]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ggc-page.c
remove more useless typedefs
[thirdparty/gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "alias.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "ggc-internal.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "cgraph.h"
34 #include "cfgloop.h"
35 #include "plugin.h"
36
37 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
38 file open. Prefer either to valloc. */
39 #ifdef HAVE_MMAP_ANON
40 # undef HAVE_MMAP_DEV_ZERO
41 # define USING_MMAP
42 #endif
43
44 #ifdef HAVE_MMAP_DEV_ZERO
45 # define USING_MMAP
46 #endif
47
48 #ifndef USING_MMAP
49 #define USING_MALLOC_PAGE_GROUPS
50 #endif
51
52 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
53 && defined(USING_MMAP)
54 # define USING_MADVISE
55 #endif
56
57 /* Strategy:
58
59 This garbage-collecting allocator allocates objects on one of a set
60 of pages. Each page can allocate objects of a single size only;
61 available sizes are powers of two starting at four bytes. The size
62 of an allocation request is rounded up to the next power of two
63 (`order'), and satisfied from the appropriate page.
64
65 Each page is recorded in a page-entry, which also maintains an
66 in-use bitmap of object positions on the page. This allows the
67 allocation state of a particular object to be flipped without
68 touching the page itself.
69
70 Each page-entry also has a context depth, which is used to track
71 pushing and popping of allocation contexts. Only objects allocated
72 in the current (highest-numbered) context may be collected.
73
74 Page entries are arranged in an array of singly-linked lists. The
75 array is indexed by the allocation size, in bits, of the pages on
76 it; i.e. all pages on a list allocate objects of the same size.
77 Pages are ordered on the list such that all non-full pages precede
78 all full pages, with non-full pages arranged in order of decreasing
79 context depth.
80
81 Empty pages (of all orders) are kept on a single page cache list,
82 and are considered first when new pages are required; they are
83 deallocated at the start of the next collection if they haven't
84 been recycled by then. */
85
86 /* Define GGC_DEBUG_LEVEL to print debugging information.
87 0: No debugging output.
88 1: GC statistics only.
89 2: Page-entry allocations/deallocations as well.
90 3: Object allocations as well.
91 4: Object marks as well. */
92 #define GGC_DEBUG_LEVEL (0)
93 \f
94 #ifndef HOST_BITS_PER_PTR
95 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
96 #endif
97
98 \f
99 /* A two-level tree is used to look up the page-entry for a given
100 pointer. Two chunks of the pointer's bits are extracted to index
101 the first and second levels of the tree, as follows:
102
103 HOST_PAGE_SIZE_BITS
104 32 | |
105 msb +----------------+----+------+------+ lsb
106 | | |
107 PAGE_L1_BITS |
108 | |
109 PAGE_L2_BITS
110
111 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
112 pages are aligned on system page boundaries. The next most
113 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
114 index values in the lookup table, respectively.
115
116 For 32-bit architectures and the settings below, there are no
117 leftover bits. For architectures with wider pointers, the lookup
118 tree points to a list of pages, which must be scanned to find the
119 correct one. */
120
121 #define PAGE_L1_BITS (8)
122 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
123 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
124 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
125
126 #define LOOKUP_L1(p) \
127 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
128
129 #define LOOKUP_L2(p) \
130 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
131
132 /* The number of objects per allocation page, for objects on a page of
133 the indicated ORDER. */
134 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
135
136 /* The number of objects in P. */
137 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
138
139 /* The size of an object on a page of the indicated ORDER. */
140 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
141
142 /* For speed, we avoid doing a general integer divide to locate the
143 offset in the allocation bitmap, by precalculating numbers M, S
144 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
145 within the page which is evenly divisible by the object size Z. */
146 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
147 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
148 #define OFFSET_TO_BIT(OFFSET, ORDER) \
149 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
150
151 /* We use this structure to determine the alignment required for
152 allocations. For power-of-two sized allocations, that's not a
153 problem, but it does matter for odd-sized allocations.
154 We do not care about alignment for floating-point types. */
155
156 struct max_alignment {
157 char c;
158 union {
159 int64_t i;
160 void *p;
161 } u;
162 };
163
164 /* The biggest alignment required. */
165
166 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
167
168
169 /* The number of extra orders, not corresponding to power-of-two sized
170 objects. */
171
172 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
173
174 #define RTL_SIZE(NSLOTS) \
175 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
176
177 #define TREE_EXP_SIZE(OPS) \
178 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
179
180 /* The Ith entry is the maximum size of an object to be stored in the
181 Ith extra order. Adding a new entry to this array is the *only*
182 thing you need to do to add a new special allocation size. */
183
184 static const size_t extra_order_size_table[] = {
185 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
186 There are a lot of structures with these sizes and explicitly
187 listing them risks orders being dropped because they changed size. */
188 MAX_ALIGNMENT * 3,
189 MAX_ALIGNMENT * 5,
190 MAX_ALIGNMENT * 6,
191 MAX_ALIGNMENT * 7,
192 MAX_ALIGNMENT * 9,
193 MAX_ALIGNMENT * 10,
194 MAX_ALIGNMENT * 11,
195 MAX_ALIGNMENT * 12,
196 MAX_ALIGNMENT * 13,
197 MAX_ALIGNMENT * 14,
198 MAX_ALIGNMENT * 15,
199 sizeof (struct tree_decl_non_common),
200 sizeof (struct tree_field_decl),
201 sizeof (struct tree_parm_decl),
202 sizeof (struct tree_var_decl),
203 sizeof (struct tree_type_non_common),
204 sizeof (struct function),
205 sizeof (struct basic_block_def),
206 sizeof (struct cgraph_node),
207 sizeof (struct loop),
208 };
209
210 /* The total number of orders. */
211
212 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
213
214 /* Compute the smallest nonnegative number which when added to X gives
215 a multiple of F. */
216
217 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
218
219 /* Compute the smallest multiple of F that is >= X. */
220
221 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
222
223 /* Round X to next multiple of the page size */
224
225 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
226
227 /* The Ith entry is the number of objects on a page or order I. */
228
229 static unsigned objects_per_page_table[NUM_ORDERS];
230
231 /* The Ith entry is the size of an object on a page of order I. */
232
233 static size_t object_size_table[NUM_ORDERS];
234
235 /* The Ith entry is a pair of numbers (mult, shift) such that
236 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
237 for all k evenly divisible by OBJECT_SIZE(I). */
238
239 static struct
240 {
241 size_t mult;
242 unsigned int shift;
243 }
244 inverse_table[NUM_ORDERS];
245
246 /* A page_entry records the status of an allocation page. This
247 structure is dynamically sized to fit the bitmap in_use_p. */
248 struct page_entry
249 {
250 /* The next page-entry with objects of the same size, or NULL if
251 this is the last page-entry. */
252 struct page_entry *next;
253
254 /* The previous page-entry with objects of the same size, or NULL if
255 this is the first page-entry. The PREV pointer exists solely to
256 keep the cost of ggc_free manageable. */
257 struct page_entry *prev;
258
259 /* The number of bytes allocated. (This will always be a multiple
260 of the host system page size.) */
261 size_t bytes;
262
263 /* The address at which the memory is allocated. */
264 char *page;
265
266 #ifdef USING_MALLOC_PAGE_GROUPS
267 /* Back pointer to the page group this page came from. */
268 struct page_group *group;
269 #endif
270
271 /* This is the index in the by_depth varray where this page table
272 can be found. */
273 unsigned long index_by_depth;
274
275 /* Context depth of this page. */
276 unsigned short context_depth;
277
278 /* The number of free objects remaining on this page. */
279 unsigned short num_free_objects;
280
281 /* A likely candidate for the bit position of a free object for the
282 next allocation from this page. */
283 unsigned short next_bit_hint;
284
285 /* The lg of size of objects allocated from this page. */
286 unsigned char order;
287
288 /* Discarded page? */
289 bool discarded;
290
291 /* A bit vector indicating whether or not objects are in use. The
292 Nth bit is one if the Nth object on this page is allocated. This
293 array is dynamically sized. */
294 unsigned long in_use_p[1];
295 };
296
297 #ifdef USING_MALLOC_PAGE_GROUPS
298 /* A page_group describes a large allocation from malloc, from which
299 we parcel out aligned pages. */
300 struct page_group
301 {
302 /* A linked list of all extant page groups. */
303 struct page_group *next;
304
305 /* The address we received from malloc. */
306 char *allocation;
307
308 /* The size of the block. */
309 size_t alloc_size;
310
311 /* A bitmask of pages in use. */
312 unsigned int in_use;
313 };
314 #endif
315
316 #if HOST_BITS_PER_PTR <= 32
317
318 /* On 32-bit hosts, we use a two level page table, as pictured above. */
319 typedef page_entry **page_table[PAGE_L1_SIZE];
320
321 #else
322
323 /* On 64-bit hosts, we use the same two level page tables plus a linked
324 list that disambiguates the top 32-bits. There will almost always be
325 exactly one entry in the list. */
326 typedef struct page_table_chain
327 {
328 struct page_table_chain *next;
329 size_t high_bits;
330 page_entry **table[PAGE_L1_SIZE];
331 } *page_table;
332
333 #endif
334
335 class finalizer
336 {
337 public:
338 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
339
340 void *addr () const { return m_addr; }
341
342 void call () const { m_function (m_addr); }
343
344 private:
345 void *m_addr;
346 void (*m_function)(void *);
347 };
348
349 class vec_finalizer
350 {
351 public:
352 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
353 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
354
355 void call () const
356 {
357 for (size_t i = 0; i < m_n_objects; i++)
358 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
359 }
360
361 void *addr () const { return reinterpret_cast<void *> (m_addr); }
362
363 private:
364 uintptr_t m_addr;
365 void (*m_function)(void *);
366 size_t m_object_size;
367 size_t m_n_objects;
368 };
369
370 #ifdef ENABLE_GC_ALWAYS_COLLECT
371 /* List of free objects to be verified as actually free on the
372 next collection. */
373 struct free_object
374 {
375 void *object;
376 struct free_object *next;
377 };
378 #endif
379
380 /* The rest of the global variables. */
381 static struct ggc_globals
382 {
383 /* The Nth element in this array is a page with objects of size 2^N.
