]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ggc-page.c
2006-06-23 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "toplev.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
40 # else
41 # include <valgrind.h>
42 # endif
43 #else
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
46 #endif
47
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
50 #ifdef HAVE_MMAP_ANON
51 # undef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
59 # endif
60 # define USING_MMAP
61
62 #endif
63
64 #ifdef HAVE_MMAP_DEV_ZERO
65
66 # include <sys/mman.h>
67 # ifndef MAP_FAILED
68 # define MAP_FAILED -1
69 # endif
70 # define USING_MMAP
71
72 #endif
73
74 #ifndef USING_MMAP
75 #define USING_MALLOC_PAGE_GROUPS
76 #endif
77
78 /* Strategy:
79
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
85
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
90
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
94
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
100 context depth.
101
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
106
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
114 \f
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
117 #endif
118
119 \f
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
123
124 HOST_PAGE_SIZE_BITS
125 32 | |
126 msb +----------------+----+------+------+ lsb
127 | | |
128 PAGE_L1_BITS |
129 | |
130 PAGE_L2_BITS
131
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
136
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
140 correct one. */
141
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
146
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
171
172 /* The number of extra orders, not corresponding to power-of-two sized
173 objects. */
174
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
176
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
179
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
182
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
186
187 static const size_t extra_order_size_table[] = {
188 sizeof (struct stmt_ann_d),
189 sizeof (struct var_ann_d),
190 sizeof (struct tree_decl_non_common),
191 sizeof (struct tree_field_decl),
192 sizeof (struct tree_parm_decl),
193 sizeof (struct tree_var_decl),
194 sizeof (struct tree_list),
195 sizeof (struct tree_ssa_name),
196 sizeof (struct tree_function_decl),
197 sizeof (struct tree_binfo),
198 sizeof (struct function),
199 sizeof (struct basic_block_def),
200 sizeof (bitmap_element),
201 /* PHI nodes with one to three arguments are already covered by the
202 above sizes. */
203 sizeof (struct tree_phi_node) + sizeof (struct phi_arg_d) * 3,
204 TREE_EXP_SIZE (2),
205 RTL_SIZE (2), /* MEM, PLUS, etc. */
206 RTL_SIZE (9), /* INSN */
207 };
208
209 /* The total number of orders. */
210
211 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
212
213 /* We use this structure to determine the alignment required for
214 allocations. For power-of-two sized allocations, that's not a
215 problem, but it does matter for odd-sized allocations. */
216
217 struct max_alignment {
218 char c;
219 union {
220 HOST_WIDEST_INT i;
221 long double d;
222 } u;
223 };
224
225 /* The biggest alignment required. */
226
227 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
228
229 /* Compute the smallest nonnegative number which when added to X gives
230 a multiple of F. */
231
232 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
233
234 /* Compute the smallest multiple of F that is >= X. */
235
236 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
237
238 /* The Ith entry is the number of objects on a page or order I. */
239
240 static unsigned objects_per_page_table[NUM_ORDERS];
241
242 /* The Ith entry is the size of an object on a page of order I. */
243
244 static size_t object_size_table[NUM_ORDERS];
245
246 /* The Ith entry is a pair of numbers (mult, shift) such that
247 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
248 for all k evenly divisible by OBJECT_SIZE(I). */
249
250 static struct
251 {
252 size_t mult;
253 unsigned int shift;
254 }
255 inverse_table[NUM_ORDERS];
256
257 /* A page_entry records the status of an allocation page. This
258 structure is dynamically sized to fit the bitmap in_use_p. */
259 typedef struct page_entry
260 {
261 /* The next page-entry with objects of the same size, or NULL if
262 this is the last page-entry. */
263 struct page_entry *next;
264
265 /* The previous page-entry with objects of the same size, or NULL if
266 this is the first page-entry. The PREV pointer exists solely to
267 keep the cost of ggc_free manageable. */
268 struct page_entry *prev;
269
270 /* The number of bytes allocated. (This will always be a multiple
271 of the host system page size.) */
272 size_t bytes;
273
274 /* The address at which the memory is allocated. */
275 char *page;
276
277 #ifdef USING_MALLOC_PAGE_GROUPS
278 /* Back pointer to the page group this page came from. */
279 struct page_group *group;
280 #endif
281
282 /* This is the index in the by_depth varray where this page table
283 can be found. */
284 unsigned long index_by_depth;
285
286 /* Context depth of this page. */
287 unsigned short context_depth;
288
289 /* The number of free objects remaining on this page. */
290 unsigned short num_free_objects;
291
292 /* A likely candidate for the bit position of a free object for the
293 next allocation from this page. */
294 unsigned short next_bit_hint;
295
296 /* The lg of size of objects allocated from this page. */
297 unsigned char order;
298
299 /* A bit vector indicating whether or not objects are in use. The
300 Nth bit is one if the Nth object on this page is allocated. This
301 array is dynamically sized. */
302 unsigned long in_use_p[1];
303 } page_entry;
304
305 #ifdef USING_MALLOC_PAGE_GROUPS
306 /* A page_group describes a large allocation from malloc, from which
307 we parcel out aligned pages. */
308 typedef struct page_group
309 {
310 /* A linked list of all extant page groups. */
311 struct page_group *next;
312
313 /* The address we received from malloc. */
314 char *allocation;
315
316 /* The size of the block. */
317 size_t alloc_size;
318
319 /* A bitmask of pages in use. */
320 unsigned int in_use;
321 } page_group;
322 #endif
323
324 #if HOST_BITS_PER_PTR <= 32
325
326 /* On 32-bit hosts, we use a two level page table, as pictured above. */
327 typedef page_entry **page_table[PAGE_L1_SIZE];
328
329 #else
330
331 /* On 64-bit hosts, we use the same two level page tables plus a linked
332 list that disambiguates the top 32-bits. There will almost always be
333 exactly one entry in the list. */
334 typedef struct page_table_chain
335 {
336 struct page_table_chain *next;
337 size_t high_bits;
338 page_entry **table[PAGE_L1_SIZE];
339 } *page_table;
340
341 #endif
342
343 /* The rest of the global variables. */
344 static struct globals
345 {
346 /* The Nth element in this array is a page with objects of size 2^N.
347 If there are any pages with free objects, they will be at the
348 head of the list. NULL if there are no page-entries for this
349 object size. */
350 page_entry *pages[NUM_ORDERS];
351
352 /* The Nth element in this array is the last page with objects of
353 size 2^N. NULL if there are no page-entries for this object
354 size. */
355 page_entry *page_tails[NUM_ORDERS];
356
357 /* Lookup table for associating allocation pages with object addresses. */
358 page_table lookup;
359
360 /* The system's page size. */
361 size_t pagesize;
362 size_t lg_pagesize;
363
364 /* Bytes currently allocated. */
365 size_t allocated;
366
367 /* Bytes currently allocated at the end of the last collection. */
368 size_t allocated_last_gc;
369
370 /* Total amount of memory mapped. */
371 size_t bytes_mapped;
372
373 /* Bit N set if any allocations have been done at context depth N. */
374 unsigned long context_depth_allocations;
375
376 /* Bit N set if any collections have been done at context depth N. */
377 unsigned long context_depth_collections;
378
379 /* The current depth in the context stack. */
380 unsigned short context_depth;
381
382 /* A file descriptor open to /dev/zero for reading. */
383 #if defined (HAVE_MMAP_DEV_ZERO)
384 int dev_zero_fd;
385 #endif
386
387 /* A cache of free system pages. */
388 page_entry *free_pages;
389
390 #ifdef USING_MALLOC_PAGE_GROUPS
391 page_group *page_groups;
392 #endif
393
394 /* The file descriptor for debugging output. */
395 FILE *debug_file;
396
397 /* Current number of elements in use in depth below. */
398 unsigned int depth_in_use;
399
400 /* Maximum number of elements that can be used before resizing. */
401 unsigned int depth_max;
402
403 /* Each element of this arry is an index in by_depth where the given
404 depth starts. This structure is indexed by that given depth we
405 are interested in. */
406 unsigned int *depth;
407
408 /* Current number of elements in use in by_depth below. */
409 unsigned int by_depth_in_use;
410
411 /* Maximum number of elements that can be used before resizing. */
412 unsigned int by_depth_max;
413
414 /* Each element of this array is a pointer to a page_entry, all
415 page_entries can be found in here by increasing depth.
