]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.cc
PR middle-end/105604 - ICE: in tree_to_shwi with vla in struct and sprintf
[thirdparty/gcc.git] / gcc / function.cc
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
87
88 /* So we can assign to cfun in this file. */
89 #undef cfun
90
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
94
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
96
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
101
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
105
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
111
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
114
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
118
119 /* The currently compiled function. */
120 struct function *cfun = 0;
121
122 /* These hashes record the prologue and epilogue insns. */
123
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
125 {
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
128 };
129
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
134 \f
135
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
138
139 /* Forward declarations. */
140
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156
157 \f
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
160
161 static vec<function *> function_context_stack;
162
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
165
166 void
167 push_function_context (void)
168 {
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
171
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
174 }
175
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
178
179 void
180 pop_function_context (void)
181 {
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
185
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
189 }
190
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
194
195 void
196 free_after_parsing (struct function *f)
197 {
198 f->language = 0;
199 }
200
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
204
205 void
206 free_after_compilation (struct function *f)
207 {
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
210
211 free (crtl->emit.regno_pointer_align);
212
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
218
219 regno_reg_rtx = NULL;
220 }
221 \f
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
225
226 poly_int64
227 get_frame_size (void)
228 {
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
233 }
234
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
238
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
241 {
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
247
248 if (!coeffs_in_range_p (size, 0U, limit))
249 {
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
260 }
261
262 return false;
263 }
264
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
266
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
269 {
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
271 }
272
273 /* Return stack slot alignment in bits for TYPE and MODE. */
274
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
277 {
278 unsigned int alignment;
279
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
284
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
289
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
291 }
292
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
299
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64_pod *poffset)
304 {
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
307
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
313
314 /* Round the frame offset to the specified alignment. */
315
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
323
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
328 {
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
333 }
334 else if (maybe_gt (this_frame_offset + size, start + length))
335 {
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
340 }
341
342 *poffset = this_frame_offset;
343 return true;
344 }
345
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
349
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
352 {
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
358 }
359
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
362
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
368
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
374
375 We do not round to stack_boundary here. */
376
377 rtx
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
380 {
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
385
386 if (align == 0)
387 {
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
390 }
391 else if (align == -1)
392 {
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
395 }
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
400
401 alignment_in_bits = alignment * BITS_PER_UNIT;
402
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
405 {
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
408 }
409
410 if (SUPPORTS_STACK_ALIGNMENT)
411 {
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
413 {
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
417 {
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
425 {
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
435 }
436 }
437 }
438 }
439
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
444
445 if (mode != BLKmode || maybe_ne (size, 0))
446 {
447 if (kind & ASLK_RECORD_PAD)
448 {
449 class frame_space **psp;
450
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
452 {
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
464 }
465 }
466 }
467 else if (!STACK_ALIGNMENT_NEEDED)
468 {
469 slot_offset = frame_offset;
470 goto found_space;
471 }
472
473 old_frame_offset = frame_offset;
474
475 if (FRAME_GROWS_DOWNWARD)
476 {
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
479
480 if (kind & ASLK_RECORD_PAD)
481 {
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
486 }
487 }
488 else
489 {
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
492
493 if (kind & ASLK_RECORD_PAD)
494 {
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
499 }
500 }
501
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
506 {
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
515 }
516
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
529
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
533
534 vec_safe_push (stack_slot_list, x);
535
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
538
539 return x;
540 }
541
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
543
544 rtx
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
546 {
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
548 }
549 \f
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
553
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
563
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* Nonzero if this temporary is currently in use. */
582 char in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
591 };
592
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
598 };
599
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
601 {
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
604 };
605
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
610
611 /* Removes temporary slot TEMP from LIST. */
612
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
615 {
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
622
623 temp->prev = temp->next = NULL;
624 }
625
626 /* Inserts temporary slot TEMP to LIST. */
627
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
630 {
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
636 }
637
638 /* Returns the list of used temp slots at LEVEL. */
639
640 static class temp_slot **
641 temp_slots_at_level (int level)
642 {
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
645
646 return &(*used_temp_slots)[level];
647 }
648
649 /* Returns the maximal temporary slot level. */
650
651 static int
652 max_slot_level (void)
653 {
654 if (!used_temp_slots)
655 return -1;
656
657 return used_temp_slots->length () - 1;
658 }
659
660 /* Moves temporary slot TEMP to LEVEL. */
661
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
664 {
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
668 }
669
670 /* Make temporary slot TEMP available. */
671
672 static void
673 make_slot_available (class temp_slot *temp)
674 {
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = 0;
678 temp->level = -1;
679 n_temp_slots_in_use--;
680 }
681
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
686 {
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
690 }
691
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
695 {
696 return t->hash;
697 }
698
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
703 {
704 return exp_equiv_p (t1->address, t2->address, 0, true);
705 }
706
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
710 {
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
716 }
717
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
720 int
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
722 {
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
727 }
728
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
732 {
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
739 }
740
741 /* Find the temp slot corresponding to the object at address X. */
742
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
745 {
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
748
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
757
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
766
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
770 {
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
776 }
777
778 return NULL;
779 }
780 \f
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
783
784 MODE is the machine mode to be given to the returned rtx.
785
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
788
789 TYPE is the type that will be used for the stack slot. */
790
791 rtx
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
793 {
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
797
798 gcc_assert (known_size_p (size));
799
800 align = get_stack_local_alignment (type, mode);
801
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
805
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
810 {
811 for (p = avail_temp_slots; p; p = p->next)
812 {
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
821 {
822 if (p->align == align && known_eq (p->size, size))
823 {
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
828 }
829 best_p = p;
830 }
831 }
832 }
833
834 /* Make our best, if any, the one to use. */
835 if (best_p)
836 {
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
839
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
844 {
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
847
848 if (known_ge (best_p->size - rounded_size, alignment))
849 {
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = 0;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
859
860 vec_safe_push (stack_slot_list, p->slot);
861
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
864 }
865 }
866 }
867
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
870 {
871 poly_int64 frame_offset_old = frame_offset;
872
873 p = ggc_alloc<temp_slot> ();
874
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
878
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
890
891 p->align = align;
892
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
904
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
907 {
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
910 }
911 else
912 {
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
915 }
916
917 selected = p;
918 }
919
920 p = selected;
921 p->in_use = 1;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
925
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
929
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
933
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
939
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
944
945 return slot;
946 }
947
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
950
951 rtx
952 assign_stack_temp (machine_mode mode, poly_int64 size)
953 {
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
955 }
956 \f
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
965
966 rtx
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
969 {
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
975
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
980
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
985
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
989
990 if (mode == BLKmode || memory_required)
991 {
992 poly_int64 size;
993 rtx tmp;
994
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1000
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1005
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1013 {
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1016 }
1017
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1020 }
1021
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1026
1027 return gen_reg_rtx (mode);
1028 }
1029 \f
1030 /* Combine temporary stack slots which are adjacent on the stack.
1031
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1035
1036 static void
1037 combine_temp_slots (void)
1038 {
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1041
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1046
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1053
1054 for (p = avail_temp_slots; p; p = next)
1055 {
1056 int delete_p = 0;
1057
1058 next = p->next;
1059
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1062
1063 for (q = p->next; q; q = next_q)
1064 {
1065 int delete_q = 0;
1066
1067 next_q = q->next;
1068
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1071
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1073 {
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1078 }
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1080 {
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1086 }
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1089 }
1090
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1094 }
1095 }
1096 \f
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1099
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1102 {
1103 class temp_slot *p;
1104
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1107
1108 p = find_temp_slot_from_address (old_rtx);
1109
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1117 {
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1120
1121 if (REG_P (new_rtx))
1122 {
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1126 }
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1129
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1138
1139 return;
1140 }
1141
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1144 }
1145
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1150
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1153
1154 void
1155 preserve_temp_slots (rtx x)
1156 {
1157 class temp_slot *p = 0, *next;
1158
1159 if (x == 0)
1160 return;
1161
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1166
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1171
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1175
1176 if (p != 0)
1177 {
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1181 }
1182
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1185 {
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1188 }
1189 }
1190
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1193
1194 void
1195 free_temp_slots (void)
1196 {
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1199
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1201 {
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1205 }
1206
1207 if (some_available)
1208 {
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1211 }
1212 }
1213
1214 /* Push deeper into the nesting level for stack temporaries. */
1215
1216 void
1217 push_temp_slots (void)
1218 {
1219 temp_slot_level++;
1220 }
1221
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1224
1225 void
1226 pop_temp_slots (void)
1227 {
1228 free_temp_slots ();
1229 temp_slot_level--;
1230 }
1231
1232 /* Initialize temporary slots. */
1233
1234 void
1235 init_temp_slots (void)
1236 {
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1242
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1248 }
1249 \f
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1252
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1258 };
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1266 };
1267
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1270
1271 rtx
1272 get_hard_reg_initial_reg (rtx reg)
1273 {
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1276
1277 if (ivs == 0)
1278 return NULL_RTX;
1279
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1283
1284 return NULL_RTX;
1285 }
1286
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1289
1290 rtx
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1292 {
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1295
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1299
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1302 {
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1308 }
1309
1310 if (ivs->num_entries >= ivs->max_entries)
1311 {
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1315 }
1316
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1319
1320 return ivs->entries[ivs->num_entries++].pseudo;
1321 }
1322
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1326
1327 rtx
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1329 {
1330 struct initial_value_struct *ivs;
1331 int i;
1332
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1339
1340 return NULL_RTX;
1341 }
1342
1343 unsigned int
1344 emit_initial_value_sets (void)
1345 {
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1349
1350 if (ivs == 0)
1351 return 0;
1352
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1358
1359 emit_insn_at_entry (seq);
1360 return 0;
1361 }
1362
1363 /* Return the hardreg-pseudoreg initial values pair entry I and
1364 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 bool
1366 initial_value_entry (int i, rtx *hreg, rtx *preg)
1367 {
1368 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1369 if (!ivs || i >= ivs->num_entries)
1370 return false;
1371
1372 *hreg = ivs->entries[i].hard_reg;
1373 *preg = ivs->entries[i].pseudo;
1374 return true;
1375 }
1376 \f
1377 /* These routines are responsible for converting virtual register references
1378 to the actual hard register references once RTL generation is complete.
1379
1380 The following four variables are used for communication between the
1381 routines. They contain the offsets of the virtual registers from their
1382 respective hard registers. */
1383
1384 static poly_int64 in_arg_offset;
1385 static poly_int64 var_offset;
1386 static poly_int64 dynamic_offset;
1387 static poly_int64 out_arg_offset;
1388 static poly_int64 cfa_offset;
1389
1390 /* In most machines, the stack pointer register is equivalent to the bottom
1391 of the stack. */
1392
1393 #ifndef STACK_POINTER_OFFSET
1394 #define STACK_POINTER_OFFSET 0
1395 #endif
1396
1397 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1398 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1399 #endif
1400
1401 /* If not defined, pick an appropriate default for the offset of dynamically
1402 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1403 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1404
1405 #ifndef STACK_DYNAMIC_OFFSET
1406
1407 /* The bottom of the stack points to the actual arguments. If
1408 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1409 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1410 stack space for register parameters is not pushed by the caller, but
1411 rather part of the fixed stack areas and hence not included in
1412 `crtl->outgoing_args_size'. Nevertheless, we must allow
1413 for it when allocating stack dynamic objects. */
1414
1415 #ifdef INCOMING_REG_PARM_STACK_SPACE
1416 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1417 ((ACCUMULATE_OUTGOING_ARGS \
1418 ? (crtl->outgoing_args_size \
1419 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1420 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1421 : 0) + (STACK_POINTER_OFFSET))
1422 #else
1423 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1424 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1425 + (STACK_POINTER_OFFSET))
1426 #endif
1427 #endif
1428
1429 \f
1430 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1431 is a virtual register, return the equivalent hard register and set the
1432 offset indirectly through the pointer. Otherwise, return 0. */
1433
1434 static rtx
1435 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1436 {
1437 rtx new_rtx;
1438 poly_int64 offset;
1439
1440 if (x == virtual_incoming_args_rtx)
1441 {
1442 if (stack_realign_drap)
1443 {
1444 /* Replace virtual_incoming_args_rtx with internal arg
1445 pointer if DRAP is used to realign stack. */
1446 new_rtx = crtl->args.internal_arg_pointer;
1447 offset = 0;
1448 }
1449 else
1450 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1451 }
1452 else if (x == virtual_stack_vars_rtx)
1453 new_rtx = frame_pointer_rtx, offset = var_offset;
1454 else if (x == virtual_stack_dynamic_rtx)
1455 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1456 else if (x == virtual_outgoing_args_rtx)
1457 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1458 else if (x == virtual_cfa_rtx)
1459 {
1460 #ifdef FRAME_POINTER_CFA_OFFSET
1461 new_rtx = frame_pointer_rtx;
1462 #else
1463 new_rtx = arg_pointer_rtx;
1464 #endif
1465 offset = cfa_offset;
1466 }
1467 else if (x == virtual_preferred_stack_boundary_rtx)
1468 {
1469 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1470 offset = 0;
1471 }
1472 else
1473 return NULL_RTX;
1474
1475 *poffset = offset;
1476 return new_rtx;
1477 }
1478
1479 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1480 registers present inside of *LOC. The expression is simplified,
1481 as much as possible, but is not to be considered "valid" in any sense
1482 implied by the target. Return true if any change is made. */
1483
1484 static bool
1485 instantiate_virtual_regs_in_rtx (rtx *loc)
1486 {
1487 if (!*loc)
1488 return false;
1489 bool changed = false;
1490 subrtx_ptr_iterator::array_type array;
1491 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1492 {
1493 rtx *loc = *iter;
1494 if (rtx x = *loc)
1495 {
1496 rtx new_rtx;
1497 poly_int64 offset;
1498 switch (GET_CODE (x))
1499 {
1500 case REG:
1501 new_rtx = instantiate_new_reg (x, &offset);
1502 if (new_rtx)
1503 {
1504 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1505 changed = true;
1506 }
1507 iter.skip_subrtxes ();
1508 break;
1509
1510 case PLUS:
1511 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1512 if (new_rtx)
1513 {
1514 XEXP (x, 0) = new_rtx;
1515 *loc = plus_constant (GET_MODE (x), x, offset, true);
1516 changed = true;
1517 iter.skip_subrtxes ();
1518 break;
1519 }
1520
1521 /* FIXME -- from old code */
1522 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1523 we can commute the PLUS and SUBREG because pointers into the
1524 frame are well-behaved. */
1525 break;
1526
1527 default:
1528 break;
1529 }
1530 }
1531 }
1532 return changed;
1533 }
1534
1535 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1536 matches the predicate for insn CODE operand OPERAND. */
1537
1538 static int
1539 safe_insn_predicate (int code, int operand, rtx x)
1540 {
1541 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1542 }
1543
1544 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1545 registers present inside of insn. The result will be a valid insn. */
1546
1547 static void
1548 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1549 {
1550 poly_int64 offset;
1551 int insn_code, i;
1552 bool any_change = false;
1553 rtx set, new_rtx, x;
1554 rtx_insn *seq;
1555
1556 /* There are some special cases to be handled first. */
1557 set = single_set (insn);
1558 if (set)
1559 {
1560 /* We're allowed to assign to a virtual register. This is interpreted
1561 to mean that the underlying register gets assigned the inverse
1562 transformation. This is used, for example, in the handling of
1563 non-local gotos. */
1564 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1565 if (new_rtx)
1566 {
1567 start_sequence ();
1568
1569 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1570 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1571 gen_int_mode (-offset, GET_MODE (new_rtx)));
1572 x = force_operand (x, new_rtx);
1573 if (x != new_rtx)
1574 emit_move_insn (new_rtx, x);
1575
1576 seq = get_insns ();
1577 end_sequence ();
1578
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1582 }
1583
1584 /* Handle a straight copy from a virtual register by generating a
1585 new add insn. The difference between this and falling through
1586 to the generic case is avoiding a new pseudo and eliminating a
1587 move insn in the initial rtl stream. */
1588 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1589 if (new_rtx
1590 && maybe_ne (offset, 0)
1591 && REG_P (SET_DEST (set))
1592 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1593 {
1594 start_sequence ();
1595
1596 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1597 gen_int_mode (offset,
1598 GET_MODE (SET_DEST (set))),
1599 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1600 if (x != SET_DEST (set))
1601 emit_move_insn (SET_DEST (set), x);
1602
1603 seq = get_insns ();
1604 end_sequence ();
1605
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1609 }
1610
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1613
1614 /* Handle a plus involving a virtual register by determining if the
1615 operands remain valid if they're modified in place. */
1616 poly_int64 delta;
1617 if (GET_CODE (SET_SRC (set)) == PLUS
1618 && recog_data.n_operands >= 3
1619 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1620 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1621 && poly_int_rtx_p (recog_data.operand[2], &delta)
1622 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1623 {
1624 offset += delta;
1625
1626 /* If the sum is zero, then replace with a plain move. */
1627 if (known_eq (offset, 0)
1628 && REG_P (SET_DEST (set))
1629 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1630 {
1631 start_sequence ();
1632 emit_move_insn (SET_DEST (set), new_rtx);
1633 seq = get_insns ();
1634 end_sequence ();
1635
1636 emit_insn_before (seq, insn);
1637 delete_insn (insn);
1638 return;
1639 }
1640
1641 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1642
1643 /* Using validate_change and apply_change_group here leaves
1644 recog_data in an invalid state. Since we know exactly what
1645 we want to check, do those two by hand. */
1646 if (safe_insn_predicate (insn_code, 1, new_rtx)
1647 && safe_insn_predicate (insn_code, 2, x))
1648 {
1649 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1650 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1651 any_change = true;
1652
1653 /* Fall through into the regular operand fixup loop in
1654 order to take care of operands other than 1 and 2. */
1655 }
1656 }
1657 }
1658 else
1659 {
1660 extract_insn (insn);
1661 insn_code = INSN_CODE (insn);
1662 }
1663
1664 /* In the general case, we expect virtual registers to appear only in
1665 operands, and then only as either bare registers or inside memories. */
1666 for (i = 0; i < recog_data.n_operands; ++i)
1667 {
1668 x = recog_data.operand[i];
1669 switch (GET_CODE (x))
1670 {
1671 case MEM:
1672 {
1673 rtx addr = XEXP (x, 0);
1674
1675 if (!instantiate_virtual_regs_in_rtx (&addr))
1676 continue;
1677
1678 start_sequence ();
1679 x = replace_equiv_address (x, addr, true);
1680 /* It may happen that the address with the virtual reg
1681 was valid (e.g. based on the virtual stack reg, which might
1682 be acceptable to the predicates with all offsets), whereas
1683 the address now isn't anymore, for instance when the address
1684 is still offsetted, but the base reg isn't virtual-stack-reg
1685 anymore. Below we would do a force_reg on the whole operand,
1686 but this insn might actually only accept memory. Hence,
1687 before doing that last resort, try to reload the address into
1688 a register, so this operand stays a MEM. */
1689 if (!safe_insn_predicate (insn_code, i, x))
1690 {
1691 addr = force_reg (GET_MODE (addr), addr);
1692 x = replace_equiv_address (x, addr, true);
1693 }
1694 seq = get_insns ();
1695 end_sequence ();
1696 if (seq)
1697 emit_insn_before (seq, insn);
1698 }
1699 break;
1700
1701 case REG:
1702 new_rtx = instantiate_new_reg (x, &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (known_eq (offset, 0))
1706 x = new_rtx;
1707 else
1708 {
1709 start_sequence ();
1710
1711 /* Careful, special mode predicates may have stuff in
1712 insn_data[insn_code].operand[i].mode that isn't useful
1713 to us for computing a new value. */
1714 /* ??? Recognize address_operand and/or "p" constraints
1715 to see if (plus new offset) is a valid before we put
1716 this through expand_simple_binop. */
1717 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1718 gen_int_mode (offset, GET_MODE (x)),
1719 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1720 seq = get_insns ();
1721 end_sequence ();
1722 emit_insn_before (seq, insn);
1723 }
1724 break;
1725
1726 case SUBREG:
1727 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1728 if (new_rtx == NULL)
1729 continue;
1730 if (maybe_ne (offset, 0))
1731 {
1732 start_sequence ();
1733 new_rtx = expand_simple_binop
1734 (GET_MODE (new_rtx), PLUS, new_rtx,
1735 gen_int_mode (offset, GET_MODE (new_rtx)),
1736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1737 seq = get_insns ();
1738 end_sequence ();
1739 emit_insn_before (seq, insn);
1740 }
1741 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1742 GET_MODE (new_rtx), SUBREG_BYTE (x));
1743 gcc_assert (x);
1744 break;
1745
1746 default:
1747 continue;
1748 }
1749
1750 /* At this point, X contains the new value for the operand.
