]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ggc-page.c
2015-06-17 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / ggc-page.c
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "alias.h"
25 #include "symtab.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "diagnostic-core.h"
30 #include "flags.h"
31 #include "ggc-internal.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "plugin-api.h"
35 #include "hard-reg-set.h"
36 #include "function.h"
37 #include "ipa-ref.h"
38 #include "cgraph.h"
39 #include "cfgloop.h"
40 #include "plugin.h"
41 #include "predict.h"
42 #include "basic-block.h"
43
44 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
45 file open. Prefer either to valloc. */
46 #ifdef HAVE_MMAP_ANON
47 # undef HAVE_MMAP_DEV_ZERO
48 # define USING_MMAP
49 #endif
50
51 #ifdef HAVE_MMAP_DEV_ZERO
52 # define USING_MMAP
53 #endif
54
55 #ifndef USING_MMAP
56 #define USING_MALLOC_PAGE_GROUPS
57 #endif
58
59 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
60 && defined(USING_MMAP)
61 # define USING_MADVISE
62 #endif
63
64 /* Strategy:
65
66 This garbage-collecting allocator allocates objects on one of a set
67 of pages. Each page can allocate objects of a single size only;
68 available sizes are powers of two starting at four bytes. The size
69 of an allocation request is rounded up to the next power of two
70 (`order'), and satisfied from the appropriate page.
71
72 Each page is recorded in a page-entry, which also maintains an
73 in-use bitmap of object positions on the page. This allows the
74 allocation state of a particular object to be flipped without
75 touching the page itself.
76
77 Each page-entry also has a context depth, which is used to track
78 pushing and popping of allocation contexts. Only objects allocated
79 in the current (highest-numbered) context may be collected.
80
81 Page entries are arranged in an array of singly-linked lists. The
82 array is indexed by the allocation size, in bits, of the pages on
83 it; i.e. all pages on a list allocate objects of the same size.
84 Pages are ordered on the list such that all non-full pages precede
85 all full pages, with non-full pages arranged in order of decreasing
86 context depth.
87
88 Empty pages (of all orders) are kept on a single page cache list,
89 and are considered first when new pages are required; they are
90 deallocated at the start of the next collection if they haven't
91 been recycled by then. */
92
93 /* Define GGC_DEBUG_LEVEL to print debugging information.
94 0: No debugging output.
95 1: GC statistics only.
96 2: Page-entry allocations/deallocations as well.
97 3: Object allocations as well.
98 4: Object marks as well. */
99 #define GGC_DEBUG_LEVEL (0)
100 \f
101 #ifndef HOST_BITS_PER_PTR
102 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
103 #endif
104
105 \f
106 /* A two-level tree is used to look up the page-entry for a given
107 pointer. Two chunks of the pointer's bits are extracted to index
108 the first and second levels of the tree, as follows:
109
110 HOST_PAGE_SIZE_BITS
111 32 | |
112 msb +----------------+----+------+------+ lsb
113 | | |
114 PAGE_L1_BITS |
115 | |
116 PAGE_L2_BITS
117
118 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
119 pages are aligned on system page boundaries. The next most
120 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
121 index values in the lookup table, respectively.
122
123 For 32-bit architectures and the settings below, there are no
124 leftover bits. For architectures with wider pointers, the lookup
125 tree points to a list of pages, which must be scanned to find the
126 correct one. */
127
128 #define PAGE_L1_BITS (8)
129 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
130 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
131 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
132
133 #define LOOKUP_L1(p) \
134 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
135
136 #define LOOKUP_L2(p) \
137 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
138
139 /* The number of objects per allocation page, for objects on a page of
140 the indicated ORDER. */
141 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
142
143 /* The number of objects in P. */
144 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
145
146 /* The size of an object on a page of the indicated ORDER. */
147 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
148
149 /* For speed, we avoid doing a general integer divide to locate the
150 offset in the allocation bitmap, by precalculating numbers M, S
151 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
152 within the page which is evenly divisible by the object size Z. */
153 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
154 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
155 #define OFFSET_TO_BIT(OFFSET, ORDER) \
156 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
157
158 /* We use this structure to determine the alignment required for
159 allocations. For power-of-two sized allocations, that's not a
160 problem, but it does matter for odd-sized allocations.
161 We do not care about alignment for floating-point types. */
162
163 struct max_alignment {
164 char c;
165 union {
166 int64_t i;
167 void *p;
168 } u;
169 };
170
171 /* The biggest alignment required. */
172
173 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
174
175
176 /* The number of extra orders, not corresponding to power-of-two sized
177 objects. */
178
179 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
180
181 #define RTL_SIZE(NSLOTS) \
182 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
183
184 #define TREE_EXP_SIZE(OPS) \
185 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
186
187 /* The Ith entry is the maximum size of an object to be stored in the
188 Ith extra order. Adding a new entry to this array is the *only*
189 thing you need to do to add a new special allocation size. */
190
191 static const size_t extra_order_size_table[] = {
192 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
193 There are a lot of structures with these sizes and explicitly
194 listing them risks orders being dropped because they changed size. */
195 MAX_ALIGNMENT * 3,
196 MAX_ALIGNMENT * 5,
197 MAX_ALIGNMENT * 6,
198 MAX_ALIGNMENT * 7,
199 MAX_ALIGNMENT * 9,
200 MAX_ALIGNMENT * 10,
201 MAX_ALIGNMENT * 11,
202 MAX_ALIGNMENT * 12,
203 MAX_ALIGNMENT * 13,
204 MAX_ALIGNMENT * 14,
205 MAX_ALIGNMENT * 15,
206 sizeof (struct tree_decl_non_common),
207 sizeof (struct tree_field_decl),
208 sizeof (struct tree_parm_decl),
209 sizeof (struct tree_var_decl),
210 sizeof (struct tree_type_non_common),
211 sizeof (struct function),
212 sizeof (struct basic_block_def),
213 sizeof (struct cgraph_node),
214 sizeof (struct loop),
215 };
216
217 /* The total number of orders. */
218
219 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
220
221 /* Compute the smallest nonnegative number which when added to X gives
222 a multiple of F. */
223
224 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
225
226 /* Compute the smallest multiple of F that is >= X. */
227
228 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
229
230 /* Round X to next multiple of the page size */
231
232 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
233
234 /* The Ith entry is the number of objects on a page or order I. */
235
236 static unsigned objects_per_page_table[NUM_ORDERS];
237
238 /* The Ith entry is the size of an object on a page of order I. */
239
240 static size_t object_size_table[NUM_ORDERS];
241
242 /* The Ith entry is a pair of numbers (mult, shift) such that
243 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
244 for all k evenly divisible by OBJECT_SIZE(I). */
245
246 static struct
247 {
248 size_t mult;
249 unsigned int shift;
250 }
251 inverse_table[NUM_ORDERS];
252
253 /* A page_entry records the status of an allocation page. This
254 structure is dynamically sized to fit the bitmap in_use_p. */
255 typedef struct page_entry
256 {
257 /* The next page-entry with objects of the same size, or NULL if
258 this is the last page-entry. */
259 struct page_entry *next;
260
261 /* The previous page-entry with objects of the same size, or NULL if
262 this is the first page-entry. The PREV pointer exists solely to
263 keep the cost of ggc_free manageable. */
264 struct page_entry *prev;
265
266 /* The number of bytes allocated. (This will always be a multiple
267 of the host system page size.) */
268 size_t bytes;
269
270 /* The address at which the memory is allocated. */
271 char *page;
272
273 #ifdef USING_MALLOC_PAGE_GROUPS
274 /* Back pointer to the page group this page came from. */
275 struct page_group *group;
276 #endif
277
278 /* This is the index in the by_depth varray where this page table
279 can be found. */
280 unsigned long index_by_depth;
281
282 /* Context depth of this page. */
283 unsigned short context_depth;
284
285 /* The number of free objects remaining on this page. */
286 unsigned short num_free_objects;
287
288 /* A likely candidate for the bit position of a free object for the
289 next allocation from this page. */
290 unsigned short next_bit_hint;
291
292 /* The lg of size of objects allocated from this page. */
293 unsigned char order;
294
295 /* Discarded page? */
296 bool discarded;
297
298 /* A bit vector indicating whether or not objects are in use. The
299 Nth bit is one if the Nth object on this page is allocated. This
300 array is dynamically sized. */
301 unsigned long in_use_p[1];
302 } page_entry;
303
304 #ifdef USING_MALLOC_PAGE_GROUPS
305 /* A page_group describes a large allocation from malloc, from which
306 we parcel out aligned pages. */
307 typedef struct page_group
308 {
309 /* A linked list of all extant page groups. */
310 struct page_group *next;
311
312 /* The address we received from malloc. */
313 char *allocation;
314
315 /* The size of the block. */
316 size_t alloc_size;
317
318 /* A bitmask of pages in use. */
319 unsigned int in_use;
320 } page_group;
321 #endif
322
323 #if HOST_BITS_PER_PTR <= 32
324
325 /* On 32-bit hosts, we use a two level page table, as pictured above. */
326 typedef page_entry **page_table[PAGE_L1_SIZE];
327
328 #else
329
330 /* On 64-bit hosts, we use the same two level page tables plus a linked
331 list that disambiguates the top 32-bits. There will almost always be
332 exactly one entry in the list. */
333 typedef struct page_table_chain
334 {
335 struct page_table_chain *next;
336 size_t high_bits;
337 page_entry **table[PAGE_L1_SIZE];
338 } *page_table;
339
340 #endif
341
342 class finalizer
343 {
344 public:
345 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
346
347 void *addr () const { return m_addr; }
348
349 void call () const { m_function (m_addr); }
350
351 private:
352 void *m_addr;
353 void (*m_function)(void *);
354 };
355
356 class vec_finalizer
357 {
358 public:
359 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
360 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
361
362 void call () const
363 {
364 for (size_t i = 0; i < m_n_objects; i++)
365 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
366 }
367
368 void *addr () const { return reinterpret_cast<void *> (m_addr); }
369
370 private:
371 uintptr_t m_addr;
372 void (*m_function)(void *);
373 size_t m_object_size;
374 size_t m_n_objects;
375 };
376
377 #ifdef ENABLE_GC_ALWAYS_COLLECT
378 /* List of free objects to be verified as actually free on the
379 next collection. */
380 struct free_object
381 {
382 void *object;
383 struct free_object *next;
384 };
385 #endif
386
387 /* The rest of the global variables. */
388 static struct ggc_globals
389 {
390 /* The Nth element in this array is a page with objects of size 2^N.
