]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ggc-page.c
Fix ada enabled "make html".
[thirdparty/gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "toplev.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
40 # else
41 # include <valgrind.h>
42 # endif
43 #else
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
46 #endif
47
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
50 #ifdef HAVE_MMAP_ANON
51 # undef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
59 # endif
60 # define USING_MMAP
61
62 #endif
63
64 #ifdef HAVE_MMAP_DEV_ZERO
65
66 # include <sys/mman.h>
67 # ifndef MAP_FAILED
68 # define MAP_FAILED -1
69 # endif
70 # define USING_MMAP
71
72 #endif
73
74 #ifndef USING_MMAP
75 #define USING_MALLOC_PAGE_GROUPS
76 #endif
77
78 /* Stategy:
79
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
85
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
90
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
94
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
100 context depth.
101
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
106
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
114 \f
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
117 #endif
118
119 \f
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
123
124 HOST_PAGE_SIZE_BITS
125 32 | |
126 msb +----------------+----+------+------+ lsb
127 | | |
128 PAGE_L1_BITS |
129 | |
130 PAGE_L2_BITS
131
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
136
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
140 correct one. */
141
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
146
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
171
172 /* The number of extra orders, not corresponding to power-of-two sized
173 objects. */
174
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
176
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
179
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
182
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
186
187 static const size_t extra_order_size_table[] = {
188 sizeof (struct stmt_ann_d),
189 sizeof (struct tree_decl),
190 sizeof (struct tree_list),
191 TREE_EXP_SIZE (2),
192 RTL_SIZE (2), /* MEM, PLUS, etc. */
193 RTL_SIZE (9), /* INSN */
194 };
195
196 /* The total number of orders. */
197
198 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
199
200 /* We use this structure to determine the alignment required for
201 allocations. For power-of-two sized allocations, that's not a
202 problem, but it does matter for odd-sized allocations. */
203
204 struct max_alignment {
205 char c;
206 union {
207 HOST_WIDEST_INT i;
208 long double d;
209 } u;
210 };
211
212 /* The biggest alignment required. */
213
214 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
215
216 /* Compute the smallest nonnegative number which when added to X gives
217 a multiple of F. */
218
219 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
220
221 /* Compute the smallest multiple of F that is >= X. */
222
223 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
224
225 /* The Ith entry is the number of objects on a page or order I. */
226
227 static unsigned objects_per_page_table[NUM_ORDERS];
228
229 /* The Ith entry is the size of an object on a page of order I. */
230
231 static size_t object_size_table[NUM_ORDERS];
232
233 /* The Ith entry is a pair of numbers (mult, shift) such that
234 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
235 for all k evenly divisible by OBJECT_SIZE(I). */
236
237 static struct
238 {
239 size_t mult;
240 unsigned int shift;
241 }
242 inverse_table[NUM_ORDERS];
243
244 /* A page_entry records the status of an allocation page. This
245 structure is dynamically sized to fit the bitmap in_use_p. */
246 typedef struct page_entry
247 {
248 /* The next page-entry with objects of the same size, or NULL if
249 this is the last page-entry. */
250 struct page_entry *next;
251
252 /* The previous page-entry with objects of the same size, or NULL if
253 this is the first page-entry. The PREV pointer exists solely to
254 keep the cost of ggc_free manageable. */
255 struct page_entry *prev;
256
257 /* The number of bytes allocated. (This will always be a multiple
258 of the host system page size.) */
259 size_t bytes;
260
261 /* The address at which the memory is allocated. */
262 char *page;
263
264 #ifdef USING_MALLOC_PAGE_GROUPS
265 /* Back pointer to the page group this page came from. */
266 struct page_group *group;
267 #endif
268
269 /* This is the index in the by_depth varray where this page table
270 can be found. */
271 unsigned long index_by_depth;
272
273 /* Context depth of this page. */
274 unsigned short context_depth;
275
276 /* The number of free objects remaining on this page. */
277 unsigned short num_free_objects;
278
279 /* A likely candidate for the bit position of a free object for the
280 next allocation from this page. */
281 unsigned short next_bit_hint;
282
283 /* The lg of size of objects allocated from this page. */
284 unsigned char order;
285
286 /* A bit vector indicating whether or not objects are in use. The
287 Nth bit is one if the Nth object on this page is allocated. This
288 array is dynamically sized. */
289 unsigned long in_use_p[1];
290 } page_entry;
291
292 #ifdef USING_MALLOC_PAGE_GROUPS
293 /* A page_group describes a large allocation from malloc, from which
294 we parcel out aligned pages. */
295 typedef struct page_group
296 {
297 /* A linked list of all extant page groups. */
298 struct page_group *next;
299
300 /* The address we received from malloc. */
301 char *allocation;
302
303 /* The size of the block. */
304 size_t alloc_size;
305
306 /* A bitmask of pages in use. */
307 unsigned int in_use;
308 } page_group;
309 #endif
310
311 #if HOST_BITS_PER_PTR <= 32
312
313 /* On 32-bit hosts, we use a two level page table, as pictured above. */
314 typedef page_entry **page_table[PAGE_L1_SIZE];
315
316 #else
317
318 /* On 64-bit hosts, we use the same two level page tables plus a linked
319 list that disambiguates the top 32-bits. There will almost always be
320 exactly one entry in the list. */
321 typedef struct page_table_chain
322 {
323 struct page_table_chain *next;
324 size_t high_bits;
325 page_entry **table[PAGE_L1_SIZE];
326 } *page_table;
327
328 #endif
329
330 /* The rest of the global variables. */
331 static struct globals
332 {
333 /* The Nth element in this array is a page with objects of size 2^N.
334 If there are any pages with free objects, they will be at the
335 head of the list. NULL if there are no page-entries for this
336 object size. */
337 page_entry *pages[NUM_ORDERS];
338
339 /* The Nth element in this array is the last page with objects of
340 size 2^N. NULL if there are no page-entries for this object
341 size. */
342 page_entry *page_tails[NUM_ORDERS];
343
344 /* Lookup table for associating allocation pages with object addresses. */
345 page_table lookup;
346
347 /* The system's page size. */
348 size_t pagesize;
349 size_t lg_pagesize;
350
351 /* Bytes currently allocated. */
352 size_t allocated;
353
354 /* Bytes currently allocated at the end of the last collection. */
355 size_t allocated_last_gc;
356
357 /* Total amount of memory mapped. */
358 size_t bytes_mapped;
359
360 /* Bit N set if any allocations have been done at context depth N. */
361 unsigned long context_depth_allocations;
362
363 /* Bit N set if any collections have been done at context depth N. */
364 unsigned long context_depth_collections;
365
366 /* The current depth in the context stack. */
367 unsigned short context_depth;
368
369 /* A file descriptor open to /dev/zero for reading. */
370 #if defined (HAVE_MMAP_DEV_ZERO)
371 int dev_zero_fd;
372 #endif
373
374 /* A cache of free system pages. */
375 page_entry *free_pages;
376
377 #ifdef USING_MALLOC_PAGE_GROUPS
378 page_group *page_groups;
379 #endif
380
381 /* The file descriptor for debugging output. */
382 FILE *debug_file;
383
384 /* Current number of elements in use in depth below. */
385 unsigned int depth_in_use;
386
387 /* Maximum number of elements that can be used before resizing. */
388 unsigned int depth_max;
389
390 /* Each element of this arry is an index in by_depth where the given
391 depth starts. This structure is indexed by that given depth we
392 are interested in. */
393 unsigned int *depth;
394
395 /* Current number of elements in use in by_depth below. */
396 unsigned int by_depth_in_use;
397
398 /* Maximum number of elements that can be used before resizing. */
399 unsigned int by_depth_max;
400
401 /* Each element of this array is a pointer to a page_entry, all
402 page_entries can be found in here by increasing depth.
403 index_by_depth in the page_entry is the index into this data
404 structure where that page_entry can be found. This is used to
405 speed up finding all page_entries at a particular depth. */
406 page_entry **by_depth;
407
408 /* Each element is a pointer to the saved in_use_p bits, if any,
409 zero otherwise. We allocate them all together, to enable a
410 better runtime data access pattern. */
411 unsigned long **save_in_use;
412
413 #ifdef ENABLE_GC_ALWAYS_COLLECT
414 /* List of free objects to be verified as actually free on the
415 next collection. */
416 struct free_object
417 {
418 void *object;
419 struct free_object *next;
420 } *free_object_list;
421 #endif
422
423 #ifdef GATHER_STATISTICS
424 struct
425 {
426 /* Total memory allocated with ggc_alloc. */
427 unsigned long long total_allocated;
428 /* Total overhead for memory to be allocated with ggc_alloc. */
429 unsigned long long total_overhead;
430
431 /* Total allocations and overhead for sizes less than 32, 64 and 128.
