of a call-clobbered register. */
5953 if (!targetm.profile_before_prologue () && crtl->profile)
5954 emit_insn (gen_blockage ());
5955
5956 prologue_seq = get_insns ();
5957 end_sequence ();
5958 set_insn_locations (prologue_seq, prologue_location);
5959 }
5960 #endif
5961
5962 #ifdef HAVE_simple_return
5963 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5964
5965 /* Try to perform a kind of shrink-wrapping, making sure the
5966 prologue/epilogue is emitted only around those parts of the
5967 function that require it. */
5968
5969 nonempty_prologue = false;
5970 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5971 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5972 {
5973 nonempty_prologue = true;
5974 break;
5975 }
5976
5977 if (flag_shrink_wrap && HAVE_simple_return
5978 && (targetm.profile_before_prologue () || !crtl->profile)
5979 && nonempty_prologue && !crtl->calls_eh_return)
5980 {
5981 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5982 struct hard_reg_set_container set_up_by_prologue;
5983 rtx p_insn;
5984 vec<basic_block> vec;
5985 basic_block bb;
5986 bitmap_head bb_antic_flags;
5987 bitmap_head bb_on_list;
5988 bitmap_head bb_tail;
5989
5990 if (dump_file)
5991 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5992
5993 /* Compute the registers set and used in the prologue. */
5994 CLEAR_HARD_REG_SET (prologue_clobbered);
5995 CLEAR_HARD_REG_SET (prologue_used);
5996 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5997 {
5998 HARD_REG_SET this_used;
5999 if (!NONDEBUG_INSN_P (p_insn))
6000 continue;
6001
6002 CLEAR_HARD_REG_SET (this_used);
6003 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6004 &this_used);
6005 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6006 IOR_HARD_REG_SET (prologue_used, this_used);
6007 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6008 &prologue_clobbered);
6009 }
6010
6011 prepare_shrink_wrap (entry_edge->dest);
6012
6013 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6014 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6015 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6016
6017 /* Find the set of basic blocks that require a stack frame,
6018 and blocks that are too big to be duplicated. */
6019
6020 vec.create (n_basic_blocks_for_fn (cfun));
6021
6022 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6023 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6024 STACK_POINTER_REGNUM);
6025 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6026 if (frame_pointer_needed)
6027 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6028 HARD_FRAME_POINTER_REGNUM);
6029 if (pic_offset_table_rtx)
6030 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6031 PIC_OFFSET_TABLE_REGNUM);
6032 if (crtl->drap_reg)
6033 add_to_hard_reg_set (&set_up_by_prologue.set,
6034 GET_MODE (crtl->drap_reg),
6035 REGNO (crtl->drap_reg));
6036 if (targetm.set_up_by_prologue)
6037 targetm.set_up_by_prologue (&set_up_by_prologue);
6038
6039 /* We don't use a different max size depending on
6040 optimize_bb_for_speed_p because increasing shrink-wrapping
6041 opportunities by duplicating tail blocks can actually result
6042 in an overall decrease in code size. */
6043 max_grow_size = get_uncond_jump_length ();
6044 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6045
6046 FOR_EACH_BB_FN (bb, cfun)
6047 {
6048 rtx insn;
6049 unsigned size = 0;
6050
6051 FOR_BB_INSNS (bb, insn)
6052 if (NONDEBUG_INSN_P (insn))
6053 {
6054 if (requires_stack_frame_p (insn, prologue_used,
6055 set_up_by_prologue.set))
6056 {
6057 if (bb == entry_edge->dest)
6058 goto fail_shrinkwrap;
6059 bitmap_set_bit (&bb_flags, bb->index);
6060 vec.quick_push (bb);
6061 break;
6062 }
6063 else if (size <= max_grow_size)
6064 {
6065 size += get_attr_min_length (insn);
6066 if (size > max_grow_size)
6067 bitmap_set_bit (&bb_on_list, bb->index);
6068 }
6069 }
6070 }
6071
6072 /* Blocks that really need a prologue, or are too big for tails. */
6073 bitmap_ior_into (&bb_on_list, &bb_flags);
6074
6075 /* For every basic block that needs a prologue, mark all blocks
6076 reachable from it, so as to ensure they are also seen as
6077 requiring a prologue. */
6078 while (!vec.is_empty ())
6079 {
6080 basic_block tmp_bb = vec.pop ();
6081
6082 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6083 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6084 && bitmap_set_bit (&bb_flags, e->dest->index))
6085 vec.quick_push (e->dest);
6086 }
6087
6088 /* Find the set of basic blocks that need no prologue, have a
6089 single successor, can be duplicated, meet a max size
6090 requirement, and go to the exit via like blocks. */
6091 vec.quick_push (EXIT_BLOCK_PTR_FOR_FN (cfun));
6092 while (!vec.is_empty ())
6093 {