391 If there are any pages with free objects, they will be at the
392 head of the list. NULL if there are no page-entries for this
393 object size. */
394 page_entry *pages[NUM_ORDERS];
395
396 /* The Nth element in this array is the last page with objects of
397 size 2^N. NULL if there are no page-entries for this object
398 size. */
399 page_entry *page_tails[NUM_ORDERS];
400
401 /* Lookup table for associating allocation pages with object addresses. */
402 page_table lookup;
403
404 /* The system's page size. */
405 size_t pagesize;
406 size_t lg_pagesize;
407
408 /* Bytes currently allocated. */
409 size_t allocated;
410
411 /* Bytes currently allocated at the end of the last collection. */
412 size_t allocated_last_gc;
413
414 /* Total amount of memory mapped. */
415 size_t bytes_mapped;
416
417 /* Bit N set if any allocations have been done at context depth N. */
418 unsigned long context_depth_allocations;
419
420 /* Bit N set if any collections have been done at context depth N. */
421 unsigned long context_depth_collections;
422
423 /* The current depth in the context stack. */
424 unsigned short context_depth;
425
426 /* A file descriptor open to /dev/zero for reading. */
427 #if defined (HAVE_MMAP_DEV_ZERO)
428 int dev_zero_fd;
429 #endif
430
431 /* A cache of free system pages. */
432 page_entry *free_pages;
433
434 #ifdef USING_MALLOC_PAGE_GROUPS
435 page_group *page_groups;
436 #endif
437
438 /* The file descriptor for debugging output. */
439 FILE *debug_file;
440
441 /* Current number of elements in use in depth below. */
442 unsigned int depth_in_use;
443
444 /* Maximum number of elements that can be used before resizing. */
445 unsigned int depth_max;
446
447 /* Each element of this array is an index in by_depth where the given
448 depth starts. This structure is indexed by that given depth we
449 are interested in. */
450 unsigned int *depth;
451
452 /* Current number of elements in use in by_depth below. */
453 unsigned int by_depth_in_use;
454
455 /* Maximum number of elements that can be used before resizing. */
456 unsigned int by_depth_max;
457
458 /* Each element of this array is a pointer to a page_entry, all
459 page_entries can be found in here by increasing depth.
460 index_by_depth in the page_entry is the index into this data
461 structure where that page_entry can be found. This is used to
462 speed up finding all page_entries at a particular depth. */
463 page_entry **by_depth;
464
465 /* Each element is a pointer to the saved in_use_p bits, if any,
466 zero otherwise. We allocate them all together, to enable a
467 better runtime data access pattern. */
468 unsigned long **save_in_use;
469
470 /* Finalizers for single objects. */
471 vec<finalizer> finalizers;
472
473 /* Finalizers for vectors of objects. */
474 vec<vec_finalizer> vec_finalizers;
475
476 #ifdef ENABLE_GC_ALWAYS_COLLECT
477 /* List of free objects to be verified as actually free on the
478 next collection. */
479 struct free_object *free_object_list;
480 #endif
481
482 struct
483 {
484 /* Total GC-allocated memory. */
485 unsigned long long total_allocated;
486 /* Total overhead for GC-allocated memory. */
487 unsigned long long total_overhead;
488
489 /* Total allocations and overhead for sizes less than 32, 64 and 128.
490 These sizes are interesting because they are typical cache line
491 sizes. */
492
493 unsigned long long total_allocated_under32;
494 unsigned long long total_overhead_under32;
495
496 unsigned long long total_allocated_under64;
497 unsigned long long total_overhead_under64;
498
499 unsigned long long total_allocated_under128;
500 unsigned long long total_overhead_under128;
501
502 /* The allocations for each of the allocation orders. */
503 unsigned long long total_allocated_per_order[NUM_ORDERS];
504
505 /* The overhead for each of the allocation orders. */
506 unsigned long long total_overhead_per_order[NUM_ORDERS];
507 } stats;
508 } G;
509
510 /* True if a gc is currently taking place. */
511
512 static bool in_gc = false;
513
514 /* The size in bytes required to maintain a bitmap for the objects
515 on a page-entry. */
516 #define BITMAP_SIZE(Num_objects) \
517 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
518
519 /* Allocate pages in chunks of this size, to throttle calls to memory
520 allocation routines. The first page is used, the rest go onto the
521 free list. This cannot be larger than HOST_BITS_PER_INT for the
522 in_use bitmask for page_group. Hosts that need a different value
523 can override this by defining GGC_QUIRE_SIZE explicitly. */
524 #ifndef GGC_QUIRE_SIZE
525 # ifdef USING_MMAP
526 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
527 # else
528 # define GGC_QUIRE_SIZE 16
529 # endif
530 #endif
531
532 /* Initial guess as to how many page table entries we might need. */
533 #define INITIAL_PTE_COUNT 128
534 \f
535 static int ggc_allocated_p (const void *);
536 static page_entry *lookup_page_table_entry (const void *);
537 static void set_page_table_entry (void *, page_entry *);
538 #ifdef USING_MMAP
539 static char *alloc_anon (char *, size_t, bool check);
540 #endif
541 #ifdef USING_MALLOC_PAGE_GROUPS
542 static size_t page_group_index (char *, char *);
543 static void set_page_group_in_use (page_group *, char *);
544 static void clear_page_group_in_use (page_group *, char *);
545 #endif
546 static struct page_entry * alloc_page (unsigned);
547 static void free_page (struct page_entry *);
548 static void release_pages (void);
549 static void clear_marks (void);
550 static void sweep_pages (void);
551 static void ggc_recalculate_in_use_p (page_entry *);
552 static void compute_inverse (unsigned);
553 static inline void adjust_depth (void);
554 static void move_ptes_to_front (int, int);
555
556 void debug_print_page_list (int);
557 static void push_depth (unsigned int);
558 static void push_by_depth (page_entry *, unsigned long *);
559
560 /* Push an entry onto G.depth. */
561
562 inline static void
563 push_depth (unsigned int i)
564 {
565 if (G.depth_in_use >= G.depth_max)
566 {
567 G.depth_max *= 2;
568 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
569 }
570 G.depth[G.depth_in_use++] = i;
571 }
572
573 /* Push an entry onto G.by_depth and G.save_in_use. */
574
575 inline static void
576 push_by_depth (page_entry *p, unsigned long *s)
577 {
578 if (G.by_depth_in_use >= G.by_depth_max)
579 {
580 G.by_depth_max *= 2;
581 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
582 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
583 G.by_depth_max);
584 }
585 G.by_depth[G.by_depth_in_use] = p;
586 G.save_in_use[G.by_depth_in_use++] = s;
587 }
588
589 #if (GCC_VERSION < 3001)
590 #define prefetch(X) ((void) X)
591 #else
592 #define prefetch(X) __builtin_prefetch (X)
593 #endif
594
595 #define save_in_use_p_i(__i) \
596 (G.save_in_use[__i])
597 #define save_in_use_p(__p) \
598 (save_in_use_p_i (__p->index_by_depth))
599
600 /* Returns nonzero if P was allocated in GC'able memory. */
601
602 static inline int
603 ggc_allocated_p (const void *p)
604 {
605 page_entry ***base;
606 size_t L1, L2;
607
608 #if HOST_BITS_PER_PTR <= 32
609 base = &G.lookup[0];
610 #else
611 page_table table = G.lookup;
612 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
613 while (1)
614 {
615 if (table == NULL)
616 return 0;
617 if (table->high_bits == high_bits)
618 break;
619 table = table->next;
620 }
621 base = &table->table[0];
622 #endif
623
624 /* Extract the level 1 and 2 indices. */
625 L1 = LOOKUP_L1 (p);
626 L2 = LOOKUP_L2 (p);
627
628 return base[L1] && base[L1][L2];
629 }
630
631 /* Traverse the page table and find the entry for a page.