432 These sizes are interesting because they are typical cache line
433 sizes. */
434
435 unsigned long long total_allocated_under32;
436 unsigned long long total_overhead_under32;
437
438 unsigned long long total_allocated_under64;
439 unsigned long long total_overhead_under64;
440
441 unsigned long long total_allocated_under128;
442 unsigned long long total_overhead_under128;
443
444 /* The allocations for each of the allocation orders. */
445 unsigned long long total_allocated_per_order[NUM_ORDERS];
446
447 /* The overhead for each of the allocation orders. */
448 unsigned long long total_overhead_per_order[NUM_ORDERS];
449 } stats;
450 #endif
451 } G;
452
453 /* The size in bytes required to maintain a bitmap for the objects
454 on a page-entry. */
455 #define BITMAP_SIZE(Num_objects) \
456 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
457
458 /* Allocate pages in chunks of this size, to throttle calls to memory
459 allocation routines. The first page is used, the rest go onto the
460 free list. This cannot be larger than HOST_BITS_PER_INT for the
461 in_use bitmask for page_group. Hosts that need a different value
462 can override this by defining GGC_QUIRE_SIZE explicitly. */
463 #ifndef GGC_QUIRE_SIZE
464 # ifdef USING_MMAP
465 # define GGC_QUIRE_SIZE 256
466 # else
467 # define GGC_QUIRE_SIZE 16
468 # endif
469 #endif
470
471 /* Initial guess as to how many page table entries we might need. */
472 #define INITIAL_PTE_COUNT 128
473 \f
474 static int ggc_allocated_p (const void *);
475 static page_entry *lookup_page_table_entry (const void *);
476 static void set_page_table_entry (void *, page_entry *);
477 #ifdef USING_MMAP
478 static char *alloc_anon (char *, size_t);
479 #endif
480 #ifdef USING_MALLOC_PAGE_GROUPS
481 static size_t page_group_index (char *, char *);
482 static void set_page_group_in_use (page_group *, char *);
483 static void clear_page_group_in_use (page_group *, char *);
484 #endif
485 static struct page_entry * alloc_page (unsigned);
486 static void free_page (struct page_entry *);
487 static void release_pages (void);
488 static void clear_marks (void);
489 static void sweep_pages (void);
490 static void ggc_recalculate_in_use_p (page_entry *);
491 static void compute_inverse (unsigned);
492 static inline void adjust_depth (void);
493 static void move_ptes_to_front (int, int);
494
495 void debug_print_page_list (int);
496 static void push_depth (unsigned int);
497 static void push_by_depth (page_entry *, unsigned long *);
498
499 /* Push an entry onto G.depth. */
500
501 inline static void
502 push_depth (unsigned int i)
503 {
504 if (G.depth_in_use >= G.depth_max)
505 {
506 G.depth_max *= 2;
507 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
508 }
509 G.depth[G.depth_in_use++] = i;
510 }
511
512 /* Push an entry onto G.by_depth and G.save_in_use. */
513
514 inline static void
515 push_by_depth (page_entry *p, unsigned long *s)
516 {
517 if (G.by_depth_in_use >= G.by_depth_max)
518 {
519 G.by_depth_max *= 2;
520 G.by_depth = xrealloc (G.by_depth,
521 G.by_depth_max * sizeof (page_entry *));
522 G.save_in_use = xrealloc (G.save_in_use,
523 G.by_depth_max * sizeof (unsigned long *));
524 }
525 G.by_depth[G.by_depth_in_use] = p;
526 G.save_in_use[G.by_depth_in_use++] = s;
527 }
528
529 #if (GCC_VERSION < 3001)
530 #define prefetch(X) ((void) X)
531 #else
532 #define prefetch(X) __builtin_prefetch (X)
533 #endif
534
535 #define save_in_use_p_i(__i) \
536 (G.save_in_use[__i])
537 #define save_in_use_p(__p) \
538 (save_in_use_p_i (__p->index_by_depth))
539
540 /* Returns nonzero if P was allocated in GC'able memory. */
541
542 static inline int
543 ggc_allocated_p (const void *p)
544 {
545 page_entry ***base;
546 size_t L1, L2;
547
548 #if HOST_BITS_PER_PTR <= 32
549 base = &G.lookup[0];
550 #else
551 page_table table = G.lookup;
552 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
553 while (1)
554 {
555 if (table == NULL)
556 return 0;
557 if (table->high_bits == high_bits)
558 break;
559 table = table->next;
560 }
561 base = &table->table[0];
562 #endif
563
564 /* Extract the level 1 and 2 indices. */
565 L1 = LOOKUP_L1 (p);
566 L2 = LOOKUP_L2 (p);
567
568 return base[L1] && base[L1][L2];
569 }
570
571 /* Traverse the page table and find the entry for a page.
572 Die (probably) if the object wasn't allocated via GC. */
573
574 static inline page_entry *
575 lookup_page_table_entry (const void *p)
576 {
577 page_entry ***base;
578 size_t L1, L2;
579
580 #if HOST_BITS_PER_PTR <= 32
581 base = &G.lookup[0];
582 #else
583 page_table table = G.lookup;
584 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
585 while (table->high_bits != high_bits)
586 table = table->next;
587 base = &table->table[0];
588 #endif
589
590 /* Extract the level 1 and 2 indices. */
591 L1 = LOOKUP_L1 (p);
592 L2 = LOOKUP_L2 (p);
593
594 return base[L1][L2];
595 }
596
597 /* Set the page table entry for a page. */
598
599 static void
600 set_page_table_entry (void *p, page_entry *entry)
601 {
602 page_entry ***base;
603 size_t L1, L2;
604
605 #if HOST_BITS_PER_PTR <= 32
606 base = &G.lookup[0];
607 #else
608 page_table table;
609 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
610 for (table = G.lookup; table; table = table->next)
611 if (table->high_bits == high_bits)
612 goto found;
613
614 /* Not found -- allocate a new table. */
615 table = xcalloc (1, sizeof(*table));
616 table->next = G.lookup;
617 table->high_bits = high_bits;
618 G.lookup = table;
619 found:
620 base = &table->table[0];
621 #endif
622
623 /* Extract the level 1 and 2 indices. */
624 L1 = LOOKUP_L1 (p);
625 L2 = LOOKUP_L2 (p);
626
627 if (base[L1] == NULL)
628 base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
629
630 base[L1][L2] = entry;
631 }
632
633 /* Prints the page-entry for object size ORDER, for debugging. */
634
635 void
636 debug_print_page_list (int order)
637 {
638 page_entry *p;
639 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
640 (void *) G.page_tails[order]);
641 p = G.pages[order];
642 while (p != NULL)
643 {
644 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
645 p->num_free_objects);
646 p = p->next;
647 }
648 printf ("NULL\n");
649 fflush (stdout);
650 }
651
652 #ifdef USING_MMAP
653 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
654 (if non-null). The ifdef structure here is intended to cause a
655 compile error unless exactly one of the HAVE_* is defined. */
656
657 static inline char *
658 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
659 {
660 #ifdef HAVE_MMAP_ANON
661 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
662 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
663 #endif
664 #ifdef HAVE_MMAP_DEV_ZERO
665 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
666 MAP_PRIVATE, G.dev_zero_fd, 0);
667 #endif
668
669 if (page == (char *) MAP_FAILED)
670 {
671 perror ("virtual memory exhausted");
672 exit (FATAL_EXIT_CODE);
673 }
674
675 /* Remember that we allocated this memory. */
676 G.bytes_mapped += size;
677
678 /* Pretend we don't have access to the allocated pages. We'll enable
679 access to smaller pieces of the area in ggc_alloc. Discard the
680 handle to avoid handle leak. */
681 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
682
683 return page;
684 }
685 #endif
686 #ifdef USING_MALLOC_PAGE_GROUPS
687 /* Compute the index for this page into the page group. */
688
689 static inline size_t
690 page_group_index (char *allocation, char *page)
691 {
692 return (size_t) (page - allocation) >> G.lg_pagesize;
693 }
694
695 /* Set and clear the in_use bit for this page in the page group. */
696
697 static inline void
698 set_page_group_in_use (page_group *group, char *page)
699 {
700 group->in_use |= 1 << page_group_index (group->allocation, page);
701 }
702
703 static inline void
704 clear_page_group_in_use (page_group *group, char *page)
705 {
706 group->in_use &= ~(1 << page_group_index (group->allocation, page));
707 }
708 #endif
709
710 /* Allocate a new page for allocating objects of size 2^ORDER,
711 and return an entry for it. The entry is not added to the
712 appropriate page_table list. */
713
714 static inline struct page_entry *