6094 basic_block tmp_bb = vec.pop ();
6095
6096 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6097 if (single_succ_p (e->src)
6098 && !bitmap_bit_p (&bb_on_list, e->src->index)
6099 && can_duplicate_block_p (e->src))
6100 {
6101 edge pe;
6102 edge_iterator pei;
6103
6104 /* If there is predecessor of e->src which doesn't
6105 need prologue and the edge is complex,
6106 we might not be able to redirect the branch
6107 to a copy of e->src. */
6108 FOR_EACH_EDGE (pe, pei, e->src->preds)
6109 if ((pe->flags & EDGE_COMPLEX) != 0
6110 && !bitmap_bit_p (&bb_flags, pe->src->index))
6111 break;
6112 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6113 vec.quick_push (e->src);
6114 }
6115 }
6116
6117 /* Now walk backwards from every block that is marked as needing
6118 a prologue to compute the bb_antic_flags bitmap. Exclude
6119 tail blocks; They can be duplicated to be used on paths not
6120 needing a prologue. */
6121 bitmap_clear (&bb_on_list);
6122 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6123 FOR_EACH_BB_FN (bb, cfun)
6124 {
6125 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6126 continue;
6127 FOR_EACH_EDGE (e, ei, bb->preds)
6128 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6129 && bitmap_set_bit (&bb_on_list, e->src->index))
6130 vec.quick_push (e->src);
6131 }
6132 while (!vec.is_empty ())
6133 {
6134 basic_block tmp_bb = vec.pop ();
6135 bool all_set = true;
6136
6137 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6138 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6139 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6140 {
6141 all_set = false;
6142 break;
6143 }
6144
6145 if (all_set)
6146 {
6147 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6148 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6149 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6150 && bitmap_set_bit (&bb_on_list, e->src->index))
6151 vec.quick_push (e->src);
6152 }
6153 }
6154 /* Find exactly one edge that leads to a block in ANTIC from
6155 a block that isn't. */
6156 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6157 FOR_EACH_BB_FN (bb, cfun)
6158 {
6159 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6160 continue;
6161 FOR_EACH_EDGE (e, ei, bb->preds)
6162 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6163 {
6164 if (entry_edge != orig_entry_edge)
6165 {
6166 entry_edge = orig_entry_edge;
6167 if (dump_file)
6168 fprintf (dump_file, "More than one candidate edge.\n");
6169 goto fail_shrinkwrap;
6170 }
6171 if (dump_file)
6172 fprintf (dump_file, "Found candidate edge for "
6173 "shrink-wrapping, %d->%d.\n", e->src->index,
6174 e->dest->index);
6175 entry_edge = e;
6176 }
6177 }
6178
6179 if (entry_edge != orig_entry_edge)
6180 {
6181 /* Test whether the prologue is known to clobber any register
6182 (other than FP or SP) which are live on the edge. */
6183 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6184 if (frame_pointer_needed)
6185 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6186 REG_SET_TO_HARD_REG_SET (live_on_edge,
6187 df_get_live_in (entry_edge->dest));
6188 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6189 {
6190 entry_edge = orig_entry_edge;
6191 if (dump_file)
6192 fprintf (dump_file,
6193 "Shrink-wrapping aborted due to clobber.\n");
6194 }
6195 }
6196 if (entry_edge != orig_entry_edge)
6197 {
6198 crtl->shrink_wrapped = true;
6199 if (dump_file)
6200 fprintf (dump_file, "Performing shrink-wrapping.\n");
6201
6202 /* Find tail blocks reachable from both blocks needing a
6203 prologue and blocks not needing a prologue. */
6204 if (!bitmap_empty_p (&bb_tail))
6205 FOR_EACH_BB_FN (bb, cfun)
6206 {
6207 bool some_pro, some_no_pro;
6208 if (!bitmap_bit_p (&bb_tail, bb->index))
6209 continue;
6210 some_pro = some_no_pro = false;
6211 FOR_EACH_EDGE (e, ei, bb->preds)
6212 {
6213 if (bitmap_bit_p (&bb_flags, e->src->index))
6214 some_pro = true;
6215 else
6216 some_no_pro = true;
6217 }
6218 if (some_pro && some_no_pro)
6219 vec.quick_push (bb);
6220 else
6221 bitmap_clear_bit (&bb_tail, bb->index);
6222 }
6223 /* Find the head of each tail. */
6224 while (!vec.is_empty ())
6225 {
6226 basic_block tbb = vec.pop ();
6227
6228 if (!bitmap_bit_p (&bb_tail, tbb->index))
6229 continue;
6230
6231 while (single_succ_p (tbb))
6232 {
6233 tbb = single_succ (tbb);
6234 bitmap_clear_bit (&bb_tail, tbb->index);
6235 }
6236 }
6237 /* Now duplicate the tails. */
6238 if (!bitmap_empty_p (&bb_tail))
6239 FOR_EACH_BB_REVERSE_FN (bb, cfun)
6240 {
6241 basic_block copy_bb, tbb;
6242 rtx insert_point;
6243 int eflags;
6244
6245 if (!bitmap_clear_bit (&bb_tail, bb->index))
6246 continue;
6247
6248 /* Create a copy of BB, instructions and all, for
6249 use on paths that don't need a prologue.
