]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/genrecog.c
Fix ada enabled "make html".
[thirdparty/gcc.git] / gcc / genrecog.c
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
52
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
60
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63
64 /* Holds an array of names indexed by insn_code_number. */
65 static char **insn_name_ptr = 0;
66 static int insn_name_ptr_size = 0;
67
68 /* A listhead of decision trees. The alternatives to a node are kept
69 in a doubly-linked list so we can easily add nodes to the proper
70 place when merging. */
71
72 struct decision_head
73 {
74 struct decision *first;
75 struct decision *last;
76 };
77
78 /* A single test. The two accept types aren't tests per-se, but
79 their equality (or lack thereof) does affect tree merging so
80 it is convenient to keep them here. */
81
82 struct decision_test
83 {
84 /* A linked list through the tests attached to a node. */
85 struct decision_test *next;
86
87 /* These types are roughly in the order in which we'd like to test them. */
88 enum decision_type
89 {
90 DT_mode, DT_code, DT_veclen,
91 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
92 DT_const_int,
93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
94 DT_accept_op, DT_accept_insn
95 } type;
96
97 union
98 {
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
101
102 struct
103 {
104 const char *name; /* Predicate to call. */
105 const struct pred_data *data;
106 /* Optimization hints for this predicate. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
109
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
115
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
122 };
123
124 /* Data structure for decision tree for recognizing legitimate insns. */
125
126 struct decision
127 {
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
133
134 const char *position; /* String denoting position in pattern. */
135
136 struct decision_test *tests; /* The tests for this node. */
137
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
141 };
142
143 #define SUBROUTINE_THRESHOLD 100
144
145 static int next_subroutine_number;
146
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
150
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
153 };
154
155 #define IS_SPLIT(X) ((X) != RECOG)
156
157 /* Next available node number for tree nodes. */
158
159 static int next_number;
160
161 /* Next number to use as an insn_code. */
162
163 static int next_insn_code;
164
165 /* Record the highest depth we ever have so we know how many variables to
166 allocate in each subroutine we make. */
167
168 static int max_depth;
169
170 /* The line number of the start of the pattern currently being processed. */
171 static int pattern_lineno;
172
173 /* Count of errors. */
174 static int error_count;
175 \f
176 /* Predicate handling.
177
178 We construct from the machine description a table mapping each
179 predicate to a list of the rtl codes it can possibly match. The
180 function 'maybe_both_true' uses it to deduce that there are no
181 expressions that can be matches by certain pairs of tree nodes.
182 Also, if a predicate can match only one code, we can hardwire that
183 code into the node testing the predicate.
184
185 Some predicates are flagged as special. validate_pattern will not
186 warn about modeless match_operand expressions if they have a
187 special predicate. Predicates that allow only constants are also
188 treated as special, for this purpose.
189
190 validate_pattern will warn about predicates that allow non-lvalues
191 when they appear in destination operands.
192
193 Calculating the set of rtx codes that can possibly be accepted by a
194 predicate expression EXP requires a three-state logic: any given
195 subexpression may definitively accept a code C (Y), definitively
196 reject a code C (N), or may have an indeterminate effect (I). N
197 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
198 truth tables.
199
200 a b a&b a|b
201 Y Y Y Y
202 N Y N Y
203 N N N N
204 I Y I Y
205 I N N I
206 I I I I
207
208 We represent Y with 1, N with 0, I with 2. If any code is left in
209 an I state by the complete expression, we must assume that that
210 code can be accepted. */
211
212 #define N 0
213 #define Y 1
214 #define I 2
215
216 #define TRISTATE_AND(a,b) \
217 ((a) == I ? ((b) == N ? N : I) : \
218 (b) == I ? ((a) == N ? N : I) : \
219 (a) && (b))
220
221 #define TRISTATE_OR(a,b) \
222 ((a) == I ? ((b) == Y ? Y : I) : \
223 (b) == I ? ((a) == Y ? Y : I) : \
224 (a) || (b))
225
226 #define TRISTATE_NOT(a) \
227 ((a) == I ? I : !(a))
228
229 /* 0 means no warning about that code yet, 1 means warned. */
230 static char did_you_mean_codes[NUM_RTX_CODE];
231
232 /* Recursively calculate the set of rtx codes accepted by the
233 predicate expression EXP, writing the result to CODES. */
234 static void
235 compute_predicate_codes (rtx exp, char codes[NUM_RTX_CODE])
236 {
237 char op0_codes[NUM_RTX_CODE];
238 char op1_codes[NUM_RTX_CODE];
239 char op2_codes[NUM_RTX_CODE];
240 int i;
241
242 switch (GET_CODE (exp))
243 {
244 case AND:
245 compute_predicate_codes (XEXP (exp, 0), op0_codes);
246 compute_predicate_codes (XEXP (exp, 1), op1_codes);
247 for (i = 0; i < NUM_RTX_CODE; i++)
248 codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
249 break;
250
251 case IOR:
252 compute_predicate_codes (XEXP (exp, 0), op0_codes);
253 compute_predicate_codes (XEXP (exp, 1), op1_codes);
254 for (i = 0; i < NUM_RTX_CODE; i++)
255 codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
256 break;
257 case NOT:
258 compute_predicate_codes (XEXP (exp, 0), op0_codes);
259 for (i = 0; i < NUM_RTX_CODE; i++)
260 codes[i] = TRISTATE_NOT (op0_codes[i]);
261 break;
262
263 case IF_THEN_ELSE:
264 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
265 compute_predicate_codes (XEXP (exp, 0), op0_codes);
266 compute_predicate_codes (XEXP (exp, 1), op1_codes);
267 compute_predicate_codes (XEXP (exp, 2), op2_codes);
268 for (i = 0; i < NUM_RTX_CODE; i++)
269 codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
270 TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
271 op2_codes[i]));
272 break;
273
274 case MATCH_CODE:
275 /* MATCH_CODE allows a specified list of codes. */
276 memset (codes, N, NUM_RTX_CODE);
277 {
278 const char *next_code = XSTR (exp, 0);
279 const char *code;
280
281 if (*next_code == '\0')
282 {
283 message_with_line (pattern_lineno, "empty match_code expression");
284 error_count++;
285 break;
286 }
287
288 while ((code = scan_comma_elt (&next_code)) != 0)
289 {
290 size_t n = next_code - code;
291 int found_it = 0;
292
293 for (i = 0; i < NUM_RTX_CODE; i++)
294 if (!strncmp (code, GET_RTX_NAME (i), n)
295 && GET_RTX_NAME (i)[n] == '\0')
296 {
297 codes[i] = Y;
298 found_it = 1;
299 break;
300 }
301 if (!found_it)
302 {
303 message_with_line (pattern_lineno, "match_code \"%.*s\" matches nothing",
304 (int) n, code);
305 error_count ++;
306 for (i = 0; i < NUM_RTX_CODE; i++)
307 if (!strncasecmp (code, GET_RTX_NAME (i), n)
308 && GET_RTX_NAME (i)[n] == '\0'
309 && !did_you_mean_codes[i])
310 {
311 did_you_mean_codes[i] = 1;
312 message_with_line (pattern_lineno, "(did you mean \"%s\"?)", GET_RTX_NAME (i));
313 }
314 }
315
316 }
317 }
318 break;
319
320 case MATCH_OPERAND:
321 /* MATCH_OPERAND disallows the set of codes that the named predicate
322 disallows, and is indeterminate for the codes that it does allow. */
323 {
324 struct pred_data *p = lookup_predicate (XSTR (exp, 1));
325 if (!p)
326 {
327 message_with_line (pattern_lineno,
328 "reference to unknown predicate '%s'",
329 XSTR (exp, 1));
330 error_count++;
331 break;
332 }
333 for (i = 0; i < NUM_RTX_CODE; i++)
334 codes[i] = p->codes[i] ? I : N;
335 }
336 break;
337
338
339 case MATCH_TEST:
340 /* (match_test WHATEVER) is completely indeterminate. */
341 memset (codes, I, NUM_RTX_CODE);
342 break;
343
344 default:
345 message_with_line (pattern_lineno,
346 "'%s' cannot be used in a define_predicate expression",
347 GET_RTX_NAME (GET_CODE (exp)));
348 error_count++;
349 memset (codes, I, NUM_RTX_CODE);
350 break;
351 }
352 }
353
354 #undef TRISTATE_OR
355 #undef TRISTATE_AND
356 #undef TRISTATE_NOT
357
358 /* Process a define_predicate expression: compute the set of predicates
359 that can be matched, and record this as a known predicate. */
360 static void
361 process_define_predicate (rtx desc)
362 {
363 struct pred_data *pred = xcalloc (sizeof (struct pred_data), 1);
364 char codes[NUM_RTX_CODE];
365 bool seen_one = false;
366 int i;
367
368 pred->name = XSTR (desc, 0);
369 if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
370 pred->special = 1;
371
372 compute_predicate_codes (XEXP (desc, 1), codes);
373
374 for (i = 0; i < NUM_RTX_CODE; i++)
375 if (codes[i] != N)
376 {
377 pred->codes[i] = true;
378 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
379 pred->allows_non_const = true;
380 if (i != REG
381 && i != SUBREG
382 && i != MEM
383 && i != CONCAT
384 && i != PARALLEL
385 && i != STRICT_LOW_PART)
386 pred->allows_non_lvalue = true;
387
388 if (seen_one)
389 pred->singleton = UNKNOWN;
390 else
391 {
392 pred->singleton = i;
393 seen_one = true;
394 }
395 }
396 add_predicate (pred);
397 }
398 #undef I
399 #undef N
400 #undef Y
401
402 \f
403 static struct decision *new_decision
404 (const char *, struct decision_head *);
405 static struct decision_test *new_decision_test
406 (enum decision_type, struct decision_test ***);
407 static rtx find_operand
408 (rtx, int, rtx);
409 static rtx find_matching_operand
410 (rtx, int);
411 static void validate_pattern
412 (rtx, rtx, rtx, int);
413 static struct decision *add_to_sequence
414 (rtx, struct decision_head *, const char *, enum routine_type, int);
415
416 static int maybe_both_true_2
417 (struct decision_test *, struct decision_test *);
418 static int maybe_both_true_1
419 (struct decision_test *, struct decision_test *);
420 static int maybe_both_true
421 (struct decision *, struct decision *, int);
422
423 static int nodes_identical_1
424 (struct decision_test *, struct decision_test *);
425 static int nodes_identical
426 (struct decision *, struct decision *);
427 static void merge_accept_insn
428 (struct decision *, struct decision *);
429 static void merge_trees
430 (struct decision_head *, struct decision_head *);
431
432 static void factor_tests
433 (struct decision_head *);
434 static void simplify_tests
435 (struct decision_head *);
436 static int break_out_subroutines
437 (struct decision_head *, int);
438 static void find_afterward
439 (struct decision_head *, struct decision *);
440
441 static void change_state
442 (const char *, const char *, struct decision *, const char *);
443 static void print_code
444 (enum rtx_code);
445 static void write_afterward
446 (struct decision *, struct decision *, const char *);
447 static struct decision *write_switch
448 (struct decision *, int);
449 static void write_cond
450 (struct decision_test *, int, enum routine_type);
451 static void write_action
452 (struct decision *, struct decision_test *, int, int,