715 alloc_page (unsigned order)
716 {
717 struct page_entry *entry, *p, **pp;
718 char *page;
719 size_t num_objects;
720 size_t bitmap_size;
721 size_t page_entry_size;
722 size_t entry_size;
723 #ifdef USING_MALLOC_PAGE_GROUPS
724 page_group *group;
725 #endif
726
727 num_objects = OBJECTS_PER_PAGE (order);
728 bitmap_size = BITMAP_SIZE (num_objects + 1);
729 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
730 entry_size = num_objects * OBJECT_SIZE (order);
731 if (entry_size < G.pagesize)
732 entry_size = G.pagesize;
733
734 entry = NULL;
735 page = NULL;
736
737 /* Check the list of free pages for one we can use. */
738 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
739 if (p->bytes == entry_size)
740 break;
741
742 if (p != NULL)
743 {
744 /* Recycle the allocated memory from this page ... */
745 *pp = p->next;
746 page = p->page;
747
748 #ifdef USING_MALLOC_PAGE_GROUPS
749 group = p->group;
750 #endif
751
752 /* ... and, if possible, the page entry itself. */
753 if (p->order == order)
754 {
755 entry = p;
756 memset (entry, 0, page_entry_size);
757 }
758 else
759 free (p);
760 }
761 #ifdef USING_MMAP
762 else if (entry_size == G.pagesize)
763 {
764 /* We want just one page. Allocate a bunch of them and put the
765 extras on the freelist. (Can only do this optimization with
766 mmap for backing store.) */
767 struct page_entry *e, *f = G.free_pages;
768 int i;
769
770 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
771
772 /* This loop counts down so that the chain will be in ascending
773 memory order. */
774 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
775 {
776 e = xcalloc (1, page_entry_size);
777 e->order = order;
778 e->bytes = G.pagesize;
779 e->page = page + (i << G.lg_pagesize);
780 e->next = f;
781 f = e;
782 }
783
784 G.free_pages = f;
785 }
786 else
787 page = alloc_anon (NULL, entry_size);
788 #endif
789 #ifdef USING_MALLOC_PAGE_GROUPS
790 else
791 {
792 /* Allocate a large block of memory and serve out the aligned
793 pages therein. This results in much less memory wastage
794 than the traditional implementation of valloc. */
795
796 char *allocation, *a, *enda;
797 size_t alloc_size, head_slop, tail_slop;
798 int multiple_pages = (entry_size == G.pagesize);
799
800 if (multiple_pages)
801 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
802 else
803 alloc_size = entry_size + G.pagesize - 1;
804 allocation = xmalloc (alloc_size);
805
806 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
807 head_slop = page - allocation;
808 if (multiple_pages)
809 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
810 else
811 tail_slop = alloc_size - entry_size - head_slop;
812 enda = allocation + alloc_size - tail_slop;
813
814 /* We allocated N pages, which are likely not aligned, leaving
815 us with N-1 usable pages. We plan to place the page_group
816 structure somewhere in the slop. */
817 if (head_slop >= sizeof (page_group))
818 group = (page_group *)page - 1;
819 else
820 {
821 /* We magically got an aligned allocation. Too bad, we have
822 to waste a page anyway. */
823 if (tail_slop == 0)
824 {
825 enda -= G.pagesize;
826 tail_slop += G.pagesize;
827 }
828 gcc_assert (tail_slop >= sizeof (page_group));
829 group = (page_group *)enda;
830 tail_slop -= sizeof (page_group);
831 }
832
833 /* Remember that we allocated this memory. */
834 group->next = G.page_groups;
835 group->allocation = allocation;
836 group->alloc_size = alloc_size;
837 group->in_use = 0;
838 G.page_groups = group;
839 G.bytes_mapped += alloc_size;
840
841 /* If we allocated multiple pages, put the rest on the free list. */
842 if (multiple_pages)
843 {
844 struct page_entry *e, *f = G.free_pages;
845 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
846 {
847 e = xcalloc (1, page_entry_size);
848 e->order = order;
849 e->bytes = G.pagesize;
850 e->page = a;
851 e->group = group;
852 e->next = f;
853 f = e;
854 }
855 G.free_pages = f;
856 }
857 }
858 #endif
859
860 if (entry == NULL)
861 entry = xcalloc (1, page_entry_size);
862
863 entry->bytes = entry_size;
864 entry->page = page;
865 entry->context_depth = G.context_depth;
866 entry->order = order;
867 entry->num_free_objects = num_objects;
868 entry->next_bit_hint = 1;
869
870 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
871
872 #ifdef USING_MALLOC_PAGE_GROUPS
873 entry->group = group;
874 set_page_group_in_use (group, page);
875 #endif
876
877 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
878 increment the hint. */
879 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
880 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
881
882 set_page_table_entry (page, entry);
883
884 if (GGC_DEBUG_LEVEL >= 2)
885 fprintf (G.debug_file,
886 "Allocating page at %p, object size=%lu, data %p-%p\n",
887 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
888 page + entry_size - 1);
889
890 return entry;
891 }
892
893 /* Adjust the size of G.depth so that no index greater than the one
894 used by the top of the G.by_depth is used. */
895
896 static inline void
897 adjust_depth (void)
898 {
899 page_entry *top;
900
901 if (G.by_depth_in_use)
902 {
903 top = G.by_depth[G.by_depth_in_use-1];
904
905 /* Peel back indices in depth that index into by_depth, so that
906 as new elements are added to by_depth, we note the indices
907 of those elements, if they are for new context depths. */
908 while (G.depth_in_use > (size_t)top->context_depth+1)
909 --G.depth_in_use;
910 }
911 }
912
913 /* For a page that is no longer needed, put it on the free page list. */
914
915 static void
916 free_page (page_entry *entry)
917 {
918 if (GGC_DEBUG_LEVEL >= 2)
919 fprintf (G.debug_file,
920 "Deallocating page at %p, data %p-%p\n", (void *) entry,
921 entry->page, entry->page + entry->bytes - 1);
922
923 /* Mark the page as inaccessible. Discard the handle to avoid handle
924 leak. */
925 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
926
927 set_page_table_entry (entry->page, NULL);
928
929 #ifdef USING_MALLOC_PAGE_GROUPS
930 clear_page_group_in_use (entry->group, entry->page);
931 #endif
932
933 if (G.by_depth_in_use > 1)
934 {
935 page_entry *top = G.by_depth[G.by_depth_in_use-1];
936 int i = entry->index_by_depth;
937
938 /* We cannot free a page from a context deeper than the current
939 one. */
940 gcc_assert (entry->context_depth == top->context_depth);
941
942 /* Put top element into freed slot. */
943 G.by_depth[i] = top;
944 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
945 top->index_by_depth = i;
946 }
947 --G.by_depth_in_use;
948
949 adjust_depth ();
950
951 entry->next = G.free_pages;
952 G.free_pages = entry;
953 }
954
955 /* Release the free page cache to the system. */
956
957 static void
958 release_pages (void)
959 {
960 #ifdef USING_MMAP
961 page_entry *p, *next;
962 char *start;
963 size_t len;
964
965 /* Gather up adjacent pages so they are unmapped together. */
966 p = G.free_pages;
967
968 while (p)
969 {
970 start = p->page;
971 next = p->next;
972 len = p->bytes;
973 free (p);
974 p = next;
975
976 while (p && p->page == start + len)
977 {
978 next = p->next;
979 len += p->bytes;
980 free (p);
981 p = next;
982 }
983
984 munmap (start, len);
985 G.bytes_mapped -= len;
986 }
987
988 G.free_pages = NULL;
989 #endif
990 #ifdef USING_MALLOC_PAGE_GROUPS
991 page_entry **pp, *p;
992 page_group **gp, *g;
993
994 /* Remove all pages from free page groups from the list. */
995 pp = &G.free_pages;
996 while ((p = *pp) != NULL)
997 if (p->group->in_use == 0)
998 {
999 *pp = p->next;
1000 free (p);
1001 }
1002 else
1003 pp = &p->next;
1004
1005 /* Remove all free page groups, and release the storage. */
1006 gp = &G.page_groups;
1007 while ((g = *gp) != NULL)
1008 if (g->in_use == 0)
1009 {
1010 *gp = g->next;
1011 G.bytes_mapped -= g->alloc_size;
1012 free (g->allocation);
1013 }
1014 else
1015 gp = &g->next;
1016 #endif
1017 }
1018
1019 /* This table provides a fast way to determine ceil(log_2(size)) for
1020 allocation requests. The minimum allocation size is eight bytes. */
1021
1022 static unsigned char size_lookup[257] =
1023 {
