]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gcse.c
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / gcse.c
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
24 */
25
26 /* References searched while implementing this.
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133 */
134
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141
142 #include "hard-reg-set.h"
143 #include "rtl.h"
144 #include "tree.h"
145 #include "tm_p.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "flags.h"
149 #include "insn-config.h"
150 #include "recog.h"
151 #include "basic-block.h"
152 #include "function.h"
153 #include "expr.h"
154 #include "except.h"
155 #include "ggc.h"
156 #include "params.h"
157 #include "cselib.h"
158 #include "intl.h"
159 #include "obstack.h"
160 #include "tree-pass.h"
161 #include "hashtab.h"
162 #include "df.h"
163 #include "dbgcnt.h"
164 #include "target.h"
165 #include "gcse.h"
166
167 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
168 are a superset of those done by classic GCSE.
169
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
176
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
180
181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
182 This allows PRE to hoist expressions that are expressed in multiple insns,
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
185
186 PRE handles moving invariant expressions out of loops (by treating them as
187 partially redundant).
188
189 **********************
190
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
196
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
201
202 It was found doing copy propagation between each pass enables further
203 substitutions.
204
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
209
210 PRE is quite expensive in complicated functions because the DFA can take
211 a while to converge. Hence we only perform one pass.
212
213 **********************
214
215 The steps for PRE are:
216
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
218
219 2) Perform the data flow analysis for PRE.
220
221 3) Delete the redundant instructions
222
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
225
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
228
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
231
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
235
236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
241 each register in each block and thus can try to use an existing
242 register. */
243 \f
244 /* GCSE global vars. */
245
246 struct target_gcse default_target_gcse;
247 #if SWITCHABLE_TARGET
248 struct target_gcse *this_target_gcse = &default_target_gcse;
249 #endif
250
251 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252 int flag_rerun_cse_after_global_opts;
253
254 /* An obstack for our working variables. */
255 static struct obstack gcse_obstack;
256
257 /* Hash table of expressions. */
258
259 struct expr
260 {
261 /* The expression. */
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
288 };
289
290 /* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
293
294 struct occr
295 {
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
301 char deleted_p;
302 /* Nonzero if this [available] occurrence has been copied to
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
307 };
308
309 typedef struct occr *occr_t;
310
311 /* Expression hash tables.
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
318 Someday I'll perform the computation and figure it out. */
319
320 struct hash_table_d
321 {
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
325
326 /* Size of the hash table, in elements. */
327 unsigned int size;
328
329 /* Number of hash table elements. */
330 unsigned int n_elems;
331 };
332
333 /* Expression hash table. */
334 static struct hash_table_d expr_hash_table;
335
336 /* This is a list of expressions which are MEMs and will be used by load
337 or store motion.
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
340 We can then allow movement of these MEM refs with a little special
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
343 no side effects so we can re-issue the setter value. */
344
345 struct ls_expr
346 {
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
349 rtx pattern_regs; /* List of registers mentioned by the mem. */
350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
355 unsigned int hash_index; /* Index when in a hash table. */
356 rtx reaching_reg; /* Register to use when re-writing. */
357 };
358
359 /* Head of the list of load/store memory refs. */
360 static struct ls_expr * pre_ldst_mems = NULL;
361
362 /* Hashtable for the load/store memory refs. */
363 static htab_t pre_ldst_table = NULL;
364
365 /* Bitmap containing one bit for each register in the program.
366 Used when performing GCSE to track which registers have been set since
367 the start of the basic block. */
368 static regset reg_set_bitmap;
369
370 /* Array, indexed by basic block number for a list of insns which modify
371 memory within that block. */
372 static vec<rtx> *modify_mem_list;
373 static bitmap modify_mem_list_set;
374
375 typedef struct modify_pair_s
376 {
377 rtx dest; /* A MEM. */
378 rtx dest_addr; /* The canonical address of `dest'. */
379 } modify_pair;
380
381
382 /* This array parallels modify_mem_list, except that it stores MEMs
383 being set and their canonicalized memory addresses. */
384 static vec<modify_pair> *canon_modify_mem_list;
385
386 /* Bitmap indexed by block numbers to record which blocks contain
387 function calls. */
388 static bitmap blocks_with_calls;
389
390 /* Various variables for statistics gathering. */
391
392 /* Memory used in a pass.
393 This isn't intended to be absolutely precise. Its intent is only
394 to keep an eye on memory usage. */
395 static int bytes_used;
396
397 /* GCSE substitutions made. */
398 static int gcse_subst_count;
399 /* Number of copy instructions created. */
400 static int gcse_create_count;
401 \f
402 /* Doing code hoisting. */
403 static bool doing_code_hoisting_p = false;
404 \f
405 /* For available exprs */
406 static sbitmap *ae_kill;
407 \f
408 /* Data stored for each basic block. */
409 struct bb_data
410 {
411 /* Maximal register pressure inside basic block for given register class
412 (defined only for the pressure classes). */
413 int max_reg_pressure[N_REG_CLASSES];
414 /* Recorded register pressure of basic block before trying to hoist
415 an expression. Will be used to restore the register pressure
416 if the expression should not be hoisted. */
417 int old_pressure;
418 /* Recorded register live_in info of basic block during code hoisting
419 process. BACKUP is used to record live_in info before trying to
420 hoist an expression, and will be used to restore LIVE_IN if the
421 expression should not be hoisted. */
422 bitmap live_in, backup;
423 };
424
425 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
426
427 static basic_block curr_bb;
428
429 /* Current register pressure for each pressure class. */
430 static int curr_reg_pressure[N_REG_CLASSES];
431 \f
432
433 static void compute_can_copy (void);
434 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
435 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
436 static void *gcse_alloc (unsigned long);
437 static void alloc_gcse_mem (void);
438 static void free_gcse_mem (void);
439 static void hash_scan_insn (rtx, struct hash_table_d *);
440 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
441 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
442 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
443 static int want_to_gcse_p (rtx, int *);
444 static int oprs_unchanged_p (const_rtx, const_rtx, int);
445 static int oprs_anticipatable_p (const_rtx, const_rtx);
446 static int oprs_available_p (const_rtx, const_rtx);
447 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
448 struct hash_table_d *);
449 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
450 static int expr_equiv_p (const_rtx, const_rtx);
451 static void record_last_reg_set_info (rtx, int);
452 static void record_last_mem_set_info (rtx);
453 static void record_last_set_info (rtx, const_rtx, void *);
454 static void compute_hash_table (struct hash_table_d *);
455 static void alloc_hash_table (struct hash_table_d *);
456 static void free_hash_table (struct hash_table_d *);
457 static void compute_hash_table_work (struct hash_table_d *);
458 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
459 static void compute_transp (const_rtx, int, sbitmap *);
460 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
461 struct hash_table_d *);
462 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
463 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
464 static void canon_list_insert (rtx, const_rtx, void *);
465 static void alloc_pre_mem (int, int);
466 static void free_pre_mem (void);
467 static struct edge_list *compute_pre_data (void);
468 static int pre_expr_reaches_here_p (basic_block, struct expr *,
469 basic_block);
470 static void insert_insn_end_basic_block (struct expr *, basic_block);
471 static void pre_insert_copy_insn (struct expr *, rtx);
472 static void pre_insert_copies (void);
473 static int pre_delete (void);
474 static int pre_gcse (struct edge_list *);
475 static int one_pre_gcse_pass (void);
476 static void add_label_notes (rtx, rtx);
477 static void alloc_code_hoist_mem (int, int);
478 static void free_code_hoist_mem (void);
479 static void compute_code_hoist_vbeinout (void);
480 static void compute_code_hoist_data (void);
481 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
482 sbitmap, int, int *, enum reg_class,
483 int *, bitmap, rtx);
484 static int hoist_code (void);
485 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
486 static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
487 static int one_code_hoisting_pass (void);
488 static rtx process_insert_insn (struct expr *);
489 static int pre_edge_insert (struct edge_list *, struct expr **);
490 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
491 basic_block, char *);
492 static struct ls_expr * ldst_entry (rtx);
493 static void free_ldst_entry (struct ls_expr *);
494 static void free_ld_motion_mems (void);
495 static void print_ldst_list (FILE *);
496 static struct ls_expr * find_rtx_in_ldst (rtx);
497 static int simple_mem (const_rtx);
498 static void invalidate_any_buried_refs (rtx);
499 static void compute_ld_motion_mems (void);
500 static void trim_ld_motion_mems (void);
501 static void update_ld_motion_stores (struct expr *);
502 static void clear_modify_mem_tables (void);
503 static void free_modify_mem_tables (void);
504 static rtx gcse_emit_move_after (rtx, rtx, rtx);
505 static bool is_too_expensive (const char *);
506
507 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
508 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
509
510 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
511 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
512
513 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
514 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
515
516 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
517 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
518 \f
519 /* Misc. utilities. */
520
521 #define can_copy \
522 (this_target_gcse->x_can_copy)
523 #define can_copy_init_p \
524 (this_target_gcse->x_can_copy_init_p)
525
526 /* Compute which modes support reg/reg copy operations. */
527
528 static void
529 compute_can_copy (void)
530 {
531 int i;
532 #ifndef AVOID_CCMODE_COPIES
533 rtx reg, insn;
534 #endif
535 memset (can_copy, 0, NUM_MACHINE_MODES);
536
537 start_sequence ();
538 for (i = 0; i < NUM_MACHINE_MODES; i++)
539 if (GET_MODE_CLASS (i) == MODE_CC)
540 {
541 #ifdef AVOID_CCMODE_COPIES
542 can_copy[i] = 0;
543 #else
544 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
545 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
546 if (recog (PATTERN (insn), insn, NULL) >= 0)
547 can_copy[i] = 1;
548 #endif
549 }
550 else
551 can_copy[i] = 1;
552
553 end_sequence ();
554 }
555
556 /* Returns whether the mode supports reg/reg copy operations. */
557
558 bool
559 can_copy_p (enum machine_mode mode)
560 {
561 if (! can_copy_init_p)
562 {
563 compute_can_copy ();
564 can_copy_init_p = true;
565 }
566
567 return can_copy[mode] != 0;
568 }
569 \f
570 /* Cover function to xmalloc to record bytes allocated. */
571
572 static void *
573 gmalloc (size_t size)
574 {
575 bytes_used += size;
576 return xmalloc (size);
577 }
578
579 /* Cover function to xcalloc to record bytes allocated. */
580
581 static void *
582 gcalloc (size_t nelem, size_t elsize)
583 {
584 bytes_used += nelem * elsize;
585 return xcalloc (nelem, elsize);
586 }
587
588 /* Cover function to obstack_alloc. */
589
590 static void *
591 gcse_alloc (unsigned long size)
592 {
593 bytes_used += size;
594 return obstack_alloc (&gcse_obstack, size);
595 }
596
597 /* Allocate memory for the reg/memory set tracking tables.
598 This is called at the start of each pass. */
599
600 static void
601 alloc_gcse_mem (void)
602 {
603 /* Allocate vars to track sets of regs. */
604 reg_set_bitmap = ALLOC_REG_SET (NULL);
605
606 /* Allocate array to keep a list of insns which modify memory in each
607 basic block. The two typedefs are needed to work around the
608 pre-processor limitation with template types in macro arguments. */
609 typedef vec<rtx> vec_rtx_heap;
610 typedef vec<modify_pair> vec_modify_pair_heap;
611 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block);
612 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap, last_basic_block);
613 modify_mem_list_set = BITMAP_ALLOC (NULL);
614 blocks_with_calls = BITMAP_ALLOC (NULL);
615 }
616
617 /* Free memory allocated by alloc_gcse_mem. */
618
619 static void
620 free_gcse_mem (void)
621 {
622 FREE_REG_SET (reg_set_bitmap);
623
624 free_modify_mem_tables ();
625 BITMAP_FREE (modify_mem_list_set);
626 BITMAP_FREE (blocks_with_calls);
627 }
628 \f
629 /* Compute the local properties of each recorded expression.
630
631 Local properties are those that are defined by the block, irrespective of
632 other blocks.
633
634 An expression is transparent in a block if its operands are not modified
635 in the block.
636
637 An expression is computed (locally available) in a block if it is computed
638 at least once and expression would contain the same value if the
639 computation was moved to the end of the block.
640
641 An expression is locally anticipatable in a block if it is computed at
642 least once and expression would contain the same value if the computation
643 was moved to the beginning of the block.
644
645 We call this routine for pre and code hoisting. They all compute
646 basically the same information and thus can easily share this code.
647
648 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
649 properties. If NULL, then it is not necessary to compute or record that
650 particular property.
651
652 TABLE controls which hash table to look at. */
653
654 static void
655 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
656 struct hash_table_d *table)
657 {
658 unsigned int i;
659
660 /* Initialize any bitmaps that were passed in. */
661 if (transp)
662 {
663 bitmap_vector_ones (transp, last_basic_block);
664 }
665
666 if (comp)
667 bitmap_vector_clear (comp, last_basic_block);
668 if (antloc)
669 bitmap_vector_clear (antloc, last_basic_block);
670
671 for (i = 0; i < table->size; i++)
672 {
673 struct expr *expr;
674
675 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
676 {
677 int indx = expr->bitmap_index;
678 struct occr *occr;
679
680 /* The expression is transparent in this block if it is not killed.
681 We start by assuming all are transparent [none are killed], and
682 then reset the bits for those that are. */
683 if (transp)
684 compute_transp (expr->expr, indx, transp);
685
686 /* The occurrences recorded in antic_occr are exactly those that
687 we want to set to nonzero in ANTLOC. */
688 if (antloc)
689 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
690 {
691 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
692
693 /* While we're scanning the table, this is a good place to
694 initialize this. */
695 occr->deleted_p = 0;
696 }
697
698 /* The occurrences recorded in avail_occr are exactly those that
699 we want to set to nonzero in COMP. */
700 if (comp)
701 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
702 {
703 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
704
705 /* While we're scanning the table, this is a good place to
706 initialize this. */
707 occr->copied_p = 0;
708 }
709
710 /* While we're scanning the table, this is a good place to
711 initialize this. */
712 expr->reaching_reg = 0;
713 }
714 }
715 }
716 \f
717 /* Hash table support. */
718
719 struct reg_avail_info
720 {
721 basic_block last_bb;
722 int first_set;
723 int last_set;
724 };
725
726 static struct reg_avail_info *reg_avail_info;
727 static basic_block current_bb;
728
729 /* See whether X, the source of a set, is something we want to consider for
730 GCSE. */
731
732 static int
733 want_to_gcse_p (rtx x, int *max_distance_ptr)
734 {
735 #ifdef STACK_REGS
736 /* On register stack architectures, don't GCSE constants from the
737 constant pool, as the benefits are often swamped by the overhead
738 of shuffling the register stack between basic blocks. */
739 if (IS_STACK_MODE (GET_MODE (x)))
740 x = avoid_constant_pool_reference (x);
741 #endif
742
743 /* GCSE'ing constants:
744
745 We do not specifically distinguish between constant and non-constant
746 expressions in PRE and Hoist. We use set_src_cost below to limit
747 the maximum distance simple expressions can travel.