1751 Validate the new value vs the insn predicate. Note that
1752 asm insns will have insn_code -1 here. */
1753 if (!safe_insn_predicate (insn_code, i, x))
1754 {
1755 start_sequence ();
1756 if (REG_P (x))
1757 {
1758 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1759 x = copy_to_reg (x);
1760 }
1761 else
1762 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1763 seq = get_insns ();
1764 end_sequence ();
1765 if (seq)
1766 emit_insn_before (seq, insn);
1767 }
1768
1769 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1770 any_change = true;
1771 }
1772
1773 if (any_change)
1774 {
1775 /* Propagate operand changes into the duplicates. */
1776 for (i = 0; i < recog_data.n_dups; ++i)
1777 *recog_data.dup_loc[i]
1778 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1779
1780 /* Force re-recognition of the instruction for validation. */
1781 INSN_CODE (insn) = -1;
1782 }
1783
1784 if (asm_noperands (PATTERN (insn)) >= 0)
1785 {
1786 if (!check_asm_operands (PATTERN (insn)))
1787 {
1788 error_for_asm (insn, "impossible constraint in %<asm%>");
1789 /* For asm goto, instead of fixing up all the edges
1790 just clear the template and clear input and output operands
1791 and strip away clobbers. */
1792 if (JUMP_P (insn))
1793 {
1794 rtx asm_op = extract_asm_operands (PATTERN (insn));
1795 PATTERN (insn) = asm_op;
1796 PUT_MODE (asm_op, VOIDmode);
1797 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1798 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1799 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1800 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1801 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1802 }
1803 else
1804 delete_insn (insn);
1805 }
1806 }
1807 else
1808 {
1809 if (recog_memoized (insn) < 0)
1810 fatal_insn_not_found (insn);
1811 }
1812 }
1813
1814 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1815 do any instantiation required. */
1816
1817 void
1818 instantiate_decl_rtl (rtx x)
1819 {
1820 rtx addr;
1821
1822 if (x == 0)
1823 return;
1824
1825 /* If this is a CONCAT, recurse for the pieces. */
1826 if (GET_CODE (x) == CONCAT)
1827 {
1828 instantiate_decl_rtl (XEXP (x, 0));
1829 instantiate_decl_rtl (XEXP (x, 1));
1830 return;
1831 }
1832
1833 /* If this is not a MEM, no need to do anything. Similarly if the
1834 address is a constant or a register that is not a virtual register. */
1835 if (!MEM_P (x))
1836 return;
1837
1838 addr = XEXP (x, 0);
1839 if (CONSTANT_P (addr)
1840 || (REG_P (addr)
1841 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1842 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1843 return;
1844
1845 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1846 }
1847
1848 /* Helper for instantiate_decls called via walk_tree: Process all decls
1849 in the given DECL_VALUE_EXPR. */
1850
1851 static tree
1852 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1853 {
1854 tree t = *tp;
1855 if (! EXPR_P (t))
1856 {
1857 *walk_subtrees = 0;
1858 if (DECL_P (t))
1859 {
1860 if (DECL_RTL_SET_P (t))
1861 instantiate_decl_rtl (DECL_RTL (t));
1862 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1863 && DECL_INCOMING_RTL (t))
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1865 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1866 && DECL_HAS_VALUE_EXPR_P (t))
1867 {
1868 tree v = DECL_VALUE_EXPR (t);
1869 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 }
1871 }
1872 }
1873 return NULL;
1874 }
1875
1876 /* Subroutine of instantiate_decls: Process all decls in the given
1877 BLOCK node and all its subblocks. */
1878
1879 static void
1880 instantiate_decls_1 (tree let)
1881 {
1882 tree t;
1883
1884 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1885 {
1886 if (DECL_RTL_SET_P (t))
1887 instantiate_decl_rtl (DECL_RTL (t));
1888 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1889 {
1890 tree v = DECL_VALUE_EXPR (t);
1891 walk_tree (&v, instantiate_expr, NULL, NULL);
1892 }
1893 }
1894
1895 /* Process all subblocks. */
1896 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1897 instantiate_decls_1 (t);
1898 }
1899
1900 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1901 all virtual registers in their DECL_RTL's. */
1902
1903 static void
1904 instantiate_decls (tree fndecl)
1905 {
1906 tree decl;
1907 unsigned ix;
1908
1909 /* Process all parameters of the function. */
1910 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1911 {
1912 instantiate_decl_rtl (DECL_RTL (decl));
1913 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1914 if (DECL_HAS_VALUE_EXPR_P (decl))
1915 {
1916 tree v = DECL_VALUE_EXPR (decl);
1917 walk_tree (&v, instantiate_expr, NULL, NULL);
1918 }
1919 }
1920
1921 if ((decl = DECL_RESULT (fndecl))
1922 && TREE_CODE (decl) == RESULT_DECL)
1923 {
1924 if (DECL_RTL_SET_P (decl))
1925 instantiate_decl_rtl (DECL_RTL (decl));
1926 if (DECL_HAS_VALUE_EXPR_P (decl))
1927 {
1928 tree v = DECL_VALUE_EXPR (decl);
1929 walk_tree (&v, instantiate_expr, NULL, NULL);
1930 }
1931 }
1932
1933 /* Process the saved static chain if it exists. */
1934 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1935 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1936 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1937
1938 /* Now process all variables defined in the function or its subblocks. */
1939 if (DECL_INITIAL (fndecl))
1940 instantiate_decls_1 (DECL_INITIAL (fndecl));
1941
1942 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1943 if (DECL_RTL_SET_P (decl))
1944 instantiate_decl_rtl (DECL_RTL (decl));
1945 vec_free (cfun->local_decls);
1946 }
1947
1948 /* Pass through the INSNS of function FNDECL and convert virtual register
1949 references to hard register references. */
1950
1951 static unsigned int
1952 instantiate_virtual_regs (void)
1953 {
1954 rtx_insn *insn;
1955
1956 /* Compute the offsets to use for this function. */
1957 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1958 var_offset = targetm.starting_frame_offset ();
1959 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1960 out_arg_offset = STACK_POINTER_OFFSET;
1961 #ifdef FRAME_POINTER_CFA_OFFSET
1962 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1963 #else
1964 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1965 #endif
1966
1967 /* Initialize recognition, indicating that volatile is OK. */
1968 init_recog ();
1969
1970 /* Scan through all the insns, instantiating every virtual register still
1971 present. */
1972 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1973 if (INSN_P (insn))
1974 {
1975 /* These patterns in the instruction stream can never be recognized.
1976 Fortunately, they shouldn't contain virtual registers either. */
1977 if (GET_CODE (PATTERN (insn)) == USE
1978 || GET_CODE (PATTERN (insn)) == CLOBBER
1979 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1980 || DEBUG_MARKER_INSN_P (insn))
1981 continue;
1982 else if (DEBUG_BIND_INSN_P (insn))
1983 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1984 else
1985 instantiate_virtual_regs_in_insn (insn);
1986
1987 if (insn->deleted ())
1988 continue;
1989
1990 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1991
1992 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1993 if (CALL_P (insn))
1994 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1995 }
1996
1997 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1998 instantiate_decls (current_function_decl);
1999
2000 targetm.instantiate_decls ();
2001
2002 /* Indicate that, from now on, assign_stack_local should use
2003 frame_pointer_rtx. */
2004 virtuals_instantiated = 1;
2005
2006 return 0;
2007 }
2008
2009 namespace {
2010
2011 const pass_data pass_data_instantiate_virtual_regs =
2012 {
2013 RTL_PASS, /* type */
2014 "vregs", /* name */
2015 OPTGROUP_NONE, /* optinfo_flags */
2016 TV_NONE, /* tv_id */
2017 0, /* properties_required */
2018 0, /* properties_provided */
2019 0, /* properties_destroyed */
2020 0, /* todo_flags_start */
2021 0, /* todo_flags_finish */
2022 };
2023
2024 class pass_instantiate_virtual_regs : public rtl_opt_pass
2025 {
2026 public:
2027 pass_instantiate_virtual_regs (gcc::context *ctxt)
2028 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2029 {}
2030
2031 /* opt_pass methods: */
2032 virtual unsigned int execute (function *)
2033 {
2034 return instantiate_virtual_regs ();
2035 }
2036
2037 }; // class pass_instantiate_virtual_regs
2038
2039 } // anon namespace
2040
2041 rtl_opt_pass *
2042 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2043 {
2044 return new pass_instantiate_virtual_regs (ctxt);
2045 }
2046
2047 \f
2048 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2049 This means a type for which function calls must pass an address to the
2050 function or get an address back from the function.
2051 EXP may be a type node or an expression (whose type is tested). */
2052
2053 int
2054 aggregate_value_p (const_tree exp, const_tree fntype)
2055 {
2056 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2057 int i, regno, nregs;
2058 rtx reg;
2059
2060 if (fntype)
2061 switch (TREE_CODE (fntype))
2062 {
2063 case CALL_EXPR:
2064 {
2065 tree fndecl = get_callee_fndecl (fntype);
2066 if (fndecl)
2067 fntype = TREE_TYPE (fndecl);
2068 else if (CALL_EXPR_FN (fntype))
2069 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2070 else
2071 /* For internal functions, assume nothing needs to be
2072 returned in memory. */
2073 return 0;
2074 }
2075 break;
2076 case FUNCTION_DECL:
2077 fntype = TREE_TYPE (fntype);
2078 break;
2079 case FUNCTION_TYPE:
2080 case METHOD_TYPE:
2081 break;
2082 case IDENTIFIER_NODE:
2083 fntype = NULL_TREE;
2084 break;
2085 default:
2086 /* We don't expect other tree types here. */
2087 gcc_unreachable ();
2088 }
2089
2090 if (VOID_TYPE_P (type))
2091 return 0;
2092
2093 /* If a record should be passed the same as its first (and only) member
2094 don't pass it as an aggregate. */
2095 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2096 return aggregate_value_p (first_field (type), fntype);
2097
2098 /* If the front end has decided that this needs to be passed by
2099 reference, do so. */
2100 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2101 && DECL_BY_REFERENCE (exp))
2102 return 1;
2103
2104 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2105 if (fntype && TREE_ADDRESSABLE (fntype))
2106 return 1;
2107
2108 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2109 and thus can't be returned in registers. */
2110 if (TREE_ADDRESSABLE (type))
2111 return 1;
2112
2113 if (TYPE_EMPTY_P (type))
2114 return 0;
2115
2116 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2117 return 1;
2118
2119 if (targetm.calls.return_in_memory (type, fntype))
2120 return 1;
2121
2122 /* Make sure we have suitable call-clobbered regs to return
2123 the value in; if not, we must return it in memory. */
2124 reg = hard_function_value (type, 0, fntype, 0);
2125
2126 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2127 it is OK. */
2128 if (!REG_P (reg))
2129 return 0;
2130
2131 /* Use the default ABI if the type of the function isn't known.
2132 The scheme for handling interoperability between different ABIs
2133 requires us to be able to tell when we're calling a function with
2134 a nondefault ABI. */
2135 const predefined_function_abi &abi = (fntype
2136 ? fntype_abi (fntype)
2137 : default_function_abi);
2138 regno = REGNO (reg);
2139 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2140 for (i = 0; i < nregs; i++)
2141 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2142 return 1;
2143
2144 return 0;
2145 }
2146 \f
2147 /* Return true if we should assign DECL a pseudo register; false if it
2148 should live on the local stack. */
2149
2150 bool
2151 use_register_for_decl (const_tree decl)
2152 {
2153 if (TREE_CODE (decl) == SSA_NAME)
2154 {
2155 /* We often try to use the SSA_NAME, instead of its underlying
2156 decl, to get type information and guide decisions, to avoid
2157 differences of behavior between anonymous and named
2158 variables, but in this one case we have to go for the actual
2159 variable if there is one. The main reason is that, at least
2160 at -O0, we want to place user variables on the stack, but we
2161 don't mind using pseudos for anonymous or ignored temps.
2162 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2163 should go in pseudos, whereas their corresponding variables
2164 might have to go on the stack. So, disregarding the decl
2165 here would negatively impact debug info at -O0, enable
2166 coalescing between SSA_NAMEs that ought to get different
2167 stack/pseudo assignments, and get the incoming argument
2168 processing thoroughly confused by PARM_DECLs expected to live
2169 in stack slots but assigned to pseudos. */
2170 if (!SSA_NAME_VAR (decl))
2171 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2172 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2173
2174 decl = SSA_NAME_VAR (decl);
2175 }
2176
2177 /* Honor volatile. */
2178 if (TREE_SIDE_EFFECTS (decl))
2179 return false;
2180
2181 /* Honor addressability. */
2182 if (TREE_ADDRESSABLE (decl))
2183 return false;
2184
2185 /* RESULT_DECLs are a bit special in that they're assigned without
2186 regard to use_register_for_decl, but we generally only store in
2187 them. If we coalesce their SSA NAMEs, we'd better return a
2188 result that matches the assignment in expand_function_start. */
2189 if (TREE_CODE (decl) == RESULT_DECL)
2190 {
2191 /* If it's not an aggregate, we're going to use a REG or a
2192 PARALLEL containing a REG. */
2193 if (!aggregate_value_p (decl, current_function_decl))
2194 return true;
2195
2196 /* If expand_function_start determines the return value, we'll
2197 use MEM if it's not by reference. */
2198 if (cfun->returns_pcc_struct
2199 || (targetm.calls.struct_value_rtx
2200 (TREE_TYPE (current_function_decl), 1)))
2201 return DECL_BY_REFERENCE (decl);
2202
2203 /* Otherwise, we're taking an extra all.function_result_decl
2204 argument. It's set up in assign_parms_augmented_arg_list,
2205 under the (negated) conditions above, and then it's used to
2206 set up the RESULT_DECL rtl in assign_params, after looping
2207 over all parameters. Now, if the RESULT_DECL is not by
2208 reference, we'll use a MEM either way. */
2209 if (!DECL_BY_REFERENCE (decl))
2210 return false;
2211
2212 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2213 the function_result_decl's assignment. Since it's a pointer,
2214 we can short-circuit a number of the tests below, and we must
2215 duplicate them because we don't have the function_result_decl
2216 to test. */
2217 if (!targetm.calls.allocate_stack_slots_for_args ())
2218 return true;
2219 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2220 if (optimize)
2221 return true;
2222 if (cfun->tail_call_marked)
2223 return true;
2224 /* We don't set DECL_REGISTER for the function_result_decl. */
2225 return false;
2226 }
2227
2228 /* Only register-like things go in registers. */
2229 if (DECL_MODE (decl) == BLKmode)
2230 return false;
2231
2232 /* If -ffloat-store specified, don't put explicit float variables
2233 into registers. */
2234 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2235 propagates values across these stores, and it probably shouldn't. */
2236 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2237 return false;
2238
2239 if (!targetm.calls.allocate_stack_slots_for_args ())
2240 return true;
2241
2242 /* If we're not interested in tracking debugging information for
2243 this decl, then we can certainly put it in a register. */
2244 if (DECL_IGNORED_P (decl))
2245 return true;
2246
2247 if (optimize)
2248 return true;
2249
2250 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2251 dangling reference in case the parameter is passed by reference. */
2252 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2253 return true;
2254
2255 if (!DECL_REGISTER (decl))
2256 return false;
2257
2258 /* When not optimizing, disregard register keyword for types that
2259 could have methods, otherwise the methods won't be callable from
2260 the debugger. */
2261 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2262 return false;
2263
2264 return true;
2265 }
2266
2267 /* Structures to communicate between the subroutines of assign_parms.
2268 The first holds data persistent across all parameters, the second
2269 is cleared out for each parameter. */
2270
2271 struct assign_parm_data_all
2272 {
2273 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2274 should become a job of the target or otherwise encapsulated. */
2275 CUMULATIVE_ARGS args_so_far_v;
2276 cumulative_args_t args_so_far;
2277 struct args_size stack_args_size;
2278 tree function_result_decl;
2279 tree orig_fnargs;
2280 rtx_insn *first_conversion_insn;
2281 rtx_insn *last_conversion_insn;
2282 HOST_WIDE_INT pretend_args_size;
2283 HOST_WIDE_INT extra_pretend_bytes;
2284 int reg_parm_stack_space;
2285 };
2286
2287 struct assign_parm_data_one
2288 {
2289 tree nominal_type;
2290 function_arg_info arg;
2291 rtx entry_parm;
2292 rtx stack_parm;
2293 machine_mode nominal_mode;
2294 machine_mode passed_mode;
2295 struct locate_and_pad_arg_data locate;
2296 int partial;
2297 };
2298
2299 /* A subroutine of assign_parms. Initialize ALL. */
2300
2301 static void
2302 assign_parms_initialize_all (struct assign_parm_data_all *all)
2303 {
2304 tree fntype ATTRIBUTE_UNUSED;
2305
2306 memset (all, 0, sizeof (*all));
2307
2308 fntype = TREE_TYPE (current_function_decl);
2309
2310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2311 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2312 #else
2313 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2314 current_function_decl, -1);
2315 #endif
2316 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2317
2318 #ifdef INCOMING_REG_PARM_STACK_SPACE
2319 all->reg_parm_stack_space
2320 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2321 #endif
2322 }
2323
2324 /* If ARGS contains entries with complex types, split the entry into two
2325 entries of the component type. Return a new list of substitutions are
2326 needed, else the old list. */
2327
2328 static void
2329 split_complex_args (vec<tree> *args)
2330 {
2331 unsigned i;
2332 tree p;
2333
2334 FOR_EACH_VEC_ELT (*args, i, p)
2335 {
2336 tree type = TREE_TYPE (p);
2337 if (TREE_CODE (type) == COMPLEX_TYPE
2338 && targetm.calls.split_complex_arg (type))
2339 {
2340 tree decl;
2341 tree subtype = TREE_TYPE (type);
2342 bool addressable = TREE_ADDRESSABLE (p);
2343
2344 /* Rewrite the PARM_DECL's type with its component. */
2345 p = copy_node (p);
2346 TREE_TYPE (p) = subtype;
2347 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2348 SET_DECL_MODE (p, VOIDmode);
2349 DECL_SIZE (p) = NULL;
2350 DECL_SIZE_UNIT (p) = NULL;
2351 /* If this arg must go in memory, put it in a pseudo here.
2352 We can't allow it to go in memory as per normal parms,
2353 because the usual place might not have the imag part
2354 adjacent to the real part. */
2355 DECL_ARTIFICIAL (p) = addressable;
2356 DECL_IGNORED_P (p) = addressable;
2357 TREE_ADDRESSABLE (p) = 0;
2358 layout_decl (p, 0);
2359 (*args)[i] = p;
2360
2361 /* Build a second synthetic decl. */
2362 decl = build_decl (EXPR_LOCATION (p),
2363 PARM_DECL, NULL_TREE, subtype);
2364 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2365 DECL_ARTIFICIAL (decl) = addressable;
2366 DECL_IGNORED_P (decl) = addressable;
2367 layout_decl (decl, 0);
2368 args->safe_insert (++i, decl);
2369 }
2370 }
2371 }
2372
2373 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2374 the hidden struct return argument, and (abi willing) complex args.
2375 Return the new parameter list. */
2376
2377 static vec<tree>
2378 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2379 {
2380 tree fndecl = current_function_decl;
2381 tree fntype = TREE_TYPE (fndecl);
2382 vec<tree> fnargs = vNULL;
2383 tree arg;
2384
2385 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2386 fnargs.safe_push (arg);
2387
2388 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2389
2390 /* If struct value address is treated as the first argument, make it so. */
2391 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2392 && ! cfun->returns_pcc_struct
2393 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2394 {
2395 tree type = build_pointer_type (TREE_TYPE (fntype));
2396 tree decl;
2397
2398 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2399 PARM_DECL, get_identifier (".result_ptr"), type);
2400 DECL_ARG_TYPE (decl) = type;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2404 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2405 changes, the end of the RESULT_DECL handling block in
2406 use_register_for_decl must be adjusted to match. */
2407
2408 DECL_CHAIN (decl) = all->orig_fnargs;
2409 all->orig_fnargs = decl;
2410 fnargs.safe_insert (0, decl);
2411
2412 all->function_result_decl = decl;
2413 }
2414
2415 /* If the target wants to split complex arguments into scalars, do so. */
2416 if (targetm.calls.split_complex_arg)
2417 split_complex_args (&fnargs);
2418
2419 return fnargs;
2420 }
2421
2422 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2423 data for the parameter. Incorporate ABI specifics such as pass-by-
2424 reference and type promotion. */
2425
2426 static void
2427 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2428 struct assign_parm_data_one *data)
2429 {
2430 int unsignedp;
2431
2432 #ifndef BROKEN_VALUE_INITIALIZATION
2433 *data = assign_parm_data_one ();
2434 #else
2435 /* Old versions of GCC used to miscompile the above by only initializing
2436 the members with explicit constructors and copying garbage
2437 to the other members. */
2438 assign_parm_data_one zero_data = {};
2439 *data = zero_data;
2440 #endif
2441
2442 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2443 if (!cfun->stdarg)
2444 data->arg.named = 1; /* No variadic parms. */
2445 else if (DECL_CHAIN (parm))
2446 data->arg.named = 1; /* Not the last non-variadic parm. */
2447 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2448 data->arg.named = 1; /* Only variadic ones are unnamed. */
2449 else
2450 data->arg.named = 0; /* Treat as variadic. */
2451
2452 data->nominal_type = TREE_TYPE (parm);
2453 data->arg.type = DECL_ARG_TYPE (parm);
2454
2455 /* Look out for errors propagating this far. Also, if the parameter's
2456 type is void then its value doesn't matter. */
2457 if (TREE_TYPE (parm) == error_mark_node
2458 /* This can happen after weird syntax errors
2459 or if an enum type is defined among the parms. */
2460 || TREE_CODE (parm) != PARM_DECL
2461 || data->arg.type == NULL
2462 || VOID_TYPE_P (data->nominal_type))
2463 {
2464 data->nominal_type = data->arg.type = void_type_node;
2465 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2466 return;
2467 }
2468
2469 /* Find mode of arg as it is passed, and mode of arg as it should be
2470 during execution of this function. */
2471 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2472 data->nominal_mode = TYPE_MODE (data->nominal_type);
2473
2474 /* If the parm is to be passed as a transparent union or record, use the
2475 type of the first field for the tests below. We have already verified
2476 that the modes are the same. */
2477 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2478 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2479 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2480
2481 /* See if this arg was passed by invisible reference. */
2482 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2483 {
2484 data->nominal_type = data->arg.type;
2485 data->passed_mode = data->nominal_mode = data->arg.mode;
2486 }
2487
2488 /* Find mode as it is passed by the ABI. */
2489 unsignedp = TYPE_UNSIGNED (data->arg.type);
2490 data->arg.mode
2491 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2492 TREE_TYPE (current_function_decl), 0);
2493 }
2494
2495 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2496
2497 static void
2498 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2499 struct assign_parm_data_one *data, bool no_rtl)
2500 {
2501 int varargs_pretend_bytes = 0;
2502
2503 function_arg_info last_named_arg = data->arg;
2504 last_named_arg.named = true;
2505 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2506 &varargs_pretend_bytes, no_rtl);
2507
2508 /* If the back-end has requested extra stack space, record how much is
2509 needed. Do not change pretend_args_size otherwise since it may be
2510 nonzero from an earlier partial argument. */
2511 if (varargs_pretend_bytes > 0)
2512 all->pretend_args_size = varargs_pretend_bytes;
2513 }
2514
2515 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2516 the incoming location of the current parameter. */
2517
2518 static void
2519 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2520 struct assign_parm_data_one *data)
2521 {
2522 HOST_WIDE_INT pretend_bytes = 0;
2523 rtx entry_parm;
2524 bool in_regs;
2525
2526 if (data->arg.mode == VOIDmode)
2527 {
2528 data->entry_parm = data->stack_parm = const0_rtx;
2529 return;
2530 }
2531
2532 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2533 data->arg.type);
2534
2535 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2536 data->arg);
2537 if (entry_parm == 0)
2538 data->arg.mode = data->passed_mode;
2539
2540 /* Determine parm's home in the stack, in case it arrives in the stack
2541 or we should pretend it did. Compute the stack position and rtx where
2542 the argument arrives and its size.