416 index_by_depth in the page_entry is the index into this data
417 structure where that page_entry can be found. This is used to
418 speed up finding all page_entries at a particular depth. */
419 page_entry **by_depth;
420
421 /* Each element is a pointer to the saved in_use_p bits, if any,
422 zero otherwise. We allocate them all together, to enable a
423 better runtime data access pattern. */
424 unsigned long **save_in_use;
425
426 #ifdef ENABLE_GC_ALWAYS_COLLECT
427 /* List of free objects to be verified as actually free on the
428 next collection. */
429 struct free_object
430 {
431 void *object;
432 struct free_object *next;
433 } *free_object_list;
434 #endif
435
436 #ifdef GATHER_STATISTICS
437 struct
438 {
439 /* Total memory allocated with ggc_alloc. */
440 unsigned long long total_allocated;
441 /* Total overhead for memory to be allocated with ggc_alloc. */
442 unsigned long long total_overhead;
443
444 /* Total allocations and overhead for sizes less than 32, 64 and 128.
445 These sizes are interesting because they are typical cache line
446 sizes. */
447
448 unsigned long long total_allocated_under32;
449 unsigned long long total_overhead_under32;
450
451 unsigned long long total_allocated_under64;
452 unsigned long long total_overhead_under64;
453
454 unsigned long long total_allocated_under128;
455 unsigned long long total_overhead_under128;
456
457 /* The allocations for each of the allocation orders. */
458 unsigned long long total_allocated_per_order[NUM_ORDERS];
459
460 /* The overhead for each of the allocation orders. */
461 unsigned long long total_overhead_per_order[NUM_ORDERS];
462 } stats;
463 #endif
464 } G;
465
466 /* The size in bytes required to maintain a bitmap for the objects
467 on a page-entry. */
468 #define BITMAP_SIZE(Num_objects) \
469 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
470
471 /* Allocate pages in chunks of this size, to throttle calls to memory
472 allocation routines. The first page is used, the rest go onto the
473 free list. This cannot be larger than HOST_BITS_PER_INT for the
474 in_use bitmask for page_group. Hosts that need a different value
475 can override this by defining GGC_QUIRE_SIZE explicitly. */
476 #ifndef GGC_QUIRE_SIZE
477 # ifdef USING_MMAP
478 # define GGC_QUIRE_SIZE 256
479 # else
480 # define GGC_QUIRE_SIZE 16
481 # endif
482 #endif
483
484 /* Initial guess as to how many page table entries we might need. */
485 #define INITIAL_PTE_COUNT 128
486 \f
487 static int ggc_allocated_p (const void *);
488 static page_entry *lookup_page_table_entry (const void *);
489 static void set_page_table_entry (void *, page_entry *);
490 #ifdef USING_MMAP
491 static char *alloc_anon (char *, size_t);
492 #endif
493 #ifdef USING_MALLOC_PAGE_GROUPS
494 static size_t page_group_index (char *, char *);
495 static void set_page_group_in_use (page_group *, char *);
496 static void clear_page_group_in_use (page_group *, char *);
497 #endif
498 static struct page_entry * alloc_page (unsigned);
499 static void free_page (struct page_entry *);
500 static void release_pages (void);
501 static void clear_marks (void);
502 static void sweep_pages (void);
503 static void ggc_recalculate_in_use_p (page_entry *);
504 static void compute_inverse (unsigned);
505 static inline void adjust_depth (void);
506 static void move_ptes_to_front (int, int);
507
508 void debug_print_page_list (int);
509 static void push_depth (unsigned int);
510 static void push_by_depth (page_entry *, unsigned long *);
511
512 /* Push an entry onto G.depth. */
513
514 inline static void
515 push_depth (unsigned int i)
516 {
517 if (G.depth_in_use >= G.depth_max)
518 {
519 G.depth_max *= 2;
520 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
521 }
522 G.depth[G.depth_in_use++] = i;
523 }
524
525 /* Push an entry onto G.by_depth and G.save_in_use. */
526
527 inline static void
528 push_by_depth (page_entry *p, unsigned long *s)
529 {
530 if (G.by_depth_in_use >= G.by_depth_max)
531 {
532 G.by_depth_max *= 2;
533 G.by_depth = xrealloc (G.by_depth,
534 G.by_depth_max * sizeof (page_entry *));
535 G.save_in_use = xrealloc (G.save_in_use,
536 G.by_depth_max * sizeof (unsigned long *));
537 }
538 G.by_depth[G.by_depth_in_use] = p;
539 G.save_in_use[G.by_depth_in_use++] = s;
540 }
541
542 #if (GCC_VERSION < 3001)
543 #define prefetch(X) ((void) X)
544 #else
545 #define prefetch(X) __builtin_prefetch (X)
546 #endif
547
548 #define save_in_use_p_i(__i) \
549 (G.save_in_use[__i])
550 #define save_in_use_p(__p) \
551 (save_in_use_p_i (__p->index_by_depth))
552
553 /* Returns nonzero if P was allocated in GC'able memory. */
554
555 static inline int
556 ggc_allocated_p (const void *p)
557 {
558 page_entry ***base;
559 size_t L1, L2;
560
561 #if HOST_BITS_PER_PTR <= 32
562 base = &G.lookup[0];
563 #else
564 page_table table = G.lookup;
565 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
566 while (1)
567 {
568 if (table == NULL)
569 return 0;
570 if (table->high_bits == high_bits)
571 break;
572 table = table->next;
573 }
574 base = &table->table[0];
575 #endif
576
577 /* Extract the level 1 and 2 indices. */
578 L1 = LOOKUP_L1 (p);
579 L2 = LOOKUP_L2 (p);
580
581 return base[L1] && base[L1][L2];
582 }
583
584 /* Traverse the page table and find the entry for a page.
585 Die (probably) if the object wasn't allocated via GC. */
586
587 static inline page_entry *
588 lookup_page_table_entry (const void *p)
589 {
590 page_entry ***base;
591 size_t L1, L2;
592
593 #if HOST_BITS_PER_PTR <= 32
594 base = &G.lookup[0];
595 #else
596 page_table table = G.lookup;
597 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
598 while (table->high_bits != high_bits)
599 table = table->next;
600 base = &table->table[0];
601 #endif
602
603 /* Extract the level 1 and 2 indices. */
604 L1 = LOOKUP_L1 (p);
605 L2 = LOOKUP_L2 (p);
606
607 return base[L1][L2];
608 }
609
610 /* Set the page table entry for a page. */
611
612 static void
613 set_page_table_entry (void *p, page_entry *entry)
614 {
615 page_entry ***base;
616 size_t L1, L2;
617
618 #if HOST_BITS_PER_PTR <= 32
619 base = &G.lookup[0];
620 #else
621 page_table table;
622 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
623 for (table = G.lookup; table; table = table->next)
624 if (table->high_bits == high_bits)
625 goto found;
626
627 /* Not found -- allocate a new table. */
628 table = xcalloc (1, sizeof(*table));
629 table->next = G.lookup;
630 table->high_bits = high_bits;
631 G.lookup = table;
632 found:
633 base = &table->table[0];
634 #endif
635
636 /* Extract the level 1 and 2 indices. */
637 L1 = LOOKUP_L1 (p);
638 L2 = LOOKUP_L2 (p);
639
640 if (base[L1] == NULL)
641 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
642
643 base[L1][L2] = entry;
644 }
645
646 /* Prints the page-entry for object size ORDER, for debugging. */
647
648 void
649 debug_print_page_list (int order)
650 {
651 page_entry *p;
652 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
653 (void *) G.page_tails[order]);
654 p = G.pages[order];
655 while (p != NULL)
656 {
657 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
658 p->num_free_objects);
659 p = p->next;
660 }
661 printf ("NULL\n");
662 fflush (stdout);
663 }
664
665 #ifdef USING_MMAP
666 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
667 (if non-null). The ifdef structure here is intended to cause a
668 compile error unless exactly one of the HAVE_* is defined. */
669
670 static inline char *
671 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
672 {
673 #ifdef HAVE_MMAP_ANON
674 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
675 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
676 #endif
677 #ifdef HAVE_MMAP_DEV_ZERO
678 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
679 MAP_PRIVATE, G.dev_zero_fd, 0);
680 #endif
681
682 if (page == (char *) MAP_FAILED)
683 {
684 perror ("virtual memory exhausted");
685 exit (FATAL_EXIT_CODE);
686 }
687
688 /* Remember that we allocated this memory. */
689 G.bytes_mapped += size;
690
691 /* Pretend we don't have access to the allocated pages. We'll enable
692 access to smaller pieces of the area in ggc_alloc. Discard the
693 handle to avoid handle leak. */
694 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
695
696 return page;
697 }
698 #endif
699 #ifdef USING_MALLOC_PAGE_GROUPS
700 /* Compute the index for this page into the page group. */
701
702 static inline size_t
703 page_group_index (char *allocation, char *page)
704 {
705 return (size_t) (page - allocation) >> G.lg_pagesize;
706 }
707