748
749 Nevertheless, constants are much easier to GCSE, and, hence,
750 it is easy to overdo the optimizations. Usually, excessive PRE and
751 Hoisting of constant leads to increased register pressure.
752
753 RA can deal with this by rematerialing some of the constants.
754 Therefore, it is important that the back-end generates sets of constants
755 in a way that allows reload rematerialize them under high register
756 pressure, i.e., a pseudo register with REG_EQUAL to constant
757 is set only once. Failing to do so will result in IRA/reload
758 spilling such constants under high register pressure instead of
759 rematerializing them. */
760
761 switch (GET_CODE (x))
762 {
763 case REG:
764 case SUBREG:
765 case CALL:
766 return 0;
767
768 CASE_CONST_ANY:
769 if (!doing_code_hoisting_p)
770 /* Do not PRE constants. */
771 return 0;
772
773 /* FALLTHRU */
774
775 default:
776 if (doing_code_hoisting_p)
777 /* PRE doesn't implement max_distance restriction. */
778 {
779 int cost;
780 int max_distance;
781
782 gcc_assert (!optimize_function_for_speed_p (cfun)
783 && optimize_function_for_size_p (cfun));
784 cost = set_src_cost (x, 0);
785
786 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
787 {
788 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
789 if (max_distance == 0)
790 return 0;
791
792 gcc_assert (max_distance > 0);
793 }
794 else
795 max_distance = 0;
796
797 if (max_distance_ptr)
798 *max_distance_ptr = max_distance;
799 }
800
801 return can_assign_to_reg_without_clobbers_p (x);
802 }
803 }
804
805 /* Used internally by can_assign_to_reg_without_clobbers_p. */
806
807 static GTY(()) rtx test_insn;
808
809 /* Return true if we can assign X to a pseudo register such that the
810 resulting insn does not result in clobbering a hard register as a
811 side-effect.
812
813 Additionally, if the target requires it, check that the resulting insn
814 can be copied. If it cannot, this means that X is special and probably
815 has hidden side-effects we don't want to mess with.
816
817 This function is typically used by code motion passes, to verify
818 that it is safe to insert an insn without worrying about clobbering
819 maybe live hard regs. */
820
821 bool
822 can_assign_to_reg_without_clobbers_p (rtx x)
823 {
824 int num_clobbers = 0;
825 int icode;
826
827 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
828 if (general_operand (x, GET_MODE (x)))
829 return 1;
830 else if (GET_MODE (x) == VOIDmode)
831 return 0;
832
833 /* Otherwise, check if we can make a valid insn from it. First initialize
834 our test insn if we haven't already. */
835 if (test_insn == 0)
836 {
837 test_insn
838 = make_insn_raw (gen_rtx_SET (VOIDmode,
839 gen_rtx_REG (word_mode,
840 FIRST_PSEUDO_REGISTER * 2),
841 const0_rtx));
842 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
843 }
844
845 /* Now make an insn like the one we would make when GCSE'ing and see if
846 valid. */
847 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
848 SET_SRC (PATTERN (test_insn)) = x;
849
850 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
851 if (icode < 0)
852 return false;
853
854 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
855 return false;
856
857 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
858 return false;
859
860 return true;
861 }
862
863 /* Return nonzero if the operands of expression X are unchanged from the
864 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
865 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
866
867 static int
868 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
869 {
870 int i, j;
871 enum rtx_code code;
872 const char *fmt;
873
874 if (x == 0)
875 return 1;
876
877 code = GET_CODE (x);
878 switch (code)
879 {
880 case REG:
881 {
882 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
883
884 if (info->last_bb != current_bb)
885 return 1;
886 if (avail_p)
887 return info->last_set < DF_INSN_LUID (insn);
888 else
889 return info->first_set >= DF_INSN_LUID (insn);
890 }
891
892 case MEM:
893 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
894 x, avail_p))
895 return 0;
896 else
897 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
898
899 case PRE_DEC:
900 case PRE_INC:
901 case POST_DEC:
902 case POST_INC:
903 case PRE_MODIFY:
904 case POST_MODIFY:
905 return 0;
906
907 case PC:
908 case CC0: /*FIXME*/
909 case CONST:
910 CASE_CONST_ANY:
911 case SYMBOL_REF:
912 case LABEL_REF:
913 case ADDR_VEC:
914 case ADDR_DIFF_VEC:
915 return 1;
916
917 default:
918 break;
919 }
920
921 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
922 {
923 if (fmt[i] == 'e')
924 {
925 /* If we are about to do the last recursive call needed at this
926 level, change it into iteration. This function is called enough
927 to be worth it. */
928 if (i == 0)
929 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
930
931 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
932 return 0;
933 }
934 else if (fmt[i] == 'E')
935 for (j = 0; j < XVECLEN (x, i); j++)
936 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
937 return 0;
938 }
939
940 return 1;
941 }
942
943 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
944
945 struct mem_conflict_info
946 {
947 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
948 see if a memory store conflicts with this memory load. */
949 const_rtx mem;
950
951 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
952 references. */
953 bool conflict;
954 };
955
956 /* DEST is the output of an instruction. If it is a memory reference and
957 possibly conflicts with the load found in DATA, then communicate this
958 information back through DATA. */
959
960 static void
961 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
962 void *data)
963 {
964 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
965
966 while (GET_CODE (dest) == SUBREG
967 || GET_CODE (dest) == ZERO_EXTRACT
968 || GET_CODE (dest) == STRICT_LOW_PART)
969 dest = XEXP (dest, 0);
970
971 /* If DEST is not a MEM, then it will not conflict with the load. Note
972 that function calls are assumed to clobber memory, but are handled
973 elsewhere. */
974 if (! MEM_P (dest))
975 return;
976
977 /* If we are setting a MEM in our list of specially recognized MEMs,
978 don't mark as killed this time. */
979 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
980 {
981 if (!find_rtx_in_ldst (dest))
982 mci->conflict = true;
983 return;
984 }
985
986 if (true_dependence (dest, GET_MODE (dest), mci->mem))
987 mci->conflict = true;
988 }
989
990 /* Return nonzero if the expression in X (a memory reference) is killed
991 in block BB before or after the insn with the LUID in UID_LIMIT.
992 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
993 before UID_LIMIT.
994
995 To check the entire block, set UID_LIMIT to max_uid + 1 and
996 AVAIL_P to 0. */
997
998 static int
999 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1000 int avail_p)
1001 {
1002 vec<rtx> list = modify_mem_list[bb->index];
1003 rtx setter;
1004 unsigned ix;
1005
1006 /* If this is a readonly then we aren't going to be changing it. */
1007 if (MEM_READONLY_P (x))
1008 return 0;
1009
1010 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1011 {
1012 struct mem_conflict_info mci;
1013
1014 /* Ignore entries in the list that do not apply. */
1015 if ((avail_p
1016 && DF_INSN_LUID (setter) < uid_limit)
1017 || (! avail_p
1018 && DF_INSN_LUID (setter) > uid_limit))
1019 continue;
1020
1021 /* If SETTER is a call everything is clobbered. Note that calls
1022 to pure functions are never put on the list, so we need not
1023 worry about them. */
1024 if (CALL_P (setter))
1025 return 1;
1026
1027 /* SETTER must be an INSN of some kind that sets memory. Call
1028 note_stores to examine each hunk of memory that is modified. */
1029 mci.mem = x;
1030 mci.conflict = false;
1031 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1032 if (mci.conflict)
1033 return 1;
1034 }
1035 return 0;
1036 }
1037
1038 /* Return nonzero if the operands of expression X are unchanged from
1039 the start of INSN's basic block up to but not including INSN. */
1040
1041 static int
1042 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1043 {
1044 return oprs_unchanged_p (x, insn, 0);
1045 }
1046
1047 /* Return nonzero if the operands of expression X are unchanged from
1048 INSN to the end of INSN's basic block. */
1049
1050 static int
1051 oprs_available_p (const_rtx x, const_rtx insn)
1052 {
1053 return oprs_unchanged_p (x, insn, 1);
1054 }
1055
1056 /* Hash expression X.
1057
1058 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1059 indicating if a volatile operand is found or if the expression contains
1060 something we don't want to insert in the table. HASH_TABLE_SIZE is
1061 the current size of the hash table to be probed. */
1062
1063 static unsigned int
1064 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1065 int hash_table_size)
1066 {
1067 unsigned int hash;
1068
1069 *do_not_record_p = 0;
1070
1071 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1072 return hash % hash_table_size;
1073 }
1074
1075 /* Return nonzero if exp1 is equivalent to exp2. */
1076
1077 static int
1078 expr_equiv_p (const_rtx x, const_rtx y)
1079 {
1080 return exp_equiv_p (x, y, 0, true);
1081 }
1082
1083 /* Insert expression X in INSN in the hash TABLE.
1084 If it is already present, record it as the last occurrence in INSN's
1085 basic block.
1086
1087 MODE is the mode of the value X is being stored into.
1088 It is only used if X is a CONST_INT.
1089
1090 ANTIC_P is nonzero if X is an anticipatable expression.
1091 AVAIL_P is nonzero if X is an available expression.
1092
1093 MAX_DISTANCE is the maximum distance in instructions this expression can
1094 be moved. */
1095
1096 static void
1097 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1098 int avail_p, int max_distance, struct hash_table_d *table)
1099 {
1100 int found, do_not_record_p;
1101 unsigned int hash;
1102 struct expr *cur_expr, *last_expr = NULL;
1103 struct occr *antic_occr, *avail_occr;
1104
1105 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1106
1107 /* Do not insert expression in table if it contains volatile operands,
1108 or if hash_expr determines the expression is something we don't want
1109 to or can't handle. */
1110 if (do_not_record_p)
1111 return;
1112
1113 cur_expr = table->table[hash];
1114 found = 0;
1115
1116 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1117 {
1118 /* If the expression isn't found, save a pointer to the end of
1119 the list. */
1120 last_expr = cur_expr;
1121 cur_expr = cur_expr->next_same_hash;
1122 }
1123
1124 if (! found)
1125 {
1126 cur_expr = GOBNEW (struct expr);
1127 bytes_used += sizeof (struct expr);
1128 if (table->table[hash] == NULL)
1129 /* This is the first pattern that hashed to this index. */
1130 table->table[hash] = cur_expr;
1131 else
1132 /* Add EXPR to end of this hash chain. */
1133 last_expr->next_same_hash = cur_expr;
1134
1135 /* Set the fields of the expr element. */
1136 cur_expr->expr = x;
1137 cur_expr->bitmap_index = table->n_elems++;
1138 cur_expr->next_same_hash = NULL;
1139 cur_expr->antic_occr = NULL;
1140 cur_expr->avail_occr = NULL;
1141 gcc_assert (max_distance >= 0);
1142 cur_expr->max_distance = max_distance;
1143 }
1144 else
1145 gcc_assert (cur_expr->max_distance == max_distance);
1146
1147 /* Now record the occurrence(s). */
1148 if (antic_p)
1149 {
1150 antic_occr = cur_expr->antic_occr;
1151
1152 if (antic_occr
1153 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1154 antic_occr = NULL;
1155
1156 if (antic_occr)
1157 /* Found another instance of the expression in the same basic block.
1158 Prefer the currently recorded one. We want the first one in the
1159 block and the block is scanned from start to end. */
1160 ; /* nothing to do */
1161 else
1162 {
1163 /* First occurrence of this expression in this basic block. */
1164 antic_occr = GOBNEW (struct occr);
1165 bytes_used += sizeof (struct occr);
1166 antic_occr->insn = insn;
1167 antic_occr->next = cur_expr->antic_occr;
1168 antic_occr->deleted_p = 0;
1169 cur_expr->antic_occr = antic_occr;
1170 }
1171 }
1172
1173 if (avail_p)
1174 {
1175 avail_occr = cur_expr->avail_occr;
1176
1177 if (avail_occr
1178 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1179 {
1180 /* Found another instance of the expression in the same basic block.
1181 Prefer this occurrence to the currently recorded one. We want
1182 the last one in the block and the block is scanned from start
1183 to end. */
1184 avail_occr->insn = insn;
1185 }
1186 else
1187 {
1188 /* First occurrence of this expression in this basic block. */
1189 avail_occr = GOBNEW (struct occr);
1190 bytes_used += sizeof (struct occr);
1191 avail_occr->insn = insn;
1192 avail_occr->next = cur_expr->avail_occr;
1193 avail_occr->deleted_p = 0;
1194 cur_expr->avail_occr = avail_occr;
1195 }
1196 }
1197 }
1198
1199 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1200
1201 static void
1202 hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
1203 {
1204 rtx src = SET_SRC (set);
1205 rtx dest = SET_DEST (set);
1206 rtx note;
1207
1208 if (GET_CODE (src) == CALL)
1209 hash_scan_call (src, insn, table);
1210
1211 else if (REG_P (dest))
1212 {
1213 unsigned int regno = REGNO (dest);
1214 int max_distance = 0;
1215
1216 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1217
1218 This allows us to do a single GCSE pass and still eliminate
1219 redundant constants, addresses or other expressions that are
1220 constructed with multiple instructions.
1221
1222 However, keep the original SRC if INSN is a simple reg-reg move.
1223 In this case, there will almost always be a REG_EQUAL note on the
1224 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1225 for INSN, we miss copy propagation opportunities and we perform the
1226 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1227 do more than one PRE GCSE pass.
1228
1229 Note that this does not impede profitable constant propagations. We
1230 "look through" reg-reg sets in lookup_avail_set. */
1231 note = find_reg_equal_equiv_note (insn);
1232 if (note != 0
1233 && REG_NOTE_KIND (note) == REG_EQUAL
1234 && !REG_P (src)
1235 && want_to_gcse_p (XEXP (note, 0), NULL))
1236 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1237
1238 /* Only record sets of pseudo-regs in the hash table. */
1239 if (regno >= FIRST_PSEUDO_REGISTER
1240 /* Don't GCSE something if we can't do a reg/reg copy. */
1241 && can_copy_p (GET_MODE (dest))
1242 /* GCSE commonly inserts instruction after the insn. We can't
1243 do that easily for EH edges so disable GCSE on these for now. */
1244 /* ??? We can now easily create new EH landing pads at the
1245 gimple level, for splitting edges; there's no reason we
1246 can't do the same thing at the rtl level. */
1247 && !can_throw_internal (insn)
1248 /* Is SET_SRC something we want to gcse? */
1249 && want_to_gcse_p (src, &max_distance)
1250 /* Don't CSE a nop. */
1251 && ! set_noop_p (set)
1252 /* Don't GCSE if it has attached REG_EQUIV note.