384 If there are any pages with free objects, they will be at the
385 head of the list. NULL if there are no page-entries for this
386 object size. */
387 page_entry *pages[NUM_ORDERS];
388
389 /* The Nth element in this array is the last page with objects of
390 size 2^N. NULL if there are no page-entries for this object
391 size. */
392 page_entry *page_tails[NUM_ORDERS];
393
394 /* Lookup table for associating allocation pages with object addresses. */
395 page_table lookup;
396
397 /* The system's page size. */
398 size_t pagesize;
399 size_t lg_pagesize;
400
401 /* Bytes currently allocated. */
402 size_t allocated;
403
404 /* Bytes currently allocated at the end of the last collection. */
405 size_t allocated_last_gc;
406
407 /* Total amount of memory mapped. */
408 size_t bytes_mapped;
409
410 /* Bit N set if any allocations have been done at context depth N. */
411 unsigned long context_depth_allocations;
412
413 /* Bit N set if any collections have been done at context depth N. */
414 unsigned long context_depth_collections;
415
416 /* The current depth in the context stack. */
417 unsigned short context_depth;
418
419 /* A file descriptor open to /dev/zero for reading. */
420 #if defined (HAVE_MMAP_DEV_ZERO)
421 int dev_zero_fd;
422 #endif
423
424 /* A cache of free system pages. */
425 page_entry *free_pages;
426
427 #ifdef USING_MALLOC_PAGE_GROUPS
428 page_group *page_groups;
429 #endif
430
431 /* The file descriptor for debugging output. */
432 FILE *debug_file;
433
434 /* Current number of elements in use in depth below. */
435 unsigned int depth_in_use;
436
437 /* Maximum number of elements that can be used before resizing. */
438 unsigned int depth_max;
439
440 /* Each element of this array is an index in by_depth where the given
441 depth starts. This structure is indexed by that given depth we
442 are interested in. */
443 unsigned int *depth;
444
445 /* Current number of elements in use in by_depth below. */
446 unsigned int by_depth_in_use;
447
448 /* Maximum number of elements that can be used before resizing. */
449 unsigned int by_depth_max;
450
451 /* Each element of this array is a pointer to a page_entry, all
452 page_entries can be found in here by increasing depth.
453 index_by_depth in the page_entry is the index into this data
454 structure where that page_entry can be found. This is used to
455 speed up finding all page_entries at a particular depth. */
456 page_entry **by_depth;
457
458 /* Each element is a pointer to the saved in_use_p bits, if any,
459 zero otherwise. We allocate them all together, to enable a
460 better runtime data access pattern. */
461 unsigned long **save_in_use;
462
463 /* Finalizers for single objects. */
464 vec<finalizer> finalizers;
465
466 /* Finalizers for vectors of objects. */
467 vec<vec_finalizer> vec_finalizers;
468
469 #ifdef ENABLE_GC_ALWAYS_COLLECT
470 /* List of free objects to be verified as actually free on the
471 next collection. */
472 struct free_object *free_object_list;
473 #endif
474
475 struct
476 {
477 /* Total GC-allocated memory. */
478 unsigned long long total_allocated;
479 /* Total overhead for GC-allocated memory. */
480 unsigned long long total_overhead;
481
482 /* Total allocations and overhead for sizes less than 32, 64 and 128.
483 These sizes are interesting because they are typical cache line
484 sizes. */
485
486 unsigned long long total_allocated_under32;
487 unsigned long long total_overhead_under32;
488
489 unsigned long long total_allocated_under64;
490 unsigned long long total_overhead_under64;
491
492 unsigned long long total_allocated_under128;
493 unsigned long long total_overhead_under128;
494
495 /* The allocations for each of the allocation orders. */
496 unsigned long long total_allocated_per_order[NUM_ORDERS];
497
498 /* The overhead for each of the allocation orders. */
499 unsigned long long total_overhead_per_order[NUM_ORDERS];
500 } stats;
501 } G;
502
503 /* True if a gc is currently taking place. */
504
505 static bool in_gc = false;
506
507 /* The size in bytes required to maintain a bitmap for the objects
508 on a page-entry. */
509 #define BITMAP_SIZE(Num_objects) \
510 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
511
512 /* Allocate pages in chunks of this size, to throttle calls to memory
513 allocation routines. The first page is used, the rest go onto the
514 free list. This cannot be larger than HOST_BITS_PER_INT for the
515 in_use bitmask for page_group. Hosts that need a different value
516 can override this by defining GGC_QUIRE_SIZE explicitly. */
517 #ifndef GGC_QUIRE_SIZE
518 # ifdef USING_MMAP
519 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
520 # else
521 # define GGC_QUIRE_SIZE 16
522 # endif
523 #endif
524
525 /* Initial guess as to how many page table entries we might need. */
526 #define INITIAL_PTE_COUNT 128
527 \f
528 static int ggc_allocated_p (const void *);
529 static page_entry *lookup_page_table_entry (const void *);
530 static void set_page_table_entry (void *, page_entry *);
531 #ifdef USING_MMAP
532 static char *alloc_anon (char *, size_t, bool check);
533 #endif
534 #ifdef USING_MALLOC_PAGE_GROUPS
535 static size_t page_group_index (char *, char *);
536 static void set_page_group_in_use (page_group *, char *);
537 static void clear_page_group_in_use (page_group *, char *);
538 #endif
539 static struct page_entry * alloc_page (unsigned);
540 static void free_page (struct page_entry *);
541 static void release_pages (void);
542 static void clear_marks (void);
543 static void sweep_pages (void);
544 static void ggc_recalculate_in_use_p (page_entry *);
545 static void compute_inverse (unsigned);
546 static inline void adjust_depth (void);
547 static void move_ptes_to_front (int, int);
548
549 void debug_print_page_list (int);
550 static void push_depth (unsigned int);
551 static void push_by_depth (page_entry *, unsigned long *);
552
553 /* Push an entry onto G.depth. */
554
555 inline static void
556 push_depth (unsigned int i)
557 {
558 if (G.depth_in_use >= G.depth_max)
559 {
560 G.depth_max *= 2;
561 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
562 }
563 G.depth[G.depth_in_use++] = i;
564 }
565
566 /* Push an entry onto G.by_depth and G.save_in_use. */
567
568 inline static void
569 push_by_depth (page_entry *p, unsigned long *s)
570 {
571 if (G.by_depth_in_use >= G.by_depth_max)
572 {
573 G.by_depth_max *= 2;
574 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
575 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
576 G.by_depth_max);
577 }
578 G.by_depth[G.by_depth_in_use] = p;
579 G.save_in_use[G.by_depth_in_use++] = s;
580 }
581
582 #if (GCC_VERSION < 3001)
583 #define prefetch(X) ((void) X)
584 #else
585 #define prefetch(X) __builtin_prefetch (X)
586 #endif
587
588 #define save_in_use_p_i(__i) \
589 (G.save_in_use[__i])
590 #define save_in_use_p(__p) \
591 (save_in_use_p_i (__p->index_by_depth))
592
593 /* Returns nonzero if P was allocated in GC'able memory. */
594
595 static inline int
596 ggc_allocated_p (const void *p)
597 {
598 page_entry ***base;
599 size_t L1, L2;
600
601 #if HOST_BITS_PER_PTR <= 32
602 base = &G.lookup[0];
603 #else
604 page_table table = G.lookup;
605 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
606 while (1)
607 {
608 if (table == NULL)
609 return 0;
610 if (table->high_bits == high_bits)
611 break;
612 table = table->next;
613 }
614 base = &table->table[0];
615 #endif
616
617 /* Extract the level 1 and 2 indices. */
618 L1 = LOOKUP_L1 (p);
619 L2 = LOOKUP_L2 (p);
620
621 return base[L1] && base[L1][L2];
622 }
623
624 /* Traverse the page table and find the entry for a page.