632 Die (probably) if the object wasn't allocated via GC. */
633
634 static inline page_entry *
635 lookup_page_table_entry (const void *p)
636 {
637 page_entry ***base;
638 size_t L1, L2;
639
640 #if HOST_BITS_PER_PTR <= 32
641 base = &G.lookup[0];
642 #else
643 page_table table = G.lookup;
644 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
645 while (table->high_bits != high_bits)
646 table = table->next;
647 base = &table->table[0];
648 #endif
649
650 /* Extract the level 1 and 2 indices. */
651 L1 = LOOKUP_L1 (p);
652 L2 = LOOKUP_L2 (p);
653
654 return base[L1][L2];
655 }
656
657 /* Set the page table entry for a page. */
658
659 static void
660 set_page_table_entry (void *p, page_entry *entry)
661 {
662 page_entry ***base;
663 size_t L1, L2;
664
665 #if HOST_BITS_PER_PTR <= 32
666 base = &G.lookup[0];
667 #else
668 page_table table;
669 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
670 for (table = G.lookup; table; table = table->next)
671 if (table->high_bits == high_bits)
672 goto found;
673
674 /* Not found -- allocate a new table. */
675 table = XCNEW (struct page_table_chain);
676 table->next = G.lookup;
677 table->high_bits = high_bits;
678 G.lookup = table;
679 found:
680 base = &table->table[0];
681 #endif
682
683 /* Extract the level 1 and 2 indices. */
684 L1 = LOOKUP_L1 (p);
685 L2 = LOOKUP_L2 (p);
686
687 if (base[L1] == NULL)
688 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
689
690 base[L1][L2] = entry;
691 }
692
693 /* Prints the page-entry for object size ORDER, for debugging. */
694
695 DEBUG_FUNCTION void
696 debug_print_page_list (int order)
697 {
698 page_entry *p;
699 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
700 (void *) G.page_tails[order]);
701 p = G.pages[order];
702 while (p != NULL)
703 {
704 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
705 p->num_free_objects);
706 p = p->next;
707 }
708 printf ("NULL\n");
709 fflush (stdout);
710 }
711
712 #ifdef USING_MMAP
713 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
714 (if non-null). The ifdef structure here is intended to cause a
715 compile error unless exactly one of the HAVE_* is defined. */
716
717 static inline char *
718 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
719 {
720 #ifdef HAVE_MMAP_ANON
721 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
722 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
723 #endif
724 #ifdef HAVE_MMAP_DEV_ZERO
725 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
726 MAP_PRIVATE, G.dev_zero_fd, 0);
727 #endif
728
729 if (page == (char *) MAP_FAILED)
730 {
731 if (!check)
732 return NULL;
733 perror ("virtual memory exhausted");
734 exit (FATAL_EXIT_CODE);
735 }
736
737 /* Remember that we allocated this memory. */
738 G.bytes_mapped += size;
739
740 /* Pretend we don't have access to the allocated pages. We'll enable
741 access to smaller pieces of the area in ggc_internal_alloc. Discard the
742 handle to avoid handle leak. */
743 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
744
745 return page;
746 }
747 #endif
748 #ifdef USING_MALLOC_PAGE_GROUPS
749 /* Compute the index for this page into the page group. */
750
751 static inline size_t
752 page_group_index (char *allocation, char *page)
753 {
754 return (size_t) (page - allocation) >> G.lg_pagesize;
755 }
756
757 /* Set and clear the in_use bit for this page in the page group. */
758
759 static inline void
760 set_page_group_in_use (page_group *group, char *page)
761 {
762 group->in_use |= 1 << page_group_index (group->allocation, page);
763 }
764
765 static inline void
766 clear_page_group_in_use (page_group *group, char *page)
767 {
768 group->in_use &= ~(1 << page_group_index (group->allocation, page));
769 }
770 #endif
771
772 /* Allocate a new page for allocating objects of size 2^ORDER,
773 and return an entry for it. The entry is not added to the
774 appropriate page_table list. */
775
776 static inline struct page_entry *
777 alloc_page (unsigned order)
778 {
779 struct page_entry *entry, *p, **pp;
780 char *page;
781 size_t num_objects;
782 size_t bitmap_size;
783 size_t page_entry_size;
784 size_t entry_size;
785 #ifdef USING_MALLOC_PAGE_GROUPS
786 page_group *group;
787 #endif
788
789 num_objects = OBJECTS_PER_PAGE (order);
790 bitmap_size = BITMAP_SIZE (num_objects + 1);
791 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
792 entry_size = num_objects * OBJECT_SIZE (order);
793 if (entry_size < G.pagesize)
794 entry_size = G.pagesize;
795 entry_size = PAGE_ALIGN (entry_size);
796
797 entry = NULL;
798 page = NULL;
799
800 /* Check the list of free pages for one we can use. */
801 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
802 if (p->bytes == entry_size)
803 break;
804
805 if (p != NULL)
806 {
807 if (p->discarded)
808 G.bytes_mapped += p->bytes;
809 p->discarded = false;
810
811 /* Recycle the allocated memory from this page ... */
812 *pp = p->next;
813 page = p->page;
814
815 #ifdef USING_MALLOC_PAGE_GROUPS
816 group = p->group;
817 #endif
818
819 /* ... and, if possible, the page entry itself. */
820 if (p->order == order)
821 {
822 entry = p;
823 memset (entry, 0, page_entry_size);
824 }
825 else
826 free (p);
827 }
828 #ifdef USING_MMAP
829 else if (entry_size == G.pagesize)
830 {
831 /* We want just one page. Allocate a bunch of them and put the
832 extras on the freelist. (Can only do this optimization with
833 mmap for backing store.) */
834 struct page_entry *e, *f = G.free_pages;
835 int i, entries = GGC_QUIRE_SIZE;
836
837 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
838 if (page == NULL)
839 {
840 page = alloc_anon (NULL, G.pagesize, true);
841 entries = 1;
842 }
843
844 /* This loop counts down so that the chain will be in ascending
845 memory order. */
846 for (i = entries - 1; i >= 1; i--)
847 {
848 e = XCNEWVAR (struct page_entry, page_entry_size);
849 e->order = order;
850 e->bytes = G.pagesize;
851 e->page = page + (i << G.lg_pagesize);
852 e->next = f;
853 f = e;
854 }
855
856 G.free_pages = f;
857 }
858 else
859 page = alloc_anon (NULL, entry_size, true);
860 #endif
861 #ifdef USING_MALLOC_PAGE_GROUPS
862 else
863 {
864 /* Allocate a large block of memory and serve out the aligned
865 pages therein. This results in much less memory wastage
866 than the traditional implementation of valloc. */
867
868 char *allocation, *a, *enda;
869 size_t alloc_size, head_slop, tail_slop;
870 int multiple_pages = (entry_size == G.pagesize);
871
872 if (multiple_pages)
873 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
874 else
875 alloc_size = entry_size + G.pagesize - 1;
876 allocation = XNEWVEC (char, alloc_size);
877
878 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
879 head_slop = page - allocation;
880 if (multiple_pages)
881 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
882 else
883 tail_slop = alloc_size - entry_size - head_slop;
884 enda = allocation + alloc_size - tail_slop;
885
886 /* We allocated N pages, which are likely not aligned, leaving
887 us with N-1 usable pages. We plan to place the page_group
888 structure somewhere in the slop. */
889 if (head_slop >= sizeof (page_group))
890 group = (page_group *)page - 1;
891 else
892 {
893 /* We magically got an aligned allocation. Too bad, we have
894 to waste a page anyway. */
895 if (tail_slop == 0)
896 {
897 enda -= G.pagesize;
898 tail_slop += G.pagesize;
899 }
900 gcc_assert (tail_slop >= sizeof (page_group));
901 group = (page_group *)enda;
902 tail_slop -= sizeof (page_group);
903 }
904
905 /* Remember that we allocated this memory. */
906 group->next = G.page_groups;
907 group->allocation = allocation;
908 group->alloc_size = alloc_size;
909 group->in_use = 0;
910 G.page_groups = group;
911 G.bytes_mapped += alloc_size;
912
913 /* If we allocated multiple pages, put the rest on the free list. */
914 if (multiple_pages)
915 {
916 struct page_entry *e, *f = G.free_pages;
917 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
918 {
919 e = XCNEWVAR (struct page_entry, page_entry_size);
920 e->order = order;
921 e->bytes = G.pagesize;
922 e->page = a;
923 e->group = group;
924 e->next = f;
925 f = e;
926 }
927 G.free_pages = f;
928 }
929 }
930 #endif
931
932 if (entry == NULL)
933 entry = XCNEWVAR (struct page_entry, page_entry_size);
934
935 entry->bytes = entry_size;
936 entry->page = page;
937 entry->context_depth = G.context_depth;
938 entry->order = order;
939 entry->num_free_objects = num_objects;
940 entry->next_bit_hint = 1;
941
942 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
943
944 #ifdef USING_MALLOC_PAGE_GROUPS
945 entry->group = group;
946 set_page_group_in_use (group, page);
947 #endif
948
949 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
950 increment the hint. */
951 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
952 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
953
954 set_page_table_entry (page, entry);
955
956 if (GGC_DEBUG_LEVEL >= 2)
957 fprintf (G.debug_file,
958 "Allocating page at %p, object size=%lu, data %p-%p\n",
959 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
960 page + entry_size - 1);
961
962 return entry;
963 }
964
965 /* Adjust the size of G.depth so that no index greater than the one
966 used by the top of the G.by_depth is used. */
967
968 static inline void
969 adjust_depth (void)
970 {
971 page_entry *top;
972
973 if (G.by_depth_in_use)
974 {
975 top = G.by_depth[G.by_depth_in_use-1];
976
977 /* Peel back indices in depth that index into by_depth, so that
978 as new elements are added to by_depth, we note the indices
979 of those elements, if they are for new context depths. */
980 while (G.depth_in_use > (size_t)top->context_depth+1)
981 --G.depth_in_use;
982 }
983 }
984
985 /* For a page that is no longer needed, put it on the free page list. */
986
987 static void
988 free_page (page_entry *entry)
989 {
990 if (GGC_DEBUG_LEVEL >= 2)
991 fprintf (G.debug_file,
992 "Deallocating page at %p, data %p-%p\n", (void *) entry,
993 entry->page, entry->page + entry->bytes - 1);
994
995 /* Mark the page as inaccessible. Discard the handle to avoid handle
996 leak. */
997 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