453 struct decision *, enum routine_type);
454 static int is_unconditional
455 (struct decision_test *, enum routine_type);
456 static int write_node
457 (struct decision *, int, enum routine_type);
458 static void write_tree_1
459 (struct decision_head *, int, enum routine_type);
460 static void write_tree
461 (struct decision_head *, const char *, enum routine_type, int);
462 static void write_subroutine
463 (struct decision_head *, enum routine_type);
464 static void write_subroutines
465 (struct decision_head *, enum routine_type);
466 static void write_header
467 (void);
468
469 static struct decision_head make_insn_sequence
470 (rtx, enum routine_type);
471 static void process_tree
472 (struct decision_head *, enum routine_type);
473
474 static void record_insn_name
475 (int, const char *);
476
477 static void debug_decision_0
478 (struct decision *, int, int);
479 static void debug_decision_1
480 (struct decision *, int);
481 static void debug_decision_2
482 (struct decision_test *);
483 extern void debug_decision
484 (struct decision *);
485 extern void debug_decision_list
486 (struct decision *);
487 \f
488 /* Create a new node in sequence after LAST. */
489
490 static struct decision *
491 new_decision (const char *position, struct decision_head *last)
492 {
493 struct decision *new = xcalloc (1, sizeof (struct decision));
494
495 new->success = *last;
496 new->position = xstrdup (position);
497 new->number = next_number++;
498
499 last->first = last->last = new;
500 return new;
501 }
502
503 /* Create a new test and link it in at PLACE. */
504
505 static struct decision_test *
506 new_decision_test (enum decision_type type, struct decision_test ***pplace)
507 {
508 struct decision_test **place = *pplace;
509 struct decision_test *test;
510
511 test = xmalloc (sizeof (*test));
512 test->next = *place;
513 test->type = type;
514 *place = test;
515
516 place = &test->next;
517 *pplace = place;
518
519 return test;
520 }
521
522 /* Search for and return operand N, stop when reaching node STOP. */
523
524 static rtx
525 find_operand (rtx pattern, int n, rtx stop)
526 {
527 const char *fmt;
528 RTX_CODE code;
529 int i, j, len;
530 rtx r;
531
532 if (pattern == stop)
533 return stop;
534
535 code = GET_CODE (pattern);
536 if ((code == MATCH_SCRATCH
537 || code == MATCH_OPERAND
538 || code == MATCH_OPERATOR
539 || code == MATCH_PARALLEL)
540 && XINT (pattern, 0) == n)
541 return pattern;
542
543 fmt = GET_RTX_FORMAT (code);
544 len = GET_RTX_LENGTH (code);
545 for (i = 0; i < len; i++)
546 {
547 switch (fmt[i])
548 {
549 case 'e': case 'u':
550 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
551 return r;
552 break;
553
554 case 'V':
555 if (! XVEC (pattern, i))
556 break;
557 /* Fall through. */
558
559 case 'E':
560 for (j = 0; j < XVECLEN (pattern, i); j++)
561 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
562 != NULL_RTX)
563 return r;
564 break;
565
566 case 'i': case 'w': case '0': case 's':
567 break;
568
569 default:
570 gcc_unreachable ();
571 }
572 }
573
574 return NULL;
575 }
576
577 /* Search for and return operand M, such that it has a matching
578 constraint for operand N. */
579
580 static rtx
581 find_matching_operand (rtx pattern, int n)
582 {
583 const char *fmt;
584 RTX_CODE code;
585 int i, j, len;
586 rtx r;
587
588 code = GET_CODE (pattern);
589 if (code == MATCH_OPERAND
590 && (XSTR (pattern, 2)[0] == '0' + n
591 || (XSTR (pattern, 2)[0] == '%'
592 && XSTR (pattern, 2)[1] == '0' + n)))
593 return pattern;
594
595 fmt = GET_RTX_FORMAT (code);
596 len = GET_RTX_LENGTH (code);
597 for (i = 0; i < len; i++)
598 {
599 switch (fmt[i])
600 {
601 case 'e': case 'u':
602 if ((r = find_matching_operand (XEXP (pattern, i), n)))
603 return r;
604 break;
605
606 case 'V':
607 if (! XVEC (pattern, i))
608 break;
609 /* Fall through. */
610
611 case 'E':
612 for (j = 0; j < XVECLEN (pattern, i); j++)
613 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
614 return r;
615 break;
616
617 case 'i': case 'w': case '0': case 's':
618 break;
619
620 default:
621 gcc_unreachable ();
622 }
623 }
624
625 return NULL;
626 }
627
628
629 /* Check for various errors in patterns. SET is nonnull for a destination,
630 and is the complete set pattern. SET_CODE is '=' for normal sets, and
631 '+' within a context that requires in-out constraints. */
632
633 static void
634 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
635 {
636 const char *fmt;
637 RTX_CODE code;
638 size_t i, len;
639 int j;
640
641 code = GET_CODE (pattern);
642 switch (code)
643 {
644 case MATCH_SCRATCH:
645 return;
646 case MATCH_DUP:
647 case MATCH_OP_DUP:
648 case MATCH_PAR_DUP:
649 if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
650 {
651 message_with_line (pattern_lineno,
652 "operand %i duplicated before defined",
653 XINT (pattern, 0));
654 error_count++;
655 }
656 break;
657 case MATCH_OPERAND:
658 case MATCH_OPERATOR:
659 {
660 const char *pred_name = XSTR (pattern, 1);
661 const struct pred_data *pred;
662 const char *c_test;
663
664 if (GET_CODE (insn) == DEFINE_INSN)
665 c_test = XSTR (insn, 2);
666 else
667 c_test = XSTR (insn, 1);
668
669 if (pred_name[0] != 0)
670 {
671 pred = lookup_predicate (pred_name);
672 if (!pred)
673 message_with_line (pattern_lineno,
674 "warning: unknown predicate '%s'",
675 pred_name);
676 }
677 else
678 pred = 0;
679
680 if (code == MATCH_OPERAND)
681 {
682 const char constraints0 = XSTR (pattern, 2)[0];
683
684 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
685 don't use the MATCH_OPERAND constraint, only the predicate.
686 This is confusing to folks doing new ports, so help them
687 not make the mistake. */
688 if (GET_CODE (insn) == DEFINE_EXPAND
689 || GET_CODE (insn) == DEFINE_SPLIT
690 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
691 {
692 if (constraints0)
693 message_with_line (pattern_lineno,
694 "warning: constraints not supported in %s",
695 rtx_name[GET_CODE (insn)]);
696 }
697
698 /* A MATCH_OPERAND that is a SET should have an output reload. */
699 else if (set && constraints0)
700 {
701 if (set_code == '+')
702 {
703 if (constraints0 == '+')
704 ;
705 /* If we've only got an output reload for this operand,
706 we'd better have a matching input operand. */
707 else if (constraints0 == '='
708 && find_matching_operand (insn, XINT (pattern, 0)))
709 ;
710 else
711 {
712 message_with_line (pattern_lineno,
713 "operand %d missing in-out reload",
714 XINT (pattern, 0));
715 error_count++;
716 }
717 }
718 else if (constraints0 != '=' && constraints0 != '+')
719 {
720 message_with_line (pattern_lineno,
721 "operand %d missing output reload",
722 XINT (pattern, 0));
723 error_count++;
724 }
725 }
726 }
727
728 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
729 while not likely to occur at runtime, results in less efficient
730 code from insn-recog.c. */
731 if (set && pred && pred->allows_non_lvalue)
732 message_with_line (pattern_lineno,
733 "warning: destination operand %d "
734 "allows non-lvalue",
735 XINT (pattern, 0));
736
737 /* A modeless MATCH_OPERAND can be handy when we can check for
738 multiple modes in the c_test. In most other cases, it is a
739 mistake. Only DEFINE_INSN is eligible, since SPLIT and
740 PEEP2 can FAIL within the output pattern. Exclude special
741 predicates, which check the mode themselves. Also exclude
742 predicates that allow only constants. Exclude the SET_DEST
743 of a call instruction, as that is a common idiom. */
744
745 if (GET_MODE (pattern) == VOIDmode
746 && code == MATCH_OPERAND
747 && GET_CODE (insn) == DEFINE_INSN
748 && pred
749 && !pred->special
750 && pred->allows_non_const
751 && strstr (c_test, "operands") == NULL
752 && ! (set
753 && GET_CODE (set) == SET
754 && GET_CODE (SET_SRC (set)) == CALL))
755 message_with_line (pattern_lineno,
756 "warning: operand %d missing mode?",
757 XINT (pattern, 0));
758 return;
759 }
760
761 case SET:
762 {
763 enum machine_mode dmode, smode;
764 rtx dest, src;
765
766 dest = SET_DEST (pattern);
767 src = SET_SRC (pattern);
768
769 /* STRICT_LOW_PART is a wrapper. Its argument is the real
770 destination, and it's mode should match the source. */
771 if (GET_CODE (dest) == STRICT_LOW_PART)
772 dest = XEXP (dest, 0);
773
774 /* Find the referent for a DUP. */
775
776 if (GET_CODE (dest) == MATCH_DUP
777 || GET_CODE (dest) == MATCH_OP_DUP
778 || GET_CODE (dest) == MATCH_PAR_DUP)
779 dest = find_operand (insn, XINT (dest, 0), NULL);
780
781 if (GET_CODE (src) == MATCH_DUP
782 || GET_CODE (src) == MATCH_OP_DUP
783 || GET_CODE (src) == MATCH_PAR_DUP)
784 src = find_operand (insn, XINT (src, 0), NULL);
785
786 dmode = GET_MODE (dest);
787 smode = GET_MODE (src);
788
789 /* The mode of an ADDRESS_OPERAND is the mode of the memory
790 reference, not the mode of the address. */
791 if (GET_CODE (src) == MATCH_OPERAND
792 && ! strcmp (XSTR (src, 1), "address_operand"))
793 ;
794
795 /* The operands of a SET must have the same mode unless one
796 is VOIDmode. */
797 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
798 {
799 message_with_line (pattern_lineno,
800 "mode mismatch in set: %smode vs %smode",
801 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
802 error_count++;
803 }
804
805 /* If only one of the operands is VOIDmode, and PC or CC0 is
806 not involved, it's probably a mistake. */
807 else if (dmode != smode
808 && GET_CODE (dest) != PC
809 && GET_CODE (dest) != CC0
810 && GET_CODE (src) != PC
811 && GET_CODE (src) != CC0
812 && GET_CODE (src) != CONST_INT)
813 {
814 const char *which;
815 which = (dmode == VOIDmode ? "destination" : "source");
816 message_with_line (pattern_lineno,
817 "warning: %s missing a mode?", which);
818 }
819
820 if (dest != SET_DEST (pattern))
821 validate_pattern (dest, insn, pattern, '=');
822 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
823 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
824 return;
825 }
826
827 case CLOBBER:
828 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
829 return;
830
831 case ZERO_EXTRACT:
832 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
833 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
834 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
835 return;
836
837 case STRICT_LOW_PART:
838 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
839 return;
840
841 case LABEL_REF:
842 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
843 {
844 message_with_line (pattern_lineno,
845 "operand to label_ref %smode not VOIDmode",
846 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
847 error_count++;
848 }
849 break;
850
851 default:
852 break;
853 }
854
855 fmt = GET_RTX_FORMAT (code);
856 len = GET_RTX_LENGTH (code);
857 for (i = 0; i < len; i++)
858 {
859 switch (fmt[i])
860 {
861 case 'e': case 'u':
862 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
863 break;
864
865 case 'E':
866 for (j = 0; j < XVECLEN (pattern, i); j++)
867 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
868 break;
869
870 case 'i': case 'w': case '0': case 's':
871 break;
872
873 default:
874 gcc_unreachable ();
