]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gcse.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "memmodel.h"
145 #include "tm_p.h"
146 #include "insn-config.h"
147 #include "print-rtl.h"
148 #include "regs.h"
149 #include "ira.h"
150 #include "recog.h"
151 #include "diagnostic-core.h"
152 #include "cfgrtl.h"
153 #include "cfganal.h"
154 #include "lcm.h"
155 #include "cfgcleanup.h"
156 #include "expr.h"
157 #include "intl.h"
158 #include "tree-pass.h"
159 #include "dbgcnt.h"
160 #include "gcse.h"
161 #include "gcse-common.h"
162 #include "function-abi.h"
163
164 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
165 are a superset of those done by classic GCSE.
166
167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
173
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
177
178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
179 This allows PRE to hoist expressions that are expressed in multiple insns,
180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
182
183 PRE handles moving invariant expressions out of loops (by treating them as
184 partially redundant).
185
186 **********************
187
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
193
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198
199 It was found doing copy propagation between each pass enables further
200 substitutions.
201
202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
206
207 PRE is quite expensive in complicated functions because the DFA can take
208 a while to converge. Hence we only perform one pass.
209
210 **********************
211
212 The steps for PRE are:
213
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215
216 2) Perform the data flow analysis for PRE.
217
218 3) Delete the redundant instructions
219
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
222
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
225
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
228
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232
233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
238 each register in each block and thus can try to use an existing
239 register. */
240 \f
241 /* GCSE global vars. */
242
243 struct target_gcse default_target_gcse;
244 #if SWITCHABLE_TARGET
245 struct target_gcse *this_target_gcse = &default_target_gcse;
246 #endif
247
248 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249 int flag_rerun_cse_after_global_opts;
250
251 /* An obstack for our working variables. */
252 static struct obstack gcse_obstack;
253
254 /* Hash table of expressions. */
255
256 struct gcse_expr
257 {
258 /* The expression. */
259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
263 struct gcse_expr *next_same_hash;
264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
269 struct gcse_occr *antic_occr;
270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
274 struct gcse_occr *avail_occr;
275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
284 HOST_WIDE_INT max_distance;
285 };
286
287 /* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
290
291 struct gcse_occr
292 {
293 /* Next occurrence of this expression. */
294 struct gcse_occr *next;
295 /* The insn that computes the expression. */
296 rtx_insn *insn;
297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
298 char deleted_p;
299 /* Nonzero if this [available] occurrence has been copied to
300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
304 };
305
306 typedef struct gcse_occr *occr_t;
307
308 /* Expression hash tables.
309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
315 Someday I'll perform the computation and figure it out. */
316
317 struct gcse_hash_table_d
318 {
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
321 struct gcse_expr **table;
322
323 /* Size of the hash table, in elements. */
324 unsigned int size;
325
326 /* Number of hash table elements. */
327 unsigned int n_elems;
328 };
329
330 /* Expression hash table. */
331 static struct gcse_hash_table_d expr_hash_table;
332
333 /* This is a list of expressions which are MEMs and will be used by load
334 or store motion.
335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
337 We can then allow movement of these MEM refs with a little special
338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
340 no side effects so we can re-issue the setter value. */
341
342 struct ls_expr
343 {
344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
345 rtx pattern; /* Pattern of this mem. */
346 rtx pattern_regs; /* List of registers mentioned by the mem. */
347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
351 unsigned int hash_index; /* Index when in a hash table. */
352 rtx reaching_reg; /* Register to use when re-writing. */
353 };
354
355 /* Head of the list of load/store memory refs. */
356 static struct ls_expr * pre_ldst_mems = NULL;
357
358 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
359 {
360 typedef value_type compare_type;
361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
363 };
364
365 /* Hashtable helpers. */
366 inline hashval_t
367 pre_ldst_expr_hasher::hash (const ls_expr *x)
368 {
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
372 }
373
374 static int expr_equiv_p (const_rtx, const_rtx);
375
376 inline bool
377 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
379 {
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
381 }
382
383 /* Hashtable for the load/store memory refs. */
384 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
385
386 /* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
389 static regset reg_set_bitmap;
390
391 /* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
393 static vec<rtx_insn *> *modify_mem_list;
394 static bitmap modify_mem_list_set;
395
396 /* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
398 static vec<modify_pair> *canon_modify_mem_list;
399
400 /* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402 static bitmap blocks_with_calls;
403
404 /* Various variables for statistics gathering. */
405
406 /* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409 static int bytes_used;
410
411 /* GCSE substitutions made. */
412 static int gcse_subst_count;
413 /* Number of copy instructions created. */
414 static int gcse_create_count;
415 \f
416 /* Doing code hoisting. */
417 static bool doing_code_hoisting_p = false;
418 \f
419 /* For available exprs */
420 static sbitmap *ae_kill;
421 \f
422 /* Data stored for each basic block. */
423 struct bb_data
424 {
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
437 };
438
439 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440
441 static basic_block curr_bb;
442
443 /* Current register pressure for each pressure class. */
444 static int curr_reg_pressure[N_REG_CLASSES];
445 \f
446
447 static void compute_can_copy (void);
448 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
450 static void *gcse_alloc (unsigned long);
451 static void alloc_gcse_mem (void);
452 static void free_gcse_mem (void);
453 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
457 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459 static int oprs_available_p (const_rtx, const rtx_insn *);
460 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
461 HOST_WIDE_INT, struct gcse_hash_table_d *);
462 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
463 static void record_last_reg_set_info (rtx_insn *, int);
464 static void record_last_mem_set_info (rtx_insn *);
465 static void record_last_set_info (rtx, const_rtx, void *);
466 static void compute_hash_table (struct gcse_hash_table_d *);
467 static void alloc_hash_table (struct gcse_hash_table_d *);
468 static void free_hash_table (struct gcse_hash_table_d *);
469 static void compute_hash_table_work (struct gcse_hash_table_d *);
470 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
471 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
472 struct gcse_hash_table_d *);
473 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
474 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
475 static void alloc_pre_mem (int, int);
476 static void free_pre_mem (void);
477 static struct edge_list *compute_pre_data (void);
478 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
479 basic_block);
480 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
482 static void pre_insert_copies (void);
483 static int pre_delete (void);
484 static int pre_gcse (struct edge_list *);
485 static int one_pre_gcse_pass (void);
486 static void add_label_notes (rtx, rtx_insn *);
487 static void alloc_code_hoist_mem (int, int);
488 static void free_code_hoist_mem (void);
489 static void compute_code_hoist_vbeinout (void);
490 static void compute_code_hoist_data (void);
491 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
492 basic_block,
493 sbitmap, HOST_WIDE_INT, int *,
494 enum reg_class,
495 int *, bitmap, rtx_insn *);
496 static int hoist_code (void);
497 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
498 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
499 static int one_code_hoisting_pass (void);
500 static rtx_insn *process_insert_insn (struct gcse_expr *);
501 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
502 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
503 basic_block, char *);
504 static struct ls_expr * ldst_entry (rtx);
505 static void free_ldst_entry (struct ls_expr *);
506 static void free_ld_motion_mems (void);
507 static void print_ldst_list (FILE *);
508 static struct ls_expr * find_rtx_in_ldst (rtx);
509 static int simple_mem (const_rtx);
510 static void invalidate_any_buried_refs (rtx);
511 static void compute_ld_motion_mems (void);
512 static void trim_ld_motion_mems (void);
513 static void update_ld_motion_stores (struct gcse_expr *);
514 static void clear_modify_mem_tables (void);
515 static void free_modify_mem_tables (void);
516
517 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
518 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
519
520 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
521 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
522
523 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
524 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
525
526 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
527 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
528 \f
529 /* Misc. utilities. */
530
531 #define can_copy \
532 (this_target_gcse->x_can_copy)
533 #define can_copy_init_p \
534 (this_target_gcse->x_can_copy_init_p)
535
536 /* Compute which modes support reg/reg copy operations. */
537
538 static void
539 compute_can_copy (void)
540 {
541 int i;
542 #ifndef AVOID_CCMODE_COPIES
543 rtx reg;
544 rtx_insn *insn;
545 #endif
546 memset (can_copy, 0, NUM_MACHINE_MODES);
547
548 start_sequence ();
549 for (i = 0; i < NUM_MACHINE_MODES; i++)
550 if (GET_MODE_CLASS (i) == MODE_CC)
551 {
552 #ifdef AVOID_CCMODE_COPIES
553 can_copy[i] = 0;
554 #else
555 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
556 insn = emit_insn (gen_rtx_SET (reg, reg));
557 if (recog (PATTERN (insn), insn, NULL) >= 0)
558 can_copy[i] = 1;
559 #endif
560 }
561 else
562 can_copy[i] = 1;
563
564 end_sequence ();
565 }
566
567 /* Returns whether the mode supports reg/reg copy operations. */
568
569 bool
570 can_copy_p (machine_mode mode)
571 {
572 if (! can_copy_init_p)
573 {
574 compute_can_copy ();
575 can_copy_init_p = true;
576 }
577
578 return can_copy[mode] != 0;
579 }
580 \f
581 /* Cover function to xmalloc to record bytes allocated. */
582
583 static void *
584 gmalloc (size_t size)
585 {
586 bytes_used += size;
587 return xmalloc (size);
588 }
589
590 /* Cover function to xcalloc to record bytes allocated. */
591
592 static void *
593 gcalloc (size_t nelem, size_t elsize)
594 {
595 bytes_used += nelem * elsize;
596 return xcalloc (nelem, elsize);
597 }
598
599 /* Cover function to obstack_alloc. */
600
601 static void *
602 gcse_alloc (unsigned long size)
603 {
604 bytes_used += size;
605 return obstack_alloc (&gcse_obstack, size);
606 }
607
608 /* Allocate memory for the reg/memory set tracking tables.
609 This is called at the start of each pass. */
610
611 static void
612 alloc_gcse_mem (void)
613 {
614 /* Allocate vars to track sets of regs. */
615 reg_set_bitmap = ALLOC_REG_SET (NULL);
616
617 /* Allocate array to keep a list of insns which modify memory in each
618 basic block. The two typedefs are needed to work around the
619 pre-processor limitation with template types in macro arguments. */
620 typedef vec<rtx_insn *> vec_rtx_heap;
621 typedef vec<modify_pair> vec_modify_pair_heap;
622 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
623 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
624 last_basic_block_for_fn (cfun));
625 modify_mem_list_set = BITMAP_ALLOC (NULL);
626 blocks_with_calls = BITMAP_ALLOC (NULL);
627 }
628
629 /* Free memory allocated by alloc_gcse_mem. */
630
631 static void
632 free_gcse_mem (void)
633 {
634 FREE_REG_SET (reg_set_bitmap);
635
636 free_modify_mem_tables ();
637 BITMAP_FREE (modify_mem_list_set);
638 BITMAP_FREE (blocks_with_calls);
639 }
640 \f
641 /* Compute the local properties of each recorded expression.
642
643 Local properties are those that are defined by the block, irrespective of
644 other blocks.
645
646 An expression is transparent in a block if its operands are not modified
647 in the block.
648
649 An expression is computed (locally available) in a block if it is computed
650 at least once and expression would contain the same value if the
651 computation was moved to the end of the block.
652
653 An expression is locally anticipatable in a block if it is computed at
654 least once and expression would contain the same value if the computation
655 was moved to the beginning of the block.
656
657 We call this routine for pre and code hoisting. They all compute
658 basically the same information and thus can easily share this code.
659
660 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
661 properties. If NULL, then it is not necessary to compute or record that
662 particular property.
663
664 TABLE controls which hash table to look at. */
665
666 static void
667 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
668 struct gcse_hash_table_d *table)
669 {
670 unsigned int i;
671
672 /* Initialize any bitmaps that were passed in. */
673 if (transp)
674 {
675 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
676 }
677
678 if (comp)
679 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
680 if (antloc)
681 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
682
683 for (i = 0; i < table->size; i++)
684 {
685 struct gcse_expr *expr;
686
687 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
688 {
689 int indx = expr->bitmap_index;
690 struct gcse_occr *occr;
691
692 /* The expression is transparent in this block if it is not killed.
693 We start by assuming all are transparent [none are killed], and
694 then reset the bits for those that are. */
695 if (transp)
696 compute_transp (expr->expr, indx, transp,
697 blocks_with_calls,
698 modify_mem_list_set,
699 canon_modify_mem_list);
700
701 /* The occurrences recorded in antic_occr are exactly those that
702 we want to set to nonzero in ANTLOC. */
703 if (antloc)
704 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
705 {
706 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
707
708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->deleted_p = 0;
711 }
712
713 /* The occurrences recorded in avail_occr are exactly those that
714 we want to set to nonzero in COMP. */
715 if (comp)
716 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
717 {
718 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
719
720 /* While we're scanning the table, this is a good place to
721 initialize this. */
722 occr->copied_p = 0;
723 }
724
725 /* While we're scanning the table, this is a good place to
726 initialize this. */
727 expr->reaching_reg = 0;
728 }
729 }
730 }
731 \f
732 /* Hash table support. */
733
734 struct reg_avail_info
735 {
736 basic_block last_bb;
737 int first_set;
738 int last_set;
739 };
740
741 static struct reg_avail_info *reg_avail_info;
742 static basic_block current_bb;
743
744 /* See whether X, the source of a set, is something we want to consider for
745 GCSE. */
746
747 static int
748 want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
749 {
750 #ifdef STACK_REGS
751 /* On register stack architectures, don't GCSE constants from the
752 constant pool, as the benefits are often swamped by the overhead
753 of shuffling the register stack between basic blocks. */
754 if (IS_STACK_MODE (GET_MODE (x)))
755 x = avoid_constant_pool_reference (x);
756 #endif
757
758 /* GCSE'ing constants:
759
760 We do not specifically distinguish between constant and non-constant
761 expressions in PRE and Hoist. We use set_src_cost below to limit
762 the maximum distance simple expressions can travel.