998
999 set_page_table_entry (entry->page, NULL);
1000
1001 #ifdef USING_MALLOC_PAGE_GROUPS
1002 clear_page_group_in_use (entry->group, entry->page);
1003 #endif
1004
1005 if (G.by_depth_in_use > 1)
1006 {
1007 page_entry *top = G.by_depth[G.by_depth_in_use-1];
1008 int i = entry->index_by_depth;
1009
1010 /* We cannot free a page from a context deeper than the current
1011 one. */
1012 gcc_assert (entry->context_depth == top->context_depth);
1013
1014 /* Put top element into freed slot. */
1015 G.by_depth[i] = top;
1016 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1017 top->index_by_depth = i;
1018 }
1019 --G.by_depth_in_use;
1020
1021 adjust_depth ();
1022
1023 entry->next = G.free_pages;
1024 G.free_pages = entry;
1025 }
1026
1027 /* Release the free page cache to the system. */
1028
1029 static void
1030 release_pages (void)
1031 {
1032 #ifdef USING_MADVISE
1033 page_entry *p, *start_p;
1034 char *start;
1035 size_t len;
1036 size_t mapped_len;
1037 page_entry *next, *prev, *newprev;
1038 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1039
1040 /* First free larger continuous areas to the OS.
1041 This allows other allocators to grab these areas if needed.
1042 This is only done on larger chunks to avoid fragmentation.
1043 This does not always work because the free_pages list is only
1044 approximately sorted. */
1045
1046 p = G.free_pages;
1047 prev = NULL;
1048 while (p)
1049 {
1050 start = p->page;
1051 start_p = p;
1052 len = 0;
1053 mapped_len = 0;
1054 newprev = prev;
1055 while (p && p->page == start + len)
1056 {
1057 len += p->bytes;
1058 if (!p->discarded)
1059 mapped_len += p->bytes;
1060 newprev = p;
1061 p = p->next;
1062 }
1063 if (len >= free_unit)
1064 {
1065 while (start_p != p)
1066 {
1067 next = start_p->next;
1068 free (start_p);
1069 start_p = next;
1070 }
1071 munmap (start, len);
1072 if (prev)
1073 prev->next = p;
1074 else
1075 G.free_pages = p;
1076 G.bytes_mapped -= mapped_len;
1077 continue;
1078 }
1079 prev = newprev;
1080 }
1081
1082 /* Now give back the fragmented pages to the OS, but keep the address
1083 space to reuse it next time. */
1084
1085 for (p = G.free_pages; p; )
1086 {
1087 if (p->discarded)
1088 {
1089 p = p->next;
1090 continue;
1091 }
1092 start = p->page;
1093 len = p->bytes;
1094 start_p = p;
1095 p = p->next;
1096 while (p && p->page == start + len)
1097 {
1098 len += p->bytes;
1099 p = p->next;
1100 }
1101 /* Give the page back to the kernel, but don't free the mapping.
1102 This avoids fragmentation in the virtual memory map of the
1103 process. Next time we can reuse it by just touching it. */
1104 madvise (start, len, MADV_DONTNEED);
1105 /* Don't count those pages as mapped to not touch the garbage collector
1106 unnecessarily. */
1107 G.bytes_mapped -= len;
1108 while (start_p != p)
1109 {
1110 start_p->discarded = true;
1111 start_p = start_p->next;
1112 }
1113 }
1114 #endif
1115 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1116 page_entry *p, *next;
1117 char *start;
1118 size_t len;
1119
1120 /* Gather up adjacent pages so they are unmapped together. */
1121 p = G.free_pages;
1122
1123 while (p)
1124 {
1125 start = p->page;
1126 next = p->next;
1127 len = p->bytes;
1128 free (p);
1129 p = next;
1130
1131 while (p && p->page == start + len)
1132 {
1133 next = p->next;
1134 len += p->bytes;
1135 free (p);
1136 p = next;
1137 }
1138
1139 munmap (start, len);
1140 G.bytes_mapped -= len;
1141 }
1142
1143 G.free_pages = NULL;
1144 #endif
1145 #ifdef USING_MALLOC_PAGE_GROUPS
1146 page_entry **pp, *p;
1147 page_group **gp, *g;
1148
1149 /* Remove all pages from free page groups from the list. */
1150 pp = &G.free_pages;
1151 while ((p = *pp) != NULL)
1152 if (p->group->in_use == 0)
1153 {
1154 *pp = p->next;
1155 free (p);
1156 }
1157 else
1158 pp = &p->next;
1159
1160 /* Remove all free page groups, and release the storage. */
1161 gp = &G.page_groups;
1162 while ((g = *gp) != NULL)
1163 if (g->in_use == 0)
1164 {
1165 *gp = g->next;
1166 G.bytes_mapped -= g->alloc_size;
1167 free (g->allocation);
1168 }
1169 else
1170 gp = &g->next;
1171 #endif
1172 }
1173
1174 /* This table provides a fast way to determine ceil(log_2(size)) for
1175 allocation requests. The minimum allocation size is eight bytes. */
1176 #define NUM_SIZE_LOOKUP 512
1177 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1178 {
1179 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1180 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1181 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1182 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1183 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1184 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1185 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1186 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1187 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1188 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1189 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1190 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1191 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1192 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1193 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1194 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1195 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1204 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1205 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1206 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1207 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1208 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1209 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1210 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1211 };
1212
1213 /* For a given size of memory requested for allocation, return the
1214 actual size that is going to be allocated, as well as the size
1215 order. */
1216
1217 static void
1218 ggc_round_alloc_size_1 (size_t requested_size,
1219 size_t *size_order,
1220 size_t *alloced_size)
1221 {
1222 size_t order, object_size;
1223
1224 if (requested_size < NUM_SIZE_LOOKUP)
1225 {
1226 order = size_lookup[requested_size];
1227 object_size = OBJECT_SIZE (order);
1228 }
1229 else
1230 {
1231 order = 10;
1232 while (requested_size > (object_size = OBJECT_SIZE (order)))
1233 order++;
1234 }
1235
1236 if (size_order)
1237 *size_order = order;
1238 if (alloced_size)
1239 *alloced_size = object_size;
1240 }
1241
1242 /* For a given size of memory requested for allocation, return the
1243 actual size that is going to be allocated. */
1244
1245 size_t
1246 ggc_round_alloc_size (size_t requested_size)
1247 {
1248 size_t size = 0;
1249
1250 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1251 return size;
1252 }
1253
1254 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1255
1256 void *
1257 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1258 MEM_STAT_DECL)
1259 {
1260 size_t order, word, bit, object_offset, object_size;
1261 struct page_entry *entry;
1262 void *result;
1263
1264 ggc_round_alloc_size_1 (size, &order, &object_size);
1265
1266 /* If there are non-full pages for this size allocation, they are at
1267 the head of the list. */
1268 entry = G.pages[order];
1269
1270 /* If there is no page for this object size, or all pages in this
1271 context are full, allocate a new page. */
1272 if (entry == NULL || entry->num_free_objects == 0)
1273 {
1274 struct page_entry *new_entry;
1275 new_entry = alloc_page (order);
1276
1277 new_entry->index_by_depth = G.by_depth_in_use;
1278 push_by_depth (new_entry, 0);
1279
1280 /* We can skip context depths, if we do, make sure we go all the
1281 way to the new depth. */
1282 while (new_entry->context_depth >= G.depth_in_use)
1283 push_depth (G.by_depth_in_use-1);
1284
1285 /* If this is the only entry, it's also the tail. If it is not
1286 the only entry, then we must update the PREV pointer of the
1287 ENTRY (G.pages[order]) to point to our new page entry. */
1288 if (entry == NULL)
1289 G.page_tails[order] = new_entry;
1290 else
1291 entry->prev = new_entry;
1292
1293 /* Put new pages at the head of the page list. By definition the
1294 entry at the head of the list always has a NULL pointer. */
1295 new_entry->next = entry;
1296 new_entry->prev = NULL;
1297 entry = new_entry;
1298 G.pages[order] = new_entry;
1299
1300 /* For a new page, we know the word and bit positions (in the
1301 in_use bitmap) of the first available object -- they're zero. */
1302 new_entry->next_bit_hint = 1;
1303 word = 0;
1304 bit = 0;
1305 object_offset = 0;
1306 }
1307 else
1308 {
1309 /* First try to use the hint left from the previous allocation
1310 to locate a clear bit in the in-use bitmap. We've made sure
1311 that the one-past-the-end bit is always set, so if the hint
1312 has run over, this test will fail. */
1313 unsigned hint = entry->next_bit_hint;
1314 word = hint / HOST_BITS_PER_LONG;
1315 bit = hint % HOST_BITS_PER_LONG;
1316
1317 /* If the hint didn't work, scan the bitmap from the beginning. */
1318 if ((entry->in_use_p[word] >> bit) & 1)
1319 {
1320 word = bit = 0;
1321 while (~entry->in_use_p[word] == 0)
1322 ++word;
1323
1324 #if GCC_VERSION >= 3004
1325 bit = __builtin_ctzl (~entry->in_use_p[word]);
1326 #else
1327 while ((entry->in_use_p[word] >> bit) & 1)
1328 ++bit;
1329 #endif
1330
1331 hint = word * HOST_BITS_PER_LONG + bit;
1332 }
1333
1334 /* Next time, try the next bit. */
1335 entry->next_bit_hint = hint + 1;
1336
1337 object_offset = hint * object_size;
1338 }
1339
1340 /* Set the in-use bit. */
1341 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1342
1343 /* Keep a running total of the number of free objects. If this page
1344 fills up, we may have to move it to the end of the list if the
1345 next page isn't full. If the next page is full, all subsequent
1346 pages are full, so there's no need to move it. */
1347 if (--entry->num_free_objects == 0
1348 && entry->next != NULL
1349 && entry->next->num_free_objects > 0)
1350 {
1351 /* We have a new head for the list. */
1352 G.pages[order] = entry->next;
1353
1354 /* We are moving ENTRY to the end of the page table list.