1253 At this point this only function parameters should have
1254 REG_EQUIV notes and if the argument slot is used somewhere
1255 explicitly, it means address of parameter has been taken,
1256 so we should not extend the lifetime of the pseudo. */
1257 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1258 {
1259 /* An expression is not anticipatable if its operands are
1260 modified before this insn or if this is not the only SET in
1261 this insn. The latter condition does not have to mean that
1262 SRC itself is not anticipatable, but we just will not be
1263 able to handle code motion of insns with multiple sets. */
1264 int antic_p = oprs_anticipatable_p (src, insn)
1265 && !multiple_sets (insn);
1266 /* An expression is not available if its operands are
1267 subsequently modified, including this insn. It's also not
1268 available if this is a branch, because we can't insert
1269 a set after the branch. */
1270 int avail_p = (oprs_available_p (src, insn)
1271 && ! JUMP_P (insn));
1272
1273 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1274 max_distance, table);
1275 }
1276 }
1277 /* In case of store we want to consider the memory value as available in
1278 the REG stored in that memory. This makes it possible to remove
1279 redundant loads from due to stores to the same location. */
1280 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1281 {
1282 unsigned int regno = REGNO (src);
1283 int max_distance = 0;
1284
1285 /* Only record sets of pseudo-regs in the hash table. */
1286 if (regno >= FIRST_PSEUDO_REGISTER
1287 /* Don't GCSE something if we can't do a reg/reg copy. */
1288 && can_copy_p (GET_MODE (src))
1289 /* GCSE commonly inserts instruction after the insn. We can't
1290 do that easily for EH edges so disable GCSE on these for now. */
1291 && !can_throw_internal (insn)
1292 /* Is SET_DEST something we want to gcse? */
1293 && want_to_gcse_p (dest, &max_distance)
1294 /* Don't CSE a nop. */
1295 && ! set_noop_p (set)
1296 /* Don't GCSE if it has attached REG_EQUIV note.
1297 At this point this only function parameters should have
1298 REG_EQUIV notes and if the argument slot is used somewhere
1299 explicitly, it means address of parameter has been taken,
1300 so we should not extend the lifetime of the pseudo. */
1301 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1302 || ! MEM_P (XEXP (note, 0))))
1303 {
1304 /* Stores are never anticipatable. */
1305 int antic_p = 0;
1306 /* An expression is not available if its operands are
1307 subsequently modified, including this insn. It's also not
1308 available if this is a branch, because we can't insert
1309 a set after the branch. */
1310 int avail_p = oprs_available_p (dest, insn)
1311 && ! JUMP_P (insn);
1312
1313 /* Record the memory expression (DEST) in the hash table. */
1314 insert_expr_in_table (dest, GET_MODE (dest), insn,
1315 antic_p, avail_p, max_distance, table);
1316 }
1317 }
1318 }
1319
1320 static void
1321 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1322 struct hash_table_d *table ATTRIBUTE_UNUSED)
1323 {
1324 /* Currently nothing to do. */
1325 }
1326
1327 static void
1328 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1329 struct hash_table_d *table ATTRIBUTE_UNUSED)
1330 {
1331 /* Currently nothing to do. */
1332 }
1333
1334 /* Process INSN and add hash table entries as appropriate. */
1335
1336 static void
1337 hash_scan_insn (rtx insn, struct hash_table_d *table)
1338 {
1339 rtx pat = PATTERN (insn);
1340 int i;
1341
1342 /* Pick out the sets of INSN and for other forms of instructions record
1343 what's been modified. */
1344
1345 if (GET_CODE (pat) == SET)
1346 hash_scan_set (pat, insn, table);
1347
1348 else if (GET_CODE (pat) == CLOBBER)
1349 hash_scan_clobber (pat, insn, table);
1350
1351 else if (GET_CODE (pat) == CALL)
1352 hash_scan_call (pat, insn, table);
1353
1354 else if (GET_CODE (pat) == PARALLEL)
1355 for (i = 0; i < XVECLEN (pat, 0); i++)
1356 {
1357 rtx x = XVECEXP (pat, 0, i);
1358
1359 if (GET_CODE (x) == SET)
1360 hash_scan_set (x, insn, table);
1361 else if (GET_CODE (x) == CLOBBER)
1362 hash_scan_clobber (x, insn, table);
1363 else if (GET_CODE (x) == CALL)
1364 hash_scan_call (x, insn, table);
1365 }
1366 }
1367
1368 /* Dump the hash table TABLE to file FILE under the name NAME. */
1369
1370 static void
1371 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1372 {
1373 int i;
1374 /* Flattened out table, so it's printed in proper order. */
1375 struct expr **flat_table;
1376 unsigned int *hash_val;
1377 struct expr *expr;
1378
1379 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1380 hash_val = XNEWVEC (unsigned int, table->n_elems);
1381
1382 for (i = 0; i < (int) table->size; i++)
1383 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1384 {
1385 flat_table[expr->bitmap_index] = expr;
1386 hash_val[expr->bitmap_index] = i;
1387 }
1388
1389 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1390 name, table->size, table->n_elems);
1391
1392 for (i = 0; i < (int) table->n_elems; i++)
1393 if (flat_table[i] != 0)
1394 {
1395 expr = flat_table[i];
1396 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1397 expr->bitmap_index, hash_val[i], expr->max_distance);
1398 print_rtl (file, expr->expr);
1399 fprintf (file, "\n");
1400 }
1401
1402 fprintf (file, "\n");
1403
1404 free (flat_table);
1405 free (hash_val);
1406 }
1407
1408 /* Record register first/last/block set information for REGNO in INSN.
1409
1410 first_set records the first place in the block where the register
1411 is set and is used to compute "anticipatability".
1412
1413 last_set records the last place in the block where the register
1414 is set and is used to compute "availability".
1415
1416 last_bb records the block for which first_set and last_set are
1417 valid, as a quick test to invalidate them. */
1418
1419 static void
1420 record_last_reg_set_info (rtx insn, int regno)
1421 {
1422 struct reg_avail_info *info = &reg_avail_info[regno];
1423 int luid = DF_INSN_LUID (insn);
1424
1425 info->last_set = luid;
1426 if (info->last_bb != current_bb)
1427 {
1428 info->last_bb = current_bb;
1429 info->first_set = luid;
1430 }
1431 }
1432
1433 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1434 Note we store a pair of elements in the list, so they have to be
1435 taken off pairwise. */
1436
1437 static void
1438 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1439 void * v_insn)
1440 {
1441 rtx dest_addr, insn;
1442 int bb;
1443 modify_pair pair;
1444
1445 while (GET_CODE (dest) == SUBREG
1446 || GET_CODE (dest) == ZERO_EXTRACT
1447 || GET_CODE (dest) == STRICT_LOW_PART)
1448 dest = XEXP (dest, 0);
1449
1450 /* If DEST is not a MEM, then it will not conflict with a load. Note
1451 that function calls are assumed to clobber memory, but are handled
1452 elsewhere. */
1453
1454 if (! MEM_P (dest))
1455 return;
1456
1457 dest_addr = get_addr (XEXP (dest, 0));
1458 dest_addr = canon_rtx (dest_addr);
1459 insn = (rtx) v_insn;
1460 bb = BLOCK_FOR_INSN (insn)->index;
1461
1462 pair.dest = dest;
1463 pair.dest_addr = dest_addr;
1464 canon_modify_mem_list[bb].safe_push (pair);
1465 }
1466
1467 /* Record memory modification information for INSN. We do not actually care
1468 about the memory location(s) that are set, or even how they are set (consider
1469 a CALL_INSN). We merely need to record which insns modify memory. */
1470
1471 static void
1472 record_last_mem_set_info (rtx insn)
1473 {
1474 int bb = BLOCK_FOR_INSN (insn)->index;
1475
1476 /* load_killed_in_block_p will handle the case of calls clobbering
1477 everything. */
1478 modify_mem_list[bb].safe_push (insn);
1479 bitmap_set_bit (modify_mem_list_set, bb);
1480
1481 if (CALL_P (insn))
1482 bitmap_set_bit (blocks_with_calls, bb);
1483 else
1484 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1485 }
1486
1487 /* Called from compute_hash_table via note_stores to handle one
1488 SET or CLOBBER in an insn. DATA is really the instruction in which
1489 the SET is taking place. */
1490
1491 static void
1492 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1493 {
1494 rtx last_set_insn = (rtx) data;
1495
1496 if (GET_CODE (dest) == SUBREG)
1497 dest = SUBREG_REG (dest);
1498
1499 if (REG_P (dest))
1500 record_last_reg_set_info (last_set_insn, REGNO (dest));
1501 else if (MEM_P (dest)
1502 /* Ignore pushes, they clobber nothing. */
1503 && ! push_operand (dest, GET_MODE (dest)))
1504 record_last_mem_set_info (last_set_insn);
1505 }
1506
1507 /* Top level function to create an expression hash table.
1508
1509 Expression entries are placed in the hash table if
1510 - they are of the form (set (pseudo-reg) src),
1511 - src is something we want to perform GCSE on,
1512 - none of the operands are subsequently modified in the block
1513
1514 Currently src must be a pseudo-reg or a const_int.
1515
1516 TABLE is the table computed. */
1517
1518 static void
1519 compute_hash_table_work (struct hash_table_d *table)
1520 {
1521 int i;
1522
1523 /* re-Cache any INSN_LIST nodes we have allocated. */
1524 clear_modify_mem_tables ();
1525 /* Some working arrays used to track first and last set in each block. */
1526 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1527
1528 for (i = 0; i < max_reg_num (); ++i)
1529 reg_avail_info[i].last_bb = NULL;
1530
1531 FOR_EACH_BB (current_bb)
1532 {
1533 rtx insn;
1534 unsigned int regno;
1535
1536 /* First pass over the instructions records information used to
1537 determine when registers and memory are first and last set. */
1538 FOR_BB_INSNS (current_bb, insn)
1539 {
1540 if (!NONDEBUG_INSN_P (insn))
1541 continue;
1542
1543 if (CALL_P (insn))
1544 {
1545 hard_reg_set_iterator hrsi;
1546 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1547 0, regno, hrsi)
1548 record_last_reg_set_info (insn, regno);
1549
1550 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1551 record_last_mem_set_info (insn);
1552 }
1553
1554 note_stores (PATTERN (insn), record_last_set_info, insn);
1555 }
1556
1557 /* The next pass builds the hash table. */
1558 FOR_BB_INSNS (current_bb, insn)
1559 if (NONDEBUG_INSN_P (insn))
1560 hash_scan_insn (insn, table);
1561 }
1562
1563 free (reg_avail_info);
1564 reg_avail_info = NULL;
1565 }
1566
1567 /* Allocate space for the set/expr hash TABLE.
1568 It is used to determine the number of buckets to use. */
1569
1570 static void
1571 alloc_hash_table (struct hash_table_d *table)
1572 {
1573 int n;
1574
1575 n = get_max_insn_count ();
1576
1577 table->size = n / 4;
1578 if (table->size < 11)
1579 table->size = 11;
1580
1581 /* Attempt to maintain efficient use of hash table.
1582 Making it an odd number is simplest for now.
1583 ??? Later take some measurements. */
1584 table->size |= 1;
1585 n = table->size * sizeof (struct expr *);
1586 table->table = GNEWVAR (struct expr *, n);
1587 }
1588
1589 /* Free things allocated by alloc_hash_table. */
1590
1591 static void
1592 free_hash_table (struct hash_table_d *table)
1593 {
1594 free (table->table);
1595 }
1596
1597 /* Compute the expression hash table TABLE. */
1598
1599 static void
1600 compute_hash_table (struct hash_table_d *table)
1601 {
1602 /* Initialize count of number of entries in hash table. */
1603 table->n_elems = 0;
1604 memset (table->table, 0, table->size * sizeof (struct expr *));
1605
1606 compute_hash_table_work (table);
1607 }
1608 \f
1609 /* Expression tracking support. */
1610
1611 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1612 static void
1613 clear_modify_mem_tables (void)
1614 {
1615 unsigned i;
1616 bitmap_iterator bi;
1617
1618 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1619 {
1620 modify_mem_list[i].release ();
1621 canon_modify_mem_list[i].release ();
1622 }
1623 bitmap_clear (modify_mem_list_set);
1624 bitmap_clear (blocks_with_calls);
1625 }
1626
1627 /* Release memory used by modify_mem_list_set. */
1628
1629 static void
1630 free_modify_mem_tables (void)
1631 {
1632 clear_modify_mem_tables ();
1633 free (modify_mem_list);
1634 free (canon_modify_mem_list);
1635 modify_mem_list = 0;
1636 canon_modify_mem_list = 0;
1637 }
1638 \f
1639 /* For each block, compute whether X is transparent. X is either an
1640 expression or an assignment [though we don't care which, for this context
1641 an assignment is treated as an expression]. For each block where an
1642 element of X is modified, reset the INDX bit in BMAP. */
1643
1644 static void
1645 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1646 {
1647 int i, j;
1648 enum rtx_code code;
1649 const char *fmt;
1650
1651 /* repeat is used to turn tail-recursion into iteration since GCC
1652 can't do it when there's no return value. */
1653 repeat:
1654
1655 if (x == 0)
1656 return;
1657
1658 code = GET_CODE (x);
1659 switch (code)
1660 {
1661 case REG:
1662 {
1663 df_ref def;
1664 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1665 def;
1666 def = DF_REF_NEXT_REG (def))
1667 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1668 }
1669
1670 return;
1671
1672 case MEM:
1673 if (! MEM_READONLY_P (x))
1674 {
1675 bitmap_iterator bi;
1676 unsigned bb_index;
1677 rtx x_addr;
1678
1679 x_addr = get_addr (XEXP (x, 0));
1680 x_addr = canon_rtx (x_addr);
1681
1682 /* First handle all the blocks with calls. We don't need to
1683 do any list walking for them. */
1684 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1685 {
1686 bitmap_clear_bit (bmap[bb_index], indx);
1687 }
1688
1689 /* Now iterate over the blocks which have memory modifications
1690 but which do not have any calls. */
1691 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1692 blocks_with_calls,
1693 0, bb_index, bi)
1694 {
1695 vec<modify_pair> list
1696 = canon_modify_mem_list[bb_index];
1697 modify_pair *pair;
1698 unsigned ix;
1699
1700 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1701 {
1702 rtx dest = pair->dest;
1703 rtx dest_addr = pair->dest_addr;
1704
1705 if (canon_true_dependence (dest, GET_MODE (dest),
1706 dest_addr, x, x_addr))
1707 bitmap_clear_bit (bmap[bb_index], indx);
1708 }
1709 }
1710 }
1711
1712 x = XEXP (x, 0);
1713 goto repeat;
1714
1715 case PC:
1716 case CC0: /*FIXME*/
1717 case CONST:
1718 CASE_CONST_ANY:
1719 case SYMBOL_REF:
1720 case LABEL_REF:
1721 case ADDR_VEC:
1722 case ADDR_DIFF_VEC:
1723 return;
1724
1725 default:
1726 break;
1727 }
1728
1729 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1730 {
1731 if (fmt[i] == 'e')
1732 {
1733 /* If we are about to do the last recursive call
1734 needed at this level, change it into iteration.