763
764 Nevertheless, constants are much easier to GCSE, and, hence,
765 it is easy to overdo the optimizations. Usually, excessive PRE and
766 Hoisting of constant leads to increased register pressure.
767
768 RA can deal with this by rematerialing some of the constants.
769 Therefore, it is important that the back-end generates sets of constants
770 in a way that allows reload rematerialize them under high register
771 pressure, i.e., a pseudo register with REG_EQUAL to constant
772 is set only once. Failing to do so will result in IRA/reload
773 spilling such constants under high register pressure instead of
774 rematerializing them. */
775
776 switch (GET_CODE (x))
777 {
778 case REG:
779 case SUBREG:
780 case CALL:
781 return 0;
782
783 CASE_CONST_ANY:
784 if (!doing_code_hoisting_p)
785 /* Do not PRE constants. */
786 return 0;
787
788 /* FALLTHRU */
789
790 default:
791 if (doing_code_hoisting_p)
792 /* PRE doesn't implement max_distance restriction. */
793 {
794 int cost;
795 HOST_WIDE_INT max_distance;
796
797 gcc_assert (!optimize_function_for_speed_p (cfun)
798 && optimize_function_for_size_p (cfun));
799 cost = set_src_cost (x, mode, 0);
800
801 if (cost < COSTS_N_INSNS (param_gcse_unrestricted_cost))
802 {
803 max_distance
804 = ((HOST_WIDE_INT)param_gcse_cost_distance_ratio * cost) / 10;
805 if (max_distance == 0)
806 return 0;
807
808 gcc_assert (max_distance > 0);
809 }
810 else
811 max_distance = 0;
812
813 if (max_distance_ptr)
814 *max_distance_ptr = max_distance;
815 }
816
817 return can_assign_to_reg_without_clobbers_p (x, mode);
818 }
819 }
820
821 /* Used internally by can_assign_to_reg_without_clobbers_p. */
822
823 static GTY(()) rtx_insn *test_insn;
824
825 /* Return true if we can assign X to a pseudo register of mode MODE
826 such that the resulting insn does not result in clobbering a hard
827 register as a side-effect.
828
829 Additionally, if the target requires it, check that the resulting insn
830 can be copied. If it cannot, this means that X is special and probably
831 has hidden side-effects we don't want to mess with.
832
833 This function is typically used by code motion passes, to verify
834 that it is safe to insert an insn without worrying about clobbering
835 maybe live hard regs. */
836
837 bool
838 can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
839 {
840 int num_clobbers = 0;
841 int icode;
842 bool can_assign = false;
843
844 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
845 if (general_operand (x, mode))
846 return 1;
847 else if (GET_MODE (x) == VOIDmode)
848 return 0;
849
850 /* Otherwise, check if we can make a valid insn from it. First initialize
851 our test insn if we haven't already. */
852 if (test_insn == 0)
853 {
854 test_insn
855 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
856 FIRST_PSEUDO_REGISTER * 2),
857 const0_rtx));
858 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
859 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
860 }
861
862 /* Now make an insn like the one we would make when GCSE'ing and see if
863 valid. */
864 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
865 SET_SRC (PATTERN (test_insn)) = x;
866
867 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
868
869 /* If the test insn is valid and doesn't need clobbers, and the target also
870 has no objections, we're good. */
871 if (icode >= 0
872 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
873 && ! (targetm.cannot_copy_insn_p
874 && targetm.cannot_copy_insn_p (test_insn)))
875 can_assign = true;
876
877 /* Make sure test_insn doesn't have any pointers into GC space. */
878 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
879
880 return can_assign;
881 }
882
883 /* Return nonzero if the operands of expression X are unchanged from the
884 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
885 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
886
887 static int
888 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
889 {
890 int i, j;
891 enum rtx_code code;
892 const char *fmt;
893
894 if (x == 0)
895 return 1;
896
897 code = GET_CODE (x);
898 switch (code)
899 {
900 case REG:
901 {
902 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
903
904 if (info->last_bb != current_bb)
905 return 1;
906 if (avail_p)
907 return info->last_set < DF_INSN_LUID (insn);
908 else
909 return info->first_set >= DF_INSN_LUID (insn);
910 }
911
912 case MEM:
913 if (! flag_gcse_lm
914 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
915 x, avail_p))
916 return 0;
917 else
918 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
919
920 case PRE_DEC:
921 case PRE_INC:
922 case POST_DEC:
923 case POST_INC:
924 case PRE_MODIFY:
925 case POST_MODIFY:
926 return 0;
927
928 case PC:
929 case CC0: /*FIXME*/
930 case CONST:
931 CASE_CONST_ANY:
932 case SYMBOL_REF:
933 case LABEL_REF:
934 case ADDR_VEC:
935 case ADDR_DIFF_VEC:
936 return 1;
937
938 default:
939 break;
940 }
941
942 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
943 {
944 if (fmt[i] == 'e')
945 {
946 /* If we are about to do the last recursive call needed at this
947 level, change it into iteration. This function is called enough
948 to be worth it. */
949 if (i == 0)
950 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
951
952 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
953 return 0;
954 }
955 else if (fmt[i] == 'E')
956 for (j = 0; j < XVECLEN (x, i); j++)
957 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
958 return 0;
959 }
960
961 return 1;
962 }
963
964 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
965
966 struct mem_conflict_info
967 {
968 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
969 see if a memory store conflicts with this memory load. */
970 const_rtx mem;
971
972 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
973 references. */
974 bool conflict;
975 };
976
977 /* DEST is the output of an instruction. If it is a memory reference and
978 possibly conflicts with the load found in DATA, then communicate this
979 information back through DATA. */
980
981 static void
982 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
983 void *data)
984 {
985 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
986
987 while (GET_CODE (dest) == SUBREG
988 || GET_CODE (dest) == ZERO_EXTRACT
989 || GET_CODE (dest) == STRICT_LOW_PART)
990 dest = XEXP (dest, 0);
991
992 /* If DEST is not a MEM, then it will not conflict with the load. Note
993 that function calls are assumed to clobber memory, but are handled
994 elsewhere. */
995 if (! MEM_P (dest))
996 return;
997
998 /* If we are setting a MEM in our list of specially recognized MEMs,
999 don't mark as killed this time. */
1000 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1001 {
1002 if (!find_rtx_in_ldst (dest))
1003 mci->conflict = true;
1004 return;
1005 }
1006
1007 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1008 mci->conflict = true;
1009 }
1010
1011 /* Return nonzero if the expression in X (a memory reference) is killed
1012 in block BB before or after the insn with the LUID in UID_LIMIT.
1013 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1014 before UID_LIMIT.
1015
1016 To check the entire block, set UID_LIMIT to max_uid + 1 and
1017 AVAIL_P to 0. */
1018
1019 static int
1020 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1021 int avail_p)
1022 {
1023 vec<rtx_insn *> list = modify_mem_list[bb->index];
1024 rtx_insn *setter;
1025 unsigned ix;
1026
1027 /* If this is a readonly then we aren't going to be changing it. */
1028 if (MEM_READONLY_P (x))
1029 return 0;
1030
1031 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1032 {
1033 struct mem_conflict_info mci;
1034
1035 /* Ignore entries in the list that do not apply. */
1036 if ((avail_p
1037 && DF_INSN_LUID (setter) < uid_limit)
1038 || (! avail_p
1039 && DF_INSN_LUID (setter) > uid_limit))
1040 continue;
1041
1042 /* If SETTER is a call everything is clobbered. Note that calls
1043 to pure functions are never put on the list, so we need not
1044 worry about them. */
1045 if (CALL_P (setter))
1046 return 1;
1047
1048 /* SETTER must be an INSN of some kind that sets memory. Call
1049 note_stores to examine each hunk of memory that is modified. */
1050 mci.mem = x;
1051 mci.conflict = false;
1052 note_stores (setter, mems_conflict_for_gcse_p, &mci);
1053 if (mci.conflict)
1054 return 1;
1055 }
1056 return 0;
1057 }
1058
1059 /* Return nonzero if the operands of expression X are unchanged from
1060 the start of INSN's basic block up to but not including INSN. */
1061
1062 static int
1063 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1064 {
1065 return oprs_unchanged_p (x, insn, 0);
1066 }
1067
1068 /* Return nonzero if the operands of expression X are unchanged from
1069 INSN to the end of INSN's basic block. */
1070
1071 static int
1072 oprs_available_p (const_rtx x, const rtx_insn *insn)
1073 {
1074 return oprs_unchanged_p (x, insn, 1);
1075 }
1076
1077 /* Hash expression X.
1078
1079 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1080 indicating if a volatile operand is found or if the expression contains
1081 something we don't want to insert in the table. HASH_TABLE_SIZE is
1082 the current size of the hash table to be probed. */
1083
1084 static unsigned int
1085 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1086 int hash_table_size)
1087 {
1088 unsigned int hash;
1089
1090 *do_not_record_p = 0;
1091
1092 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1093 return hash % hash_table_size;
1094 }
1095
1096 /* Return nonzero if exp1 is equivalent to exp2. */
1097
1098 static int
1099 expr_equiv_p (const_rtx x, const_rtx y)
1100 {
1101 return exp_equiv_p (x, y, 0, true);
1102 }
1103
1104 /* Insert expression X in INSN in the hash TABLE.
1105 If it is already present, record it as the last occurrence in INSN's
1106 basic block.
1107
1108 MODE is the mode of the value X is being stored into.
1109 It is only used if X is a CONST_INT.
1110
1111 ANTIC_P is nonzero if X is an anticipatable expression.
1112 AVAIL_P is nonzero if X is an available expression.
1113
1114 MAX_DISTANCE is the maximum distance in instructions this expression can
1115 be moved. */
1116
1117 static void
1118 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1119 int antic_p,
1120 int avail_p, HOST_WIDE_INT max_distance,
1121 struct gcse_hash_table_d *table)
1122 {
1123 int found, do_not_record_p;
1124 unsigned int hash;
1125 struct gcse_expr *cur_expr, *last_expr = NULL;
1126 struct gcse_occr *antic_occr, *avail_occr;
1127
1128 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1129
1130 /* Do not insert expression in table if it contains volatile operands,
1131 or if hash_expr determines the expression is something we don't want
1132 to or can't handle. */
1133 if (do_not_record_p)
1134 return;
1135
1136 cur_expr = table->table[hash];
1137 found = 0;
1138
1139 while (cur_expr && (found = expr_equiv_p (cur_expr->expr, x)) == 0)
1140 {
1141 /* If the expression isn't found, save a pointer to the end of
1142 the list. */
1143 last_expr = cur_expr;
1144 cur_expr = cur_expr->next_same_hash;
1145 }
1146
1147 if (! found)
1148 {
1149 cur_expr = GOBNEW (struct gcse_expr);
1150 bytes_used += sizeof (struct gcse_expr);
1151 if (table->table[hash] == NULL)
1152 /* This is the first pattern that hashed to this index. */
1153 table->table[hash] = cur_expr;
1154 else
1155 /* Add EXPR to end of this hash chain. */
1156 last_expr->next_same_hash = cur_expr;
1157
1158 /* Set the fields of the expr element. */
1159 cur_expr->expr = x;
1160 cur_expr->bitmap_index = table->n_elems++;
1161 cur_expr->next_same_hash = NULL;
1162 cur_expr->antic_occr = NULL;
1163 cur_expr->avail_occr = NULL;
1164 gcc_assert (max_distance >= 0);
1165 cur_expr->max_distance = max_distance;
1166 }
1167 else
1168 gcc_assert (cur_expr->max_distance == max_distance);
1169
1170 /* Now record the occurrence(s). */
1171 if (antic_p)
1172 {
1173 antic_occr = cur_expr->antic_occr;
1174
1175 if (antic_occr
1176 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1177 antic_occr = NULL;
1178
1179 if (antic_occr)
1180 /* Found another instance of the expression in the same basic block.
1181 Prefer the currently recorded one. We want the first one in the
1182 block and the block is scanned from start to end. */
1183 ; /* nothing to do */
1184 else
1185 {
1186 /* First occurrence of this expression in this basic block. */
1187 antic_occr = GOBNEW (struct gcse_occr);
1188 bytes_used += sizeof (struct gcse_occr);
1189 antic_occr->insn = insn;
1190 antic_occr->next = cur_expr->antic_occr;
1191 antic_occr->deleted_p = 0;
1192 cur_expr->antic_occr = antic_occr;
1193 }
1194 }
1195
1196 if (avail_p)
1197 {
1198 avail_occr = cur_expr->avail_occr;
1199
1200 if (avail_occr
1201 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1202 {
1203 /* Found another instance of the expression in the same basic block.
1204 Prefer this occurrence to the currently recorded one. We want
1205 the last one in the block and the block is scanned from start
1206 to end. */
1207 avail_occr->insn = insn;
1208 }
1209 else
1210 {
1211 /* First occurrence of this expression in this basic block. */
1212 avail_occr = GOBNEW (struct gcse_occr);
1213 bytes_used += sizeof (struct gcse_occr);
1214 avail_occr->insn = insn;
1215 avail_occr->next = cur_expr->avail_occr;
1216 avail_occr->deleted_p = 0;
1217 cur_expr->avail_occr = avail_occr;
1218 }
1219 }
1220 }
1221
1222 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1223
1224 static void
1225 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1226 {
1227 rtx src = SET_SRC (set);
1228 rtx dest = SET_DEST (set);
1229 rtx note;
1230
1231 if (GET_CODE (src) == CALL)
1232 hash_scan_call (src, insn, table);
1233
1234 else if (REG_P (dest))
1235 {
1236 unsigned int regno = REGNO (dest);
1237 HOST_WIDE_INT max_distance = 0;
1238
1239 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1240
1241 This allows us to do a single GCSE pass and still eliminate
1242 redundant constants, addresses or other expressions that are
1243 constructed with multiple instructions.
1244
1245 However, keep the original SRC if INSN is a simple reg-reg move.
1246 In this case, there will almost always be a REG_EQUAL note on the
1247 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1248 for INSN, we miss copy propagation opportunities and we perform the
1249 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1250 do more than one PRE GCSE pass.
1251
1252 Note that this does not impede profitable constant propagations. We
1253 "look through" reg-reg sets in lookup_avail_set. */
1254 note = find_reg_equal_equiv_note (insn);
1255 if (note != 0
1256 && REG_NOTE_KIND (note) == REG_EQUAL
1257 && !REG_P (src)
1258 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1259 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1260
1261 /* Only record sets of pseudo-regs in the hash table. */
1262 if (regno >= FIRST_PSEUDO_REGISTER
1263 /* Don't GCSE something if we can't do a reg/reg copy. */
1264 && can_copy_p (GET_MODE (dest))
1265 /* GCSE commonly inserts instruction after the insn. We can't
1266 do that easily for EH edges so disable GCSE on these for now. */
1267 /* ??? We can now easily create new EH landing pads at the
1268 gimple level, for splitting edges; there's no reason we
1269 can't do the same thing at the rtl level. */
1270 && !can_throw_internal (insn)
1271 /* Is SET_SRC something we want to gcse? */
1272 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1273 /* Don't CSE a nop. */
1274 && ! set_noop_p (set)
1275 /* Don't GCSE if it has attached REG_EQUIV note.