2543
2544 There is one complexity here: If this was a parameter that would
2545 have been passed in registers, but wasn't only because it is
2546 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2547 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2548 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2549 as it was the previous time. */
2550 in_regs = (entry_parm != 0);
2551 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2552 in_regs = true;
2553 #endif
2554 if (!in_regs && !data->arg.named)
2555 {
2556 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2557 {
2558 rtx tem;
2559 function_arg_info named_arg = data->arg;
2560 named_arg.named = true;
2561 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2562 named_arg);
2563 in_regs = tem != NULL;
2564 }
2565 }
2566
2567 /* If this parameter was passed both in registers and in the stack, use
2568 the copy on the stack. */
2569 if (targetm.calls.must_pass_in_stack (data->arg))
2570 entry_parm = 0;
2571
2572 if (entry_parm)
2573 {
2574 int partial;
2575
2576 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2577 data->partial = partial;
2578
2579 /* The caller might already have allocated stack space for the
2580 register parameters. */
2581 if (partial != 0 && all->reg_parm_stack_space == 0)
2582 {
2583 /* Part of this argument is passed in registers and part
2584 is passed on the stack. Ask the prologue code to extend
2585 the stack part so that we can recreate the full value.
2586
2587 PRETEND_BYTES is the size of the registers we need to store.
2588 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2589 stack space that the prologue should allocate.
2590
2591 Internally, gcc assumes that the argument pointer is aligned
2592 to STACK_BOUNDARY bits. This is used both for alignment
2593 optimizations (see init_emit) and to locate arguments that are
2594 aligned to more than PARM_BOUNDARY bits. We must preserve this
2595 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2596 a stack boundary. */
2597
2598 /* We assume at most one partial arg, and it must be the first
2599 argument on the stack. */
2600 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2601
2602 pretend_bytes = partial;
2603 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2604
2605 /* We want to align relative to the actual stack pointer, so
2606 don't include this in the stack size until later. */
2607 all->extra_pretend_bytes = all->pretend_args_size;
2608 }
2609 }
2610
2611 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2612 all->reg_parm_stack_space,
2613 entry_parm ? data->partial : 0, current_function_decl,
2614 &all->stack_args_size, &data->locate);
2615
2616 /* Update parm_stack_boundary if this parameter is passed in the
2617 stack. */
2618 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2619 crtl->parm_stack_boundary = data->locate.boundary;
2620
2621 /* Adjust offsets to include the pretend args. */
2622 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2623 data->locate.slot_offset.constant += pretend_bytes;
2624 data->locate.offset.constant += pretend_bytes;
2625
2626 data->entry_parm = entry_parm;
2627 }
2628
2629 /* A subroutine of assign_parms. If there is actually space on the stack
2630 for this parm, count it in stack_args_size and return true. */
2631
2632 static bool
2633 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2634 struct assign_parm_data_one *data)
2635 {
2636 /* Trivially true if we've no incoming register. */
2637 if (data->entry_parm == NULL)
2638 ;
2639 /* Also true if we're partially in registers and partially not,
2640 since we've arranged to drop the entire argument on the stack. */
2641 else if (data->partial != 0)
2642 ;
2643 /* Also true if the target says that it's passed in both registers
2644 and on the stack. */
2645 else if (GET_CODE (data->entry_parm) == PARALLEL
2646 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2647 ;
2648 /* Also true if the target says that there's stack allocated for
2649 all register parameters. */
2650 else if (all->reg_parm_stack_space > 0)
2651 ;
2652 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2653 else
2654 return false;
2655
2656 all->stack_args_size.constant += data->locate.size.constant;
2657 if (data->locate.size.var)
2658 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2659
2660 return true;
2661 }
2662
2663 /* A subroutine of assign_parms. Given that this parameter is allocated
2664 stack space by the ABI, find it. */
2665
2666 static void
2667 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2668 {
2669 rtx offset_rtx, stack_parm;
2670 unsigned int align, boundary;
2671
2672 /* If we're passing this arg using a reg, make its stack home the
2673 aligned stack slot. */
2674 if (data->entry_parm)
2675 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2676 else
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2678
2679 stack_parm = crtl->args.internal_arg_pointer;
2680 if (offset_rtx != const0_rtx)
2681 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2682 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2683
2684 if (!data->arg.pass_by_reference)
2685 {
2686 set_mem_attributes (stack_parm, parm, 1);
2687 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2688 while promoted mode's size is needed. */
2689 if (data->arg.mode != BLKmode
2690 && data->arg.mode != DECL_MODE (parm))
2691 {
2692 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2693 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2694 {
2695 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2696 data->arg.mode);
2697 if (maybe_ne (offset, 0))
2698 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2699 }
2700 }
2701 }
2702
2703 boundary = data->locate.boundary;
2704 align = BITS_PER_UNIT;
2705
2706 /* If we're padding upward, we know that the alignment of the slot
2707 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2708 intentionally forcing upward padding. Otherwise we have to come
2709 up with a guess at the alignment based on OFFSET_RTX. */
2710 poly_int64 offset;
2711 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2712 align = boundary;
2713 else if (data->locate.where_pad == PAD_UPWARD)
2714 {
2715 align = boundary;
2716 /* If the argument offset is actually more aligned than the nominal
2717 stack slot boundary, take advantage of that excess alignment.
2718 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2719 if (poly_int_rtx_p (offset_rtx, &offset)
2720 && known_eq (STACK_POINTER_OFFSET, 0))
2721 {
2722 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2723 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2724 offset_align = STACK_BOUNDARY;
2725 align = MAX (align, offset_align);
2726 }
2727 }
2728 else if (poly_int_rtx_p (offset_rtx, &offset))
2729 {
2730 align = least_bit_hwi (boundary);
2731 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2732 if (offset_align != 0)
2733 align = MIN (align, offset_align);
2734 }
2735 set_mem_align (stack_parm, align);
2736
2737 if (data->entry_parm)
2738 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2739
2740 data->stack_parm = stack_parm;
2741 }
2742
2743 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2744 always valid and contiguous. */
2745
2746 static void
2747 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2748 {
2749 rtx entry_parm = data->entry_parm;
2750 rtx stack_parm = data->stack_parm;
2751
2752 /* If this parm was passed part in regs and part in memory, pretend it
2753 arrived entirely in memory by pushing the register-part onto the stack.
2754 In the special case of a DImode or DFmode that is split, we could put
2755 it together in a pseudoreg directly, but for now that's not worth
2756 bothering with. */
2757 if (data->partial != 0)
2758 {
2759 /* Handle calls that pass values in multiple non-contiguous
2760 locations. The Irix 6 ABI has examples of this. */
2761 if (GET_CODE (entry_parm) == PARALLEL)
2762 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2763 data->arg.type, int_size_in_bytes (data->arg.type));
2764 else
2765 {
2766 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2767 move_block_from_reg (REGNO (entry_parm),
2768 validize_mem (copy_rtx (stack_parm)),
2769 data->partial / UNITS_PER_WORD);
2770 }
2771
2772 entry_parm = stack_parm;
2773 }
2774
2775 /* If we didn't decide this parm came in a register, by default it came
2776 on the stack. */
2777 else if (entry_parm == NULL)
2778 entry_parm = stack_parm;
2779
2780 /* When an argument is passed in multiple locations, we can't make use
2781 of this information, but we can save some copying if the whole argument
2782 is passed in a single register. */
2783 else if (GET_CODE (entry_parm) == PARALLEL
2784 && data->nominal_mode != BLKmode
2785 && data->passed_mode != BLKmode)
2786 {
2787 size_t i, len = XVECLEN (entry_parm, 0);
2788
2789 for (i = 0; i < len; i++)
2790 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2791 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2792 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2793 == data->passed_mode)
2794 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2795 {
2796 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2797 break;
2798 }
2799 }
2800
2801 data->entry_parm = entry_parm;
2802 }
2803
2804 /* A subroutine of assign_parms. Reconstitute any values which were
2805 passed in multiple registers and would fit in a single register. */
2806
2807 static void
2808 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2809 {
2810 rtx entry_parm = data->entry_parm;
2811
2812 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2813 This can be done with register operations rather than on the
2814 stack, even if we will store the reconstituted parameter on the
2815 stack later. */
2816 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2817 {
2818 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2819 emit_group_store (parmreg, entry_parm, data->arg.type,
2820 GET_MODE_SIZE (GET_MODE (entry_parm)));
2821 entry_parm = parmreg;
2822 }
2823
2824 data->entry_parm = entry_parm;
2825 }
2826
2827 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2828 always valid and properly aligned. */
2829
2830 static void
2831 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2832 {
2833 rtx stack_parm = data->stack_parm;
2834
2835 /* If we can't trust the parm stack slot to be aligned enough for its
2836 ultimate type, don't use that slot after entry. We'll make another
2837 stack slot, if we need one. */
2838 if (stack_parm
2839 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2840 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2841 != CODE_FOR_nothing)
2842 || targetm.slow_unaligned_access (data->nominal_mode,
2843 MEM_ALIGN (stack_parm))))
2844 || (data->nominal_type
2845 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2846 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2847 stack_parm = NULL;
2848
2849 /* If parm was passed in memory, and we need to convert it on entry,
2850 don't store it back in that same slot. */
2851 else if (data->entry_parm == stack_parm
2852 && data->nominal_mode != BLKmode
2853 && data->nominal_mode != data->passed_mode)
2854 stack_parm = NULL;
2855
2856 /* If stack protection is in effect for this function, don't leave any
2857 pointers in their passed stack slots. */
2858 else if (crtl->stack_protect_guard
2859 && (flag_stack_protect == SPCT_FLAG_ALL
2860 || data->arg.pass_by_reference
2861 || POINTER_TYPE_P (data->nominal_type)))
2862 stack_parm = NULL;
2863
2864 data->stack_parm = stack_parm;
2865 }
2866
2867 /* A subroutine of assign_parms. Return true if the current parameter
2868 should be stored as a BLKmode in the current frame. */
2869
2870 static bool
2871 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2872 {
2873 if (data->nominal_mode == BLKmode)
2874 return true;
2875 if (GET_MODE (data->entry_parm) == BLKmode)
2876 return true;
2877
2878 #ifdef BLOCK_REG_PADDING
2879 /* Only assign_parm_setup_block knows how to deal with register arguments
2880 that are padded at the least significant end. */
2881 if (REG_P (data->entry_parm)
2882 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2883 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2884 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2885 return true;
2886 #endif
2887
2888 return false;
2889 }
2890
2891 /* A subroutine of assign_parms. Arrange for the parameter to be
2892 present and valid in DATA->STACK_RTL. */
2893
2894 static void
2895 assign_parm_setup_block (struct assign_parm_data_all *all,
2896 tree parm, struct assign_parm_data_one *data)
2897 {
2898 rtx entry_parm = data->entry_parm;
2899 rtx stack_parm = data->stack_parm;
2900 rtx target_reg = NULL_RTX;
2901 bool in_conversion_seq = false;
2902 HOST_WIDE_INT size;
2903 HOST_WIDE_INT size_stored;
2904
2905 if (GET_CODE (entry_parm) == PARALLEL)
2906 entry_parm = emit_group_move_into_temps (entry_parm);
2907
2908 /* If we want the parameter in a pseudo, don't use a stack slot. */
2909 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2910 {
2911 tree def = ssa_default_def (cfun, parm);
2912 gcc_assert (def);
2913 machine_mode mode = promote_ssa_mode (def, NULL);
2914 rtx reg = gen_reg_rtx (mode);
2915 if (GET_CODE (reg) != CONCAT)
2916 stack_parm = reg;
2917 else
2918 {
2919 target_reg = reg;
2920 /* Avoid allocating a stack slot, if there isn't one
2921 preallocated by the ABI. It might seem like we should
2922 always prefer a pseudo, but converting between
2923 floating-point and integer modes goes through the stack
2924 on various machines, so it's better to use the reserved
2925 stack slot than to risk wasting it and allocating more
2926 for the conversion. */
2927 if (stack_parm == NULL_RTX)
2928 {
2929 int save = generating_concat_p;
2930 generating_concat_p = 0;
2931 stack_parm = gen_reg_rtx (mode);
2932 generating_concat_p = save;
2933 }
2934 }
2935 data->stack_parm = NULL;
2936 }
2937
2938 size = int_size_in_bytes (data->arg.type);
2939 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2940 if (stack_parm == 0)
2941 {
2942 HOST_WIDE_INT parm_align
2943 = (STRICT_ALIGNMENT
2944 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2945
2946 SET_DECL_ALIGN (parm, parm_align);
2947 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2948 {
2949 rtx allocsize = gen_int_mode (size_stored, Pmode);
2950 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2951 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2952 MAX_SUPPORTED_STACK_ALIGNMENT);
2953 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2954 DECL_ALIGN (parm));
2955 mark_reg_pointer (addr, DECL_ALIGN (parm));
2956 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2957 MEM_NOTRAP_P (stack_parm) = 1;
2958 }
2959 else
2960 stack_parm = assign_stack_local (BLKmode, size_stored,
2961 DECL_ALIGN (parm));
2962 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2963 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2964 set_mem_attributes (stack_parm, parm, 1);
2965 }
2966
2967 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2968 calls that pass values in multiple non-contiguous locations. */
2969 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2970 {
2971 rtx mem;
2972
2973 /* Note that we will be storing an integral number of words.
2974 So we have to be careful to ensure that we allocate an
2975 integral number of words. We do this above when we call
2976 assign_stack_local if space was not allocated in the argument
2977 list. If it was, this will not work if PARM_BOUNDARY is not
2978 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2979 if it becomes a problem. Exception is when BLKmode arrives
2980 with arguments not conforming to word_mode. */
2981
2982 if (data->stack_parm == 0)
2983 ;
2984 else if (GET_CODE (entry_parm) == PARALLEL)
2985 ;
2986 else
2987 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2988
2989 mem = validize_mem (copy_rtx (stack_parm));
2990
2991 /* Handle values in multiple non-contiguous locations. */
2992 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2993 emit_group_store (mem, entry_parm, data->arg.type, size);
2994 else if (GET_CODE (entry_parm) == PARALLEL)
2995 {
2996 push_to_sequence2 (all->first_conversion_insn,
2997 all->last_conversion_insn);
2998 emit_group_store (mem, entry_parm, data->arg.type, size);
2999 all->first_conversion_insn = get_insns ();
3000 all->last_conversion_insn = get_last_insn ();
3001 end_sequence ();
3002 in_conversion_seq = true;
3003 }
3004
3005 else if (size == 0)
3006 ;
3007
3008 /* If SIZE is that of a mode no bigger than a word, just use
3009 that mode's store operation. */
3010 else if (size <= UNITS_PER_WORD)
3011 {
3012 unsigned int bits = size * BITS_PER_UNIT;
3013 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3014
3015 if (mode != BLKmode
3016 #ifdef BLOCK_REG_PADDING
3017 && (size == UNITS_PER_WORD
3018 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3019 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3020 #endif
3021 )
3022 {
3023 rtx reg;
3024
3025 /* We are really truncating a word_mode value containing
3026 SIZE bytes into a value of mode MODE. If such an
3027 operation requires no actual instructions, we can refer
3028 to the value directly in mode MODE, otherwise we must
3029 start with the register in word_mode and explicitly
3030 convert it. */
3031 if (mode == word_mode
3032 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3033 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3034 else
3035 {
3036 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3037 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3038 }
3039
3040 /* We use adjust_address to get a new MEM with the mode
3041 changed. adjust_address is better than change_address
3042 for this purpose because adjust_address does not lose
3043 the MEM_EXPR associated with the MEM.
3044
3045 If the MEM_EXPR is lost, then optimizations like DSE
3046 assume the MEM escapes and thus is not subject to DSE. */
3047 emit_move_insn (adjust_address (mem, mode, 0), reg);
3048 }
3049
3050 #ifdef BLOCK_REG_PADDING
3051 /* Storing the register in memory as a full word, as
3052 move_block_from_reg below would do, and then using the
3053 MEM in a smaller mode, has the effect of shifting right
3054 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3055 shifting must be explicit. */
3056 else if (!MEM_P (mem))
3057 {
3058 rtx x;
3059
3060 /* If the assert below fails, we should have taken the
3061 mode != BLKmode path above, unless we have downward
3062 padding of smaller-than-word arguments on a machine
3063 with little-endian bytes, which would likely require
3064 additional changes to work correctly. */
3065 gcc_checking_assert (BYTES_BIG_ENDIAN
3066 && (BLOCK_REG_PADDING (mode,
3067 data->arg.type, 1)
3068 == PAD_UPWARD));
3069
3070 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3071
3072 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3073 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3074 NULL_RTX, 1);
3075 x = force_reg (word_mode, x);
3076 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3077
3078 emit_move_insn (mem, x);
3079 }
3080 #endif
3081
3082 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3083 machine must be aligned to the left before storing
3084 to memory. Note that the previous test doesn't
3085 handle all cases (e.g. SIZE == 3). */
3086 else if (size != UNITS_PER_WORD
3087 #ifdef BLOCK_REG_PADDING
3088 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3089 == PAD_DOWNWARD)
3090 #else
3091 && BYTES_BIG_ENDIAN
3092 #endif
3093 )
3094 {
3095 rtx tem, x;
3096 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3097 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3098
3099 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3100 tem = change_address (mem, word_mode, 0);
3101 emit_move_insn (tem, x);
3102 }
3103 else
3104 move_block_from_reg (REGNO (entry_parm), mem,
3105 size_stored / UNITS_PER_WORD);
3106 }
3107 else if (!MEM_P (mem))
3108 {
3109 gcc_checking_assert (size > UNITS_PER_WORD);
3110 #ifdef BLOCK_REG_PADDING
3111 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3112 data->arg.type, 0)
3113 == PAD_UPWARD);
3114 #endif
3115 emit_move_insn (mem, entry_parm);
3116 }
3117 else
3118 move_block_from_reg (REGNO (entry_parm), mem,
3119 size_stored / UNITS_PER_WORD);
3120 }
3121 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3122 {
3123 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3124 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3125 BLOCK_OP_NORMAL);
3126 all->first_conversion_insn = get_insns ();
3127 all->last_conversion_insn = get_last_insn ();
3128 end_sequence ();
3129 in_conversion_seq = true;
3130 }
3131
3132 if (target_reg)
3133 {
3134 if (!in_conversion_seq)
3135 emit_move_insn (target_reg, stack_parm);
3136 else
3137 {
3138 push_to_sequence2 (all->first_conversion_insn,
3139 all->last_conversion_insn);
3140 emit_move_insn (target_reg, stack_parm);
3141 all->first_conversion_insn = get_insns ();
3142 all->last_conversion_insn = get_last_insn ();
3143 end_sequence ();
3144 }
3145 stack_parm = target_reg;
3146 }
3147
3148 data->stack_parm = stack_parm;
3149 set_parm_rtl (parm, stack_parm);
3150 }
3151
3152 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3153 parameter. Get it there. Perform all ABI specified conversions. */
3154
3155 static void
3156 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3157 struct assign_parm_data_one *data)
3158 {
3159 rtx parmreg, validated_mem;
3160 rtx equiv_stack_parm;
3161 machine_mode promoted_nominal_mode;
3162 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3163 bool did_conversion = false;
3164 bool need_conversion, moved;
3165 enum insn_code icode;
3166 rtx rtl;
3167
3168 /* Store the parm in a pseudoregister during the function, but we may
3169 need to do it in a wider mode. Using 2 here makes the result
3170 consistent with promote_decl_mode and thus expand_expr_real_1. */
3171 promoted_nominal_mode
3172 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3173 TREE_TYPE (current_function_decl), 2);
3174
3175 parmreg = gen_reg_rtx (promoted_nominal_mode);
3176 if (!DECL_ARTIFICIAL (parm))
3177 mark_user_reg (parmreg);
3178
3179 /* If this was an item that we received a pointer to,
3180 set rtl appropriately. */
3181 if (data->arg.pass_by_reference)
3182 {
3183 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3184 set_mem_attributes (rtl, parm, 1);
3185 }
3186 else
3187 rtl = parmreg;
3188
3189 assign_parm_remove_parallels (data);
3190
3191 /* Copy the value into the register, thus bridging between
3192 assign_parm_find_data_types and expand_expr_real_1. */
3193
3194 equiv_stack_parm = data->stack_parm;
3195 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3196
3197 need_conversion = (data->nominal_mode != data->passed_mode
3198 || promoted_nominal_mode != data->arg.mode);
3199 moved = false;
3200
3201 if (need_conversion
3202 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3203 && data->nominal_mode == data->passed_mode
3204 && data->nominal_mode == GET_MODE (data->entry_parm))
3205 {
3206 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3207 mode, by the caller. We now have to convert it to
3208 NOMINAL_MODE, if different. However, PARMREG may be in
3209 a different mode than NOMINAL_MODE if it is being stored
3210 promoted.
3211
3212 If ENTRY_PARM is a hard register, it might be in a register
3213 not valid for operating in its mode (e.g., an odd-numbered
3214 register for a DFmode). In that case, moves are the only
3215 thing valid, so we can't do a convert from there. This
3216 occurs when the calling sequence allow such misaligned
3217 usages.
3218
3219 In addition, the conversion may involve a call, which could
3220 clobber parameters which haven't been copied to pseudo
3221 registers yet.