1355 The new page at the head of the list will have NULL in
1356 its PREV field and ENTRY will have NULL in its NEXT field. */
1357 entry->next->prev = NULL;
1358 entry->next = NULL;
1359
1360 /* Append ENTRY to the tail of the list. */
1361 entry->prev = G.page_tails[order];
1362 G.page_tails[order]->next = entry;
1363 G.page_tails[order] = entry;
1364 }
1365
1366 /* Calculate the object's address. */
1367 result = entry->page + object_offset;
1368 if (GATHER_STATISTICS)
1369 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1370 result FINAL_PASS_MEM_STAT);
1371
1372 #ifdef ENABLE_GC_CHECKING
1373 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1374 exact same semantics in presence of memory bugs, regardless of
1375 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1376 handle to avoid handle leak. */
1377 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1378
1379 /* `Poison' the entire allocated object, including any padding at
1380 the end. */
1381 memset (result, 0xaf, object_size);
1382
1383 /* Make the bytes after the end of the object unaccessible. Discard the
1384 handle to avoid handle leak. */
1385 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1386 object_size - size));
1387 #endif
1388
1389 /* Tell Valgrind that the memory is there, but its content isn't
1390 defined. The bytes at the end of the object are still marked
1391 unaccessible. */
1392 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1393
1394 /* Keep track of how many bytes are being allocated. This
1395 information is used in deciding when to collect. */
1396 G.allocated += object_size;
1397
1398 /* For timevar statistics. */
1399 timevar_ggc_mem_total += object_size;
1400
1401 if (f && n == 1)
1402 G.finalizers.safe_push (finalizer (result, f));
1403 else if (f)
1404 G.vec_finalizers.safe_push
1405 (vec_finalizer (reinterpret_cast<uintptr_t> (result), f, s, n));
1406
1407 if (GATHER_STATISTICS)
1408 {
1409 size_t overhead = object_size - size;
1410
1411 G.stats.total_overhead += overhead;
1412 G.stats.total_allocated += object_size;
1413 G.stats.total_overhead_per_order[order] += overhead;
1414 G.stats.total_allocated_per_order[order] += object_size;
1415
1416 if (size <= 32)
1417 {
1418 G.stats.total_overhead_under32 += overhead;
1419 G.stats.total_allocated_under32 += object_size;
1420 }
1421 if (size <= 64)
1422 {
1423 G.stats.total_overhead_under64 += overhead;
1424 G.stats.total_allocated_under64 += object_size;
1425 }
1426 if (size <= 128)
1427 {
1428 G.stats.total_overhead_under128 += overhead;
1429 G.stats.total_allocated_under128 += object_size;
1430 }
1431 }
1432
1433 if (GGC_DEBUG_LEVEL >= 3)
1434 fprintf (G.debug_file,
1435 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1436 (unsigned long) size, (unsigned long) object_size, result,
1437 (void *) entry);
1438
1439 return result;
1440 }
1441
1442 /* Mark function for strings. */
1443
1444 void
1445 gt_ggc_m_S (const void *p)
1446 {
1447 page_entry *entry;
1448 unsigned bit, word;
1449 unsigned long mask;
1450 unsigned long offset;
1451
1452 if (!p || !ggc_allocated_p (p))
1453 return;
1454
1455 /* Look up the page on which the object is alloced. . */
1456 entry = lookup_page_table_entry (p);
1457 gcc_assert (entry);
1458
1459 /* Calculate the index of the object on the page; this is its bit
1460 position in the in_use_p bitmap. Note that because a char* might
1461 point to the middle of an object, we need special code here to
1462 make sure P points to the start of an object. */
1463 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1464 if (offset)
1465 {
1466 /* Here we've seen a char* which does not point to the beginning
1467 of an allocated object. We assume it points to the middle of
1468 a STRING_CST. */
1469 gcc_assert (offset == offsetof (struct tree_string, str));
1470 p = ((const char *) p) - offset;
1471 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1472 return;
1473 }
1474
1475 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1476 word = bit / HOST_BITS_PER_LONG;
1477 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1478
1479 /* If the bit was previously set, skip it. */
1480 if (entry->in_use_p[word] & mask)
1481 return;
1482
1483 /* Otherwise set it, and decrement the free object count. */
1484 entry->in_use_p[word] |= mask;
1485 entry->num_free_objects -= 1;
1486
1487 if (GGC_DEBUG_LEVEL >= 4)
1488 fprintf (G.debug_file, "Marking %p\n", p);
1489
1490 return;
1491 }
1492
1493
1494 /* User-callable entry points for marking string X. */
1495
1496 void
1497 gt_ggc_mx (const char *& x)
1498 {
1499 gt_ggc_m_S (x);
1500 }
1501
1502 void
1503 gt_ggc_mx (unsigned char *& x)
1504 {
1505 gt_ggc_m_S (x);
1506 }
1507
1508 void
1509 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1510 {
1511 }
1512
1513 /* If P is not marked, marks it and return false. Otherwise return true.
1514 P must have been allocated by the GC allocator; it mustn't point to
1515 static objects, stack variables, or memory allocated with malloc. */
1516
1517 int
1518 ggc_set_mark (const void *p)
1519 {
1520 page_entry *entry;
1521 unsigned bit, word;
1522 unsigned long mask;
1523
1524 /* Look up the page on which the object is alloced. If the object
1525 wasn't allocated by the collector, we'll probably die. */
1526 entry = lookup_page_table_entry (p);
1527 gcc_assert (entry);
1528
1529 /* Calculate the index of the object on the page; this is its bit
1530 position in the in_use_p bitmap. */
1531 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1532 word = bit / HOST_BITS_PER_LONG;
1533 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1534
1535 /* If the bit was previously set, skip it. */
1536 if (entry->in_use_p[word] & mask)
1537 return 1;
1538
1539 /* Otherwise set it, and decrement the free object count. */
1540 entry->in_use_p[word] |= mask;
1541 entry->num_free_objects -= 1;
1542
1543 if (GGC_DEBUG_LEVEL >= 4)
1544 fprintf (G.debug_file, "Marking %p\n", p);
1545
1546 return 0;
1547 }
1548
1549 /* Return 1 if P has been marked, zero otherwise.