1276 At this point this only function parameters should have
1277 REG_EQUIV notes and if the argument slot is used somewhere
1278 explicitly, it means address of parameter has been taken,
1279 so we should not extend the lifetime of the pseudo. */
1280 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1281 {
1282 /* An expression is not anticipatable if its operands are
1283 modified before this insn or if this is not the only SET in
1284 this insn. The latter condition does not have to mean that
1285 SRC itself is not anticipatable, but we just will not be
1286 able to handle code motion of insns with multiple sets. */
1287 int antic_p = oprs_anticipatable_p (src, insn)
1288 && !multiple_sets (insn);
1289 /* An expression is not available if its operands are
1290 subsequently modified, including this insn. It's also not
1291 available if this is a branch, because we can't insert
1292 a set after the branch. */
1293 int avail_p = (oprs_available_p (src, insn)
1294 && ! JUMP_P (insn));
1295
1296 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1297 max_distance, table);
1298 }
1299 }
1300 /* In case of store we want to consider the memory value as available in
1301 the REG stored in that memory. This makes it possible to remove
1302 redundant loads from due to stores to the same location. */
1303 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1304 {
1305 unsigned int regno = REGNO (src);
1306 HOST_WIDE_INT max_distance = 0;
1307
1308 /* Only record sets of pseudo-regs in the hash table. */
1309 if (regno >= FIRST_PSEUDO_REGISTER
1310 /* Don't GCSE something if we can't do a reg/reg copy. */
1311 && can_copy_p (GET_MODE (src))
1312 /* GCSE commonly inserts instruction after the insn. We can't
1313 do that easily for EH edges so disable GCSE on these for now. */
1314 && !can_throw_internal (insn)
1315 /* Is SET_DEST something we want to gcse? */
1316 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1317 /* Don't CSE a nop. */
1318 && ! set_noop_p (set)
1319 /* Don't GCSE if it has attached REG_EQUIV note.
1320 At this point this only function parameters should have
1321 REG_EQUIV notes and if the argument slot is used somewhere
1322 explicitly, it means address of parameter has been taken,
1323 so we should not extend the lifetime of the pseudo. */
1324 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1325 || ! MEM_P (XEXP (note, 0))))
1326 {
1327 /* Stores are never anticipatable. */
1328 int antic_p = 0;
1329 /* An expression is not available if its operands are
1330 subsequently modified, including this insn. It's also not
1331 available if this is a branch, because we can't insert
1332 a set after the branch. */
1333 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1334
1335 /* Record the memory expression (DEST) in the hash table. */
1336 insert_expr_in_table (dest, GET_MODE (dest), insn,
1337 antic_p, avail_p, max_distance, table);
1338 }
1339 }
1340 }
1341
1342 static void
1343 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1344 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1345 {
1346 /* Currently nothing to do. */
1347 }
1348
1349 static void
1350 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1351 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1352 {
1353 /* Currently nothing to do. */
1354 }
1355
1356 /* Process INSN and add hash table entries as appropriate. */
1357
1358 static void
1359 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1360 {
1361 rtx pat = PATTERN (insn);
1362 int i;
1363
1364 /* Pick out the sets of INSN and for other forms of instructions record
1365 what's been modified. */
1366
1367 if (GET_CODE (pat) == SET)
1368 hash_scan_set (pat, insn, table);
1369
1370 else if (GET_CODE (pat) == CLOBBER)
1371 hash_scan_clobber (pat, insn, table);
1372
1373 else if (GET_CODE (pat) == CALL)
1374 hash_scan_call (pat, insn, table);
1375
1376 else if (GET_CODE (pat) == PARALLEL)
1377 for (i = 0; i < XVECLEN (pat, 0); i++)
1378 {
1379 rtx x = XVECEXP (pat, 0, i);
1380
1381 if (GET_CODE (x) == SET)
1382 hash_scan_set (x, insn, table);
1383 else if (GET_CODE (x) == CLOBBER)
1384 hash_scan_clobber (x, insn, table);
1385 else if (GET_CODE (x) == CALL)
1386 hash_scan_call (x, insn, table);
1387 }
1388 }
1389
1390 /* Dump the hash table TABLE to file FILE under the name NAME. */
1391
1392 static void
1393 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1394 {
1395 int i;
1396 /* Flattened out table, so it's printed in proper order. */
1397 struct gcse_expr **flat_table;
1398 unsigned int *hash_val;
1399 struct gcse_expr *expr;
1400
1401 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1402 hash_val = XNEWVEC (unsigned int, table->n_elems);
1403
1404 for (i = 0; i < (int) table->size; i++)
1405 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1406 {
1407 flat_table[expr->bitmap_index] = expr;
1408 hash_val[expr->bitmap_index] = i;
1409 }
1410
1411 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1412 name, table->size, table->n_elems);
1413
1414 for (i = 0; i < (int) table->n_elems; i++)
1415 if (flat_table[i] != 0)
1416 {
1417 expr = flat_table[i];
1418 fprintf (file, "Index %d (hash value %d; max distance "
1419 HOST_WIDE_INT_PRINT_DEC ")\n ",
1420 expr->bitmap_index, hash_val[i], expr->max_distance);
1421 print_rtl (file, expr->expr);
1422 fprintf (file, "\n");
1423 }
1424
1425 fprintf (file, "\n");
1426
1427 free (flat_table);
1428 free (hash_val);
1429 }
1430
1431 /* Record register first/last/block set information for REGNO in INSN.
1432
1433 first_set records the first place in the block where the register
1434 is set and is used to compute "anticipatability".
1435
1436 last_set records the last place in the block where the register
1437 is set and is used to compute "availability".
1438
1439 last_bb records the block for which first_set and last_set are
1440 valid, as a quick test to invalidate them. */
1441
1442 static void
1443 record_last_reg_set_info (rtx_insn *insn, int regno)
1444 {
1445 struct reg_avail_info *info = &reg_avail_info[regno];
1446 int luid = DF_INSN_LUID (insn);
1447
1448 info->last_set = luid;
1449 if (info->last_bb != current_bb)
1450 {
1451 info->last_bb = current_bb;
1452 info->first_set = luid;
1453 }
1454 }
1455
1456 /* Record memory modification information for INSN. We do not actually care
1457 about the memory location(s) that are set, or even how they are set (consider
1458 a CALL_INSN). We merely need to record which insns modify memory. */
1459
1460 static void
1461 record_last_mem_set_info (rtx_insn *insn)
1462 {
1463 if (! flag_gcse_lm)
1464 return;
1465
1466 record_last_mem_set_info_common (insn, modify_mem_list,
1467 canon_modify_mem_list,
1468 modify_mem_list_set,
1469 blocks_with_calls);
1470 }
1471
1472 /* Called from compute_hash_table via note_stores to handle one
1473 SET or CLOBBER in an insn. DATA is really the instruction in which
1474 the SET is taking place. */
1475
1476 static void
1477 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1478 {
1479 rtx_insn *last_set_insn = (rtx_insn *) data;
1480
1481 if (GET_CODE (dest) == SUBREG)
1482 dest = SUBREG_REG (dest);
1483
1484 if (REG_P (dest))
1485 record_last_reg_set_info (last_set_insn, REGNO (dest));
1486 else if (MEM_P (dest)
1487 /* Ignore pushes, they clobber nothing. */
1488 && ! push_operand (dest, GET_MODE (dest)))
1489 record_last_mem_set_info (last_set_insn);
1490 }
1491
1492 /* Top level function to create an expression hash table.
1493
1494 Expression entries are placed in the hash table if
1495 - they are of the form (set (pseudo-reg) src),
1496 - src is something we want to perform GCSE on,
1497 - none of the operands are subsequently modified in the block
1498
1499 Currently src must be a pseudo-reg or a const_int.
1500
1501 TABLE is the table computed. */
1502
1503 static void
1504 compute_hash_table_work (struct gcse_hash_table_d *table)
1505 {
1506 int i;
1507
1508 /* re-Cache any INSN_LIST nodes we have allocated. */
1509 clear_modify_mem_tables ();
1510 /* Some working arrays used to track first and last set in each block. */
1511 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1512
1513 for (i = 0; i < max_reg_num (); ++i)
1514 reg_avail_info[i].last_bb = NULL;
1515
1516 FOR_EACH_BB_FN (current_bb, cfun)
1517 {
1518 rtx_insn *insn;
1519 unsigned int regno;
1520
1521 /* First pass over the instructions records information used to
1522 determine when registers and memory are first and last set. */
1523 FOR_BB_INSNS (current_bb, insn)
1524 {
1525 if (!NONDEBUG_INSN_P (insn))
1526 continue;
1527
1528 if (CALL_P (insn))
1529 {
1530 hard_reg_set_iterator hrsi;
1531
1532 /* We don't track modes of hard registers, so we need
1533 to be conservative and assume that partial kills
1534 are full kills. */
1535 HARD_REG_SET callee_clobbers
1536 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
1537 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
1538 record_last_reg_set_info (insn, regno);
1539
1540 if (! RTL_CONST_OR_PURE_CALL_P (insn)
1541 || RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
1542 record_last_mem_set_info (insn);
1543 }
1544
1545 note_stores (insn, record_last_set_info, insn);
1546 }
1547
1548 /* The next pass builds the hash table. */
1549 FOR_BB_INSNS (current_bb, insn)
1550 if (NONDEBUG_INSN_P (insn))
1551 hash_scan_insn (insn, table);
1552 }
1553
1554 free (reg_avail_info);
1555 reg_avail_info = NULL;
1556 }
1557
1558 /* Allocate space for the set/expr hash TABLE.
1559 It is used to determine the number of buckets to use. */
1560
1561 static void
1562 alloc_hash_table (struct gcse_hash_table_d *table)
1563 {
1564 int n;
1565
1566 n = get_max_insn_count ();
1567
1568 table->size = n / 4;
1569 if (table->size < 11)
1570 table->size = 11;
1571
1572 /* Attempt to maintain efficient use of hash table.
1573 Making it an odd number is simplest for now.
1574 ??? Later take some measurements. */
1575 table->size |= 1;
1576 n = table->size * sizeof (struct gcse_expr *);
1577 table->table = GNEWVAR (struct gcse_expr *, n);
1578 }
1579
1580 /* Free things allocated by alloc_hash_table. */
1581
1582 static void
1583 free_hash_table (struct gcse_hash_table_d *table)
1584 {
1585 free (table->table);
1586 }
1587
1588 /* Compute the expression hash table TABLE. */
1589
1590 static void
1591 compute_hash_table (struct gcse_hash_table_d *table)
1592 {
1593 /* Initialize count of number of entries in hash table. */
1594 table->n_elems = 0;
1595 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1596
1597 compute_hash_table_work (table);
1598 }
1599 \f
1600 /* Expression tracking support. */
1601
1602 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1603 static void
1604 clear_modify_mem_tables (void)
1605 {
1606 unsigned i;
1607 bitmap_iterator bi;
1608
1609 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1610 {
1611 modify_mem_list[i].release ();
1612 canon_modify_mem_list[i].release ();
1613 }
1614 bitmap_clear (modify_mem_list_set);
1615 bitmap_clear (blocks_with_calls);
1616 }
1617
1618 /* Release memory used by modify_mem_list_set. */
1619
1620 static void
1621 free_modify_mem_tables (void)
1622 {
1623 clear_modify_mem_tables ();
1624 free (modify_mem_list);
1625 free (canon_modify_mem_list);
1626 modify_mem_list = 0;
1627 canon_modify_mem_list = 0;
1628 }
1629 \f
1630 /* Compute PRE+LCM working variables. */
1631
1632 /* Local properties of expressions. */
1633
1634 /* Nonzero for expressions that are transparent in the block. */
1635 static sbitmap *transp;
1636
1637 /* Nonzero for expressions that are computed (available) in the block. */
1638 static sbitmap *comp;
1639
1640 /* Nonzero for expressions that are locally anticipatable in the block. */
1641 static sbitmap *antloc;
1642
1643 /* Nonzero for expressions where this block is an optimal computation
1644 point. */
1645 static sbitmap *pre_optimal;
1646
1647 /* Nonzero for expressions which are redundant in a particular block. */
1648 static sbitmap *pre_redundant;
1649
1650 /* Nonzero for expressions which should be inserted on a specific edge. */
1651 static sbitmap *pre_insert_map;
1652
1653 /* Nonzero for expressions which should be deleted in a specific block. */
1654 static sbitmap *pre_delete_map;
1655
1656 /* Allocate vars used for PRE analysis. */
1657
1658 static void
1659 alloc_pre_mem (int n_blocks, int n_exprs)
1660 {
1661 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1662 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1663 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1664
1665 pre_optimal = NULL;
1666 pre_redundant = NULL;
1667 pre_insert_map = NULL;
1668 pre_delete_map = NULL;
1669 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1670
1671 /* pre_insert and pre_delete are allocated later. */
1672 }
1673
1674 /* Free vars used for PRE analysis. */
1675
1676 static void
1677 free_pre_mem (void)
1678 {
1679 sbitmap_vector_free (transp);
1680 sbitmap_vector_free (comp);
1681
1682 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1683
1684 if (pre_optimal)
1685 sbitmap_vector_free (pre_optimal);
1686 if (pre_redundant)
1687 sbitmap_vector_free (pre_redundant);
1688 if (pre_insert_map)
1689 sbitmap_vector_free (pre_insert_map);
1690 if (pre_delete_map)
1691 sbitmap_vector_free (pre_delete_map);
1692
1693 transp = comp = NULL;
1694 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1695 }
1696
1697 /* Remove certain expressions from anticipatable and transparent
1698 sets of basic blocks that have incoming abnormal edge.
1699 For PRE remove potentially trapping expressions to avoid placing
1700 them on abnormal edges. For hoisting remove memory references that
1701 can be clobbered by calls. */
1702
1703 static void
1704 prune_expressions (bool pre_p)
1705 {
1706 struct gcse_expr *expr;
1707 unsigned int ui;
1708 basic_block bb;
1709
1710 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
1711 bitmap_clear (prune_exprs);
1712 for (ui = 0; ui < expr_hash_table.size; ui++)
1713 {
1714 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1715 {
1716 /* Note potentially trapping expressions. */
1717 if (may_trap_p (expr->expr))
1718 {
1719 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1720 continue;
1721 }
1722
1723 if (!pre_p && contains_mem_rtx_p (expr->expr))
1724 /* Note memory references that can be clobbered by a call.