708 /* Set and clear the in_use bit for this page in the page group. */
709
710 static inline void
711 set_page_group_in_use (page_group *group, char *page)
712 {
713 group->in_use |= 1 << page_group_index (group->allocation, page);
714 }
715
716 static inline void
717 clear_page_group_in_use (page_group *group, char *page)
718 {
719 group->in_use &= ~(1 << page_group_index (group->allocation, page));
720 }
721 #endif
722
723 /* Allocate a new page for allocating objects of size 2^ORDER,
724 and return an entry for it. The entry is not added to the
725 appropriate page_table list. */
726
727 static inline struct page_entry *
728 alloc_page (unsigned order)
729 {
730 struct page_entry *entry, *p, **pp;
731 char *page;
732 size_t num_objects;
733 size_t bitmap_size;
734 size_t page_entry_size;
735 size_t entry_size;
736 #ifdef USING_MALLOC_PAGE_GROUPS
737 page_group *group;
738 #endif
739
740 num_objects = OBJECTS_PER_PAGE (order);
741 bitmap_size = BITMAP_SIZE (num_objects + 1);
742 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
743 entry_size = num_objects * OBJECT_SIZE (order);
744 if (entry_size < G.pagesize)
745 entry_size = G.pagesize;
746
747 entry = NULL;
748 page = NULL;
749
750 /* Check the list of free pages for one we can use. */
751 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
752 if (p->bytes == entry_size)
753 break;
754
755 if (p != NULL)
756 {
757 /* Recycle the allocated memory from this page ... */
758 *pp = p->next;
759 page = p->page;
760
761 #ifdef USING_MALLOC_PAGE_GROUPS
762 group = p->group;
763 #endif
764
765 /* ... and, if possible, the page entry itself. */
766 if (p->order == order)
767 {
768 entry = p;
769 memset (entry, 0, page_entry_size);
770 }
771 else
772 free (p);
773 }
774 #ifdef USING_MMAP
775 else if (entry_size == G.pagesize)
776 {
777 /* We want just one page. Allocate a bunch of them and put the
778 extras on the freelist. (Can only do this optimization with
779 mmap for backing store.) */
780 struct page_entry *e, *f = G.free_pages;
781 int i;
782
783 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
784
785 /* This loop counts down so that the chain will be in ascending
786 memory order. */
787 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
788 {
789 e = xcalloc (1, page_entry_size);
790 e->order = order;
791 e->bytes = G.pagesize;
792 e->page = page + (i << G.lg_pagesize);
793 e->next = f;
794 f = e;
795 }
796
797 G.free_pages = f;
798 }
799 else
800 page = alloc_anon (NULL, entry_size);
801 #endif
802 #ifdef USING_MALLOC_PAGE_GROUPS
803 else
804 {
805 /* Allocate a large block of memory and serve out the aligned
806 pages therein. This results in much less memory wastage
807 than the traditional implementation of valloc. */
808
809 char *allocation, *a, *enda;
810 size_t alloc_size, head_slop, tail_slop;
811 int multiple_pages = (entry_size == G.pagesize);
812
813 if (multiple_pages)
814 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
815 else
816 alloc_size = entry_size + G.pagesize - 1;
817 allocation = xmalloc (alloc_size);
818
819 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
820 head_slop = page - allocation;
821 if (multiple_pages)
822 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
823 else
824 tail_slop = alloc_size - entry_size - head_slop;
825 enda = allocation + alloc_size - tail_slop;
826
827 /* We allocated N pages, which are likely not aligned, leaving
828 us with N-1 usable pages. We plan to place the page_group
829 structure somewhere in the slop. */
830 if (head_slop >= sizeof (page_group))
831 group = (page_group *)page - 1;
832 else
833 {
834 /* We magically got an aligned allocation. Too bad, we have
835 to waste a page anyway. */
836 if (tail_slop == 0)
837 {
838 enda -= G.pagesize;
839 tail_slop += G.pagesize;
840 }
841 gcc_assert (tail_slop >= sizeof (page_group));
842 group = (page_group *)enda;
843 tail_slop -= sizeof (page_group);
844 }
845
846 /* Remember that we allocated this memory. */
847 group->next = G.page_groups;
848 group->allocation = allocation;
849 group->alloc_size = alloc_size;
850 group->in_use = 0;
851 G.page_groups = group;
852 G.bytes_mapped += alloc_size;
853
854 /* If we allocated multiple pages, put the rest on the free list. */
855 if (multiple_pages)
856 {
857 struct page_entry *e, *f = G.free_pages;
858 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
859 {
860 e = xcalloc (1, page_entry_size);
861 e->order = order;
862 e->bytes = G.pagesize;
863 e->page = a;
864 e->group = group;
865 e->next = f;
866 f = e;
867 }
868 G.free_pages = f;
869 }
870 }
871 #endif
872
873 if (entry == NULL)
874 entry = xcalloc (1, page_entry_size);
875
876 entry->bytes = entry_size;
877 entry->page = page;
878 entry->context_depth = G.context_depth;
879 entry->order = order;
880 entry->num_free_objects = num_objects;
881 entry->next_bit_hint = 1;
882
883 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
884
885 #ifdef USING_MALLOC_PAGE_GROUPS
886 entry->group = group;
887 set_page_group_in_use (group, page);
888 #endif
889
890 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
891 increment the hint. */
892 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
893 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
894
895 set_page_table_entry (page, entry);
896
897 if (GGC_DEBUG_LEVEL >= 2)
898 fprintf (G.debug_file,
899 "Allocating page at %p, object size=%lu, data %p-%p\n",
900 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
901 page + entry_size - 1);
902
903 return entry;
904 }
905
906 /* Adjust the size of G.depth so that no index greater than the one
907 used by the top of the G.by_depth is used. */
908
909 static inline void
910 adjust_depth (void)
911 {
912 page_entry *top;
913
914 if (G.by_depth_in_use)
915 {
916 top = G.by_depth[G.by_depth_in_use-1];
917
918 /* Peel back indices in depth that index into by_depth, so that
919 as new elements are added to by_depth, we note the indices
920 of those elements, if they are for new context depths. */
921 while (G.depth_in_use > (size_t)top->context_depth+1)
922 --G.depth_in_use;
923 }
924 }
925
926 /* For a page that is no longer needed, put it on the free page list. */
927
928 static void
929 free_page (page_entry *entry)
930 {
931 if (GGC_DEBUG_LEVEL >= 2)
932 fprintf (G.debug_file,
933 "Deallocating page at %p, data %p-%p\n", (void *) entry,
934 entry->page, entry->page + entry->bytes - 1);
935
936 /* Mark the page as inaccessible. Discard the handle to avoid handle
937 leak. */
938 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
939
940 set_page_table_entry (entry->page, NULL);
941
942 #ifdef USING_MALLOC_PAGE_GROUPS
943 clear_page_group_in_use (entry->group, entry->page);
944 #endif
945
946 if (G.by_depth_in_use > 1)
947 {
948 page_entry *top = G.by_depth[G.by_depth_in_use-1];
949 int i = entry->index_by_depth;
950
951 /* We cannot free a page from a context deeper than the current
952 one. */
953 gcc_assert (entry->context_depth == top->context_depth);
954
955 /* Put top element into freed slot. */
956 G.by_depth[i] = top;
957 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
958 top->index_by_depth = i;
959 }
960 --G.by_depth_in_use;
961
962 adjust_depth ();
963
964 entry->next = G.free_pages;
965 G.free_pages = entry;
966 }
967
968 /* Release the free page cache to the system. */
969
970 static void
971 release_pages (void)
972 {
973 #ifdef USING_MMAP
974 page_entry *p, *next;
975 char *start;
976 size_t len;
977
978 /* Gather up adjacent pages so they are unmapped together. */
979 p = G.free_pages;
980
981 while (p)
982 {
983 start = p->page;
984 next = p->next;
985 len = p->bytes;
986 free (p);
987 p = next;
988
989 while (p && p->page == start + len)
990 {
991 next = p->next;
992 len += p->bytes;
993 free (p);
994 p = next;
995 }
996
997 munmap (start, len);
998 G.bytes_mapped -= len;
999 }
1000
1001 G.free_pages = NULL;
1002 #endif
1003 #ifdef USING_MALLOC_PAGE_GROUPS
1004 page_entry **pp, *p;
1005 page_group **gp, *g;
1006
1007 /* Remove all pages from free page groups from the list. */
1008 pp = &G.free_pages;
1009 while ((p = *pp) != NULL)
1010 if (p->group->in_use == 0)
1011 {
1012 *pp = p->next;
1013 free (p);
1014 }
1015 else
1016 pp = &p->next;
1017
1018 /* Remove all free page groups, and release the storage. */
1019 gp = &G.page_groups;
1020 while ((g = *gp) != NULL)
1021 if (g->in_use == 0)
1022 {
1023 *gp = g->next;
1024 G.bytes_mapped -= g->alloc_size;
1025 free (g->allocation);
1026 }
1027 else
1028 gp = &g->next;
1029 #endif
1030 }
1031
1032 /* This table provides a fast way to determine ceil(log_2(size)) for