1024 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1025 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1026 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1027 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1028 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1029 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1030 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1031 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1032 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1033 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1040 8
1041 };
1042
1043 /* Typed allocation function. Does nothing special in this collector. */
1044
1045 void *
1046 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1047 MEM_STAT_DECL)
1048 {
1049 return ggc_alloc_stat (size PASS_MEM_STAT);
1050 }
1051
1052 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1053
1054 void *
1055 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1056 {
1057 size_t order, word, bit, object_offset, object_size;
1058 struct page_entry *entry;
1059 void *result;
1060
1061 if (size <= 256)
1062 {
1063 order = size_lookup[size];
1064 object_size = OBJECT_SIZE (order);
1065 }
1066 else
1067 {
1068 order = 9;
1069 while (size > (object_size = OBJECT_SIZE (order)))
1070 order++;
1071 }
1072
1073 /* If there are non-full pages for this size allocation, they are at
1074 the head of the list. */
1075 entry = G.pages[order];
1076
1077 /* If there is no page for this object size, or all pages in this
1078 context are full, allocate a new page. */
1079 if (entry == NULL || entry->num_free_objects == 0)
1080 {
1081 struct page_entry *new_entry;
1082 new_entry = alloc_page (order);
1083
1084 new_entry->index_by_depth = G.by_depth_in_use;
1085 push_by_depth (new_entry, 0);
1086
1087 /* We can skip context depths, if we do, make sure we go all the
1088 way to the new depth. */
1089 while (new_entry->context_depth >= G.depth_in_use)
1090 push_depth (G.by_depth_in_use-1);
1091
1092 /* If this is the only entry, it's also the tail. If it is not
1093 the only entry, then we must update the PREV pointer of the
1094 ENTRY (G.pages[order]) to point to our new page entry. */
1095 if (entry == NULL)
1096 G.page_tails[order] = new_entry;
1097 else
1098 entry->prev = new_entry;
1099
1100 /* Put new pages at the head of the page list. By definition the
1101 entry at the head of the list always has a NULL pointer. */
1102 new_entry->next = entry;
1103 new_entry->prev = NULL;
1104 entry = new_entry;
1105 G.pages[order] = new_entry;
1106
1107 /* For a new page, we know the word and bit positions (in the
1108 in_use bitmap) of the first available object -- they're zero. */
1109 new_entry->next_bit_hint = 1;
1110 word = 0;
1111 bit = 0;
1112 object_offset = 0;
1113 }
1114 else
1115 {
1116 /* First try to use the hint left from the previous allocation
1117 to locate a clear bit in the in-use bitmap. We've made sure
1118 that the one-past-the-end bit is always set, so if the hint
1119 has run over, this test will fail. */
1120 unsigned hint = entry->next_bit_hint;
1121 word = hint / HOST_BITS_PER_LONG;
1122 bit = hint % HOST_BITS_PER_LONG;
1123
1124 /* If the hint didn't work, scan the bitmap from the beginning. */
1125 if ((entry->in_use_p[word] >> bit) & 1)
1126 {
1127 word = bit = 0;
1128 while (~entry->in_use_p[word] == 0)
1129 ++word;
1130
1131 #if GCC_VERSION >= 3004
1132 bit = __builtin_ctzl (~entry->in_use_p[word]);
1133 #else
1134 while ((entry->in_use_p[word] >> bit) & 1)
1135 ++bit;
1136 #endif
1137
1138 hint = word * HOST_BITS_PER_LONG + bit;
1139 }
1140
1141 /* Next time, try the next bit. */
1142 entry->next_bit_hint = hint + 1;
1143
1144 object_offset = hint * object_size;
1145 }
1146
1147 /* Set the in-use bit. */
1148 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1149
1150 /* Keep a running total of the number of free objects. If this page
1151 fills up, we may have to move it to the end of the list if the
1152 next page isn't full. If the next page is full, all subsequent
1153 pages are full, so there's no need to move it. */
1154 if (--entry->num_free_objects == 0
1155 && entry->next != NULL
1156 && entry->next->num_free_objects > 0)
1157 {
1158 /* We have a new head for the list. */
1159 G.pages[order] = entry->next;
1160
1161 /* We are moving ENTRY to the end of the page table list.
1162 The new page at the head of the list will have NULL in
1163 its PREV field and ENTRY will have NULL in its NEXT field. */
1164 entry->next->prev = NULL;
1165 entry->next = NULL;
1166
1167 /* Append ENTRY to the tail of the list. */
1168 entry->prev = G.page_tails[order];
1169 G.page_tails[order]->next = entry;
1170 G.page_tails[order] = entry;
1171 }
1172
1173 /* Calculate the object's address. */
1174 result = entry->page + object_offset;
1175 #ifdef GATHER_STATISTICS
1176 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1177 result PASS_MEM_STAT);
1178 #endif
1179
1180 #ifdef ENABLE_GC_CHECKING
1181 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1182 exact same semantics in presence of memory bugs, regardless of
1183 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1184 handle to avoid handle leak. */
1185 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
1186
1187 /* `Poison' the entire allocated object, including any padding at
1188 the end. */
1189 memset (result, 0xaf, object_size);
1190
1191 /* Make the bytes after the end of the object unaccessible. Discard the
1192 handle to avoid handle leak. */
1193 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1194 object_size - size));
1195 #endif
1196
1197 /* Tell Valgrind that the memory is there, but its content isn't
1198 defined. The bytes at the end of the object are still marked
1199 unaccessible. */
1200 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1201
1202 /* Keep track of how many bytes are being allocated. This
1203 information is used in deciding when to collect. */
1204 G.allocated += object_size;
1205
1206 #ifdef GATHER_STATISTICS
1207 {
1208 size_t overhead = object_size - size;
1209
1210 G.stats.total_overhead += overhead;
1211 G.stats.total_allocated += object_size;
1212 G.stats.total_overhead_per_order[order] += overhead;
1213 G.stats.total_allocated_per_order[order] += object_size;
1214
1215 if (size <= 32)
1216 {
1217 G.stats.total_overhead_under32 += overhead;
1218 G.stats.total_allocated_under32 += object_size;
1219 }
1220 if (size <= 64)
1221 {
1222 G.stats.total_overhead_under64 += overhead;
1223 G.stats.total_allocated_under64 += object_size;
1224 }
1225 if (size <= 128)
1226 {
1227 G.stats.total_overhead_under128 += overhead;
1228 G.stats.total_allocated_under128 += object_size;
1229 }
1230 }
1231 #endif
1232
1233 if (GGC_DEBUG_LEVEL >= 3)
1234 fprintf (G.debug_file,
1235 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1236 (unsigned long) size, (unsigned long) object_size, result,
1237 (void *) entry);
1238
1239 return result;
1240 }
1241
1242 /* If P is not marked, marks it and return false. Otherwise return true.
1243 P must have been allocated by the GC allocator; it mustn't point to
1244 static objects, stack variables, or memory allocated with malloc. */
1245
1246 int
1247 ggc_set_mark (const void *p)
1248 {
1249 page_entry *entry;
1250 unsigned bit, word;
1251 unsigned long mask;
1252
1253 /* Look up the page on which the object is alloced. If the object
1254 wasn't allocated by the collector, we'll probably die. */
1255 entry = lookup_page_table_entry (p);
1256 gcc_assert (entry);
1257
1258 /* Calculate the index of the object on the page; this is its bit
1259 position in the in_use_p bitmap. */
1260 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1261 word = bit / HOST_BITS_PER_LONG;
1262 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1263
1264 /* If the bit was previously set, skip it. */
1265 if (entry->in_use_p[word] & mask)
1266 return 1;
1267
1268 /* Otherwise set it, and decrement the free object count. */
1269 entry->in_use_p[word] |= mask;
1270 entry->num_free_objects -= 1;
1271
1272 if (GGC_DEBUG_LEVEL >= 4)
1273 fprintf (G.debug_file, "Marking %p\n", p);
1274
1275 return 0;
1276 }
1277
1278 /* Return 1 if P has been marked, zero otherwise.