1725 We do not split abnormal edges in hoisting, so would
1726 a memory reference get hoisted along an abnormal edge,
1727 it would be placed /before/ the call. Therefore, only
1728 constant memory references can be hoisted along abnormal
1729 edges. */
1730 {
1731 rtx x = expr->expr;
1732
1733 /* Common cases where we might find the MEM which may allow us
1734 to avoid pruning the expression. */
1735 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1736 x = XEXP (x, 0);
1737
1738 /* If we found the MEM, go ahead and look at it to see if it has
1739 properties that allow us to avoid pruning its expression out
1740 of the tables. */
1741 if (MEM_P (x))
1742 {
1743 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1744 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1745 continue;
1746
1747 if (MEM_READONLY_P (x)
1748 && !MEM_VOLATILE_P (x)
1749 && MEM_NOTRAP_P (x))
1750 /* Constant memory reference, e.g., a PIC address. */
1751 continue;
1752 }
1753
1754 /* ??? Optimally, we would use interprocedural alias
1755 analysis to determine if this mem is actually killed
1756 by this call. */
1757
1758 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1759 }
1760 }
1761 }
1762
1763 FOR_EACH_BB_FN (bb, cfun)
1764 {
1765 edge e;
1766 edge_iterator ei;
1767
1768 /* If the current block is the destination of an abnormal edge, we
1769 kill all trapping (for PRE) and memory (for hoist) expressions
1770 because we won't be able to properly place the instruction on
1771 the edge. So make them neither anticipatable nor transparent.
1772 This is fairly conservative.
1773
1774 ??? For hoisting it may be necessary to check for set-and-jump
1775 instructions here, not just for abnormal edges. The general problem
1776 is that when an expression cannot not be placed right at the end of
1777 a basic block we should account for any side-effects of a subsequent
1778 jump instructions that could clobber the expression. It would
1779 be best to implement this check along the lines of
1780 should_hoist_expr_to_dom where the target block is already known
1781 and, hence, there's no need to conservatively prune expressions on
1782 "intermediate" set-and-jump instructions. */
1783 FOR_EACH_EDGE (e, ei, bb->preds)
1784 if ((e->flags & EDGE_ABNORMAL)
1785 && (pre_p || CALL_P (BB_END (e->src))))
1786 {
1787 bitmap_and_compl (antloc[bb->index],
1788 antloc[bb->index], prune_exprs);
1789 bitmap_and_compl (transp[bb->index],
1790 transp[bb->index], prune_exprs);
1791 break;
1792 }
1793 }
1794 }
1795
1796 /* It may be necessary to insert a large number of insns on edges to
1797 make the existing occurrences of expressions fully redundant. This
1798 routine examines the set of insertions and deletions and if the ratio
1799 of insertions to deletions is too high for a particular expression, then
1800 the expression is removed from the insertion/deletion sets.
1801
1802 N_ELEMS is the number of elements in the hash table. */
1803
1804 static void
1805 prune_insertions_deletions (int n_elems)
1806 {
1807 sbitmap_iterator sbi;
1808
1809 /* We always use I to iterate over blocks/edges and J to iterate over
1810 expressions. */
1811 unsigned int i, j;
1812
1813 /* Counts for the number of times an expression needs to be inserted and
1814 number of times an expression can be removed as a result. */
1815 int *insertions = GCNEWVEC (int, n_elems);
1816 int *deletions = GCNEWVEC (int, n_elems);
1817
1818 /* Set of expressions which require too many insertions relative to
1819 the number of deletions achieved. We will prune these out of the
1820 insertion/deletion sets. */
1821 auto_sbitmap prune_exprs (n_elems);
1822 bitmap_clear (prune_exprs);
1823
1824 /* Iterate over the edges counting the number of times each expression
1825 needs to be inserted. */
1826 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1827 {
1828 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1829 insertions[j]++;
1830 }
1831
1832 /* Similarly for deletions, but those occur in blocks rather than on
1833 edges. */
1834 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1835 {
1836 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1837 deletions[j]++;
1838 }
1839
1840 /* Now that we have accurate counts, iterate over the elements in the
1841 hash table and see if any need too many insertions relative to the
1842 number of evaluations that can be removed. If so, mark them in
1843 PRUNE_EXPRS. */
1844 for (j = 0; j < (unsigned) n_elems; j++)
1845 if (deletions[j]
1846 && (insertions[j] / deletions[j]) > param_max_gcse_insertion_ratio)
1847 bitmap_set_bit (prune_exprs, j);
1848
1849 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1850 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1851 {
1852 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1853 bitmap_clear_bit (pre_insert_map[i], j);
1854
1855 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1856 bitmap_clear_bit (pre_delete_map[i], j);
1857 }
1858
1859 free (insertions);
1860 free (deletions);
1861 }
1862
1863 /* Top level routine to do the dataflow analysis needed by PRE. */
1864
1865 static struct edge_list *
1866 compute_pre_data (void)
1867 {
1868 struct edge_list *edge_list;
1869 basic_block bb;
1870
1871 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1872 prune_expressions (true);
1873 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1874
1875 /* Compute ae_kill for each basic block using:
1876
1877 ~(TRANSP | COMP)
1878 */
1879
1880 FOR_EACH_BB_FN (bb, cfun)
1881 {
1882 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1883 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1884 }
1885
1886 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1887 ae_kill, &pre_insert_map, &pre_delete_map);
1888 sbitmap_vector_free (antloc);
1889 antloc = NULL;
1890 sbitmap_vector_free (ae_kill);
1891 ae_kill = NULL;
1892
1893 prune_insertions_deletions (expr_hash_table.n_elems);
1894
1895 return edge_list;
1896 }
1897 \f
1898 /* PRE utilities */
1899
1900 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1901 block BB.
1902
1903 VISITED is a pointer to a working buffer for tracking which BB's have
1904 been visited. It is NULL for the top-level call.
1905
1906 We treat reaching expressions that go through blocks containing the same
1907 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1908 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1909 2 as not reaching. The intent is to improve the probability of finding
1910 only one reaching expression and to reduce register lifetimes by picking
1911 the closest such expression. */
1912
1913 static int
1914 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1915 basic_block bb, char *visited)
1916 {
1917 edge pred;
1918 edge_iterator ei;
1919
1920 FOR_EACH_EDGE (pred, ei, bb->preds)
1921 {
1922 basic_block pred_bb = pred->src;
1923
1924 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1925 /* Has predecessor has already been visited? */
1926 || visited[pred_bb->index])
1927 ;/* Nothing to do. */
1928
1929 /* Does this predecessor generate this expression? */
1930 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1931 {
1932 /* Is this the occurrence we're looking for?
1933 Note that there's only one generating occurrence per block
1934 so we just need to check the block number. */
1935 if (occr_bb == pred_bb)
1936 return 1;
1937
1938 visited[pred_bb->index] = 1;
1939 }
1940 /* Ignore this predecessor if it kills the expression. */
1941 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1942 visited[pred_bb->index] = 1;
1943
1944 /* Neither gen nor kill. */
1945 else
1946 {
1947 visited[pred_bb->index] = 1;
1948 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1949 return 1;
1950 }
1951 }
1952
1953 /* All paths have been checked. */
1954 return 0;
1955 }
1956
1957 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1958 memory allocated for that function is returned. */
1959
1960 static int
1961 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1962 {
1963 int rval;
1964 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1965
1966 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1967
1968 free (visited);
1969 return rval;
1970 }
1971 \f
1972 /* Generate RTL to copy an EXP to REG and return it. */
1973
1974 rtx_insn *
1975 prepare_copy_insn (rtx reg, rtx exp)
1976 {
1977 rtx_insn *pat;
1978
1979 start_sequence ();
1980
1981 /* If the expression is something that's an operand, like a constant,
1982 just copy it to a register. */
1983 if (general_operand (exp, GET_MODE (reg)))
1984 emit_move_insn (reg, exp);
1985
1986 /* Otherwise, make a new insn to compute this expression and make sure the
1987 insn will be recognized (this also adds any needed CLOBBERs). */
1988 else
1989 {
1990 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1991
1992 if (insn_invalid_p (insn, false))
1993 gcc_unreachable ();
1994 }
1995
1996 pat = get_insns ();
1997 end_sequence ();
1998
1999 return pat;
2000 }
2001
2002 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2003
2004 static rtx_insn *
2005 process_insert_insn (struct gcse_expr *expr)
2006 {
2007 rtx reg = expr->reaching_reg;
2008 /* Copy the expression to make sure we don't have any sharing issues. */
2009 rtx exp = copy_rtx (expr->expr);
2010
2011 return prepare_copy_insn (reg, exp);
2012 }
2013
2014 /* Add EXPR to the end of basic block BB.
2015
2016 This is used by both the PRE and code hoisting. */
2017
2018 static void
2019 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2020 {
2021 rtx_insn *insn = BB_END (bb);
2022 rtx_insn *new_insn;
2023 rtx reg = expr->reaching_reg;
2024 int regno = REGNO (reg);
2025 rtx_insn *pat, *pat_end;
2026
2027 pat = process_insert_insn (expr);
2028 gcc_assert (pat && INSN_P (pat));
2029
2030 pat_end = pat;
2031 while (NEXT_INSN (pat_end) != NULL_RTX)
2032 pat_end = NEXT_INSN (pat_end);
2033
2034 /* If the last insn is a jump, insert EXPR in front [taking care to
2035 handle cc0, etc. properly]. Similarly we need to care trapping
2036 instructions in presence of non-call exceptions. */
2037
2038 if (JUMP_P (insn)
2039 || (NONJUMP_INSN_P (insn)
2040 && (!single_succ_p (bb)
2041 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2042 {
2043 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2044 if cc0 isn't set. */
2045 if (HAVE_cc0)
2046 {
2047 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2048 if (note)
2049 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2050 else
2051 {
2052 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2053 if (maybe_cc0_setter
2054 && INSN_P (maybe_cc0_setter)
2055 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2056 insn = maybe_cc0_setter;
2057 }
2058 }
2059
2060 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2061 new_insn = emit_insn_before_noloc (pat, insn, bb);
2062 }
2063
2064 /* Likewise if the last insn is a call, as will happen in the presence
2065 of exception handling. */
2066 else if (CALL_P (insn)
2067 && (!single_succ_p (bb)
2068 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2069 {
2070 /* Keeping in mind targets with small register classes and parameters
2071 in registers, we search backward and place the instructions before
2072 the first parameter is loaded. Do this for everyone for consistency
2073 and a presumption that we'll get better code elsewhere as well. */
2074
2075 /* Since different machines initialize their parameter registers
2076 in different orders, assume nothing. Collect the set of all
2077 parameter registers. */
2078 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2079
2080 /* If we found all the parameter loads, then we want to insert
2081 before the first parameter load.
2082
2083 If we did not find all the parameter loads, then we might have
2084 stopped on the head of the block, which could be a CODE_LABEL.
2085 If we inserted before the CODE_LABEL, then we would be putting
2086 the insn in the wrong basic block. In that case, put the insn
2087 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2088 while (LABEL_P (insn)
2089 || NOTE_INSN_BASIC_BLOCK_P (insn))
2090 insn = NEXT_INSN (insn);
2091
2092 new_insn = emit_insn_before_noloc (pat, insn, bb);
2093 }
2094 else
2095 new_insn = emit_insn_after_noloc (pat, insn, bb);
2096
2097 while (1)
2098 {
2099 if (INSN_P (pat))
2100 add_label_notes (PATTERN (pat), new_insn);
2101 if (pat == pat_end)
2102 break;
2103 pat = NEXT_INSN (pat);
2104 }
2105
2106 gcse_create_count++;
2107
2108 if (dump_file)
2109 {
2110 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2111 bb->index, INSN_UID (new_insn));
2112 fprintf (dump_file, "copying expression %d to reg %d\n",
2113 expr->bitmap_index, regno);
2114 }
2115 }
2116
2117 /* Insert partially redundant expressions on edges in the CFG to make
2118 the expressions fully redundant. */
2119
2120 static int
2121 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2122 {
2123 int e, i, j, num_edges, set_size, did_insert = 0;
2124 sbitmap *inserted;
2125
2126 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2127 if it reaches any of the deleted expressions. */
2128
2129 set_size = pre_insert_map[0]->size;
2130 num_edges = NUM_EDGES (edge_list);
2131 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2132 bitmap_vector_clear (inserted, num_edges);
2133
2134 for (e = 0; e < num_edges; e++)
2135 {
2136 int indx;
2137 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2138
2139 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2140 {
2141 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2142
2143 for (j = indx;
2144 insert && j < (int) expr_hash_table.n_elems;
2145 j++, insert >>= 1)
2146 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2147 {
2148 struct gcse_expr *expr = index_map[j];
2149 struct gcse_occr *occr;
2150
2151 /* Now look at each deleted occurrence of this expression. */
2152 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2153 {
2154 if (! occr->deleted_p)
2155 continue;
2156
2157 /* Insert this expression on this edge if it would
2158 reach the deleted occurrence in BB. */
2159 if (!bitmap_bit_p (inserted[e], j))
2160 {
2161 rtx_insn *insn;
2162 edge eg = INDEX_EDGE (edge_list, e);
2163
2164 /* We can't insert anything on an abnormal and
2165 critical edge, so we insert the insn at the end of
2166 the previous block. There are several alternatives
2167 detailed in Morgans book P277 (sec 10.5) for
2168 handling this situation. This one is easiest for
2169 now. */
2170
2171 if (eg->flags & EDGE_ABNORMAL)
2172 insert_insn_end_basic_block (index_map[j], bb);
2173 else
2174 {
2175 insn = process_insert_insn (index_map[j]);
2176 insert_insn_on_edge (insn, eg);
2177 }
2178
2179 if (dump_file)
2180 {
2181 fprintf (dump_file, "PRE: edge (%d,%d), ",
2182 bb->index,
2183 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2184 fprintf (dump_file, "copy expression %d\n",
2185 expr->bitmap_index);
2186 }
2187
2188 update_ld_motion_stores (expr);
2189 bitmap_set_bit (inserted[e], j);
2190 did_insert = 1;
2191 gcse_create_count++;
2192 }
2193 }
2194 }
2195 }
2196 }
2197
2198 sbitmap_vector_free (inserted);
2199 return did_insert;
2200 }
2201
2202 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2203 Given "old_reg <- expr" (INSN), instead of adding after it
2204 reaching_reg <- old_reg
2205 it's better to do the following:
2206 reaching_reg <- expr
2207 old_reg <- reaching_reg
2208 because this way copy propagation can discover additional PRE
2209 opportunities. But if this fails, we try the old way.