1550 P must have been allocated by the GC allocator; it mustn't point to
1551 static objects, stack variables, or memory allocated with malloc. */
1552
1553 int
1554 ggc_marked_p (const void *p)
1555 {
1556 page_entry *entry;
1557 unsigned bit, word;
1558 unsigned long mask;
1559
1560 /* Look up the page on which the object is alloced. If the object
1561 wasn't allocated by the collector, we'll probably die. */
1562 entry = lookup_page_table_entry (p);
1563 gcc_assert (entry);
1564
1565 /* Calculate the index of the object on the page; this is its bit
1566 position in the in_use_p bitmap. */
1567 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1568 word = bit / HOST_BITS_PER_LONG;
1569 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1570
1571 return (entry->in_use_p[word] & mask) != 0;
1572 }
1573
1574 /* Return the size of the gc-able object P. */
1575
1576 size_t
1577 ggc_get_size (const void *p)
1578 {
1579 page_entry *pe = lookup_page_table_entry (p);
1580 return OBJECT_SIZE (pe->order);
1581 }
1582
1583 /* Release the memory for object P. */
1584
1585 void
1586 ggc_free (void *p)
1587 {
1588 if (in_gc)
1589 return;
1590
1591 page_entry *pe = lookup_page_table_entry (p);
1592 size_t order = pe->order;
1593 size_t size = OBJECT_SIZE (order);
1594
1595 if (GATHER_STATISTICS)
1596 ggc_free_overhead (p);
1597
1598 if (GGC_DEBUG_LEVEL >= 3)
1599 fprintf (G.debug_file,
1600 "Freeing object, actual size=%lu, at %p on %p\n",
1601 (unsigned long) size, p, (void *) pe);
1602
1603 #ifdef ENABLE_GC_CHECKING
1604 /* Poison the data, to indicate the data is garbage. */
1605 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1606 memset (p, 0xa5, size);
1607 #endif
1608 /* Let valgrind know the object is free. */
1609 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1610
1611 #ifdef ENABLE_GC_ALWAYS_COLLECT
1612 /* In the completely-anal-checking mode, we do *not* immediately free
1613 the data, but instead verify that the data is *actually* not
1614 reachable the next time we collect. */
1615 {
1616 struct free_object *fo = XNEW (struct free_object);
1617 fo->object = p;
1618 fo->next = G.free_object_list;
1619 G.free_object_list = fo;
1620 }
1621 #else
1622 {
1623 unsigned int bit_offset, word, bit;
1624
1625 G.allocated -= size;
1626
1627 /* Mark the object not-in-use. */
1628 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1629 word = bit_offset / HOST_BITS_PER_LONG;
1630 bit = bit_offset % HOST_BITS_PER_LONG;
1631 pe->in_use_p[word] &= ~(1UL << bit);
1632
1633 if (pe->num_free_objects++ == 0)
1634 {
1635 page_entry *p, *q;
1636
1637 /* If the page is completely full, then it's supposed to
1638 be after all pages that aren't. Since we've freed one
1639 object from a page that was full, we need to move the
1640 page to the head of the list.
1641
1642 PE is the node we want to move. Q is the previous node
1643 and P is the next node in the list. */
1644 q = pe->prev;
1645 if (q && q->num_free_objects == 0)
1646 {
1647 p = pe->next;
1648
1649 q->next = p;
1650
1651 /* If PE was at the end of the list, then Q becomes the
1652 new end of the list. If PE was not the end of the
1653 list, then we need to update the PREV field for P. */
1654 if (!p)
1655 G.page_tails[order] = q;
1656 else
1657 p->prev = q;
1658
1659 /* Move PE to the head of the list. */
1660 pe->next = G.pages[order];
1661 pe->prev = NULL;
1662 G.pages[order]->prev = pe;
1663 G.pages[order] = pe;
1664 }
1665
1666 /* Reset the hint bit to point to the only free object. */
1667 pe->next_bit_hint = bit_offset;
1668 }
1669 }
1670 #endif
1671 }
1672 \f
1673 /* Subroutine of init_ggc which computes the pair of numbers used to
1674 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1675
1676 This algorithm is taken from Granlund and Montgomery's paper
1677 "Division by Invariant Integers using Multiplication"
1678 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1679 constants). */
1680
1681 static void
1682 compute_inverse (unsigned order)
1683 {
1684 size_t size, inv;
1685 unsigned int e;
1686
1687 size = OBJECT_SIZE (order);
1688 e = 0;
1689 while (size % 2 == 0)
1690 {
1691 e++;
1692 size >>= 1;
1693 }
1694
1695 inv = size;
1696 while (inv * size != 1)
1697 inv = inv * (2 - inv*size);
1698
1699 DIV_MULT (order) = inv;
1700 DIV_SHIFT (order) = e;
1701 }
1702
1703 /* Initialize the ggc-mmap allocator. */
1704 void
1705 init_ggc (void)
1706 {
1707 static bool init_p = false;
1708 unsigned order;
1709
1710 if (init_p)
1711 return;
1712 init_p = true;
1713
1714 G.pagesize = getpagesize ();
1715 G.lg_pagesize = exact_log2 (G.pagesize);
1716
1717 #ifdef HAVE_MMAP_DEV_ZERO
1718 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1719 if (G.dev_zero_fd == -1)
1720 internal_error ("open /dev/zero: %m");
1721 #endif
1722
1723 #if 0
1724 G.debug_file = fopen ("ggc-mmap.debug", "w");
1725 #else
1726 G.debug_file = stdout;
1727 #endif
1728
1729 #ifdef USING_MMAP
1730 /* StunOS has an amazing off-by-one error for the first mmap allocation
1731 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1732 believe, is an unaligned page allocation, which would cause us to
1733 hork badly if we tried to use it. */
1734 {
1735 char *p = alloc_anon (NULL, G.pagesize, true);
1736 struct page_entry *e;
1737 if ((uintptr_t)p & (G.pagesize - 1))
1738 {
1739 /* How losing. Discard this one and try another. If we still
1740 can't get something useful, give up. */
1741
1742 p = alloc_anon (NULL, G.pagesize, true);
1743 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1744 }
1745
1746 /* We have a good page, might as well hold onto it... */
1747 e = XCNEW (struct page_entry);
1748 e->bytes = G.pagesize;
1749 e->page = p;
1750 e->next = G.free_pages;
1751 G.free_pages = e;
1752 }
1753 #endif
1754
1755 /* Initialize the object size table. */
1756 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1757 object_size_table[order] = (size_t) 1 << order;
1758 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1759 {
1760 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1761
1762 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1763 so that we're sure of getting aligned memory. */
1764 s = ROUND_UP (s, MAX_ALIGNMENT);
1765 object_size_table[order] = s;
1766 }
1767
1768 /* Initialize the objects-per-page and inverse tables. */
1769 for (order = 0; order < NUM_ORDERS; ++order)
1770 {
1771 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1772 if (objects_per_page_table[order] == 0)
1773 objects_per_page_table[order] = 1;
1774 compute_inverse (order);
1775 }
1776
1777 /* Reset the size_lookup array to put appropriately sized objects in
1778 the special orders. All objects bigger than the previous power
1779 of two, but no greater than the special size, should go in the
1780 new order. */
1781 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1782 {
1783 int o;
1784 int i;
1785
1786 i = OBJECT_SIZE (order);
1787 if (i >= NUM_SIZE_LOOKUP)
1788 continue;
1789
1790 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1791 size_lookup[i] = order;
1792 }
1793
1794 G.depth_in_use = 0;
1795 G.depth_max = 10;
1796 G.depth = XNEWVEC (unsigned int, G.depth_max);
1797
1798 G.by_depth_in_use = 0;
1799 G.by_depth_max = INITIAL_PTE_COUNT;
1800 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1801 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1802 }
1803
1804 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1805 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1806
1807 static void
1808 ggc_recalculate_in_use_p (page_entry *p)
1809 {
1810 unsigned int i;
1811 size_t num_objects;
1812
1813 /* Because the past-the-end bit in in_use_p is always set, we
1814 pretend there is one additional object. */
1815 num_objects = OBJECTS_IN_PAGE (p) + 1;
1816
1817 /* Reset the free object count. */
1818 p->num_free_objects = num_objects;
1819
1820 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1821 for (i = 0;
1822 i < CEIL (BITMAP_SIZE (num_objects),
1823 sizeof (*p->in_use_p));
1824 ++i)
1825 {
1826 unsigned long j;
1827
1828 /* Something is in use if it is marked, or if it was in use in a
1829 context further down the context stack. */
1830 p->in_use_p[i] |= save_in_use_p (p)[i];
1831
1832 /* Decrement the free object count for every object allocated. */
1833 for (j = p->in_use_p[i]; j; j >>= 1)
1834 p->num_free_objects -= (j & 1);
1835 }
1836
1837 gcc_assert (p->num_free_objects < num_objects);
1838 }
1839 \f
1840 /* Unmark all objects. */
1841
1842 static void
1843 clear_marks (void)
1844 {
1845 unsigned order;
1846
1847 for (order = 2; order < NUM_ORDERS; order++)
1848 {
1849 page_entry *p;
1850
1851 for (p = G.pages[order]; p != NULL; p = p->next)
1852 {
1853 size_t num_objects = OBJECTS_IN_PAGE (p);
1854 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1855
1856 /* The data should be page-aligned. */
1857 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1858
1859 /* Pages that aren't in the topmost context are not collected;
1860 nevertheless, we need their in-use bit vectors to store GC
1861 marks. So, back them up first. */
1862 if (p->context_depth < G.context_depth)
1863 {
1864 if (! save_in_use_p (p))
1865 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1866 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1867 }
1868
1869 /* Reset reset the number of free objects and clear the
1870 in-use bits. These will be adjusted by mark_obj. */
1871 p->num_free_objects = num_objects;
1872 memset (p->in_use_p, 0, bitmap_size);
1873
1874 /* Make sure the one-past-the-end bit is always set. */
1875 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1876 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1877 }
1878 }
1879 }
1880
1881 /* Check if any blocks with a registered finalizer have become unmarked. If so
1882 run the finalizer and unregister it because the block is about to be freed.