1279 P must have been allocated by the GC allocator; it mustn't point to
1280 static objects, stack variables, or memory allocated with malloc. */
1281
1282 int
1283 ggc_marked_p (const void *p)
1284 {
1285 page_entry *entry;
1286 unsigned bit, word;
1287 unsigned long mask;
1288
1289 /* Look up the page on which the object is alloced. If the object
1290 wasn't allocated by the collector, we'll probably die. */
1291 entry = lookup_page_table_entry (p);
1292 gcc_assert (entry);
1293
1294 /* Calculate the index of the object on the page; this is its bit
1295 position in the in_use_p bitmap. */
1296 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1297 word = bit / HOST_BITS_PER_LONG;
1298 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1299
1300 return (entry->in_use_p[word] & mask) != 0;
1301 }
1302
1303 /* Return the size of the gc-able object P. */
1304
1305 size_t
1306 ggc_get_size (const void *p)
1307 {
1308 page_entry *pe = lookup_page_table_entry (p);
1309 return OBJECT_SIZE (pe->order);
1310 }
1311
1312 /* Release the memory for object P. */
1313
1314 void
1315 ggc_free (void *p)
1316 {
1317 page_entry *pe = lookup_page_table_entry (p);
1318 size_t order = pe->order;
1319 size_t size = OBJECT_SIZE (order);
1320
1321 #ifdef GATHER_STATISTICS
1322 ggc_free_overhead (p);
1323 #endif
1324
1325 if (GGC_DEBUG_LEVEL >= 3)
1326 fprintf (G.debug_file,
1327 "Freeing object, actual size=%lu, at %p on %p\n",
1328 (unsigned long) size, p, (void *) pe);
1329
1330 #ifdef ENABLE_GC_CHECKING
1331 /* Poison the data, to indicate the data is garbage. */
1332 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1333 memset (p, 0xa5, size);
1334 #endif
1335 /* Let valgrind know the object is free. */
1336 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1337
1338 #ifdef ENABLE_GC_ALWAYS_COLLECT
1339 /* In the completely-anal-checking mode, we do *not* immediately free
1340 the data, but instead verify that the data is *actually* not
1341 reachable the next time we collect. */
1342 {
1343 struct free_object *fo = xmalloc (sizeof (struct free_object));
1344 fo->object = p;
1345 fo->next = G.free_object_list;
1346 G.free_object_list = fo;
1347 }
1348 #else
1349 {
1350 unsigned int bit_offset, word, bit;
1351
1352 G.allocated -= size;
1353
1354 /* Mark the object not-in-use. */
1355 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1356 word = bit_offset / HOST_BITS_PER_LONG;
1357 bit = bit_offset % HOST_BITS_PER_LONG;
1358 pe->in_use_p[word] &= ~(1UL << bit);
1359
1360 if (pe->num_free_objects++ == 0)
1361 {
1362 page_entry *p, *q;
1363
1364 /* If the page is completely full, then it's supposed to
1365 be after all pages that aren't. Since we've freed one
1366 object from a page that was full, we need to move the
1367 page to the head of the list.
1368
1369 PE is the node we want to move. Q is the previous node
1370 and P is the next node in the list. */
1371 q = pe->prev;
1372 if (q && q->num_free_objects == 0)
1373 {
1374 p = pe->next;
1375
1376 q->next = p;
1377
1378 /* If PE was at the end of the list, then Q becomes the
1379 new end of the list. If PE was not the end of the
1380 list, then we need to update the PREV field for P. */
1381 if (!p)
1382 G.page_tails[order] = q;
1383 else
1384 p->prev = q;
1385
1386 /* Move PE to the head of the list. */
1387 pe->next = G.pages[order];
1388 pe->prev = NULL;
1389 G.pages[order]->prev = pe;
1390 G.pages[order] = pe;
1391 }
1392
1393 /* Reset the hint bit to point to the only free object. */
1394 pe->next_bit_hint = bit_offset;
1395 }
1396 }
1397 #endif
1398 }
1399 \f
1400 /* Subroutine of init_ggc which computes the pair of numbers used to
1401 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1402
1403 This algorithm is taken from Granlund and Montgomery's paper
1404 "Division by Invariant Integers using Multiplication"
1405 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1406 constants). */
1407
1408 static void
1409 compute_inverse (unsigned order)
1410 {
1411 size_t size, inv;
1412 unsigned int e;
1413
1414 size = OBJECT_SIZE (order);
1415 e = 0;
1416 while (size % 2 == 0)
1417 {
1418 e++;
1419 size >>= 1;
1420 }
1421
1422 inv = size;
1423 while (inv * size != 1)
1424 inv = inv * (2 - inv*size);
1425
1426 DIV_MULT (order) = inv;
1427 DIV_SHIFT (order) = e;
1428 }
1429
1430 /* Initialize the ggc-mmap allocator. */
1431 void
1432 init_ggc (void)
1433 {
1434 unsigned order;
1435
1436 G.pagesize = getpagesize();
1437 G.lg_pagesize = exact_log2 (G.pagesize);
1438
1439 #ifdef HAVE_MMAP_DEV_ZERO
1440 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1441 if (G.dev_zero_fd == -1)
1442 internal_error ("open /dev/zero: %m");
1443 #endif
1444
1445 #if 0
1446 G.debug_file = fopen ("ggc-mmap.debug", "w");
1447 #else
1448 G.debug_file = stdout;
1449 #endif
1450
1451 #ifdef USING_MMAP
1452 /* StunOS has an amazing off-by-one error for the first mmap allocation
1453 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1454 believe, is an unaligned page allocation, which would cause us to
1455 hork badly if we tried to use it. */
1456 {
1457 char *p = alloc_anon (NULL, G.pagesize);
1458 struct page_entry *e;
1459 if ((size_t)p & (G.pagesize - 1))
1460 {
1461 /* How losing. Discard this one and try another. If we still
1462 can't get something useful, give up. */
1463
1464 p = alloc_anon (NULL, G.pagesize);
1465 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1466 }
1467
1468 /* We have a good page, might as well hold onto it... */
1469 e = xcalloc (1, sizeof (struct page_entry));
1470 e->bytes = G.pagesize;
1471 e->page = p;
1472 e->next = G.free_pages;
1473 G.free_pages = e;
1474 }
1475 #endif
1476
1477 /* Initialize the object size table. */
1478 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1479 object_size_table[order] = (size_t) 1 << order;
1480 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1481 {
1482 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1483
1484 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1485 so that we're sure of getting aligned memory. */
1486 s = ROUND_UP (s, MAX_ALIGNMENT);
1487 object_size_table[order] = s;
1488 }
1489
1490 /* Initialize the objects-per-page and inverse tables. */
1491 for (order = 0; order < NUM_ORDERS; ++order)
1492 {
1493 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1494 if (objects_per_page_table[order] == 0)
1495 objects_per_page_table[order] = 1;
1496 compute_inverse (order);
1497 }
1498
1499 /* Reset the size_lookup array to put appropriately sized objects in
1500 the special orders. All objects bigger than the previous power
1501 of two, but no greater than the special size, should go in the
1502 new order. */
1503 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1504 {
1505 int o;
1506 int i;
1507
1508 o = size_lookup[OBJECT_SIZE (order)];
1509 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1510 size_lookup[i] = order;
1511 }
1512
1513 G.depth_in_use = 0;
1514 G.depth_max = 10;
1515 G.depth = xmalloc (G.depth_max * sizeof (unsigned int));
1516
1517 G.by_depth_in_use = 0;
1518 G.by_depth_max = INITIAL_PTE_COUNT;
1519 G.by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
1520 G.save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
1521 }
1522
1523 /* Start a new GGC zone. */
1524
1525 struct alloc_zone *
1526 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1527 {
1528 return NULL;
1529 }
1530
1531 /* Destroy a GGC zone. */
1532 void
1533 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1534 {
1535 }
1536
1537 /* Increment the `GC context'. Objects allocated in an outer context
1538 are never freed, eliminating the need to register their roots. */
1539
1540 void
1541 ggc_push_context (void)
1542 {
1543 ++G.context_depth;
1544
1545 /* Die on wrap. */
1546 gcc_assert (G.context_depth < HOST_BITS_PER_LONG);
1547 }
1548
1549 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1550 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1551