875 }
876 }
877 }
878
879 /* Create a chain of nodes to verify that an rtl expression matches
880 PATTERN.
881
882 LAST is a pointer to the listhead in the previous node in the chain (or
883 in the calling function, for the first node).
884
885 POSITION is the string representing the current position in the insn.
886
887 INSN_TYPE is the type of insn for which we are emitting code.
888
889 A pointer to the final node in the chain is returned. */
890
891 static struct decision *
892 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
893 enum routine_type insn_type, int top)
894 {
895 RTX_CODE code;
896 struct decision *this, *sub;
897 struct decision_test *test;
898 struct decision_test **place;
899 char *subpos;
900 size_t i;
901 const char *fmt;
902 int depth = strlen (position);
903 int len;
904 enum machine_mode mode;
905
906 if (depth > max_depth)
907 max_depth = depth;
908
909 subpos = xmalloc (depth + 2);
910 strcpy (subpos, position);
911 subpos[depth + 1] = 0;
912
913 sub = this = new_decision (position, last);
914 place = &this->tests;
915
916 restart:
917 mode = GET_MODE (pattern);
918 code = GET_CODE (pattern);
919
920 switch (code)
921 {
922 case PARALLEL:
923 /* Toplevel peephole pattern. */
924 if (insn_type == PEEPHOLE2 && top)
925 {
926 /* We don't need the node we just created -- unlink it. */
927 last->first = last->last = NULL;
928
929 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
930 {
931 /* Which insn we're looking at is represented by A-Z. We don't
932 ever use 'A', however; it is always implied. */
933
934 subpos[depth] = (i > 0 ? 'A' + i : 0);
935 sub = add_to_sequence (XVECEXP (pattern, 0, i),
936 last, subpos, insn_type, 0);
937 last = &sub->success;
938 }
939 goto ret;
940 }
941
942 /* Else nothing special. */
943 break;
944
945 case MATCH_PARALLEL:
946 /* The explicit patterns within a match_parallel enforce a minimum
947 length on the vector. The match_parallel predicate may allow
948 for more elements. We do need to check for this minimum here
949 or the code generated to match the internals may reference data
950 beyond the end of the vector. */
951 test = new_decision_test (DT_veclen_ge, &place);
952 test->u.veclen = XVECLEN (pattern, 2);
953 /* Fall through. */
954
955 case MATCH_OPERAND:
956 case MATCH_SCRATCH:
957 case MATCH_OPERATOR:
958 {
959 RTX_CODE was_code = code;
960 const char *pred_name;
961 bool allows_const_int = true;
962
963 if (code == MATCH_SCRATCH)
964 {
965 pred_name = "scratch_operand";
966 code = UNKNOWN;
967 }
968 else
969 {
970 pred_name = XSTR (pattern, 1);
971 if (code == MATCH_PARALLEL)
972 code = PARALLEL;
973 else
974 code = UNKNOWN;
975 }
976
977 if (pred_name[0] != 0)
978 {
979 const struct pred_data *pred;
980
981 test = new_decision_test (DT_pred, &place);
982 test->u.pred.name = pred_name;
983 test->u.pred.mode = mode;
984
985 /* See if we know about this predicate.
986 If we do, remember it for use below.
987
988 We can optimize the generated code a little if either
989 (a) the predicate only accepts one code, or (b) the
990 predicate does not allow CONST_INT, in which case it
991 can match only if the modes match. */
992 pred = lookup_predicate (pred_name);
993 if (pred)
994 {
995 test->u.pred.data = pred;
996 allows_const_int = pred->codes[CONST_INT];
997 if (was_code == MATCH_PARALLEL
998 && pred->singleton != PARALLEL)
999 message_with_line (pattern_lineno,
1000 "predicate '%s' used in match_parallel "
1001 "does not allow only PARALLEL", pred->name);
1002 else
1003 code = pred->singleton;
1004 }
1005 else
1006 message_with_line (pattern_lineno,
1007 "warning: unknown predicate '%s' in '%s' expression",
1008 pred_name, GET_RTX_NAME (was_code));
1009 }
1010
1011 /* Can't enforce a mode if we allow const_int. */
1012 if (allows_const_int)
1013 mode = VOIDmode;
1014
1015 /* Accept the operand, i.e. record it in `operands'. */
1016 test = new_decision_test (DT_accept_op, &place);
1017 test->u.opno = XINT (pattern, 0);
1018
1019 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
1020 {
1021 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
1022 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
1023 {
1024 subpos[depth] = i + base;
1025 sub = add_to_sequence (XVECEXP (pattern, 2, i),
1026 &sub->success, subpos, insn_type, 0);
1027 }
1028 }
1029 goto fini;
1030 }
1031
1032 case MATCH_OP_DUP:
1033 code = UNKNOWN;
1034
1035 test = new_decision_test (DT_dup, &place);
1036 test->u.dup = XINT (pattern, 0);
1037
1038 test = new_decision_test (DT_accept_op, &place);
1039 test->u.opno = XINT (pattern, 0);
1040
1041 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
1042 {
1043 subpos[depth] = i + '0';
1044 sub = add_to_sequence (XVECEXP (pattern, 1, i),
1045 &sub->success, subpos, insn_type, 0);
1046 }
1047 goto fini;
1048
1049 case MATCH_DUP:
1050 case MATCH_PAR_DUP:
1051 code = UNKNOWN;
1052
1053 test = new_decision_test (DT_dup, &place);
1054 test->u.dup = XINT (pattern, 0);
1055 goto fini;
1056
1057 case ADDRESS:
1058 pattern = XEXP (pattern, 0);
1059 goto restart;
1060
1061 default:
1062 break;
1063 }
1064
1065 fmt = GET_RTX_FORMAT (code);
1066 len = GET_RTX_LENGTH (code);
1067
1068 /* Do tests against the current node first. */
1069 for (i = 0; i < (size_t) len; i++)
1070 {
1071 if (fmt[i] == 'i')
1072 {
1073 gcc_assert (i < 2);
1074
1075 if (!i)
1076 {
1077 test = new_decision_test (DT_elt_zero_int, &place);
1078 test->u.intval = XINT (pattern, i);
1079 }
1080 else
1081 {
1082 test = new_decision_test (DT_elt_one_int, &place);
1083 test->u.intval = XINT (pattern, i);
1084 }
1085 }
1086 else if (fmt[i] == 'w')
1087 {
1088 /* If this value actually fits in an int, we can use a switch
1089 statement here, so indicate that. */
1090 enum decision_type type
1091 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
1092 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
1093
1094 gcc_assert (!i);
1095
1096 test = new_decision_test (type, &place);
1097 test->u.intval = XWINT (pattern, i);
1098 }
1099 else if (fmt[i] == 'E')
1100 {
1101 gcc_assert (!i);
1102
1103 test = new_decision_test (DT_veclen, &place);
1104 test->u.veclen = XVECLEN (pattern, i);
1105 }
1106 }
1107
1108 /* Now test our sub-patterns. */
1109 for (i = 0; i < (size_t) len; i++)
1110 {
1111 switch (fmt[i])
1112 {
1113 case 'e': case 'u':
1114 subpos[depth] = '0' + i;
1115 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1116 subpos, insn_type, 0);
1117 break;
1118
1119 case 'E':
1120 {
1121 int j;
1122 for (j = 0; j < XVECLEN (pattern, i); j++)
1123 {
1124 subpos[depth] = 'a' + j;
1125 sub = add_to_sequence (XVECEXP (pattern, i, j),
1126 &sub->success, subpos, insn_type, 0);
1127 }
1128 break;
1129 }
1130
1131 case 'i': case 'w':
1132 /* Handled above. */
1133 break;
1134 case '0':
1135 break;
1136
1137 default:
1138 gcc_unreachable ();
1139 }
1140 }
1141
1142 fini:
1143 /* Insert nodes testing mode and code, if they're still relevant,
1144 before any of the nodes we may have added above. */
1145 if (code != UNKNOWN)
1146 {
1147 place = &this->tests;
1148 test = new_decision_test (DT_code, &place);
1149 test->u.code = code;
1150 }
1151
1152 if (mode != VOIDmode)
1153 {
1154 place = &this->tests;
1155 test = new_decision_test (DT_mode, &place);
1156 test->u.mode = mode;
1157 }
1158
1159 /* If we didn't insert any tests or accept nodes, hork. */
1160 gcc_assert (this->tests);
1161
1162 ret:
1163 free (subpos);
1164 return sub;
1165 }
1166 \f
1167 /* A subroutine of maybe_both_true; examines only one test.