1883 Note that no garantee is made about what order finalizers will run in so
1884 touching other objects in gc memory is extremely unwise. */
1885
1886 static void
1887 ggc_handle_finalizers ()
1888 {
1889 if (G.context_depth != 0)
1890 return;
1891
1892 unsigned length = G.finalizers.length ();
1893 for (unsigned int i = 0; i < length;)
1894 {
1895 finalizer &f = G.finalizers[i];
1896 if (!ggc_marked_p (f.addr ()))
1897 {
1898 f.call ();
1899 G.finalizers.unordered_remove (i);
1900 length--;
1901 }
1902 else
1903 i++;
1904 }
1905
1906
1907 length = G.vec_finalizers.length ();
1908 for (unsigned int i = 0; i < length;)
1909 {
1910 vec_finalizer &f = G.vec_finalizers[i];
1911 if (!ggc_marked_p (f.addr ()))
1912 {
1913 f.call ();
1914 G.vec_finalizers.unordered_remove (i);
1915 length--;
1916 }
1917 else
1918 i++;
1919 }
1920 }
1921
1922 /* Free all empty pages. Partially empty pages need no attention
1923 because the `mark' bit doubles as an `unused' bit. */
1924
1925 static void
1926 sweep_pages (void)
1927 {
1928 unsigned order;
1929
1930 for (order = 2; order < NUM_ORDERS; order++)
1931 {
1932 /* The last page-entry to consider, regardless of entries
1933 placed at the end of the list. */
1934 page_entry * const last = G.page_tails[order];
1935
1936 size_t num_objects;
1937 size_t live_objects;
1938 page_entry *p, *previous;
1939 int done;
1940
1941 p = G.pages[order];
1942 if (p == NULL)
1943 continue;
1944
1945 previous = NULL;
1946 do
1947 {
1948 page_entry *next = p->next;
1949
1950 /* Loop until all entries have been examined. */
1951 done = (p == last);
1952
1953 num_objects = OBJECTS_IN_PAGE (p);
1954
1955 /* Add all live objects on this page to the count of
1956 allocated memory. */
1957 live_objects = num_objects - p->num_free_objects;
1958
1959 G.allocated += OBJECT_SIZE (order) * live_objects;
1960
1961 /* Only objects on pages in the topmost context should get
1962 collected. */
1963 if (p->context_depth < G.context_depth)
1964 ;
1965
1966 /* Remove the page if it's empty. */
1967 else if (live_objects == 0)
1968 {
1969 /* If P was the first page in the list, then NEXT
1970 becomes the new first page in the list, otherwise
1971 splice P out of the forward pointers. */
1972 if (! previous)
1973 G.pages[order] = next;
1974 else
1975 previous->next = next;
1976
1977 /* Splice P out of the back pointers too. */
1978 if (next)
1979 next->prev = previous;
1980
1981 /* Are we removing the last element? */
1982 if (p == G.page_tails[order])
1983 G.page_tails[order] = previous;
1984 free_page (p);
1985 p = previous;
1986 }
1987
1988 /* If the page is full, move it to the end. */
1989 else if (p->num_free_objects == 0)
1990 {
1991 /* Don't move it if it's already at the end. */
1992 if (p != G.page_tails[order])
1993 {
1994 /* Move p to the end of the list. */
1995 p->next = NULL;
1996 p->prev = G.page_tails[order];
1997 G.page_tails[order]->next = p;
1998
1999 /* Update the tail pointer... */
2000 G.page_tails[order] = p;
2001
2002 /* ... and the head pointer, if necessary. */
2003 if (! previous)
2004 G.pages[order] = next;
2005 else
2006 previous->next = next;
2007
2008 /* And update the backpointer in NEXT if necessary. */
2009 if (next)
2010 next->prev = previous;
2011
2012 p = previous;
2013 }
2014 }
2015
2016 /* If we've fallen through to here, it's a page in the
2017 topmost context that is neither full nor empty. Such a
2018 page must precede pages at lesser context depth in the
2019 list, so move it to the head. */
2020 else if (p != G.pages[order])
2021 {
2022 previous->next = p->next;
2023
2024 /* Update the backchain in the next node if it exists. */
2025 if (p->next)
2026 p->next->prev = previous;
2027
2028 /* Move P to the head of the list. */
2029 p->next = G.pages[order];
2030 p->prev = NULL;
2031 G.pages[order]->prev = p;
2032
2033 /* Update the head pointer. */
2034 G.pages[order] = p;
2035
2036 /* Are we moving the last element? */
2037 if (G.page_tails[order] == p)
2038 G.page_tails[order] = previous;
2039 p = previous;
2040 }
2041
2042 previous = p;
2043 p = next;
2044 }
2045 while (! done);
2046
2047 /* Now, restore the in_use_p vectors for any pages from contexts
2048 other than the current one. */
2049 for (p = G.pages[order]; p; p = p->next)
2050 if (p->context_depth != G.context_depth)
2051 ggc_recalculate_in_use_p (p);
2052 }
2053 }
2054
2055 #ifdef ENABLE_GC_CHECKING
2056 /* Clobber all free objects. */
2057
2058 static void
2059 poison_pages (void)
2060 {
2061 unsigned order;
2062
2063 for (order = 2; order < NUM_ORDERS; order++)
2064 {
2065 size_t size = OBJECT_SIZE (order);
2066 page_entry *p;
2067
2068 for (p = G.pages[order]; p != NULL; p = p->next)
2069 {
2070 size_t num_objects;
2071 size_t i;
2072
2073 if (p->context_depth != G.context_depth)
2074 /* Since we don't do any collection for pages in pushed
2075 contexts, there's no need to do any poisoning. And
2076 besides, the IN_USE_P array isn't valid until we pop
2077 contexts. */
2078 continue;
2079
2080 num_objects = OBJECTS_IN_PAGE (p);
2081 for (i = 0; i < num_objects; i++)
2082 {
2083 size_t word, bit;
2084 word = i / HOST_BITS_PER_LONG;
2085 bit = i % HOST_BITS_PER_LONG;
2086 if (((p->in_use_p[word] >> bit) & 1) == 0)
2087 {
2088 char *object = p->page + i * size;
2089
2090 /* Keep poison-by-write when we expect to use Valgrind,
2091 so the exact same memory semantics is kept, in case
2092 there are memory errors. We override this request
2093 below. */
2094 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2095 size));
2096 memset (object, 0xa5, size);
2097
2098 /* Drop the handle to avoid handle leak. */
2099 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2100 }
2101 }
2102 }
2103 }
2104 }
2105 #else
2106 #define poison_pages()
2107 #endif
2108
2109 #ifdef ENABLE_GC_ALWAYS_COLLECT
2110 /* Validate that the reportedly free objects actually are. */
2111
2112 static void
2113 validate_free_objects (void)
2114 {
2115 struct free_object *f, *next, *still_free = NULL;
2116
2117 for (f = G.free_object_list; f ; f = next)
2118 {
2119 page_entry *pe = lookup_page_table_entry (f->object);
2120 size_t bit, word;
2121
2122 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2123 word = bit / HOST_BITS_PER_LONG;
2124 bit = bit % HOST_BITS_PER_LONG;
2125 next = f->next;
2126
2127 /* Make certain it isn't visible from any root. Notice that we
2128 do this check before sweep_pages merges save_in_use_p. */
2129 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2130
2131 /* If the object comes from an outer context, then retain the
2132 free_object entry, so that we can verify that the address
2133 isn't live on the stack in some outer context. */
2134 if (pe->context_depth != G.context_depth)
2135 {
2136 f->next = still_free;
2137 still_free = f;
2138 }
2139 else
2140 free (f);
2141 }
2142
2143 G.free_object_list = still_free;
2144 }
2145 #else
2146 #define validate_free_objects()
2147 #endif
2148
2149 /* Top level mark-and-sweep routine. */
2150
2151 void
2152 ggc_collect (void)
2153 {
2154 /* Avoid frequent unnecessary work by skipping collection if the
2155 total allocations haven't expanded much since the last
2156 collection. */
2157 float allocated_last_gc =
2158 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2159
2160 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2161 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2162 return;
2163
2164 timevar_push (TV_GC);
2165 if (!quiet_flag)
2166 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2167 if (GGC_DEBUG_LEVEL >= 2)
2168 fprintf (G.debug_file, "BEGIN COLLECTING\n");
2169
2170 /* Zero the total allocated bytes. This will be recalculated in the
2171 sweep phase. */
2172 G.allocated = 0;
2173
2174 /* Release the pages we freed the last time we collected, but didn't
2175 reuse in the interim. */
2176 release_pages ();
2177
2178 /* Indicate that we've seen collections at this context depth. */
2179 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2180
2181 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2182