2210 When "expr" is a store, i.e.
2211 given "MEM <- old_reg", instead of adding after it
2212 reaching_reg <- old_reg
2213 it's better to add it before as follows:
2214 reaching_reg <- old_reg
2215 MEM <- reaching_reg. */
2216
2217 static void
2218 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2219 {
2220 rtx reg = expr->reaching_reg;
2221 int regno = REGNO (reg);
2222 int indx = expr->bitmap_index;
2223 rtx pat = PATTERN (insn);
2224 rtx set, first_set;
2225 rtx_insn *new_insn;
2226 rtx old_reg;
2227 int i;
2228
2229 /* This block matches the logic in hash_scan_insn. */
2230 switch (GET_CODE (pat))
2231 {
2232 case SET:
2233 set = pat;
2234 break;
2235
2236 case PARALLEL:
2237 /* Search through the parallel looking for the set whose
2238 source was the expression that we're interested in. */
2239 first_set = NULL_RTX;
2240 set = NULL_RTX;
2241 for (i = 0; i < XVECLEN (pat, 0); i++)
2242 {
2243 rtx x = XVECEXP (pat, 0, i);
2244 if (GET_CODE (x) == SET)
2245 {
2246 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2247 may not find an equivalent expression, but in this
2248 case the PARALLEL will have a single set. */
2249 if (first_set == NULL_RTX)
2250 first_set = x;
2251 if (expr_equiv_p (SET_SRC (x), expr->expr))
2252 {
2253 set = x;
2254 break;
2255 }
2256 }
2257 }
2258
2259 gcc_assert (first_set);
2260 if (set == NULL_RTX)
2261 set = first_set;
2262 break;
2263
2264 default:
2265 gcc_unreachable ();
2266 }
2267
2268 if (REG_P (SET_DEST (set)))
2269 {
2270 old_reg = SET_DEST (set);
2271 /* Check if we can modify the set destination in the original insn. */
2272 if (validate_change (insn, &SET_DEST (set), reg, 0))
2273 {
2274 new_insn = gen_move_insn (old_reg, reg);
2275 new_insn = emit_insn_after (new_insn, insn);
2276 }
2277 else
2278 {
2279 new_insn = gen_move_insn (reg, old_reg);
2280 new_insn = emit_insn_after (new_insn, insn);
2281 }
2282 }
2283 else /* This is possible only in case of a store to memory. */
2284 {
2285 old_reg = SET_SRC (set);
2286 new_insn = gen_move_insn (reg, old_reg);
2287
2288 /* Check if we can modify the set source in the original insn. */
2289 if (validate_change (insn, &SET_SRC (set), reg, 0))
2290 new_insn = emit_insn_before (new_insn, insn);
2291 else
2292 new_insn = emit_insn_after (new_insn, insn);
2293 }
2294
2295 gcse_create_count++;
2296
2297 if (dump_file)
2298 fprintf (dump_file,
2299 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2300 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2301 INSN_UID (insn), regno);
2302 }
2303
2304 /* Copy available expressions that reach the redundant expression
2305 to `reaching_reg'. */
2306
2307 static void
2308 pre_insert_copies (void)
2309 {
2310 unsigned int i, added_copy;
2311 struct gcse_expr *expr;
2312 struct gcse_occr *occr;
2313 struct gcse_occr *avail;
2314
2315 /* For each available expression in the table, copy the result to
2316 `reaching_reg' if the expression reaches a deleted one.
2317
2318 ??? The current algorithm is rather brute force.
2319 Need to do some profiling. */
2320
2321 for (i = 0; i < expr_hash_table.size; i++)
2322 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2323 {
2324 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2325 we don't want to insert a copy here because the expression may not
2326 really be redundant. So only insert an insn if the expression was
2327 deleted. This test also avoids further processing if the
2328 expression wasn't deleted anywhere. */
2329 if (expr->reaching_reg == NULL)
2330 continue;
2331
2332 /* Set when we add a copy for that expression. */
2333 added_copy = 0;
2334
2335 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2336 {
2337 if (! occr->deleted_p)
2338 continue;
2339
2340 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2341 {
2342 rtx_insn *insn = avail->insn;
2343
2344 /* No need to handle this one if handled already. */
2345 if (avail->copied_p)
2346 continue;
2347
2348 /* Don't handle this one if it's a redundant one. */
2349 if (insn->deleted ())
2350 continue;
2351
2352 /* Or if the expression doesn't reach the deleted one. */
2353 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2354 expr,
2355 BLOCK_FOR_INSN (occr->insn)))
2356 continue;
2357
2358 added_copy = 1;
2359
2360 /* Copy the result of avail to reaching_reg. */
2361 pre_insert_copy_insn (expr, insn);
2362 avail->copied_p = 1;
2363 }
2364 }
2365
2366 if (added_copy)
2367 update_ld_motion_stores (expr);
2368 }
2369 }
2370
2371 struct set_data
2372 {
2373 rtx_insn *insn;
2374 const_rtx set;
2375 int nsets;
2376 };
2377
2378 /* Increment number of sets and record set in DATA. */
2379
2380 static void
2381 record_set_data (rtx dest, const_rtx set, void *data)
2382 {
2383 struct set_data *s = (struct set_data *)data;
2384
2385 if (GET_CODE (set) == SET)
2386 {
2387 /* We allow insns having multiple sets, where all but one are
2388 dead as single set insns. In the common case only a single
2389 set is present, so we want to avoid checking for REG_UNUSED
2390 notes unless necessary. */
2391 if (s->nsets == 1
2392 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2393 && !side_effects_p (s->set))
2394 s->nsets = 0;
2395
2396 if (!s->nsets)
2397 {
2398 /* Record this set. */
2399 s->nsets += 1;
2400 s->set = set;
2401 }
2402 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2403 || side_effects_p (set))
2404 s->nsets += 1;
2405 }
2406 }
2407
2408 static const_rtx
2409 single_set_gcse (rtx_insn *insn)
2410 {
2411 struct set_data s;
2412 rtx pattern;
2413
2414 gcc_assert (INSN_P (insn));
2415
2416 /* Optimize common case. */
2417 pattern = PATTERN (insn);
2418 if (GET_CODE (pattern) == SET)
2419 return pattern;
2420
2421 s.insn = insn;
2422 s.nsets = 0;
2423 note_pattern_stores (pattern, record_set_data, &s);
2424
2425 /* Considered invariant insns have exactly one set. */
2426 gcc_assert (s.nsets == 1);
2427 return s.set;
2428 }
2429
2430 /* Emit move from SRC to DEST noting the equivalence with expression computed
2431 in INSN. */
2432
2433 static rtx_insn *
2434 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2435 {
2436 rtx_insn *new_rtx;
2437 const_rtx set = single_set_gcse (insn);
2438 rtx set2;
2439 rtx note;
2440 rtx eqv = NULL_RTX;
2441
2442 /* This should never fail since we're creating a reg->reg copy
2443 we've verified to be valid. */
2444
2445 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2446
2447 /* Note the equivalence for local CSE pass. Take the note from the old
2448 set if there was one. Otherwise record the SET_SRC from the old set
2449 unless DEST is also an operand of the SET_SRC. */
2450 set2 = single_set (new_rtx);
2451 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2452 return new_rtx;
2453 if ((note = find_reg_equal_equiv_note (insn)))
2454 eqv = XEXP (note, 0);
2455 else if (! REG_P (dest)
2456 || ! reg_mentioned_p (dest, SET_SRC (set)))
2457 eqv = SET_SRC (set);
2458
2459 if (eqv != NULL_RTX)
2460 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2461
2462 return new_rtx;
2463 }
2464
2465 /* Delete redundant computations.
2466 Deletion is done by changing the insn to copy the `reaching_reg' of
2467 the expression into the result of the SET. It is left to later passes
2468 to propagate the copy or eliminate it.
2469
2470 Return nonzero if a change is made. */
2471
2472 static int
2473 pre_delete (void)
2474 {
2475 unsigned int i;
2476 int changed;
2477 struct gcse_expr *expr;
2478 struct gcse_occr *occr;
2479
2480 changed = 0;
2481 for (i = 0; i < expr_hash_table.size; i++)
2482 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2483 {
2484 int indx = expr->bitmap_index;
2485
2486 /* We only need to search antic_occr since we require ANTLOC != 0. */
2487 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2488 {
2489 rtx_insn *insn = occr->insn;
2490 rtx set;
2491 basic_block bb = BLOCK_FOR_INSN (insn);
2492
2493 /* We only delete insns that have a single_set. */
2494 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2495 && (set = single_set (insn)) != 0
2496 && dbg_cnt (pre_insn))
2497 {
2498 /* Create a pseudo-reg to store the result of reaching
2499 expressions into. Get the mode for the new pseudo from
2500 the mode of the original destination pseudo. */
2501 if (expr->reaching_reg == NULL)
2502 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2503
2504 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2505 delete_insn (insn);
2506 occr->deleted_p = 1;
2507 changed = 1;
2508 gcse_subst_count++;
2509
2510 if (dump_file)
2511 {
2512 fprintf (dump_file,
2513 "PRE: redundant insn %d (expression %d) in ",
2514 INSN_UID (insn), indx);
2515 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2516 bb->index, REGNO (expr->reaching_reg));
2517 }
2518 }
2519 }
2520 }
2521
2522 return changed;
2523 }
2524
2525 /* Perform GCSE optimizations using PRE.
2526 This is called by one_pre_gcse_pass after all the dataflow analysis
2527 has been done.
2528
2529 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2530 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2531 Compiler Design and Implementation.
2532
2533 ??? A new pseudo reg is created to hold the reaching expression. The nice
2534 thing about the classical approach is that it would try to use an existing
2535 reg. If the register can't be adequately optimized [i.e. we introduce
2536 reload problems], one could add a pass here to propagate the new register
2537 through the block.
2538
2539 ??? We don't handle single sets in PARALLELs because we're [currently] not
2540 able to copy the rest of the parallel when we insert copies to create full
2541 redundancies from partial redundancies. However, there's no reason why we
2542 can't handle PARALLELs in the cases where there are no partial
2543 redundancies. */
2544
2545 static int
2546 pre_gcse (struct edge_list *edge_list)
2547 {
2548 unsigned int i;
2549 int did_insert, changed;
2550 struct gcse_expr **index_map;
2551 struct gcse_expr *expr;
2552
2553 /* Compute a mapping from expression number (`bitmap_index') to
2554 hash table entry. */
2555
2556 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2557 for (i = 0; i < expr_hash_table.size; i++)
2558 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2559 index_map[expr->bitmap_index] = expr;
2560
2561 /* Delete the redundant insns first so that
2562 - we know what register to use for the new insns and for the other
2563 ones with reaching expressions
2564 - we know which insns are redundant when we go to create copies */
2565
2566 changed = pre_delete ();
2567 did_insert = pre_edge_insert (edge_list, index_map);
2568
2569 /* In other places with reaching expressions, copy the expression to the
2570 specially allocated pseudo-reg that reaches the redundant expr. */
2571 pre_insert_copies ();
2572 if (did_insert)
2573 {
2574 commit_edge_insertions ();
2575 changed = 1;
2576 }
2577
2578 free (index_map);
2579 return changed;
2580 }
2581
2582 /* Top level routine to perform one PRE GCSE pass.
2583
2584 Return nonzero if a change was made. */
2585
2586 static int
2587 one_pre_gcse_pass (void)
2588 {
2589 int changed = 0;
2590
2591 gcse_subst_count = 0;
2592 gcse_create_count = 0;
2593
2594 /* Return if there's nothing to do, or it is too expensive. */
2595 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2596 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
2597 return 0;
2598
2599 /* We need alias. */
2600 init_alias_analysis ();
2601
2602 bytes_used = 0;
2603 gcc_obstack_init (&gcse_obstack);
2604 alloc_gcse_mem ();
2605
2606 alloc_hash_table (&expr_hash_table);
2607 add_noreturn_fake_exit_edges ();
2608 if (flag_gcse_lm)
2609 compute_ld_motion_mems ();
2610
2611 compute_hash_table (&expr_hash_table);
2612 if (flag_gcse_lm)
2613 trim_ld_motion_mems ();
2614 if (dump_file)
2615 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2616
2617 if (expr_hash_table.n_elems > 0)
2618 {
2619 struct edge_list *edge_list;
2620 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2621 edge_list = compute_pre_data ();
2622 changed |= pre_gcse (edge_list);
2623 free_edge_list (edge_list);
2624 free_pre_mem ();
2625 }
2626
2627 if (flag_gcse_lm)
2628 free_ld_motion_mems ();
2629 remove_fake_exit_edges ();
2630 free_hash_table (&expr_hash_table);
2631
2632 free_gcse_mem ();
2633 obstack_free (&gcse_obstack, NULL);
2634
2635 /* We are finished with alias. */
2636 end_alias_analysis ();
2637
2638 if (dump_file)
2639 {
2640 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2641 current_function_name (), n_basic_blocks_for_fn (cfun),
2642 bytes_used);
2643 fprintf (dump_file, "%d substs, %d insns created\n",
2644 gcse_subst_count, gcse_create_count);
2645 }
2646
2647 return changed;
2648 }
2649 \f
2650 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2651 to INSN. If such notes are added to an insn which references a
2652 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2653 that note, because the following loop optimization pass requires
2654 them. */
2655
2656 /* ??? If there was a jump optimization pass after gcse and before loop,
2657 then we would not need to do this here, because jump would add the
2658 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2659
2660 static void
2661 add_label_notes (rtx x, rtx_insn *insn)
2662 {
2663 enum rtx_code code = GET_CODE (x);
2664 int i, j;
2665 const char *fmt;
2666
2667 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2668 {
2669 /* This code used to ignore labels that referred to dispatch tables to
2670 avoid flow generating (slightly) worse code.
2671
2672 We no longer ignore such label references (see LABEL_REF handling in
2673 mark_jump_label for additional information). */
2674
2675 /* There's no reason for current users to emit jump-insns with
2676 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2677 notes. */
2678 gcc_assert (!JUMP_P (insn));
2679 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
2680
2681 if (LABEL_P (label_ref_label (x)))
2682 LABEL_NUSES (label_ref_label (x))++;
2683
2684 return;
2685 }
2686
2687 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2688 {
2689 if (fmt[i] == 'e')
2690 add_label_notes (XEXP (x, i), insn);
2691 else if (fmt[i] == 'E')
2692 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2693 add_label_notes (XVECEXP (x, i, j), insn);
2694 }
2695 }
2696
2697 /* Code Hoisting variables and subroutines. */
2698
2699 /* Very busy expressions. */
2700 static sbitmap *hoist_vbein;
2701 static sbitmap *hoist_vbeout;
2702
2703 /* ??? We could compute post dominators and run this algorithm in
2704 reverse to perform tail merging, doing so would probably be
2705 more effective than the tail merging code in jump.c.