625 Die (probably) if the object wasn't allocated via GC. */
626
627 static inline page_entry *
628 lookup_page_table_entry (const void *p)
629 {
630 page_entry ***base;
631 size_t L1, L2;
632
633 #if HOST_BITS_PER_PTR <= 32
634 base = &G.lookup[0];
635 #else
636 page_table table = G.lookup;
637 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
638 while (table->high_bits != high_bits)
639 table = table->next;
640 base = &table->table[0];
641 #endif
642
643 /* Extract the level 1 and 2 indices. */
644 L1 = LOOKUP_L1 (p);
645 L2 = LOOKUP_L2 (p);
646
647 return base[L1][L2];
648 }
649
650 /* Set the page table entry for a page. */
651
652 static void
653 set_page_table_entry (void *p, page_entry *entry)
654 {
655 page_entry ***base;
656 size_t L1, L2;
657
658 #if HOST_BITS_PER_PTR <= 32
659 base = &G.lookup[0];
660 #else
661 page_table table;
662 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
663 for (table = G.lookup; table; table = table->next)
664 if (table->high_bits == high_bits)
665 goto found;
666
667 /* Not found -- allocate a new table. */
668 table = XCNEW (struct page_table_chain);
669 table->next = G.lookup;
670 table->high_bits = high_bits;
671 G.lookup = table;
672 found:
673 base = &table->table[0];
674 #endif
675
676 /* Extract the level 1 and 2 indices. */
677 L1 = LOOKUP_L1 (p);
678 L2 = LOOKUP_L2 (p);
679
680 if (base[L1] == NULL)
681 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
682
683 base[L1][L2] = entry;
684 }
685
686 /* Prints the page-entry for object size ORDER, for debugging. */
687
688 DEBUG_FUNCTION void
689 debug_print_page_list (int order)
690 {
691 page_entry *p;
692 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
693 (void *) G.page_tails[order]);
694 p = G.pages[order];
695 while (p != NULL)
696 {
697 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
698 p->num_free_objects);
699 p = p->next;
700 }
701 printf ("NULL\n");
702 fflush (stdout);
703 }
704
705 #ifdef USING_MMAP
706 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
707 (if non-null). The ifdef structure here is intended to cause a
708 compile error unless exactly one of the HAVE_* is defined. */
709
710 static inline char *
711 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
712 {
713 #ifdef HAVE_MMAP_ANON
714 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
715 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
716 #endif
717 #ifdef HAVE_MMAP_DEV_ZERO
718 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
719 MAP_PRIVATE, G.dev_zero_fd, 0);
720 #endif
721
722 if (page == (char *) MAP_FAILED)
723 {
724 if (!check)
725 return NULL;
726 perror ("virtual memory exhausted");
727 exit (FATAL_EXIT_CODE);
728 }
729
730 /* Remember that we allocated this memory. */
731 G.bytes_mapped += size;
732
733 /* Pretend we don't have access to the allocated pages. We'll enable
734 access to smaller pieces of the area in ggc_internal_alloc. Discard the
735 handle to avoid handle leak. */
736 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
737
738 return page;
739 }
740 #endif
741 #ifdef USING_MALLOC_PAGE_GROUPS
742 /* Compute the index for this page into the page group. */
743
744 static inline size_t
745 page_group_index (char *allocation, char *page)
746 {
747 return (size_t) (page - allocation) >> G.lg_pagesize;
748 }
749
750 /* Set and clear the in_use bit for this page in the page group. */
751
752 static inline void
753 set_page_group_in_use (page_group *group, char *page)
754 {
755 group->in_use |= 1 << page_group_index (group->allocation, page);
756 }
757
758 static inline void
759 clear_page_group_in_use (page_group *group, char *page)
760 {
761 group->in_use &= ~(1 << page_group_index (group->allocation, page));
762 }
763 #endif
764
765 /* Allocate a new page for allocating objects of size 2^ORDER,
766 and return an entry for it. The entry is not added to the
767 appropriate page_table list. */
768
769 static inline struct page_entry *
770 alloc_page (unsigned order)
771 {
772 struct page_entry *entry, *p, **pp;
773 char *page;
774 size_t num_objects;
775 size_t bitmap_size;
776 size_t page_entry_size;
777 size_t entry_size;
778 #ifdef USING_MALLOC_PAGE_GROUPS
779 page_group *group;
780 #endif
781
782 num_objects = OBJECTS_PER_PAGE (order);
783 bitmap_size = BITMAP_SIZE (num_objects + 1);
784 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
785 entry_size = num_objects * OBJECT_SIZE (order);
786 if (entry_size < G.pagesize)
787 entry_size = G.pagesize;
788 entry_size = PAGE_ALIGN (entry_size);
789
790 entry = NULL;
791 page = NULL;
792
793 /* Check the list of free pages for one we can use. */
794 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
795 if (p->bytes == entry_size)
796 break;
797
798 if (p != NULL)
799 {
800 if (p->discarded)
801 G.bytes_mapped += p->bytes;
802 p->discarded = false;
803
804 /* Recycle the allocated memory from this page ... */
805 *pp = p->next;
806 page = p->page;
807
808 #ifdef USING_MALLOC_PAGE_GROUPS
809 group = p->group;
810 #endif
811
812 /* ... and, if possible, the page entry itself. */
813 if (p->order == order)
814 {
815 entry = p;
816 memset (entry, 0, page_entry_size);
817 }
818 else
819 free (p);
820 }
821 #ifdef USING_MMAP
822 else if (entry_size == G.pagesize)
823 {
824 /* We want just one page. Allocate a bunch of them and put the
825 extras on the freelist. (Can only do this optimization with
826 mmap for backing store.) */
827 struct page_entry *e, *f = G.free_pages;
828 int i, entries = GGC_QUIRE_SIZE;
829
830 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
831 if (page == NULL)
832 {
833 page = alloc_anon (NULL, G.pagesize, true);
834 entries = 1;
835 }
836
837 /* This loop counts down so that the chain will be in ascending
838 memory order. */
839 for (i = entries - 1; i >= 1; i--)
840 {
841 e = XCNEWVAR (struct page_entry, page_entry_size);
842 e->order = order;
843 e->bytes = G.pagesize;
844 e->page = page + (i << G.lg_pagesize);
845 e->next = f;
846 f = e;
847 }
848
849 G.free_pages = f;
850 }
851 else
852 page = alloc_anon (NULL, entry_size, true);
853 #endif
854 #ifdef USING_MALLOC_PAGE_GROUPS
855 else
856 {
857 /* Allocate a large block of memory and serve out the aligned
858 pages therein. This results in much less memory wastage
859 than the traditional implementation of valloc. */
860
861 char *allocation, *a, *enda;
862 size_t alloc_size, head_slop, tail_slop;
863 int multiple_pages = (entry_size == G.pagesize);
864
865 if (multiple_pages)
866 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
867 else
868 alloc_size = entry_size + G.pagesize - 1;
869 allocation = XNEWVEC (char, alloc_size);
870
871 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
872 head_slop = page - allocation;
873 if (multiple_pages)
874 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
875 else
876 tail_slop = alloc_size - entry_size - head_slop;
877 enda = allocation + alloc_size - tail_slop;
878
879 /* We allocated N pages, which are likely not aligned, leaving
880 us with N-1 usable pages. We plan to place the page_group
881 structure somewhere in the slop. */
882 if (head_slop >= sizeof (page_group))
883 group = (page_group *)page - 1;
884 else
885 {
886 /* We magically got an aligned allocation. Too bad, we have
887 to waste a page anyway. */
888 if (tail_slop == 0)
889 {
890 enda -= G.pagesize;
891 tail_slop += G.pagesize;
892 }
893 gcc_assert (tail_slop >= sizeof (page_group));
894 group = (page_group *)enda;
895 tail_slop -= sizeof (page_group);
896 }
897
898 /* Remember that we allocated this memory. */
899 group->next = G.page_groups;
900 group->allocation = allocation;
901 group->alloc_size = alloc_size;
902 group->in_use = 0;
903 G.page_groups = group;
904 G.bytes_mapped += alloc_size;
905
906 /* If we allocated multiple pages, put the rest on the free list. */
907 if (multiple_pages)
908 {
909 struct page_entry *e, *f = G.free_pages;
910 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
911 {
912 e = XCNEWVAR (struct page_entry, page_entry_size);
913 e->order = order;
914 e->bytes = G.pagesize;
915 e->page = a;
916 e->group = group;
917 e->next = f;
918 f = e;
919 }
920 G.free_pages = f;
921 }
922 }
923 #endif
924
925 if (entry == NULL)
926 entry = XCNEWVAR (struct page_entry, page_entry_size);
927
928 entry->bytes = entry_size;
929 entry->page = page;
930 entry->context_depth = G.context_depth;
931 entry->order = order;
932 entry->num_free_objects = num_objects;
933 entry->next_bit_hint = 1;
934
935 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
936
937 #ifdef USING_MALLOC_PAGE_GROUPS
938 entry->group = group;
939 set_page_group_in_use (group, page);
940 #endif
941
942 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
943 increment the hint. */
944 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
945 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
946
947 set_page_table_entry (page, entry);
948
949 if (GGC_DEBUG_LEVEL >= 2)
950 fprintf (G.debug_file,
951 "Allocating page at %p, object size=%lu, data %p-%p\n",
952 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
953 page + entry_size - 1);
954
955 return entry;
956 }
957
958 /* Adjust the size of G.depth so that no index greater than the one
959 used by the top of the G.by_depth is used. */
960
961 static inline void
962 adjust_depth (void)
963 {
964 page_entry *top;
965
966 if (G.by_depth_in_use)
967 {
968 top = G.by_depth[G.by_depth_in_use-1];
969
970 /* Peel back indices in depth that index into by_depth, so that
971 as new elements are added to by_depth, we note the indices
972 of those elements, if they are for new context depths. */
973 while (G.depth_in_use > (size_t)top->context_depth+1)
974 --G.depth_in_use;
975 }
976 }
977
978 /* For a page that is no longer needed, put it on the free page list. */
979
980 static void
981 free_page (page_entry *entry)
982 {
983 if (GGC_DEBUG_LEVEL >= 2)
984 fprintf (G.debug_file,
985 "Deallocating page at %p, data %p-%p\n", (void *) entry,
986 entry->page, entry->page + entry->bytes - 1);
987
988 /* Mark the page as inaccessible. Discard the handle to avoid handle
989 leak. */
990 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
991
992 set_page_table_entry (entry->page, NULL);
993
994 #ifdef USING_MALLOC_PAGE_GROUPS
995 clear_page_group_in_use (entry->group, entry->page);
996 #endif
997
998 if (G.by_depth_in_use > 1)
999 {
1000 page_entry *top = G.by_depth[G.by_depth_in_use-1];
1001 int i = entry->index_by_depth;
1002
1003 /* We cannot free a page from a context deeper than the current
1004 one. */
1005 gcc_assert (entry->context_depth == top->context_depth);
1006
1007 /* Put top element into freed slot. */
1008 G.by_depth[i] = top;
1009 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1010 top->index_by_depth = i;
1011 }
1012 --G.by_depth_in_use;
1013
1014 adjust_depth ();
1015
1016 entry->next = G.free_pages;
1017 G.free_pages = entry;
1018 }
1019
1020 /* Release the free page cache to the system. */
1021
1022 static void
1023 release_pages (void)
1024 {
1025 #ifdef USING_MADVISE
1026 page_entry *p, *start_p;
1027 char *start;
1028 size_t len;
1029 size_t mapped_len;
1030 page_entry *next, *prev, *newprev;
1031 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1032
1033 /* First free larger continuous areas to the OS.