6250 Ideal placement of the copy is on a fall-thru edge
6251 or after a block that would jump to the copy. */
6252 FOR_EACH_EDGE (e, ei, bb->preds)
6253 if (!bitmap_bit_p (&bb_flags, e->src->index)
6254 && single_succ_p (e->src))
6255 break;
6256 if (e)
6257 {
6258 /* Make sure we insert after any barriers. */
6259 rtx end = get_last_bb_insn (e->src);
6260 copy_bb = create_basic_block (NEXT_INSN (end),
6261 NULL_RTX, e->src);
6262 BB_COPY_PARTITION (copy_bb, e->src);
6263 }
6264 else
6265 {
6266 /* Otherwise put the copy at the end of the function. */
6267 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6268 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6269 BB_COPY_PARTITION (copy_bb, bb);
6270 }
6271
6272 insert_point = emit_note_after (NOTE_INSN_DELETED,
6273 BB_END (copy_bb));
6274 emit_barrier_after (BB_END (copy_bb));
6275
6276 tbb = bb;
6277 while (1)
6278 {
6279 dup_block_and_redirect (tbb, copy_bb, insert_point,
6280 &bb_flags);
6281 tbb = single_succ (tbb);
6282 if (tbb == EXIT_BLOCK_PTR_FOR_FN (cfun))
6283 break;
6284 e = split_block (copy_bb, PREV_INSN (insert_point));
6285 copy_bb = e->dest;
6286 }
6287
6288 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6289 We have yet to add a simple_return to the tails,
6290 as we'd like to first convert_jumps_to_returns in
6291 case the block is no longer used after that. */
6292 eflags = EDGE_FAKE;
6293 if (CALL_P (PREV_INSN (insert_point))
6294 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6295 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6296 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR_FOR_FN (cfun),
6297 eflags);
6298
6299 /* verify_flow_info doesn't like a note after a
6300 sibling call. */
6301 delete_insn (insert_point);
6302 if (bitmap_empty_p (&bb_tail))
6303 break;
6304 }
6305 }
6306
6307 fail_shrinkwrap:
6308 bitmap_clear (&bb_tail);
6309 bitmap_clear (&bb_antic_flags);
6310 bitmap_clear (&bb_on_list);
6311 vec.release ();
6312 }
6313 #endif
6314
6315 if (split_prologue_seq != NULL_RTX)
6316 {
6317 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6318 inserted = true;
6319 }
6320 if (prologue_seq != NULL_RTX)
6321 {
6322 insert_insn_on_edge (prologue_seq, entry_edge);
6323 inserted = true;
6324 }
6325
6326 /* If the exit block has no non-fake predecessors, we don't need
6327 an epilogue. */
6328 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6329 if ((e->flags & EDGE_FAKE) == 0)
6330 break;
6331 if (e == NULL)
6332 goto epilogue_done;
6333
6334 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6335
6336 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6337
6338 /* If we're allowed to generate a simple return instruction, then by
6339 definition we don't need a full epilogue. If the last basic
6340 block before the exit block does not contain active instructions,
6341 examine its predecessors and try to emit (conditional) return
6342 instructions. */
6343 #ifdef HAVE_simple_return
6344 if (entry_edge != orig_entry_edge)
6345 {
6346 if (optimize)
6347 {
6348 unsigned i, last;
6349
6350 /* convert_jumps_to_returns may add to preds of the exit block
6351 (but won't remove). Stop at end of current preds. */
6352 last = EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6353 for (i = 0; i < last; i++)
6354 {
6355 e = EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, i);
6356 if (LABEL_P (BB_HEAD (e->src))
6357 && !bitmap_bit_p (&bb_flags, e->src->index)
6358 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6359 unconverted_simple_returns
6360 = convert_jumps_to_returns (e->src, true,
6361 unconverted_simple_returns);
6362 }
6363 }
6364
6365 if (exit_fallthru_edge != NULL
6366 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6367 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6368 {
6369 basic_block last_bb;
6370
6371 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6372 returnjump = BB_END (last_bb);
6373 exit_fallthru_edge = NULL;
6374 }
6375 }
6376 #endif
6377 #ifdef HAVE_return
6378 if (HAVE_return)
6379 {
6380 if (exit_fallthru_edge == NULL)
6381 goto epilogue_done;
6382
6383 if (optimize)
6384 {
6385 basic_block last_bb = exit_fallthru_edge->src;
6386
6387 if (LABEL_P (BB_HEAD (last_bb))
6388 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6389 convert_jumps_to_returns (last_bb, false, vNULL);
6390
6391 if (EDGE_COUNT (last_bb->preds) != 0
6392 && single_succ_p (last_bb))
6393 {
6394 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6395 epilogue_end = returnjump = BB_END (last_bb);
6396 #ifdef HAVE_simple_return
6397 /* Emitting the return may add a basic block.