3222
3223 First, we try to emit an insn which performs the necessary
3224 conversion. We verify that this insn does not clobber any
3225 hard registers. */
3226
3227 rtx op0, op1;
3228
3229 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3230 unsignedp);
3231
3232 op0 = parmreg;
3233 op1 = validated_mem;
3234 if (icode != CODE_FOR_nothing
3235 && insn_operand_matches (icode, 0, op0)
3236 && insn_operand_matches (icode, 1, op1))
3237 {
3238 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3239 rtx_insn *insn, *insns;
3240 rtx t = op1;
3241 HARD_REG_SET hardregs;
3242
3243 start_sequence ();
3244 /* If op1 is a hard register that is likely spilled, first
3245 force it into a pseudo, otherwise combiner might extend
3246 its lifetime too much. */
3247 if (GET_CODE (t) == SUBREG)
3248 t = SUBREG_REG (t);
3249 if (REG_P (t)
3250 && HARD_REGISTER_P (t)
3251 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3252 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3253 {
3254 t = gen_reg_rtx (GET_MODE (op1));
3255 emit_move_insn (t, op1);
3256 }
3257 else
3258 t = op1;
3259 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3260 data->passed_mode, unsignedp);
3261 emit_insn (pat);
3262 insns = get_insns ();
3263
3264 moved = true;
3265 CLEAR_HARD_REG_SET (hardregs);
3266 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3267 {
3268 if (INSN_P (insn))
3269 note_stores (insn, record_hard_reg_sets, &hardregs);
3270 if (!hard_reg_set_empty_p (hardregs))
3271 moved = false;
3272 }
3273
3274 end_sequence ();
3275
3276 if (moved)
3277 {
3278 emit_insn (insns);
3279 if (equiv_stack_parm != NULL_RTX)
3280 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3281 equiv_stack_parm);
3282 }
3283 }
3284 }
3285
3286 if (moved)
3287 /* Nothing to do. */
3288 ;
3289 else if (need_conversion)
3290 {
3291 /* We did not have an insn to convert directly, or the sequence
3292 generated appeared unsafe. We must first copy the parm to a
3293 pseudo reg, and save the conversion until after all
3294 parameters have been moved. */
3295
3296 int save_tree_used;
3297 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3298
3299 emit_move_insn (tempreg, validated_mem);
3300
3301 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3302 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3303
3304 if (partial_subreg_p (tempreg)
3305 && GET_MODE (tempreg) == data->nominal_mode
3306 && REG_P (SUBREG_REG (tempreg))
3307 && data->nominal_mode == data->passed_mode
3308 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3309 {
3310 /* The argument is already sign/zero extended, so note it
3311 into the subreg. */
3312 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3313 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3314 }
3315
3316 /* TREE_USED gets set erroneously during expand_assignment. */
3317 save_tree_used = TREE_USED (parm);
3318 SET_DECL_RTL (parm, rtl);
3319 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3320 SET_DECL_RTL (parm, NULL_RTX);
3321 TREE_USED (parm) = save_tree_used;
3322 all->first_conversion_insn = get_insns ();
3323 all->last_conversion_insn = get_last_insn ();
3324 end_sequence ();
3325
3326 did_conversion = true;
3327 }
3328 else if (MEM_P (data->entry_parm)
3329 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3330 > MEM_ALIGN (data->entry_parm)
3331 && (((icode = optab_handler (movmisalign_optab,
3332 promoted_nominal_mode))
3333 != CODE_FOR_nothing)
3334 || targetm.slow_unaligned_access (promoted_nominal_mode,
3335 MEM_ALIGN (data->entry_parm))))
3336 {
3337 if (icode != CODE_FOR_nothing)
3338 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3339 else
3340 rtl = parmreg = extract_bit_field (validated_mem,
3341 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3342 unsignedp, parmreg,
3343 promoted_nominal_mode, VOIDmode, false, NULL);
3344 }
3345 else
3346 emit_move_insn (parmreg, validated_mem);
3347
3348 /* If we were passed a pointer but the actual value can live in a register,
3349 retrieve it and use it directly. Note that we cannot use nominal_mode,
3350 because it will have been set to Pmode above, we must use the actual mode
3351 of the parameter instead. */
3352 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3353 {
3354 /* Use a stack slot for debugging purposes if possible. */
3355 if (use_register_for_decl (parm))
3356 {
3357 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3358 mark_user_reg (parmreg);
3359 }
3360 else
3361 {
3362 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3363 TYPE_MODE (TREE_TYPE (parm)),
3364 TYPE_ALIGN (TREE_TYPE (parm)));
3365 parmreg
3366 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3367 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3368 align);
3369 set_mem_attributes (parmreg, parm, 1);
3370 }
3371
3372 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3373 the debug info in case it is not legitimate. */
3374 if (GET_MODE (parmreg) != GET_MODE (rtl))
3375 {
3376 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3377 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3378
3379 push_to_sequence2 (all->first_conversion_insn,
3380 all->last_conversion_insn);
3381 emit_move_insn (tempreg, rtl);
3382 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3383 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3384 tempreg);
3385 all->first_conversion_insn = get_insns ();
3386 all->last_conversion_insn = get_last_insn ();
3387 end_sequence ();
3388
3389 did_conversion = true;
3390 }
3391 else
3392 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3393
3394 rtl = parmreg;
3395
3396 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3397 now the parm. */
3398 data->stack_parm = NULL;
3399 }
3400
3401 set_parm_rtl (parm, rtl);
3402
3403 /* Mark the register as eliminable if we did no conversion and it was
3404 copied from memory at a fixed offset, and the arg pointer was not
3405 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3406 offset formed an invalid address, such memory-equivalences as we
3407 make here would screw up life analysis for it. */
3408 if (data->nominal_mode == data->passed_mode
3409 && !did_conversion
3410 && data->stack_parm != 0
3411 && MEM_P (data->stack_parm)
3412 && data->locate.offset.var == 0
3413 && reg_mentioned_p (virtual_incoming_args_rtx,
3414 XEXP (data->stack_parm, 0)))
3415 {
3416 rtx_insn *linsn = get_last_insn ();
3417 rtx_insn *sinsn;
3418 rtx set;
3419
3420 /* Mark complex types separately. */
3421 if (GET_CODE (parmreg) == CONCAT)
3422 {
3423 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3424 int regnor = REGNO (XEXP (parmreg, 0));
3425 int regnoi = REGNO (XEXP (parmreg, 1));
3426 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3427 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3428 GET_MODE_SIZE (submode));
3429
3430 /* Scan backwards for the set of the real and
3431 imaginary parts. */
3432 for (sinsn = linsn; sinsn != 0;
3433 sinsn = prev_nonnote_insn (sinsn))
3434 {
3435 set = single_set (sinsn);
3436 if (set == 0)
3437 continue;
3438
3439 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3440 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3441 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3442 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3443 }
3444 }
3445 else
3446 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3447 }
3448
3449 /* For pointer data type, suggest pointer register. */
3450 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3451 mark_reg_pointer (parmreg,
3452 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3453 }
3454
3455 /* A subroutine of assign_parms. Allocate stack space to hold the current
3456 parameter. Get it there. Perform all ABI specified conversions. */
3457
3458 static void
3459 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3460 struct assign_parm_data_one *data)
3461 {
3462 /* Value must be stored in the stack slot STACK_PARM during function
3463 execution. */
3464 bool to_conversion = false;
3465
3466 assign_parm_remove_parallels (data);
3467
3468 if (data->arg.mode != data->nominal_mode)
3469 {
3470 /* Conversion is required. */
3471 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3472
3473 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3474
3475 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3476 to_conversion = true;
3477
3478 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3479 TYPE_UNSIGNED (TREE_TYPE (parm)));
3480
3481 if (data->stack_parm)
3482 {
3483 poly_int64 offset
3484 = subreg_lowpart_offset (data->nominal_mode,
3485 GET_MODE (data->stack_parm));
3486 /* ??? This may need a big-endian conversion on sparc64. */
3487 data->stack_parm
3488 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3489 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3490 set_mem_offset (data->stack_parm,
3491 MEM_OFFSET (data->stack_parm) + offset);
3492 }
3493 }
3494
3495 if (data->entry_parm != data->stack_parm)
3496 {
3497 rtx src, dest;
3498
3499 if (data->stack_parm == 0)
3500 {
3501 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3502 GET_MODE (data->entry_parm),
3503 TYPE_ALIGN (data->arg.type));
3504 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3505 && ((optab_handler (movmisalign_optab,
3506 GET_MODE (data->entry_parm))
3507 != CODE_FOR_nothing)
3508 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3509 align)))
3510 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3511 data->stack_parm
3512 = assign_stack_local (GET_MODE (data->entry_parm),
3513 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3514 align);
3515 align = MEM_ALIGN (data->stack_parm);
3516 set_mem_attributes (data->stack_parm, parm, 1);
3517 set_mem_align (data->stack_parm, align);
3518 }
3519
3520 dest = validize_mem (copy_rtx (data->stack_parm));
3521 src = validize_mem (copy_rtx (data->entry_parm));
3522
3523 if (TYPE_EMPTY_P (data->arg.type))
3524 /* Empty types don't really need to be copied. */;
3525 else if (MEM_P (src))
3526 {
3527 /* Use a block move to handle potentially misaligned entry_parm. */
3528 if (!to_conversion)
3529 push_to_sequence2 (all->first_conversion_insn,
3530 all->last_conversion_insn);
3531 to_conversion = true;
3532
3533 emit_block_move (dest, src,
3534 GEN_INT (int_size_in_bytes (data->arg.type)),
3535 BLOCK_OP_NORMAL);
3536 }
3537 else
3538 {
3539 if (!REG_P (src))
3540 src = force_reg (GET_MODE (src), src);
3541 emit_move_insn (dest, src);
3542 }
3543 }
3544
3545 if (to_conversion)
3546 {
3547 all->first_conversion_insn = get_insns ();
3548 all->last_conversion_insn = get_last_insn ();
3549 end_sequence ();
3550 }
3551
3552 set_parm_rtl (parm, data->stack_parm);
3553 }
3554
3555 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3556 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3557
3558 static void
3559 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3560 vec<tree> fnargs)
3561 {
3562 tree parm;
3563 tree orig_fnargs = all->orig_fnargs;
3564 unsigned i = 0;
3565
3566 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3567 {
3568 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3569 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3570 {
3571 rtx tmp, real, imag;
3572 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3573
3574 real = DECL_RTL (fnargs[i]);
3575 imag = DECL_RTL (fnargs[i + 1]);
3576 if (inner != GET_MODE (real))
3577 {
3578 real = gen_lowpart_SUBREG (inner, real);
3579 imag = gen_lowpart_SUBREG (inner, imag);
3580 }
3581
3582 if (TREE_ADDRESSABLE (parm))
3583 {
3584 rtx rmem, imem;
3585 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3586 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3587 DECL_MODE (parm),
3588 TYPE_ALIGN (TREE_TYPE (parm)));
3589
3590 /* split_complex_arg put the real and imag parts in
3591 pseudos. Move them to memory. */
3592 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3593 set_mem_attributes (tmp, parm, 1);
3594 rmem = adjust_address_nv (tmp, inner, 0);
3595 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3596 push_to_sequence2 (all->first_conversion_insn,
3597 all->last_conversion_insn);
3598 emit_move_insn (rmem, real);
3599 emit_move_insn (imem, imag);
3600 all->first_conversion_insn = get_insns ();
3601 all->last_conversion_insn = get_last_insn ();
3602 end_sequence ();
3603 }
3604 else
3605 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3606 set_parm_rtl (parm, tmp);
3607
3608 real = DECL_INCOMING_RTL (fnargs[i]);
3609 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3610 if (inner != GET_MODE (real))
3611 {
3612 real = gen_lowpart_SUBREG (inner, real);
3613 imag = gen_lowpart_SUBREG (inner, imag);
3614 }
3615 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3616 set_decl_incoming_rtl (parm, tmp, false);
3617 i++;
3618 }
3619 }
3620 }
3621
3622 /* Assign RTL expressions to the function's parameters. This may involve
3623 copying them into registers and using those registers as the DECL_RTL. */
3624
3625 static void
3626 assign_parms (tree fndecl)
3627 {
3628 struct assign_parm_data_all all;
3629 tree parm;
3630 vec<tree> fnargs;
3631 unsigned i;
3632
3633 crtl->args.internal_arg_pointer
3634 = targetm.calls.internal_arg_pointer ();
3635
3636 assign_parms_initialize_all (&all);
3637 fnargs = assign_parms_augmented_arg_list (&all);
3638
3639 FOR_EACH_VEC_ELT (fnargs, i, parm)
3640 {
3641 struct assign_parm_data_one data;
3642
3643 /* Extract the type of PARM; adjust it according to ABI. */
3644 assign_parm_find_data_types (&all, parm, &data);
3645
3646 /* Early out for errors and void parameters. */
3647 if (data.passed_mode == VOIDmode)
3648 {
3649 SET_DECL_RTL (parm, const0_rtx);
3650 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3651 continue;
3652 }
3653
3654 /* Estimate stack alignment from parameter alignment. */
3655 if (SUPPORTS_STACK_ALIGNMENT)
3656 {
3657 unsigned int align
3658 = targetm.calls.function_arg_boundary (data.arg.mode,
3659 data.arg.type);
3660 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3661 if (TYPE_ALIGN (data.nominal_type) > align)
3662 align = MINIMUM_ALIGNMENT (data.nominal_type,
3663 TYPE_MODE (data.nominal_type),
3664 TYPE_ALIGN (data.nominal_type));
3665 if (crtl->stack_alignment_estimated < align)
3666 {
3667 gcc_assert (!crtl->stack_realign_processed);
3668 crtl->stack_alignment_estimated = align;
3669 }
3670 }
3671
3672 /* Find out where the parameter arrives in this function. */
3673 assign_parm_find_entry_rtl (&all, &data);
3674
3675 /* Find out where stack space for this parameter might be. */
3676 if (assign_parm_is_stack_parm (&all, &data))
3677 {
3678 assign_parm_find_stack_rtl (parm, &data);
3679 assign_parm_adjust_entry_rtl (&data);
3680 /* For arguments that occupy no space in the parameter
3681 passing area, have non-zero size and have address taken,
3682 force creation of a stack slot so that they have distinct
3683 address from other parameters. */
3684 if (TYPE_EMPTY_P (data.arg.type)
3685 && TREE_ADDRESSABLE (parm)
3686 && data.entry_parm == data.stack_parm
3687 && MEM_P (data.entry_parm)
3688 && int_size_in_bytes (data.arg.type))
3689 data.stack_parm = NULL_RTX;
3690 }
3691 /* Record permanently how this parm was passed. */
3692 if (data.arg.pass_by_reference)
3693 {
3694 rtx incoming_rtl
3695 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3696 data.entry_parm);
3697 set_decl_incoming_rtl (parm, incoming_rtl, true);
3698 }
3699 else
3700 set_decl_incoming_rtl (parm, data.entry_parm, false);
3701
3702 assign_parm_adjust_stack_rtl (&data);
3703
3704 if (assign_parm_setup_block_p (&data))
3705 assign_parm_setup_block (&all, parm, &data);
3706 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3707 assign_parm_setup_reg (&all, parm, &data);
3708 else
3709 assign_parm_setup_stack (&all, parm, &data);
3710
3711 if (cfun->stdarg && !DECL_CHAIN (parm))
3712 assign_parms_setup_varargs (&all, &data, false);
3713
3714 /* Update info on where next arg arrives in registers. */
3715 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3716 }
3717
3718 if (targetm.calls.split_complex_arg)
3719 assign_parms_unsplit_complex (&all, fnargs);
3720
3721 fnargs.release ();
3722
3723 /* Output all parameter conversion instructions (possibly including calls)
3724 now that all parameters have been copied out of hard registers. */
3725 emit_insn (all.first_conversion_insn);
3726
3727 /* Estimate reload stack alignment from scalar return mode. */
3728 if (SUPPORTS_STACK_ALIGNMENT)
3729 {
3730 if (DECL_RESULT (fndecl))
3731 {
3732 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3733 machine_mode mode = TYPE_MODE (type);
3734
3735 if (mode != BLKmode
3736 && mode != VOIDmode
3737 && !AGGREGATE_TYPE_P (type))
3738 {
3739 unsigned int align = GET_MODE_ALIGNMENT (mode);
3740 if (crtl->stack_alignment_estimated < align)
3741 {
3742 gcc_assert (!crtl->stack_realign_processed);
3743 crtl->stack_alignment_estimated = align;
3744 }
3745 }
3746 }
3747 }
3748
3749 /* If we are receiving a struct value address as the first argument, set up
3750 the RTL for the function result. As this might require code to convert
3751 the transmitted address to Pmode, we do this here to ensure that possible
3752 preliminary conversions of the address have been emitted already. */
3753 if (all.function_result_decl)
3754 {
3755 tree result = DECL_RESULT (current_function_decl);
3756 rtx addr = DECL_RTL (all.function_result_decl);
3757 rtx x;
3758
3759 if (DECL_BY_REFERENCE (result))
3760 {
3761 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3762 x = addr;
3763 }
3764 else
3765 {
3766 SET_DECL_VALUE_EXPR (result,
3767 build1 (INDIRECT_REF, TREE_TYPE (result),
3768 all.function_result_decl));
3769 addr = convert_memory_address (Pmode, addr);
3770 x = gen_rtx_MEM (DECL_MODE (result), addr);
3771 set_mem_attributes (x, result, 1);
3772 }
3773
3774 DECL_HAS_VALUE_EXPR_P (result) = 1;
3775
3776 set_parm_rtl (result, x);
3777 }
3778
3779 /* We have aligned all the args, so add space for the pretend args. */
3780 crtl->args.pretend_args_size = all.pretend_args_size;
3781 all.stack_args_size.constant += all.extra_pretend_bytes;
3782 crtl->args.size = all.stack_args_size.constant;
3783
3784 /* Adjust function incoming argument size for alignment and
3785 minimum length. */
3786
3787 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3788 crtl->args.size = aligned_upper_bound (crtl->args.size,
3789 PARM_BOUNDARY / BITS_PER_UNIT);
3790
3791 if (ARGS_GROW_DOWNWARD)
3792 {
3793 crtl->args.arg_offset_rtx
3794 = (all.stack_args_size.var == 0
3795 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3796 : expand_expr (size_diffop (all.stack_args_size.var,
3797 size_int (-all.stack_args_size.constant)),
3798 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3799 }
3800 else
3801 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3802
3803 /* See how many bytes, if any, of its args a function should try to pop
3804 on return. */
3805
3806 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3807 TREE_TYPE (fndecl),
3808 crtl->args.size);
3809
3810 /* For stdarg.h function, save info about
3811 regs and stack space used by the named args. */
3812
3813 crtl->args.info = all.args_so_far_v;
3814
3815 /* Set the rtx used for the function return value. Put this in its
3816 own variable so any optimizers that need this information don't have
3817 to include tree.h. Do this here so it gets done when an inlined
3818 function gets output. */
3819
3820 crtl->return_rtx
3821 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3822 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3823
3824 /* If scalar return value was computed in a pseudo-reg, or was a named
3825 return value that got dumped to the stack, copy that to the hard
3826 return register. */
3827 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3828 {
3829 tree decl_result = DECL_RESULT (fndecl);
3830 rtx decl_rtl = DECL_RTL (decl_result);
3831
3832 if (REG_P (decl_rtl)
3833 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3834 : DECL_REGISTER (decl_result))
3835 {
3836 rtx real_decl_rtl;
3837
3838 /* Unless the psABI says not to. */
3839 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3840 real_decl_rtl = NULL_RTX;
3841 else
3842 {
3843 real_decl_rtl
3844 = targetm.calls.function_value (TREE_TYPE (decl_result),
3845 fndecl, true);
3846 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3847 }
3848 /* The delay slot scheduler assumes that crtl->return_rtx
3849 holds the hard register containing the return value, not a
3850 temporary pseudo. */
3851 crtl->return_rtx = real_decl_rtl;
3852 }
3853 }
3854 }
3855
3856 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3857 For all seen types, gimplify their sizes. */
3858
3859 static tree
3860 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3861 {
3862 tree t = *tp;
3863
3864 *walk_subtrees = 0;
3865 if (TYPE_P (t))
3866 {
3867 if (POINTER_TYPE_P (t))
3868 *walk_subtrees = 1;
3869 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3870 && !TYPE_SIZES_GIMPLIFIED (t))
3871 {
3872 gimplify_type_sizes (t, (gimple_seq *) data);
3873 *walk_subtrees = 1;
3874 }
3875 }
3876
3877 return NULL;
3878 }
3879
3880 /* Gimplify the parameter list for current_function_decl. This involves
3881 evaluating SAVE_EXPRs of variable sized parameters and generating code
3882 to implement callee-copies reference parameters. Returns a sequence of
3883 statements to add to the beginning of the function. */
3884
3885 gimple_seq
3886 gimplify_parameters (gimple_seq *cleanup)
3887 {
3888 struct assign_parm_data_all all;
3889 tree parm;
3890 gimple_seq stmts = NULL;
3891 vec<tree> fnargs;
3892 unsigned i;
3893
3894 assign_parms_initialize_all (&all);
3895 fnargs = assign_parms_augmented_arg_list (&all);
3896
3897 FOR_EACH_VEC_ELT (fnargs, i, parm)
3898 {
3899 struct assign_parm_data_one data;
3900
3901 /* Extract the type of PARM; adjust it according to ABI. */
3902 assign_parm_find_data_types (&all, parm, &data);
3903
3904 /* Early out for errors and void parameters. */
3905 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3906 continue;
3907
3908 /* Update info on where next arg arrives in registers. */
3909 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3910
3911 /* ??? Once upon a time variable_size stuffed parameter list
3912 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3913 turned out to be less than manageable in the gimple world.
3914 Now we have to hunt them down ourselves. */
3915 walk_tree_without_duplicates (&data.arg.type,
3916 gimplify_parm_type, &stmts);
3917
3918 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3919 {
3920 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3921 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3922 }
3923
3924 if (data.arg.pass_by_reference)
3925 {
3926 tree type = TREE_TYPE (data.arg.type);
3927 function_arg_info orig_arg (type, data.arg.named);
3928 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3929 {
3930 tree local, t;
3931
3932 /* For constant-sized objects, this is trivial; for
3933 variable-sized objects, we have to play games. */
3934 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3935 && !(flag_stack_check == GENERIC_STACK_CHECK
3936 && compare_tree_int (DECL_SIZE_UNIT (parm),
3937 STACK_CHECK_MAX_VAR_SIZE) > 0))
3938 {
3939 local = create_tmp_var (type, get_name (parm));
3940 DECL_IGNORED_P (local) = 0;
3941 /* If PARM was addressable, move that flag over
3942 to the local copy, as its address will be taken,
3943 not the PARMs. Keep the parms address taken
3944 as we'll query that flag during gimplification. */
3945 if (TREE_ADDRESSABLE (parm))
3946 TREE_ADDRESSABLE (local) = 1;
3947 if (DECL_NOT_GIMPLE_REG_P (parm))
3948 DECL_NOT_GIMPLE_REG_P (local) = 1;
3949
3950 if (!is_gimple_reg (local)
3951 && flag_stack_reuse != SR_NONE)
3952 {
3953 tree clobber = build_clobber (type);
3954 gimple *clobber_stmt;
3955 clobber_stmt = gimple_build_assign (local, clobber);
3956 gimple_seq_add_stmt (cleanup, clobber_stmt);
3957 }
3958 }
3959 else
3960 {
3961 tree ptr_type, addr;
3962
3963 ptr_type = build_pointer_type (type);
3964 addr = create_tmp_reg (ptr_type, get_name (parm));
3965 DECL_IGNORED_P (addr) = 0;
3966 local = build_fold_indirect_ref (addr);
3967
3968 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3969 DECL_ALIGN (parm),
3970 max_int_size_in_bytes (type));
3971 /* The call has been built for a variable-sized object. */
3972 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3973 t = fold_convert (ptr_type, t);
3974 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3975 gimplify_and_add (t, &stmts);
3976 }
3977
3978 gimplify_assign (local, parm, &stmts);
3979
3980 SET_DECL_VALUE_EXPR (parm, local);
3981 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3982 }
3983 }
3984 }
3985
3986 fnargs.release ();
3987
3988 return stmts;
3989 }
3990 \f
3991 /* Compute the size and offset from the start of the stacked arguments for a
3992 parm passed in mode PASSED_MODE and with type TYPE.