1034 This allows other allocators to grab these areas if needed.
1035 This is only done on larger chunks to avoid fragmentation.
1036 This does not always work because the free_pages list is only
1037 approximately sorted. */
1038
1039 p = G.free_pages;
1040 prev = NULL;
1041 while (p)
1042 {
1043 start = p->page;
1044 start_p = p;
1045 len = 0;
1046 mapped_len = 0;
1047 newprev = prev;
1048 while (p && p->page == start + len)
1049 {
1050 len += p->bytes;
1051 if (!p->discarded)
1052 mapped_len += p->bytes;
1053 newprev = p;
1054 p = p->next;
1055 }
1056 if (len >= free_unit)
1057 {
1058 while (start_p != p)
1059 {
1060 next = start_p->next;
1061 free (start_p);
1062 start_p = next;
1063 }
1064 munmap (start, len);
1065 if (prev)
1066 prev->next = p;
1067 else
1068 G.free_pages = p;
1069 G.bytes_mapped -= mapped_len;
1070 continue;
1071 }
1072 prev = newprev;
1073 }
1074
1075 /* Now give back the fragmented pages to the OS, but keep the address
1076 space to reuse it next time. */
1077
1078 for (p = G.free_pages; p; )
1079 {
1080 if (p->discarded)
1081 {
1082 p = p->next;
1083 continue;
1084 }
1085 start = p->page;
1086 len = p->bytes;
1087 start_p = p;
1088 p = p->next;
1089 while (p && p->page == start + len)
1090 {
1091 len += p->bytes;
1092 p = p->next;
1093 }
1094 /* Give the page back to the kernel, but don't free the mapping.
1095 This avoids fragmentation in the virtual memory map of the
1096 process. Next time we can reuse it by just touching it. */
1097 madvise (start, len, MADV_DONTNEED);
1098 /* Don't count those pages as mapped to not touch the garbage collector
1099 unnecessarily. */
1100 G.bytes_mapped -= len;
1101 while (start_p != p)
1102 {
1103 start_p->discarded = true;
1104 start_p = start_p->next;
1105 }
1106 }
1107 #endif
1108 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1109 page_entry *p, *next;
1110 char *start;
1111 size_t len;
1112
1113 /* Gather up adjacent pages so they are unmapped together. */
1114 p = G.free_pages;
1115
1116 while (p)
1117 {
1118 start = p->page;
1119 next = p->next;
1120 len = p->bytes;
1121 free (p);
1122 p = next;
1123
1124 while (p && p->page == start + len)
1125 {
1126 next = p->next;
1127 len += p->bytes;
1128 free (p);
1129 p = next;
1130 }
1131
1132 munmap (start, len);
1133 G.bytes_mapped -= len;
1134 }
1135
1136 G.free_pages = NULL;
1137 #endif
1138 #ifdef USING_MALLOC_PAGE_GROUPS
1139 page_entry **pp, *p;
1140 page_group **gp, *g;
1141
1142 /* Remove all pages from free page groups from the list. */
1143 pp = &G.free_pages;
1144 while ((p = *pp) != NULL)
1145 if (p->group->in_use == 0)
1146 {
1147 *pp = p->next;
1148 free (p);
1149 }
1150 else
1151 pp = &p->next;
1152
1153 /* Remove all free page groups, and release the storage. */
1154 gp = &G.page_groups;
1155 while ((g = *gp) != NULL)
1156 if (g->in_use == 0)
1157 {
1158 *gp = g->next;
1159 G.bytes_mapped -= g->alloc_size;
1160 free (g->allocation);
1161 }
1162 else
1163 gp = &g->next;
1164 #endif
1165 }
1166
1167 /* This table provides a fast way to determine ceil(log_2(size)) for
1168 allocation requests. The minimum allocation size is eight bytes. */
1169 #define NUM_SIZE_LOOKUP 512
1170 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1171 {
1172 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1173 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1174 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1175 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1176 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1177 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1178 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1179 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1180 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1181 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1182 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1183 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1184 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1185 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1186 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1187 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1188 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1189 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1190 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1192 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1193 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1194 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1195 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1204 };
1205
1206 /* For a given size of memory requested for allocation, return the
1207 actual size that is going to be allocated, as well as the size
1208 order. */
1209
1210 static void
1211 ggc_round_alloc_size_1 (size_t requested_size,
1212 size_t *size_order,
1213 size_t *alloced_size)
1214 {
1215 size_t order, object_size;
1216
1217 if (requested_size < NUM_SIZE_LOOKUP)
1218 {
1219 order = size_lookup[requested_size];
1220 object_size = OBJECT_SIZE (order);
1221 }
1222 else
1223 {
1224 order = 10;
1225 while (requested_size > (object_size = OBJECT_SIZE (order)))
1226 order++;
1227 }
1228
1229 if (size_order)
1230 *size_order = order;
1231 if (alloced_size)
1232 *alloced_size = object_size;
1233 }
1234
1235 /* For a given size of memory requested for allocation, return the
1236 actual size that is going to be allocated. */
1237
1238 size_t
1239 ggc_round_alloc_size (size_t requested_size)
1240 {
1241 size_t size = 0;
1242
1243 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1244 return size;
1245 }
1246
1247 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1248
1249 void *
1250 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1251 MEM_STAT_DECL)
1252 {
1253 size_t order, word, bit, object_offset, object_size;
1254 struct page_entry *entry;
1255 void *result;
1256
1257 ggc_round_alloc_size_1 (size, &order, &object_size);
1258
1259 /* If there are non-full pages for this size allocation, they are at
1260 the head of the list. */
1261 entry = G.pages[order];
1262
1263 /* If there is no page for this object size, or all pages in this
1264 context are full, allocate a new page. */
1265 if (entry == NULL || entry->num_free_objects == 0)
1266 {
1267 struct page_entry *new_entry;
1268 new_entry = alloc_page (order);
1269
1270 new_entry->index_by_depth = G.by_depth_in_use;
1271 push_by_depth (new_entry, 0);
1272
1273 /* We can skip context depths, if we do, make sure we go all the
1274 way to the new depth. */
1275 while (new_entry->context_depth >= G.depth_in_use)
1276 push_depth (G.by_depth_in_use-1);
1277
1278 /* If this is the only entry, it's also the tail. If it is not
1279 the only entry, then we must update the PREV pointer of the
1280 ENTRY (G.pages[order]) to point to our new page entry. */
1281 if (entry == NULL)
1282 G.page_tails[order] = new_entry;
1283 else
1284 entry->prev = new_entry;
1285
1286 /* Put new pages at the head of the page list. By definition the
1287 entry at the head of the list always has a NULL pointer. */
1288 new_entry->next = entry;
1289 new_entry->prev = NULL;
1290 entry = new_entry;
1291 G.pages[order] = new_entry;
1292
1293 /* For a new page, we know the word and bit positions (in the
1294 in_use bitmap) of the first available object -- they're zero. */
1295 new_entry->next_bit_hint = 1;
1296 word = 0;
1297 bit = 0;
1298 object_offset = 0;
1299 }
1300 else
1301 {
1302 /* First try to use the hint left from the previous allocation
1303 to locate a clear bit in the in-use bitmap. We've made sure
1304 that the one-past-the-end bit is always set, so if the hint
1305 has run over, this test will fail. */
1306 unsigned hint = entry->next_bit_hint;
1307 word = hint / HOST_BITS_PER_LONG;
1308 bit = hint % HOST_BITS_PER_LONG;
1309
1310 /* If the hint didn't work, scan the bitmap from the beginning. */
1311 if ((entry->in_use_p[word] >> bit) & 1)
1312 {
1313 word = bit = 0;
1314 while (~entry->in_use_p[word] == 0)
1315 ++word;
1316
1317 #if GCC_VERSION >= 3004
1318 bit = __builtin_ctzl (~entry->in_use_p[word]);
1319 #else
1320 while ((entry->in_use_p[word] >> bit) & 1)
1321 ++bit;
1322 #endif
1323
1324 hint = word * HOST_BITS_PER_LONG + bit;
1325 }
1326
1327 /* Next time, try the next bit. */
1328 entry->next_bit_hint = hint + 1;
1329
1330 object_offset = hint * object_size;
1331 }
1332
1333 /* Set the in-use bit. */
1334 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1335
1336 /* Keep a running total of the number of free objects. If this page
1337 fills up, we may have to move it to the end of the list if the
1338 next page isn't full. If the next page is full, all subsequent
1339 pages are full, so there's no need to move it. */
1340 if (--entry->num_free_objects == 0
1341 && entry->next != NULL
1342 && entry->next->num_free_objects > 0)
1343 {
1344 /* We have a new head for the list. */
1345 G.pages[order] = entry->next;
1346
1347 /* We are moving ENTRY to the end of the page table list.