6398 Fix bb_flags for the added block. */
6399 if (last_bb != exit_fallthru_edge->src)
6400 bitmap_set_bit (&bb_flags, last_bb->index);
6401 #endif
6402 goto epilogue_done;
6403 }
6404 }
6405 }
6406 #endif
6407
6408 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6409 this marker for the splits of EH_RETURN patterns, and nothing else
6410 uses the flag in the meantime. */
6411 epilogue_completed = 1;
6412
6413 #ifdef HAVE_eh_return
6414 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6415 some targets, these get split to a special version of the epilogue
6416 code. In order to be able to properly annotate these with unwind
6417 info, try to split them now. If we get a valid split, drop an
6418 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6419 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6420 {
6421 rtx prev, last, trial;
6422
6423 if (e->flags & EDGE_FALLTHRU)
6424 continue;
6425 last = BB_END (e->src);
6426 if (!eh_returnjump_p (last))
6427 continue;
6428
6429 prev = PREV_INSN (last);
6430 trial = try_split (PATTERN (last), last, 1);
6431 if (trial == last)
6432 continue;
6433
6434 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6435 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6436 }
6437 #endif
6438
6439 /* If nothing falls through into the exit block, we don't need an
6440 epilogue. */
6441
6442 if (exit_fallthru_edge == NULL)
6443 goto epilogue_done;
6444
6445 #ifdef HAVE_epilogue
6446 if (HAVE_epilogue)
6447 {
6448 start_sequence ();
6449 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6450 seq = gen_epilogue ();
6451 if (seq)
6452 emit_jump_insn (seq);
6453
6454 /* Retain a map of the epilogue insns. */
6455 record_insns (seq, NULL, &epilogue_insn_hash);
6456 set_insn_locations (seq, epilogue_location);
6457
6458 seq = get_insns ();
6459 returnjump = get_last_insn ();
6460 end_sequence ();
6461
6462 insert_insn_on_edge (seq, exit_fallthru_edge);
6463 inserted = true;
6464
6465 if (JUMP_P (returnjump))
6466 set_return_jump_label (returnjump);
6467 }
6468 else
6469 #endif
6470 {
6471 basic_block cur_bb;
6472
6473 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6474 goto epilogue_done;
6475 /* We have a fall-through edge to the exit block, the source is not
6476 at the end of the function, and there will be an assembler epilogue
6477 at the end of the function.
6478 We can't use force_nonfallthru here, because that would try to
6479 use return. Inserting a jump 'by hand' is extremely messy, so
6480 we take advantage of cfg_layout_finalize using
6481 fixup_fallthru_exit_predecessor. */
6482 cfg_layout_initialize (0);
6483 FOR_EACH_BB_FN (cur_bb, cfun)
6484 if (cur_bb->index >= NUM_FIXED_BLOCKS
6485 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6486 cur_bb->aux = cur_bb->next_bb;
6487 cfg_layout_finalize ();
6488 }
6489
6490 epilogue_done:
6491
6492 default_rtl_profile ();
6493
6494 if (inserted)
6495 {
6496 sbitmap blocks;
6497
6498 commit_edge_insertions ();
6499
6500 /* Look for basic blocks within the prologue insns. */
6501 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6502 bitmap_clear (blocks);
6503 bitmap_set_bit (blocks, entry_edge->dest->index);
6504 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6505 find_many_sub_basic_blocks (blocks);
6506 sbitmap_free (blocks);
6507
6508 /* The epilogue insns we inserted may cause the exit edge to no longer
6509 be fallthru. */
6510 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6511 {
6512 if (((e->flags & EDGE_FALLTHRU) != 0)
6513 && returnjump_p (BB_END (e->src)))
6514 e->flags &= ~EDGE_FALLTHRU;
6515 }
6516 }
6517
6518 #ifdef HAVE_simple_return
6519 /* If there were branches to an empty LAST_BB which we tried to
6520 convert to conditional simple_returns, but couldn't for some
6521 reason, create a block to hold a simple_return insn and redirect
6522 those remaining edges. */
6523 if (!unconverted_simple_returns.is_empty ())
6524 {
6525 basic_block simple_return_block_hot = NULL;
6526 basic_block simple_return_block_cold = NULL;
6527 edge pending_edge_hot = NULL;
6528 edge pending_edge_cold = NULL;
6529 basic_block exit_pred;
6530 int i;
6531
6532 gcc_assert (entry_edge != orig_entry_edge);
6533
6534 /* See if we can reuse the last insn that was emitted for the
6535 epilogue. */
6536 if (returnjump != NULL_RTX
6537 && JUMP_LABEL (returnjump) == simple_return_rtx)
6538 {
6539 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6540 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6541 simple_return_block_hot = e->dest;
6542 else
6543 simple_return_block_cold = e->dest;
6544 }
6545
6546 /* Also check returns we might need to add to tail blocks. */
6547 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6548 if (EDGE_COUNT (e->src->preds) != 0