3993
3994 INITIAL_OFFSET_PTR points to the current offset into the stacked
3995 arguments.
3996
3997 The starting offset and size for this parm are returned in
3998 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3999 nonzero, the offset is that of stack slot, which is returned in
4000 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4001 padding required from the initial offset ptr to the stack slot.
4002
4003 IN_REGS is nonzero if the argument will be passed in registers. It will
4004 never be set if REG_PARM_STACK_SPACE is not defined.
4005
4006 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4007 for arguments which are passed in registers.
4008
4009 FNDECL is the function in which the argument was defined.
4010
4011 There are two types of rounding that are done. The first, controlled by
4012 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4013 argument list to be aligned to the specific boundary (in bits). This
4014 rounding affects the initial and starting offsets, but not the argument
4015 size.
4016
4017 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4018 optionally rounds the size of the parm to PARM_BOUNDARY. The
4019 initial offset is not affected by this rounding, while the size always
4020 is and the starting offset may be. */
4021
4022 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4023 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4024 callers pass in the total size of args so far as
4025 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4026
4027 void
4028 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4029 int reg_parm_stack_space, int partial,
4030 tree fndecl ATTRIBUTE_UNUSED,
4031 struct args_size *initial_offset_ptr,
4032 struct locate_and_pad_arg_data *locate)
4033 {
4034 tree sizetree;
4035 pad_direction where_pad;
4036 unsigned int boundary, round_boundary;
4037 int part_size_in_regs;
4038
4039 /* If we have found a stack parm before we reach the end of the
4040 area reserved for registers, skip that area. */
4041 if (! in_regs)
4042 {
4043 if (reg_parm_stack_space > 0)
4044 {
4045 if (initial_offset_ptr->var
4046 || !ordered_p (initial_offset_ptr->constant,
4047 reg_parm_stack_space))
4048 {
4049 initial_offset_ptr->var
4050 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4051 ssize_int (reg_parm_stack_space));
4052 initial_offset_ptr->constant = 0;
4053 }
4054 else
4055 initial_offset_ptr->constant
4056 = ordered_max (initial_offset_ptr->constant,
4057 reg_parm_stack_space);
4058 }
4059 }
4060
4061 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4062
4063 sizetree = (type
4064 ? arg_size_in_bytes (type)
4065 : size_int (GET_MODE_SIZE (passed_mode)));
4066 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4067 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4068 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4069 type);
4070 locate->where_pad = where_pad;
4071
4072 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4073 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4074 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4075
4076 locate->boundary = boundary;
4077
4078 if (SUPPORTS_STACK_ALIGNMENT)
4079 {
4080 /* stack_alignment_estimated can't change after stack has been
4081 realigned. */
4082 if (crtl->stack_alignment_estimated < boundary)
4083 {
4084 if (!crtl->stack_realign_processed)
4085 crtl->stack_alignment_estimated = boundary;
4086 else
4087 {
4088 /* If stack is realigned and stack alignment value
4089 hasn't been finalized, it is OK not to increase
4090 stack_alignment_estimated. The bigger alignment
4091 requirement is recorded in stack_alignment_needed
4092 below. */
4093 gcc_assert (!crtl->stack_realign_finalized
4094 && crtl->stack_realign_needed);
4095 }
4096 }
4097 }
4098
4099 if (ARGS_GROW_DOWNWARD)
4100 {
4101 locate->slot_offset.constant = -initial_offset_ptr->constant;
4102 if (initial_offset_ptr->var)
4103 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4104 initial_offset_ptr->var);
4105
4106 {
4107 tree s2 = sizetree;
4108 if (where_pad != PAD_NONE
4109 && (!tree_fits_uhwi_p (sizetree)
4110 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4111 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4112 SUB_PARM_SIZE (locate->slot_offset, s2);
4113 }
4114
4115 locate->slot_offset.constant += part_size_in_regs;
4116
4117 if (!in_regs || reg_parm_stack_space > 0)
4118 pad_to_arg_alignment (&locate->slot_offset, boundary,
4119 &locate->alignment_pad);
4120
4121 locate->size.constant = (-initial_offset_ptr->constant
4122 - locate->slot_offset.constant);
4123 if (initial_offset_ptr->var)
4124 locate->size.var = size_binop (MINUS_EXPR,
4125 size_binop (MINUS_EXPR,
4126 ssize_int (0),
4127 initial_offset_ptr->var),
4128 locate->slot_offset.var);
4129
4130 /* Pad_below needs the pre-rounded size to know how much to pad
4131 below. */
4132 locate->offset = locate->slot_offset;
4133 if (where_pad == PAD_DOWNWARD)
4134 pad_below (&locate->offset, passed_mode, sizetree);
4135
4136 }
4137 else
4138 {
4139 if (!in_regs || reg_parm_stack_space > 0)
4140 pad_to_arg_alignment (initial_offset_ptr, boundary,
4141 &locate->alignment_pad);
4142 locate->slot_offset = *initial_offset_ptr;
4143
4144 #ifdef PUSH_ROUNDING
4145 if (passed_mode != BLKmode)
4146 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4147 #endif
4148
4149 /* Pad_below needs the pre-rounded size to know how much to pad below
4150 so this must be done before rounding up. */
4151 locate->offset = locate->slot_offset;
4152 if (where_pad == PAD_DOWNWARD)
4153 pad_below (&locate->offset, passed_mode, sizetree);
4154
4155 if (where_pad != PAD_NONE
4156 && (!tree_fits_uhwi_p (sizetree)
4157 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4158 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4159
4160 ADD_PARM_SIZE (locate->size, sizetree);
4161
4162 locate->size.constant -= part_size_in_regs;
4163 }
4164
4165 locate->offset.constant
4166 += targetm.calls.function_arg_offset (passed_mode, type);
4167 }
4168
4169 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4170 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4171
4172 static void
4173 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4174 struct args_size *alignment_pad)
4175 {
4176 tree save_var = NULL_TREE;
4177 poly_int64 save_constant = 0;
4178 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4179 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4180
4181 #ifdef SPARC_STACK_BOUNDARY_HACK
4182 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4183 the real alignment of %sp. However, when it does this, the
4184 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4185 if (SPARC_STACK_BOUNDARY_HACK)
4186 sp_offset = 0;
4187 #endif
4188
4189 if (boundary > PARM_BOUNDARY)
4190 {
4191 save_var = offset_ptr->var;
4192 save_constant = offset_ptr->constant;
4193 }
4194
4195 alignment_pad->var = NULL_TREE;
4196 alignment_pad->constant = 0;
4197
4198 if (boundary > BITS_PER_UNIT)
4199 {
4200 int misalign;
4201 if (offset_ptr->var
4202 || !known_misalignment (offset_ptr->constant + sp_offset,
4203 boundary_in_bytes, &misalign))
4204 {
4205 tree sp_offset_tree = ssize_int (sp_offset);
4206 tree offset = size_binop (PLUS_EXPR,
4207 ARGS_SIZE_TREE (*offset_ptr),
4208 sp_offset_tree);
4209 tree rounded;
4210 if (ARGS_GROW_DOWNWARD)
4211 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4212 else
4213 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4214
4215 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4216 /* ARGS_SIZE_TREE includes constant term. */
4217 offset_ptr->constant = 0;
4218 if (boundary > PARM_BOUNDARY)
4219 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4220 save_var);
4221 }
4222 else
4223 {
4224 if (ARGS_GROW_DOWNWARD)
4225 offset_ptr->constant -= misalign;
4226 else
4227 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4228
4229 if (boundary > PARM_BOUNDARY)
4230 alignment_pad->constant = offset_ptr->constant - save_constant;
4231 }
4232 }
4233 }
4234
4235 static void
4236 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4237 {
4238 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4239 int misalign;
4240 if (passed_mode != BLKmode
4241 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4242 offset_ptr->constant += -misalign & (align - 1);
4243 else
4244 {
4245 if (TREE_CODE (sizetree) != INTEGER_CST
4246 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4247 {
4248 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4249 tree s2 = round_up (sizetree, align);
4250 /* Add it in. */
4251 ADD_PARM_SIZE (*offset_ptr, s2);
4252 SUB_PARM_SIZE (*offset_ptr, sizetree);
4253 }
4254 }
4255 }
4256 \f
4257
4258 /* True if register REGNO was alive at a place where `setjmp' was
4259 called and was set more than once or is an argument. Such regs may
4260 be clobbered by `longjmp'. */
4261
4262 static bool
4263 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4264 {
4265 /* There appear to be cases where some local vars never reach the
4266 backend but have bogus regnos. */
4267 if (regno >= max_reg_num ())
4268 return false;
4269
4270 return ((REG_N_SETS (regno) > 1
4271 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4272 regno))
4273 && REGNO_REG_SET_P (setjmp_crosses, regno));
4274 }
4275
4276 /* Walk the tree of blocks describing the binding levels within a
4277 function and warn about variables the might be killed by setjmp or
4278 vfork. This is done after calling flow_analysis before register
4279 allocation since that will clobber the pseudo-regs to hard
4280 regs. */
4281
4282 static void
4283 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4284 {
4285 tree decl, sub;
4286
4287 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4288 {
4289 if (VAR_P (decl)
4290 && DECL_RTL_SET_P (decl)
4291 && REG_P (DECL_RTL (decl))
4292 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4293 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4294 " %<longjmp%> or %<vfork%>", decl);
4295 }
4296
4297 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4298 setjmp_vars_warning (setjmp_crosses, sub);
4299 }
4300
4301 /* Do the appropriate part of setjmp_vars_warning
4302 but for arguments instead of local variables. */
4303
4304 static void
4305 setjmp_args_warning (bitmap setjmp_crosses)
4306 {
4307 tree decl;
4308 for (decl = DECL_ARGUMENTS (current_function_decl);
4309 decl; decl = DECL_CHAIN (decl))
4310 if (DECL_RTL (decl) != 0
4311 && REG_P (DECL_RTL (decl))
4312 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4313 warning (OPT_Wclobbered,
4314 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4315 decl);
4316 }
4317
4318 /* Generate warning messages for variables live across setjmp. */
4319
4320 void
4321 generate_setjmp_warnings (void)
4322 {
4323 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4324
4325 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4326 || bitmap_empty_p (setjmp_crosses))
4327 return;
4328
4329 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4330 setjmp_args_warning (setjmp_crosses);
4331 }
4332
4333 \f
4334 /* Reverse the order of elements in the fragment chain T of blocks,
4335 and return the new head of the chain (old last element).
4336 In addition to that clear BLOCK_SAME_RANGE flags when needed
4337 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4338 its super fragment origin. */
4339
4340 static tree
4341 block_fragments_nreverse (tree t)
4342 {
4343 tree prev = 0, block, next, prev_super = 0;
4344 tree super = BLOCK_SUPERCONTEXT (t);
4345 if (BLOCK_FRAGMENT_ORIGIN (super))
4346 super = BLOCK_FRAGMENT_ORIGIN (super);
4347 for (block = t; block; block = next)
4348 {
4349 next = BLOCK_FRAGMENT_CHAIN (block);
4350 BLOCK_FRAGMENT_CHAIN (block) = prev;
4351 if ((prev && !BLOCK_SAME_RANGE (prev))
4352 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4353 != prev_super))
4354 BLOCK_SAME_RANGE (block) = 0;
4355 prev_super = BLOCK_SUPERCONTEXT (block);
4356 BLOCK_SUPERCONTEXT (block) = super;
4357 prev = block;
4358 }
4359 t = BLOCK_FRAGMENT_ORIGIN (t);
4360 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4361 != prev_super)
4362 BLOCK_SAME_RANGE (t) = 0;
4363 BLOCK_SUPERCONTEXT (t) = super;
4364 return prev;
4365 }
4366
4367 /* Reverse the order of elements in the chain T of blocks,
4368 and return the new head of the chain (old last element).
4369 Also do the same on subblocks and reverse the order of elements
4370 in BLOCK_FRAGMENT_CHAIN as well. */
4371
4372 static tree
4373 blocks_nreverse_all (tree t)
4374 {
4375 tree prev = 0, block, next;
4376 for (block = t; block; block = next)
4377 {
4378 next = BLOCK_CHAIN (block);
4379 BLOCK_CHAIN (block) = prev;
4380 if (BLOCK_FRAGMENT_CHAIN (block)
4381 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4382 {
4383 BLOCK_FRAGMENT_CHAIN (block)
4384 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4385 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4386 BLOCK_SAME_RANGE (block) = 0;
4387 }
4388 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4389 prev = block;
4390 }
4391 return prev;
4392 }
4393
4394
4395 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4396 and create duplicate blocks. */
4397 /* ??? Need an option to either create block fragments or to create
4398 abstract origin duplicates of a source block. It really depends
4399 on what optimization has been performed. */
4400
4401 void
4402 reorder_blocks (void)
4403 {
4404 tree block = DECL_INITIAL (current_function_decl);
4405
4406 if (block == NULL_TREE)
4407 return;
4408
4409 auto_vec<tree, 10> block_stack;
4410
4411 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4412 clear_block_marks (block);
4413
4414 /* Prune the old trees away, so that they don't get in the way. */
4415 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4416 BLOCK_CHAIN (block) = NULL_TREE;
4417
4418 /* Recreate the block tree from the note nesting. */
4419 reorder_blocks_1 (get_insns (), block, &block_stack);
4420 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4421 }
4422
4423 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4424
4425 void
4426 clear_block_marks (tree block)
4427 {
4428 while (block)
4429 {
4430 TREE_ASM_WRITTEN (block) = 0;
4431 clear_block_marks (BLOCK_SUBBLOCKS (block));
4432 block = BLOCK_CHAIN (block);
4433 }
4434 }
4435
4436 static void
4437 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4438 vec<tree> *p_block_stack)
4439 {
4440 rtx_insn *insn;
4441 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4442
4443 for (insn = insns; insn; insn = NEXT_INSN (insn))
4444 {
4445 if (NOTE_P (insn))
4446 {
4447 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4448 {
4449 tree block = NOTE_BLOCK (insn);
4450 tree origin;
4451
4452 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4453 origin = block;
4454
4455 if (prev_end)
4456 BLOCK_SAME_RANGE (prev_end) = 0;
4457 prev_end = NULL_TREE;
4458
4459 /* If we have seen this block before, that means it now
4460 spans multiple address regions. Create a new fragment. */
4461 if (TREE_ASM_WRITTEN (block))
4462 {
4463 tree new_block = copy_node (block);
4464
4465 BLOCK_SAME_RANGE (new_block) = 0;
4466 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4467 BLOCK_FRAGMENT_CHAIN (new_block)
4468 = BLOCK_FRAGMENT_CHAIN (origin);
4469 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4470
4471 NOTE_BLOCK (insn) = new_block;
4472 block = new_block;
4473 }
4474
4475 if (prev_beg == current_block && prev_beg)
4476 BLOCK_SAME_RANGE (block) = 1;
4477
4478 prev_beg = origin;
4479
4480 BLOCK_SUBBLOCKS (block) = 0;
4481 TREE_ASM_WRITTEN (block) = 1;
4482 /* When there's only one block for the entire function,
4483 current_block == block and we mustn't do this, it
4484 will cause infinite recursion. */
4485 if (block != current_block)
4486 {
4487 tree super;
4488 if (block != origin)
4489 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4490 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4491 (origin))
4492 == current_block);
4493 if (p_block_stack->is_empty ())
4494 super = current_block;
4495 else
4496 {
4497 super = p_block_stack->last ();
4498 gcc_assert (super == current_block
4499 || BLOCK_FRAGMENT_ORIGIN (super)
4500 == current_block);
4501 }
4502 BLOCK_SUPERCONTEXT (block) = super;
4503 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4504 BLOCK_SUBBLOCKS (current_block) = block;
4505 current_block = origin;
4506 }
4507 p_block_stack->safe_push (block);
4508 }
4509 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4510 {
4511 NOTE_BLOCK (insn) = p_block_stack->pop ();
4512 current_block = BLOCK_SUPERCONTEXT (current_block);
4513 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4514 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4515 prev_beg = NULL_TREE;
4516 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4517 ? NOTE_BLOCK (insn) : NULL_TREE;
4518 }
4519 }
4520 else
4521 {
4522 prev_beg = NULL_TREE;
4523 if (prev_end)
4524 BLOCK_SAME_RANGE (prev_end) = 0;
4525 prev_end = NULL_TREE;
4526 }
4527 }
4528 }
4529
4530 /* Reverse the order of elements in the chain T of blocks,
4531 and return the new head of the chain (old last element). */
4532
4533 tree
4534 blocks_nreverse (tree t)
4535 {
4536 tree prev = 0, block, next;
4537 for (block = t; block; block = next)
4538 {
4539 next = BLOCK_CHAIN (block);
4540 BLOCK_CHAIN (block) = prev;
4541 prev = block;
4542 }
4543 return prev;
4544 }
4545
4546 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4547 by modifying the last node in chain 1 to point to chain 2. */
4548
4549 tree
4550 block_chainon (tree op1, tree op2)
4551 {
4552 tree t1;
4553
4554 if (!op1)
4555 return op2;
4556 if (!op2)
4557 return op1;
4558
4559 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4560 continue;
4561 BLOCK_CHAIN (t1) = op2;
4562
4563 #ifdef ENABLE_TREE_CHECKING
4564 {
4565 tree t2;
4566 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4567 gcc_assert (t2 != t1);
4568 }
4569 #endif
4570
4571 return op1;
4572 }
4573
4574 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4575 non-NULL, list them all into VECTOR, in a depth-first preorder
4576 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4577 blocks. */
4578
4579 static int
4580 all_blocks (tree block, tree *vector)
4581 {
4582 int n_blocks = 0;
4583
4584 while (block)
4585 {
4586 TREE_ASM_WRITTEN (block) = 0;
4587
4588 /* Record this block. */
4589 if (vector)
4590 vector[n_blocks] = block;
4591
4592 ++n_blocks;
4593
4594 /* Record the subblocks, and their subblocks... */
4595 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4596 vector ? vector + n_blocks : 0);
4597 block = BLOCK_CHAIN (block);
4598 }
4599
4600 return n_blocks;
4601 }
4602
4603 /* Return a vector containing all the blocks rooted at BLOCK. The
4604 number of elements in the vector is stored in N_BLOCKS_P. The
4605 vector is dynamically allocated; it is the caller's responsibility
4606 to call `free' on the pointer returned. */
4607
4608 static tree *
4609 get_block_vector (tree block, int *n_blocks_p)
4610 {
4611 tree *block_vector;
4612
4613 *n_blocks_p = all_blocks (block, NULL);
4614 block_vector = XNEWVEC (tree, *n_blocks_p);
4615 all_blocks (block, block_vector);
4616
4617 return block_vector;
4618 }
4619
4620 static GTY(()) int next_block_index = 2;
4621
4622 /* Set BLOCK_NUMBER for all the blocks in FN. */
4623
4624 void
4625 number_blocks (tree fn)
4626 {
4627 int i;
4628 int n_blocks;
4629 tree *block_vector;
4630
4631 /* For XCOFF debugging output, we start numbering the blocks
4632 from 1 within each function, rather than keeping a running
4633 count. */
4634 #if defined (XCOFF_DEBUGGING_INFO)
4635 if (write_symbols == XCOFF_DEBUG)
4636 next_block_index = 1;
4637 #endif
4638
4639 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4640
4641 /* The top-level BLOCK isn't numbered at all. */
4642 for (i = 1; i < n_blocks; ++i)
4643 /* We number the blocks from two. */
4644 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4645
4646 free (block_vector);
4647
4648 return;
4649 }
4650
4651 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4652
4653 DEBUG_FUNCTION tree
4654 debug_find_var_in_block_tree (tree var, tree block)
4655 {
4656 tree t;
4657
4658 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4659 if (t == var)
4660 return block;
4661
4662 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4663 {
4664 tree ret = debug_find_var_in_block_tree (var, t);
4665 if (ret)
4666 return ret;
4667 }
4668
4669 return NULL_TREE;
4670 }
4671 \f
4672 /* Keep track of whether we're in a dummy function context. If we are,
4673 we don't want to invoke the set_current_function hook, because we'll
4674 get into trouble if the hook calls target_reinit () recursively or
4675 when the initial initialization is not yet complete. */
4676
4677 static bool in_dummy_function;
4678
4679 /* Invoke the target hook when setting cfun. Update the optimization options
4680 if the function uses different options than the default. */
4681
4682 static void
4683 invoke_set_current_function_hook (tree fndecl)
4684 {
4685 if (!in_dummy_function)
4686 {
4687 tree opts = ((fndecl)
4688 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4689 : optimization_default_node);
4690
4691 if (!opts)
4692 opts = optimization_default_node;
4693
4694 /* Change optimization options if needed. */
4695 if (optimization_current_node != opts)
4696 {
4697 optimization_current_node = opts;
4698 cl_optimization_restore (&global_options, &global_options_set,
4699 TREE_OPTIMIZATION (opts));
4700 }
4701
4702 targetm.set_current_function (fndecl);
4703 this_fn_optabs = this_target_optabs;
4704
4705 /* Initialize global alignment variables after op. */
4706 parse_alignment_opts ();
4707
4708 if (opts != optimization_default_node)
4709 {
4710 init_tree_optimization_optabs (opts);
4711 if (TREE_OPTIMIZATION_OPTABS (opts))
4712 this_fn_optabs = (struct target_optabs *)
4713 TREE_OPTIMIZATION_OPTABS (opts);
4714 }
4715 }
4716 }
4717
4718 /* cfun should never be set directly; use this function. */
4719
4720 void
4721 set_cfun (struct function *new_cfun, bool force)
4722 {
4723 if (cfun != new_cfun || force)
4724 {
4725 cfun = new_cfun;
4726 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4727 redirect_edge_var_map_empty ();
4728 }
4729 }
4730
4731 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4732
4733 static vec<function *> cfun_stack;
4734
4735 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4736 current_function_decl accordingly. */
4737
4738 void
4739 push_cfun (struct function *new_cfun)
4740 {
4741 gcc_assert ((!cfun && !current_function_decl)
4742 || (cfun && current_function_decl == cfun->decl));
4743 cfun_stack.safe_push (cfun);
4744 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4745 set_cfun (new_cfun);
4746 }
4747
4748 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4749
4750 void
4751 pop_cfun (void)
4752 {
4753 struct function *new_cfun = cfun_stack.pop ();
4754 /* When in_dummy_function, we do have a cfun but current_function_decl is
4755 NULL. We also allow pushing NULL cfun and subsequently changing
4756 current_function_decl to something else and have both restored by
4757 pop_cfun. */
4758 gcc_checking_assert (in_dummy_function
4759 || !cfun
4760 || current_function_decl == cfun->decl);
4761 set_cfun (new_cfun);
4762 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4763 }
4764
4765 /* Return value of funcdef and increase it. */
4766 int
4767 get_next_funcdef_no (void)
4768 {
4769 return funcdef_no++;
4770 }
4771
4772 /* Return value of funcdef. */
4773 int
4774 get_last_funcdef_no (void)
4775 {
4776 return funcdef_no;
4777 }
4778
4779 /* Allocate and initialize the stack usage info data structure for the
4780 current function. */
4781 static void
4782 allocate_stack_usage_info (void)
4783 {
4784 gcc_assert (!cfun->su);
4785 cfun->su = ggc_cleared_alloc<stack_usage> ();
4786 cfun->su->static_stack_size = -1;
4787 }
4788
4789 /* Allocate a function structure for FNDECL and set its contents
4790 to the defaults. Set cfun to the newly-allocated object.