1735 This function is called enough to be worth it. */
1736 if (i == 0)
1737 {
1738 x = XEXP (x, i);
1739 goto repeat;
1740 }
1741
1742 compute_transp (XEXP (x, i), indx, bmap);
1743 }
1744 else if (fmt[i] == 'E')
1745 for (j = 0; j < XVECLEN (x, i); j++)
1746 compute_transp (XVECEXP (x, i, j), indx, bmap);
1747 }
1748 }
1749 \f
1750 /* Compute PRE+LCM working variables. */
1751
1752 /* Local properties of expressions. */
1753
1754 /* Nonzero for expressions that are transparent in the block. */
1755 static sbitmap *transp;
1756
1757 /* Nonzero for expressions that are computed (available) in the block. */
1758 static sbitmap *comp;
1759
1760 /* Nonzero for expressions that are locally anticipatable in the block. */
1761 static sbitmap *antloc;
1762
1763 /* Nonzero for expressions where this block is an optimal computation
1764 point. */
1765 static sbitmap *pre_optimal;
1766
1767 /* Nonzero for expressions which are redundant in a particular block. */
1768 static sbitmap *pre_redundant;
1769
1770 /* Nonzero for expressions which should be inserted on a specific edge. */
1771 static sbitmap *pre_insert_map;
1772
1773 /* Nonzero for expressions which should be deleted in a specific block. */
1774 static sbitmap *pre_delete_map;
1775
1776 /* Allocate vars used for PRE analysis. */
1777
1778 static void
1779 alloc_pre_mem (int n_blocks, int n_exprs)
1780 {
1781 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1782 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1783 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1784
1785 pre_optimal = NULL;
1786 pre_redundant = NULL;
1787 pre_insert_map = NULL;
1788 pre_delete_map = NULL;
1789 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1790
1791 /* pre_insert and pre_delete are allocated later. */
1792 }
1793
1794 /* Free vars used for PRE analysis. */
1795
1796 static void
1797 free_pre_mem (void)
1798 {
1799 sbitmap_vector_free (transp);
1800 sbitmap_vector_free (comp);
1801
1802 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1803
1804 if (pre_optimal)
1805 sbitmap_vector_free (pre_optimal);
1806 if (pre_redundant)
1807 sbitmap_vector_free (pre_redundant);
1808 if (pre_insert_map)
1809 sbitmap_vector_free (pre_insert_map);
1810 if (pre_delete_map)
1811 sbitmap_vector_free (pre_delete_map);
1812
1813 transp = comp = NULL;
1814 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1815 }
1816
1817 /* Remove certain expressions from anticipatable and transparent
1818 sets of basic blocks that have incoming abnormal edge.
1819 For PRE remove potentially trapping expressions to avoid placing
1820 them on abnormal edges. For hoisting remove memory references that
1821 can be clobbered by calls. */
1822
1823 static void
1824 prune_expressions (bool pre_p)
1825 {
1826 sbitmap prune_exprs;
1827 struct expr *expr;
1828 unsigned int ui;
1829 basic_block bb;
1830
1831 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1832 bitmap_clear (prune_exprs);
1833 for (ui = 0; ui < expr_hash_table.size; ui++)
1834 {
1835 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1836 {
1837 /* Note potentially trapping expressions. */
1838 if (may_trap_p (expr->expr))
1839 {
1840 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1841 continue;
1842 }
1843
1844 if (!pre_p && MEM_P (expr->expr))
1845 /* Note memory references that can be clobbered by a call.
1846 We do not split abnormal edges in hoisting, so would
1847 a memory reference get hoisted along an abnormal edge,
1848 it would be placed /before/ the call. Therefore, only
1849 constant memory references can be hoisted along abnormal
1850 edges. */
1851 {
1852 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1853 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1854 continue;
1855
1856 if (MEM_READONLY_P (expr->expr)
1857 && !MEM_VOLATILE_P (expr->expr)
1858 && MEM_NOTRAP_P (expr->expr))
1859 /* Constant memory reference, e.g., a PIC address. */
1860 continue;
1861
1862 /* ??? Optimally, we would use interprocedural alias
1863 analysis to determine if this mem is actually killed
1864 by this call. */
1865
1866 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1867 }
1868 }
1869 }
1870
1871 FOR_EACH_BB (bb)
1872 {
1873 edge e;
1874 edge_iterator ei;
1875
1876 /* If the current block is the destination of an abnormal edge, we
1877 kill all trapping (for PRE) and memory (for hoist) expressions
1878 because we won't be able to properly place the instruction on
1879 the edge. So make them neither anticipatable nor transparent.
1880 This is fairly conservative.
1881
1882 ??? For hoisting it may be necessary to check for set-and-jump
1883 instructions here, not just for abnormal edges. The general problem
1884 is that when an expression cannot not be placed right at the end of
1885 a basic block we should account for any side-effects of a subsequent
1886 jump instructions that could clobber the expression. It would
1887 be best to implement this check along the lines of
1888 should_hoist_expr_to_dom where the target block is already known
1889 and, hence, there's no need to conservatively prune expressions on
1890 "intermediate" set-and-jump instructions. */
1891 FOR_EACH_EDGE (e, ei, bb->preds)
1892 if ((e->flags & EDGE_ABNORMAL)
1893 && (pre_p || CALL_P (BB_END (e->src))))
1894 {
1895 bitmap_and_compl (antloc[bb->index],
1896 antloc[bb->index], prune_exprs);
1897 bitmap_and_compl (transp[bb->index],
1898 transp[bb->index], prune_exprs);
1899 break;
1900 }
1901 }
1902
1903 sbitmap_free (prune_exprs);
1904 }
1905
1906 /* It may be necessary to insert a large number of insns on edges to
1907 make the existing occurrences of expressions fully redundant. This
1908 routine examines the set of insertions and deletions and if the ratio
1909 of insertions to deletions is too high for a particular expression, then
1910 the expression is removed from the insertion/deletion sets.
1911
1912 N_ELEMS is the number of elements in the hash table. */
1913
1914 static void
1915 prune_insertions_deletions (int n_elems)
1916 {
1917 sbitmap_iterator sbi;
1918 sbitmap prune_exprs;
1919
1920 /* We always use I to iterate over blocks/edges and J to iterate over
1921 expressions. */
1922 unsigned int i, j;
1923
1924 /* Counts for the number of times an expression needs to be inserted and
1925 number of times an expression can be removed as a result. */
1926 int *insertions = GCNEWVEC (int, n_elems);
1927 int *deletions = GCNEWVEC (int, n_elems);
1928
1929 /* Set of expressions which require too many insertions relative to
1930 the number of deletions achieved. We will prune these out of the
1931 insertion/deletion sets. */
1932 prune_exprs = sbitmap_alloc (n_elems);
1933 bitmap_clear (prune_exprs);
1934
1935 /* Iterate over the edges counting the number of times each expression
1936 needs to be inserted. */
1937 for (i = 0; i < (unsigned) n_edges; i++)
1938 {
1939 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1940 insertions[j]++;
1941 }
1942
1943 /* Similarly for deletions, but those occur in blocks rather than on
1944 edges. */
1945 for (i = 0; i < (unsigned) last_basic_block; i++)
1946 {
1947 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1948 deletions[j]++;
1949 }
1950
1951 /* Now that we have accurate counts, iterate over the elements in the
1952 hash table and see if any need too many insertions relative to the
1953 number of evaluations that can be removed. If so, mark them in
1954 PRUNE_EXPRS. */
1955 for (j = 0; j < (unsigned) n_elems; j++)
1956 if (deletions[j]
1957 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1958 bitmap_set_bit (prune_exprs, j);
1959
1960 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1961 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1962 {
1963 for (i = 0; i < (unsigned) n_edges; i++)
1964 bitmap_clear_bit (pre_insert_map[i], j);
1965
1966 for (i = 0; i < (unsigned) last_basic_block; i++)
1967 bitmap_clear_bit (pre_delete_map[i], j);
1968 }
1969
1970 sbitmap_free (prune_exprs);
1971 free (insertions);
1972 free (deletions);
1973 }
1974
1975 /* Top level routine to do the dataflow analysis needed by PRE. */
1976
1977 static struct edge_list *
1978 compute_pre_data (void)
1979 {
1980 struct edge_list *edge_list;
1981 basic_block bb;
1982
1983 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1984 prune_expressions (true);
1985 bitmap_vector_clear (ae_kill, last_basic_block);
1986
1987 /* Compute ae_kill for each basic block using:
1988
1989 ~(TRANSP | COMP)
1990 */
1991
1992 FOR_EACH_BB (bb)
1993 {
1994 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1995 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1996 }
1997
1998 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1999 ae_kill, &pre_insert_map, &pre_delete_map);
2000 sbitmap_vector_free (antloc);
2001 antloc = NULL;
2002 sbitmap_vector_free (ae_kill);
2003 ae_kill = NULL;
2004
2005 prune_insertions_deletions (expr_hash_table.n_elems);
2006
2007 return edge_list;
2008 }
2009 \f
2010 /* PRE utilities */
2011
2012 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2013 block BB.
2014
2015 VISITED is a pointer to a working buffer for tracking which BB's have
2016 been visited. It is NULL for the top-level call.
2017
2018 We treat reaching expressions that go through blocks containing the same
2019 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2020 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2021 2 as not reaching. The intent is to improve the probability of finding
2022 only one reaching expression and to reduce register lifetimes by picking
2023 the closest such expression. */
2024
2025 static int
2026 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2027 basic_block bb, char *visited)
2028 {
2029 edge pred;
2030 edge_iterator ei;
2031
2032 FOR_EACH_EDGE (pred, ei, bb->preds)
2033 {
2034 basic_block pred_bb = pred->src;
2035
2036 if (pred->src == ENTRY_BLOCK_PTR
2037 /* Has predecessor has already been visited? */
2038 || visited[pred_bb->index])
2039 ;/* Nothing to do. */
2040
2041 /* Does this predecessor generate this expression? */
2042 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2043 {
2044 /* Is this the occurrence we're looking for?
2045 Note that there's only one generating occurrence per block
2046 so we just need to check the block number. */
2047 if (occr_bb == pred_bb)
2048 return 1;
2049
2050 visited[pred_bb->index] = 1;
2051 }
2052 /* Ignore this predecessor if it kills the expression. */
2053 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2054 visited[pred_bb->index] = 1;
2055
2056 /* Neither gen nor kill. */
2057 else
2058 {
2059 visited[pred_bb->index] = 1;
2060 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2061 return 1;
2062 }
2063 }
2064
2065 /* All paths have been checked. */
2066 return 0;
2067 }
2068
2069 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2070 memory allocated for that function is returned. */
2071
2072 static int
2073 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2074 {
2075 int rval;
2076 char *visited = XCNEWVEC (char, last_basic_block);
2077
2078 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2079
2080 free (visited);
2081 return rval;
2082 }
2083 \f
2084 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2085
2086 static rtx
2087 process_insert_insn (struct expr *expr)
2088 {
2089 rtx reg = expr->reaching_reg;
2090 /* Copy the expression to make sure we don't have any sharing issues. */
2091 rtx exp = copy_rtx (expr->expr);
2092 rtx pat;
2093
2094 start_sequence ();
2095
2096 /* If the expression is something that's an operand, like a constant,
2097 just copy it to a register. */
2098 if (general_operand (exp, GET_MODE (reg)))
2099 emit_move_insn (reg, exp);
2100
2101 /* Otherwise, make a new insn to compute this expression and make sure the
2102 insn will be recognized (this also adds any needed CLOBBERs). */
2103 else
2104 {
2105 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2106
2107 if (insn_invalid_p (insn, false))
2108 gcc_unreachable ();
2109 }
2110
2111 pat = get_insns ();
2112 end_sequence ();
2113
2114 return pat;
2115 }
2116
2117 /* Add EXPR to the end of basic block BB.
2118
2119 This is used by both the PRE and code hoisting. */
2120
2121 static void
2122 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2123 {
2124 rtx insn = BB_END (bb);
2125 rtx new_insn;
2126 rtx reg = expr->reaching_reg;
2127 int regno = REGNO (reg);
2128 rtx pat, pat_end;
2129
2130 pat = process_insert_insn (expr);
2131 gcc_assert (pat && INSN_P (pat));
2132
2133 pat_end = pat;
2134 while (NEXT_INSN (pat_end) != NULL_RTX)
2135 pat_end = NEXT_INSN (pat_end);
2136
2137 /* If the last insn is a jump, insert EXPR in front [taking care to
2138 handle cc0, etc. properly]. Similarly we need to care trapping
2139 instructions in presence of non-call exceptions. */
2140
2141 if (JUMP_P (insn)
2142 || (NONJUMP_INSN_P (insn)
2143 && (!single_succ_p (bb)
2144 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2145 {
2146 #ifdef HAVE_cc0
2147 rtx note;
2148 #endif
2149
2150 /* If this is a jump table, then we can't insert stuff here. Since
2151 we know the previous real insn must be the tablejump, we insert
2152 the new instruction just before the tablejump. */
2153 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
2154 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
2155 insn = prev_active_insn (insn);
2156
2157 #ifdef HAVE_cc0
2158 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2159 if cc0 isn't set. */
2160 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2161 if (note)
2162 insn = XEXP (note, 0);
2163 else
2164 {
2165 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2166 if (maybe_cc0_setter
2167 && INSN_P (maybe_cc0_setter)
2168 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2169 insn = maybe_cc0_setter;
2170 }
2171 #endif
2172 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2173 new_insn = emit_insn_before_noloc (pat, insn, bb);
2174 }
2175
2176 /* Likewise if the last insn is a call, as will happen in the presence
2177 of exception handling. */
2178 else if (CALL_P (insn)
2179 && (!single_succ_p (bb)
2180 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2181 {
2182 /* Keeping in mind targets with small register classes and parameters
2183 in registers, we search backward and place the instructions before
2184 the first parameter is loaded. Do this for everyone for consistency
2185 and a presumption that we'll get better code elsewhere as well. */
2186
2187 /* Since different machines initialize their parameter registers
2188 in different orders, assume nothing. Collect the set of all
2189 parameter registers. */
2190 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2191
2192 /* If we found all the parameter loads, then we want to insert
2193 before the first parameter load.
2194
2195 If we did not find all the parameter loads, then we might have
2196 stopped on the head of the block, which could be a CODE_LABEL.