1348 The new page at the head of the list will have NULL in
1349 its PREV field and ENTRY will have NULL in its NEXT field. */
1350 entry->next->prev = NULL;
1351 entry->next = NULL;
1352
1353 /* Append ENTRY to the tail of the list. */
1354 entry->prev = G.page_tails[order];
1355 G.page_tails[order]->next = entry;
1356 G.page_tails[order] = entry;
1357 }
1358
1359 /* Calculate the object's address. */
1360 result = entry->page + object_offset;
1361 if (GATHER_STATISTICS)
1362 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1363 result FINAL_PASS_MEM_STAT);
1364
1365 #ifdef ENABLE_GC_CHECKING
1366 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1367 exact same semantics in presence of memory bugs, regardless of
1368 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1369 handle to avoid handle leak. */
1370 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1371
1372 /* `Poison' the entire allocated object, including any padding at
1373 the end. */
1374 memset (result, 0xaf, object_size);
1375
1376 /* Make the bytes after the end of the object unaccessible. Discard the
1377 handle to avoid handle leak. */
1378 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1379 object_size - size));
1380 #endif
1381
1382 /* Tell Valgrind that the memory is there, but its content isn't
1383 defined. The bytes at the end of the object are still marked
1384 unaccessible. */
1385 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1386
1387 /* Keep track of how many bytes are being allocated. This
1388 information is used in deciding when to collect. */
1389 G.allocated += object_size;
1390
1391 /* For timevar statistics. */
1392 timevar_ggc_mem_total += object_size;
1393
1394 if (f && n == 1)
1395 G.finalizers.safe_push (finalizer (result, f));
1396 else if (f)
1397 G.vec_finalizers.safe_push
1398 (vec_finalizer (reinterpret_cast<uintptr_t> (result), f, s, n));
1399
1400 if (GATHER_STATISTICS)
1401 {
1402 size_t overhead = object_size - size;
1403
1404 G.stats.total_overhead += overhead;
1405 G.stats.total_allocated += object_size;
1406 G.stats.total_overhead_per_order[order] += overhead;
1407 G.stats.total_allocated_per_order[order] += object_size;
1408
1409 if (size <= 32)
1410 {
1411 G.stats.total_overhead_under32 += overhead;
1412 G.stats.total_allocated_under32 += object_size;
1413 }
1414 if (size <= 64)
1415 {
1416 G.stats.total_overhead_under64 += overhead;
1417 G.stats.total_allocated_under64 += object_size;
1418 }
1419 if (size <= 128)
1420 {
1421 G.stats.total_overhead_under128 += overhead;
1422 G.stats.total_allocated_under128 += object_size;
1423 }
1424 }
1425
1426 if (GGC_DEBUG_LEVEL >= 3)
1427 fprintf (G.debug_file,
1428 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1429 (unsigned long) size, (unsigned long) object_size, result,
1430 (void *) entry);
1431
1432 return result;
1433 }
1434
1435 /* Mark function for strings. */
1436
1437 void
1438 gt_ggc_m_S (const void *p)
1439 {
1440 page_entry *entry;
1441 unsigned bit, word;
1442 unsigned long mask;
1443 unsigned long offset;
1444
1445 if (!p || !ggc_allocated_p (p))
1446 return;
1447
1448 /* Look up the page on which the object is alloced. . */
1449 entry = lookup_page_table_entry (p);
1450 gcc_assert (entry);
1451
1452 /* Calculate the index of the object on the page; this is its bit
1453 position in the in_use_p bitmap. Note that because a char* might
1454 point to the middle of an object, we need special code here to
1455 make sure P points to the start of an object. */
1456 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1457 if (offset)
1458 {
1459 /* Here we've seen a char* which does not point to the beginning
1460 of an allocated object. We assume it points to the middle of
1461 a STRING_CST. */
1462 gcc_assert (offset == offsetof (struct tree_string, str));
1463 p = ((const char *) p) - offset;
1464 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1465 return;
1466 }
1467
1468 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1469 word = bit / HOST_BITS_PER_LONG;
1470 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1471
1472 /* If the bit was previously set, skip it. */
1473 if (entry->in_use_p[word] & mask)
1474 return;
1475
1476 /* Otherwise set it, and decrement the free object count. */
1477 entry->in_use_p[word] |= mask;
1478 entry->num_free_objects -= 1;
1479
1480 if (GGC_DEBUG_LEVEL >= 4)
1481 fprintf (G.debug_file, "Marking %p\n", p);
1482
1483 return;
1484 }
1485
1486
1487 /* User-callable entry points for marking string X. */
1488
1489 void
1490 gt_ggc_mx (const char *& x)
1491 {
1492 gt_ggc_m_S (x);
1493 }
1494
1495 void
1496 gt_ggc_mx (unsigned char *& x)
1497 {
1498 gt_ggc_m_S (x);
1499 }
1500
1501 void
1502 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1503 {
1504 }
1505
1506 /* If P is not marked, marks it and return false. Otherwise return true.
1507 P must have been allocated by the GC allocator; it mustn't point to
1508 static objects, stack variables, or memory allocated with malloc. */
1509
1510 int
1511 ggc_set_mark (const void *p)
1512 {
1513 page_entry *entry;
1514 unsigned bit, word;
1515 unsigned long mask;
1516
1517 /* Look up the page on which the object is alloced. If the object
1518 wasn't allocated by the collector, we'll probably die. */
1519 entry = lookup_page_table_entry (p);
1520 gcc_assert (entry);
1521
1522 /* Calculate the index of the object on the page; this is its bit
1523 position in the in_use_p bitmap. */
1524 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1525 word = bit / HOST_BITS_PER_LONG;
1526 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1527
1528 /* If the bit was previously set, skip it. */
1529 if (entry->in_use_p[word] & mask)
1530 return 1;
1531
1532 /* Otherwise set it, and decrement the free object count. */
1533 entry->in_use_p[word] |= mask;
1534 entry->num_free_objects -= 1;
1535
1536 if (GGC_DEBUG_LEVEL >= 4)
1537 fprintf (G.debug_file, "Marking %p\n", p);
1538
1539 return 0;
1540 }
1541
1542 /* Return 1 if P has been marked, zero otherwise.
1543 P must have been allocated by the GC allocator; it mustn't point to
1544 static objects, stack variables, or memory allocated with malloc. */
1545
1546 int
1547 ggc_marked_p (const void *p)
1548 {
1549 page_entry *entry;
1550 unsigned bit, word;
1551 unsigned long mask;
1552
1553 /* Look up the page on which the object is alloced. If the object
1554 wasn't allocated by the collector, we'll probably die. */
1555 entry = lookup_page_table_entry (p);
1556 gcc_assert (entry);
1557
1558 /* Calculate the index of the object on the page; this is its bit
1559 position in the in_use_p bitmap. */
1560 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1561 word = bit / HOST_BITS_PER_LONG;
1562 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1563
1564 return (entry->in_use_p[word] & mask) != 0;
1565 }
1566
1567 /* Return the size of the gc-able object P. */
1568
1569 size_t
1570 ggc_get_size (const void *p)
1571 {
1572 page_entry *pe = lookup_page_table_entry (p);
1573 return OBJECT_SIZE (pe->order);
1574 }
1575
1576 /* Release the memory for object P. */
1577
1578 void
1579 ggc_free (void *p)
1580 {
1581 if (in_gc)
1582 return;
1583
1584 page_entry *pe = lookup_page_table_entry (p);
1585 size_t order = pe->order;
1586 size_t size = OBJECT_SIZE (order);
1587
1588 if (GATHER_STATISTICS)
1589 ggc_free_overhead (p);
1590
1591 if (GGC_DEBUG_LEVEL >= 3)
1592 fprintf (G.debug_file,
1593 "Freeing object, actual size=%lu, at %p on %p\n",
1594 (unsigned long) size, p, (void *) pe);
1595
1596 #ifdef ENABLE_GC_CHECKING
1597 /* Poison the data, to indicate the data is garbage. */
1598 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1599 memset (p, 0xa5, size);
1600 #endif
1601 /* Let valgrind know the object is free. */
1602 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1603
1604 #ifdef ENABLE_GC_ALWAYS_COLLECT
1605 /* In the completely-anal-checking mode, we do *not* immediately free
1606 the data, but instead verify that the data is *actually* not
1607 reachable the next time we collect. */
1608 {
1609 struct free_object *fo = XNEW (struct free_object);
1610 fo->object = p;
1611 fo->next = G.free_object_list;
1612 G.free_object_list = fo;
1613 }
1614 #else
1615 {
1616 unsigned int bit_offset, word, bit;
1617
1618 G.allocated -= size;
1619
1620 /* Mark the object not-in-use. */
1621 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1622 word = bit_offset / HOST_BITS_PER_LONG;
1623 bit = bit_offset % HOST_BITS_PER_LONG;
1624 pe->in_use_p[word] &= ~(1UL << bit);
1625
1626 if (pe->num_free_objects++ == 0)
1627 {
1628 page_entry *p, *q;
1629
1630 /* If the page is completely full, then it's supposed to
1631 be after all pages that aren't. Since we've freed one
1632 object from a page that was full, we need to move the
1633 page to the head of the list.