1552 static void
1553 ggc_recalculate_in_use_p (page_entry *p)
1554 {
1555 unsigned int i;
1556 size_t num_objects;
1557
1558 /* Because the past-the-end bit in in_use_p is always set, we
1559 pretend there is one additional object. */
1560 num_objects = OBJECTS_IN_PAGE (p) + 1;
1561
1562 /* Reset the free object count. */
1563 p->num_free_objects = num_objects;
1564
1565 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1566 for (i = 0;
1567 i < CEIL (BITMAP_SIZE (num_objects),
1568 sizeof (*p->in_use_p));
1569 ++i)
1570 {
1571 unsigned long j;
1572
1573 /* Something is in use if it is marked, or if it was in use in a
1574 context further down the context stack. */
1575 p->in_use_p[i] |= save_in_use_p (p)[i];
1576
1577 /* Decrement the free object count for every object allocated. */
1578 for (j = p->in_use_p[i]; j; j >>= 1)
1579 p->num_free_objects -= (j & 1);
1580 }
1581
1582 gcc_assert (p->num_free_objects < num_objects);
1583 }
1584
1585 /* Decrement the `GC context'. All objects allocated since the
1586 previous ggc_push_context are migrated to the outer context. */
1587
1588 void
1589 ggc_pop_context (void)
1590 {
1591 unsigned long omask;
1592 unsigned int depth, i, e;
1593 #ifdef ENABLE_CHECKING
1594 unsigned int order;
1595 #endif
1596
1597 depth = --G.context_depth;
1598 omask = (unsigned long)1 << (depth + 1);
1599
1600 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1601 return;
1602
1603 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1604 G.context_depth_allocations &= omask - 1;
1605 G.context_depth_collections &= omask - 1;
1606
1607 /* The G.depth array is shortened so that the last index is the
1608 context_depth of the top element of by_depth. */
1609 if (depth+1 < G.depth_in_use)
1610 e = G.depth[depth+1];
1611 else
1612 e = G.by_depth_in_use;
1613
1614 /* We might not have any PTEs of depth depth. */
1615 if (depth < G.depth_in_use)
1616 {
1617
1618 /* First we go through all the pages at depth depth to
1619 recalculate the in use bits. */
1620 for (i = G.depth[depth]; i < e; ++i)
1621 {
1622 page_entry *p = G.by_depth[i];
1623
1624 /* Check that all of the pages really are at the depth that
1625 we expect. */
1626 gcc_assert (p->context_depth == depth);
1627 gcc_assert (p->index_by_depth == i);
1628
1629 prefetch (&save_in_use_p_i (i+8));
1630 prefetch (&save_in_use_p_i (i+16));
1631 if (save_in_use_p_i (i))
1632 {
1633 p = G.by_depth[i];
1634 ggc_recalculate_in_use_p (p);
1635 free (save_in_use_p_i (i));
1636 save_in_use_p_i (i) = 0;
1637 }
1638 }
1639 }
1640
1641 /* Then, we reset all page_entries with a depth greater than depth
1642 to be at depth. */
1643 for (i = e; i < G.by_depth_in_use; ++i)
1644 {
1645 page_entry *p = G.by_depth[i];
1646
1647 /* Check that all of the pages really are at the depth we
1648 expect. */
1649 gcc_assert (p->context_depth > depth);
1650 gcc_assert (p->index_by_depth == i);
1651 p->context_depth = depth;
1652 }
1653
1654 adjust_depth ();
1655
1656 #ifdef ENABLE_CHECKING
1657 for (order = 2; order < NUM_ORDERS; order++)
1658 {
1659 page_entry *p;
1660
1661 for (p = G.pages[order]; p != NULL; p = p->next)
1662 gcc_assert (p->context_depth < depth ||
1663 (p->context_depth == depth && !save_in_use_p (p)));
1664 }
1665 #endif
1666 }
1667 \f
1668 /* Unmark all objects. */
1669
1670 static void
1671 clear_marks (void)
1672 {
1673 unsigned order;
1674
1675 for (order = 2; order < NUM_ORDERS; order++)
1676 {
1677 page_entry *p;
1678
1679 for (p = G.pages[order]; p != NULL; p = p->next)
1680 {
1681 size_t num_objects = OBJECTS_IN_PAGE (p);
1682 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1683
1684 /* The data should be page-aligned. */
1685 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1686
1687 /* Pages that aren't in the topmost context are not collected;
1688 nevertheless, we need their in-use bit vectors to store GC
1689 marks. So, back them up first. */
1690 if (p->context_depth < G.context_depth)
1691 {
1692 if (! save_in_use_p (p))
1693 save_in_use_p (p) = xmalloc (bitmap_size);
1694 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1695 }
1696
1697 /* Reset reset the number of free objects and clear the
1698 in-use bits. These will be adjusted by mark_obj. */
1699 p->num_free_objects = num_objects;
1700 memset (p->in_use_p, 0, bitmap_size);
1701
1702 /* Make sure the one-past-the-end bit is always set. */
1703 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1704 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1705 }
1706 }
1707 }
1708
1709 /* Free all empty pages. Partially empty pages need no attention
1710 because the `mark' bit doubles as an `unused' bit. */
1711
1712 static void
1713 sweep_pages (void)
1714 {
1715 unsigned order;
1716
1717 for (order = 2; order < NUM_ORDERS; order++)
1718 {
1719 /* The last page-entry to consider, regardless of entries
1720 placed at the end of the list. */
1721 page_entry * const last = G.page_tails[order];
1722
1723 size_t num_objects;
1724 size_t live_objects;
1725 page_entry *p, *previous;
1726 int done;
1727
1728 p = G.pages[order];
1729 if (p == NULL)
1730 continue;
1731
1732 previous = NULL;
1733 do
1734 {
1735 page_entry *next = p->next;
1736
1737 /* Loop until all entries have been examined. */
1738 done = (p == last);
1739
1740 num_objects = OBJECTS_IN_PAGE (p);
1741
1742 /* Add all live objects on this page to the count of
1743 allocated memory. */
1744 live_objects = num_objects - p->num_free_objects;
1745
1746 G.allocated += OBJECT_SIZE (order) * live_objects;
1747
1748 /* Only objects on pages in the topmost context should get
1749 collected. */
1750 if (p->context_depth < G.context_depth)
1751 ;
1752
1753 /* Remove the page if it's empty. */
1754 else if (live_objects == 0)
1755 {
1756 /* If P was the first page in the list, then NEXT
1757 becomes the new first page in the list, otherwise
1758 splice P out of the forward pointers. */
1759 if (! previous)
1760 G.pages[order] = next;
1761 else
1762 previous->next = next;
1763
1764 /* Splice P out of the back pointers too. */
1765 if (next)
1766 next->prev = previous;
1767
1768 /* Are we removing the last element? */
1769 if (p == G.page_tails[order])
1770 G.page_tails[order] = previous;
1771 free_page (p);
1772 p = previous;
1773 }
1774
1775 /* If the page is full, move it to the end. */
1776 else if (p->num_free_objects == 0)
1777 {
1778 /* Don't move it if it's already at the end. */
1779 if (p != G.page_tails[order])
1780 {
1781 /* Move p to the end of the list. */
1782 p->next = NULL;
1783 p->prev = G.page_tails[order];
1784 G.page_tails[order]->next = p;
1785
1786 /* Update the tail pointer... */
1787 G.page_tails[order] = p;
1788
1789 /* ... and the head pointer, if necessary. */
1790 if (! previous)
1791 G.pages[order] = next;
1792 else
1793 previous->next = next;
1794
1795 /* And update the backpointer in NEXT if necessary. */
1796 if (next)
1797 next->prev = previous;
1798
1799 p = previous;
1800 }
1801 }
1802
1803 /* If we've fallen through to here, it's a page in the
1804 topmost context that is neither full nor empty. Such a
1805 page must precede pages at lesser context depth in the
1806 list, so move it to the head. */
1807 else if (p != G.pages[order])
1808 {
1809 previous->next = p->next;
1810
1811 /* Update the backchain in the next node if it exists. */
1812 if (p->next)
1813 p->next->prev = previous;
1814
1815 /* Move P to the head of the list. */
1816 p->next = G.pages[order];
1817 p->prev = NULL;
1818 G.pages[order]->prev = p;
1819
1820 /* Update the head pointer. */
1821 G.pages[order] = p;
1822
1823 /* Are we moving the last element? */
1824 if (G.page_tails[order] == p)
1825 G.page_tails[order] = previous;
1826 p = previous;
1827 }
1828
1829 previous = p;
1830 p = next;
1831 }
1832 while (! done);
1833
1834 /* Now, restore the in_use_p vectors for any pages from contexts
1835 other than the current one. */
1836 for (p = G.pages[order]; p; p = p->next)