2197 If we inserted before the CODE_LABEL, then we would be putting
2198 the insn in the wrong basic block. In that case, put the insn
2199 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2200 while (LABEL_P (insn)
2201 || NOTE_INSN_BASIC_BLOCK_P (insn))
2202 insn = NEXT_INSN (insn);
2203
2204 new_insn = emit_insn_before_noloc (pat, insn, bb);
2205 }
2206 else
2207 new_insn = emit_insn_after_noloc (pat, insn, bb);
2208
2209 while (1)
2210 {
2211 if (INSN_P (pat))
2212 add_label_notes (PATTERN (pat), new_insn);
2213 if (pat == pat_end)
2214 break;
2215 pat = NEXT_INSN (pat);
2216 }
2217
2218 gcse_create_count++;
2219
2220 if (dump_file)
2221 {
2222 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2223 bb->index, INSN_UID (new_insn));
2224 fprintf (dump_file, "copying expression %d to reg %d\n",
2225 expr->bitmap_index, regno);
2226 }
2227 }
2228
2229 /* Insert partially redundant expressions on edges in the CFG to make
2230 the expressions fully redundant. */
2231
2232 static int
2233 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2234 {
2235 int e, i, j, num_edges, set_size, did_insert = 0;
2236 sbitmap *inserted;
2237
2238 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2239 if it reaches any of the deleted expressions. */
2240
2241 set_size = pre_insert_map[0]->size;
2242 num_edges = NUM_EDGES (edge_list);
2243 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2244 bitmap_vector_clear (inserted, num_edges);
2245
2246 for (e = 0; e < num_edges; e++)
2247 {
2248 int indx;
2249 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2250
2251 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2252 {
2253 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2254
2255 for (j = indx;
2256 insert && j < (int) expr_hash_table.n_elems;
2257 j++, insert >>= 1)
2258 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2259 {
2260 struct expr *expr = index_map[j];
2261 struct occr *occr;
2262
2263 /* Now look at each deleted occurrence of this expression. */
2264 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2265 {
2266 if (! occr->deleted_p)
2267 continue;
2268
2269 /* Insert this expression on this edge if it would
2270 reach the deleted occurrence in BB. */
2271 if (!bitmap_bit_p (inserted[e], j))
2272 {
2273 rtx insn;
2274 edge eg = INDEX_EDGE (edge_list, e);
2275
2276 /* We can't insert anything on an abnormal and
2277 critical edge, so we insert the insn at the end of
2278 the previous block. There are several alternatives
2279 detailed in Morgans book P277 (sec 10.5) for
2280 handling this situation. This one is easiest for
2281 now. */
2282
2283 if (eg->flags & EDGE_ABNORMAL)
2284 insert_insn_end_basic_block (index_map[j], bb);
2285 else
2286 {
2287 insn = process_insert_insn (index_map[j]);
2288 insert_insn_on_edge (insn, eg);
2289 }
2290
2291 if (dump_file)
2292 {
2293 fprintf (dump_file, "PRE: edge (%d,%d), ",
2294 bb->index,
2295 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2296 fprintf (dump_file, "copy expression %d\n",
2297 expr->bitmap_index);
2298 }
2299
2300 update_ld_motion_stores (expr);
2301 bitmap_set_bit (inserted[e], j);
2302 did_insert = 1;
2303 gcse_create_count++;
2304 }
2305 }
2306 }
2307 }
2308 }
2309
2310 sbitmap_vector_free (inserted);
2311 return did_insert;
2312 }
2313
2314 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2315 Given "old_reg <- expr" (INSN), instead of adding after it
2316 reaching_reg <- old_reg
2317 it's better to do the following:
2318 reaching_reg <- expr
2319 old_reg <- reaching_reg
2320 because this way copy propagation can discover additional PRE
2321 opportunities. But if this fails, we try the old way.
2322 When "expr" is a store, i.e.
2323 given "MEM <- old_reg", instead of adding after it
2324 reaching_reg <- old_reg
2325 it's better to add it before as follows:
2326 reaching_reg <- old_reg
2327 MEM <- reaching_reg. */
2328
2329 static void
2330 pre_insert_copy_insn (struct expr *expr, rtx insn)
2331 {
2332 rtx reg = expr->reaching_reg;
2333 int regno = REGNO (reg);
2334 int indx = expr->bitmap_index;
2335 rtx pat = PATTERN (insn);
2336 rtx set, first_set, new_insn;
2337 rtx old_reg;
2338 int i;
2339
2340 /* This block matches the logic in hash_scan_insn. */
2341 switch (GET_CODE (pat))
2342 {
2343 case SET:
2344 set = pat;
2345 break;
2346
2347 case PARALLEL:
2348 /* Search through the parallel looking for the set whose
2349 source was the expression that we're interested in. */
2350 first_set = NULL_RTX;
2351 set = NULL_RTX;
2352 for (i = 0; i < XVECLEN (pat, 0); i++)
2353 {
2354 rtx x = XVECEXP (pat, 0, i);
2355 if (GET_CODE (x) == SET)
2356 {
2357 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2358 may not find an equivalent expression, but in this
2359 case the PARALLEL will have a single set. */
2360 if (first_set == NULL_RTX)
2361 first_set = x;
2362 if (expr_equiv_p (SET_SRC (x), expr->expr))
2363 {
2364 set = x;
2365 break;
2366 }
2367 }
2368 }
2369
2370 gcc_assert (first_set);
2371 if (set == NULL_RTX)
2372 set = first_set;
2373 break;
2374
2375 default:
2376 gcc_unreachable ();
2377 }
2378
2379 if (REG_P (SET_DEST (set)))
2380 {
2381 old_reg = SET_DEST (set);
2382 /* Check if we can modify the set destination in the original insn. */
2383 if (validate_change (insn, &SET_DEST (set), reg, 0))
2384 {
2385 new_insn = gen_move_insn (old_reg, reg);
2386 new_insn = emit_insn_after (new_insn, insn);
2387 }
2388 else
2389 {
2390 new_insn = gen_move_insn (reg, old_reg);
2391 new_insn = emit_insn_after (new_insn, insn);
2392 }
2393 }
2394 else /* This is possible only in case of a store to memory. */
2395 {
2396 old_reg = SET_SRC (set);
2397 new_insn = gen_move_insn (reg, old_reg);
2398
2399 /* Check if we can modify the set source in the original insn. */
2400 if (validate_change (insn, &SET_SRC (set), reg, 0))
2401 new_insn = emit_insn_before (new_insn, insn);
2402 else
2403 new_insn = emit_insn_after (new_insn, insn);
2404 }
2405
2406 gcse_create_count++;
2407
2408 if (dump_file)
2409 fprintf (dump_file,
2410 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2411 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2412 INSN_UID (insn), regno);
2413 }
2414
2415 /* Copy available expressions that reach the redundant expression
2416 to `reaching_reg'. */
2417
2418 static void
2419 pre_insert_copies (void)
2420 {
2421 unsigned int i, added_copy;
2422 struct expr *expr;
2423 struct occr *occr;
2424 struct occr *avail;
2425
2426 /* For each available expression in the table, copy the result to
2427 `reaching_reg' if the expression reaches a deleted one.
2428
2429 ??? The current algorithm is rather brute force.
2430 Need to do some profiling. */
2431
2432 for (i = 0; i < expr_hash_table.size; i++)
2433 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2434 {
2435 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2436 we don't want to insert a copy here because the expression may not
2437 really be redundant. So only insert an insn if the expression was
2438 deleted. This test also avoids further processing if the
2439 expression wasn't deleted anywhere. */
2440 if (expr->reaching_reg == NULL)
2441 continue;
2442
2443 /* Set when we add a copy for that expression. */
2444 added_copy = 0;
2445
2446 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2447 {
2448 if (! occr->deleted_p)
2449 continue;
2450
2451 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2452 {
2453 rtx insn = avail->insn;
2454
2455 /* No need to handle this one if handled already. */
2456 if (avail->copied_p)
2457 continue;
2458
2459 /* Don't handle this one if it's a redundant one. */
2460 if (INSN_DELETED_P (insn))
2461 continue;
2462
2463 /* Or if the expression doesn't reach the deleted one. */
2464 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2465 expr,
2466 BLOCK_FOR_INSN (occr->insn)))
2467 continue;
2468
2469 added_copy = 1;
2470
2471 /* Copy the result of avail to reaching_reg. */
2472 pre_insert_copy_insn (expr, insn);
2473 avail->copied_p = 1;
2474 }
2475 }
2476
2477 if (added_copy)
2478 update_ld_motion_stores (expr);
2479 }
2480 }
2481
2482 /* Emit move from SRC to DEST noting the equivalence with expression computed
2483 in INSN. */
2484
2485 static rtx
2486 gcse_emit_move_after (rtx dest, rtx src, rtx insn)
2487 {
2488 rtx new_rtx;
2489 rtx set = single_set (insn), set2;
2490 rtx note;
2491 rtx eqv = NULL_RTX;
2492
2493 /* This should never fail since we're creating a reg->reg copy
2494 we've verified to be valid. */
2495
2496 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2497
2498 /* Note the equivalence for local CSE pass. Take the note from the old
2499 set if there was one. Otherwise record the SET_SRC from the old set
2500 unless DEST is also an operand of the SET_SRC. */
2501 set2 = single_set (new_rtx);
2502 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2503 return new_rtx;
2504 if ((note = find_reg_equal_equiv_note (insn)))
2505 eqv = XEXP (note, 0);
2506 else if (! REG_P (dest)
2507 || ! reg_mentioned_p (dest, SET_SRC (set)))
2508 eqv = SET_SRC (set);
2509
2510 if (eqv != NULL_RTX)
2511 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2512
2513 return new_rtx;
2514 }
2515
2516 /* Delete redundant computations.
2517 Deletion is done by changing the insn to copy the `reaching_reg' of
2518 the expression into the result of the SET. It is left to later passes
2519 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
2520
2521 Return nonzero if a change is made. */
2522
2523 static int
2524 pre_delete (void)
2525 {
2526 unsigned int i;
2527 int changed;
2528 struct expr *expr;
2529 struct occr *occr;
2530
2531 changed = 0;
2532 for (i = 0; i < expr_hash_table.size; i++)
2533 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2534 {
2535 int indx = expr->bitmap_index;
2536
2537 /* We only need to search antic_occr since we require ANTLOC != 0. */
2538 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2539 {
2540 rtx insn = occr->insn;
2541 rtx set;
2542 basic_block bb = BLOCK_FOR_INSN (insn);
2543
2544 /* We only delete insns that have a single_set. */
2545 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2546 && (set = single_set (insn)) != 0
2547 && dbg_cnt (pre_insn))
2548 {
2549 /* Create a pseudo-reg to store the result of reaching
2550 expressions into. Get the mode for the new pseudo from
2551 the mode of the original destination pseudo. */
2552 if (expr->reaching_reg == NULL)
2553 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2554
2555 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2556 delete_insn (insn);
2557 occr->deleted_p = 1;
2558 changed = 1;
2559 gcse_subst_count++;
2560
2561 if (dump_file)
2562 {
2563 fprintf (dump_file,
2564 "PRE: redundant insn %d (expression %d) in ",
2565 INSN_UID (insn), indx);
2566 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2567 bb->index, REGNO (expr->reaching_reg));
2568 }
2569 }
2570 }
2571 }
2572
2573 return changed;
2574 }
2575
2576 /* Perform GCSE optimizations using PRE.
2577 This is called by one_pre_gcse_pass after all the dataflow analysis
2578 has been done.
2579
2580 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2581 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2582 Compiler Design and Implementation.
2583
2584 ??? A new pseudo reg is created to hold the reaching expression. The nice
2585 thing about the classical approach is that it would try to use an existing
2586 reg. If the register can't be adequately optimized [i.e. we introduce
2587 reload problems], one could add a pass here to propagate the new register
2588 through the block.
2589
2590 ??? We don't handle single sets in PARALLELs because we're [currently] not
2591 able to copy the rest of the parallel when we insert copies to create full
2592 redundancies from partial redundancies. However, there's no reason why we
2593 can't handle PARALLELs in the cases where there are no partial
2594 redundancies. */
2595
2596 static int
2597 pre_gcse (struct edge_list *edge_list)
2598 {
2599 unsigned int i;
2600 int did_insert, changed;
2601 struct expr **index_map;
2602 struct expr *expr;
2603
2604 /* Compute a mapping from expression number (`bitmap_index') to
2605 hash table entry. */
2606
2607 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2608 for (i = 0; i < expr_hash_table.size; i++)
2609 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2610 index_map[expr->bitmap_index] = expr;
2611
2612 /* Delete the redundant insns first so that
2613 - we know what register to use for the new insns and for the other
2614 ones with reaching expressions
2615 - we know which insns are redundant when we go to create copies */
2616
2617 changed = pre_delete ();
2618 did_insert = pre_edge_insert (edge_list, index_map);
2619
2620 /* In other places with reaching expressions, copy the expression to the
2621 specially allocated pseudo-reg that reaches the redundant expr. */
2622 pre_insert_copies ();
2623 if (did_insert)
2624 {
2625 commit_edge_insertions ();
2626 changed = 1;
2627 }
2628
2629 free (index_map);
2630 return changed;
2631 }
2632
2633 /* Top level routine to perform one PRE GCSE pass.
2634
2635 Return nonzero if a change was made. */
2636
2637 static int
2638 one_pre_gcse_pass (void)
2639 {
2640 int changed = 0;
2641
2642 gcse_subst_count = 0;
2643 gcse_create_count = 0;
2644
2645 /* Return if there's nothing to do, or it is too expensive. */
2646 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
2647 || is_too_expensive (_("PRE disabled")))
2648 return 0;
2649
2650 /* We need alias. */
2651 init_alias_analysis ();
2652
2653 bytes_used = 0;
2654 gcc_obstack_init (&gcse_obstack);
2655 alloc_gcse_mem ();
2656
2657 alloc_hash_table (&expr_hash_table);
2658 add_noreturn_fake_exit_edges ();
2659 if (flag_gcse_lm)
2660 compute_ld_motion_mems ();
2661
2662 compute_hash_table (&expr_hash_table);
2663 if (flag_gcse_lm)
2664 trim_ld_motion_mems ();
2665 if (dump_file)
2666 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2667
2668 if (expr_hash_table.n_elems > 0)
2669 {
2670 struct edge_list *edge_list;
2671 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
2672 edge_list = compute_pre_data ();
2673 changed |= pre_gcse (edge_list);
2674 free_edge_list (edge_list);
2675 free_pre_mem ();
2676 }
2677
2678 if (flag_gcse_lm)
2679 free_ld_motion_mems ();
2680 remove_fake_exit_edges ();
2681 free_hash_table (&expr_hash_table);
2682
2683 free_gcse_mem ();
2684 obstack_free (&gcse_obstack, NULL);
2685
2686 /* We are finished with alias. */
2687 end_alias_analysis ();
2688
2689 if (dump_file)
2690 {
2691 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2692 current_function_name (), n_basic_blocks, bytes_used);
2693 fprintf (dump_file, "%d substs, %d insns created\n",
2694 gcse_subst_count, gcse_create_count);
2695 }
2696
2697 return changed;
2698 }
2699 \f
2700 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2701 to INSN. If such notes are added to an insn which references a
2702 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2703 that note, because the following loop optimization pass requires
2704 them. */
2705
2706 /* ??? If there was a jump optimization pass after gcse and before loop,
2707 then we would not need to do this here, because jump would add the
2708 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2709
2710 static void
2711 add_label_notes (rtx x, rtx insn)
2712 {
2713 enum rtx_code code = GET_CODE (x);
2714 int i, j;
2715 const char *fmt;
2716
2717 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2718 {
2719 /* This code used to ignore labels that referred to dispatch tables to
2720 avoid flow generating (slightly) worse code.