6549 && (e->flags & EDGE_FAKE) != 0
6550 && !bitmap_bit_p (&bb_flags, e->src->index))
6551 {
6552 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6553 pending_edge_hot = e;
6554 else
6555 pending_edge_cold = e;
6556 }
6557
6558 /* Save a pointer to the exit's predecessor BB for use in
6559 inserting new BBs at the end of the function. Do this
6560 after the call to split_block above which may split
6561 the original exit pred. */
6562 exit_pred = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
6563
6564 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6565 {
6566 basic_block *pdest_bb;
6567 edge pending;
6568
6569 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6570 {
6571 pdest_bb = &simple_return_block_hot;
6572 pending = pending_edge_hot;
6573 }
6574 else
6575 {
6576 pdest_bb = &simple_return_block_cold;
6577 pending = pending_edge_cold;
6578 }
6579
6580 if (*pdest_bb == NULL && pending != NULL)
6581 {
6582 emit_return_into_block (true, pending->src);
6583 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6584 *pdest_bb = pending->src;
6585 }
6586 else if (*pdest_bb == NULL)
6587 {
6588 basic_block bb;
6589 rtx start;
6590
6591 bb = create_basic_block (NULL, NULL, exit_pred);
6592 BB_COPY_PARTITION (bb, e->src);
6593 start = emit_jump_insn_after (gen_simple_return (),
6594 BB_END (bb));
6595 JUMP_LABEL (start) = simple_return_rtx;
6596 emit_barrier_after (start);
6597
6598 *pdest_bb = bb;
6599 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
6600 }
6601 redirect_edge_and_branch_force (e, *pdest_bb);
6602 }
6603 unconverted_simple_returns.release ();
6604 }
6605
6606 if (entry_edge != orig_entry_edge)
6607 {
6608 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6609 if (EDGE_COUNT (e->src->preds) != 0
6610 && (e->flags & EDGE_FAKE) != 0
6611 && !bitmap_bit_p (&bb_flags, e->src->index))
6612 {
6613 emit_return_into_block (true, e->src);
6614 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6615 }
6616 }
6617 #endif
6618
6619 #ifdef HAVE_sibcall_epilogue
6620 /* Emit sibling epilogues before any sibling call sites. */
6621 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6622 ei_safe_edge (ei));
6623 )
6624 {
6625 basic_block bb = e->src;
6626 rtx insn = BB_END (bb);
6627 rtx ep_seq;
6628
6629 if (!CALL_P (insn)
6630 || ! SIBLING_CALL_P (insn)
6631 #ifdef HAVE_simple_return
6632 || (entry_edge != orig_entry_edge
6633 && !bitmap_bit_p (&bb_flags, bb->index))
6634 #endif
6635 )
6636 {
6637 ei_next (&ei);
6638 continue;
6639 }
6640
6641 ep_seq = gen_sibcall_epilogue ();
6642 if (ep_seq)
6643 {
6644 start_sequence ();
6645 emit_note (NOTE_INSN_EPILOGUE_BEG);
6646 emit_insn (ep_seq);
6647 seq = get_insns ();
6648 end_sequence ();
6649
6650 /* Retain a map of the epilogue insns. Used in life analysis to
6651 avoid getting rid of sibcall epilogue insns. Do this before we
6652 actually emit the sequence. */
6653 record_insns (seq, NULL, &epilogue_insn_hash);
6654 set_insn_locations (seq, epilogue_location);
6655
6656 emit_insn_before (seq, insn);
6657 }
6658 ei_next (&ei);
6659 }
6660 #endif
6661
6662 #ifdef HAVE_epilogue
6663 if (epilogue_end)
6664 {
6665 rtx insn, next;
6666
6667 /* Similarly, move any line notes that appear after the epilogue.
6668 There is no need, however, to be quite so anal about the existence
6669 of such a note. Also possibly move
6670 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6671 info generation. */
6672 for (insn = epilogue_end; insn; insn = next)
6673 {
6674 next = NEXT_INSN (insn);
6675 if (NOTE_P (insn)
6676 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6677 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6678 }
6679 }
6680 #endif
6681
6682 #ifdef HAVE_simple_return
6683 bitmap_clear (&bb_flags);
6684 #endif
6685
6686 /* Threading the prologue and epilogue changes the artificial refs
6687 in the entry and exit blocks. */
6688 epilogue_completed = 1;
6689 df_update_entry_exit_and_calls ();
6690 }
6691
6692 /* Reposition the prologue-end and epilogue-begin notes after
6693 instruction scheduling. */
6694
6695 void
6696 reposition_prologue_and_epilogue_notes (void)
6697 {
6698 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6699 || defined (HAVE_sibcall_epilogue)
6700 /* Since the hash table is created on demand, the fact that it is
6701 non-null is a signal that it is non-empty. */
6702 if (prologue_insn_hash != NULL)
6703 {
6704 size_t len = htab_elements (prologue_insn_hash);
6705 rtx insn, last = NULL, note = NULL;
6706
6707 /* Scan from the beginning until we reach the last prologue insn. */
6708 /* ??? While we do have the CFG intact, there are two problems:
6709 (1) The prologue can contain loops (typically probing the stack),
6710 which means that the end of the prologue isn't in the first bb.