4791 Some of the helper functions invoked during initialization assume
4792 that cfun has already been set. Therefore, assign the new object
4793 directly into cfun and invoke the back end hook explicitly at the
4794 very end, rather than initializing a temporary and calling set_cfun
4795 on it.
4796
4797 ABSTRACT_P is true if this is a function that will never be seen by
4798 the middle-end. Such functions are front-end concepts (like C++
4799 function templates) that do not correspond directly to functions
4800 placed in object files. */
4801
4802 void
4803 allocate_struct_function (tree fndecl, bool abstract_p)
4804 {
4805 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4806
4807 cfun = ggc_cleared_alloc<function> ();
4808
4809 init_eh_for_function ();
4810
4811 if (init_machine_status)
4812 cfun->machine = (*init_machine_status) ();
4813
4814 #ifdef OVERRIDE_ABI_FORMAT
4815 OVERRIDE_ABI_FORMAT (fndecl);
4816 #endif
4817
4818 if (fndecl != NULL_TREE)
4819 {
4820 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4821 cfun->decl = fndecl;
4822 current_function_funcdef_no = get_next_funcdef_no ();
4823 }
4824
4825 invoke_set_current_function_hook (fndecl);
4826
4827 if (fndecl != NULL_TREE)
4828 {
4829 tree result = DECL_RESULT (fndecl);
4830
4831 if (!abstract_p)
4832 {
4833 /* Now that we have activated any function-specific attributes
4834 that might affect layout, particularly vector modes, relayout
4835 each of the parameters and the result. */
4836 relayout_decl (result);
4837 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4838 parm = DECL_CHAIN (parm))
4839 relayout_decl (parm);
4840
4841 /* Similarly relayout the function decl. */
4842 targetm.target_option.relayout_function (fndecl);
4843 }
4844
4845 if (!abstract_p && aggregate_value_p (result, fndecl))
4846 {
4847 #ifdef PCC_STATIC_STRUCT_RETURN
4848 cfun->returns_pcc_struct = 1;
4849 #endif
4850 cfun->returns_struct = 1;
4851 }
4852
4853 cfun->stdarg = stdarg_p (fntype);
4854
4855 /* Assume all registers in stdarg functions need to be saved. */
4856 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4857 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4858
4859 /* ??? This could be set on a per-function basis by the front-end
4860 but is this worth the hassle? */
4861 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4862 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4863
4864 if (!profile_flag && !flag_instrument_function_entry_exit)
4865 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4866
4867 if (flag_callgraph_info)
4868 allocate_stack_usage_info ();
4869 }
4870
4871 /* Don't enable begin stmt markers if var-tracking at assignments is
4872 disabled. The markers make little sense without the variable
4873 binding annotations among them. */
4874 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4875 && MAY_HAVE_DEBUG_MARKER_STMTS;
4876 }
4877
4878 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4879 instead of just setting it. */
4880
4881 void
4882 push_struct_function (tree fndecl)
4883 {
4884 /* When in_dummy_function we might be in the middle of a pop_cfun and
4885 current_function_decl and cfun may not match. */
4886 gcc_assert (in_dummy_function
4887 || (!cfun && !current_function_decl)
4888 || (cfun && current_function_decl == cfun->decl));
4889 cfun_stack.safe_push (cfun);
4890 current_function_decl = fndecl;
4891 allocate_struct_function (fndecl, false);
4892 }
4893
4894 /* Reset crtl and other non-struct-function variables to defaults as
4895 appropriate for emitting rtl at the start of a function. */
4896
4897 static void
4898 prepare_function_start (void)
4899 {
4900 gcc_assert (!get_last_insn ());
4901
4902 if (in_dummy_function)
4903 crtl->abi = &default_function_abi;
4904 else
4905 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4906
4907 init_temp_slots ();
4908 init_emit ();
4909 init_varasm_status ();
4910 init_expr ();
4911 default_rtl_profile ();
4912
4913 if (flag_stack_usage_info && !flag_callgraph_info)
4914 allocate_stack_usage_info ();
4915
4916 cse_not_expected = ! optimize;
4917
4918 /* Caller save not needed yet. */
4919 caller_save_needed = 0;
4920
4921 /* We haven't done register allocation yet. */
4922 reg_renumber = 0;
4923
4924 /* Indicate that we have not instantiated virtual registers yet. */
4925 virtuals_instantiated = 0;
4926
4927 /* Indicate that we want CONCATs now. */
4928 generating_concat_p = 1;
4929
4930 /* Indicate we have no need of a frame pointer yet. */
4931 frame_pointer_needed = 0;
4932 }
4933
4934 void
4935 push_dummy_function (bool with_decl)
4936 {
4937 tree fn_decl, fn_type, fn_result_decl;
4938
4939 gcc_assert (!in_dummy_function);
4940 in_dummy_function = true;
4941
4942 if (with_decl)
4943 {
4944 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4945 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4946 fn_type);
4947 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4948 NULL_TREE, void_type_node);
4949 DECL_RESULT (fn_decl) = fn_result_decl;
4950 DECL_ARTIFICIAL (fn_decl) = 1;
4951 tree fn_name = get_identifier (" ");
4952 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4953 }
4954 else
4955 fn_decl = NULL_TREE;
4956
4957 push_struct_function (fn_decl);
4958 }
4959
4960 /* Initialize the rtl expansion mechanism so that we can do simple things
4961 like generate sequences. This is used to provide a context during global
4962 initialization of some passes. You must call expand_dummy_function_end
4963 to exit this context. */
4964
4965 void
4966 init_dummy_function_start (void)
4967 {
4968 push_dummy_function (false);
4969 prepare_function_start ();
4970 }
4971
4972 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4973 and initialize static variables for generating RTL for the statements
4974 of the function. */
4975
4976 void
4977 init_function_start (tree subr)
4978 {
4979 /* Initialize backend, if needed. */
4980 initialize_rtl ();
4981
4982 prepare_function_start ();
4983 decide_function_section (subr);
4984
4985 /* Warn if this value is an aggregate type,
4986 regardless of which calling convention we are using for it. */
4987 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4988 warning (OPT_Waggregate_return, "function returns an aggregate");
4989 }
4990
4991 /* Expand code to verify the stack_protect_guard. This is invoked at
4992 the end of a function to be protected. */
4993
4994 void
4995 stack_protect_epilogue (void)
4996 {
4997 tree guard_decl = crtl->stack_protect_guard_decl;
4998 rtx_code_label *label = gen_label_rtx ();
4999 rtx x, y;
5000 rtx_insn *seq = NULL;
5001
5002 x = expand_normal (crtl->stack_protect_guard);
5003
5004 if (targetm.have_stack_protect_combined_test () && guard_decl)
5005 {
5006 gcc_assert (DECL_P (guard_decl));
5007 y = DECL_RTL (guard_decl);
5008 /* Allow the target to compute address of Y and compare it with X without
5009 leaking Y into a register. This combined address + compare pattern
5010 allows the target to prevent spilling of any intermediate results by
5011 splitting it after register allocator. */
5012 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5013 }
5014 else
5015 {
5016 if (guard_decl)
5017 y = expand_normal (guard_decl);
5018 else
5019 y = const0_rtx;
5020
5021 /* Allow the target to compare Y with X without leaking either into
5022 a register. */
5023 if (targetm.have_stack_protect_test ())
5024 seq = targetm.gen_stack_protect_test (x, y, label);
5025 }
5026
5027 if (seq)
5028 emit_insn (seq);
5029 else
5030 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5031
5032 /* The noreturn predictor has been moved to the tree level. The rtl-level
5033 predictors estimate this branch about 20%, which isn't enough to get
5034 things moved out of line. Since this is the only extant case of adding
5035 a noreturn function at the rtl level, it doesn't seem worth doing ought
5036 except adding the prediction by hand. */
5037 rtx_insn *tmp = get_last_insn ();
5038 if (JUMP_P (tmp))
5039 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5040
5041 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5042 free_temp_slots ();
5043 emit_label (label);
5044 }
5045 \f
5046 /* Start the RTL for a new function, and set variables used for
5047 emitting RTL.
5048 SUBR is the FUNCTION_DECL node.
5049 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5050 the function's parameters, which must be run at any return statement. */
5051
5052 void
5053 expand_function_start (tree subr)
5054 {
5055 /* Make sure volatile mem refs aren't considered
5056 valid operands of arithmetic insns. */
5057 init_recog_no_volatile ();
5058
5059 crtl->profile
5060 = (profile_flag
5061 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5062
5063 crtl->limit_stack
5064 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5065
5066 /* Make the label for return statements to jump to. Do not special
5067 case machines with special return instructions -- they will be
5068 handled later during jump, ifcvt, or epilogue creation. */
5069 return_label = gen_label_rtx ();
5070
5071 /* Initialize rtx used to return the value. */
5072 /* Do this before assign_parms so that we copy the struct value address
5073 before any library calls that assign parms might generate. */
5074
5075 /* Decide whether to return the value in memory or in a register. */
5076 tree res = DECL_RESULT (subr);
5077 if (aggregate_value_p (res, subr))
5078 {
5079 /* Returning something that won't go in a register. */
5080 rtx value_address = 0;
5081
5082 #ifdef PCC_STATIC_STRUCT_RETURN
5083 if (cfun->returns_pcc_struct)
5084 {
5085 int size = int_size_in_bytes (TREE_TYPE (res));
5086 value_address = assemble_static_space (size);
5087 }
5088 else
5089 #endif
5090 {
5091 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5092 /* Expect to be passed the address of a place to store the value.
5093 If it is passed as an argument, assign_parms will take care of
5094 it. */
5095 if (sv)
5096 {
5097 value_address = gen_reg_rtx (Pmode);
5098 emit_move_insn (value_address, sv);
5099 }
5100 }
5101 if (value_address)
5102 {
5103 rtx x = value_address;
5104 if (!DECL_BY_REFERENCE (res))
5105 {
5106 x = gen_rtx_MEM (DECL_MODE (res), x);
5107 set_mem_attributes (x, res, 1);
5108 }
5109 set_parm_rtl (res, x);
5110 }
5111 }
5112 else if (DECL_MODE (res) == VOIDmode)
5113 /* If return mode is void, this decl rtl should not be used. */
5114 set_parm_rtl (res, NULL_RTX);
5115 else
5116 {
5117 /* Compute the return values into a pseudo reg, which we will copy
5118 into the true return register after the cleanups are done. */
5119 tree return_type = TREE_TYPE (res);
5120
5121 /* If we may coalesce this result, make sure it has the expected mode
5122 in case it was promoted. But we need not bother about BLKmode. */
5123 machine_mode promoted_mode
5124 = flag_tree_coalesce_vars && is_gimple_reg (res)
5125 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5126 : BLKmode;
5127
5128 if (promoted_mode != BLKmode)
5129 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5130 else if (TYPE_MODE (return_type) != BLKmode
5131 && targetm.calls.return_in_msb (return_type))
5132 /* expand_function_end will insert the appropriate padding in
5133 this case. Use the return value's natural (unpadded) mode
5134 within the function proper. */
5135 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5136 else
5137 {
5138 /* In order to figure out what mode to use for the pseudo, we
5139 figure out what the mode of the eventual return register will
5140 actually be, and use that. */
5141 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5142
5143 /* Structures that are returned in registers are not
5144 aggregate_value_p, so we may see a PARALLEL or a REG. */
5145 if (REG_P (hard_reg))
5146 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5147 else
5148 {
5149 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5150 set_parm_rtl (res, gen_group_rtx (hard_reg));
5151 }
5152 }
5153
5154 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5155 result to the real return register(s). */
5156 DECL_REGISTER (res) = 1;
5157 }
5158
5159 /* Initialize rtx for parameters and local variables.
5160 In some cases this requires emitting insns. */
5161 assign_parms (subr);
5162
5163 /* If function gets a static chain arg, store it. */
5164 if (cfun->static_chain_decl)
5165 {
5166 tree parm = cfun->static_chain_decl;
5167 rtx local, chain;
5168 rtx_insn *insn;
5169 int unsignedp;
5170
5171 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5172 chain = targetm.calls.static_chain (current_function_decl, true);
5173
5174 set_decl_incoming_rtl (parm, chain, false);
5175 set_parm_rtl (parm, local);
5176 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5177
5178 if (GET_MODE (local) != GET_MODE (chain))
5179 {
5180 convert_move (local, chain, unsignedp);
5181 insn = get_last_insn ();
5182 }
5183 else
5184 insn = emit_move_insn (local, chain);
5185
5186 /* Mark the register as eliminable, similar to parameters. */
5187 if (MEM_P (chain)
5188 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5189 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5190
5191 /* If we aren't optimizing, save the static chain onto the stack. */
5192 if (!optimize)
5193 {
5194 tree saved_static_chain_decl
5195 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5196 DECL_NAME (parm), TREE_TYPE (parm));
5197 rtx saved_static_chain_rtx
5198 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5199 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5200 emit_move_insn (saved_static_chain_rtx, chain);
5201 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5202 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5203 }
5204 }
5205
5206 /* The following was moved from init_function_start.
5207 The move was supposed to make sdb output more accurate. */
5208 /* Indicate the beginning of the function body,
5209 as opposed to parm setup. */
5210 emit_note (NOTE_INSN_FUNCTION_BEG);
5211
5212 gcc_assert (NOTE_P (get_last_insn ()));
5213
5214 parm_birth_insn = get_last_insn ();
5215
5216 /* If the function receives a non-local goto, then store the
5217 bits we need to restore the frame pointer. */
5218 if (cfun->nonlocal_goto_save_area)
5219 {
5220 tree t_save;
5221 rtx r_save;
5222
5223 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5224 gcc_assert (DECL_RTL_SET_P (var));
5225
5226 t_save = build4 (ARRAY_REF,
5227 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5228 cfun->nonlocal_goto_save_area,
5229 integer_zero_node, NULL_TREE, NULL_TREE);
5230 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5231 gcc_assert (GET_MODE (r_save) == Pmode);
5232
5233 emit_move_insn (r_save, hard_frame_pointer_rtx);
5234 update_nonlocal_goto_save_area ();
5235 }
5236
5237 if (crtl->profile)
5238 {
5239 #ifdef PROFILE_HOOK
5240 PROFILE_HOOK (current_function_funcdef_no);
5241 #endif
5242 }
5243
5244 /* If we are doing generic stack checking, the probe should go here. */
5245 if (flag_stack_check == GENERIC_STACK_CHECK)
5246 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5247 }
5248 \f
5249 void
5250 pop_dummy_function (void)
5251 {
5252 pop_cfun ();
5253 in_dummy_function = false;
5254 }
5255
5256 /* Undo the effects of init_dummy_function_start. */
5257 void
5258 expand_dummy_function_end (void)
5259 {
5260 gcc_assert (in_dummy_function);
5261
5262 /* End any sequences that failed to be closed due to syntax errors. */
5263 while (in_sequence_p ())
5264 end_sequence ();
5265
5266 /* Outside function body, can't compute type's actual size
5267 until next function's body starts. */
5268
5269 free_after_parsing (cfun);
5270 free_after_compilation (cfun);
5271 pop_dummy_function ();
5272 }
5273
5274 /* Helper for diddle_return_value. */
5275
5276 void
5277 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5278 {
5279 if (! outgoing)
5280 return;
5281
5282 if (REG_P (outgoing))
5283 (*doit) (outgoing, arg);
5284 else if (GET_CODE (outgoing) == PARALLEL)
5285 {
5286 int i;
5287
5288 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5289 {
5290 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5291
5292 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5293 (*doit) (x, arg);
5294 }
5295 }
5296 }
5297
5298 /* Call DOIT for each hard register used as a return value from
5299 the current function. */
5300
5301 void
5302 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5303 {
5304 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5305 }
5306
5307 static void
5308 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5309 {
5310 emit_clobber (reg);
5311 }
5312
5313 void
5314 clobber_return_register (void)
5315 {
5316 diddle_return_value (do_clobber_return_reg, NULL);
5317
5318 /* In case we do use pseudo to return value, clobber it too. */
5319 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5320 {
5321 tree decl_result = DECL_RESULT (current_function_decl);
5322 rtx decl_rtl = DECL_RTL (decl_result);
5323 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5324 {
5325 do_clobber_return_reg (decl_rtl, NULL);
5326 }
5327 }
5328 }
5329
5330 static void
5331 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5332 {
5333 emit_use (reg);
5334 }
5335
5336 static void
5337 use_return_register (void)
5338 {
5339 diddle_return_value (do_use_return_reg, NULL);
5340 }
5341
5342 /* Generate RTL for the end of the current function. */
5343
5344 void
5345 expand_function_end (void)
5346 {
5347 /* If arg_pointer_save_area was referenced only from a nested
5348 function, we will not have initialized it yet. Do that now. */
5349 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5350 get_arg_pointer_save_area ();
5351
5352 /* If we are doing generic stack checking and this function makes calls,
5353 do a stack probe at the start of the function to ensure we have enough
5354 space for another stack frame. */
5355 if (flag_stack_check == GENERIC_STACK_CHECK)
5356 {
5357 rtx_insn *insn, *seq;
5358
5359 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5360 if (CALL_P (insn))
5361 {
5362 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5363 start_sequence ();
5364 if (STACK_CHECK_MOVING_SP)
5365 anti_adjust_stack_and_probe (max_frame_size, true);
5366 else
5367 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5368 seq = get_insns ();
5369 end_sequence ();
5370 set_insn_locations (seq, prologue_location);
5371 emit_insn_before (seq, stack_check_probe_note);
5372 break;
5373 }
5374 }
5375
5376 /* End any sequences that failed to be closed due to syntax errors. */
5377 while (in_sequence_p ())
5378 end_sequence ();
5379
5380 clear_pending_stack_adjust ();
5381 do_pending_stack_adjust ();
5382
5383 /* Output a linenumber for the end of the function.
5384 SDB depended on this. */
5385 set_curr_insn_location (input_location);
5386
5387 /* Before the return label (if any), clobber the return
5388 registers so that they are not propagated live to the rest of
5389 the function. This can only happen with functions that drop
5390 through; if there had been a return statement, there would
5391 have either been a return rtx, or a jump to the return label.
5392
5393 We delay actual code generation after the current_function_value_rtx
5394 is computed. */
5395 rtx_insn *clobber_after = get_last_insn ();
5396
5397 /* Output the label for the actual return from the function. */
5398 emit_label (return_label);
5399
5400 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5401 {
5402 /* Let except.cc know where it should emit the call to unregister
5403 the function context for sjlj exceptions. */
5404 if (flag_exceptions)
5405 sjlj_emit_function_exit_after (get_last_insn ());
5406 }
5407
5408 /* If this is an implementation of throw, do what's necessary to
5409 communicate between __builtin_eh_return and the epilogue. */
5410 expand_eh_return ();
5411
5412 /* If stack protection is enabled for this function, check the guard. */
5413 if (crtl->stack_protect_guard
5414 && targetm.stack_protect_runtime_enabled_p ()
5415 && naked_return_label == NULL_RTX)
5416 stack_protect_epilogue ();
5417
5418 /* If scalar return value was computed in a pseudo-reg, or was a named
5419 return value that got dumped to the stack, copy that to the hard
5420 return register. */
5421 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5422 {
5423 tree decl_result = DECL_RESULT (current_function_decl);
5424 rtx decl_rtl = DECL_RTL (decl_result);
5425
5426 if ((REG_P (decl_rtl)
5427 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5428 : DECL_REGISTER (decl_result))
5429 /* Unless the psABI says not to. */
5430 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5431 {
5432 rtx real_decl_rtl = crtl->return_rtx;
5433 complex_mode cmode;
5434
5435 /* This should be set in assign_parms. */
5436 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5437
5438 /* If this is a BLKmode structure being returned in registers,
5439 then use the mode computed in expand_return. Note that if
5440 decl_rtl is memory, then its mode may have been changed,
5441 but that crtl->return_rtx has not. */
5442 if (GET_MODE (real_decl_rtl) == BLKmode)
5443 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5444
5445 /* If a non-BLKmode return value should be padded at the least
5446 significant end of the register, shift it left by the appropriate
5447 amount. BLKmode results are handled using the group load/store
5448 machinery. */
5449 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5450 && REG_P (real_decl_rtl)
5451 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5452 {
5453 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5454 REGNO (real_decl_rtl)),
5455 decl_rtl);
5456 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5457 }
5458 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5459 {
5460 /* If expand_function_start has created a PARALLEL for decl_rtl,
5461 move the result to the real return registers. Otherwise, do
5462 a group load from decl_rtl for a named return. */
5463 if (GET_CODE (decl_rtl) == PARALLEL)
5464 emit_group_move (real_decl_rtl, decl_rtl);
5465 else
5466 emit_group_load (real_decl_rtl, decl_rtl,
5467 TREE_TYPE (decl_result),
5468 int_size_in_bytes (TREE_TYPE (decl_result)));
5469 }
5470 /* In the case of complex integer modes smaller than a word, we'll
5471 need to generate some non-trivial bitfield insertions. Do that
5472 on a pseudo and not the hard register. */
5473 else if (GET_CODE (decl_rtl) == CONCAT
5474 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5475 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5476 {
5477 int old_generating_concat_p;
5478 rtx tmp;
5479
5480 old_generating_concat_p = generating_concat_p;
5481 generating_concat_p = 0;
5482 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5483 generating_concat_p = old_generating_concat_p;
5484
5485 emit_move_insn (tmp, decl_rtl);
5486 emit_move_insn (real_decl_rtl, tmp);
5487 }
5488 /* If a named return value dumped decl_return to memory, then
5489 we may need to re-do the PROMOTE_MODE signed/unsigned
5490 extension. */
5491 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5492 {
5493 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5494 promote_function_mode (TREE_TYPE (decl_result),
5495 GET_MODE (decl_rtl), &unsignedp,
5496 TREE_TYPE (current_function_decl), 1);
5497
5498 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5499 }
5500 else
5501 emit_move_insn (real_decl_rtl, decl_rtl);
5502 }
5503 }
5504
5505 /* If returning a structure, arrange to return the address of the value
5506 in a place where debuggers expect to find it.