1837 if (p->context_depth != G.context_depth)
1838 ggc_recalculate_in_use_p (p);
1839 }
1840 }
1841
1842 #ifdef ENABLE_GC_CHECKING
1843 /* Clobber all free objects. */
1844
1845 static void
1846 poison_pages (void)
1847 {
1848 unsigned order;
1849
1850 for (order = 2; order < NUM_ORDERS; order++)
1851 {
1852 size_t size = OBJECT_SIZE (order);
1853 page_entry *p;
1854
1855 for (p = G.pages[order]; p != NULL; p = p->next)
1856 {
1857 size_t num_objects;
1858 size_t i;
1859
1860 if (p->context_depth != G.context_depth)
1861 /* Since we don't do any collection for pages in pushed
1862 contexts, there's no need to do any poisoning. And
1863 besides, the IN_USE_P array isn't valid until we pop
1864 contexts. */
1865 continue;
1866
1867 num_objects = OBJECTS_IN_PAGE (p);
1868 for (i = 0; i < num_objects; i++)
1869 {
1870 size_t word, bit;
1871 word = i / HOST_BITS_PER_LONG;
1872 bit = i % HOST_BITS_PER_LONG;
1873 if (((p->in_use_p[word] >> bit) & 1) == 0)
1874 {
1875 char *object = p->page + i * size;
1876
1877 /* Keep poison-by-write when we expect to use Valgrind,
1878 so the exact same memory semantics is kept, in case
1879 there are memory errors. We override this request
1880 below. */
1881 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1882 memset (object, 0xa5, size);
1883
1884 /* Drop the handle to avoid handle leak. */
1885 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1886 }
1887 }
1888 }
1889 }
1890 }
1891 #else
1892 #define poison_pages()
1893 #endif
1894
1895 #ifdef ENABLE_GC_ALWAYS_COLLECT
1896 /* Validate that the reportedly free objects actually are. */
1897
1898 static void
1899 validate_free_objects (void)
1900 {
1901 struct free_object *f, *next, *still_free = NULL;
1902
1903 for (f = G.free_object_list; f ; f = next)
1904 {
1905 page_entry *pe = lookup_page_table_entry (f->object);
1906 size_t bit, word;
1907
1908 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1909 word = bit / HOST_BITS_PER_LONG;
1910 bit = bit % HOST_BITS_PER_LONG;
1911 next = f->next;
1912
1913 /* Make certain it isn't visible from any root. Notice that we
1914 do this check before sweep_pages merges save_in_use_p. */
1915 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1916
1917 /* If the object comes from an outer context, then retain the
1918 free_object entry, so that we can verify that the address
1919 isn't live on the stack in some outer context. */
1920 if (pe->context_depth != G.context_depth)
1921 {
1922 f->next = still_free;
1923 still_free = f;
1924 }
1925 else
1926 free (f);
1927 }
1928
1929 G.free_object_list = still_free;
1930 }
1931 #else
1932 #define validate_free_objects()
1933 #endif
1934
1935 /* Top level mark-and-sweep routine. */
1936
1937 void
1938 ggc_collect (void)
1939 {
1940 /* Avoid frequent unnecessary work by skipping collection if the
1941 total allocations haven't expanded much since the last
1942 collection. */
1943 float allocated_last_gc =
1944 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1945
1946 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1947
1948 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1949 return;
1950
1951 timevar_push (TV_GC);
1952 if (!quiet_flag)
1953 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1954 if (GGC_DEBUG_LEVEL >= 2)
1955 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1956
1957 /* Zero the total allocated bytes. This will be recalculated in the
1958 sweep phase. */
1959 G.allocated = 0;
1960
1961 /* Release the pages we freed the last time we collected, but didn't
1962 reuse in the interim. */
1963 release_pages ();
1964
1965 /* Indicate that we've seen collections at this context depth. */
1966 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1967
1968 clear_marks ();
1969 ggc_mark_roots ();
1970 #ifdef GATHER_STATISTICS
1971 ggc_prune_overhead_list ();
1972 #endif
1973 poison_pages ();
1974 validate_free_objects ();
1975 sweep_pages ();
1976
1977 G.allocated_last_gc = G.allocated;
1978
1979 timevar_pop (TV_GC);
1980
1981 if (!quiet_flag)
1982 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1983 if (GGC_DEBUG_LEVEL >= 2)
1984 fprintf (G.debug_file, "END COLLECTING\n");
1985 }
1986
1987 /* Print allocation statistics. */
1988 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1989 ? (x) \
1990 : ((x) < 1024*1024*10 \
1991 ? (x) / 1024 \
1992 : (x) / (1024*1024))))
1993 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1994
1995 void
1996 ggc_print_statistics (void)
1997 {
1998 struct ggc_statistics stats;
1999 unsigned int i;
2000 size_t total_overhead = 0;
2001
2002 /* Clear the statistics. */
2003 memset (&stats, 0, sizeof (stats));
2004
2005 /* Make sure collection will really occur. */
2006 G.allocated_last_gc = 0;
2007
2008 /* Collect and print the statistics common across collectors. */
2009 ggc_print_common_statistics (stderr, &stats);
2010
2011 /* Release free pages so that we will not count the bytes allocated
2012 there as part of the total allocated memory. */
2013 release_pages ();
2014
2015 /* Collect some information about the various sizes of
2016 allocation. */
2017 fprintf (stderr,
2018 "Memory still allocated at the end of the compilation process\n");
2019 fprintf (stderr, "%-5s %10s %10s %10s\n",
2020 "Size", "Allocated", "Used", "Overhead");
2021 for (i = 0; i < NUM_ORDERS; ++i)
2022 {
2023 page_entry *p;
2024 size_t allocated;
2025 size_t in_use;
2026 size_t overhead;
2027
2028 /* Skip empty entries. */
2029 if (!G.pages[i])
2030 continue;
2031
2032 overhead = allocated = in_use = 0;
2033
2034 /* Figure out the total number of bytes allocated for objects of
2035 this size, and how many of them are actually in use. Also figure
2036 out how much memory the page table is using. */
2037 for (p = G.pages[i]; p; p = p->next)
2038 {
2039 allocated += p->bytes;
2040 in_use +=
2041 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2042
2043 overhead += (sizeof (page_entry) - sizeof (long)
2044 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2045 }
2046 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2047 (unsigned long) OBJECT_SIZE (i),
2048 SCALE (allocated), STAT_LABEL (allocated),
2049 SCALE (in_use), STAT_LABEL (in_use),
2050 SCALE (overhead), STAT_LABEL (overhead));
2051 total_overhead += overhead;
2052 }
2053 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2054 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2055 SCALE (G.allocated), STAT_LABEL(G.allocated),
2056 SCALE (total_overhead), STAT_LABEL (total_overhead));
2057
2058 #ifdef GATHER_STATISTICS
2059 {
2060 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2061
2062 fprintf (stderr, "Total Overhead: %10lld\n",
2063 G.stats.total_overhead);
2064 fprintf (stderr, "Total Allocated: %10lld\n",
2065 G.stats.total_allocated);
2066
2067 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2068 G.stats.total_overhead_under32);
2069 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2070 G.stats.total_allocated_under32);
2071 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2072 G.stats.total_overhead_under64);
2073 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2074 G.stats.total_allocated_under64);
2075 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2076 G.stats.total_overhead_under128);
2077 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2078 G.stats.total_allocated_under128);
2079
2080 for (i = 0; i < NUM_ORDERS; i++)
2081 if (G.stats.total_allocated_per_order[i])
2082 {
2083 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
2084 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2085 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
2086 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2087 }
2088 }
2089 #endif
2090 }
2091 \f
2092 struct ggc_pch_data
2093 {
2094 struct ggc_pch_ondisk
2095 {
2096 unsigned totals[NUM_ORDERS];
2097 } d;
2098 size_t base[NUM_ORDERS];
2099 size_t written[NUM_ORDERS];
2100 };
2101