2721
2722 We no longer ignore such label references (see LABEL_REF handling in
2723 mark_jump_label for additional information). */
2724
2725 /* There's no reason for current users to emit jump-insns with
2726 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2727 notes. */
2728 gcc_assert (!JUMP_P (insn));
2729 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2730
2731 if (LABEL_P (XEXP (x, 0)))
2732 LABEL_NUSES (XEXP (x, 0))++;
2733
2734 return;
2735 }
2736
2737 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2738 {
2739 if (fmt[i] == 'e')
2740 add_label_notes (XEXP (x, i), insn);
2741 else if (fmt[i] == 'E')
2742 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2743 add_label_notes (XVECEXP (x, i, j), insn);
2744 }
2745 }
2746
2747 /* Code Hoisting variables and subroutines. */
2748
2749 /* Very busy expressions. */
2750 static sbitmap *hoist_vbein;
2751 static sbitmap *hoist_vbeout;
2752
2753 /* ??? We could compute post dominators and run this algorithm in
2754 reverse to perform tail merging, doing so would probably be
2755 more effective than the tail merging code in jump.c.
2756
2757 It's unclear if tail merging could be run in parallel with
2758 code hoisting. It would be nice. */
2759
2760 /* Allocate vars used for code hoisting analysis. */
2761
2762 static void
2763 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2764 {
2765 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2766 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2767 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2768
2769 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2770 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2771 }
2772
2773 /* Free vars used for code hoisting analysis. */
2774
2775 static void
2776 free_code_hoist_mem (void)
2777 {
2778 sbitmap_vector_free (antloc);
2779 sbitmap_vector_free (transp);
2780 sbitmap_vector_free (comp);
2781
2782 sbitmap_vector_free (hoist_vbein);
2783 sbitmap_vector_free (hoist_vbeout);
2784
2785 free_dominance_info (CDI_DOMINATORS);
2786 }
2787
2788 /* Compute the very busy expressions at entry/exit from each block.
2789
2790 An expression is very busy if all paths from a given point
2791 compute the expression. */
2792
2793 static void
2794 compute_code_hoist_vbeinout (void)
2795 {
2796 int changed, passes;
2797 basic_block bb;
2798
2799 bitmap_vector_clear (hoist_vbeout, last_basic_block);
2800 bitmap_vector_clear (hoist_vbein, last_basic_block);
2801
2802 passes = 0;
2803 changed = 1;
2804
2805 while (changed)
2806 {
2807 changed = 0;
2808
2809 /* We scan the blocks in the reverse order to speed up
2810 the convergence. */
2811 FOR_EACH_BB_REVERSE (bb)
2812 {
2813 if (bb->next_bb != EXIT_BLOCK_PTR)
2814 {
2815 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2816 hoist_vbein, bb);
2817
2818 /* Include expressions in VBEout that are calculated
2819 in BB and available at its end. */
2820 bitmap_ior (hoist_vbeout[bb->index],
2821 hoist_vbeout[bb->index], comp[bb->index]);
2822 }
2823
2824 changed |= bitmap_or_and (hoist_vbein[bb->index],
2825 antloc[bb->index],
2826 hoist_vbeout[bb->index],
2827 transp[bb->index]);
2828 }
2829
2830 passes++;
2831 }
2832
2833 if (dump_file)
2834 {
2835 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2836
2837 FOR_EACH_BB (bb)
2838 {
2839 fprintf (dump_file, "vbein (%d): ", bb->index);
2840 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2841 fprintf (dump_file, "vbeout(%d): ", bb->index);
2842 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2843 }
2844 }
2845 }
2846
2847 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2848
2849 static void
2850 compute_code_hoist_data (void)
2851 {
2852 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2853 prune_expressions (false);
2854 compute_code_hoist_vbeinout ();
2855 calculate_dominance_info (CDI_DOMINATORS);
2856 if (dump_file)
2857 fprintf (dump_file, "\n");
2858 }
2859
2860 /* Update register pressure for BB when hoisting an expression from
2861 instruction FROM, if live ranges of inputs are shrunk. Also
2862 maintain live_in information if live range of register referred
2863 in FROM is shrunk.
2864
2865 Return 0 if register pressure doesn't change, otherwise return
2866 the number by which register pressure is decreased.
2867
2868 NOTE: Register pressure won't be increased in this function. */
2869
2870 static int
2871 update_bb_reg_pressure (basic_block bb, rtx from)
2872 {
2873 rtx dreg, insn;
2874 basic_block succ_bb;
2875 df_ref *op, op_ref;
2876 edge succ;
2877 edge_iterator ei;
2878 int decreased_pressure = 0;
2879 int nregs;
2880 enum reg_class pressure_class;
2881
2882 for (op = DF_INSN_USES (from); *op; op++)
2883 {
2884 dreg = DF_REF_REAL_REG (*op);
2885 /* The live range of register is shrunk only if it isn't:
2886 1. referred on any path from the end of this block to EXIT, or
2887 2. referred by insns other than FROM in this block. */
2888 FOR_EACH_EDGE (succ, ei, bb->succs)
2889 {
2890 succ_bb = succ->dest;
2891 if (succ_bb == EXIT_BLOCK_PTR)
2892 continue;
2893
2894 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2895 break;
2896 }
2897 if (succ != NULL)
2898 continue;
2899
2900 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2901 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2902 {
2903 if (!DF_REF_INSN_INFO (op_ref))
2904 continue;
2905
2906 insn = DF_REF_INSN (op_ref);
2907 if (BLOCK_FOR_INSN (insn) == bb
2908 && NONDEBUG_INSN_P (insn) && insn != from)
2909 break;
2910 }
2911
2912 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2913 /* Decrease register pressure and update live_in information for
2914 this block. */
2915 if (!op_ref && pressure_class != NO_REGS)
2916 {
2917 decreased_pressure += nregs;
2918 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2919 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2920 }
2921 }
2922 return decreased_pressure;
2923 }
2924
2925 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2926 flow graph, if it can reach BB unimpared. Stop the search if the
2927 expression would need to be moved more than DISTANCE instructions.
2928
2929 DISTANCE is the number of instructions through which EXPR can be
2930 hoisted up in flow graph.
2931
2932 BB_SIZE points to an array which contains the number of instructions
2933 for each basic block.
2934
2935 PRESSURE_CLASS and NREGS are register class and number of hard registers
2936 for storing EXPR.
2937
2938 HOISTED_BBS points to a bitmap indicating basic blocks through which
2939 EXPR is hoisted.
2940
2941 FROM is the instruction from which EXPR is hoisted.
2942
2943 It's unclear exactly what Muchnick meant by "unimpared". It seems
2944 to me that the expression must either be computed or transparent in
2945 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2946 would allow the expression to be hoisted out of loops, even if
2947 the expression wasn't a loop invariant.
2948
2949 Contrast this to reachability for PRE where an expression is
2950 considered reachable if *any* path reaches instead of *all*
2951 paths. */
2952
2953 static int
2954 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2955 basic_block bb, sbitmap visited, int distance,
2956 int *bb_size, enum reg_class pressure_class,
2957 int *nregs, bitmap hoisted_bbs, rtx from)
2958 {
2959 unsigned int i;
2960 edge pred;
2961 edge_iterator ei;
2962 sbitmap_iterator sbi;
2963 int visited_allocated_locally = 0;
2964 int decreased_pressure = 0;
2965
2966 if (flag_ira_hoist_pressure)
2967 {
2968 /* Record old information of basic block BB when it is visited
2969 at the first time. */
2970 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2971 {
2972 struct bb_data *data = BB_DATA (bb);
2973 bitmap_copy (data->backup, data->live_in);
2974 data->old_pressure = data->max_reg_pressure[pressure_class];
2975 }
2976 decreased_pressure = update_bb_reg_pressure (bb, from);
2977 }
2978 /* Terminate the search if distance, for which EXPR is allowed to move,
2979 is exhausted. */
2980 if (distance > 0)
2981 {
2982 if (flag_ira_hoist_pressure)
2983 {
2984 /* Prefer to hoist EXPR if register pressure is decreased. */
2985 if (decreased_pressure > *nregs)
2986 distance += bb_size[bb->index];
2987 /* Let EXPR be hoisted through basic block at no cost if one
2988 of following conditions is satisfied:
2989
2990 1. The basic block has low register pressure.
2991 2. Register pressure won't be increases after hoisting EXPR.
2992
2993 Constant expressions is handled conservatively, because
2994 hoisting constant expression aggressively results in worse
2995 code. This decision is made by the observation of CSiBE
2996 on ARM target, while it has no obvious effect on other
2997 targets like x86, x86_64, mips and powerpc. */
2998 else if (CONST_INT_P (expr->expr)
2999 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3000 >= ira_class_hard_regs_num[pressure_class]
3001 && decreased_pressure < *nregs))
3002 distance -= bb_size[bb->index];
3003 }
3004 else
3005 distance -= bb_size[bb->index];
3006
3007 if (distance <= 0)
3008 return 0;
3009 }
3010 else
3011 gcc_assert (distance == 0);
3012
3013 if (visited == NULL)
3014 {
3015 visited_allocated_locally = 1;
3016 visited = sbitmap_alloc (last_basic_block);
3017 bitmap_clear (visited);
3018 }
3019
3020 FOR_EACH_EDGE (pred, ei, bb->preds)
3021 {
3022 basic_block pred_bb = pred->src;
3023
3024 if (pred->src == ENTRY_BLOCK_PTR)
3025 break;
3026 else if (pred_bb == expr_bb)
3027 continue;
3028 else if (bitmap_bit_p (visited, pred_bb->index))
3029 continue;
3030 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3031 break;
3032 /* Not killed. */
3033 else
3034 {
3035 bitmap_set_bit (visited, pred_bb->index);
3036 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3037 visited, distance, bb_size,
3038 pressure_class, nregs,
3039 hoisted_bbs, from))
3040 break;
3041 }
3042 }
3043 if (visited_allocated_locally)
3044 {
3045 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3046 which EXPR is hoisted in hoisted_bbs. */
3047 if (flag_ira_hoist_pressure && !pred)
3048 {
3049 /* Record the basic block from which EXPR is hoisted. */
3050 bitmap_set_bit (visited, bb->index);
3051 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3052 bitmap_set_bit (hoisted_bbs, i);
3053 }
3054 sbitmap_free (visited);
3055 }
3056
3057 return (pred == NULL);
3058 }
3059 \f
3060 /* Find occurrence in BB. */
3061
3062 static struct occr *
3063 find_occr_in_bb (struct occr *occr, basic_block bb)
3064 {
3065 /* Find the right occurrence of this expression. */
3066 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3067 occr = occr->next;
3068
3069 return occr;
3070 }
3071
3072 /* Actually perform code hoisting.
3073
3074 The code hoisting pass can hoist multiple computations of the same
3075 expression along dominated path to a dominating basic block, like
3076 from b2/b3 to b1 as depicted below:
3077
3078 b1 ------
3079 /\ |
3080 / \ |
3081 bx by distance
3082 / \ |
3083 / \ |
3084 b2 b3 ------
3085
3086 Unfortunately code hoisting generally extends the live range of an
3087 output pseudo register, which increases register pressure and hurts
3088 register allocation. To address this issue, an attribute MAX_DISTANCE
3089 is computed and attached to each expression. The attribute is computed
3090 from rtx cost of the corresponding expression and it's used to control
3091 how long the expression can be hoisted up in flow graph. As the
3092 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3093 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3094 register pressure if live ranges of inputs are shrunk.
3095
3096 Option "-fira-hoist-pressure" implements register pressure directed
3097 hoist based on upper method. The rationale is:
3098 1. Calculate register pressure for each basic block by reusing IRA
3099 facility.
3100 2. When expression is hoisted through one basic block, GCC checks
3101 the change of live ranges for inputs/output. The basic block's
3102 register pressure will be increased because of extended live
3103 range of output. However, register pressure will be decreased
3104 if the live ranges of inputs are shrunk.
3105 3. After knowing how hoisting affects register pressure, GCC prefers
3106 to hoist the expression if it can decrease register pressure, by
3107 increasing DISTANCE of the corresponding expression.
3108 4. If hoisting the expression increases register pressure, GCC checks
3109 register pressure of the basic block and decrease DISTANCE only if
3110 the register pressure is high. In other words, expression will be
3111 hoisted through at no cost if the basic block has low register
3112 pressure.
3113 5. Update register pressure information for basic blocks through
3114 which expression is hoisted. */
3115
3116 static int
3117 hoist_code (void)
3118 {
3119 basic_block bb, dominated;
3120 vec<basic_block> dom_tree_walk;
3121 unsigned int dom_tree_walk_index;
3122 vec<basic_block> domby;
3123 unsigned int i, j, k;
3124 struct expr **index_map;
3125 struct expr *expr;
3126 int *to_bb_head;
3127 int *bb_size;
3128 int changed = 0;
3129 struct bb_data *data;
3130 /* Basic blocks that have occurrences reachable from BB. */
3131 bitmap from_bbs;
3132 /* Basic blocks through which expr is hoisted. */
3133 bitmap hoisted_bbs = NULL;
3134 bitmap_iterator bi;
3135
3136 /* Compute a mapping from expression number (`bitmap_index') to
3137 hash table entry. */
3138
3139 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3140 for (i = 0; i < expr_hash_table.size; i++)
3141 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3142 index_map[expr->bitmap_index] = expr;
3143
3144 /* Calculate sizes of basic blocks and note how far
3145 each instruction is from the start of its block. We then use this
3146 data to restrict distance an expression can travel. */
3147
3148 to_bb_head = XCNEWVEC (int, get_max_uid ());
3149 bb_size = XCNEWVEC (int, last_basic_block);
3150
3151 FOR_EACH_BB (bb)
3152 {
3153 rtx insn;
3154 int to_head;
3155
3156 to_head = 0;
3157 FOR_BB_INSNS (bb, insn)
3158 {
3159 /* Don't count debug instructions to avoid them affecting
3160 decision choices. */
3161 if (NONDEBUG_INSN_P (insn))
3162 to_bb_head[INSN_UID (insn)] = to_head++;
3163 }
3164
3165 bb_size[bb->index] = to_head;
3166 }
3167
3168 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
3169 && (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
3170 == ENTRY_BLOCK_PTR->next_bb));
3171
3172 from_bbs = BITMAP_ALLOC (NULL);
3173 if (flag_ira_hoist_pressure)
3174 hoisted_bbs = BITMAP_ALLOC (NULL);
3175
3176 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3177 ENTRY_BLOCK_PTR->next_bb);
3178
3179 /* Walk over each basic block looking for potentially hoistable
3180 expressions, nothing gets hoisted from the entry block. */
3181 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3182 {
3183 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3184
3185 if (domby.length () == 0)
3186 continue;
3187
3188 /* Examine each expression that is very busy at the exit of this
3189 block. These are the potentially hoistable expressions. */
3190 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3191 {
3192 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3193 {
3194 int nregs = 0;
3195 enum reg_class pressure_class = NO_REGS;
3196 /* Current expression. */
3197 struct expr *expr = index_map[i];
3198 /* Number of occurrences of EXPR that can be hoisted to BB. */
3199 int hoistable = 0;
3200 /* Occurrences reachable from BB. */
3201 vec<occr_t> occrs_to_hoist = vNULL;
3202 /* We want to insert the expression into BB only once, so
3203 note when we've inserted it. */
3204 int insn_inserted_p;
3205 occr_t occr;
3206
3207 /* If an expression is computed in BB and is available at end of
3208 BB, hoist all occurrences dominated by BB to BB. */
3209 if (bitmap_bit_p (comp[bb->index], i))
3210 {
3211 occr = find_occr_in_bb (expr->antic_occr, bb);
3212
3213 if (occr)
3214 {
3215 /* An occurrence might've been already deleted
3216 while processing a dominator of BB. */
3217 if (!occr->deleted_p)
3218 {
3219 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3220 hoistable++;
3221 }
3222 }
3223 else
3224 hoistable++;
3225 }
3226
3227 /* We've found a potentially hoistable expression, now
3228 we look at every block BB dominates to see if it
3229 computes the expression. */
3230 FOR_EACH_VEC_ELT (domby, j, dominated)
3231 {
3232 int max_distance;
3233
3234 /* Ignore self dominance. */
3235 if (bb == dominated)
3236 continue;
3237 /* We've found a dominated block, now see if it computes
3238 the busy expression and whether or not moving that
3239 expression to the "beginning" of that block is safe. */
3240 if (!bitmap_bit_p (antloc[dominated->index], i))
3241 continue;
3242
3243 occr = find_occr_in_bb (expr->antic_occr, dominated);
3244 gcc_assert (occr);
3245
3246 /* An occurrence might've been already deleted
3247 while processing a dominator of BB. */
3248 if (occr->deleted_p)
3249 continue;
3250 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3251
3252 max_distance = expr->max_distance;
3253 if (max_distance > 0)
3254 /* Adjust MAX_DISTANCE to account for the fact that
3255 OCCR won't have to travel all of DOMINATED, but
3256 only part of it. */
3257 max_distance += (bb_size[dominated->index]
3258 - to_bb_head[INSN_UID (occr->insn)]);
3259
3260 pressure_class = get_pressure_class_and_nregs (occr->insn,
3261 &nregs);
3262
3263 /* Note if the expression should be hoisted from the dominated
3264 block to BB if it can reach DOMINATED unimpared.