2706
2707 It's unclear if tail merging could be run in parallel with
2708 code hoisting. It would be nice. */
2709
2710 /* Allocate vars used for code hoisting analysis. */
2711
2712 static void
2713 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2714 {
2715 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2716 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2717 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2718
2719 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2720 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2721 }
2722
2723 /* Free vars used for code hoisting analysis. */
2724
2725 static void
2726 free_code_hoist_mem (void)
2727 {
2728 sbitmap_vector_free (antloc);
2729 sbitmap_vector_free (transp);
2730 sbitmap_vector_free (comp);
2731
2732 sbitmap_vector_free (hoist_vbein);
2733 sbitmap_vector_free (hoist_vbeout);
2734
2735 free_dominance_info (CDI_DOMINATORS);
2736 }
2737
2738 /* Compute the very busy expressions at entry/exit from each block.
2739
2740 An expression is very busy if all paths from a given point
2741 compute the expression. */
2742
2743 static void
2744 compute_code_hoist_vbeinout (void)
2745 {
2746 int changed, passes;
2747 basic_block bb;
2748
2749 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2750 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2751
2752 passes = 0;
2753 changed = 1;
2754
2755 while (changed)
2756 {
2757 changed = 0;
2758
2759 /* We scan the blocks in the reverse order to speed up
2760 the convergence. */
2761 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2762 {
2763 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2764 {
2765 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2766 hoist_vbein, bb);
2767
2768 /* Include expressions in VBEout that are calculated
2769 in BB and available at its end. */
2770 bitmap_ior (hoist_vbeout[bb->index],
2771 hoist_vbeout[bb->index], comp[bb->index]);
2772 }
2773
2774 changed |= bitmap_or_and (hoist_vbein[bb->index],
2775 antloc[bb->index],
2776 hoist_vbeout[bb->index],
2777 transp[bb->index]);
2778 }
2779
2780 passes++;
2781 }
2782
2783 if (dump_file)
2784 {
2785 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2786
2787 FOR_EACH_BB_FN (bb, cfun)
2788 {
2789 fprintf (dump_file, "vbein (%d): ", bb->index);
2790 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2791 fprintf (dump_file, "vbeout(%d): ", bb->index);
2792 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2793 }
2794 }
2795 }
2796
2797 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2798
2799 static void
2800 compute_code_hoist_data (void)
2801 {
2802 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2803 prune_expressions (false);
2804 compute_code_hoist_vbeinout ();
2805 calculate_dominance_info (CDI_DOMINATORS);
2806 if (dump_file)
2807 fprintf (dump_file, "\n");
2808 }
2809
2810 /* Update register pressure for BB when hoisting an expression from
2811 instruction FROM, if live ranges of inputs are shrunk. Also
2812 maintain live_in information if live range of register referred
2813 in FROM is shrunk.
2814
2815 Return 0 if register pressure doesn't change, otherwise return
2816 the number by which register pressure is decreased.
2817
2818 NOTE: Register pressure won't be increased in this function. */
2819
2820 static int
2821 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2822 {
2823 rtx dreg;
2824 rtx_insn *insn;
2825 basic_block succ_bb;
2826 df_ref use, op_ref;
2827 edge succ;
2828 edge_iterator ei;
2829 int decreased_pressure = 0;
2830 int nregs;
2831 enum reg_class pressure_class;
2832
2833 FOR_EACH_INSN_USE (use, from)
2834 {
2835 dreg = DF_REF_REAL_REG (use);
2836 /* The live range of register is shrunk only if it isn't:
2837 1. referred on any path from the end of this block to EXIT, or
2838 2. referred by insns other than FROM in this block. */
2839 FOR_EACH_EDGE (succ, ei, bb->succs)
2840 {
2841 succ_bb = succ->dest;
2842 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2843 continue;
2844
2845 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2846 break;
2847 }
2848 if (succ != NULL)
2849 continue;
2850
2851 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2852 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2853 {
2854 if (!DF_REF_INSN_INFO (op_ref))
2855 continue;
2856
2857 insn = DF_REF_INSN (op_ref);
2858 if (BLOCK_FOR_INSN (insn) == bb
2859 && NONDEBUG_INSN_P (insn) && insn != from)
2860 break;
2861 }
2862
2863 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2864 /* Decrease register pressure and update live_in information for
2865 this block. */
2866 if (!op_ref && pressure_class != NO_REGS)
2867 {
2868 decreased_pressure += nregs;
2869 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2870 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2871 }
2872 }
2873 return decreased_pressure;
2874 }
2875
2876 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2877 flow graph, if it can reach BB unimpared. Stop the search if the
2878 expression would need to be moved more than DISTANCE instructions.
2879
2880 DISTANCE is the number of instructions through which EXPR can be
2881 hoisted up in flow graph.
2882
2883 BB_SIZE points to an array which contains the number of instructions
2884 for each basic block.
2885
2886 PRESSURE_CLASS and NREGS are register class and number of hard registers
2887 for storing EXPR.
2888
2889 HOISTED_BBS points to a bitmap indicating basic blocks through which
2890 EXPR is hoisted.
2891
2892 FROM is the instruction from which EXPR is hoisted.
2893
2894 It's unclear exactly what Muchnick meant by "unimpared". It seems
2895 to me that the expression must either be computed or transparent in
2896 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2897 would allow the expression to be hoisted out of loops, even if
2898 the expression wasn't a loop invariant.
2899
2900 Contrast this to reachability for PRE where an expression is
2901 considered reachable if *any* path reaches instead of *all*
2902 paths. */
2903
2904 static int
2905 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2906 basic_block bb, sbitmap visited,
2907 HOST_WIDE_INT distance,
2908 int *bb_size, enum reg_class pressure_class,
2909 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2910 {
2911 unsigned int i;
2912 edge pred;
2913 edge_iterator ei;
2914 sbitmap_iterator sbi;
2915 int visited_allocated_locally = 0;
2916 int decreased_pressure = 0;
2917
2918 if (flag_ira_hoist_pressure)
2919 {
2920 /* Record old information of basic block BB when it is visited
2921 at the first time. */
2922 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2923 {
2924 struct bb_data *data = BB_DATA (bb);
2925 bitmap_copy (data->backup, data->live_in);
2926 data->old_pressure = data->max_reg_pressure[pressure_class];
2927 }
2928 decreased_pressure = update_bb_reg_pressure (bb, from);
2929 }
2930 /* Terminate the search if distance, for which EXPR is allowed to move,
2931 is exhausted. */
2932 if (distance > 0)
2933 {
2934 if (flag_ira_hoist_pressure)
2935 {
2936 /* Prefer to hoist EXPR if register pressure is decreased. */
2937 if (decreased_pressure > *nregs)
2938 distance += bb_size[bb->index];
2939 /* Let EXPR be hoisted through basic block at no cost if one
2940 of following conditions is satisfied:
2941
2942 1. The basic block has low register pressure.
2943 2. Register pressure won't be increases after hoisting EXPR.
2944
2945 Constant expressions is handled conservatively, because
2946 hoisting constant expression aggressively results in worse
2947 code. This decision is made by the observation of CSiBE
2948 on ARM target, while it has no obvious effect on other
2949 targets like x86, x86_64, mips and powerpc. */
2950 else if (CONST_INT_P (expr->expr)
2951 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2952 >= ira_class_hard_regs_num[pressure_class]
2953 && decreased_pressure < *nregs))
2954 distance -= bb_size[bb->index];
2955 }
2956 else
2957 distance -= bb_size[bb->index];
2958
2959 if (distance <= 0)
2960 return 0;
2961 }
2962 else
2963 gcc_assert (distance == 0);
2964
2965 if (visited == NULL)
2966 {
2967 visited_allocated_locally = 1;
2968 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2969 bitmap_clear (visited);
2970 }
2971
2972 FOR_EACH_EDGE (pred, ei, bb->preds)
2973 {
2974 basic_block pred_bb = pred->src;
2975
2976 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2977 break;
2978 else if (pred_bb == expr_bb)
2979 continue;
2980 else if (bitmap_bit_p (visited, pred_bb->index))
2981 continue;
2982 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2983 break;
2984 /* Not killed. */
2985 else
2986 {
2987 bitmap_set_bit (visited, pred_bb->index);
2988 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2989 visited, distance, bb_size,
2990 pressure_class, nregs,
2991 hoisted_bbs, from))
2992 break;
2993 }
2994 }
2995 if (visited_allocated_locally)
2996 {
2997 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2998 which EXPR is hoisted in hoisted_bbs. */
2999 if (flag_ira_hoist_pressure && !pred)
3000 {
3001 /* Record the basic block from which EXPR is hoisted. */
3002 bitmap_set_bit (visited, bb->index);
3003 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3004 bitmap_set_bit (hoisted_bbs, i);
3005 }
3006 sbitmap_free (visited);
3007 }
3008
3009 return (pred == NULL);
3010 }
3011 \f
3012 /* Find occurrence in BB. */
3013
3014 static struct gcse_occr *
3015 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3016 {
3017 /* Find the right occurrence of this expression. */
3018 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3019 occr = occr->next;
3020
3021 return occr;
3022 }
3023
3024 /* Actually perform code hoisting.
3025
3026 The code hoisting pass can hoist multiple computations of the same
3027 expression along dominated path to a dominating basic block, like
3028 from b2/b3 to b1 as depicted below:
3029
3030 b1 ------
3031 /\ |
3032 / \ |
3033 bx by distance
3034 / \ |
3035 / \ |
3036 b2 b3 ------
3037
3038 Unfortunately code hoisting generally extends the live range of an
3039 output pseudo register, which increases register pressure and hurts
3040 register allocation. To address this issue, an attribute MAX_DISTANCE
3041 is computed and attached to each expression. The attribute is computed
3042 from rtx cost of the corresponding expression and it's used to control
3043 how long the expression can be hoisted up in flow graph. As the
3044 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3045 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3046 register pressure if live ranges of inputs are shrunk.
3047
3048 Option "-fira-hoist-pressure" implements register pressure directed
3049 hoist based on upper method. The rationale is:
3050 1. Calculate register pressure for each basic block by reusing IRA
3051 facility.
3052 2. When expression is hoisted through one basic block, GCC checks
3053 the change of live ranges for inputs/output. The basic block's
3054 register pressure will be increased because of extended live
3055 range of output. However, register pressure will be decreased
3056 if the live ranges of inputs are shrunk.
3057 3. After knowing how hoisting affects register pressure, GCC prefers
3058 to hoist the expression if it can decrease register pressure, by
3059 increasing DISTANCE of the corresponding expression.
3060 4. If hoisting the expression increases register pressure, GCC checks
3061 register pressure of the basic block and decrease DISTANCE only if
3062 the register pressure is high. In other words, expression will be
3063 hoisted through at no cost if the basic block has low register
3064 pressure.
3065 5. Update register pressure information for basic blocks through
3066 which expression is hoisted. */
3067
3068 static int
3069 hoist_code (void)
3070 {
3071 basic_block bb, dominated;
3072 vec<basic_block> dom_tree_walk;
3073 unsigned int dom_tree_walk_index;
3074 vec<basic_block> domby;
3075 unsigned int i, j, k;
3076 struct gcse_expr **index_map;
3077 struct gcse_expr *expr;
3078 int *to_bb_head;
3079 int *bb_size;
3080 int changed = 0;
3081 struct bb_data *data;
3082 /* Basic blocks that have occurrences reachable from BB. */
3083 bitmap from_bbs;
3084 /* Basic blocks through which expr is hoisted. */
3085 bitmap hoisted_bbs = NULL;
3086 bitmap_iterator bi;
3087
3088 /* Compute a mapping from expression number (`bitmap_index') to
3089 hash table entry. */
3090
3091 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3092 for (i = 0; i < expr_hash_table.size; i++)
3093 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3094 index_map[expr->bitmap_index] = expr;
3095
3096 /* Calculate sizes of basic blocks and note how far
3097 each instruction is from the start of its block. We then use this
3098 data to restrict distance an expression can travel. */
3099
3100 to_bb_head = XCNEWVEC (int, get_max_uid ());
3101 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3102
3103 FOR_EACH_BB_FN (bb, cfun)
3104 {
3105 rtx_insn *insn;
3106 int to_head;
3107
3108 to_head = 0;
3109 FOR_BB_INSNS (bb, insn)
3110 {
3111 /* Don't count debug instructions to avoid them affecting
3112 decision choices. */
3113 if (NONDEBUG_INSN_P (insn))
3114 to_bb_head[INSN_UID (insn)] = to_head++;
3115 }
3116
3117 bb_size[bb->index] = to_head;
3118 }
3119
3120 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3121 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3122 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3123
3124 from_bbs = BITMAP_ALLOC (NULL);
3125 if (flag_ira_hoist_pressure)
3126 hoisted_bbs = BITMAP_ALLOC (NULL);
3127
3128 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3129 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3130
3131 /* Walk over each basic block looking for potentially hoistable
3132 expressions, nothing gets hoisted from the entry block. */
3133 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3134 {
3135 domby = get_dominated_to_depth (CDI_DOMINATORS, bb,
3136 param_max_hoist_depth);
3137
3138 if (domby.length () == 0)
3139 continue;
3140
3141 /* Examine each expression that is very busy at the exit of this
3142 block. These are the potentially hoistable expressions. */
3143 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3144 {
3145 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3146 {
3147 int nregs = 0;
3148 enum reg_class pressure_class = NO_REGS;
3149 /* Current expression. */
3150 struct gcse_expr *expr = index_map[i];
3151 /* Number of occurrences of EXPR that can be hoisted to BB. */
3152 int hoistable = 0;
3153 /* Occurrences reachable from BB. */
3154 vec<occr_t> occrs_to_hoist = vNULL;
3155 /* We want to insert the expression into BB only once, so
3156 note when we've inserted it. */
3157 int insn_inserted_p;
3158 occr_t occr;
3159
3160 /* If an expression is computed in BB and is available at end of
3161 BB, hoist all occurrences dominated by BB to BB. */
3162 if (bitmap_bit_p (comp[bb->index], i))
3163 {
3164 occr = find_occr_in_bb (expr->antic_occr, bb);
3165
3166 if (occr)
3167 {
3168 /* An occurrence might've been already deleted
3169 while processing a dominator of BB. */
3170 if (!occr->deleted_p)
3171 {
3172 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3173 hoistable++;
3174 }
3175 }
3176 else
3177 hoistable++;
3178 }
3179
3180 /* We've found a potentially hoistable expression, now
3181 we look at every block BB dominates to see if it
3182 computes the expression. */
3183 FOR_EACH_VEC_ELT (domby, j, dominated)
3184 {
3185 HOST_WIDE_INT max_distance;
3186
3187 /* Ignore self dominance. */
3188 if (bb == dominated)
3189 continue;
3190 /* We've found a dominated block, now see if it computes
3191 the busy expression and whether or not moving that
3192 expression to the "beginning" of that block is safe. */
3193 if (!bitmap_bit_p (antloc[dominated->index], i))
3194 continue;
3195
3196 occr = find_occr_in_bb (expr->antic_occr, dominated);
3197 gcc_assert (occr);
3198
3199 /* An occurrence might've been already deleted
3200 while processing a dominator of BB. */
3201 if (occr->deleted_p)
3202 continue;
3203 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3204
3205 max_distance = expr->max_distance;
3206 if (max_distance > 0)
3207 /* Adjust MAX_DISTANCE to account for the fact that
3208 OCCR won't have to travel all of DOMINATED, but
3209 only part of it. */
3210 max_distance += (bb_size[dominated->index]
3211 - to_bb_head[INSN_UID (occr->insn)]);
3212
3213 pressure_class = get_pressure_class_and_nregs (occr->insn,
3214 &nregs);
3215
3216 /* Note if the expression should be hoisted from the dominated
3217 block to BB if it can reach DOMINATED unimpared.