6711 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6712 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6713 {
6714 if (NOTE_P (insn))
6715 {
6716 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6717 note = insn;
6718 }
6719 else if (contains (insn, prologue_insn_hash))
6720 {
6721 last = insn;
6722 if (--len == 0)
6723 break;
6724 }
6725 }
6726
6727 if (last)
6728 {
6729 if (note == NULL)
6730 {
6731 /* Scan forward looking for the PROLOGUE_END note. It should
6732 be right at the beginning of the block, possibly with other
6733 insn notes that got moved there. */
6734 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6735 {
6736 if (NOTE_P (note)
6737 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6738 break;
6739 }
6740 }
6741
6742 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6743 if (LABEL_P (last))
6744 last = NEXT_INSN (last);
6745 reorder_insns (note, note, last);
6746 }
6747 }
6748
6749 if (epilogue_insn_hash != NULL)
6750 {
6751 edge_iterator ei;
6752 edge e;
6753
6754 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6755 {
6756 rtx insn, first = NULL, note = NULL;
6757 basic_block bb = e->src;
6758
6759 /* Scan from the beginning until we reach the first epilogue insn. */
6760 FOR_BB_INSNS (bb, insn)
6761 {
6762 if (NOTE_P (insn))
6763 {
6764 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6765 {
6766 note = insn;
6767 if (first != NULL)
6768 break;
6769 }
6770 }
6771 else if (first == NULL && contains (insn, epilogue_insn_hash))
6772 {
6773 first = insn;
6774 if (note != NULL)
6775 break;
6776 }
6777 }
6778
6779 if (note)
6780 {
6781 /* If the function has a single basic block, and no real
6782 epilogue insns (e.g. sibcall with no cleanup), the
6783 epilogue note can get scheduled before the prologue
6784 note. If we have frame related prologue insns, having
6785 them scanned during the epilogue will result in a crash.
6786 In this case re-order the epilogue note to just before
6787 the last insn in the block. */
6788 if (first == NULL)
6789 first = BB_END (bb);
6790
6791 if (PREV_INSN (first) != note)
6792 reorder_insns (note, note, PREV_INSN (first));
6793 }
6794 }
6795 }
6796 #endif /* HAVE_prologue or HAVE_epilogue */
6797 }
6798
6799 /* Returns the name of function declared by FNDECL. */
6800 const char *
6801 fndecl_name (tree fndecl)
6802 {
6803 if (fndecl == NULL)
6804 return "(nofn)";
6805 return lang_hooks.decl_printable_name (fndecl, 2);
6806 }
6807
6808 /* Returns the name of function FN. */
6809 const char *
6810 function_name (struct function *fn)
6811 {
6812 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6813 return fndecl_name (fndecl);
6814 }
6815
6816 /* Returns the name of the current function. */
6817 const char *
6818 current_function_name (void)
6819 {
6820 return function_name (cfun);
6821 }
6822 \f
6823
6824 static unsigned int
6825 rest_of_handle_check_leaf_regs (void)
6826 {
6827 #ifdef LEAF_REGISTERS
6828 crtl->uses_only_leaf_regs
6829 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6830 #endif
6831 return 0;
6832 }
6833
6834 /* Insert a TYPE into the used types hash table of CFUN. */
6835
6836 static void
6837 used_types_insert_helper (tree type, struct function *func)
6838 {
6839 if (type != NULL && func != NULL)
6840 {
6841 void **slot;
6842
6843 if (func->used_types_hash == NULL)
6844 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6845 htab_eq_pointer, NULL);
6846 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6847 if (*slot == NULL)
6848 *slot = type;
6849 }
6850 }
6851
6852 /* Given a type, insert it into the used hash table in cfun. */
6853 void
6854 used_types_insert (tree t)
6855 {
6856 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6857 if (TYPE_NAME (t))
6858 break;
6859 else
6860 t = TREE_TYPE (t);
6861 if (TREE_CODE (t) == ERROR_MARK)
6862 return;
6863 if (TYPE_NAME (t) == NULL_TREE
6864 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6865 t = TYPE_MAIN_VARIANT (t);
6866 if (debug_info_level > DINFO_LEVEL_NONE)
6867 {
6868 if (cfun)
6869 used_types_insert_helper (t, cfun);
6870 else
6871 {
6872 /* So this might be a type referenced by a global variable.
6873 Record that type so that we can later decide to emit its
6874 debug information. */
6875 vec_safe_push (types_used_by_cur_var_decl, t);
6876 }
6877 }
6878 }
6879
6880 /* Helper to Hash a struct types_used_by_vars_entry. */
6881
6882 static hashval_t
6883 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6884 {
6885 gcc_assert (entry && entry->var_decl && entry->type);
6886
6887 return iterative_hash_object (entry->type,
6888 iterative_hash_object (entry->var_decl, 0));
6889 }
6890
6891 /* Hash function of the types_used_by_vars_entry hash table. */
6892
6893 hashval_t
6894 types_used_by_vars_do_hash (const void *x)
6895 {
6896 const struct types_used_by_vars_entry *entry =
6897 (const struct types_used_by_vars_entry *) x;
6898
6899 return hash_types_used_by_vars_entry (entry);
6900 }
6901
6902 /*Equality function of the types_used_by_vars_entry hash table. */
6903
6904 int
6905 types_used_by_vars_eq (const void *x1, const void *x2)
6906 {
6907 const struct types_used_by_vars_entry *e1 =