1033 allocation requests. The minimum allocation size is eight bytes. */
1034
1035 static unsigned char size_lookup[512] =
1036 {
1037 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1038 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1039 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1040 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1041 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1042 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1043 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1044 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1045 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1046 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1047 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1048 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1049 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1050 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1051 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1052 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1053 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1054 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1055 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1056 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1057 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1058 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1059 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1060 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1061 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1062 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1063 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1064 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1065 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1066 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1067 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1068 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1069 };
1070
1071 /* Typed allocation function. Does nothing special in this collector. */
1072
1073 void *
1074 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1075 MEM_STAT_DECL)
1076 {
1077 return ggc_alloc_stat (size PASS_MEM_STAT);
1078 }
1079
1080 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1081
1082 void *
1083 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1084 {
1085 size_t order, word, bit, object_offset, object_size;
1086 struct page_entry *entry;
1087 void *result;
1088
1089 if (size < 512)
1090 {
1091 order = size_lookup[size];
1092 object_size = OBJECT_SIZE (order);
1093 }
1094 else
1095 {
1096 order = 10;
1097 while (size > (object_size = OBJECT_SIZE (order)))
1098 order++;
1099 }
1100
1101 /* If there are non-full pages for this size allocation, they are at
1102 the head of the list. */
1103 entry = G.pages[order];
1104
1105 /* If there is no page for this object size, or all pages in this
1106 context are full, allocate a new page. */
1107 if (entry == NULL || entry->num_free_objects == 0)
1108 {
1109 struct page_entry *new_entry;
1110 new_entry = alloc_page (order);
1111
1112 new_entry->index_by_depth = G.by_depth_in_use;
1113 push_by_depth (new_entry, 0);
1114
1115 /* We can skip context depths, if we do, make sure we go all the
1116 way to the new depth. */
1117 while (new_entry->context_depth >= G.depth_in_use)
1118 push_depth (G.by_depth_in_use-1);
1119
1120 /* If this is the only entry, it's also the tail. If it is not
1121 the only entry, then we must update the PREV pointer of the
1122 ENTRY (G.pages[order]) to point to our new page entry. */
1123 if (entry == NULL)
1124 G.page_tails[order] = new_entry;
1125 else
1126 entry->prev = new_entry;
1127
1128 /* Put new pages at the head of the page list. By definition the
1129 entry at the head of the list always has a NULL pointer. */
1130 new_entry->next = entry;
1131 new_entry->prev = NULL;
1132 entry = new_entry;
1133 G.pages[order] = new_entry;
1134
1135 /* For a new page, we know the word and bit positions (in the
1136 in_use bitmap) of the first available object -- they're zero. */
1137 new_entry->next_bit_hint = 1;
1138 word = 0;
1139 bit = 0;
1140 object_offset = 0;
1141 }
1142 else
1143 {
1144 /* First try to use the hint left from the previous allocation
1145 to locate a clear bit in the in-use bitmap. We've made sure
1146 that the one-past-the-end bit is always set, so if the hint
1147 has run over, this test will fail. */
1148 unsigned hint = entry->next_bit_hint;
1149 word = hint / HOST_BITS_PER_LONG;
1150 bit = hint % HOST_BITS_PER_LONG;
1151
1152 /* If the hint didn't work, scan the bitmap from the beginning. */
1153 if ((entry->in_use_p[word] >> bit) & 1)
1154 {
1155 word = bit = 0;
1156 while (~entry->in_use_p[word] == 0)
1157 ++word;
1158
1159 #if GCC_VERSION >= 3004
1160 bit = __builtin_ctzl (~entry->in_use_p[word]);
1161 #else
1162 while ((entry->in_use_p[word] >> bit) & 1)
1163 ++bit;
1164 #endif
1165
1166 hint = word * HOST_BITS_PER_LONG + bit;
1167 }
1168
1169 /* Next time, try the next bit. */
1170 entry->next_bit_hint = hint + 1;
1171
1172 object_offset = hint * object_size;
1173 }
1174
1175 /* Set the in-use bit. */
1176 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1177
1178 /* Keep a running total of the number of free objects. If this page
1179 fills up, we may have to move it to the end of the list if the
1180 next page isn't full. If the next page is full, all subsequent
1181 pages are full, so there's no need to move it. */
1182 if (--entry->num_free_objects == 0
1183 && entry->next != NULL
1184 && entry->next->num_free_objects > 0)
1185 {
1186 /* We have a new head for the list. */
1187 G.pages[order] = entry->next;
1188
1189 /* We are moving ENTRY to the end of the page table list.
1190 The new page at the head of the list will have NULL in
1191 its PREV field and ENTRY will have NULL in its NEXT field. */
1192 entry->next->prev = NULL;
1193 entry->next = NULL;
1194
1195 /* Append ENTRY to the tail of the list. */
1196 entry->prev = G.page_tails[order];
1197 G.page_tails[order]->next = entry;
1198 G.page_tails[order] = entry;
1199 }
1200
1201 /* Calculate the object's address. */
1202 result = entry->page + object_offset;
1203 #ifdef GATHER_STATISTICS
1204 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1205 result PASS_MEM_STAT);
1206 #endif
1207
1208 #ifdef ENABLE_GC_CHECKING
1209 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1210 exact same semantics in presence of memory bugs, regardless of
1211 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1212 handle to avoid handle leak. */
1213 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
1214
1215 /* `Poison' the entire allocated object, including any padding at
1216 the end. */
1217 memset (result, 0xaf, object_size);
1218
1219 /* Make the bytes after the end of the object unaccessible. Discard the
1220 handle to avoid handle leak. */
1221 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1222 object_size - size));
1223 #endif
1224
1225 /* Tell Valgrind that the memory is there, but its content isn't
1226 defined. The bytes at the end of the object are still marked
1227 unaccessible. */
1228 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1229
1230 /* Keep track of how many bytes are being allocated. This
1231 information is used in deciding when to collect. */
1232 G.allocated += object_size;
1233
1234 /* For timevar statistics. */
1235 timevar_ggc_mem_total += object_size;
1236
1237 #ifdef GATHER_STATISTICS
1238 {
1239 size_t overhead = object_size - size;
1240
1241 G.stats.total_overhead += overhead;
1242 G.stats.total_allocated += object_size;
1243 G.stats.total_overhead_per_order[order] += overhead;
1244 G.stats.total_allocated_per_order[order] += object_size;
1245
1246 if (size <= 32)
1247 {
1248 G.stats.total_overhead_under32 += overhead;
1249 G.stats.total_allocated_under32 += object_size;
1250 }
1251 if (size <= 64)
1252 {
1253 G.stats.total_overhead_under64 += overhead;
1254 G.stats.total_allocated_under64 += object_size;
1255 }
1256 if (size <= 128)
1257 {
1258 G.stats.total_overhead_under128 += overhead;
1259 G.stats.total_allocated_under128 += object_size;
1260 }
1261 }
1262 #endif
1263
1264 if (GGC_DEBUG_LEVEL >= 3)
1265 fprintf (G.debug_file,
1266 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1267 (unsigned long) size, (unsigned long) object_size, result,
1268 (void *) entry);
1269
1270 return result;
1271 }
1272
1273 /* If P is not marked, marks it and return false. Otherwise return true.