1168 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1169
1170 static int
1171 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1172 {
1173 if (d1->type == d2->type)
1174 {
1175 switch (d1->type)
1176 {
1177 case DT_mode:
1178 return d1->u.mode == d2->u.mode;
1179
1180 case DT_code:
1181 return d1->u.code == d2->u.code;
1182
1183 case DT_veclen:
1184 return d1->u.veclen == d2->u.veclen;
1185
1186 case DT_elt_zero_int:
1187 case DT_elt_one_int:
1188 case DT_elt_zero_wide:
1189 case DT_elt_zero_wide_safe:
1190 return d1->u.intval == d2->u.intval;
1191
1192 default:
1193 break;
1194 }
1195 }
1196
1197 /* If either has a predicate that we know something about, set
1198 things up so that D1 is the one that always has a known
1199 predicate. Then see if they have any codes in common. */
1200
1201 if (d1->type == DT_pred || d2->type == DT_pred)
1202 {
1203 if (d2->type == DT_pred)
1204 {
1205 struct decision_test *tmp;
1206 tmp = d1, d1 = d2, d2 = tmp;
1207 }
1208
1209 /* If D2 tests a mode, see if it matches D1. */
1210 if (d1->u.pred.mode != VOIDmode)
1211 {
1212 if (d2->type == DT_mode)
1213 {
1214 if (d1->u.pred.mode != d2->u.mode
1215 /* The mode of an address_operand predicate is the
1216 mode of the memory, not the operand. It can only
1217 be used for testing the predicate, so we must
1218 ignore it here. */
1219 && strcmp (d1->u.pred.name, "address_operand") != 0)
1220 return 0;
1221 }
1222 /* Don't check two predicate modes here, because if both predicates
1223 accept CONST_INT, then both can still be true even if the modes
1224 are different. If they don't accept CONST_INT, there will be a
1225 separate DT_mode that will make maybe_both_true_1 return 0. */
1226 }
1227
1228 if (d1->u.pred.data)
1229 {
1230 /* If D2 tests a code, see if it is in the list of valid
1231 codes for D1's predicate. */
1232 if (d2->type == DT_code)
1233 {
1234 if (!d1->u.pred.data->codes[d2->u.code])
1235 return 0;
1236 }
1237
1238 /* Otherwise see if the predicates have any codes in common. */
1239 else if (d2->type == DT_pred && d2->u.pred.data)
1240 {
1241 bool common = false;
1242 enum rtx_code c;
1243
1244 for (c = 0; c < NUM_RTX_CODE; c++)
1245 if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
1246 {
1247 common = true;
1248 break;
1249 }
1250
1251 if (!common)
1252 return 0;
1253 }
1254 }
1255 }
1256
1257 /* Tests vs veclen may be known when strict equality is involved. */
1258 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1259 return d1->u.veclen >= d2->u.veclen;
1260 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1261 return d2->u.veclen >= d1->u.veclen;
1262
1263 return -1;
1264 }
1265
1266 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1267 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1268
1269 static int
1270 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1271 {
1272 struct decision_test *t1, *t2;
1273
1274 /* A match_operand with no predicate can match anything. Recognize
1275 this by the existence of a lone DT_accept_op test. */
1276 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1277 return 1;
1278
1279 /* Eliminate pairs of tests while they can exactly match. */
1280 while (d1 && d2 && d1->type == d2->type)
1281 {
1282 if (maybe_both_true_2 (d1, d2) == 0)
1283 return 0;
1284 d1 = d1->next, d2 = d2->next;
1285 }
1286
1287 /* After that, consider all pairs. */
1288 for (t1 = d1; t1 ; t1 = t1->next)
1289 for (t2 = d2; t2 ; t2 = t2->next)
1290 if (maybe_both_true_2 (t1, t2) == 0)
1291 return 0;
1292
1293 return -1;
1294 }
1295
1296 /* Return 0 if we can prove that there is no RTL that can match both
1297 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1298 can match both or just that we couldn't prove there wasn't such an RTL).
1299
1300 TOPLEVEL is nonzero if we are to only look at the top level and not
1301 recursively descend. */
1302
1303 static int
1304 maybe_both_true (struct decision *d1, struct decision *d2,
1305 int toplevel)
1306 {
1307 struct decision *p1, *p2;
1308 int cmp;
1309
1310 /* Don't compare strings on the different positions in insn. Doing so
1311 is incorrect and results in false matches from constructs like
1312
1313 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1314 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1315 vs
1316 [(set (match_operand:HI "register_operand" "r")
1317 (match_operand:HI "register_operand" "r"))]
1318
1319 If we are presented with such, we are recursing through the remainder
1320 of a node's success nodes (from the loop at the end of this function).
1321 Skip forward until we come to a position that matches.
1322
1323 Due to the way position strings are constructed, we know that iterating
1324 forward from the lexically lower position (e.g. "00") will run into
1325 the lexically higher position (e.g. "1") and not the other way around.
1326 This saves a bit of effort. */
1327
1328 cmp = strcmp (d1->position, d2->position);
1329 if (cmp != 0)
1330 {
1331 gcc_assert (!toplevel);
1332
1333 /* If the d2->position was lexically lower, swap. */
1334 if (cmp > 0)
1335 p1 = d1, d1 = d2, d2 = p1;
1336
1337 if (d1->success.first == 0)
1338 return 1;
1339 for (p1 = d1->success.first; p1; p1 = p1->next)
1340 if (maybe_both_true (p1, d2, 0))
1341 return 1;
1342
1343 return 0;
1344 }
1345
1346 /* Test the current level. */
1347 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1348 if (cmp >= 0)
1349 return cmp;
1350
1351 /* We can't prove that D1 and D2 cannot both be true. If we are only
1352 to check the top level, return 1. Otherwise, see if we can prove
1353 that all choices in both successors are mutually exclusive. If
1354 either does not have any successors, we can't prove they can't both
1355 be true. */
1356
1357 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1358 return 1;
1359
1360 for (p1 = d1->success.first; p1; p1 = p1->next)
1361 for (p2 = d2->success.first; p2; p2 = p2->next)
1362 if (maybe_both_true (p1, p2, 0))
1363 return 1;
1364
1365 return 0;
1366 }
1367
1368 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1369
1370 static int
1371 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1372 {
1373 switch (d1->type)
1374 {
1375 case DT_mode:
1376 return d1->u.mode == d2->u.mode;
1377
1378 case DT_code:
1379 return d1->u.code == d2->u.code;
1380
1381 case DT_pred:
1382 return (d1->u.pred.mode == d2->u.pred.mode
1383 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1384
1385 case DT_c_test:
1386 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1387
1388 case DT_veclen:
1389 case DT_veclen_ge:
1390 return d1->u.veclen == d2->u.veclen;
1391
1392 case DT_dup:
1393 return d1->u.dup == d2->u.dup;
1394
1395 case DT_elt_zero_int:
1396 case DT_elt_one_int:
1397 case DT_elt_zero_wide:
1398 case DT_elt_zero_wide_safe:
1399 return d1->u.intval == d2->u.intval;
1400
1401 case DT_accept_op:
1402 return d1->u.opno == d2->u.opno;
1403
1404 case DT_accept_insn:
1405 /* Differences will be handled in merge_accept_insn. */
1406 return 1;
1407
1408 default:
1409 gcc_unreachable ();
1410 }
1411 }
1412
1413 /* True iff the two nodes are identical (on one level only). Due
1414 to the way these lists are constructed, we shouldn't have to
1415 consider different orderings on the tests. */
1416
1417 static int
1418 nodes_identical (struct decision *d1, struct decision *d2)
1419 {
1420 struct decision_test *t1, *t2;
1421
1422 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1423 {
1424 if (t1->type != t2->type)
1425 return 0;
1426 if (! nodes_identical_1 (t1, t2))
1427 return 0;
1428 }
1429
1430 /* For success, they should now both be null. */
1431 if (t1 != t2)
1432 return 0;
1433
1434 /* Check that their subnodes are at the same position, as any one set
1435 of sibling decisions must be at the same position. Allowing this
1436 requires complications to find_afterward and when change_state is
1437 invoked. */
1438 if (d1->success.first
1439 && d2->success.first
1440 && strcmp (d1->success.first->position, d2->success.first->position))
1441 return 0;
1442
1443 return 1;
1444 }
1445
1446 /* A subroutine of merge_trees; given two nodes that have been declared
1447 identical, cope with two insn accept states. If they differ in the
1448 number of clobbers, then the conflict was created by make_insn_sequence
1449 and we can drop the with-clobbers version on the floor. If both
1450 nodes have no additional clobbers, we have found an ambiguity in the
1451 source machine description. */
1452
1453 static void
1454 merge_accept_insn (struct decision *oldd, struct decision *addd)
1455 {
1456 struct decision_test *old, *add;
1457
1458 for (old = oldd->tests; old; old = old->next)
1459 if (old->type == DT_accept_insn)
1460 break;
1461 if (old == NULL)
1462 return;
1463
1464 for (add = addd->tests; add; add = add->next)
1465 if (add->type == DT_accept_insn)
1466 break;
1467 if (add == NULL)
1468 return;
1469
1470 /* If one node is for a normal insn and the second is for the base
1471 insn with clobbers stripped off, the second node should be ignored. */
1472
1473 if (old->u.insn.num_clobbers_to_add == 0
1474 && add->u.insn.num_clobbers_to_add > 0)
1475 {
1476 /* Nothing to do here. */
1477 }
1478 else if (old->u.insn.num_clobbers_to_add > 0
1479 && add->u.insn.num_clobbers_to_add == 0)
1480 {
1481 /* In this case, replace OLD with ADD. */
1482 old->u.insn = add->u.insn;
1483 }
1484 else
1485 {
1486 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1487 get_insn_name (add->u.insn.code_number),
1488 get_insn_name (old->u.insn.code_number));
1489 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1490 get_insn_name (old->u.insn.code_number));
1491 error_count++;
1492 }
1493 }
1494
1495 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1496
1497 static void
1498 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1499 {
1500 struct decision *next, *add;
1501
1502 if (addh->first == 0)
1503 return;
1504 if (oldh->first == 0)
1505 {
1506 *oldh = *addh;
1507 return;
1508 }
1509
1510 /* Trying to merge bits at different positions isn't possible. */
1511 gcc_assert (!strcmp (oldh->first->position, addh->first->position));
1512
1513 for (add = addh->first; add ; add = next)
1514 {
1515 struct decision *old, *insert_before = NULL;
1516
1517 next = add->next;
1518
1519 /* The semantics of pattern matching state that the tests are
1520 done in the order given in the MD file so that if an insn
1521 matches two patterns, the first one will be used. However,
1522 in practice, most, if not all, patterns are unambiguous so
1523 that their order is independent. In that case, we can merge
1524 identical tests and group all similar modes and codes together.