2102 struct ggc_pch_data *
2103 init_ggc_pch (void)
2104 {
2105 return xcalloc (sizeof (struct ggc_pch_data), 1);
2106 }
2107
2108 void
2109 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2110 size_t size, bool is_string ATTRIBUTE_UNUSED,
2111 enum gt_types_enum type ATTRIBUTE_UNUSED)
2112 {
2113 unsigned order;
2114
2115 if (size <= 256)
2116 order = size_lookup[size];
2117 else
2118 {
2119 order = 9;
2120 while (size > OBJECT_SIZE (order))
2121 order++;
2122 }
2123
2124 d->d.totals[order]++;
2125 }
2126
2127 size_t
2128 ggc_pch_total_size (struct ggc_pch_data *d)
2129 {
2130 size_t a = 0;
2131 unsigned i;
2132
2133 for (i = 0; i < NUM_ORDERS; i++)
2134 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2135 return a;
2136 }
2137
2138 void
2139 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2140 {
2141 size_t a = (size_t) base;
2142 unsigned i;
2143
2144 for (i = 0; i < NUM_ORDERS; i++)
2145 {
2146 d->base[i] = a;
2147 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2148 }
2149 }
2150
2151
2152 char *
2153 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2154 size_t size, bool is_string ATTRIBUTE_UNUSED,
2155 enum gt_types_enum type ATTRIBUTE_UNUSED)
2156 {
2157 unsigned order;
2158 char *result;
2159
2160 if (size <= 256)
2161 order = size_lookup[size];
2162 else
2163 {
2164 order = 9;
2165 while (size > OBJECT_SIZE (order))
2166 order++;
2167 }
2168
2169 result = (char *) d->base[order];
2170 d->base[order] += OBJECT_SIZE (order);
2171 return result;
2172 }
2173
2174 void
2175 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2176 FILE *f ATTRIBUTE_UNUSED)
2177 {
2178 /* Nothing to do. */
2179 }
2180
2181 void
2182 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2183 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2184 size_t size, bool is_string ATTRIBUTE_UNUSED)
2185 {
2186 unsigned order;
2187 static const char emptyBytes[256];
2188
2189 if (size <= 256)
2190 order = size_lookup[size];
2191 else
2192 {
2193 order = 9;
2194 while (size > OBJECT_SIZE (order))
2195 order++;
2196 }
2197
2198 if (fwrite (x, size, 1, f) != 1)
2199 fatal_error ("can't write PCH file: %m");
2200
2201 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2202 object out to OBJECT_SIZE(order). This happens for strings. */
2203
2204 if (size != OBJECT_SIZE (order))
2205 {
2206 unsigned padding = OBJECT_SIZE(order) - size;
2207
2208 /* To speed small writes, we use a nulled-out array that's larger
2209 than most padding requests as the source for our null bytes. This
2210 permits us to do the padding with fwrite() rather than fseek(), and
2211 limits the chance the OS may try to flush any outstanding writes. */
2212 if (padding <= sizeof(emptyBytes))
2213 {
2214 if (fwrite (emptyBytes, 1, padding, f) != padding)
2215 fatal_error ("can't write PCH file");
2216 }
2217 else
2218 {
2219 /* Larger than our buffer? Just default to fseek. */
2220 if (fseek (f, padding, SEEK_CUR) != 0)
2221 fatal_error ("can't write PCH file");
2222 }
2223 }
2224
2225 d->written[order]++;
2226 if (d->written[order] == d->d.totals[order]
2227 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2228 G.pagesize),
2229 SEEK_CUR) != 0)
2230 fatal_error ("can't write PCH file: %m");
2231 }
2232
2233 void
2234 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2235 {
2236 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2237 fatal_error ("can't write PCH file: %m");
2238 free (d);
2239 }
2240
2241 /* Move the PCH PTE entries just added to the end of by_depth, to the
2242 front. */
2243
2244 static void
2245 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2246 {
2247 unsigned i;
2248
2249 /* First, we swap the new entries to the front of the varrays. */
2250 page_entry **new_by_depth;
2251 unsigned long **new_save_in_use;
2252
2253 new_by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
2254 new_save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
2255
2256 memcpy (&new_by_depth[0],
2257 &G.by_depth[count_old_page_tables],
2258 count_new_page_tables * sizeof (void *));
2259 memcpy (&new_by_depth[count_new_page_tables],
2260 &G.by_depth[0],
2261 count_old_page_tables * sizeof (void *));
2262 memcpy (&new_save_in_use[0],
2263 &G.save_in_use[count_old_page_tables],
2264 count_new_page_tables * sizeof (void *));
2265 memcpy (&new_save_in_use[count_new_page_tables],
2266 &G.save_in_use[0],
2267 count_old_page_tables * sizeof (void *));
2268
2269 free (G.by_depth);
2270 free (G.save_in_use);
2271
2272 G.by_depth = new_by_depth;
2273 G.save_in_use = new_save_in_use;
2274
2275 /* Now update all the index_by_depth fields. */
2276 for (i = G.by_depth_in_use; i > 0; --i)
2277 {
2278 page_entry *p = G.by_depth[i-1];
2279 p->index_by_depth = i-1;
2280 }
2281
2282 /* And last, we update the depth pointers in G.depth. The first
2283 entry is already 0, and context 0 entries always start at index
2284 0, so there is nothing to update in the first slot. We need a
2285 second slot, only if we have old ptes, and if we do, they start
2286 at index count_new_page_tables. */
2287 if (count_old_page_tables)
2288 push_depth (count_new_page_tables);
2289 }
2290
2291 void
2292 ggc_pch_read (FILE *f, void *addr)
2293 {
2294 struct ggc_pch_ondisk d;
2295 unsigned i;
2296 char *offs = addr;
2297 unsigned long count_old_page_tables;
2298 unsigned long count_new_page_tables;
2299
2300 count_old_page_tables = G.by_depth_in_use;
2301
2302 /* We've just read in a PCH file. So, every object that used to be
2303 allocated is now free. */
2304 clear_marks ();
2305 #ifdef ENABLE_GC_CHECKING
2306 poison_pages ();
2307 #endif
2308
2309 /* No object read from a PCH file should ever be freed. So, set the
2310 context depth to 1, and set the depth of all the currently-allocated
2311 pages to be 1 too. PCH pages will have depth 0. */
2312 gcc_assert (!G.context_depth);
2313 G.context_depth = 1;
2314 for (i = 0; i < NUM_ORDERS; i++)
2315 {
2316 page_entry *p;
2317 for (p = G.pages[i]; p != NULL; p = p->next)
2318 p->context_depth = G.context_depth;
2319 }
2320
2321 /* Allocate the appropriate page-table entries for the pages read from
2322 the PCH file. */
2323 if (fread (&d, sizeof (d), 1, f) != 1)
2324 fatal_error ("can't read PCH file: %m");
2325
2326 for (i = 0; i < NUM_ORDERS; i++)
2327 {
2328 struct page_entry *entry;
2329 char *pte;
2330 size_t bytes;
2331 size_t num_objs;
2332 size_t j;
2333
2334 if (d.totals[i] == 0)
2335 continue;
2336
2337 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2338 num_objs = bytes / OBJECT_SIZE (i);
2339 entry = xcalloc (1, (sizeof (struct page_entry)
2340 - sizeof (long)
2341 + BITMAP_SIZE (num_objs + 1)));
2342 entry->bytes = bytes;
2343 entry->page = offs;
2344 entry->context_depth = 0;
2345 offs += bytes;
2346 entry->num_free_objects = 0;
2347 entry->order = i;
2348
2349 for (j = 0;
2350 j + HOST_BITS_PER_LONG <= num_objs + 1;
2351 j += HOST_BITS_PER_LONG)
2352 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2353 for (; j < num_objs + 1; j++)
2354 entry->in_use_p[j / HOST_BITS_PER_LONG]
2355 |= 1L << (j % HOST_BITS_PER_LONG);
2356
2357 for (pte = entry->page;
2358 pte < entry->page + entry->bytes;
2359 pte += G.pagesize)
2360 set_page_table_entry (pte, entry);
2361
2362 if (G.page_tails[i] != NULL)
2363 G.page_tails[i]->next = entry;
2364 else
2365 G.pages[i] = entry;
2366 G.page_tails[i] = entry;
2367
2368 /* We start off by just adding all the new information to the
2369 end of the varrays, later, we will move the new information
2370 to the front of the varrays, as the PCH page tables are at
2371 context 0. */
2372 push_by_depth (entry, 0);
2373 }
2374
2375 /* Now, we update the various data structures that speed page table
2376 handling. */
2377 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2378
2379 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2380
2381 /* Update the statistics. */
2382 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2383 }