1634
1635 PE is the node we want to move. Q is the previous node
1636 and P is the next node in the list. */
1637 q = pe->prev;
1638 if (q && q->num_free_objects == 0)
1639 {
1640 p = pe->next;
1641
1642 q->next = p;
1643
1644 /* If PE was at the end of the list, then Q becomes the
1645 new end of the list. If PE was not the end of the
1646 list, then we need to update the PREV field for P. */
1647 if (!p)
1648 G.page_tails[order] = q;
1649 else
1650 p->prev = q;
1651
1652 /* Move PE to the head of the list. */
1653 pe->next = G.pages[order];
1654 pe->prev = NULL;
1655 G.pages[order]->prev = pe;
1656 G.pages[order] = pe;
1657 }
1658
1659 /* Reset the hint bit to point to the only free object. */
1660 pe->next_bit_hint = bit_offset;
1661 }
1662 }
1663 #endif
1664 }
1665 \f
1666 /* Subroutine of init_ggc which computes the pair of numbers used to
1667 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1668
1669 This algorithm is taken from Granlund and Montgomery's paper
1670 "Division by Invariant Integers using Multiplication"
1671 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1672 constants). */
1673
1674 static void
1675 compute_inverse (unsigned order)
1676 {
1677 size_t size, inv;
1678 unsigned int e;
1679
1680 size = OBJECT_SIZE (order);
1681 e = 0;
1682 while (size % 2 == 0)
1683 {
1684 e++;
1685 size >>= 1;
1686 }
1687
1688 inv = size;
1689 while (inv * size != 1)
1690 inv = inv * (2 - inv*size);
1691
1692 DIV_MULT (order) = inv;
1693 DIV_SHIFT (order) = e;
1694 }
1695
1696 /* Initialize the ggc-mmap allocator. */
1697 void
1698 init_ggc (void)
1699 {
1700 static bool init_p = false;
1701 unsigned order;
1702
1703 if (init_p)
1704 return;
1705 init_p = true;
1706
1707 G.pagesize = getpagesize ();
1708 G.lg_pagesize = exact_log2 (G.pagesize);
1709
1710 #ifdef HAVE_MMAP_DEV_ZERO
1711 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1712 if (G.dev_zero_fd == -1)
1713 internal_error ("open /dev/zero: %m");
1714 #endif
1715
1716 #if 0
1717 G.debug_file = fopen ("ggc-mmap.debug", "w");
1718 #else
1719 G.debug_file = stdout;
1720 #endif
1721
1722 #ifdef USING_MMAP
1723 /* StunOS has an amazing off-by-one error for the first mmap allocation
1724 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1725 believe, is an unaligned page allocation, which would cause us to
1726 hork badly if we tried to use it. */
1727 {
1728 char *p = alloc_anon (NULL, G.pagesize, true);
1729 struct page_entry *e;
1730 if ((uintptr_t)p & (G.pagesize - 1))
1731 {
1732 /* How losing. Discard this one and try another. If we still
1733 can't get something useful, give up. */
1734
1735 p = alloc_anon (NULL, G.pagesize, true);
1736 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1737 }
1738
1739 /* We have a good page, might as well hold onto it... */
1740 e = XCNEW (struct page_entry);
1741 e->bytes = G.pagesize;
1742 e->page = p;
1743 e->next = G.free_pages;
1744 G.free_pages = e;
1745 }
1746 #endif
1747
1748 /* Initialize the object size table. */
1749 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1750 object_size_table[order] = (size_t) 1 << order;
1751 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1752 {
1753 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1754
1755 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1756 so that we're sure of getting aligned memory. */
1757 s = ROUND_UP (s, MAX_ALIGNMENT);
1758 object_size_table[order] = s;
1759 }
1760
1761 /* Initialize the objects-per-page and inverse tables. */
1762 for (order = 0; order < NUM_ORDERS; ++order)
1763 {
1764 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1765 if (objects_per_page_table[order] == 0)
1766 objects_per_page_table[order] = 1;
1767 compute_inverse (order);
1768 }
1769
1770 /* Reset the size_lookup array to put appropriately sized objects in
1771 the special orders. All objects bigger than the previous power
1772 of two, but no greater than the special size, should go in the
1773 new order. */
1774 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1775 {
1776 int o;
1777 int i;
1778
1779 i = OBJECT_SIZE (order);
1780 if (i >= NUM_SIZE_LOOKUP)
1781 continue;
1782
1783 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1784 size_lookup[i] = order;
1785 }
1786
1787 G.depth_in_use = 0;
1788 G.depth_max = 10;
1789 G.depth = XNEWVEC (unsigned int, G.depth_max);
1790
1791 G.by_depth_in_use = 0;
1792 G.by_depth_max = INITIAL_PTE_COUNT;
1793 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1794 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1795 }
1796
1797 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1798 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1799
1800 static void
1801 ggc_recalculate_in_use_p (page_entry *p)
1802 {
1803 unsigned int i;
1804 size_t num_objects;
1805
1806 /* Because the past-the-end bit in in_use_p is always set, we
1807 pretend there is one additional object. */
1808 num_objects = OBJECTS_IN_PAGE (p) + 1;
1809
1810 /* Reset the free object count. */
1811 p->num_free_objects = num_objects;
1812
1813 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1814 for (i = 0;
1815 i < CEIL (BITMAP_SIZE (num_objects),
1816 sizeof (*p->in_use_p));
1817 ++i)
1818 {
1819 unsigned long j;
1820
1821 /* Something is in use if it is marked, or if it was in use in a
1822 context further down the context stack. */
1823 p->in_use_p[i] |= save_in_use_p (p)[i];
1824
1825 /* Decrement the free object count for every object allocated. */
1826 for (j = p->in_use_p[i]; j; j >>= 1)
1827 p->num_free_objects -= (j & 1);
1828 }
1829
1830 gcc_assert (p->num_free_objects < num_objects);
1831 }
1832 \f
1833 /* Unmark all objects. */
1834
1835 static void
1836 clear_marks (void)
1837 {
1838 unsigned order;
1839
1840 for (order = 2; order < NUM_ORDERS; order++)
1841 {
1842 page_entry *p;
1843
1844 for (p = G.pages[order]; p != NULL; p = p->next)
1845 {
1846 size_t num_objects = OBJECTS_IN_PAGE (p);
1847 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1848
1849 /* The data should be page-aligned. */
1850 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1851
1852 /* Pages that aren't in the topmost context are not collected;
1853 nevertheless, we need their in-use bit vectors to store GC
1854 marks. So, back them up first. */
1855 if (p->context_depth < G.context_depth)
1856 {
1857 if (! save_in_use_p (p))
1858 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1859 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1860 }
1861
1862 /* Reset reset the number of free objects and clear the
1863 in-use bits. These will be adjusted by mark_obj. */
1864 p->num_free_objects = num_objects;
1865 memset (p->in_use_p, 0, bitmap_size);
1866
1867 /* Make sure the one-past-the-end bit is always set. */
1868 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1869 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1870 }
1871 }
1872 }
1873
1874 /* Check if any blocks with a registered finalizer have become unmarked. If so
1875 run the finalizer and unregister it because the block is about to be freed.
1876 Note that no garantee is made about what order finalizers will run in so
1877 touching other objects in gc memory is extremely unwise. */
1878
1879 static void
1880 ggc_handle_finalizers ()
1881 {
1882 if (G.context_depth != 0)
1883 return;
1884
1885 unsigned length = G.finalizers.length ();
1886 for (unsigned int i = 0; i < length;)
1887 {
1888 finalizer &f = G.finalizers[i];
1889 if (!ggc_marked_p (f.addr ()))
1890 {
1891 f.call ();
1892 G.finalizers.unordered_remove (i);
1893 length--;
1894 }
1895 else
1896 i++;
1897 }
1898
1899
1900 length = G.vec_finalizers.length ();
1901 for (unsigned int i = 0; i < length;)
1902 {
1903 vec_finalizer &f = G.vec_finalizers[i];
1904 if (!ggc_marked_p (f.addr ()))
1905 {
1906 f.call ();
1907 G.vec_finalizers.unordered_remove (i);
1908 length--;
1909 }
1910 else
1911 i++;
1912 }
1913 }
1914
1915 /* Free all empty pages. Partially empty pages need no attention
1916 because the `mark' bit doubles as an `unused' bit. */
1917
1918 static void
1919 sweep_pages (void)
1920 {
1921 unsigned order;
1922
1923 for (order = 2; order < NUM_ORDERS; order++)
1924 {
1925 /* The last page-entry to consider, regardless of entries
1926 placed at the end of the list. */
1927 page_entry * const last = G.page_tails[order];
1928
1929 size_t num_objects;
1930 size_t live_objects;
1931 page_entry *p, *previous;
1932 int done;
1933
1934 p = G.pages[order];
1935 if (p == NULL)
1936 continue;
1937
1938 previous = NULL;
1939 do
1940 {
1941 page_entry *next = p->next;
1942
1943 /* Loop until all entries have been examined. */
1944 done = (p == last);
1945
1946 num_objects = OBJECTS_IN_PAGE (p);
1947
1948 /* Add all live objects on this page to the count of
1949 allocated memory. */
1950 live_objects = num_objects - p->num_free_objects;
1951
1952 G.allocated += OBJECT_SIZE (order) * live_objects;
1953
1954 /* Only objects on pages in the topmost context should get
1955 collected. */
1956 if (p->context_depth < G.context_depth)
1957 ;
1958
1959 /* Remove the page if it's empty. */
1960 else if (live_objects == 0)
1961 {
1962 /* If P was the first page in the list, then NEXT
1963 becomes the new first page in the list, otherwise
1964 splice P out of the forward pointers. */
1965 if (! previous)
1966 G.pages[order] = next;
1967 else
1968 previous->next = next;
1969
1970 /* Splice P out of the back pointers too. */
1971 if (next)
1972 next->prev = previous;