6908 (const struct types_used_by_vars_entry *) x1;
6909 const struct types_used_by_vars_entry *e2 =
6910 (const struct types_used_by_vars_entry *)x2;
6911
6912 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6913 }
6914
6915 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6916
6917 void
6918 types_used_by_var_decl_insert (tree type, tree var_decl)
6919 {
6920 if (type != NULL && var_decl != NULL)
6921 {
6922 void **slot;
6923 struct types_used_by_vars_entry e;
6924 e.var_decl = var_decl;
6925 e.type = type;
6926 if (types_used_by_vars_hash == NULL)
6927 types_used_by_vars_hash =
6928 htab_create_ggc (37, types_used_by_vars_do_hash,
6929 types_used_by_vars_eq, NULL);
6930 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6931 hash_types_used_by_vars_entry (&e), INSERT);
6932 if (*slot == NULL)
6933 {
6934 struct types_used_by_vars_entry *entry;
6935 entry = ggc_alloc_types_used_by_vars_entry ();
6936 entry->type = type;
6937 entry->var_decl = var_decl;
6938 *slot = entry;
6939 }
6940 }
6941 }
6942
6943 namespace {
6944
6945 const pass_data pass_data_leaf_regs =
6946 {
6947 RTL_PASS, /* type */
6948 "*leaf_regs", /* name */
6949 OPTGROUP_NONE, /* optinfo_flags */
6950 false, /* has_gate */
6951 true, /* has_execute */
6952 TV_NONE, /* tv_id */
6953 0, /* properties_required */
6954 0, /* properties_provided */
6955 0, /* properties_destroyed */
6956 0, /* todo_flags_start */
6957 0, /* todo_flags_finish */
6958 };
6959
6960 class pass_leaf_regs : public rtl_opt_pass
6961 {
6962 public:
6963 pass_leaf_regs (gcc::context *ctxt)
6964 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6965 {}
6966
6967 /* opt_pass methods: */
6968 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
6969
6970 }; // class pass_leaf_regs
6971
6972 } // anon namespace
6973
6974 rtl_opt_pass *
6975 make_pass_leaf_regs (gcc::context *ctxt)
6976 {
6977 return new pass_leaf_regs (ctxt);
6978 }
6979
6980 static unsigned int
6981 rest_of_handle_thread_prologue_and_epilogue (void)
6982 {
6983 if (optimize)
6984 cleanup_cfg (CLEANUP_EXPENSIVE);
6985
6986 /* On some machines, the prologue and epilogue code, or parts thereof,
6987 can be represented as RTL. Doing so lets us schedule insns between
6988 it and the rest of the code and also allows delayed branch
6989 scheduling to operate in the epilogue. */
6990 thread_prologue_and_epilogue_insns ();
6991
6992 /* The stack usage info is finalized during prologue expansion. */
6993 if (flag_stack_usage_info)
6994 output_stack_usage ();
6995
6996 return 0;
6997 }
6998
6999 namespace {
7000
7001 const pass_data pass_data_thread_prologue_and_epilogue =
7002 {
7003 RTL_PASS, /* type */
7004 "pro_and_epilogue", /* name */
7005 OPTGROUP_NONE, /* optinfo_flags */
7006 false, /* has_gate */
7007 true, /* has_execute */
7008 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7009 0, /* properties_required */
7010 0, /* properties_provided */
7011 0, /* properties_destroyed */
7012 TODO_verify_flow, /* todo_flags_start */
7013 ( TODO_df_verify | TODO_df_finish
7014 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7015 };
7016
7017 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7018 {
7019 public:
7020 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7021 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
7022 {}
7023
7024 /* opt_pass methods: */
7025 unsigned int execute () {
7026 return rest_of_handle_thread_prologue_and_epilogue ();
7027 }
7028
7029 }; // class pass_thread_prologue_and_epilogue
7030
7031 } // anon namespace
7032
7033 rtl_opt_pass *
7034 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7035 {
7036 return new pass_thread_prologue_and_epilogue (ctxt);
7037 }
7038 \f
7039
7040 /* This mini-pass fixes fall-out from SSA in asm statements that have
7041 in-out constraints. Say you start with
7042
7043 orig = inout;
7044 asm ("": "+mr" (inout));
7045 use (orig);
7046
7047 which is transformed very early to use explicit output and match operands:
7048
7049 orig = inout;
7050 asm ("": "=mr" (inout) : "0" (inout));
7051 use (orig);
7052
7053 Or, after SSA and copyprop,
7054
7055 asm ("": "=mr" (inout_2) : "0" (inout_1));
7056 use (inout_1);
7057
7058 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7059 they represent two separate values, so they will get different pseudo
7060 registers during expansion. Then, since the two operands need to match
7061 per the constraints, but use different pseudo registers, reload can
7062 only register a reload for these operands. But reloads can only be
7063 satisfied by hardregs, not by memory, so we need a register for this
7064 reload, just because we are presented with non-matching operands.
7065 So, even though we allow memory for this operand, no memory can be
7066 used for it, just because the two operands don't match. This can
7067 cause reload failures on register-starved targets.
7068
7069 So it's a symptom of reload not being able to use memory for reloads
7070 or, alternatively it's also a symptom of both operands not coming into
7071 reload as matching (in which case the pseudo could go to memory just
7072 fine, as the alternative allows it, and no reload would be necessary).