1525
1526 Scan starting from the end of OLDH until we reach a point
1527 where we reach the head of the list or where we pass a
1528 pattern that could also be true if NEW is true. If we find
1529 an identical pattern, we can merge them. Also, record the
1530 last node that tests the same code and mode and the last one
1531 that tests just the same mode.
1532
1533 If we have no match, place NEW after the closest match we found. */
1534
1535 for (old = oldh->last; old; old = old->prev)
1536 {
1537 if (nodes_identical (old, add))
1538 {
1539 merge_accept_insn (old, add);
1540 merge_trees (&old->success, &add->success);
1541 goto merged_nodes;
1542 }
1543
1544 if (maybe_both_true (old, add, 0))
1545 break;
1546
1547 /* Insert the nodes in DT test type order, which is roughly
1548 how expensive/important the test is. Given that the tests
1549 are also ordered within the list, examining the first is
1550 sufficient. */
1551 if ((int) add->tests->type < (int) old->tests->type)
1552 insert_before = old;
1553 }
1554
1555 if (insert_before == NULL)
1556 {
1557 add->next = NULL;
1558 add->prev = oldh->last;
1559 oldh->last->next = add;
1560 oldh->last = add;
1561 }
1562 else
1563 {
1564 if ((add->prev = insert_before->prev) != NULL)
1565 add->prev->next = add;
1566 else
1567 oldh->first = add;
1568 add->next = insert_before;
1569 insert_before->prev = add;
1570 }
1571
1572 merged_nodes:;
1573 }
1574 }
1575 \f
1576 /* Walk the tree looking for sub-nodes that perform common tests.
1577 Factor out the common test into a new node. This enables us
1578 (depending on the test type) to emit switch statements later. */
1579
1580 static void
1581 factor_tests (struct decision_head *head)
1582 {
1583 struct decision *first, *next;
1584
1585 for (first = head->first; first && first->next; first = next)
1586 {
1587 enum decision_type type;
1588 struct decision *new, *old_last;
1589
1590 type = first->tests->type;
1591 next = first->next;
1592
1593 /* Want at least two compatible sequential nodes. */
1594 if (next->tests->type != type)
1595 continue;
1596
1597 /* Don't want all node types, just those we can turn into
1598 switch statements. */
1599 if (type != DT_mode
1600 && type != DT_code
1601 && type != DT_veclen
1602 && type != DT_elt_zero_int
1603 && type != DT_elt_one_int
1604 && type != DT_elt_zero_wide_safe)
1605 continue;
1606
1607 /* If we'd been performing more than one test, create a new node
1608 below our first test. */
1609 if (first->tests->next != NULL)
1610 {
1611 new = new_decision (first->position, &first->success);
1612 new->tests = first->tests->next;
1613 first->tests->next = NULL;
1614 }
1615
1616 /* Crop the node tree off after our first test. */
1617 first->next = NULL;
1618 old_last = head->last;
1619 head->last = first;
1620
1621 /* For each compatible test, adjust to perform only one test in
1622 the top level node, then merge the node back into the tree. */
1623 do
1624 {
1625 struct decision_head h;
1626
1627 if (next->tests->next != NULL)
1628 {
1629 new = new_decision (next->position, &next->success);
1630 new->tests = next->tests->next;
1631 next->tests->next = NULL;
1632 }
1633 new = next;
1634 next = next->next;
1635 new->next = NULL;
1636 h.first = h.last = new;
1637
1638 merge_trees (head, &h);
1639 }
1640 while (next && next->tests->type == type);
1641
1642 /* After we run out of compatible tests, graft the remaining nodes
1643 back onto the tree. */
1644 if (next)
1645 {
1646 next->prev = head->last;
1647 head->last->next = next;
1648 head->last = old_last;
1649 }
1650 }
1651
1652 /* Recurse. */
1653 for (first = head->first; first; first = first->next)
1654 factor_tests (&first->success);
1655 }
1656
1657 /* After factoring, try to simplify the tests on any one node.
1658 Tests that are useful for switch statements are recognizable
1659 by having only a single test on a node -- we'll be manipulating
1660 nodes with multiple tests:
1661
1662 If we have mode tests or code tests that are redundant with
1663 predicates, remove them. */
1664
1665 static void
1666 simplify_tests (struct decision_head *head)
1667 {
1668 struct decision *tree;
1669
1670 for (tree = head->first; tree; tree = tree->next)
1671 {
1672 struct decision_test *a, *b;
1673
1674 a = tree->tests;
1675 b = a->next;
1676 if (b == NULL)
1677 continue;
1678
1679 /* Find a predicate node. */
1680 while (b && b->type != DT_pred)
1681 b = b->next;
1682 if (b)
1683 {
1684 /* Due to how these tests are constructed, we don't even need
1685 to check that the mode and code are compatible -- they were
1686 generated from the predicate in the first place. */
1687 while (a->type == DT_mode || a->type == DT_code)
1688 a = a->next;
1689 tree->tests = a;
1690 }
1691 }
1692
1693 /* Recurse. */
1694 for (tree = head->first; tree; tree = tree->next)
1695 simplify_tests (&tree->success);
1696 }
1697
1698 /* Count the number of subnodes of HEAD. If the number is high enough,
1699 make the first node in HEAD start a separate subroutine in the C code
1700 that is generated. */
1701
1702 static int
1703 break_out_subroutines (struct decision_head *head, int initial)
1704 {
1705 int size = 0;
1706 struct decision *sub;
1707
1708 for (sub = head->first; sub; sub = sub->next)
1709 size += 1 + break_out_subroutines (&sub->success, 0);
1710
1711 if (size > SUBROUTINE_THRESHOLD && ! initial)
1712 {
1713 head->first->subroutine_number = ++next_subroutine_number;
1714 size = 1;
1715 }
1716 return size;
1717 }
1718
1719 /* For each node p, find the next alternative that might be true
1720 when p is true. */
1721
1722 static void
1723 find_afterward (struct decision_head *head, struct decision *real_afterward)
1724 {
1725 struct decision *p, *q, *afterward;
1726
1727 /* We can't propagate alternatives across subroutine boundaries.
1728 This is not incorrect, merely a minor optimization loss. */
1729
1730 p = head->first;
1731 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1732
1733 for ( ; p ; p = p->next)
1734 {
1735 /* Find the next node that might be true if this one fails. */
1736 for (q = p->next; q ; q = q->next)
1737 if (maybe_both_true (p, q, 1))
1738 break;
1739
1740 /* If we reached the end of the list without finding one,
1741 use the incoming afterward position. */
1742 if (!q)
1743 q = afterward;
1744 p->afterward = q;
1745 if (q)
1746 q->need_label = 1;
1747 }
1748
1749 /* Recurse. */
1750 for (p = head->first; p ; p = p->next)
1751 if (p->success.first)
1752 find_afterward (&p->success, p->afterward);
1753
1754 /* When we are generating a subroutine, record the real afterward
1755 position in the first node where write_tree can find it, and we
1756 can do the right thing at the subroutine call site. */
1757 p = head->first;
1758 if (p->subroutine_number > 0)
1759 p->afterward = real_afterward;
1760 }
1761 \f
1762 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1763 actions are necessary to move to NEWPOS. If we fail to move to the
1764 new state, branch to node AFTERWARD if nonzero, otherwise return.
1765
1766 Failure to move to the new state can only occur if we are trying to
1767 match multiple insns and we try to step past the end of the stream. */
1768
1769 static void
1770 change_state (const char *oldpos, const char *newpos,
1771 struct decision *afterward, const char *indent)
1772 {
1773 int odepth = strlen (oldpos);
1774 int ndepth = strlen (newpos);
1775 int depth;
1776 int old_has_insn, new_has_insn;
1777
1778 /* Pop up as many levels as necessary. */
1779 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1780 continue;
1781
1782 /* Hunt for the last [A-Z] in both strings. */
1783 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1784 if (ISUPPER (oldpos[old_has_insn]))
1785 break;
1786 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1787 if (ISUPPER (newpos[new_has_insn]))
1788 break;
1789
1790 /* Go down to desired level. */
1791 while (depth < ndepth)
1792 {
1793 /* It's a different insn from the first one. */
1794 if (ISUPPER (newpos[depth]))
1795 {
1796 /* We can only fail if we're moving down the tree. */
1797 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1798 {
1799 printf ("%stem = peep2_next_insn (%d);\n",
1800 indent, newpos[depth] - 'A');
1801 }
1802 else
1803 {
1804 printf ("%stem = peep2_next_insn (%d);\n",
1805 indent, newpos[depth] - 'A');
1806 printf ("%sif (tem == NULL_RTX)\n", indent);
1807 if (afterward)
1808 printf ("%s goto L%d;\n", indent, afterward->number);
1809 else
1810 printf ("%s goto ret0;\n", indent);
1811 }
1812 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1813 }
1814 else if (ISLOWER (newpos[depth]))
1815 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1816 indent, depth + 1, depth, newpos[depth] - 'a');
1817 else
1818 printf ("%sx%d = XEXP (x%d, %c);\n",
1819 indent, depth + 1, depth, newpos[depth]);
1820 ++depth;
1821 }
1822 }
1823 \f
1824 /* Print the enumerator constant for CODE -- the upcase version of
1825 the name. */
1826
1827 static void
1828 print_code (enum rtx_code code)
1829 {
1830 const char *p;
1831 for (p = GET_RTX_NAME (code); *p; p++)
1832 putchar (TOUPPER (*p));
1833 }
1834
1835 /* Emit code to cross an afterward link -- change state and branch. */
1836
1837 static void
1838 write_afterward (struct decision *start, struct decision *afterward,
1839 const char *indent)
1840 {
1841 if (!afterward || start->subroutine_number > 0)
1842 printf("%sgoto ret0;\n", indent);
1843 else
1844 {
1845 change_state (start->position, afterward->position, NULL, indent);
1846 printf ("%sgoto L%d;\n", indent, afterward->number);
1847 }
1848 }
1849
1850 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1851 special care to avoid "decimal constant is so large that it is unsigned"
1852 warnings in the resulting code. */
1853
1854 static void
1855 print_host_wide_int (HOST_WIDE_INT val)
1856 {
1857 HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
1858 if (val == min)
1859 printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
1860 else
1861 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
1862 }
1863
1864 /* Emit a switch statement, if possible, for an initial sequence of
1865 nodes at START. Return the first node yet untested. */
1866
1867 static struct decision *
1868 write_switch (struct decision *start, int depth)
1869 {
1870 struct decision *p = start;
1871 enum decision_type type = p->tests->type;
1872 struct decision *needs_label = NULL;
1873
1874 /* If we have two or more nodes in sequence that test the same one
1875 thing, we may be able to use a switch statement. */
1876
1877 if (!p->next
1878 || p->tests->next
1879 || p->next->tests->type != type
1880 || p->next->tests->next
1881 || nodes_identical_1 (p->tests, p->next->tests))
1882 return p;
1883
1884 /* DT_code is special in that we can do interesting things with
1885 known predicates at the same time. */
1886 if (type == DT_code)
1887 {
1888 char codemap[NUM_RTX_CODE];
1889 struct decision *ret;
1890 RTX_CODE code;
1891
1892 memset (codemap, 0, sizeof(codemap));
1893
1894 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1895 code = p->tests->u.code;
1896 do
1897 {
1898 if (p != start && p->need_label && needs_label == NULL)
1899 needs_label = p;
1900
1901 printf (" case ");
1902 print_code (code);
1903 printf (":\n goto L%d;\n", p->success.first->number);
1904 p->success.first->need_label = 1;
1905
1906 codemap[code] = 1;
1907 p = p->next;
1908 }
1909 while (p
1910 && ! p->tests->next
1911 && p->tests->type == DT_code
1912 && ! codemap[code = p->tests->u.code]);
1913
1914 /* If P is testing a predicate that we know about and we haven't
1915 seen any of the codes that are valid for the predicate, we can
1916 write a series of "case" statement, one for each possible code.