1973
1974 /* Are we removing the last element? */
1975 if (p == G.page_tails[order])
1976 G.page_tails[order] = previous;
1977 free_page (p);
1978 p = previous;
1979 }
1980
1981 /* If the page is full, move it to the end. */
1982 else if (p->num_free_objects == 0)
1983 {
1984 /* Don't move it if it's already at the end. */
1985 if (p != G.page_tails[order])
1986 {
1987 /* Move p to the end of the list. */
1988 p->next = NULL;
1989 p->prev = G.page_tails[order];
1990 G.page_tails[order]->next = p;
1991
1992 /* Update the tail pointer... */
1993 G.page_tails[order] = p;
1994
1995 /* ... and the head pointer, if necessary. */
1996 if (! previous)
1997 G.pages[order] = next;
1998 else
1999 previous->next = next;
2000
2001 /* And update the backpointer in NEXT if necessary. */
2002 if (next)
2003 next->prev = previous;
2004
2005 p = previous;
2006 }
2007 }
2008
2009 /* If we've fallen through to here, it's a page in the
2010 topmost context that is neither full nor empty. Such a
2011 page must precede pages at lesser context depth in the
2012 list, so move it to the head. */
2013 else if (p != G.pages[order])
2014 {
2015 previous->next = p->next;
2016
2017 /* Update the backchain in the next node if it exists. */
2018 if (p->next)
2019 p->next->prev = previous;
2020
2021 /* Move P to the head of the list. */
2022 p->next = G.pages[order];
2023 p->prev = NULL;
2024 G.pages[order]->prev = p;
2025
2026 /* Update the head pointer. */
2027 G.pages[order] = p;
2028
2029 /* Are we moving the last element? */
2030 if (G.page_tails[order] == p)
2031 G.page_tails[order] = previous;
2032 p = previous;
2033 }
2034
2035 previous = p;
2036 p = next;
2037 }
2038 while (! done);
2039
2040 /* Now, restore the in_use_p vectors for any pages from contexts
2041 other than the current one. */
2042 for (p = G.pages[order]; p; p = p->next)
2043 if (p->context_depth != G.context_depth)
2044 ggc_recalculate_in_use_p (p);
2045 }
2046 }
2047
2048 #ifdef ENABLE_GC_CHECKING
2049 /* Clobber all free objects. */
2050
2051 static void
2052 poison_pages (void)
2053 {
2054 unsigned order;
2055
2056 for (order = 2; order < NUM_ORDERS; order++)
2057 {
2058 size_t size = OBJECT_SIZE (order);
2059 page_entry *p;
2060
2061 for (p = G.pages[order]; p != NULL; p = p->next)
2062 {
2063 size_t num_objects;
2064 size_t i;
2065
2066 if (p->context_depth != G.context_depth)
2067 /* Since we don't do any collection for pages in pushed
2068 contexts, there's no need to do any poisoning. And
2069 besides, the IN_USE_P array isn't valid until we pop
2070 contexts. */
2071 continue;
2072
2073 num_objects = OBJECTS_IN_PAGE (p);
2074 for (i = 0; i < num_objects; i++)
2075 {
2076 size_t word, bit;
2077 word = i / HOST_BITS_PER_LONG;
2078 bit = i % HOST_BITS_PER_LONG;
2079 if (((p->in_use_p[word] >> bit) & 1) == 0)
2080 {
2081 char *object = p->page + i * size;
2082
2083 /* Keep poison-by-write when we expect to use Valgrind,
2084 so the exact same memory semantics is kept, in case
2085 there are memory errors. We override this request
2086 below. */
2087 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2088 size));
2089 memset (object, 0xa5, size);
2090
2091 /* Drop the handle to avoid handle leak. */
2092 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2093 }
2094 }
2095 }
2096 }
2097 }
2098 #else
2099 #define poison_pages()
2100 #endif
2101
2102 #ifdef ENABLE_GC_ALWAYS_COLLECT
2103 /* Validate that the reportedly free objects actually are. */
2104
2105 static void
2106 validate_free_objects (void)
2107 {
2108 struct free_object *f, *next, *still_free = NULL;
2109
2110 for (f = G.free_object_list; f ; f = next)
2111 {
2112 page_entry *pe = lookup_page_table_entry (f->object);
2113 size_t bit, word;
2114
2115 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2116 word = bit / HOST_BITS_PER_LONG;
2117 bit = bit % HOST_BITS_PER_LONG;
2118 next = f->next;
2119
2120 /* Make certain it isn't visible from any root. Notice that we
2121 do this check before sweep_pages merges save_in_use_p. */
2122 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2123
2124 /* If the object comes from an outer context, then retain the
2125 free_object entry, so that we can verify that the address
2126 isn't live on the stack in some outer context. */
2127 if (pe->context_depth != G.context_depth)
2128 {
2129 f->next = still_free;
2130 still_free = f;
2131 }
2132 else
2133 free (f);
2134 }
2135
2136 G.free_object_list = still_free;
2137 }
2138 #else
2139 #define validate_free_objects()
2140 #endif
2141
2142 /* Top level mark-and-sweep routine. */
2143
2144 void
2145 ggc_collect (void)
2146 {
2147 /* Avoid frequent unnecessary work by skipping collection if the
2148 total allocations haven't expanded much since the last
2149 collection. */
2150 float allocated_last_gc =
2151 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2152
2153 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2154 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2155 return;
2156
2157 timevar_push (TV_GC);
2158 if (!quiet_flag)
2159 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2160 if (GGC_DEBUG_LEVEL >= 2)
2161 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2162
2163 /* Zero the total allocated bytes. This will be recalculated in the
2164 sweep phase. */
2165 G.allocated = 0;
2166
2167 /* Release the pages we freed the last time we collected, but didn't
2168 reuse in the interim. */
2169 release_pages ();
2170
2171 /* Indicate that we've seen collections at this context depth. */
2172 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2173
2174 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2175
2176 in_gc = true;
2177 clear_marks ();
2178 ggc_mark_roots ();
2179 ggc_handle_finalizers ();
2180
2181 if (GATHER_STATISTICS)
2182 ggc_prune_overhead_list ();
2183
2184 poison_pages ();
2185 validate_free_objects ();
2186 sweep_pages ();
2187
2188 in_gc = false;
2189 G.allocated_last_gc = G.allocated;
2190
2191 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2192
2193 timevar_pop (TV_GC);
2194
2195 if (!quiet_flag)
2196 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2197 if (GGC_DEBUG_LEVEL >= 2)
2198 fprintf (G.debug_file, "END COLLECTING\n");
2199 }
2200
2201 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2202 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2203 reachable. */
2204
2205 void
2206 ggc_grow (void)
2207 {
2208 #ifndef ENABLE_CHECKING
2209 G.allocated_last_gc = MAX (G.allocated_last_gc,
2210 G.allocated);
2211 #else
2212 ggc_collect ();
2213 #endif
2214 if (!quiet_flag)
2215 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2216 }
2217
2218 /* Print allocation statistics. */
2219 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2220 ? (x) \
2221 : ((x) < 1024*1024*10 \
2222 ? (x) / 1024 \
2223 : (x) / (1024*1024))))
2224 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2225
2226 void
2227 ggc_print_statistics (void)
2228 {
2229 struct ggc_statistics stats;
2230 unsigned int i;
2231 size_t total_overhead = 0;
2232
2233 /* Clear the statistics. */
2234 memset (&stats, 0, sizeof (stats));
2235
2236 /* Make sure collection will really occur. */
2237 G.allocated_last_gc = 0;
2238
2239 /* Collect and print the statistics common across collectors. */
2240 ggc_print_common_statistics (stderr, &stats);
2241
2242 /* Release free pages so that we will not count the bytes allocated
2243 there as part of the total allocated memory. */
2244 release_pages ();
2245
2246 /* Collect some information about the various sizes of
2247 allocation. */
2248 fprintf (stderr,
2249 "Memory still allocated at the end of the compilation process\n");
2250 fprintf (stderr, "%-8s %10s %10s %10s\n",
2251 "Size", "Allocated", "Used", "Overhead");
2252 for (i = 0; i < NUM_ORDERS; ++i)
2253 {
2254 page_entry *p;
2255 size_t allocated;
2256 size_t in_use;
2257 size_t overhead;
2258
2259 /* Skip empty entries. */
2260 if (!G.pages[i])
2261 continue;
2262
2263 overhead = allocated = in_use = 0;
2264
2265 /* Figure out the total number of bytes allocated for objects of
2266 this size, and how many of them are actually in use. Also figure
2267 out how much memory the page table is using. */
2268 for (p = G.pages[i]; p; p = p->next)
2269 {
2270 allocated += p->bytes;
2271 in_use +=
2272 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2273
2274 overhead += (sizeof (page_entry) - sizeof (long)
2275 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2276 }
2277 fprintf (stderr, "%-8lu %10lu%c %10lu%c %10lu%c\n",
2278 (unsigned long) OBJECT_SIZE (i),
2279 SCALE (allocated), STAT_LABEL (allocated),
2280 SCALE (in_use), STAT_LABEL (in_use),
2281 SCALE (overhead), STAT_LABEL (overhead));
2282 total_overhead += overhead;
2283 }
2284 fprintf (stderr, "%-8s %10lu%c %10lu%c %10lu%c\n", "Total",
2285 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2286 SCALE (G.allocated), STAT_LABEL (G.allocated),
2287 SCALE (total_overhead), STAT_LABEL (total_overhead));
2288
2289 if (GATHER_STATISTICS)
2290 {
2291 fprintf (stderr, "\nTotal allocations and overheads during "
2292 "the compilation process\n");
2293
2294 fprintf (stderr, "Total Overhead: %10"
2295 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead);
2296 fprintf (stderr, "Total Allocated: %10"
2297 HOST_LONG_LONG_FORMAT "d\n",
2298 G.stats.total_allocated);
2299
2300 fprintf (stderr, "Total Overhead under 32B: %10"
2301 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under32);