1274 P must have been allocated by the GC allocator; it mustn't point to
1275 static objects, stack variables, or memory allocated with malloc. */
1276
1277 int
1278 ggc_set_mark (const void *p)
1279 {
1280 page_entry *entry;
1281 unsigned bit, word;
1282 unsigned long mask;
1283
1284 /* Look up the page on which the object is alloced. If the object
1285 wasn't allocated by the collector, we'll probably die. */
1286 entry = lookup_page_table_entry (p);
1287 gcc_assert (entry);
1288
1289 /* Calculate the index of the object on the page; this is its bit
1290 position in the in_use_p bitmap. */
1291 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1292 word = bit / HOST_BITS_PER_LONG;
1293 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1294
1295 /* If the bit was previously set, skip it. */
1296 if (entry->in_use_p[word] & mask)
1297 return 1;
1298
1299 /* Otherwise set it, and decrement the free object count. */
1300 entry->in_use_p[word] |= mask;
1301 entry->num_free_objects -= 1;
1302
1303 if (GGC_DEBUG_LEVEL >= 4)
1304 fprintf (G.debug_file, "Marking %p\n", p);
1305
1306 return 0;
1307 }
1308
1309 /* Return 1 if P has been marked, zero otherwise.
1310 P must have been allocated by the GC allocator; it mustn't point to
1311 static objects, stack variables, or memory allocated with malloc. */
1312
1313 int
1314 ggc_marked_p (const void *p)
1315 {
1316 page_entry *entry;
1317 unsigned bit, word;
1318 unsigned long mask;
1319
1320 /* Look up the page on which the object is alloced. If the object
1321 wasn't allocated by the collector, we'll probably die. */
1322 entry = lookup_page_table_entry (p);
1323 gcc_assert (entry);
1324
1325 /* Calculate the index of the object on the page; this is its bit
1326 position in the in_use_p bitmap. */
1327 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1328 word = bit / HOST_BITS_PER_LONG;
1329 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1330
1331 return (entry->in_use_p[word] & mask) != 0;
1332 }
1333
1334 /* Return the size of the gc-able object P. */
1335
1336 size_t
1337 ggc_get_size (const void *p)
1338 {
1339 page_entry *pe = lookup_page_table_entry (p);
1340 return OBJECT_SIZE (pe->order);
1341 }
1342
1343 /* Release the memory for object P. */
1344
1345 void
1346 ggc_free (void *p)
1347 {
1348 page_entry *pe = lookup_page_table_entry (p);
1349 size_t order = pe->order;
1350 size_t size = OBJECT_SIZE (order);
1351
1352 #ifdef GATHER_STATISTICS
1353 ggc_free_overhead (p);
1354 #endif
1355
1356 if (GGC_DEBUG_LEVEL >= 3)
1357 fprintf (G.debug_file,
1358 "Freeing object, actual size=%lu, at %p on %p\n",
1359 (unsigned long) size, p, (void *) pe);
1360
1361 #ifdef ENABLE_GC_CHECKING
1362 /* Poison the data, to indicate the data is garbage. */
1363 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1364 memset (p, 0xa5, size);
1365 #endif
1366 /* Let valgrind know the object is free. */
1367 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1368
1369 #ifdef ENABLE_GC_ALWAYS_COLLECT
1370 /* In the completely-anal-checking mode, we do *not* immediately free
1371 the data, but instead verify that the data is *actually* not
1372 reachable the next time we collect. */
1373 {
1374 struct free_object *fo = XNEW (struct free_object);
1375 fo->object = p;
1376 fo->next = G.free_object_list;
1377 G.free_object_list = fo;
1378 }
1379 #else
1380 {
1381 unsigned int bit_offset, word, bit;
1382
1383 G.allocated -= size;
1384
1385 /* Mark the object not-in-use. */
1386 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1387 word = bit_offset / HOST_BITS_PER_LONG;
1388 bit = bit_offset % HOST_BITS_PER_LONG;
1389 pe->in_use_p[word] &= ~(1UL << bit);
1390
1391 if (pe->num_free_objects++ == 0)
1392 {
1393 page_entry *p, *q;
1394
1395 /* If the page is completely full, then it's supposed to
1396 be after all pages that aren't. Since we've freed one
1397 object from a page that was full, we need to move the
1398 page to the head of the list.
1399
1400 PE is the node we want to move. Q is the previous node
1401 and P is the next node in the list. */
1402 q = pe->prev;
1403 if (q && q->num_free_objects == 0)
1404 {
1405 p = pe->next;
1406
1407 q->next = p;
1408
1409 /* If PE was at the end of the list, then Q becomes the
1410 new end of the list. If PE was not the end of the
1411 list, then we need to update the PREV field for P. */
1412 if (!p)
1413 G.page_tails[order] = q;
1414 else
1415 p->prev = q;
1416
1417 /* Move PE to the head of the list. */
1418 pe->next = G.pages[order];
1419 pe->prev = NULL;
1420 G.pages[order]->prev = pe;
1421 G.pages[order] = pe;
1422 }
1423
1424 /* Reset the hint bit to point to the only free object. */
1425 pe->next_bit_hint = bit_offset;
1426 }
1427 }
1428 #endif
1429 }
1430 \f
1431 /* Subroutine of init_ggc which computes the pair of numbers used to
1432 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1433
1434 This algorithm is taken from Granlund and Montgomery's paper
1435 "Division by Invariant Integers using Multiplication"
1436 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1437 constants). */
1438
1439 static void
1440 compute_inverse (unsigned order)
1441 {
1442 size_t size, inv;
1443 unsigned int e;
1444
1445 size = OBJECT_SIZE (order);
1446 e = 0;
1447 while (size % 2 == 0)
1448 {
1449 e++;
1450 size >>= 1;
1451 }
1452
1453 inv = size;
1454 while (inv * size != 1)
1455 inv = inv * (2 - inv*size);
1456
1457 DIV_MULT (order) = inv;
1458 DIV_SHIFT (order) = e;
1459 }
1460
1461 /* Initialize the ggc-mmap allocator. */
1462 void
1463 init_ggc (void)
1464 {
1465 unsigned order;
1466
1467 G.pagesize = getpagesize();
1468 G.lg_pagesize = exact_log2 (G.pagesize);
1469
1470 #ifdef HAVE_MMAP_DEV_ZERO
1471 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1472 if (G.dev_zero_fd == -1)
1473 internal_error ("open /dev/zero: %m");
1474 #endif
1475
1476 #if 0
1477 G.debug_file = fopen ("ggc-mmap.debug", "w");
1478 #else
1479 G.debug_file = stdout;
1480 #endif
1481
1482 #ifdef USING_MMAP
1483 /* StunOS has an amazing off-by-one error for the first mmap allocation
1484 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1485 believe, is an unaligned page allocation, which would cause us to
1486 hork badly if we tried to use it. */
1487 {
1488 char *p = alloc_anon (NULL, G.pagesize);
1489 struct page_entry *e;
1490 if ((size_t)p & (G.pagesize - 1))
1491 {
1492 /* How losing. Discard this one and try another. If we still
1493 can't get something useful, give up. */
1494
1495 p = alloc_anon (NULL, G.pagesize);
1496 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1497 }
1498
1499 /* We have a good page, might as well hold onto it... */
1500 e = XCNEW (struct page_entry);
1501 e->bytes = G.pagesize;
1502 e->page = p;
1503 e->next = G.free_pages;
1504 G.free_pages = e;
1505 }
1506 #endif
1507
1508 /* Initialize the object size table. */
1509 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1510 object_size_table[order] = (size_t) 1 << order;
1511 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1512 {
1513 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1514 object_size_table[order] = s;
1515 }
1516
1517 /* Initialize the objects-per-page and inverse tables. */
1518 for (order = 0; order < NUM_ORDERS; ++order)
1519 {
1520 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1521 if (objects_per_page_table[order] == 0)
1522 objects_per_page_table[order] = 1;
1523 compute_inverse (order);
1524 }
1525
1526 /* Reset the size_lookup array to put appropriately sized objects in
1527 the special orders. All objects bigger than the previous power
1528 of two, but no greater than the special size, should go in the
1529 new order.