1917 Since we are already in a switch, these redundant tests are very
1918 cheap and will reduce the number of predicates called. */
1919
1920 /* Note that while we write out cases for these predicates here,
1921 we don't actually write the test here, as it gets kinda messy.
1922 It is trivial to leave this to later by telling our caller that
1923 we only processed the CODE tests. */
1924 if (needs_label != NULL)
1925 ret = needs_label;
1926 else
1927 ret = p;
1928
1929 while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
1930 {
1931 const struct pred_data *data = p->tests->u.pred.data;
1932 RTX_CODE c;
1933 for (c = 0; c < NUM_RTX_CODE; c++)
1934 if (codemap[c] && data->codes[c])
1935 goto pred_done;
1936
1937 for (c = 0; c < NUM_RTX_CODE; c++)
1938 if (data->codes[c])
1939 {
1940 fputs (" case ", stdout);
1941 print_code (c);
1942 fputs (":\n", stdout);
1943 codemap[c] = 1;
1944 }
1945
1946 printf (" goto L%d;\n", p->number);
1947 p->need_label = 1;
1948 p = p->next;
1949 }
1950
1951 pred_done:
1952 /* Make the default case skip the predicates we managed to match. */
1953
1954 printf (" default:\n");
1955 if (p != ret)
1956 {
1957 if (p)
1958 {
1959 printf (" goto L%d;\n", p->number);
1960 p->need_label = 1;
1961 }
1962 else
1963 write_afterward (start, start->afterward, " ");
1964 }
1965 else
1966 printf (" break;\n");
1967 printf (" }\n");
1968
1969 return ret;
1970 }
1971 else if (type == DT_mode
1972 || type == DT_veclen
1973 || type == DT_elt_zero_int
1974 || type == DT_elt_one_int
1975 || type == DT_elt_zero_wide_safe)
1976 {
1977 const char *indent = "";
1978
1979 /* We cast switch parameter to integer, so we must ensure that the value
1980 fits. */
1981 if (type == DT_elt_zero_wide_safe)
1982 {
1983 indent = " ";
1984 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1985 }
1986 printf ("%s switch (", indent);
1987 switch (type)
1988 {
1989 case DT_mode:
1990 printf ("GET_MODE (x%d)", depth);
1991 break;
1992 case DT_veclen:
1993 printf ("XVECLEN (x%d, 0)", depth);
1994 break;
1995 case DT_elt_zero_int:
1996 printf ("XINT (x%d, 0)", depth);
1997 break;
1998 case DT_elt_one_int:
1999 printf ("XINT (x%d, 1)", depth);
2000 break;
2001 case DT_elt_zero_wide_safe:
2002 /* Convert result of XWINT to int for portability since some C
2003 compilers won't do it and some will. */
2004 printf ("(int) XWINT (x%d, 0)", depth);
2005 break;
2006 default:
2007 gcc_unreachable ();
2008 }
2009 printf (")\n%s {\n", indent);
2010
2011 do
2012 {
2013 /* Merge trees will not unify identical nodes if their
2014 sub-nodes are at different levels. Thus we must check
2015 for duplicate cases. */
2016 struct decision *q;
2017 for (q = start; q != p; q = q->next)
2018 if (nodes_identical_1 (p->tests, q->tests))
2019 goto case_done;
2020
2021 if (p != start && p->need_label && needs_label == NULL)
2022 needs_label = p;
2023
2024 printf ("%s case ", indent);
2025 switch (type)
2026 {
2027 case DT_mode:
2028 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
2029 break;
2030 case DT_veclen:
2031 printf ("%d", p->tests->u.veclen);
2032 break;
2033 case DT_elt_zero_int:
2034 case DT_elt_one_int:
2035 case DT_elt_zero_wide:
2036 case DT_elt_zero_wide_safe:
2037 print_host_wide_int (p->tests->u.intval);
2038 break;
2039 default:
2040 gcc_unreachable ();
2041 }
2042 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
2043 p->success.first->need_label = 1;
2044
2045 p = p->next;
2046 }
2047 while (p && p->tests->type == type && !p->tests->next);
2048
2049 case_done:
2050 printf ("%s default:\n%s break;\n%s }\n",
2051 indent, indent, indent);
2052
2053 return needs_label != NULL ? needs_label : p;
2054 }
2055 else
2056 {
2057 /* None of the other tests are amenable. */
2058 return p;
2059 }
2060 }
2061
2062 /* Emit code for one test. */
2063
2064 static void
2065 write_cond (struct decision_test *p, int depth,
2066 enum routine_type subroutine_type)
2067 {
2068 switch (p->type)
2069 {
2070 case DT_mode:
2071 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
2072 break;
2073
2074 case DT_code:
2075 printf ("GET_CODE (x%d) == ", depth);
2076 print_code (p->u.code);
2077 break;
2078
2079 case DT_veclen:
2080 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
2081 break;
2082
2083 case DT_elt_zero_int:
2084 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2085 break;
2086
2087 case DT_elt_one_int:
2088 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2089 break;
2090
2091 case DT_elt_zero_wide:
2092 case DT_elt_zero_wide_safe:
2093 printf ("XWINT (x%d, 0) == ", depth);
2094 print_host_wide_int (p->u.intval);
2095 break;
2096
2097 case DT_const_int:
2098 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2099 depth, (int) p->u.intval);
2100 break;
2101
2102 case DT_veclen_ge:
2103 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2104 break;
2105
2106 case DT_dup:
2107 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2108 break;
2109
2110 case DT_pred:
2111 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2112 GET_MODE_NAME (p->u.pred.mode));
2113 break;
2114
2115 case DT_c_test:
2116 print_c_condition (p->u.c_test);
2117 break;
2118
2119 case DT_accept_insn:
2120 gcc_assert (subroutine_type == RECOG);
2121 gcc_assert (p->u.insn.num_clobbers_to_add);
2122 printf ("pnum_clobbers != NULL");
2123 break;
2124
2125 default:
2126 gcc_unreachable ();
2127 }
2128 }
2129
2130 /* Emit code for one action. The previous tests have succeeded;
2131 TEST is the last of the chain. In the normal case we simply
2132 perform a state change. For the `accept' tests we must do more work. */
2133
2134 static void
2135 write_action (struct decision *p, struct decision_test *test,
2136 int depth, int uncond, struct decision *success,
2137 enum routine_type subroutine_type)
2138 {
2139 const char *indent;
2140 int want_close = 0;
2141
2142 if (uncond)
2143 indent = " ";
2144 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2145 {
2146 fputs (" {\n", stdout);
2147 indent = " ";
2148 want_close = 1;
2149 }
2150 else
2151 indent = " ";
2152
2153 if (test->type == DT_accept_op)
2154 {
2155 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2156
2157 /* Only allow DT_accept_insn to follow. */
2158 if (test->next)
2159 {
2160 test = test->next;
2161 gcc_assert (test->type == DT_accept_insn);
2162 }
2163 }
2164
2165 /* Sanity check that we're now at the end of the list of tests. */
2166 gcc_assert (!test->next);
2167
2168 if (test->type == DT_accept_insn)
2169 {
2170 switch (subroutine_type)
2171 {
2172 case RECOG:
2173 if (test->u.insn.num_clobbers_to_add != 0)
2174 printf ("%s*pnum_clobbers = %d;\n",
2175 indent, test->u.insn.num_clobbers_to_add);
2176 printf ("%sreturn %d; /* %s */\n", indent,
2177 test->u.insn.code_number,
2178 insn_name_ptr[test->u.insn.code_number]);
2179 break;
2180
2181 case SPLIT:
2182 printf ("%sreturn gen_split_%d (insn, operands);\n",
2183 indent, test->u.insn.code_number);
2184 break;
2185
2186 case PEEPHOLE2:
2187 {
2188 int match_len = 0, i;
2189
2190 for (i = strlen (p->position) - 1; i >= 0; --i)
2191 if (ISUPPER (p->position[i]))
2192 {
2193 match_len = p->position[i] - 'A';
2194 break;
2195 }
2196 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2197 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2198 indent, test->u.insn.code_number);
2199 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2200 }
2201 break;
2202
2203 default:
2204 gcc_unreachable ();
2205 }
2206 }
2207 else
2208 {
2209 printf("%sgoto L%d;\n", indent, success->number);
2210 success->need_label = 1;
2211 }
2212
2213 if (want_close)
2214 fputs (" }\n", stdout);
2215 }
2216
2217 /* Return 1 if the test is always true and has no fallthru path. Return -1
2218 if the test does have a fallthru path, but requires that the condition be
2219 terminated. Otherwise return 0 for a normal test. */
2220 /* ??? is_unconditional is a stupid name for a tri-state function. */
2221
2222 static int
2223 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2224 {
2225 if (t->type == DT_accept_op)
2226 return 1;
2227
2228 if (t->type == DT_accept_insn)
2229 {
2230 switch (subroutine_type)
2231 {
2232 case RECOG:
2233 return (t->u.insn.num_clobbers_to_add == 0);
2234 case SPLIT:
2235 return 1;
2236 case PEEPHOLE2:
2237 return -1;
2238 default:
2239 gcc_unreachable ();
2240 }
2241 }
2242
2243 return 0;
2244 }
2245
2246 /* Emit code for one node -- the conditional and the accompanying action.