3218
3219 Keep track of how many times this expression is hoistable
3220 from a dominated block into BB. */
3221 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3222 max_distance, bb_size,
3223 pressure_class, &nregs,
3224 hoisted_bbs, occr->insn))
3225 {
3226 hoistable++;
3227 occrs_to_hoist.safe_push (occr);
3228 bitmap_set_bit (from_bbs, dominated->index);
3229 }
3230 }
3231
3232 /* If we found more than one hoistable occurrence of this
3233 expression, then note it in the vector of expressions to
3234 hoist. It makes no sense to hoist things which are computed
3235 in only one BB, and doing so tends to pessimize register
3236 allocation. One could increase this value to try harder
3237 to avoid any possible code expansion due to register
3238 allocation issues; however experiments have shown that
3239 the vast majority of hoistable expressions are only movable
3240 from two successors, so raising this threshold is likely
3241 to nullify any benefit we get from code hoisting. */
3242 if (hoistable > 1 && dbg_cnt (hoist_insn))
3243 {
3244 /* If (hoistable != vec::length), then there is
3245 an occurrence of EXPR in BB itself. Don't waste
3246 time looking for LCA in this case. */
3247 if ((unsigned) hoistable == occrs_to_hoist.length ())
3248 {
3249 basic_block lca;
3250
3251 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3252 from_bbs);
3253 if (lca != bb)
3254 /* Punt, it's better to hoist these occurrences to
3255 LCA. */
3256 occrs_to_hoist.release ();
3257 }
3258 }
3259 else
3260 /* Punt, no point hoisting a single occurrence. */
3261 occrs_to_hoist.release ();
3262
3263 if (flag_ira_hoist_pressure
3264 && !occrs_to_hoist.is_empty ())
3265 {
3266 /* Increase register pressure of basic blocks to which
3267 expr is hoisted because of extended live range of
3268 output. */
3269 data = BB_DATA (bb);
3270 data->max_reg_pressure[pressure_class] += nregs;
3271 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3272 {
3273 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3274 data->max_reg_pressure[pressure_class] += nregs;
3275 }
3276 }
3277 else if (flag_ira_hoist_pressure)
3278 {
3279 /* Restore register pressure and live_in info for basic
3280 blocks recorded in hoisted_bbs when expr will not be
3281 hoisted. */
3282 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3283 {
3284 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3285 bitmap_copy (data->live_in, data->backup);
3286 data->max_reg_pressure[pressure_class]
3287 = data->old_pressure;
3288 }
3289 }
3290
3291 if (flag_ira_hoist_pressure)
3292 bitmap_clear (hoisted_bbs);
3293
3294 insn_inserted_p = 0;
3295
3296 /* Walk through occurrences of I'th expressions we want
3297 to hoist to BB and make the transformations. */
3298 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3299 {
3300 rtx_insn *insn;
3301 const_rtx set;
3302
3303 gcc_assert (!occr->deleted_p);
3304
3305 insn = occr->insn;
3306 set = single_set_gcse (insn);
3307
3308 /* Create a pseudo-reg to store the result of reaching
3309 expressions into. Get the mode for the new pseudo
3310 from the mode of the original destination pseudo.
3311
3312 It is important to use new pseudos whenever we
3313 emit a set. This will allow reload to use
3314 rematerialization for such registers. */
3315 if (!insn_inserted_p)
3316 expr->reaching_reg
3317 = gen_reg_rtx_and_attrs (SET_DEST (set));
3318
3319 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3320 insn);
3321 delete_insn (insn);
3322 occr->deleted_p = 1;
3323 changed = 1;
3324 gcse_subst_count++;
3325
3326 if (!insn_inserted_p)
3327 {
3328 insert_insn_end_basic_block (expr, bb);
3329 insn_inserted_p = 1;
3330 }
3331 }
3332
3333 occrs_to_hoist.release ();
3334 bitmap_clear (from_bbs);
3335 }
3336 }
3337 domby.release ();
3338 }
3339
3340 dom_tree_walk.release ();
3341 BITMAP_FREE (from_bbs);
3342 if (flag_ira_hoist_pressure)
3343 BITMAP_FREE (hoisted_bbs);
3344
3345 free (bb_size);
3346 free (to_bb_head);
3347 free (index_map);
3348
3349 return changed;
3350 }
3351
3352 /* Return pressure class and number of needed hard registers (through
3353 *NREGS) of register REGNO. */
3354 static enum reg_class
3355 get_regno_pressure_class (int regno, int *nregs)
3356 {
3357 if (regno >= FIRST_PSEUDO_REGISTER)
3358 {
3359 enum reg_class pressure_class;
3360
3361 pressure_class = reg_allocno_class (regno);
3362 pressure_class = ira_pressure_class_translate[pressure_class];
3363 *nregs
3364 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3365 return pressure_class;
3366 }
3367 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3368 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3369 {
3370 *nregs = 1;
3371 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3372 }
3373 else
3374 {
3375 *nregs = 0;
3376 return NO_REGS;
3377 }
3378 }
3379
3380 /* Return pressure class and number of hard registers (through *NREGS)
3381 for destination of INSN. */
3382 static enum reg_class
3383 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3384 {
3385 rtx reg;
3386 enum reg_class pressure_class;
3387 const_rtx set = single_set_gcse (insn);
3388
3389 reg = SET_DEST (set);
3390 if (GET_CODE (reg) == SUBREG)
3391 reg = SUBREG_REG (reg);
3392 if (MEM_P (reg))
3393 {
3394 *nregs = 0;
3395 pressure_class = NO_REGS;
3396 }
3397 else
3398 {
3399 gcc_assert (REG_P (reg));
3400 pressure_class = reg_allocno_class (REGNO (reg));
3401 pressure_class = ira_pressure_class_translate[pressure_class];
3402 *nregs
3403 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3404 }
3405 return pressure_class;
3406 }
3407
3408 /* Increase (if INCR_P) or decrease current register pressure for
3409 register REGNO. */
3410 static void
3411 change_pressure (int regno, bool incr_p)
3412 {
3413 int nregs;
3414 enum reg_class pressure_class;
3415
3416 pressure_class = get_regno_pressure_class (regno, &nregs);
3417 if (! incr_p)
3418 curr_reg_pressure[pressure_class] -= nregs;
3419 else
3420 {
3421 curr_reg_pressure[pressure_class] += nregs;
3422 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3423 < curr_reg_pressure[pressure_class])
3424 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3425 = curr_reg_pressure[pressure_class];
3426 }
3427 }
3428
3429 /* Calculate register pressure for each basic block by walking insns
3430 from last to first. */
3431 static void
3432 calculate_bb_reg_pressure (void)
3433 {
3434 int i;
3435 unsigned int j;
3436 rtx_insn *insn;
3437 basic_block bb;
3438 bitmap curr_regs_live;
3439 bitmap_iterator bi;
3440
3441
3442 ira_setup_eliminable_regset ();
3443 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3444 FOR_EACH_BB_FN (bb, cfun)
3445 {
3446 curr_bb = bb;
3447 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3448 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3449 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3450 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3451 for (i = 0; i < ira_pressure_classes_num; i++)
3452 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3453 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3454 change_pressure (j, true);
3455
3456 FOR_BB_INSNS_REVERSE (bb, insn)
3457 {
3458 rtx dreg;
3459 int regno;
3460 df_ref def, use;
3461
3462 if (! NONDEBUG_INSN_P (insn))
3463 continue;
3464
3465 FOR_EACH_INSN_DEF (def, insn)
3466 {
3467 dreg = DF_REF_REAL_REG (def);
3468 gcc_assert (REG_P (dreg));
3469 regno = REGNO (dreg);
3470 if (!(DF_REF_FLAGS (def)
3471 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3472 {
3473 if (bitmap_clear_bit (curr_regs_live, regno))
3474 change_pressure (regno, false);
3475 }
3476 }
3477
3478 FOR_EACH_INSN_USE (use, insn)
3479 {
3480 dreg = DF_REF_REAL_REG (use);
3481 gcc_assert (REG_P (dreg));
3482 regno = REGNO (dreg);
3483 if (bitmap_set_bit (curr_regs_live, regno))
3484 change_pressure (regno, true);
3485 }
3486 }
3487 }
3488 BITMAP_FREE (curr_regs_live);
3489
3490 if (dump_file == NULL)
3491 return;
3492
3493 fprintf (dump_file, "\nRegister Pressure: \n");
3494 FOR_EACH_BB_FN (bb, cfun)
3495 {
3496 fprintf (dump_file, " Basic block %d: \n", bb->index);
3497 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3498 {
3499 enum reg_class pressure_class;
3500
3501 pressure_class = ira_pressure_classes[i];
3502 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3503 continue;
3504
3505 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3506 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3507 }
3508 }
3509 fprintf (dump_file, "\n");
3510 }
3511
3512 /* Top level routine to perform one code hoisting (aka unification) pass
3513
3514 Return nonzero if a change was made. */
3515
3516 static int
3517 one_code_hoisting_pass (void)
3518 {
3519 int changed = 0;
3520
3521 gcse_subst_count = 0;
3522 gcse_create_count = 0;
3523
3524 /* Return if there's nothing to do, or it is too expensive. */
3525 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3526 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
3527 return 0;
3528
3529 doing_code_hoisting_p = true;
3530
3531 /* Calculate register pressure for each basic block. */
3532 if (flag_ira_hoist_pressure)
3533 {
3534 regstat_init_n_sets_and_refs ();
3535 ira_set_pseudo_classes (false, dump_file);
3536 alloc_aux_for_blocks (sizeof (struct bb_data));
3537 calculate_bb_reg_pressure ();
3538 regstat_free_n_sets_and_refs ();
3539 }
3540
3541 /* We need alias. */
3542 init_alias_analysis ();
3543
3544 bytes_used = 0;
3545 gcc_obstack_init (&gcse_obstack);
3546 alloc_gcse_mem ();
3547
3548 alloc_hash_table (&expr_hash_table);
3549 compute_hash_table (&expr_hash_table);
3550 if (dump_file)
3551 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3552
3553 if (expr_hash_table.n_elems > 0)
3554 {
3555 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3556 expr_hash_table.n_elems);
3557 compute_code_hoist_data ();
3558 changed = hoist_code ();
3559 free_code_hoist_mem ();
3560 }
3561
3562 if (flag_ira_hoist_pressure)
3563 {
3564 free_aux_for_blocks ();
3565 free_reg_info ();
3566 }
3567 free_hash_table (&expr_hash_table);
3568 free_gcse_mem ();
3569 obstack_free (&gcse_obstack, NULL);
3570
3571 /* We are finished with alias. */
3572 end_alias_analysis ();
3573
3574 if (dump_file)
3575 {
3576 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3577 current_function_name (), n_basic_blocks_for_fn (cfun),
3578 bytes_used);
3579 fprintf (dump_file, "%d substs, %d insns created\n",
3580 gcse_subst_count, gcse_create_count);
3581 }
3582
3583 doing_code_hoisting_p = false;
3584
3585 return changed;
3586 }
3587 \f
3588 /* Here we provide the things required to do store motion towards the exit.
3589 In order for this to be effective, gcse also needed to be taught how to
3590 move a load when it is killed only by a store to itself.
3591
3592 int i;
3593 float a[10];
3594
3595 void foo(float scale)
3596 {
3597 for (i=0; i<10; i++)
3598 a[i] *= scale;
3599 }
3600
3601 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3602 the load out since its live around the loop, and stored at the bottom
3603 of the loop.
3604
3605 The 'Load Motion' referred to and implemented in this file is
3606 an enhancement to gcse which when using edge based LCM, recognizes
3607 this situation and allows gcse to move the load out of the loop.
3608
3609 Once gcse has hoisted the load, store motion can then push this
3610 load towards the exit, and we end up with no loads or stores of 'i'
3611 in the loop. */
3612
3613 /* This will search the ldst list for a matching expression. If it
3614 doesn't find one, we create one and initialize it. */
3615
3616 static struct ls_expr *
3617 ldst_entry (rtx x)
3618 {
3619 int do_not_record_p = 0;
3620 struct ls_expr * ptr;
3621 unsigned int hash;
3622 ls_expr **slot;
3623 struct ls_expr e;
3624
3625 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3626 NULL, /*have_reg_qty=*/false);
3627
3628 e.pattern = x;
3629 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3630 if (*slot)
3631 return *slot;
3632
3633 ptr = XNEW (struct ls_expr);
3634
3635 ptr->next = pre_ldst_mems;
3636 ptr->expr = NULL;
3637 ptr->pattern = x;
3638 ptr->pattern_regs = NULL_RTX;
3639 ptr->stores.create (0);
3640 ptr->reaching_reg = NULL_RTX;
3641 ptr->invalid = 0;
3642 ptr->index = 0;
3643 ptr->hash_index = hash;
3644 pre_ldst_mems = ptr;
3645 *slot = ptr;
3646
3647 return ptr;
3648 }
3649
3650 /* Free up an individual ldst entry. */
3651
3652 static void
3653 free_ldst_entry (struct ls_expr * ptr)
3654 {
3655 ptr->stores.release ();
3656
3657 free (ptr);
3658 }
3659
3660 /* Free up all memory associated with the ldst list. */
3661
3662 static void
3663 free_ld_motion_mems (void)
3664 {
3665 delete pre_ldst_table;
3666 pre_ldst_table = NULL;
3667
3668 while (pre_ldst_mems)
3669 {
3670 struct ls_expr * tmp = pre_ldst_mems;
3671
3672 pre_ldst_mems = pre_ldst_mems->next;
3673
3674 free_ldst_entry (tmp);
3675 }
3676
3677 pre_ldst_mems = NULL;
3678 }
3679
3680 /* Dump debugging info about the ldst list. */
3681
3682 static void
3683 print_ldst_list (FILE * file)
3684 {
3685 struct ls_expr * ptr;
3686
3687 fprintf (file, "LDST list: \n");
3688
3689 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3690 {
3691 fprintf (file, " Pattern (%3d): ", ptr->index);
3692
3693 print_rtl (file, ptr->pattern);
3694
3695 fprintf (file, "\n Stores : ");
3696 print_rtx_insn_vec (file, ptr->stores);
3697
3698 fprintf (file, "\n\n");
3699 }
3700
3701 fprintf (file, "\n");
3702 }
3703
3704 /* Returns 1 if X is in the list of ldst only expressions. */
3705
3706 static struct ls_expr *
3707 find_rtx_in_ldst (rtx x)
3708 {
3709 struct ls_expr e;
3710 ls_expr **slot;
3711 if (!pre_ldst_table)
3712 return NULL;
3713 e.pattern = x;
3714 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3715 if (!slot || (*slot)->invalid)
3716 return NULL;
3717 return *slot;
3718 }
3719 \f
3720 /* Load Motion for loads which only kill themselves. */
3721
3722 /* Return true if x, a MEM, is a simple access with no side effects.