1530 Enforce alignment during lookup. The resulting bin size must
1531 have the same or bigger alignment than the apparent alignment
1532 requirement from the size request (but not bigger alignment
1533 than MAX_ALIGNMENT). Consider an extra bin of size 76 (in
1534 addition to the 64 and 128 byte sized bins). A request of
1535 allocation size of 72 bytes must be served from the 128 bytes
1536 bin, because 72 bytes looks like a request for 8 byte aligned
1537 memory, while the 76 byte bin can only serve chunks with a
1538 guaranteed alignment of 4 bytes. */
1539 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1540 {
1541 int i, mask;
1542
1543 /* Build an alignment mask that can be used for testing
1544 size % 2*align. If (size | MAX_ALIGNMENT) & mask is non-zero
1545 then the requested size apparent alignment requirement
1546 (which is at most MAX_ALIGNMENT) is less or equal than what
1547 the OBJECT_SIZE bin can guarantee. */
1548 mask = ~(((unsigned)-1) << ffs (OBJECT_SIZE (order)));
1549 mask &= 2 * MAX_ALIGNMENT - 1;
1550
1551 /* All objects smaller than the OBJECT_SIZE for this ORDER could go
1552 into ORDER. Determine the cases for which that is profitable
1553 and fulfilling the alignment requirements. Stop searching
1554 once a smaller bin with same or better alignment guarantee is
1555 found. */
1556 for (i = OBJECT_SIZE (order); ; --i)
1557 {
1558 unsigned int old_sz = OBJECT_SIZE (size_lookup [i]);
1559 if (!(old_sz & (mask >> 1))
1560 && old_sz < OBJECT_SIZE (order))
1561 break;
1562
1563 /* If object of size I are presently using a larger bin, we would
1564 like to move them to ORDER. However, we can only do that if we
1565 can be sure they will be properly aligned. They will be properly
1566 aligned if either the ORDER bin is maximally aligned, or if
1567 objects of size I cannot be more strictly aligned than the
1568 alignment of this order. */
1569 if ((i | MAX_ALIGNMENT) & mask
1570 && old_sz > OBJECT_SIZE (order))
1571 size_lookup[i] = order;
1572 }
1573 }
1574
1575 /* Verify we got everything right with respect to alignment requests. */
1576 for (order = 1; order < 512; ++order)
1577 gcc_assert (ffs (OBJECT_SIZE (size_lookup [order]))
1578 >= ffs (order | MAX_ALIGNMENT));
1579
1580 G.depth_in_use = 0;
1581 G.depth_max = 10;
1582 G.depth = XNEWVEC (unsigned int, G.depth_max);
1583
1584 G.by_depth_in_use = 0;
1585 G.by_depth_max = INITIAL_PTE_COUNT;
1586 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1587 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1588 }
1589
1590 /* Start a new GGC zone. */
1591
1592 struct alloc_zone *
1593 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1594 {
1595 return NULL;
1596 }
1597
1598 /* Destroy a GGC zone. */
1599 void
1600 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1601 {
1602 }
1603
1604 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1605 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1606
1607 static void
1608 ggc_recalculate_in_use_p (page_entry *p)
1609 {
1610 unsigned int i;
1611 size_t num_objects;
1612
1613 /* Because the past-the-end bit in in_use_p is always set, we
1614 pretend there is one additional object. */
1615 num_objects = OBJECTS_IN_PAGE (p) + 1;
1616
1617 /* Reset the free object count. */
1618 p->num_free_objects = num_objects;
1619
1620 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1621 for (i = 0;
1622 i < CEIL (BITMAP_SIZE (num_objects),
1623 sizeof (*p->in_use_p));
1624 ++i)
1625 {
1626 unsigned long j;
1627
1628 /* Something is in use if it is marked, or if it was in use in a
1629 context further down the context stack. */
1630 p->in_use_p[i] |= save_in_use_p (p)[i];
1631
1632 /* Decrement the free object count for every object allocated. */
1633 for (j = p->in_use_p[i]; j; j >>= 1)
1634 p->num_free_objects -= (j & 1);
1635 }
1636
1637 gcc_assert (p->num_free_objects < num_objects);
1638 }
1639 \f
1640 /* Unmark all objects. */
1641
1642 static void
1643 clear_marks (void)
1644 {
1645 unsigned order;
1646
1647 for (order = 2; order < NUM_ORDERS; order++)
1648 {
1649 page_entry *p;
1650
1651 for (p = G.pages[order]; p != NULL; p = p->next)
1652 {
1653 size_t num_objects = OBJECTS_IN_PAGE (p);
1654 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1655
1656 /* The data should be page-aligned. */
1657 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1658
1659 /* Pages that aren't in the topmost context are not collected;
1660 nevertheless, we need their in-use bit vectors to store GC
1661 marks. So, back them up first. */
1662 if (p->context_depth < G.context_depth)
1663 {
1664 if (! save_in_use_p (p))
1665 save_in_use_p (p) = xmalloc (bitmap_size);
1666 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1667 }
1668
1669 /* Reset reset the number of free objects and clear the
1670 in-use bits. These will be adjusted by mark_obj. */
1671 p->num_free_objects = num_objects;
1672 memset (p->in_use_p, 0, bitmap_size);
1673
1674 /* Make sure the one-past-the-end bit is always set. */
1675 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1676 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1677 }
1678 }
1679 }
1680
1681 /* Free all empty pages. Partially empty pages need no attention
1682 because the `mark' bit doubles as an `unused' bit. */
1683
1684 static void
1685 sweep_pages (void)
1686 {
1687 unsigned order;
1688
1689 for (order = 2; order < NUM_ORDERS; order++)
1690 {
1691 /* The last page-entry to consider, regardless of entries
1692 placed at the end of the list. */
1693 page_entry * const last = G.page_tails[order];
1694
1695 size_t num_objects;
1696 size_t live_objects;
1697 page_entry *p, *previous;
1698 int done;
1699
1700 p = G.pages[order];
1701 if (p == NULL)
1702 continue;
1703
1704 previous = NULL;
1705 do
1706 {
1707 page_entry *next = p->next;
1708
1709 /* Loop until all entries have been examined. */
1710 done = (p == last);
1711
1712 num_objects = OBJECTS_IN_PAGE (p);
1713
1714 /* Add all live objects on this page to the count of
1715 allocated memory. */
1716 live_objects = num_objects - p->num_free_objects;
1717
1718 G.allocated += OBJECT_SIZE (order) * live_objects;
1719
1720 /* Only objects on pages in the topmost context should get
1721 collected. */
1722 if (p->context_depth < G.context_depth)
1723 ;
1724
1725 /* Remove the page if it's empty. */
1726 else if (live_objects == 0)
1727 {
1728 /* If P was the first page in the list, then NEXT
1729 becomes the new first page in the list, otherwise
1730 splice P out of the forward pointers. */
1731 if (! previous)
1732 G.pages[order] = next;
1733 else
1734 previous->next = next;
1735
1736 /* Splice P out of the back pointers too. */
1737 if (next)
1738 next->prev = previous;
1739
1740 /* Are we removing the last element? */
1741 if (p == G.page_tails[order])
1742 G.page_tails[order] = previous;
1743 free_page (p);
1744 p = previous;
1745 }
1746
1747 /* If the page is full, move it to the end. */
1748 else if (p->num_free_objects == 0)
1749 {
1750 /* Don't move it if it's already at the end. */
1751 if (p != G.page_tails[order])
1752 {
1753 /* Move p to the end of the list. */
1754 p->next = NULL;
1755 p->prev = G.page_tails[order];
1756 G.page_tails[order]->next = p;
1757
1758 /* Update the tail pointer... */
1759 G.page_tails[order] = p;
1760
1761 /* ... and the head pointer, if necessary. */
1762 if (! previous)
1763 G.pages[order] = next;
1764 else
1765 previous->next = next;
1766
1767 /* And update the backpointer in NEXT if necessary. */
1768 if (next)
1769 next->prev = previous;
1770
1771 p = previous;
1772 }
1773 }
1774
1775 /* If we've fallen through to here, it's a page in the
1776 topmost context that is neither full nor empty. Such a
1777 page must precede pages at lesser context depth in the
1778 list, so move it to the head. */
1779 else if (p != G.pages[order])
1780 {
1781 previous->next = p->next;
1782
1783 /* Update the backchain in the next node if it exists. */
1784 if (p->next)
1785 p->next->prev = previous;
1786
1787 /* Move P to the head of the list. */
1788 p->next = G.pages[order];
1789 p->prev = NULL;
1790 G.pages[order]->prev = p;