2247 Return true if there is no fallthru path. */
2248
2249 static int
2250 write_node (struct decision *p, int depth,
2251 enum routine_type subroutine_type)
2252 {
2253 struct decision_test *test, *last_test;
2254 int uncond;
2255
2256 /* Scan the tests and simplify comparisons against small
2257 constants. */
2258 for (test = p->tests; test; test = test->next)
2259 {
2260 if (test->type == DT_code
2261 && test->u.code == CONST_INT
2262 && test->next
2263 && test->next->type == DT_elt_zero_wide_safe
2264 && -MAX_SAVED_CONST_INT <= test->next->u.intval
2265 && test->next->u.intval <= MAX_SAVED_CONST_INT)
2266 {
2267 test->type = DT_const_int;
2268 test->u.intval = test->next->u.intval;
2269 test->next = test->next->next;
2270 }
2271 }
2272
2273 last_test = test = p->tests;
2274 uncond = is_unconditional (test, subroutine_type);
2275 if (uncond == 0)
2276 {
2277 printf (" if (");
2278 write_cond (test, depth, subroutine_type);
2279
2280 while ((test = test->next) != NULL)
2281 {
2282 last_test = test;
2283 if (is_unconditional (test, subroutine_type))
2284 break;
2285
2286 printf ("\n && ");
2287 write_cond (test, depth, subroutine_type);
2288 }
2289
2290 printf (")\n");
2291 }
2292
2293 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2294
2295 return uncond > 0;
2296 }
2297
2298 /* Emit code for all of the sibling nodes of HEAD. */
2299
2300 static void
2301 write_tree_1 (struct decision_head *head, int depth,
2302 enum routine_type subroutine_type)
2303 {
2304 struct decision *p, *next;
2305 int uncond = 0;
2306
2307 for (p = head->first; p ; p = next)
2308 {
2309 /* The label for the first element was printed in write_tree. */
2310 if (p != head->first && p->need_label)
2311 OUTPUT_LABEL (" ", p->number);
2312
2313 /* Attempt to write a switch statement for a whole sequence. */
2314 next = write_switch (p, depth);
2315 if (p != next)
2316 uncond = 0;
2317 else
2318 {
2319 /* Failed -- fall back and write one node. */
2320 uncond = write_node (p, depth, subroutine_type);
2321 next = p->next;
2322 }
2323 }
2324
2325 /* Finished with this chain. Close a fallthru path by branching
2326 to the afterward node. */
2327 if (! uncond)
2328 write_afterward (head->last, head->last->afterward, " ");
2329 }
2330
2331 /* Write out the decision tree starting at HEAD. PREVPOS is the
2332 position at the node that branched to this node. */
2333
2334 static void
2335 write_tree (struct decision_head *head, const char *prevpos,
2336 enum routine_type type, int initial)
2337 {
2338 struct decision *p = head->first;
2339
2340 putchar ('\n');
2341 if (p->need_label)
2342 OUTPUT_LABEL (" ", p->number);
2343
2344 if (! initial && p->subroutine_number > 0)
2345 {
2346 static const char * const name_prefix[] = {
2347 "recog", "split", "peephole2"
2348 };
2349
2350 static const char * const call_suffix[] = {
2351 ", pnum_clobbers", "", ", _pmatch_len"
2352 };
2353
2354 /* This node has been broken out into a separate subroutine.
2355 Call it, test the result, and branch accordingly. */
2356
2357 if (p->afterward)
2358 {
2359 printf (" tem = %s_%d (x0, insn%s);\n",
2360 name_prefix[type], p->subroutine_number, call_suffix[type]);
2361 if (IS_SPLIT (type))
2362 printf (" if (tem != 0)\n return tem;\n");
2363 else
2364 printf (" if (tem >= 0)\n return tem;\n");
2365
2366 change_state (p->position, p->afterward->position, NULL, " ");
2367 printf (" goto L%d;\n", p->afterward->number);
2368 }
2369 else
2370 {
2371 printf (" return %s_%d (x0, insn%s);\n",
2372 name_prefix[type], p->subroutine_number, call_suffix[type]);
2373 }
2374 }
2375 else
2376 {
2377 int depth = strlen (p->position);
2378
2379 change_state (prevpos, p->position, head->last->afterward, " ");
2380 write_tree_1 (head, depth, type);
2381
2382 for (p = head->first; p; p = p->next)
2383 if (p->success.first)
2384 write_tree (&p->success, p->position, type, 0);
2385 }
2386 }
2387
2388 /* Write out a subroutine of type TYPE to do comparisons starting at
2389 node TREE. */
2390
2391 static void
2392 write_subroutine (struct decision_head *head, enum routine_type type)
2393 {
2394 int subfunction = head->first ? head->first->subroutine_number : 0;
2395 const char *s_or_e;
2396 char extension[32];
2397 int i;
2398
2399 s_or_e = subfunction ? "static " : "";
2400
2401 if (subfunction)
2402 sprintf (extension, "_%d", subfunction);
2403 else if (type == RECOG)
2404 extension[0] = '\0';
2405 else
2406 strcpy (extension, "_insns");
2407
2408 switch (type)
2409 {
2410 case RECOG:
2411 printf ("%sint\n\
2412 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2413 break;
2414 case SPLIT:
2415 printf ("%srtx\n\
2416 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2417 s_or_e, extension);
2418 break;
2419 case PEEPHOLE2:
2420 printf ("%srtx\n\
2421 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2422 s_or_e, extension);
2423 break;
2424 }
2425
2426 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2427 for (i = 1; i <= max_depth; i++)
2428 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2429
2430 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2431
2432 if (!subfunction)
2433 printf (" recog_data.insn = NULL_RTX;\n");
2434
2435 if (head->first)
2436 write_tree (head, "", type, 1);
2437 else
2438 printf (" goto ret0;\n");
2439
2440 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2441 }
2442
2443 /* In break_out_subroutines, we discovered the boundaries for the
2444 subroutines, but did not write them out. Do so now. */
2445
2446 static void
2447 write_subroutines (struct decision_head *head, enum routine_type type)
2448 {
2449 struct decision *p;
2450
2451 for (p = head->first; p ; p = p->next)
2452 if (p->success.first)
2453 write_subroutines (&p->success, type);
2454
2455 if (head->first->subroutine_number > 0)
2456 write_subroutine (head, type);
2457 }
2458
2459 /* Begin the output file. */
2460
2461 static void
2462 write_header (void)
2463 {
2464 puts ("\
2465 /* Generated automatically by the program `genrecog' from the target\n\
2466 machine description file. */\n\
2467 \n\
2468 #include \"config.h\"\n\
2469 #include \"system.h\"\n\
2470 #include \"coretypes.h\"\n\
2471 #include \"tm.h\"\n\
2472 #include \"rtl.h\"\n\
2473 #include \"tm_p.h\"\n\
2474 #include \"function.h\"\n\
2475 #include \"insn-config.h\"\n\
2476 #include \"recog.h\"\n\
2477 #include \"real.h\"\n\
2478 #include \"output.h\"\n\
2479 #include \"flags.h\"\n\
2480 #include \"hard-reg-set.h\"\n\
2481 #include \"resource.h\"\n\
2482 #include \"toplev.h\"\n\
2483 #include \"reload.h\"\n\
2484 \n");
2485
2486 puts ("\n\
2487 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2488 X0 is a valid instruction.\n\
2489 \n\
2490 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2491 returns a nonnegative number which is the insn code number for the\n\
2492 pattern that matched. This is the same as the order in the machine\n\
2493 description of the entry that matched. This number can be used as an\n\
2494 index into `insn_data' and other tables.\n");
2495 puts ("\
2496 The third argument to recog is an optional pointer to an int. If\n\
2497 present, recog will accept a pattern if it matches except for missing\n\
2498 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2499 the optional pointer will be set to the number of CLOBBERs that need\n\
2500 to be added (it should be initialized to zero by the caller). If it");
2501 puts ("\
2502 is set nonzero, the caller should allocate a PARALLEL of the\n\
2503 appropriate size, copy the initial entries, and call add_clobbers\n\
2504 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2505 ");
2506
2507 puts ("\n\
2508 The function split_insns returns 0 if the rtl could not\n\
2509 be split or the split rtl as an INSN list if it can be.\n\
2510 \n\
2511 The function peephole2_insns returns 0 if the rtl could not\n\
2512 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2513 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2514 */\n\n");
2515 }
2516
2517 \f
2518 /* Construct and return a sequence of decisions
2519 that will recognize INSN.