3265
3266 Keep track of how many times this expression is hoistable
3267 from a dominated block into BB. */
3268 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3269 max_distance, bb_size,
3270 pressure_class, &nregs,
3271 hoisted_bbs, occr->insn))
3272 {
3273 hoistable++;
3274 occrs_to_hoist.safe_push (occr);
3275 bitmap_set_bit (from_bbs, dominated->index);
3276 }
3277 }
3278
3279 /* If we found more than one hoistable occurrence of this
3280 expression, then note it in the vector of expressions to
3281 hoist. It makes no sense to hoist things which are computed
3282 in only one BB, and doing so tends to pessimize register
3283 allocation. One could increase this value to try harder
3284 to avoid any possible code expansion due to register
3285 allocation issues; however experiments have shown that
3286 the vast majority of hoistable expressions are only movable
3287 from two successors, so raising this threshold is likely
3288 to nullify any benefit we get from code hoisting. */
3289 if (hoistable > 1 && dbg_cnt (hoist_insn))
3290 {
3291 /* If (hoistable != vec::length), then there is
3292 an occurrence of EXPR in BB itself. Don't waste
3293 time looking for LCA in this case. */
3294 if ((unsigned) hoistable == occrs_to_hoist.length ())
3295 {
3296 basic_block lca;
3297
3298 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3299 from_bbs);
3300 if (lca != bb)
3301 /* Punt, it's better to hoist these occurrences to
3302 LCA. */
3303 occrs_to_hoist.release ();
3304 }
3305 }
3306 else
3307 /* Punt, no point hoisting a single occurence. */
3308 occrs_to_hoist.release ();
3309
3310 if (flag_ira_hoist_pressure
3311 && !occrs_to_hoist.is_empty ())
3312 {
3313 /* Increase register pressure of basic blocks to which
3314 expr is hoisted because of extended live range of
3315 output. */
3316 data = BB_DATA (bb);
3317 data->max_reg_pressure[pressure_class] += nregs;
3318 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3319 {
3320 data = BB_DATA (BASIC_BLOCK (k));
3321 data->max_reg_pressure[pressure_class] += nregs;
3322 }
3323 }
3324 else if (flag_ira_hoist_pressure)
3325 {
3326 /* Restore register pressure and live_in info for basic
3327 blocks recorded in hoisted_bbs when expr will not be
3328 hoisted. */
3329 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3330 {
3331 data = BB_DATA (BASIC_BLOCK (k));
3332 bitmap_copy (data->live_in, data->backup);
3333 data->max_reg_pressure[pressure_class]
3334 = data->old_pressure;
3335 }
3336 }
3337
3338 if (flag_ira_hoist_pressure)
3339 bitmap_clear (hoisted_bbs);
3340
3341 insn_inserted_p = 0;
3342
3343 /* Walk through occurrences of I'th expressions we want
3344 to hoist to BB and make the transformations. */
3345 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3346 {
3347 rtx insn;
3348 rtx set;
3349
3350 gcc_assert (!occr->deleted_p);
3351
3352 insn = occr->insn;
3353 set = single_set (insn);
3354 gcc_assert (set);
3355
3356 /* Create a pseudo-reg to store the result of reaching
3357 expressions into. Get the mode for the new pseudo
3358 from the mode of the original destination pseudo.
3359
3360 It is important to use new pseudos whenever we
3361 emit a set. This will allow reload to use
3362 rematerialization for such registers. */
3363 if (!insn_inserted_p)
3364 expr->reaching_reg
3365 = gen_reg_rtx_and_attrs (SET_DEST (set));
3366
3367 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3368 insn);
3369 delete_insn (insn);
3370 occr->deleted_p = 1;
3371 changed = 1;
3372 gcse_subst_count++;
3373
3374 if (!insn_inserted_p)
3375 {
3376 insert_insn_end_basic_block (expr, bb);
3377 insn_inserted_p = 1;
3378 }
3379 }
3380
3381 occrs_to_hoist.release ();
3382 bitmap_clear (from_bbs);
3383 }
3384 }
3385 domby.release ();
3386 }
3387
3388 dom_tree_walk.release ();
3389 BITMAP_FREE (from_bbs);
3390 if (flag_ira_hoist_pressure)
3391 BITMAP_FREE (hoisted_bbs);
3392
3393 free (bb_size);
3394 free (to_bb_head);
3395 free (index_map);
3396
3397 return changed;
3398 }
3399
3400 /* Return pressure class and number of needed hard registers (through
3401 *NREGS) of register REGNO. */
3402 static enum reg_class
3403 get_regno_pressure_class (int regno, int *nregs)
3404 {
3405 if (regno >= FIRST_PSEUDO_REGISTER)
3406 {
3407 enum reg_class pressure_class;
3408
3409 pressure_class = reg_allocno_class (regno);
3410 pressure_class = ira_pressure_class_translate[pressure_class];
3411 *nregs
3412 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3413 return pressure_class;
3414 }
3415 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3416 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3417 {
3418 *nregs = 1;
3419 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3420 }
3421 else
3422 {
3423 *nregs = 0;
3424 return NO_REGS;
3425 }
3426 }
3427
3428 /* Return pressure class and number of hard registers (through *NREGS)
3429 for destination of INSN. */
3430 static enum reg_class
3431 get_pressure_class_and_nregs (rtx insn, int *nregs)
3432 {
3433 rtx reg;
3434 enum reg_class pressure_class;
3435 rtx set = single_set (insn);
3436
3437 /* Considered invariant insns have only one set. */
3438 gcc_assert (set != NULL_RTX);
3439 reg = SET_DEST (set);
3440 if (GET_CODE (reg) == SUBREG)
3441 reg = SUBREG_REG (reg);
3442 if (MEM_P (reg))
3443 {
3444 *nregs = 0;
3445 pressure_class = NO_REGS;
3446 }
3447 else
3448 {
3449 gcc_assert (REG_P (reg));
3450 pressure_class = reg_allocno_class (REGNO (reg));
3451 pressure_class = ira_pressure_class_translate[pressure_class];
3452 *nregs
3453 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3454 }
3455 return pressure_class;
3456 }
3457
3458 /* Increase (if INCR_P) or decrease current register pressure for
3459 register REGNO. */
3460 static void
3461 change_pressure (int regno, bool incr_p)
3462 {
3463 int nregs;
3464 enum reg_class pressure_class;
3465
3466 pressure_class = get_regno_pressure_class (regno, &nregs);
3467 if (! incr_p)
3468 curr_reg_pressure[pressure_class] -= nregs;
3469 else
3470 {
3471 curr_reg_pressure[pressure_class] += nregs;
3472 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3473 < curr_reg_pressure[pressure_class])
3474 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3475 = curr_reg_pressure[pressure_class];
3476 }
3477 }
3478
3479 /* Calculate register pressure for each basic block by walking insns
3480 from last to first. */
3481 static void
3482 calculate_bb_reg_pressure (void)
3483 {
3484 int i;
3485 unsigned int j;
3486 rtx insn;
3487 basic_block bb;
3488 bitmap curr_regs_live;
3489 bitmap_iterator bi;
3490
3491
3492 ira_setup_eliminable_regset (false);
3493 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3494 FOR_EACH_BB (bb)
3495 {
3496 curr_bb = bb;
3497 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3498 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3499 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3500 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3501 for (i = 0; i < ira_pressure_classes_num; i++)
3502 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3503 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3504 change_pressure (j, true);
3505
3506 FOR_BB_INSNS_REVERSE (bb, insn)
3507 {
3508 rtx dreg;
3509 int regno;
3510 df_ref *def_rec, *use_rec;
3511
3512 if (! NONDEBUG_INSN_P (insn))
3513 continue;
3514
3515 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3516 {
3517 dreg = DF_REF_REAL_REG (*def_rec);
3518 gcc_assert (REG_P (dreg));
3519 regno = REGNO (dreg);
3520 if (!(DF_REF_FLAGS (*def_rec)
3521 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3522 {
3523 if (bitmap_clear_bit (curr_regs_live, regno))
3524 change_pressure (regno, false);
3525 }
3526 }
3527
3528 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3529 {
3530 dreg = DF_REF_REAL_REG (*use_rec);
3531 gcc_assert (REG_P (dreg));
3532 regno = REGNO (dreg);
3533 if (bitmap_set_bit (curr_regs_live, regno))
3534 change_pressure (regno, true);
3535 }
3536 }
3537 }
3538 BITMAP_FREE (curr_regs_live);
3539
3540 if (dump_file == NULL)
3541 return;
3542
3543 fprintf (dump_file, "\nRegister Pressure: \n");
3544 FOR_EACH_BB (bb)
3545 {
3546 fprintf (dump_file, " Basic block %d: \n", bb->index);
3547 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3548 {
3549 enum reg_class pressure_class;
3550
3551 pressure_class = ira_pressure_classes[i];
3552 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3553 continue;
3554
3555 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3556 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3557 }
3558 }
3559 fprintf (dump_file, "\n");
3560 }
3561
3562 /* Top level routine to perform one code hoisting (aka unification) pass
3563
3564 Return nonzero if a change was made. */
3565
3566 static int
3567 one_code_hoisting_pass (void)
3568 {
3569 int changed = 0;
3570
3571 gcse_subst_count = 0;
3572 gcse_create_count = 0;
3573
3574 /* Return if there's nothing to do, or it is too expensive. */
3575 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3576 || is_too_expensive (_("GCSE disabled")))
3577 return 0;
3578
3579 doing_code_hoisting_p = true;
3580
3581 /* Calculate register pressure for each basic block. */
3582 if (flag_ira_hoist_pressure)
3583 {
3584 regstat_init_n_sets_and_refs ();
3585 ira_set_pseudo_classes (false, dump_file);
3586 alloc_aux_for_blocks (sizeof (struct bb_data));
3587 calculate_bb_reg_pressure ();
3588 regstat_free_n_sets_and_refs ();
3589 }
3590
3591 /* We need alias. */
3592 init_alias_analysis ();
3593
3594 bytes_used = 0;
3595 gcc_obstack_init (&gcse_obstack);
3596 alloc_gcse_mem ();
3597
3598 alloc_hash_table (&expr_hash_table);
3599 compute_hash_table (&expr_hash_table);
3600 if (dump_file)
3601 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3602
3603 if (expr_hash_table.n_elems > 0)
3604 {
3605 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
3606 compute_code_hoist_data ();
3607 changed = hoist_code ();
3608 free_code_hoist_mem ();
3609 }
3610
3611 if (flag_ira_hoist_pressure)
3612 {
3613 free_aux_for_blocks ();
3614 free_reg_info ();
3615 }
3616 free_hash_table (&expr_hash_table);
3617 free_gcse_mem ();
3618 obstack_free (&gcse_obstack, NULL);
3619
3620 /* We are finished with alias. */
3621 end_alias_analysis ();
3622
3623 if (dump_file)
3624 {
3625 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3626 current_function_name (), n_basic_blocks, bytes_used);
3627 fprintf (dump_file, "%d substs, %d insns created\n",
3628 gcse_subst_count, gcse_create_count);
3629 }
3630
3631 doing_code_hoisting_p = false;
3632
3633 return changed;
3634 }
3635 \f
3636 /* Here we provide the things required to do store motion towards the exit.
3637 In order for this to be effective, gcse also needed to be taught how to
3638 move a load when it is killed only by a store to itself.
3639
3640 int i;
3641 float a[10];
3642
3643 void foo(float scale)
3644 {
3645 for (i=0; i<10; i++)
3646 a[i] *= scale;
3647 }
3648
3649 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3650 the load out since its live around the loop, and stored at the bottom
3651 of the loop.
3652
3653 The 'Load Motion' referred to and implemented in this file is
3654 an enhancement to gcse which when using edge based LCM, recognizes
3655 this situation and allows gcse to move the load out of the loop.