1791
1792 /* Update the head pointer. */
1793 G.pages[order] = p;
1794
1795 /* Are we moving the last element? */
1796 if (G.page_tails[order] == p)
1797 G.page_tails[order] = previous;
1798 p = previous;
1799 }
1800
1801 previous = p;
1802 p = next;
1803 }
1804 while (! done);
1805
1806 /* Now, restore the in_use_p vectors for any pages from contexts
1807 other than the current one. */
1808 for (p = G.pages[order]; p; p = p->next)
1809 if (p->context_depth != G.context_depth)
1810 ggc_recalculate_in_use_p (p);
1811 }
1812 }
1813
1814 #ifdef ENABLE_GC_CHECKING
1815 /* Clobber all free objects. */
1816
1817 static void
1818 poison_pages (void)
1819 {
1820 unsigned order;
1821
1822 for (order = 2; order < NUM_ORDERS; order++)
1823 {
1824 size_t size = OBJECT_SIZE (order);
1825 page_entry *p;
1826
1827 for (p = G.pages[order]; p != NULL; p = p->next)
1828 {
1829 size_t num_objects;
1830 size_t i;
1831
1832 if (p->context_depth != G.context_depth)
1833 /* Since we don't do any collection for pages in pushed
1834 contexts, there's no need to do any poisoning. And
1835 besides, the IN_USE_P array isn't valid until we pop
1836 contexts. */
1837 continue;
1838
1839 num_objects = OBJECTS_IN_PAGE (p);
1840 for (i = 0; i < num_objects; i++)
1841 {
1842 size_t word, bit;
1843 word = i / HOST_BITS_PER_LONG;
1844 bit = i % HOST_BITS_PER_LONG;
1845 if (((p->in_use_p[word] >> bit) & 1) == 0)
1846 {
1847 char *object = p->page + i * size;
1848
1849 /* Keep poison-by-write when we expect to use Valgrind,
1850 so the exact same memory semantics is kept, in case
1851 there are memory errors. We override this request
1852 below. */
1853 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1854 memset (object, 0xa5, size);
1855
1856 /* Drop the handle to avoid handle leak. */
1857 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1858 }
1859 }
1860 }
1861 }
1862 }
1863 #else
1864 #define poison_pages()
1865 #endif
1866
1867 #ifdef ENABLE_GC_ALWAYS_COLLECT
1868 /* Validate that the reportedly free objects actually are. */
1869
1870 static void
1871 validate_free_objects (void)
1872 {
1873 struct free_object *f, *next, *still_free = NULL;
1874
1875 for (f = G.free_object_list; f ; f = next)
1876 {
1877 page_entry *pe = lookup_page_table_entry (f->object);
1878 size_t bit, word;
1879
1880 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1881 word = bit / HOST_BITS_PER_LONG;
1882 bit = bit % HOST_BITS_PER_LONG;
1883 next = f->next;
1884
1885 /* Make certain it isn't visible from any root. Notice that we
1886 do this check before sweep_pages merges save_in_use_p. */
1887 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1888
1889 /* If the object comes from an outer context, then retain the
1890 free_object entry, so that we can verify that the address
1891 isn't live on the stack in some outer context. */
1892 if (pe->context_depth != G.context_depth)
1893 {
1894 f->next = still_free;
1895 still_free = f;
1896 }
1897 else
1898 free (f);
1899 }
1900
1901 G.free_object_list = still_free;
1902 }
1903 #else
1904 #define validate_free_objects()
1905 #endif
1906
1907 /* Top level mark-and-sweep routine. */
1908
1909 void
1910 ggc_collect (void)
1911 {
1912 /* Avoid frequent unnecessary work by skipping collection if the
1913 total allocations haven't expanded much since the last
1914 collection. */
1915 float allocated_last_gc =
1916 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1917
1918 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1919
1920 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1921 return;
1922
1923 timevar_push (TV_GC);
1924 if (!quiet_flag)
1925 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1926 if (GGC_DEBUG_LEVEL >= 2)
1927 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1928
1929 /* Zero the total allocated bytes. This will be recalculated in the
1930 sweep phase. */
1931 G.allocated = 0;
1932
1933 /* Release the pages we freed the last time we collected, but didn't
1934 reuse in the interim. */
1935 release_pages ();
1936
1937 /* Indicate that we've seen collections at this context depth. */
1938 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1939
1940 clear_marks ();
1941 ggc_mark_roots ();
1942 #ifdef GATHER_STATISTICS
1943 ggc_prune_overhead_list ();
1944 #endif
1945 poison_pages ();
1946 validate_free_objects ();
1947 sweep_pages ();
1948
1949 G.allocated_last_gc = G.allocated;
1950
1951 timevar_pop (TV_GC);
1952
1953 if (!quiet_flag)
1954 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1955 if (GGC_DEBUG_LEVEL >= 2)
1956 fprintf (G.debug_file, "END COLLECTING\n");
1957 }
1958
1959 /* Print allocation statistics. */
1960 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1961 ? (x) \
1962 : ((x) < 1024*1024*10 \
1963 ? (x) / 1024 \
1964 : (x) / (1024*1024))))
1965 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1966
1967 void
1968 ggc_print_statistics (void)
1969 {
1970 struct ggc_statistics stats;
1971 unsigned int i;
1972 size_t total_overhead = 0;
1973
1974 /* Clear the statistics. */
1975 memset (&stats, 0, sizeof (stats));
1976
1977 /* Make sure collection will really occur. */
1978 G.allocated_last_gc = 0;
1979
1980 /* Collect and print the statistics common across collectors. */
1981 ggc_print_common_statistics (stderr, &stats);
1982
1983 /* Release free pages so that we will not count the bytes allocated
1984 there as part of the total allocated memory. */
1985 release_pages ();
1986
1987 /* Collect some information about the various sizes of
1988 allocation. */
1989 fprintf (stderr,
1990 "Memory still allocated at the end of the compilation process\n");
1991 fprintf (stderr, "%-5s %10s %10s %10s\n",
1992 "Size", "Allocated", "Used", "Overhead");
1993 for (i = 0; i < NUM_ORDERS; ++i)
1994 {
1995 page_entry *p;
1996 size_t allocated;
1997 size_t in_use;
1998 size_t overhead;
1999
2000 /* Skip empty entries. */
2001 if (!G.pages[i])
2002 continue;
2003
2004 overhead = allocated = in_use = 0;
2005
2006 /* Figure out the total number of bytes allocated for objects of
2007 this size, and how many of them are actually in use. Also figure
2008 out how much memory the page table is using. */
2009 for (p = G.pages[i]; p; p = p->next)
2010 {
2011 allocated += p->bytes;
2012 in_use +=
2013 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2014
2015 overhead += (sizeof (page_entry) - sizeof (long)
2016 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2017 }
2018 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2019 (unsigned long) OBJECT_SIZE (i),
2020 SCALE (allocated), STAT_LABEL (allocated),
2021 SCALE (in_use), STAT_LABEL (in_use),
2022 SCALE (overhead), STAT_LABEL (overhead));
2023 total_overhead += overhead;
2024 }
2025 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2026 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2027 SCALE (G.allocated), STAT_LABEL(G.allocated),
2028 SCALE (total_overhead), STAT_LABEL (total_overhead));
2029
2030 #ifdef GATHER_STATISTICS
2031 {
2032 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2033
2034 fprintf (stderr, "Total Overhead: %10lld\n",
2035 G.stats.total_overhead);
2036 fprintf (stderr, "Total Allocated: %10lld\n",
2037 G.stats.total_allocated);
2038
2039 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2040 G.stats.total_overhead_under32);
2041 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2042 G.stats.total_allocated_under32);
2043 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2044 G.stats.total_overhead_under64);
2045 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2046 G.stats.total_allocated_under64);
2047 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2048 G.stats.total_overhead_under128);
2049 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2050 G.stats.total_allocated_under128);
2051
2052 for (i = 0; i < NUM_ORDERS; i++)
2053 if (G.stats.total_allocated_per_order[i])
2054 {
2055 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
2056 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2057 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
2058 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2059 }