7073 We fix the latter problem here, by transforming
7074
7075 asm ("": "=mr" (inout_2) : "0" (inout_1));
7076
7077 back to
7078
7079 inout_2 = inout_1;
7080 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7081
7082 static void
7083 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7084 {
7085 int i;
7086 bool changed = false;
7087 rtx op = SET_SRC (p_sets[0]);
7088 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7089 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7090 bool *output_matched = XALLOCAVEC (bool, noutputs);
7091
7092 memset (output_matched, 0, noutputs * sizeof (bool));
7093 for (i = 0; i < ninputs; i++)
7094 {
7095 rtx input, output, insns;
7096 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7097 char *end;
7098 int match, j;
7099
7100 if (*constraint == '%')
7101 constraint++;
7102
7103 match = strtoul (constraint, &end, 10);
7104 if (end == constraint)
7105 continue;
7106
7107 gcc_assert (match < noutputs);
7108 output = SET_DEST (p_sets[match]);
7109 input = RTVEC_ELT (inputs, i);
7110 /* Only do the transformation for pseudos. */
7111 if (! REG_P (output)
7112 || rtx_equal_p (output, input)
7113 || (GET_MODE (input) != VOIDmode
7114 && GET_MODE (input) != GET_MODE (output)))
7115 continue;
7116
7117 /* We can't do anything if the output is also used as input,
7118 as we're going to overwrite it. */
7119 for (j = 0; j < ninputs; j++)
7120 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7121 break;
7122 if (j != ninputs)
7123 continue;
7124
7125 /* Avoid changing the same input several times. For
7126 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7127 only change in once (to out1), rather than changing it
7128 first to out1 and afterwards to out2. */
7129 if (i > 0)
7130 {
7131 for (j = 0; j < noutputs; j++)
7132 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7133 break;
7134 if (j != noutputs)
7135 continue;
7136 }
7137 output_matched[match] = true;
7138
7139 start_sequence ();
7140 emit_move_insn (output, input);
7141 insns = get_insns ();
7142 end_sequence ();
7143 emit_insn_before (insns, insn);
7144
7145 /* Now replace all mentions of the input with output. We can't
7146 just replace the occurrence in inputs[i], as the register might
7147 also be used in some other input (or even in an address of an
7148 output), which would mean possibly increasing the number of
7149 inputs by one (namely 'output' in addition), which might pose
7150 a too complicated problem for reload to solve. E.g. this situation:
7151
7152 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7153
7154 Here 'input' is used in two occurrences as input (once for the
7155 input operand, once for the address in the second output operand).
7156 If we would replace only the occurrence of the input operand (to
7157 make the matching) we would be left with this:
7158
7159 output = input
7160 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7161
7162 Now we suddenly have two different input values (containing the same
7163 value, but different pseudos) where we formerly had only one.
7164 With more complicated asms this might lead to reload failures
7165 which wouldn't have happen without this pass. So, iterate over
7166 all operands and replace all occurrences of the register used. */
7167 for (j = 0; j < noutputs; j++)
7168 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7169 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7170 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7171 input, output);
7172 for (j = 0; j < ninputs; j++)
7173 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7174 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7175 input, output);
7176
7177 changed = true;
7178 }
7179
7180 if (changed)
7181 df_insn_rescan (insn);
7182 }
7183
7184 static unsigned
7185 rest_of_match_asm_constraints (void)
7186 {
7187 basic_block bb;
7188 rtx insn, pat, *p_sets;
7189 int noutputs;
7190
7191 if (!crtl->has_asm_statement)
7192 return 0;
7193
7194 df_set_flags (DF_DEFER_INSN_RESCAN);
7195 FOR_EACH_BB_FN (bb, cfun)
7196 {
7197 FOR_BB_INSNS (bb, insn)
7198 {
7199 if (!INSN_P (insn))
7200 continue;
7201
7202 pat = PATTERN (insn);
7203 if (GET_CODE (pat) == PARALLEL)
7204 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7205 else if (GET_CODE (pat) == SET)
7206 p_sets = &PATTERN (insn), noutputs = 1;
7207 else
7208 continue;
7209
7210 if (GET_CODE (*p_sets) == SET
7211 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7212 match_asm_constraints_1 (insn, p_sets, noutputs);
7213 }
7214 }
7215
7216 return TODO_df_finish;
7217 }
7218
7219 namespace {
7220
7221 const pass_data pass_data_match_asm_constraints =
7222 {
7223 RTL_PASS, /* type */
7224 "asmcons", /* name */
7225 OPTGROUP_NONE, /* optinfo_flags */
7226 false, /* has_gate */
7227 true, /* has_execute */
7228 TV_NONE, /* tv_id */
7229 0, /* properties_required */
7230 0, /* properties_provided */
7231 0, /* properties_destroyed */
7232 0, /* todo_flags_start */
7233 0, /* todo_flags_finish */
7234 };
7235
7236 class pass_match_asm_constraints : public rtl_opt_pass
7237 {
7238 public:
7239 pass_match_asm_constraints (gcc::context *ctxt)
7240 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7241 {}
7242
7243 /* opt_pass methods: */
7244 unsigned int execute () { return rest_of_match_asm_constraints (); }
7245
7246 }; // class pass_match_asm_constraints
7247
7248 } // anon namespace
7249
7250 rtl_opt_pass *
7251 make_pass_match_asm_constraints (gcc::context *ctxt)
7252 {
7253 return new pass_match_asm_constraints (ctxt);
7254 }
7255
7256
7257 #include "gt-function.h"