2520
2521 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2522
2523 static struct decision_head
2524 make_insn_sequence (rtx insn, enum routine_type type)
2525 {
2526 rtx x;
2527 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2528 int truth = maybe_eval_c_test (c_test);
2529 struct decision *last;
2530 struct decision_test *test, **place;
2531 struct decision_head head;
2532 char c_test_pos[2];
2533
2534 /* We should never see an insn whose C test is false at compile time. */
2535 gcc_assert (truth);
2536
2537 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2538
2539 c_test_pos[0] = '\0';
2540 if (type == PEEPHOLE2)
2541 {
2542 int i, j;
2543
2544 /* peephole2 gets special treatment:
2545 - X always gets an outer parallel even if it's only one entry
2546 - we remove all traces of outer-level match_scratch and match_dup
2547 expressions here. */
2548 x = rtx_alloc (PARALLEL);
2549 PUT_MODE (x, VOIDmode);
2550 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2551 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2552 {
2553 rtx tmp = XVECEXP (insn, 0, i);
2554 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2555 {
2556 XVECEXP (x, 0, j) = tmp;
2557 j++;
2558 }
2559 }
2560 XVECLEN (x, 0) = j;
2561
2562 c_test_pos[0] = 'A' + j - 1;
2563 c_test_pos[1] = '\0';
2564 }
2565 else if (XVECLEN (insn, type == RECOG) == 1)
2566 x = XVECEXP (insn, type == RECOG, 0);
2567 else
2568 {
2569 x = rtx_alloc (PARALLEL);
2570 XVEC (x, 0) = XVEC (insn, type == RECOG);
2571 PUT_MODE (x, VOIDmode);
2572 }
2573
2574 validate_pattern (x, insn, NULL_RTX, 0);
2575
2576 memset(&head, 0, sizeof(head));
2577 last = add_to_sequence (x, &head, "", type, 1);
2578
2579 /* Find the end of the test chain on the last node. */
2580 for (test = last->tests; test->next; test = test->next)
2581 continue;
2582 place = &test->next;
2583
2584 /* Skip the C test if it's known to be true at compile time. */
2585 if (truth == -1)
2586 {
2587 /* Need a new node if we have another test to add. */
2588 if (test->type == DT_accept_op)
2589 {
2590 last = new_decision (c_test_pos, &last->success);
2591 place = &last->tests;
2592 }
2593 test = new_decision_test (DT_c_test, &place);
2594 test->u.c_test = c_test;
2595 }
2596
2597 test = new_decision_test (DT_accept_insn, &place);
2598 test->u.insn.code_number = next_insn_code;
2599 test->u.insn.lineno = pattern_lineno;
2600 test->u.insn.num_clobbers_to_add = 0;
2601
2602 switch (type)
2603 {
2604 case RECOG:
2605 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2606 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2607 If so, set up to recognize the pattern without these CLOBBERs. */
2608
2609 if (GET_CODE (x) == PARALLEL)
2610 {
2611 int i;
2612
2613 /* Find the last non-clobber in the parallel. */
2614 for (i = XVECLEN (x, 0); i > 0; i--)
2615 {
2616 rtx y = XVECEXP (x, 0, i - 1);
2617 if (GET_CODE (y) != CLOBBER
2618 || (!REG_P (XEXP (y, 0))
2619 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2620 break;
2621 }
2622
2623 if (i != XVECLEN (x, 0))
2624 {
2625 rtx new;
2626 struct decision_head clobber_head;
2627
2628 /* Build a similar insn without the clobbers. */
2629 if (i == 1)
2630 new = XVECEXP (x, 0, 0);
2631 else
2632 {
2633 int j;
2634
2635 new = rtx_alloc (PARALLEL);
2636 XVEC (new, 0) = rtvec_alloc (i);
2637 for (j = i - 1; j >= 0; j--)
2638 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2639 }
2640
2641 /* Recognize it. */
2642 memset (&clobber_head, 0, sizeof(clobber_head));
2643 last = add_to_sequence (new, &clobber_head, "", type, 1);
2644
2645 /* Find the end of the test chain on the last node. */
2646 for (test = last->tests; test->next; test = test->next)
2647 continue;
2648
2649 /* We definitely have a new test to add -- create a new
2650 node if needed. */
2651 place = &test->next;
2652 if (test->type == DT_accept_op)
2653 {
2654 last = new_decision ("", &last->success);
2655 place = &last->tests;
2656 }
2657
2658 /* Skip the C test if it's known to be true at compile
2659 time. */
2660 if (truth == -1)
2661 {
2662 test = new_decision_test (DT_c_test, &place);
2663 test->u.c_test = c_test;
2664 }
2665
2666 test = new_decision_test (DT_accept_insn, &place);
2667 test->u.insn.code_number = next_insn_code;
2668 test->u.insn.lineno = pattern_lineno;
2669 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2670
2671 merge_trees (&head, &clobber_head);
2672 }
2673 }
2674 break;
2675
2676 case SPLIT:
2677 /* Define the subroutine we will call below and emit in genemit. */
2678 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
2679 break;
2680
2681 case PEEPHOLE2:
2682 /* Define the subroutine we will call below and emit in genemit. */
2683 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2684 next_insn_code);
2685 break;
2686 }
2687
2688 return head;
2689 }
2690
2691 static void
2692 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2693 {
2694 if (head->first == NULL)
2695 {
2696 /* We can elide peephole2_insns, but not recog or split_insns. */
2697 if (subroutine_type == PEEPHOLE2)
2698 return;
2699 }
2700 else
2701 {
2702 factor_tests (head);
2703
2704 next_subroutine_number = 0;
2705 break_out_subroutines (head, 1);
2706 find_afterward (head, NULL);
2707
2708 /* We run this after find_afterward, because find_afterward needs
2709 the redundant DT_mode tests on predicates to determine whether
2710 two tests can both be true or not. */
2711 simplify_tests(head);
2712
2713 write_subroutines (head, subroutine_type);
2714 }
2715
2716 write_subroutine (head, subroutine_type);
2717 }
2718 \f
2719 extern int main (int, char **);
2720
2721 int
2722 main (int argc, char **argv)
2723 {
2724 rtx desc;
2725 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2726
2727 progname = "genrecog";
2728
2729 memset (&recog_tree, 0, sizeof recog_tree);
2730 memset (&split_tree, 0, sizeof split_tree);
2731 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2732
2733 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2734 return (FATAL_EXIT_CODE);
2735
2736 next_insn_code = 0;
2737
2738 write_header ();
2739
2740 /* Read the machine description. */
2741
2742 while (1)
2743 {
2744 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2745 if (desc == NULL)
2746 break;
2747
2748 switch (GET_CODE (desc))
2749 {
2750 case DEFINE_PREDICATE:
2751 case DEFINE_SPECIAL_PREDICATE:
2752 process_define_predicate (desc);
2753 break;
2754
2755 case DEFINE_INSN:
2756 h = make_insn_sequence (desc, RECOG);
2757 merge_trees (&recog_tree, &h);
2758 break;
2759
2760 case DEFINE_SPLIT:
2761 h = make_insn_sequence (desc, SPLIT);
2762 merge_trees (&split_tree, &h);
2763 break;
2764
2765 case DEFINE_PEEPHOLE2:
2766 h = make_insn_sequence (desc, PEEPHOLE2);
2767 merge_trees (&peephole2_tree, &h);
2768
2769 default:
2770 /* do nothing */;
2771 }
2772 }
2773
2774 if (error_count || have_error)
2775 return FATAL_EXIT_CODE;
2776
2777 puts ("\n\n");
2778
2779 process_tree (&recog_tree, RECOG);
2780 process_tree (&split_tree, SPLIT);
2781 process_tree (&peephole2_tree, PEEPHOLE2);
2782
2783 fflush (stdout);
2784 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2785 }
2786 \f
2787 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2788 const char *
2789 get_insn_name (int code)
2790 {
2791 if (code < insn_name_ptr_size)
2792 return insn_name_ptr[code];
2793 else
2794 return NULL;
2795 }
2796
2797 static void
2798 record_insn_name (int code, const char *name)
2799 {
2800 static const char *last_real_name = "insn";
2801 static int last_real_code = 0;
2802 char *new;
2803
2804 if (insn_name_ptr_size <= code)
2805 {
2806 int new_size;
2807 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2808 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2809 memset (insn_name_ptr + insn_name_ptr_size, 0,
2810 sizeof(char *) * (new_size - insn_name_ptr_size));
2811 insn_name_ptr_size = new_size;
2812 }
2813
2814 if (!name || name[0] == '\0')
2815 {
2816 new = xmalloc (strlen (last_real_name) + 10);
2817 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2818 }
2819 else
2820 {
2821 last_real_name = new = xstrdup (name);
2822 last_real_code = code;
2823 }
2824
2825 insn_name_ptr[code] = new;
2826 }
2827 \f
2828 static void
2829 debug_decision_2 (struct decision_test *test)
2830 {
2831 switch (test->type)
2832 {
2833 case DT_mode:
2834 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2835 break;
2836 case DT_code:
2837 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2838 break;
2839 case DT_veclen:
2840 fprintf (stderr, "veclen=%d", test->u.veclen);
2841 break;
2842 case DT_elt_zero_int:
2843 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2844 break;
2845 case DT_elt_one_int:
2846 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2847 break;
2848 case DT_elt_zero_wide:
2849 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2850 break;
2851 case DT_elt_zero_wide_safe:
2852 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2853 break;
2854 case DT_veclen_ge:
2855 fprintf (stderr, "veclen>=%d", test->u.veclen);
2856 break;
2857 case DT_dup:
2858 fprintf (stderr, "dup=%d", test->u.dup);
2859 break;
2860 case DT_pred:
2861 fprintf (stderr, "pred=(%s,%s)",
2862 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2863 break;
2864 case DT_c_test:
2865 {
2866 char sub[16+4];
2867 strncpy (sub, test->u.c_test, sizeof(sub));
2868 memcpy (sub+16, "...", 4);
2869 fprintf (stderr, "c_test=\"%s\"", sub);
2870 }
2871 break;
2872 case DT_accept_op:
2873 fprintf (stderr, "A_op=%d", test->u.opno);
2874 break;
2875 case DT_accept_insn:
2876 fprintf (stderr, "A_insn=(%d,%d)",
2877 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2878 break;
2879
2880 default:
2881 gcc_unreachable ();
2882 }
2883 }
2884
2885 static void
2886 debug_decision_1 (struct decision *d, int indent)
2887 {
2888 int i;
2889 struct decision_test *test;
2890
2891 if (d == NULL)
2892 {
2893 for (i = 0; i < indent; ++i)
2894 putc (' ', stderr);
2895 fputs ("(nil)\n", stderr);
2896 return;
2897 }
2898
2899 for (i = 0; i < indent; ++i)
2900 putc (' ', stderr);
2901
2902 putc ('{', stderr);
2903 test = d->tests;
2904 if (test)
2905 {
2906 debug_decision_2 (test);
2907 while ((test = test->next) != NULL)
2908 {
2909 fputs (" + ", stderr);
2910 debug_decision_2 (test);
2911 }
2912 }
2913 fprintf (stderr, "} %d n %d a %d\n", d->number,
2914 (d->next ? d->next->number : -1),
2915 (d->afterward ? d->afterward->number : -1));
2916 }
2917
2918 static void
2919 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2920 {
2921 struct decision *n;
2922 int i;
2923
2924 if (maxdepth < 0)
2925 return;
2926 if (d == NULL)
2927 {
2928 for (i = 0; i < indent; ++i)
2929 putc (' ', stderr);
2930 fputs ("(nil)\n", stderr);
2931 return;
2932 }
2933
2934 debug_decision_1 (d, indent);
2935 for (n = d->success.first; n ; n = n->next)
2936 debug_decision_0 (n, indent + 2, maxdepth - 1);
2937 }
2938
2939 void
2940 debug_decision (struct decision *d)
2941 {
2942 debug_decision_0 (d, 0, 1000000);
2943 }
2944
2945 void
2946 debug_decision_list (struct decision *d)
2947 {
2948 while (d)
2949 {
2950 debug_decision_0 (d, 0, 0);
2951 d = d->next;
2952 }
2953 }