2060 }
2061 #endif
2062 }
2063 \f
2064 struct ggc_pch_data
2065 {
2066 struct ggc_pch_ondisk
2067 {
2068 unsigned totals[NUM_ORDERS];
2069 } d;
2070 size_t base[NUM_ORDERS];
2071 size_t written[NUM_ORDERS];
2072 };
2073
2074 struct ggc_pch_data *
2075 init_ggc_pch (void)
2076 {
2077 return XCNEW (struct ggc_pch_data);
2078 }
2079
2080 void
2081 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2082 size_t size, bool is_string ATTRIBUTE_UNUSED,
2083 enum gt_types_enum type ATTRIBUTE_UNUSED)
2084 {
2085 unsigned order;
2086
2087 if (size < 512)
2088 order = size_lookup[size];
2089 else
2090 {
2091 order = 10;
2092 while (size > OBJECT_SIZE (order))
2093 order++;
2094 }
2095
2096 d->d.totals[order]++;
2097 }
2098
2099 size_t
2100 ggc_pch_total_size (struct ggc_pch_data *d)
2101 {
2102 size_t a = 0;
2103 unsigned i;
2104
2105 for (i = 0; i < NUM_ORDERS; i++)
2106 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2107 return a;
2108 }
2109
2110 void
2111 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2112 {
2113 size_t a = (size_t) base;
2114 unsigned i;
2115
2116 for (i = 0; i < NUM_ORDERS; i++)
2117 {
2118 d->base[i] = a;
2119 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2120 }
2121 }
2122
2123
2124 char *
2125 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2126 size_t size, bool is_string ATTRIBUTE_UNUSED,
2127 enum gt_types_enum type ATTRIBUTE_UNUSED)
2128 {
2129 unsigned order;
2130 char *result;
2131
2132 if (size < 512)
2133 order = size_lookup[size];
2134 else
2135 {
2136 order = 10;
2137 while (size > OBJECT_SIZE (order))
2138 order++;
2139 }
2140
2141 result = (char *) d->base[order];
2142 d->base[order] += OBJECT_SIZE (order);
2143 return result;
2144 }
2145
2146 void
2147 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2148 FILE *f ATTRIBUTE_UNUSED)
2149 {
2150 /* Nothing to do. */
2151 }
2152
2153 void
2154 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2155 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2156 size_t size, bool is_string ATTRIBUTE_UNUSED)
2157 {
2158 unsigned order;
2159 static const char emptyBytes[256];
2160
2161 if (size < 512)
2162 order = size_lookup[size];
2163 else
2164 {
2165 order = 10;
2166 while (size > OBJECT_SIZE (order))
2167 order++;
2168 }
2169
2170 if (fwrite (x, size, 1, f) != 1)
2171 fatal_error ("can't write PCH file: %m");
2172
2173 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2174 object out to OBJECT_SIZE(order). This happens for strings. */
2175
2176 if (size != OBJECT_SIZE (order))
2177 {
2178 unsigned padding = OBJECT_SIZE(order) - size;
2179
2180 /* To speed small writes, we use a nulled-out array that's larger
2181 than most padding requests as the source for our null bytes. This
2182 permits us to do the padding with fwrite() rather than fseek(), and
2183 limits the chance the OS may try to flush any outstanding writes. */
2184 if (padding <= sizeof(emptyBytes))
2185 {
2186 if (fwrite (emptyBytes, 1, padding, f) != padding)
2187 fatal_error ("can't write PCH file");
2188 }
2189 else
2190 {
2191 /* Larger than our buffer? Just default to fseek. */
2192 if (fseek (f, padding, SEEK_CUR) != 0)
2193 fatal_error ("can't write PCH file");
2194 }
2195 }
2196
2197 d->written[order]++;
2198 if (d->written[order] == d->d.totals[order]
2199 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2200 G.pagesize),
2201 SEEK_CUR) != 0)
2202 fatal_error ("can't write PCH file: %m");
2203 }
2204
2205 void
2206 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2207 {
2208 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2209 fatal_error ("can't write PCH file: %m");
2210 free (d);
2211 }
2212
2213 /* Move the PCH PTE entries just added to the end of by_depth, to the
2214 front. */
2215
2216 static void
2217 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2218 {
2219 unsigned i;
2220
2221 /* First, we swap the new entries to the front of the varrays. */
2222 page_entry **new_by_depth;
2223 unsigned long **new_save_in_use;
2224
2225 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2226 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2227
2228 memcpy (&new_by_depth[0],
2229 &G.by_depth[count_old_page_tables],
2230 count_new_page_tables * sizeof (void *));
2231 memcpy (&new_by_depth[count_new_page_tables],
2232 &G.by_depth[0],
2233 count_old_page_tables * sizeof (void *));
2234 memcpy (&new_save_in_use[0],
2235 &G.save_in_use[count_old_page_tables],
2236 count_new_page_tables * sizeof (void *));
2237 memcpy (&new_save_in_use[count_new_page_tables],
2238 &G.save_in_use[0],
2239 count_old_page_tables * sizeof (void *));
2240
2241 free (G.by_depth);
2242 free (G.save_in_use);
2243
2244 G.by_depth = new_by_depth;
2245 G.save_in_use = new_save_in_use;
2246
2247 /* Now update all the index_by_depth fields. */
2248 for (i = G.by_depth_in_use; i > 0; --i)
2249 {
2250 page_entry *p = G.by_depth[i-1];
2251 p->index_by_depth = i-1;
2252 }
2253
2254 /* And last, we update the depth pointers in G.depth. The first
2255 entry is already 0, and context 0 entries always start at index
2256 0, so there is nothing to update in the first slot. We need a
2257 second slot, only if we have old ptes, and if we do, they start
2258 at index count_new_page_tables. */
2259 if (count_old_page_tables)
2260 push_depth (count_new_page_tables);
2261 }
2262
2263 void
2264 ggc_pch_read (FILE *f, void *addr)
2265 {
2266 struct ggc_pch_ondisk d;
2267 unsigned i;
2268 char *offs = addr;
2269 unsigned long count_old_page_tables;
2270 unsigned long count_new_page_tables;
2271
2272 count_old_page_tables = G.by_depth_in_use;
2273
2274 /* We've just read in a PCH file. So, every object that used to be
2275 allocated is now free. */
2276 clear_marks ();
2277 #ifdef ENABLE_GC_CHECKING
2278 poison_pages ();
2279 #endif
2280
2281 /* No object read from a PCH file should ever be freed. So, set the
2282 context depth to 1, and set the depth of all the currently-allocated
2283 pages to be 1 too. PCH pages will have depth 0. */
2284 gcc_assert (!G.context_depth);
2285 G.context_depth = 1;
2286 for (i = 0; i < NUM_ORDERS; i++)
2287 {
2288 page_entry *p;
2289 for (p = G.pages[i]; p != NULL; p = p->next)
2290 p->context_depth = G.context_depth;
2291 }
2292
2293 /* Allocate the appropriate page-table entries for the pages read from
2294 the PCH file. */
2295 if (fread (&d, sizeof (d), 1, f) != 1)
2296 fatal_error ("can't read PCH file: %m");
2297
2298 for (i = 0; i < NUM_ORDERS; i++)
2299 {
2300 struct page_entry *entry;
2301 char *pte;
2302 size_t bytes;
2303 size_t num_objs;
2304 size_t j;
2305
2306 if (d.totals[i] == 0)
2307 continue;
2308
2309 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2310 num_objs = bytes / OBJECT_SIZE (i);
2311 entry = xcalloc (1, (sizeof (struct page_entry)
2312 - sizeof (long)
2313 + BITMAP_SIZE (num_objs + 1)));
2314 entry->bytes = bytes;
2315 entry->page = offs;
2316 entry->context_depth = 0;
2317 offs += bytes;
2318 entry->num_free_objects = 0;
2319 entry->order = i;
2320
2321 for (j = 0;
2322 j + HOST_BITS_PER_LONG <= num_objs + 1;
2323 j += HOST_BITS_PER_LONG)
2324 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2325 for (; j < num_objs + 1; j++)
2326 entry->in_use_p[j / HOST_BITS_PER_LONG]
2327 |= 1L << (j % HOST_BITS_PER_LONG);
2328
2329 for (pte = entry->page;
2330 pte < entry->page + entry->bytes;
2331 pte += G.pagesize)
2332 set_page_table_entry (pte, entry);
2333
2334 if (G.page_tails[i] != NULL)
2335 G.page_tails[i]->next = entry;
2336 else
2337 G.pages[i] = entry;
2338 G.page_tails[i] = entry;
2339
2340 /* We start off by just adding all the new information to the
2341 end of the varrays, later, we will move the new information
2342 to the front of the varrays, as the PCH page tables are at
2343 context 0. */
2344 push_by_depth (entry, 0);
2345 }
2346
2347 /* Now, we update the various data structures that speed page table
2348 handling. */
2349 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2350
2351 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2352
2353 /* Update the statistics. */
2354 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2355 }