3723 These are the types of loads we consider for the ld_motion list,
3724 otherwise we let the usual aliasing take care of it. */
3725
3726 static int
3727 simple_mem (const_rtx x)
3728 {
3729 if (MEM_VOLATILE_P (x))
3730 return 0;
3731
3732 if (GET_MODE (x) == BLKmode)
3733 return 0;
3734
3735 /* If we are handling exceptions, we must be careful with memory references
3736 that may trap. If we are not, the behavior is undefined, so we may just
3737 continue. */
3738 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3739 return 0;
3740
3741 if (side_effects_p (x))
3742 return 0;
3743
3744 /* Do not consider function arguments passed on stack. */
3745 if (reg_mentioned_p (stack_pointer_rtx, x))
3746 return 0;
3747
3748 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3749 return 0;
3750
3751 return 1;
3752 }
3753
3754 /* Make sure there isn't a buried reference in this pattern anywhere.
3755 If there is, invalidate the entry for it since we're not capable
3756 of fixing it up just yet.. We have to be sure we know about ALL
3757 loads since the aliasing code will allow all entries in the
3758 ld_motion list to not-alias itself. If we miss a load, we will get
3759 the wrong value since gcse might common it and we won't know to
3760 fix it up. */
3761
3762 static void
3763 invalidate_any_buried_refs (rtx x)
3764 {
3765 const char * fmt;
3766 int i, j;
3767 struct ls_expr * ptr;
3768
3769 /* Invalidate it in the list. */
3770 if (MEM_P (x) && simple_mem (x))
3771 {
3772 ptr = ldst_entry (x);
3773 ptr->invalid = 1;
3774 }
3775
3776 /* Recursively process the insn. */
3777 fmt = GET_RTX_FORMAT (GET_CODE (x));
3778
3779 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3780 {
3781 if (fmt[i] == 'e')
3782 invalidate_any_buried_refs (XEXP (x, i));
3783 else if (fmt[i] == 'E')
3784 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3785 invalidate_any_buried_refs (XVECEXP (x, i, j));
3786 }
3787 }
3788
3789 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3790 being defined as MEM loads and stores to symbols, with no side effects
3791 and no registers in the expression. For a MEM destination, we also
3792 check that the insn is still valid if we replace the destination with a
3793 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3794 which don't match this criteria, they are invalidated and trimmed out
3795 later. */
3796
3797 static void
3798 compute_ld_motion_mems (void)
3799 {
3800 struct ls_expr * ptr;
3801 basic_block bb;
3802 rtx_insn *insn;
3803
3804 pre_ldst_mems = NULL;
3805 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3806
3807 FOR_EACH_BB_FN (bb, cfun)
3808 {
3809 FOR_BB_INSNS (bb, insn)
3810 {
3811 if (NONDEBUG_INSN_P (insn))
3812 {
3813 if (GET_CODE (PATTERN (insn)) == SET)
3814 {
3815 rtx src = SET_SRC (PATTERN (insn));
3816 rtx dest = SET_DEST (PATTERN (insn));
3817
3818 /* Check for a simple load. */
3819 if (MEM_P (src) && simple_mem (src))
3820 {
3821 ptr = ldst_entry (src);
3822 if (!REG_P (dest))
3823 ptr->invalid = 1;
3824 }
3825 else
3826 {
3827 /* Make sure there isn't a buried load somewhere. */
3828 invalidate_any_buried_refs (src);
3829 }
3830
3831 /* Check for a simple load through a REG_EQUAL note. */
3832 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3833 if (note
3834 && REG_NOTE_KIND (note) == REG_EQUAL
3835 && (src_eq = XEXP (note, 0))
3836 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3837 invalidate_any_buried_refs (src_eq);
3838
3839 /* Check for stores. Don't worry about aliased ones, they
3840 will block any movement we might do later. We only care
3841 about this exact pattern since those are the only
3842 circumstance that we will ignore the aliasing info. */
3843 if (MEM_P (dest) && simple_mem (dest))
3844 {
3845 ptr = ldst_entry (dest);
3846 machine_mode src_mode = GET_MODE (src);
3847 if (! MEM_P (src)
3848 && GET_CODE (src) != ASM_OPERANDS
3849 /* Check for REG manually since want_to_gcse_p
3850 returns 0 for all REGs. */
3851 && can_assign_to_reg_without_clobbers_p (src,
3852 src_mode))
3853 ptr->stores.safe_push (insn);
3854 else
3855 ptr->invalid = 1;
3856 }
3857 }
3858 else
3859 {
3860 /* Invalidate all MEMs in the pattern and... */
3861 invalidate_any_buried_refs (PATTERN (insn));
3862
3863 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3864 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3865 if (note
3866 && REG_NOTE_KIND (note) == REG_EQUAL
3867 && (src_eq = XEXP (note, 0)))
3868 invalidate_any_buried_refs (src_eq);
3869 }
3870 }
3871 }
3872 }
3873 }
3874
3875 /* Remove any references that have been either invalidated or are not in the
3876 expression list for pre gcse. */
3877
3878 static void
3879 trim_ld_motion_mems (void)
3880 {
3881 struct ls_expr * * last = & pre_ldst_mems;
3882 struct ls_expr * ptr = pre_ldst_mems;
3883
3884 while (ptr != NULL)
3885 {
3886 struct gcse_expr * expr;
3887
3888 /* Delete if entry has been made invalid. */
3889 if (! ptr->invalid)
3890 {
3891 /* Delete if we cannot find this mem in the expression list. */
3892 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3893
3894 for (expr = expr_hash_table.table[hash];
3895 expr != NULL;
3896 expr = expr->next_same_hash)
3897 if (expr_equiv_p (expr->expr, ptr->pattern))
3898 break;
3899 }
3900 else
3901 expr = (struct gcse_expr *) 0;
3902
3903 if (expr)
3904 {
3905 /* Set the expression field if we are keeping it. */
3906 ptr->expr = expr;
3907 last = & ptr->next;
3908 ptr = ptr->next;
3909 }
3910 else
3911 {
3912 *last = ptr->next;
3913 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3914 free_ldst_entry (ptr);
3915 ptr = * last;
3916 }
3917 }
3918
3919 /* Show the world what we've found. */
3920 if (dump_file && pre_ldst_mems != NULL)
3921 print_ldst_list (dump_file);
3922 }
3923
3924 /* This routine will take an expression which we are replacing with
3925 a reaching register, and update any stores that are needed if
3926 that expression is in the ld_motion list. Stores are updated by
3927 copying their SRC to the reaching register, and then storing
3928 the reaching register into the store location. These keeps the
3929 correct value in the reaching register for the loads. */
3930
3931 static void
3932 update_ld_motion_stores (struct gcse_expr * expr)
3933 {
3934 struct ls_expr * mem_ptr;
3935
3936 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3937 {
3938 /* We can try to find just the REACHED stores, but is shouldn't
3939 matter to set the reaching reg everywhere... some might be
3940 dead and should be eliminated later. */
3941
3942 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3943 where reg is the reaching reg used in the load. We checked in
3944 compute_ld_motion_mems that we can replace (set mem expr) with
3945 (set reg expr) in that insn. */
3946 rtx_insn *insn;
3947 unsigned int i;
3948 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
3949 {
3950 rtx pat = PATTERN (insn);
3951 rtx src = SET_SRC (pat);
3952 rtx reg = expr->reaching_reg;
3953
3954 /* If we've already copied it, continue. */
3955 if (expr->reaching_reg == src)
3956 continue;
3957
3958 if (dump_file)
3959 {
3960 fprintf (dump_file, "PRE: store updated with reaching reg ");
3961 print_rtl (dump_file, reg);
3962 fprintf (dump_file, ":\n ");
3963 print_inline_rtx (dump_file, insn, 8);
3964 fprintf (dump_file, "\n");
3965 }
3966
3967 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3968 emit_insn_before (copy, insn);
3969 SET_SRC (pat) = reg;
3970 df_insn_rescan (insn);
3971
3972 /* un-recognize this pattern since it's probably different now. */
3973 INSN_CODE (insn) = -1;
3974 gcse_create_count++;
3975 }
3976 }
3977 }
3978 \f
3979 /* Return true if the graph is too expensive to optimize. PASS is the
3980 optimization about to be performed. */
3981
3982 bool
3983 gcse_or_cprop_is_too_expensive (const char *pass)
3984 {
3985 int memory_request = (n_basic_blocks_for_fn (cfun)
3986 * SBITMAP_SET_SIZE (max_reg_num ())
3987 * sizeof (SBITMAP_ELT_TYPE));
3988
3989 /* Trying to perform global optimizations on flow graphs which have
3990 a high connectivity will take a long time and is unlikely to be
3991 particularly useful.
3992
3993 In normal circumstances a cfg should have about twice as many
3994 edges as blocks. But we do not want to punish small functions
3995 which have a couple switch statements. Rather than simply
3996 threshold the number of blocks, uses something with a more
3997 graceful degradation. */
3998 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3999 {
4000 warning (OPT_Wdisabled_optimization,
4001 "%s: %d basic blocks and %d edges/basic block",
4002 pass, n_basic_blocks_for_fn (cfun),
4003 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4004
4005 return true;
4006 }
4007
4008 /* If allocating memory for the dataflow bitmaps would take up too much
4009 storage it's better just to disable the optimization. */
4010 if (memory_request > param_max_gcse_memory)
4011 {
4012 warning (OPT_Wdisabled_optimization,
4013 "%s: %d basic blocks and %d registers; "
4014 "increase %<--param max-gcse-memory%> above %d",
4015 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
4016 memory_request);
4017
4018 return true;
4019 }
4020
4021 return false;
4022 }
4023 \f
4024 static unsigned int
4025 execute_rtl_pre (void)
4026 {
4027 int changed;
4028 delete_unreachable_blocks ();
4029 df_analyze ();
4030 changed = one_pre_gcse_pass ();
4031 flag_rerun_cse_after_global_opts |= changed;
4032 if (changed)
4033 cleanup_cfg (0);
4034 return 0;
4035 }
4036
4037 static unsigned int
4038 execute_rtl_hoist (void)
4039 {
4040 int changed;
4041 delete_unreachable_blocks ();
4042 df_analyze ();
4043 changed = one_code_hoisting_pass ();
4044 flag_rerun_cse_after_global_opts |= changed;
4045 if (changed)
4046 cleanup_cfg (0);
4047 return 0;
4048 }
4049
4050 namespace {
4051
4052 const pass_data pass_data_rtl_pre =
4053 {
4054 RTL_PASS, /* type */
4055 "rtl pre", /* name */
4056 OPTGROUP_NONE, /* optinfo_flags */
4057 TV_PRE, /* tv_id */
4058 PROP_cfglayout, /* properties_required */
4059 0, /* properties_provided */
4060 0, /* properties_destroyed */
4061 0, /* todo_flags_start */
4062 TODO_df_finish, /* todo_flags_finish */
4063 };
4064
4065 class pass_rtl_pre : public rtl_opt_pass
4066 {
4067 public:
4068 pass_rtl_pre (gcc::context *ctxt)
4069 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4070 {}
4071
4072 /* opt_pass methods: */
4073 virtual bool gate (function *);
4074 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4075
4076 }; // class pass_rtl_pre
4077
4078 /* We do not construct an accurate cfg in functions which call
4079 setjmp, so none of these passes runs if the function calls
4080 setjmp.
4081 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4082
4083 bool
4084 pass_rtl_pre::gate (function *fun)
4085 {
4086 return optimize > 0 && flag_gcse
4087 && !fun->calls_setjmp
4088 && optimize_function_for_speed_p (fun)
4089 && dbg_cnt (pre);
4090 }
4091
4092 } // anon namespace
4093
4094 rtl_opt_pass *
4095 make_pass_rtl_pre (gcc::context *ctxt)
4096 {
4097 return new pass_rtl_pre (ctxt);
4098 }
4099
4100 namespace {
4101
4102 const pass_data pass_data_rtl_hoist =
4103 {
4104 RTL_PASS, /* type */
4105 "hoist", /* name */
4106 OPTGROUP_NONE, /* optinfo_flags */
4107 TV_HOIST, /* tv_id */
4108 PROP_cfglayout, /* properties_required */
4109 0, /* properties_provided */
4110 0, /* properties_destroyed */
4111 0, /* todo_flags_start */
4112 TODO_df_finish, /* todo_flags_finish */
4113 };
4114
4115 class pass_rtl_hoist : public rtl_opt_pass
4116 {
4117 public:
4118 pass_rtl_hoist (gcc::context *ctxt)
4119 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4120 {}
4121
4122 /* opt_pass methods: */
4123 virtual bool gate (function *);
4124 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4125
4126 }; // class pass_rtl_hoist
4127
4128 bool
4129 pass_rtl_hoist::gate (function *)
4130 {
4131 return optimize > 0 && flag_gcse
4132 && !cfun->calls_setjmp
4133 /* It does not make sense to run code hoisting unless we are optimizing
4134 for code size -- it rarely makes programs faster, and can make then
4135 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4136 && optimize_function_for_size_p (cfun)
4137 && dbg_cnt (hoist);
4138 }
4139
4140 } // anon namespace
4141
4142 rtl_opt_pass *
4143 make_pass_rtl_hoist (gcc::context *ctxt)
4144 {
4145 return new pass_rtl_hoist (ctxt);
4146 }
4147
4148 /* Reset all state within gcse.c so that we can rerun the compiler
4149 within the same process. For use by toplev::finalize. */
4150
4151 void
4152 gcse_c_finalize (void)
4153 {
4154 test_insn = NULL;
4155 }
4156
4157 #include "gt-gcse.h"