5507
5508 If returning a structure PCC style,
5509 the caller also depends on this value.
5510 And cfun->returns_pcc_struct is not necessarily set. */
5511 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5512 && !targetm.calls.omit_struct_return_reg)
5513 {
5514 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5515 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5516 rtx outgoing;
5517
5518 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5519 type = TREE_TYPE (type);
5520 else
5521 value_address = XEXP (value_address, 0);
5522
5523 outgoing = targetm.calls.function_value (build_pointer_type (type),
5524 current_function_decl, true);
5525
5526 /* Mark this as a function return value so integrate will delete the
5527 assignment and USE below when inlining this function. */
5528 REG_FUNCTION_VALUE_P (outgoing) = 1;
5529
5530 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5531 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5532 value_address = convert_memory_address (mode, value_address);
5533
5534 emit_move_insn (outgoing, value_address);
5535
5536 /* Show return register used to hold result (in this case the address
5537 of the result. */
5538 crtl->return_rtx = outgoing;
5539 }
5540
5541 /* Emit the actual code to clobber return register. Don't emit
5542 it if clobber_after is a barrier, then the previous basic block
5543 certainly doesn't fall thru into the exit block. */
5544 if (!BARRIER_P (clobber_after))
5545 {
5546 start_sequence ();
5547 clobber_return_register ();
5548 rtx_insn *seq = get_insns ();
5549 end_sequence ();
5550
5551 emit_insn_after (seq, clobber_after);
5552 }
5553
5554 /* Output the label for the naked return from the function. */
5555 if (naked_return_label)
5556 emit_label (naked_return_label);
5557
5558 /* @@@ This is a kludge. We want to ensure that instructions that
5559 may trap are not moved into the epilogue by scheduling, because
5560 we don't always emit unwind information for the epilogue. */
5561 if (cfun->can_throw_non_call_exceptions
5562 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5563 emit_insn (gen_blockage ());
5564
5565 /* If stack protection is enabled for this function, check the guard. */
5566 if (crtl->stack_protect_guard
5567 && targetm.stack_protect_runtime_enabled_p ()
5568 && naked_return_label)
5569 stack_protect_epilogue ();
5570
5571 /* If we had calls to alloca, and this machine needs
5572 an accurate stack pointer to exit the function,
5573 insert some code to save and restore the stack pointer. */
5574 if (! EXIT_IGNORE_STACK
5575 && cfun->calls_alloca)
5576 {
5577 rtx tem = 0;
5578
5579 start_sequence ();
5580 emit_stack_save (SAVE_FUNCTION, &tem);
5581 rtx_insn *seq = get_insns ();
5582 end_sequence ();
5583 emit_insn_before (seq, parm_birth_insn);
5584
5585 emit_stack_restore (SAVE_FUNCTION, tem);
5586 }
5587
5588 /* ??? This should no longer be necessary since stupid is no longer with
5589 us, but there are some parts of the compiler (eg reload_combine, and
5590 sh mach_dep_reorg) that still try and compute their own lifetime info
5591 instead of using the general framework. */
5592 use_return_register ();
5593 }
5594
5595 rtx
5596 get_arg_pointer_save_area (void)
5597 {
5598 rtx ret = arg_pointer_save_area;
5599
5600 if (! ret)
5601 {
5602 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5603 arg_pointer_save_area = ret;
5604 }
5605
5606 if (! crtl->arg_pointer_save_area_init)
5607 {
5608 /* Save the arg pointer at the beginning of the function. The
5609 generated stack slot may not be a valid memory address, so we
5610 have to check it and fix it if necessary. */
5611 start_sequence ();
5612 emit_move_insn (validize_mem (copy_rtx (ret)),
5613 crtl->args.internal_arg_pointer);
5614 rtx_insn *seq = get_insns ();
5615 end_sequence ();
5616
5617 push_topmost_sequence ();
5618 emit_insn_after (seq, entry_of_function ());
5619 pop_topmost_sequence ();
5620
5621 crtl->arg_pointer_save_area_init = true;
5622 }
5623
5624 return ret;
5625 }
5626 \f
5627
5628 /* If debugging dumps are requested, dump information about how the
5629 target handled -fstack-check=clash for the prologue.
5630
5631 PROBES describes what if any probes were emitted.
5632
5633 RESIDUALS indicates if the prologue had any residual allocation
5634 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5635
5636 void
5637 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5638 {
5639 if (!dump_file)
5640 return;
5641
5642 switch (probes)
5643 {
5644 case NO_PROBE_NO_FRAME:
5645 fprintf (dump_file,
5646 "Stack clash no probe no stack adjustment in prologue.\n");
5647 break;
5648 case NO_PROBE_SMALL_FRAME:
5649 fprintf (dump_file,
5650 "Stack clash no probe small stack adjustment in prologue.\n");
5651 break;
5652 case PROBE_INLINE:
5653 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5654 break;
5655 case PROBE_LOOP:
5656 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5657 break;
5658 }
5659
5660 if (residuals)
5661 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5662 else
5663 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5664
5665 if (frame_pointer_needed)
5666 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5667 else
5668 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5669
5670 if (TREE_THIS_VOLATILE (cfun->decl))
5671 fprintf (dump_file,
5672 "Stack clash noreturn prologue, assuming no implicit"
5673 " probes in caller.\n");
5674 else
5675 fprintf (dump_file,
5676 "Stack clash not noreturn prologue.\n");
5677 }
5678
5679 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5680 for the first time. */
5681
5682 static void
5683 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5684 {
5685 rtx_insn *tmp;
5686 hash_table<insn_cache_hasher> *hash = *hashp;
5687
5688 if (hash == NULL)
5689 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5690
5691 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5692 {
5693 rtx *slot = hash->find_slot (tmp, INSERT);
5694 gcc_assert (*slot == NULL);
5695 *slot = tmp;
5696 }
5697 }
5698
5699 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5700 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5701 insn, then record COPY as well. */
5702
5703 void
5704 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5705 {
5706 hash_table<insn_cache_hasher> *hash;
5707 rtx *slot;
5708
5709 hash = epilogue_insn_hash;
5710 if (!hash || !hash->find (insn))
5711 {
5712 hash = prologue_insn_hash;
5713 if (!hash || !hash->find (insn))
5714 return;
5715 }
5716
5717 slot = hash->find_slot (copy, INSERT);
5718 gcc_assert (*slot == NULL);
5719 *slot = copy;
5720 }
5721
5722 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5723 we can be running after reorg, SEQUENCE rtl is possible. */
5724
5725 static bool
5726 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5727 {
5728 if (hash == NULL)
5729 return false;
5730
5731 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5732 {
5733 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5734 int i;
5735 for (i = seq->len () - 1; i >= 0; i--)
5736 if (hash->find (seq->element (i)))
5737 return true;
5738 return false;
5739 }
5740
5741 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5742 }
5743
5744 int
5745 prologue_contains (const rtx_insn *insn)
5746 {
5747 return contains (insn, prologue_insn_hash);
5748 }
5749
5750 int
5751 epilogue_contains (const rtx_insn *insn)
5752 {
5753 return contains (insn, epilogue_insn_hash);
5754 }
5755
5756 int
5757 prologue_epilogue_contains (const rtx_insn *insn)
5758 {
5759 if (contains (insn, prologue_insn_hash))
5760 return 1;
5761 if (contains (insn, epilogue_insn_hash))
5762 return 1;
5763 return 0;
5764 }
5765
5766 void
5767 record_prologue_seq (rtx_insn *seq)
5768 {
5769 record_insns (seq, NULL, &prologue_insn_hash);
5770 }
5771
5772 void
5773 record_epilogue_seq (rtx_insn *seq)
5774 {
5775 record_insns (seq, NULL, &epilogue_insn_hash);
5776 }
5777
5778 /* Set JUMP_LABEL for a return insn. */
5779
5780 void
5781 set_return_jump_label (rtx_insn *returnjump)
5782 {
5783 rtx pat = PATTERN (returnjump);
5784 if (GET_CODE (pat) == PARALLEL)
5785 pat = XVECEXP (pat, 0, 0);
5786 if (ANY_RETURN_P (pat))
5787 JUMP_LABEL (returnjump) = pat;
5788 else
5789 JUMP_LABEL (returnjump) = ret_rtx;
5790 }
5791
5792 /* Return a sequence to be used as the split prologue for the current
5793 function, or NULL. */
5794
5795 static rtx_insn *
5796 make_split_prologue_seq (void)
5797 {
5798 if (!flag_split_stack
5799 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5800 return NULL;
5801
5802 start_sequence ();
5803 emit_insn (targetm.gen_split_stack_prologue ());
5804 rtx_insn *seq = get_insns ();
5805 end_sequence ();
5806
5807 record_insns (seq, NULL, &prologue_insn_hash);
5808 set_insn_locations (seq, prologue_location);
5809
5810 return seq;
5811 }
5812
5813 /* Return a sequence to be used as the prologue for the current function,
5814 or NULL. */
5815
5816 static rtx_insn *
5817 make_prologue_seq (void)
5818 {
5819 if (!targetm.have_prologue ())
5820 return NULL;
5821
5822 start_sequence ();
5823 rtx_insn *seq = targetm.gen_prologue ();
5824 emit_insn (seq);
5825
5826 /* Insert an explicit USE for the frame pointer
5827 if the profiling is on and the frame pointer is required. */
5828 if (crtl->profile && frame_pointer_needed)
5829 emit_use (hard_frame_pointer_rtx);
5830
5831 /* Retain a map of the prologue insns. */
5832 record_insns (seq, NULL, &prologue_insn_hash);
5833 emit_note (NOTE_INSN_PROLOGUE_END);
5834
5835 /* Ensure that instructions are not moved into the prologue when
5836 profiling is on. The call to the profiling routine can be
5837 emitted within the live range of a call-clobbered register. */
5838 if (!targetm.profile_before_prologue () && crtl->profile)
5839 emit_insn (gen_blockage ());
5840
5841 seq = get_insns ();
5842 end_sequence ();
5843 set_insn_locations (seq, prologue_location);
5844
5845 return seq;
5846 }
5847
5848 /* Emit a sequence of insns to zero the call-used registers before RET
5849 according to ZERO_REGS_TYPE. */
5850
5851 static void
5852 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5853 {
5854 bool only_gpr = true;
5855 bool only_used = true;
5856 bool only_arg = true;
5857
5858 /* No need to zero call-used-regs in main (). */
5859 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5860 return;
5861
5862 /* No need to zero call-used-regs if __builtin_eh_return is called
5863 since it isn't a normal function return. */
5864 if (crtl->calls_eh_return)
5865 return;
5866
5867 /* If only_gpr is true, only zero call-used registers that are
5868 general-purpose registers; if only_used is true, only zero
5869 call-used registers that are used in the current function;
5870 if only_arg is true, only zero call-used registers that pass
5871 parameters defined by the flatform's calling conversion. */
5872
5873 using namespace zero_regs_flags;
5874
5875 only_gpr = zero_regs_type & ONLY_GPR;
5876 only_used = zero_regs_type & ONLY_USED;
5877 only_arg = zero_regs_type & ONLY_ARG;
5878
5879 /* For each of the hard registers, we should zero it if:
5880 1. it is a call-used register;
5881 and 2. it is not a fixed register;
5882 and 3. it is not live at the return of the routine;
5883 and 4. it is general registor if only_gpr is true;
5884 and 5. it is used in the routine if only_used is true;
5885 and 6. it is a register that passes parameter if only_arg is true. */
5886
5887 /* First, prepare the data flow information. */
5888 basic_block bb = BLOCK_FOR_INSN (ret);
5889 auto_bitmap live_out;
5890 bitmap_copy (live_out, df_get_live_out (bb));
5891 df_simulate_initialize_backwards (bb, live_out);
5892 df_simulate_one_insn_backwards (bb, ret, live_out);
5893
5894 HARD_REG_SET selected_hardregs;
5895 HARD_REG_SET all_call_used_regs;
5896 CLEAR_HARD_REG_SET (selected_hardregs);
5897 CLEAR_HARD_REG_SET (all_call_used_regs);
5898 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5899 {
5900 if (!crtl->abi->clobbers_full_reg_p (regno))
5901 continue;
5902 if (fixed_regs[regno])
5903 continue;
5904 if (REGNO_REG_SET_P (live_out, regno))
5905 continue;
5906 #ifdef LEAF_REG_REMAP
5907 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5908 continue;
5909 #endif
5910 /* This is a call used register that is dead at return. */
5911 SET_HARD_REG_BIT (all_call_used_regs, regno);
5912
5913 if (only_gpr
5914 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5915 continue;
5916 if (only_used && !df_regs_ever_live_p (regno))
5917 continue;
5918 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5919 continue;
5920
5921 /* Now this is a register that we might want to zero. */
5922 SET_HARD_REG_BIT (selected_hardregs, regno);
5923 }
5924
5925 if (hard_reg_set_empty_p (selected_hardregs))
5926 return;
5927
5928 /* Now that we have a hard register set that needs to be zeroed, pass it to
5929 target to generate zeroing sequence. */
5930 HARD_REG_SET zeroed_hardregs;
5931 start_sequence ();
5932 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5933
5934 /* For most targets, the returned set of registers is a subset of
5935 selected_hardregs, however, for some of the targets (for example MIPS),
5936 clearing some registers that are in selected_hardregs requires clearing
5937 other call used registers that are not in the selected_hardregs, under
5938 such situation, the returned set of registers must be a subset of
5939 all call used registers. */
5940 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5941
5942 rtx_insn *seq = get_insns ();
5943 end_sequence ();
5944 if (seq)
5945 {
5946 /* Emit the memory blockage and register clobber asm volatile before
5947 the whole sequence. */
5948 start_sequence ();
5949 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5950 rtx_insn *seq_barrier = get_insns ();
5951 end_sequence ();
5952
5953 emit_insn_before (seq_barrier, ret);
5954 emit_insn_before (seq, ret);
5955
5956 /* Update the data flow information. */
5957 crtl->must_be_zero_on_return |= zeroed_hardregs;
5958 df_update_exit_block_uses ();
5959 }
5960 }
5961
5962
5963 /* Return a sequence to be used as the epilogue for the current function,
5964 or NULL. */
5965
5966 static rtx_insn *
5967 make_epilogue_seq (void)
5968 {
5969 if (!targetm.have_epilogue ())
5970 return NULL;
5971
5972 start_sequence ();
5973 emit_note (NOTE_INSN_EPILOGUE_BEG);
5974 rtx_insn *seq = targetm.gen_epilogue ();
5975 if (seq)
5976 emit_jump_insn (seq);
5977
5978 /* Retain a map of the epilogue insns. */
5979 record_insns (seq, NULL, &epilogue_insn_hash);
5980 set_insn_locations (seq, epilogue_location);
5981
5982 seq = get_insns ();
5983 rtx_insn *returnjump = get_last_insn ();
5984 end_sequence ();
5985
5986 if (JUMP_P (returnjump))
5987 set_return_jump_label (returnjump);
5988
5989 return seq;
5990 }
5991
5992
5993 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5994 this into place with notes indicating where the prologue ends and where
5995 the epilogue begins. Update the basic block information when possible.
5996
5997 Notes on epilogue placement:
5998 There are several kinds of edges to the exit block:
5999 * a single fallthru edge from LAST_BB
6000 * possibly, edges from blocks containing sibcalls
6001 * possibly, fake edges from infinite loops
6002
6003 The epilogue is always emitted on the fallthru edge from the last basic
6004 block in the function, LAST_BB, into the exit block.
6005
6006 If LAST_BB is empty except for a label, it is the target of every
6007 other basic block in the function that ends in a return. If a
6008 target has a return or simple_return pattern (possibly with
6009 conditional variants), these basic blocks can be changed so that a
6010 return insn is emitted into them, and their target is adjusted to
6011 the real exit block.
6012
6013 Notes on shrink wrapping: We implement a fairly conservative
6014 version of shrink-wrapping rather than the textbook one. We only
6015 generate a single prologue and a single epilogue. This is
6016 sufficient to catch a number of interesting cases involving early
6017 exits.
6018
6019 First, we identify the blocks that require the prologue to occur before
6020 them. These are the ones that modify a call-saved register, or reference
6021 any of the stack or frame pointer registers. To simplify things, we then
6022 mark everything reachable from these blocks as also requiring a prologue.
6023 This takes care of loops automatically, and avoids the need to examine
6024 whether MEMs reference the frame, since it is sufficient to check for
6025 occurrences of the stack or frame pointer.
6026
6027 We then compute the set of blocks for which the need for a prologue
6028 is anticipatable (borrowing terminology from the shrink-wrapping
6029 description in Muchnick's book). These are the blocks which either
6030 require a prologue themselves, or those that have only successors
6031 where the prologue is anticipatable. The prologue needs to be
6032 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6033 is not. For the moment, we ensure that only one such edge exists.
6034
6035 The epilogue is placed as described above, but we make a
6036 distinction between inserting return and simple_return patterns
6037 when modifying other blocks that end in a return. Blocks that end
6038 in a sibcall omit the sibcall_epilogue if the block is not in
6039 ANTIC. */
6040
6041 void
6042 thread_prologue_and_epilogue_insns (void)
6043 {
6044 df_analyze ();
6045
6046 /* Can't deal with multiple successors of the entry block at the
6047 moment. Function should always have at least one entry
6048 point. */
6049 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6050
6051 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6052 edge orig_entry_edge = entry_edge;
6053
6054 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6055 rtx_insn *prologue_seq = make_prologue_seq ();
6056 rtx_insn *epilogue_seq = make_epilogue_seq ();
6057
6058 /* Try to perform a kind of shrink-wrapping, making sure the
6059 prologue/epilogue is emitted only around those parts of the
6060 function that require it. */
6061 try_shrink_wrapping (&entry_edge, prologue_seq);
6062
6063 /* If the target can handle splitting the prologue/epilogue into separate
6064 components, try to shrink-wrap these components separately. */
6065 try_shrink_wrapping_separate (entry_edge->dest);
6066
6067 /* If that did anything for any component we now need the generate the
6068 "main" prologue again. Because some targets require some of these
6069 to be called in a specific order (i386 requires the split prologue
6070 to be first, for example), we create all three sequences again here.
6071 If this does not work for some target, that target should not enable
6072 separate shrink-wrapping. */
6073 if (crtl->shrink_wrapped_separate)
6074 {
6075 split_prologue_seq = make_split_prologue_seq ();
6076 prologue_seq = make_prologue_seq ();
6077 epilogue_seq = make_epilogue_seq ();
6078 }
6079
6080 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6081
6082 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6083 this marker for the splits of EH_RETURN patterns, and nothing else
6084 uses the flag in the meantime. */
6085 epilogue_completed = 1;
6086
6087 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6088 some targets, these get split to a special version of the epilogue
6089 code. In order to be able to properly annotate these with unwind
6090 info, try to split them now. If we get a valid split, drop an
6091 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6092 edge e;
6093 edge_iterator ei;
6094 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6095 {
6096 rtx_insn *prev, *last, *trial;
6097
6098 if (e->flags & EDGE_FALLTHRU)
6099 continue;
6100 last = BB_END (e->src);
6101 if (!eh_returnjump_p (last))
6102 continue;
6103
6104 prev = PREV_INSN (last);
6105 trial = try_split (PATTERN (last), last, 1);
6106 if (trial == last)
6107 continue;
6108
6109 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6110 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6111 }
6112
6113 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6114
6115 if (exit_fallthru_edge)
6116 {
6117 if (epilogue_seq)
6118 {
6119 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6120 commit_edge_insertions ();
6121
6122 /* The epilogue insns we inserted may cause the exit edge to no longer
6123 be fallthru. */
6124 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6125 {
6126 if (((e->flags & EDGE_FALLTHRU) != 0)
6127 && returnjump_p (BB_END (e->src)))
6128 e->flags &= ~EDGE_FALLTHRU;
6129 }
6130 }
6131 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6132 {
6133 /* We have a fall-through edge to the exit block, the source is not
6134 at the end of the function, and there will be an assembler epilogue
6135 at the end of the function.
6136 We can't use force_nonfallthru here, because that would try to
6137 use return. Inserting a jump 'by hand' is extremely messy, so
6138 we take advantage of cfg_layout_finalize using
6139 fixup_fallthru_exit_predecessor. */
6140 cfg_layout_initialize (0);
6141 basic_block cur_bb;
6142 FOR_EACH_BB_FN (cur_bb, cfun)
6143 if (cur_bb->index >= NUM_FIXED_BLOCKS
6144 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6145 cur_bb->aux = cur_bb->next_bb;
6146 cfg_layout_finalize ();
6147 }
6148 }
6149
6150 /* Insert the prologue. */
6151
6152 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6153
6154 if (split_prologue_seq || prologue_seq)
6155 {
6156 rtx_insn *split_prologue_insn = split_prologue_seq;
6157 if (split_prologue_seq)
6158 {
6159 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6160 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6161 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6162 }
6163
6164 rtx_insn *prologue_insn = prologue_seq;
6165 if (prologue_seq)
6166 {
6167 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6168 prologue_insn = NEXT_INSN (prologue_insn);
6169 insert_insn_on_edge (prologue_seq, entry_edge);
6170 }
6171
6172 commit_edge_insertions ();
6173
6174 /* Look for basic blocks within the prologue insns. */
6175 if (split_prologue_insn
6176 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6177 split_prologue_insn = NULL;
6178 if (prologue_insn
6179 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6180 prologue_insn = NULL;
6181 if (split_prologue_insn || prologue_insn)
6182 {
6183 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6184 bitmap_clear (blocks);
6185 if (split_prologue_insn)
6186 bitmap_set_bit (blocks,
6187 BLOCK_FOR_INSN (split_prologue_insn)->index);
6188 if (prologue_insn)
6189 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6190 find_many_sub_basic_blocks (blocks);
6191 }
6192 }
6193
6194 default_rtl_profile ();
6195
6196 /* Emit sibling epilogues before any sibling call sites. */
6197 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6198 (e = ei_safe_edge (ei));
6199 ei_next (&ei))
6200 {
6201 /* Skip those already handled, the ones that run without prologue. */
6202 if (e->flags & EDGE_IGNORE)
6203 {
6204 e->flags &= ~EDGE_IGNORE;
6205 continue;
6206 }
6207
6208 rtx_insn *insn = BB_END (e->src);
6209
6210 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6211 continue;
6212
6213 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6214 {
6215 start_sequence ();
6216 emit_note (NOTE_INSN_EPILOGUE_BEG);
6217 emit_insn (ep_seq);
6218 rtx_insn *seq = get_insns ();
6219 end_sequence ();
6220
6221 /* Retain a map of the epilogue insns. Used in life analysis to
6222 avoid getting rid of sibcall epilogue insns. Do this before we
6223 actually emit the sequence. */
6224 record_insns (seq, NULL, &epilogue_insn_hash);
6225 set_insn_locations (seq, epilogue_location);
6226
6227 emit_insn_before (seq, insn);
6228 }
6229 }
6230
6231 if (epilogue_seq)
6232 {
6233 rtx_insn *insn, *next;
6234
6235 /* Similarly, move any line notes that appear after the epilogue.