3656
3657 Once gcse has hoisted the load, store motion can then push this
3658 load towards the exit, and we end up with no loads or stores of 'i'
3659 in the loop. */
3660
3661 static hashval_t
3662 pre_ldst_expr_hash (const void *p)
3663 {
3664 int do_not_record_p = 0;
3665 const struct ls_expr *const x = (const struct ls_expr *) p;
3666 return
3667 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
3668 }
3669
3670 static int
3671 pre_ldst_expr_eq (const void *p1, const void *p2)
3672 {
3673 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
3674 *const ptr2 = (const struct ls_expr *) p2;
3675 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
3676 }
3677
3678 /* This will search the ldst list for a matching expression. If it
3679 doesn't find one, we create one and initialize it. */
3680
3681 static struct ls_expr *
3682 ldst_entry (rtx x)
3683 {
3684 int do_not_record_p = 0;
3685 struct ls_expr * ptr;
3686 unsigned int hash;
3687 void **slot;
3688 struct ls_expr e;
3689
3690 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3691 NULL, /*have_reg_qty=*/false);
3692
3693 e.pattern = x;
3694 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
3695 if (*slot)
3696 return (struct ls_expr *)*slot;
3697
3698 ptr = XNEW (struct ls_expr);
3699
3700 ptr->next = pre_ldst_mems;
3701 ptr->expr = NULL;
3702 ptr->pattern = x;
3703 ptr->pattern_regs = NULL_RTX;
3704 ptr->loads = NULL_RTX;
3705 ptr->stores = NULL_RTX;
3706 ptr->reaching_reg = NULL_RTX;
3707 ptr->invalid = 0;
3708 ptr->index = 0;
3709 ptr->hash_index = hash;
3710 pre_ldst_mems = ptr;
3711 *slot = ptr;
3712
3713 return ptr;
3714 }
3715
3716 /* Free up an individual ldst entry. */
3717
3718 static void
3719 free_ldst_entry (struct ls_expr * ptr)
3720 {
3721 free_INSN_LIST_list (& ptr->loads);
3722 free_INSN_LIST_list (& ptr->stores);
3723
3724 free (ptr);
3725 }
3726
3727 /* Free up all memory associated with the ldst list. */
3728
3729 static void
3730 free_ld_motion_mems (void)
3731 {
3732 if (pre_ldst_table)
3733 htab_delete (pre_ldst_table);
3734 pre_ldst_table = NULL;
3735
3736 while (pre_ldst_mems)
3737 {
3738 struct ls_expr * tmp = pre_ldst_mems;
3739
3740 pre_ldst_mems = pre_ldst_mems->next;
3741
3742 free_ldst_entry (tmp);
3743 }
3744
3745 pre_ldst_mems = NULL;
3746 }
3747
3748 /* Dump debugging info about the ldst list. */
3749
3750 static void
3751 print_ldst_list (FILE * file)
3752 {
3753 struct ls_expr * ptr;
3754
3755 fprintf (file, "LDST list: \n");
3756
3757 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3758 {
3759 fprintf (file, " Pattern (%3d): ", ptr->index);
3760
3761 print_rtl (file, ptr->pattern);
3762
3763 fprintf (file, "\n Loads : ");
3764
3765 if (ptr->loads)
3766 print_rtl (file, ptr->loads);
3767 else
3768 fprintf (file, "(nil)");
3769
3770 fprintf (file, "\n Stores : ");
3771
3772 if (ptr->stores)
3773 print_rtl (file, ptr->stores);
3774 else
3775 fprintf (file, "(nil)");
3776
3777 fprintf (file, "\n\n");
3778 }
3779
3780 fprintf (file, "\n");
3781 }
3782
3783 /* Returns 1 if X is in the list of ldst only expressions. */
3784
3785 static struct ls_expr *
3786 find_rtx_in_ldst (rtx x)
3787 {
3788 struct ls_expr e;
3789 void **slot;
3790 if (!pre_ldst_table)
3791 return NULL;
3792 e.pattern = x;
3793 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
3794 if (!slot || ((struct ls_expr *)*slot)->invalid)
3795 return NULL;
3796 return (struct ls_expr *) *slot;
3797 }
3798 \f
3799 /* Load Motion for loads which only kill themselves. */
3800
3801 /* Return true if x, a MEM, is a simple access with no side effects.
3802 These are the types of loads we consider for the ld_motion list,
3803 otherwise we let the usual aliasing take care of it. */
3804
3805 static int
3806 simple_mem (const_rtx x)
3807 {
3808 if (MEM_VOLATILE_P (x))
3809 return 0;
3810
3811 if (GET_MODE (x) == BLKmode)
3812 return 0;
3813
3814 /* If we are handling exceptions, we must be careful with memory references
3815 that may trap. If we are not, the behavior is undefined, so we may just
3816 continue. */
3817 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3818 return 0;
3819
3820 if (side_effects_p (x))
3821 return 0;
3822
3823 /* Do not consider function arguments passed on stack. */
3824 if (reg_mentioned_p (stack_pointer_rtx, x))
3825 return 0;
3826
3827 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3828 return 0;
3829
3830 return 1;
3831 }
3832
3833 /* Make sure there isn't a buried reference in this pattern anywhere.
3834 If there is, invalidate the entry for it since we're not capable
3835 of fixing it up just yet.. We have to be sure we know about ALL
3836 loads since the aliasing code will allow all entries in the
3837 ld_motion list to not-alias itself. If we miss a load, we will get
3838 the wrong value since gcse might common it and we won't know to
3839 fix it up. */
3840
3841 static void
3842 invalidate_any_buried_refs (rtx x)
3843 {
3844 const char * fmt;
3845 int i, j;
3846 struct ls_expr * ptr;
3847
3848 /* Invalidate it in the list. */
3849 if (MEM_P (x) && simple_mem (x))
3850 {
3851 ptr = ldst_entry (x);
3852 ptr->invalid = 1;
3853 }
3854
3855 /* Recursively process the insn. */
3856 fmt = GET_RTX_FORMAT (GET_CODE (x));
3857
3858 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3859 {
3860 if (fmt[i] == 'e')
3861 invalidate_any_buried_refs (XEXP (x, i));
3862 else if (fmt[i] == 'E')
3863 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3864 invalidate_any_buried_refs (XVECEXP (x, i, j));
3865 }
3866 }
3867
3868 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3869 being defined as MEM loads and stores to symbols, with no side effects
3870 and no registers in the expression. For a MEM destination, we also
3871 check that the insn is still valid if we replace the destination with a
3872 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3873 which don't match this criteria, they are invalidated and trimmed out
3874 later. */
3875
3876 static void
3877 compute_ld_motion_mems (void)
3878 {
3879 struct ls_expr * ptr;
3880 basic_block bb;
3881 rtx insn;
3882
3883 pre_ldst_mems = NULL;
3884 pre_ldst_table
3885 = htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
3886
3887 FOR_EACH_BB (bb)
3888 {
3889 FOR_BB_INSNS (bb, insn)
3890 {
3891 if (NONDEBUG_INSN_P (insn))
3892 {
3893 if (GET_CODE (PATTERN (insn)) == SET)
3894 {
3895 rtx src = SET_SRC (PATTERN (insn));
3896 rtx dest = SET_DEST (PATTERN (insn));
3897
3898 /* Check for a simple LOAD... */
3899 if (MEM_P (src) && simple_mem (src))
3900 {
3901 ptr = ldst_entry (src);
3902 if (REG_P (dest))
3903 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3904 else
3905 ptr->invalid = 1;
3906 }
3907 else
3908 {
3909 /* Make sure there isn't a buried load somewhere. */
3910 invalidate_any_buried_refs (src);
3911 }
3912
3913 /* Check for stores. Don't worry about aliased ones, they
3914 will block any movement we might do later. We only care
3915 about this exact pattern since those are the only
3916 circumstance that we will ignore the aliasing info. */
3917 if (MEM_P (dest) && simple_mem (dest))
3918 {
3919 ptr = ldst_entry (dest);
3920
3921 if (! MEM_P (src)
3922 && GET_CODE (src) != ASM_OPERANDS
3923 /* Check for REG manually since want_to_gcse_p
3924 returns 0 for all REGs. */
3925 && can_assign_to_reg_without_clobbers_p (src))
3926 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3927 else
3928 ptr->invalid = 1;
3929 }
3930 }
3931 else
3932 invalidate_any_buried_refs (PATTERN (insn));
3933 }
3934 }
3935 }
3936 }
3937
3938 /* Remove any references that have been either invalidated or are not in the
3939 expression list for pre gcse. */
3940
3941 static void
3942 trim_ld_motion_mems (void)
3943 {
3944 struct ls_expr * * last = & pre_ldst_mems;
3945 struct ls_expr * ptr = pre_ldst_mems;
3946
3947 while (ptr != NULL)
3948 {
3949 struct expr * expr;
3950
3951 /* Delete if entry has been made invalid. */
3952 if (! ptr->invalid)
3953 {
3954 /* Delete if we cannot find this mem in the expression list. */
3955 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3956
3957 for (expr = expr_hash_table.table[hash];
3958 expr != NULL;
3959 expr = expr->next_same_hash)
3960 if (expr_equiv_p (expr->expr, ptr->pattern))
3961 break;
3962 }
3963 else
3964 expr = (struct expr *) 0;
3965
3966 if (expr)
3967 {
3968 /* Set the expression field if we are keeping it. */
3969 ptr->expr = expr;
3970 last = & ptr->next;
3971 ptr = ptr->next;
3972 }
3973 else
3974 {
3975 *last = ptr->next;
3976 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
3977 free_ldst_entry (ptr);
3978 ptr = * last;
3979 }
3980 }
3981
3982 /* Show the world what we've found. */
3983 if (dump_file && pre_ldst_mems != NULL)
3984 print_ldst_list (dump_file);
3985 }
3986
3987 /* This routine will take an expression which we are replacing with
3988 a reaching register, and update any stores that are needed if
3989 that expression is in the ld_motion list. Stores are updated by
3990 copying their SRC to the reaching register, and then storing
3991 the reaching register into the store location. These keeps the
3992 correct value in the reaching register for the loads. */
3993
3994 static void
3995 update_ld_motion_stores (struct expr * expr)
3996 {
3997 struct ls_expr * mem_ptr;
3998
3999 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4000 {
4001 /* We can try to find just the REACHED stores, but is shouldn't
4002 matter to set the reaching reg everywhere... some might be
4003 dead and should be eliminated later. */
4004
4005 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4006 where reg is the reaching reg used in the load. We checked in
4007 compute_ld_motion_mems that we can replace (set mem expr) with
4008 (set reg expr) in that insn. */
4009 rtx list = mem_ptr->stores;
4010
4011 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4012 {
4013 rtx insn = XEXP (list, 0);
4014 rtx pat = PATTERN (insn);
4015 rtx src = SET_SRC (pat);
4016 rtx reg = expr->reaching_reg;
4017 rtx copy;
4018
4019 /* If we've already copied it, continue. */
4020 if (expr->reaching_reg == src)
4021 continue;
4022
4023 if (dump_file)
4024 {
4025 fprintf (dump_file, "PRE: store updated with reaching reg ");
4026 print_rtl (dump_file, reg);
4027 fprintf (dump_file, ":\n ");
4028 print_inline_rtx (dump_file, insn, 8);
4029 fprintf (dump_file, "\n");
4030 }
4031
4032 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4033 emit_insn_before (copy, insn);
4034 SET_SRC (pat) = reg;
4035 df_insn_rescan (insn);
4036
4037 /* un-recognize this pattern since it's probably different now. */
4038 INSN_CODE (insn) = -1;
4039 gcse_create_count++;
4040 }
4041 }
4042 }
4043 \f
4044 /* Return true if the graph is too expensive to optimize. PASS is the
4045 optimization about to be performed. */
4046
4047 static bool
4048 is_too_expensive (const char *pass)
4049 {
4050 /* Trying to perform global optimizations on flow graphs which have
4051 a high connectivity will take a long time and is unlikely to be
4052 particularly useful.
4053
4054 In normal circumstances a cfg should have about twice as many
4055 edges as blocks. But we do not want to punish small functions
4056 which have a couple switch statements. Rather than simply
4057 threshold the number of blocks, uses something with a more
4058 graceful degradation. */
4059 if (n_edges > 20000 + n_basic_blocks * 4)
4060 {
4061 warning (OPT_Wdisabled_optimization,
4062 "%s: %d basic blocks and %d edges/basic block",
4063 pass, n_basic_blocks, n_edges / n_basic_blocks);
4064
4065 return true;
4066 }
4067
4068 /* If allocating memory for the dataflow bitmaps would take up too much
4069 storage it's better just to disable the optimization. */
4070 if ((n_basic_blocks
4071 * SBITMAP_SET_SIZE (max_reg_num ())
4072 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4073 {
4074 warning (OPT_Wdisabled_optimization,
4075 "%s: %d basic blocks and %d registers",
4076 pass, n_basic_blocks, max_reg_num ());
4077
4078 return true;
4079 }
4080
4081 return false;
4082 }
4083 \f
4084 /* All the passes implemented in this file. Each pass has its
4085 own gate and execute function, and at the end of the file a
4086 pass definition for passes.c.
4087
4088 We do not construct an accurate cfg in functions which call
4089 setjmp, so none of these passes runs if the function calls
4090 setjmp.
4091 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4092
4093 static bool
4094 gate_rtl_pre (void)
4095 {
4096 return optimize > 0 && flag_gcse
4097 && !cfun->calls_setjmp
4098 && optimize_function_for_speed_p (cfun)
4099 && dbg_cnt (pre);
4100 }
4101
4102 static unsigned int
4103 execute_rtl_pre (void)
4104 {
4105 int changed;
4106 delete_unreachable_blocks ();
4107 df_analyze ();
4108 changed = one_pre_gcse_pass ();
4109 flag_rerun_cse_after_global_opts |= changed;
4110 if (changed)
4111 cleanup_cfg (0);
4112 return 0;
4113 }
4114
4115 static bool
4116 gate_rtl_hoist (void)
4117 {
4118 return optimize > 0 && flag_gcse
4119 && !cfun->calls_setjmp
4120 /* It does not make sense to run code hoisting unless we are optimizing
4121 for code size -- it rarely makes programs faster, and can make then
4122 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4123 && optimize_function_for_size_p (cfun)
4124 && dbg_cnt (hoist);
4125 }
4126
4127 static unsigned int
4128 execute_rtl_hoist (void)
4129 {
4130 int changed;
4131 delete_unreachable_blocks ();
4132 df_analyze ();
4133 changed = one_code_hoisting_pass ();
4134 flag_rerun_cse_after_global_opts |= changed;
4135 if (changed)
4136 cleanup_cfg (0);
4137 return 0;
4138 }
4139
4140 struct rtl_opt_pass pass_rtl_pre =
4141 {
4142 {
4143 RTL_PASS,
4144 "rtl pre", /* name */
4145 OPTGROUP_NONE, /* optinfo_flags */
4146 gate_rtl_pre, /* gate */
4147 execute_rtl_pre, /* execute */
4148 NULL, /* sub */
4149 NULL, /* next */
4150 0, /* static_pass_number */
4151 TV_PRE, /* tv_id */
4152 PROP_cfglayout, /* properties_required */
4153 0, /* properties_provided */
4154 0, /* properties_destroyed */
4155 0, /* todo_flags_start */
4156 TODO_df_finish | TODO_verify_rtl_sharing |
4157 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4158 }
4159 };
4160
4161 struct rtl_opt_pass pass_rtl_hoist =
4162 {
4163 {
4164 RTL_PASS,
4165 "hoist", /* name */
4166 OPTGROUP_NONE, /* optinfo_flags */
4167 gate_rtl_hoist, /* gate */
4168 execute_rtl_hoist, /* execute */
4169 NULL, /* sub */
4170 NULL, /* next */
4171 0, /* static_pass_number */
4172 TV_HOIST, /* tv_id */
4173 PROP_cfglayout, /* properties_required */
4174 0, /* properties_provided */
4175 0, /* properties_destroyed */
4176 0, /* todo_flags_start */
4177 TODO_df_finish | TODO_verify_rtl_sharing |
4178 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
4179 }
4180 };
4181
4182 #include "gt-gcse.h"