2302 fprintf (stderr, "Total Allocated under 32B: %10"
2303 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under32);
2304 fprintf (stderr, "Total Overhead under 64B: %10"
2305 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under64);
2306 fprintf (stderr, "Total Allocated under 64B: %10"
2307 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under64);
2308 fprintf (stderr, "Total Overhead under 128B: %10"
2309 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under128);
2310 fprintf (stderr, "Total Allocated under 128B: %10"
2311 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under128);
2312
2313 for (i = 0; i < NUM_ORDERS; i++)
2314 if (G.stats.total_allocated_per_order[i])
2315 {
2316 fprintf (stderr, "Total Overhead page size %9lu: %10"
2317 HOST_LONG_LONG_FORMAT "d\n",
2318 (unsigned long) OBJECT_SIZE (i),
2319 G.stats.total_overhead_per_order[i]);
2320 fprintf (stderr, "Total Allocated page size %9lu: %10"
2321 HOST_LONG_LONG_FORMAT "d\n",
2322 (unsigned long) OBJECT_SIZE (i),
2323 G.stats.total_allocated_per_order[i]);
2324 }
2325 }
2326 }
2327 \f
2328 struct ggc_pch_ondisk
2329 {
2330 unsigned totals[NUM_ORDERS];
2331 };
2332
2333 struct ggc_pch_data
2334 {
2335 struct ggc_pch_ondisk d;
2336 uintptr_t base[NUM_ORDERS];
2337 size_t written[NUM_ORDERS];
2338 };
2339
2340 struct ggc_pch_data *
2341 init_ggc_pch (void)
2342 {
2343 return XCNEW (struct ggc_pch_data);
2344 }
2345
2346 void
2347 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2348 size_t size, bool is_string ATTRIBUTE_UNUSED)
2349 {
2350 unsigned order;
2351
2352 if (size < NUM_SIZE_LOOKUP)
2353 order = size_lookup[size];
2354 else
2355 {
2356 order = 10;
2357 while (size > OBJECT_SIZE (order))
2358 order++;
2359 }
2360
2361 d->d.totals[order]++;
2362 }
2363
2364 size_t
2365 ggc_pch_total_size (struct ggc_pch_data *d)
2366 {
2367 size_t a = 0;
2368 unsigned i;
2369
2370 for (i = 0; i < NUM_ORDERS; i++)
2371 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2372 return a;
2373 }
2374
2375 void
2376 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2377 {
2378 uintptr_t a = (uintptr_t) base;
2379 unsigned i;
2380
2381 for (i = 0; i < NUM_ORDERS; i++)
2382 {
2383 d->base[i] = a;
2384 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2385 }
2386 }
2387
2388
2389 char *
2390 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2391 size_t size, bool is_string ATTRIBUTE_UNUSED)
2392 {
2393 unsigned order;
2394 char *result;
2395
2396 if (size < NUM_SIZE_LOOKUP)
2397 order = size_lookup[size];
2398 else
2399 {
2400 order = 10;
2401 while (size > OBJECT_SIZE (order))
2402 order++;
2403 }
2404
2405 result = (char *) d->base[order];
2406 d->base[order] += OBJECT_SIZE (order);
2407 return result;
2408 }
2409
2410 void
2411 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2412 FILE *f ATTRIBUTE_UNUSED)
2413 {
2414 /* Nothing to do. */
2415 }
2416
2417 void
2418 ggc_pch_write_object (struct ggc_pch_data *d,
2419 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2420 size_t size, bool is_string ATTRIBUTE_UNUSED)
2421 {
2422 unsigned order;
2423 static const char emptyBytes[256] = { 0 };
2424
2425 if (size < NUM_SIZE_LOOKUP)
2426 order = size_lookup[size];
2427 else
2428 {
2429 order = 10;
2430 while (size > OBJECT_SIZE (order))
2431 order++;
2432 }
2433
2434 if (fwrite (x, size, 1, f) != 1)
2435 fatal_error (input_location, "can%'t write PCH file: %m");
2436
2437 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2438 object out to OBJECT_SIZE(order). This happens for strings. */
2439
2440 if (size != OBJECT_SIZE (order))
2441 {
2442 unsigned padding = OBJECT_SIZE (order) - size;
2443
2444 /* To speed small writes, we use a nulled-out array that's larger
2445 than most padding requests as the source for our null bytes. This
2446 permits us to do the padding with fwrite() rather than fseek(), and
2447 limits the chance the OS may try to flush any outstanding writes. */
2448 if (padding <= sizeof (emptyBytes))
2449 {
2450 if (fwrite (emptyBytes, 1, padding, f) != padding)
2451 fatal_error (input_location, "can%'t write PCH file");
2452 }
2453 else
2454 {
2455 /* Larger than our buffer? Just default to fseek. */
2456 if (fseek (f, padding, SEEK_CUR) != 0)
2457 fatal_error (input_location, "can%'t write PCH file");
2458 }
2459 }
2460
2461 d->written[order]++;
2462 if (d->written[order] == d->d.totals[order]
2463 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2464 G.pagesize),
2465 SEEK_CUR) != 0)
2466 fatal_error (input_location, "can%'t write PCH file: %m");
2467 }
2468
2469 void
2470 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2471 {
2472 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2473 fatal_error (input_location, "can%'t write PCH file: %m");
2474 free (d);
2475 }
2476
2477 /* Move the PCH PTE entries just added to the end of by_depth, to the
2478 front. */
2479
2480 static void
2481 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2482 {
2483 unsigned i;
2484
2485 /* First, we swap the new entries to the front of the varrays. */
2486 page_entry **new_by_depth;
2487 unsigned long **new_save_in_use;
2488
2489 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2490 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2491
2492 memcpy (&new_by_depth[0],
2493 &G.by_depth[count_old_page_tables],
2494 count_new_page_tables * sizeof (void *));
2495 memcpy (&new_by_depth[count_new_page_tables],
2496 &G.by_depth[0],
2497 count_old_page_tables * sizeof (void *));
2498 memcpy (&new_save_in_use[0],
2499 &G.save_in_use[count_old_page_tables],
2500 count_new_page_tables * sizeof (void *));
2501 memcpy (&new_save_in_use[count_new_page_tables],
2502 &G.save_in_use[0],
2503 count_old_page_tables * sizeof (void *));
2504
2505 free (G.by_depth);
2506 free (G.save_in_use);
2507
2508 G.by_depth = new_by_depth;
2509 G.save_in_use = new_save_in_use;
2510
2511 /* Now update all the index_by_depth fields. */
2512 for (i = G.by_depth_in_use; i > 0; --i)
2513 {
2514 page_entry *p = G.by_depth[i-1];
2515 p->index_by_depth = i-1;
2516 }
2517
2518 /* And last, we update the depth pointers in G.depth. The first
2519 entry is already 0, and context 0 entries always start at index
2520 0, so there is nothing to update in the first slot. We need a
2521 second slot, only if we have old ptes, and if we do, they start
2522 at index count_new_page_tables. */
2523 if (count_old_page_tables)
2524 push_depth (count_new_page_tables);
2525 }
2526
2527 void
2528 ggc_pch_read (FILE *f, void *addr)
2529 {
2530 struct ggc_pch_ondisk d;
2531 unsigned i;
2532 char *offs = (char *) addr;
2533 unsigned long count_old_page_tables;
2534 unsigned long count_new_page_tables;
2535
2536 count_old_page_tables = G.by_depth_in_use;
2537
2538 /* We've just read in a PCH file. So, every object that used to be
2539 allocated is now free. */
2540 clear_marks ();
2541 #ifdef ENABLE_GC_CHECKING
2542 poison_pages ();
2543 #endif
2544 /* Since we free all the allocated objects, the free list becomes
2545 useless. Validate it now, which will also clear it. */
2546 validate_free_objects ();
2547
2548 /* No object read from a PCH file should ever be freed. So, set the
2549 context depth to 1, and set the depth of all the currently-allocated
2550 pages to be 1 too. PCH pages will have depth 0. */
2551 gcc_assert (!G.context_depth);
2552 G.context_depth = 1;
2553 for (i = 0; i < NUM_ORDERS; i++)
2554 {
2555 page_entry *p;
2556 for (p = G.pages[i]; p != NULL; p = p->next)
2557 p->context_depth = G.context_depth;
2558 }
2559
2560 /* Allocate the appropriate page-table entries for the pages read from
2561 the PCH file. */
2562 if (fread (&d, sizeof (d), 1, f) != 1)
2563 fatal_error (input_location, "can%'t read PCH file: %m");
2564
2565 for (i = 0; i < NUM_ORDERS; i++)
2566 {
2567 struct page_entry *entry;
2568 char *pte;
2569 size_t bytes;
2570 size_t num_objs;
2571 size_t j;
2572
2573 if (d.totals[i] == 0)
2574 continue;
2575
2576 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2577 num_objs = bytes / OBJECT_SIZE (i);
2578 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2579 - sizeof (long)
2580 + BITMAP_SIZE (num_objs + 1)));
2581 entry->bytes = bytes;
2582 entry->page = offs;
2583 entry->context_depth = 0;
2584 offs += bytes;
2585 entry->num_free_objects = 0;
2586 entry->order = i;
2587
2588 for (j = 0;
2589 j + HOST_BITS_PER_LONG <= num_objs + 1;
2590 j += HOST_BITS_PER_LONG)
2591 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2592 for (; j < num_objs + 1; j++)
2593 entry->in_use_p[j / HOST_BITS_PER_LONG]
2594 |= 1L << (j % HOST_BITS_PER_LONG);
2595
2596 for (pte = entry->page;
2597 pte < entry->page + entry->bytes;
2598 pte += G.pagesize)
2599 set_page_table_entry (pte, entry);
2600
2601 if (G.page_tails[i] != NULL)
2602 G.page_tails[i]->next = entry;
2603 else
2604 G.pages[i] = entry;
2605 G.page_tails[i] = entry;
2606
2607 /* We start off by just adding all the new information to the
2608 end of the varrays, later, we will move the new information
2609 to the front of the varrays, as the PCH page tables are at
2610 context 0. */
2611 push_by_depth (entry, 0);
2612 }
2613
2614 /* Now, we update the various data structures that speed page table
2615 handling. */
2616 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2617
2618 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2619
2620 /* Update the statistics. */
2621 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2622 }