6236 There is no need, however, to be quite so anal about the existence
6237 of such a note. Also possibly move
6238 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6239 info generation. */
6240 for (insn = epilogue_seq; insn; insn = next)
6241 {
6242 next = NEXT_INSN (insn);
6243 if (NOTE_P (insn)
6244 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6245 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6246 }
6247 }
6248
6249 /* Threading the prologue and epilogue changes the artificial refs
6250 in the entry and exit blocks. */
6251 epilogue_completed = 1;
6252 df_update_entry_exit_and_calls ();
6253 }
6254
6255 /* Reposition the prologue-end and epilogue-begin notes after
6256 instruction scheduling. */
6257
6258 void
6259 reposition_prologue_and_epilogue_notes (void)
6260 {
6261 if (!targetm.have_prologue ()
6262 && !targetm.have_epilogue ()
6263 && !targetm.have_sibcall_epilogue ())
6264 return;
6265
6266 /* Since the hash table is created on demand, the fact that it is
6267 non-null is a signal that it is non-empty. */
6268 if (prologue_insn_hash != NULL)
6269 {
6270 size_t len = prologue_insn_hash->elements ();
6271 rtx_insn *insn, *last = NULL, *note = NULL;
6272
6273 /* Scan from the beginning until we reach the last prologue insn. */
6274 /* ??? While we do have the CFG intact, there are two problems:
6275 (1) The prologue can contain loops (typically probing the stack),
6276 which means that the end of the prologue isn't in the first bb.
6277 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6278 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6279 {
6280 if (NOTE_P (insn))
6281 {
6282 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6283 note = insn;
6284 }
6285 else if (contains (insn, prologue_insn_hash))
6286 {
6287 last = insn;
6288 if (--len == 0)
6289 break;
6290 }
6291 }
6292
6293 if (last)
6294 {
6295 if (note == NULL)
6296 {
6297 /* Scan forward looking for the PROLOGUE_END note. It should
6298 be right at the beginning of the block, possibly with other
6299 insn notes that got moved there. */
6300 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6301 {
6302 if (NOTE_P (note)
6303 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6304 break;
6305 }
6306 }
6307
6308 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6309 if (LABEL_P (last))
6310 last = NEXT_INSN (last);
6311 reorder_insns (note, note, last);
6312 }
6313 }
6314
6315 if (epilogue_insn_hash != NULL)
6316 {
6317 edge_iterator ei;
6318 edge e;
6319
6320 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6321 {
6322 rtx_insn *insn, *first = NULL, *note = NULL;
6323 basic_block bb = e->src;
6324
6325 /* Scan from the beginning until we reach the first epilogue insn. */
6326 FOR_BB_INSNS (bb, insn)
6327 {
6328 if (NOTE_P (insn))
6329 {
6330 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6331 {
6332 note = insn;
6333 if (first != NULL)
6334 break;
6335 }
6336 }
6337 else if (first == NULL && contains (insn, epilogue_insn_hash))
6338 {
6339 first = insn;
6340 if (note != NULL)
6341 break;
6342 }
6343 }
6344
6345 if (note)
6346 {
6347 /* If the function has a single basic block, and no real
6348 epilogue insns (e.g. sibcall with no cleanup), the
6349 epilogue note can get scheduled before the prologue
6350 note. If we have frame related prologue insns, having
6351 them scanned during the epilogue will result in a crash.
6352 In this case re-order the epilogue note to just before
6353 the last insn in the block. */
6354 if (first == NULL)
6355 first = BB_END (bb);
6356
6357 if (PREV_INSN (first) != note)
6358 reorder_insns (note, note, PREV_INSN (first));
6359 }
6360 }
6361 }
6362 }
6363
6364 /* Returns the name of function declared by FNDECL. */
6365 const char *
6366 fndecl_name (tree fndecl)
6367 {
6368 if (fndecl == NULL)
6369 return "(nofn)";
6370 return lang_hooks.decl_printable_name (fndecl, 1);
6371 }
6372
6373 /* Returns the name of function FN. */
6374 const char *
6375 function_name (struct function *fn)
6376 {
6377 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6378 return fndecl_name (fndecl);
6379 }
6380
6381 /* Returns the name of the current function. */
6382 const char *
6383 current_function_name (void)
6384 {
6385 return function_name (cfun);
6386 }
6387 \f
6388
6389 static unsigned int
6390 rest_of_handle_check_leaf_regs (void)
6391 {
6392 #ifdef LEAF_REGISTERS
6393 crtl->uses_only_leaf_regs
6394 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6395 #endif
6396 return 0;
6397 }
6398
6399 /* Insert a TYPE into the used types hash table of CFUN. */
6400
6401 static void
6402 used_types_insert_helper (tree type, struct function *func)
6403 {
6404 if (type != NULL && func != NULL)
6405 {
6406 if (func->used_types_hash == NULL)
6407 func->used_types_hash = hash_set<tree>::create_ggc (37);
6408
6409 func->used_types_hash->add (type);
6410 }
6411 }
6412
6413 /* Given a type, insert it into the used hash table in cfun. */
6414 void
6415 used_types_insert (tree t)
6416 {
6417 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6418 if (TYPE_NAME (t))
6419 break;
6420 else
6421 t = TREE_TYPE (t);
6422 if (TREE_CODE (t) == ERROR_MARK)
6423 return;
6424 if (TYPE_NAME (t) == NULL_TREE
6425 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6426 t = TYPE_MAIN_VARIANT (t);
6427 if (debug_info_level > DINFO_LEVEL_NONE)
6428 {
6429 if (cfun)
6430 used_types_insert_helper (t, cfun);
6431 else
6432 {
6433 /* So this might be a type referenced by a global variable.
6434 Record that type so that we can later decide to emit its
6435 debug information. */
6436 vec_safe_push (types_used_by_cur_var_decl, t);
6437 }
6438 }
6439 }
6440
6441 /* Helper to Hash a struct types_used_by_vars_entry. */
6442
6443 static hashval_t
6444 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6445 {
6446 gcc_assert (entry && entry->var_decl && entry->type);
6447
6448 return iterative_hash_object (entry->type,
6449 iterative_hash_object (entry->var_decl, 0));
6450 }
6451
6452 /* Hash function of the types_used_by_vars_entry hash table. */
6453
6454 hashval_t
6455 used_type_hasher::hash (types_used_by_vars_entry *entry)
6456 {
6457 return hash_types_used_by_vars_entry (entry);
6458 }
6459
6460 /*Equality function of the types_used_by_vars_entry hash table. */
6461
6462 bool
6463 used_type_hasher::equal (types_used_by_vars_entry *e1,
6464 types_used_by_vars_entry *e2)
6465 {
6466 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6467 }
6468
6469 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6470
6471 void
6472 types_used_by_var_decl_insert (tree type, tree var_decl)
6473 {
6474 if (type != NULL && var_decl != NULL)
6475 {
6476 types_used_by_vars_entry **slot;
6477 struct types_used_by_vars_entry e;
6478 e.var_decl = var_decl;
6479 e.type = type;
6480 if (types_used_by_vars_hash == NULL)
6481 types_used_by_vars_hash
6482 = hash_table<used_type_hasher>::create_ggc (37);
6483
6484 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6485 if (*slot == NULL)
6486 {
6487 struct types_used_by_vars_entry *entry;
6488 entry = ggc_alloc<types_used_by_vars_entry> ();
6489 entry->type = type;
6490 entry->var_decl = var_decl;
6491 *slot = entry;
6492 }
6493 }
6494 }
6495
6496 namespace {
6497
6498 const pass_data pass_data_leaf_regs =
6499 {
6500 RTL_PASS, /* type */
6501 "*leaf_regs", /* name */
6502 OPTGROUP_NONE, /* optinfo_flags */
6503 TV_NONE, /* tv_id */
6504 0, /* properties_required */
6505 0, /* properties_provided */
6506 0, /* properties_destroyed */
6507 0, /* todo_flags_start */
6508 0, /* todo_flags_finish */
6509 };
6510
6511 class pass_leaf_regs : public rtl_opt_pass
6512 {
6513 public:
6514 pass_leaf_regs (gcc::context *ctxt)
6515 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6516 {}
6517
6518 /* opt_pass methods: */
6519 virtual unsigned int execute (function *)
6520 {
6521 return rest_of_handle_check_leaf_regs ();
6522 }
6523
6524 }; // class pass_leaf_regs
6525
6526 } // anon namespace
6527
6528 rtl_opt_pass *
6529 make_pass_leaf_regs (gcc::context *ctxt)
6530 {
6531 return new pass_leaf_regs (ctxt);
6532 }
6533
6534 static unsigned int
6535 rest_of_handle_thread_prologue_and_epilogue (void)
6536 {
6537 /* prepare_shrink_wrap is sensitive to the block structure of the control
6538 flow graph, so clean it up first. */
6539 if (optimize)
6540 cleanup_cfg (0);
6541
6542 /* On some machines, the prologue and epilogue code, or parts thereof,
6543 can be represented as RTL. Doing so lets us schedule insns between
6544 it and the rest of the code and also allows delayed branch
6545 scheduling to operate in the epilogue. */
6546 thread_prologue_and_epilogue_insns ();
6547
6548 /* Some non-cold blocks may now be only reachable from cold blocks.
6549 Fix that up. */
6550 fixup_partitions ();
6551
6552 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6553 see PR57320. */
6554 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6555
6556 /* The stack usage info is finalized during prologue expansion. */
6557 if (flag_stack_usage_info || flag_callgraph_info)
6558 output_stack_usage ();
6559
6560 return 0;
6561 }
6562
6563 /* Record a final call to CALLEE at LOCATION. */
6564
6565 void
6566 record_final_call (tree callee, location_t location)
6567 {
6568 struct callinfo_callee datum = { location, callee };
6569 vec_safe_push (cfun->su->callees, datum);
6570 }
6571
6572 /* Record a dynamic allocation made for DECL_OR_EXP. */
6573
6574 void
6575 record_dynamic_alloc (tree decl_or_exp)
6576 {
6577 struct callinfo_dalloc datum;
6578
6579 if (DECL_P (decl_or_exp))
6580 {
6581 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6582 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6583 const char *dot = strrchr (name, '.');
6584 if (dot)
6585 name = dot + 1;
6586 datum.name = ggc_strdup (name);
6587 }
6588 else
6589 {
6590 datum.location = EXPR_LOCATION (decl_or_exp);
6591 datum.name = NULL;
6592 }
6593
6594 vec_safe_push (cfun->su->dallocs, datum);
6595 }
6596
6597 namespace {
6598
6599 const pass_data pass_data_thread_prologue_and_epilogue =
6600 {
6601 RTL_PASS, /* type */
6602 "pro_and_epilogue", /* name */
6603 OPTGROUP_NONE, /* optinfo_flags */
6604 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6605 0, /* properties_required */
6606 0, /* properties_provided */
6607 0, /* properties_destroyed */
6608 0, /* todo_flags_start */
6609 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6610 };
6611
6612 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6613 {
6614 public:
6615 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6616 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6617 {}
6618
6619 /* opt_pass methods: */
6620 virtual unsigned int execute (function *)
6621 {
6622 return rest_of_handle_thread_prologue_and_epilogue ();
6623 }
6624
6625 }; // class pass_thread_prologue_and_epilogue
6626
6627 } // anon namespace
6628
6629 rtl_opt_pass *
6630 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6631 {
6632 return new pass_thread_prologue_and_epilogue (ctxt);
6633 }
6634
6635 namespace {
6636
6637 const pass_data pass_data_zero_call_used_regs =
6638 {
6639 RTL_PASS, /* type */
6640 "zero_call_used_regs", /* name */
6641 OPTGROUP_NONE, /* optinfo_flags */
6642 TV_NONE, /* tv_id */
6643 0, /* properties_required */
6644 0, /* properties_provided */
6645 0, /* properties_destroyed */
6646 0, /* todo_flags_start */
6647 0, /* todo_flags_finish */
6648 };
6649
6650 class pass_zero_call_used_regs: public rtl_opt_pass
6651 {
6652 public:
6653 pass_zero_call_used_regs (gcc::context *ctxt)
6654 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6655 {}
6656
6657 /* opt_pass methods: */
6658 virtual unsigned int execute (function *);
6659
6660 }; // class pass_zero_call_used_regs
6661
6662 unsigned int
6663 pass_zero_call_used_regs::execute (function *fun)
6664 {
6665 using namespace zero_regs_flags;
6666 unsigned int zero_regs_type = UNSET;
6667
6668 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6669 DECL_ATTRIBUTES (fun->decl));
6670
6671 /* Get the type of zero_call_used_regs from function attribute.
6672 We have filtered out invalid attribute values already at this point. */
6673 if (attr_zero_regs)
6674 {
6675 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6676 is the attribute argument's value. */
6677 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6678 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6679 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6680 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6681
6682 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6683 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6684 zero_call_used_regs_opts[i].name) == 0)
6685 {
6686 zero_regs_type = zero_call_used_regs_opts[i].flag;
6687 break;
6688 }
6689 }
6690
6691 if (!zero_regs_type)
6692 zero_regs_type = flag_zero_call_used_regs;
6693
6694 /* No need to zero call-used-regs when no user request is present. */
6695 if (!(zero_regs_type & ENABLED))
6696 return 0;
6697
6698 edge_iterator ei;
6699 edge e;
6700
6701 /* This pass needs data flow information. */
6702 df_analyze ();
6703
6704 /* Iterate over the function's return instructions and insert any
6705 register zeroing required by the -fzero-call-used-regs command-line
6706 option or the "zero_call_used_regs" function attribute. */
6707 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6708 {
6709 rtx_insn *insn = BB_END (e->src);
6710 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6711 gen_call_used_regs_seq (insn, zero_regs_type);
6712 }
6713
6714 return 0;
6715 }
6716
6717 } // anon namespace
6718
6719 rtl_opt_pass *
6720 make_pass_zero_call_used_regs (gcc::context *ctxt)
6721 {
6722 return new pass_zero_call_used_regs (ctxt);
6723 }
6724
6725 /* If CONSTRAINT is a matching constraint, then return its number.
6726 Otherwise, return -1. */
6727
6728 static int
6729 matching_constraint_num (const char *constraint)
6730 {
6731 if (*constraint == '%')
6732 constraint++;
6733
6734 if (IN_RANGE (*constraint, '0', '9'))
6735 return strtoul (constraint, NULL, 10);
6736
6737 return -1;
6738 }
6739
6740 /* This mini-pass fixes fall-out from SSA in asm statements that have
6741 in-out constraints. Say you start with
6742
6743 orig = inout;
6744 asm ("": "+mr" (inout));
6745 use (orig);
6746
6747 which is transformed very early to use explicit output and match operands:
6748
6749 orig = inout;
6750 asm ("": "=mr" (inout) : "0" (inout));
6751 use (orig);
6752
6753 Or, after SSA and copyprop,
6754
6755 asm ("": "=mr" (inout_2) : "0" (inout_1));
6756 use (inout_1);
6757
6758 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6759 they represent two separate values, so they will get different pseudo
6760 registers during expansion. Then, since the two operands need to match
6761 per the constraints, but use different pseudo registers, reload can
6762 only register a reload for these operands. But reloads can only be
6763 satisfied by hardregs, not by memory, so we need a register for this
6764 reload, just because we are presented with non-matching operands.
6765 So, even though we allow memory for this operand, no memory can be
6766 used for it, just because the two operands don't match. This can
6767 cause reload failures on register-starved targets.
6768
6769 So it's a symptom of reload not being able to use memory for reloads
6770 or, alternatively it's also a symptom of both operands not coming into
6771 reload as matching (in which case the pseudo could go to memory just
6772 fine, as the alternative allows it, and no reload would be necessary).
6773 We fix the latter problem here, by transforming
6774
6775 asm ("": "=mr" (inout_2) : "0" (inout_1));
6776
6777 back to
6778
6779 inout_2 = inout_1;
6780 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6781
6782 static void
6783 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6784 {
6785 int i;
6786 bool changed = false;
6787 rtx op = SET_SRC (p_sets[0]);
6788 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6789 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6790 bool *output_matched = XALLOCAVEC (bool, noutputs);
6791
6792 memset (output_matched, 0, noutputs * sizeof (bool));
6793 for (i = 0; i < ninputs; i++)
6794 {
6795 rtx input, output;
6796 rtx_insn *insns;
6797 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6798 int match, j;
6799
6800 match = matching_constraint_num (constraint);
6801 if (match < 0)
6802 continue;
6803
6804 gcc_assert (match < noutputs);
6805 output = SET_DEST (p_sets[match]);
6806 input = RTVEC_ELT (inputs, i);
6807 /* Only do the transformation for pseudos. */
6808 if (! REG_P (output)
6809 || rtx_equal_p (output, input)
6810 || !(REG_P (input) || SUBREG_P (input)
6811 || MEM_P (input) || CONSTANT_P (input))
6812 || !general_operand (input, GET_MODE (output)))
6813 continue;
6814
6815 /* We can't do anything if the output is also used as input,
6816 as we're going to overwrite it. */
6817 for (j = 0; j < ninputs; j++)
6818 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6819 break;
6820 if (j != ninputs)
6821 continue;
6822
6823 /* Avoid changing the same input several times. For
6824 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6825 only change it once (to out1), rather than changing it
6826 first to out1 and afterwards to out2. */
6827 if (i > 0)
6828 {
6829 for (j = 0; j < noutputs; j++)
6830 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6831 break;
6832 if (j != noutputs)
6833 continue;
6834 }
6835 output_matched[match] = true;
6836
6837 start_sequence ();
6838 emit_move_insn (output, copy_rtx (input));
6839 insns = get_insns ();
6840 end_sequence ();
6841 emit_insn_before (insns, insn);
6842
6843 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6844 bool early_clobber_p = strchr (constraint, '&') != NULL;
6845
6846 /* Now replace all mentions of the input with output. We can't
6847 just replace the occurrence in inputs[i], as the register might
6848 also be used in some other input (or even in an address of an
6849 output), which would mean possibly increasing the number of
6850 inputs by one (namely 'output' in addition), which might pose
6851 a too complicated problem for reload to solve. E.g. this situation:
6852
6853 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6854
6855 Here 'input' is used in two occurrences as input (once for the
6856 input operand, once for the address in the second output operand).
6857 If we would replace only the occurrence of the input operand (to
6858 make the matching) we would be left with this:
6859
6860 output = input
6861 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6862
6863 Now we suddenly have two different input values (containing the same
6864 value, but different pseudos) where we formerly had only one.
6865 With more complicated asms this might lead to reload failures
6866 which wouldn't have happen without this pass. So, iterate over
6867 all operands and replace all occurrences of the register used.
6868
6869 However, if one or more of the 'input' uses have a non-matching
6870 constraint and the matched output operand is an early clobber
6871 operand, then do not replace the input operand, since by definition
6872 it conflicts with the output operand and cannot share the same
6873 register. See PR89313 for details. */
6874
6875 for (j = 0; j < noutputs; j++)
6876 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6877 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6878 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6879 input, output);
6880 for (j = 0; j < ninputs; j++)
6881 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6882 {
6883 if (!early_clobber_p
6884 || match == matching_constraint_num
6885 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6886 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6887 input, output);
6888 }
6889
6890 changed = true;
6891 }
6892
6893 if (changed)
6894 df_insn_rescan (insn);
6895 }
6896
6897 /* Add the decl D to the local_decls list of FUN. */
6898
6899 void
6900 add_local_decl (struct function *fun, tree d)
6901 {
6902 gcc_assert (VAR_P (d));
6903 vec_safe_push (fun->local_decls, d);
6904 }
6905
6906 namespace {
6907
6908 const pass_data pass_data_match_asm_constraints =
6909 {
6910 RTL_PASS, /* type */
6911 "asmcons", /* name */
6912 OPTGROUP_NONE, /* optinfo_flags */
6913 TV_NONE, /* tv_id */
6914 0, /* properties_required */
6915 0, /* properties_provided */
6916 0, /* properties_destroyed */
6917 0, /* todo_flags_start */
6918 0, /* todo_flags_finish */
6919 };
6920
6921 class pass_match_asm_constraints : public rtl_opt_pass
6922 {
6923 public:
6924 pass_match_asm_constraints (gcc::context *ctxt)
6925 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6926 {}
6927
6928 /* opt_pass methods: */
6929 virtual unsigned int execute (function *);
6930
6931 }; // class pass_match_asm_constraints
6932
6933 unsigned
6934 pass_match_asm_constraints::execute (function *fun)
6935 {
6936 basic_block bb;
6937 rtx_insn *insn;
6938 rtx pat, *p_sets;
6939 int noutputs;
6940
6941 if (!crtl->has_asm_statement)
6942 return 0;
6943
6944 df_set_flags (DF_DEFER_INSN_RESCAN);
6945 FOR_EACH_BB_FN (bb, fun)
6946 {
6947 FOR_BB_INSNS (bb, insn)
6948 {
6949 if (!INSN_P (insn))
6950 continue;
6951
6952 pat = PATTERN (insn);
6953 if (GET_CODE (pat) == PARALLEL)
6954 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6955 else if (GET_CODE (pat) == SET)
6956 p_sets = &PATTERN (insn), noutputs = 1;
6957 else
6958 continue;
6959
6960 if (GET_CODE (*p_sets) == SET
6961 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6962 match_asm_constraints_1 (insn, p_sets, noutputs);
6963 }
6964 }
6965
6966 return TODO_df_finish;
6967 }
6968
6969 } // anon namespace
6970
6971 rtl_opt_pass *
6972 make_pass_match_asm_constraints (gcc::context *ctxt)
6973 {
6974 return new pass_match_asm_constraints (ctxt);
6975 }
6976
6977
6978 #include "gt-function.h"