2183 in_gc = true;
2184 clear_marks ();
2185 ggc_mark_roots ();
2186 ggc_handle_finalizers ();
2187
2188 if (GATHER_STATISTICS)
2189 ggc_prune_overhead_list ();
2190
2191 poison_pages ();
2192 validate_free_objects ();
2193 sweep_pages ();
2194
2195 in_gc = false;
2196 G.allocated_last_gc = G.allocated;
2197
2198 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2199
2200 timevar_pop (TV_GC);
2201
2202 if (!quiet_flag)
2203 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2204 if (GGC_DEBUG_LEVEL >= 2)
2205 fprintf (G.debug_file, "END COLLECTING\n");
2206 }
2207
2208 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2209 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2210 reachable. */
2211
2212 void
2213 ggc_grow (void)
2214 {
2215 #ifndef ENABLE_CHECKING
2216 G.allocated_last_gc = MAX (G.allocated_last_gc,
2217 G.allocated);
2218 #else
2219 ggc_collect ();
2220 #endif
2221 if (!quiet_flag)
2222 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2223 }
2224
2225 /* Print allocation statistics. */
2226 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2227 ? (x) \
2228 : ((x) < 1024*1024*10 \
2229 ? (x) / 1024 \
2230 : (x) / (1024*1024))))
2231 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2232
2233 void
2234 ggc_print_statistics (void)
2235 {
2236 struct ggc_statistics stats;
2237 unsigned int i;
2238 size_t total_overhead = 0;
2239
2240 /* Clear the statistics. */
2241 memset (&stats, 0, sizeof (stats));
2242
2243 /* Make sure collection will really occur. */
2244 G.allocated_last_gc = 0;
2245
2246 /* Collect and print the statistics common across collectors. */
2247 ggc_print_common_statistics (stderr, &stats);
2248
2249 /* Release free pages so that we will not count the bytes allocated
2250 there as part of the total allocated memory. */
2251 release_pages ();
2252
2253 /* Collect some information about the various sizes of
2254 allocation. */
2255 fprintf (stderr,
2256 "Memory still allocated at the end of the compilation process\n");
2257 fprintf (stderr, "%-8s %10s %10s %10s\n",
2258 "Size", "Allocated", "Used", "Overhead");
2259 for (i = 0; i < NUM_ORDERS; ++i)
2260 {
2261 page_entry *p;
2262 size_t allocated;
2263 size_t in_use;
2264 size_t overhead;
2265
2266 /* Skip empty entries. */
2267 if (!G.pages[i])
2268 continue;
2269
2270 overhead = allocated = in_use = 0;
2271
2272 /* Figure out the total number of bytes allocated for objects of
2273 this size, and how many of them are actually in use. Also figure
2274 out how much memory the page table is using. */
2275 for (p = G.pages[i]; p; p = p->next)
2276 {
2277 allocated += p->bytes;
2278 in_use +=
2279 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2280
2281 overhead += (sizeof (page_entry) - sizeof (long)
2282 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2283 }
2284 fprintf (stderr, "%-8lu %10lu%c %10lu%c %10lu%c\n",
2285 (unsigned long) OBJECT_SIZE (i),
2286 SCALE (allocated), STAT_LABEL (allocated),
2287 SCALE (in_use), STAT_LABEL (in_use),
2288 SCALE (overhead), STAT_LABEL (overhead));
2289 total_overhead += overhead;
2290 }
2291 fprintf (stderr, "%-8s %10lu%c %10lu%c %10lu%c\n", "Total",
2292 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2293 SCALE (G.allocated), STAT_LABEL (G.allocated),
2294 SCALE (total_overhead), STAT_LABEL (total_overhead));
2295
2296 if (GATHER_STATISTICS)
2297 {
2298 fprintf (stderr, "\nTotal allocations and overheads during "
2299 "the compilation process\n");
2300
2301 fprintf (stderr, "Total Overhead: %10"
2302 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead);
2303 fprintf (stderr, "Total Allocated: %10"
2304 HOST_LONG_LONG_FORMAT "d\n",
2305 G.stats.total_allocated);
2306
2307 fprintf (stderr, "Total Overhead under 32B: %10"
2308 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under32);
2309 fprintf (stderr, "Total Allocated under 32B: %10"
2310 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under32);
2311 fprintf (stderr, "Total Overhead under 64B: %10"
2312 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under64);
2313 fprintf (stderr, "Total Allocated under 64B: %10"
2314 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under64);
2315 fprintf (stderr, "Total Overhead under 128B: %10"
2316 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under128);
2317 fprintf (stderr, "Total Allocated under 128B: %10"
2318 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under128);
2319
2320 for (i = 0; i < NUM_ORDERS; i++)
2321 if (G.stats.total_allocated_per_order[i])
2322 {
2323 fprintf (stderr, "Total Overhead page size %9lu: %10"
2324 HOST_LONG_LONG_FORMAT "d\n",
2325 (unsigned long) OBJECT_SIZE (i),
2326 G.stats.total_overhead_per_order[i]);
2327 fprintf (stderr, "Total Allocated page size %9lu: %10"
2328 HOST_LONG_LONG_FORMAT "d\n",
2329 (unsigned long) OBJECT_SIZE (i),
2330 G.stats.total_allocated_per_order[i]);
2331 }
2332 }
2333 }
2334 \f
2335 struct ggc_pch_ondisk
2336 {
2337 unsigned totals[NUM_ORDERS];
2338 };
2339
2340 struct ggc_pch_data
2341 {
2342 struct ggc_pch_ondisk d;
2343 uintptr_t base[NUM_ORDERS];
2344 size_t written[NUM_ORDERS];
2345 };
2346
2347 struct ggc_pch_data *
2348 init_ggc_pch (void)
2349 {
2350 return XCNEW (struct ggc_pch_data);
2351 }
2352
2353 void
2354 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2355 size_t size, bool is_string ATTRIBUTE_UNUSED)
2356 {
2357 unsigned order;
2358
2359 if (size < NUM_SIZE_LOOKUP)
2360 order = size_lookup[size];
2361 else
2362 {
2363 order = 10;
2364 while (size > OBJECT_SIZE (order))
2365 order++;
2366 }
2367
2368 d->d.totals[order]++;
2369 }
2370
2371 size_t
2372 ggc_pch_total_size (struct ggc_pch_data *d)
2373 {
2374 size_t a = 0;
2375 unsigned i;
2376
2377 for (i = 0; i < NUM_ORDERS; i++)
2378 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2379 return a;
2380 }
2381
2382 void
2383 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2384 {
2385 uintptr_t a = (uintptr_t) base;
2386 unsigned i;
2387
2388 for (i = 0; i < NUM_ORDERS; i++)
2389 {
2390 d->base[i] = a;
2391 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2392 }
2393 }
2394
2395
2396 char *
2397 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2398 size_t size, bool is_string ATTRIBUTE_UNUSED)
2399 {
2400 unsigned order;
2401 char *result;
2402
2403 if (size < NUM_SIZE_LOOKUP)
2404 order = size_lookup[size];
2405 else
2406 {
2407 order = 10;
2408 while (size > OBJECT_SIZE (order))
2409 order++;
2410 }
2411
2412 result = (char *) d->base[order];
2413 d->base[order] += OBJECT_SIZE (order);
2414 return result;
2415 }
2416
2417 void
2418 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2419 FILE *f ATTRIBUTE_UNUSED)
2420 {
2421 /* Nothing to do. */
2422 }
2423
2424 void
2425 ggc_pch_write_object (struct ggc_pch_data *d,
2426 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2427 size_t size, bool is_string ATTRIBUTE_UNUSED)
2428 {
2429 unsigned order;
2430 static const char emptyBytes[256] = { 0 };
2431
2432 if (size < NUM_SIZE_LOOKUP)
2433 order = size_lookup[size];
2434 else
2435 {
2436 order = 10;
2437 while (size > OBJECT_SIZE (order))
2438 order++;
2439 }
2440
2441 if (fwrite (x, size, 1, f) != 1)
2442 fatal_error (input_location, "can%'t write PCH file: %m");
2443
2444 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2445 object out to OBJECT_SIZE(order). This happens for strings. */
2446
2447 if (size != OBJECT_SIZE (order))
2448 {
2449 unsigned padding = OBJECT_SIZE (order) - size;
2450
2451 /* To speed small writes, we use a nulled-out array that's larger
2452 than most padding requests as the source for our null bytes. This
2453 permits us to do the padding with fwrite() rather than fseek(), and
2454 limits the chance the OS may try to flush any outstanding writes. */
2455 if (padding <= sizeof (emptyBytes))
2456 {
2457 if (fwrite (emptyBytes, 1, padding, f) != padding)
2458 fatal_error (input_location, "can%'t write PCH file");
2459 }
2460 else
2461 {
2462 /* Larger than our buffer? Just default to fseek. */
2463 if (fseek (f, padding, SEEK_CUR) != 0)
2464 fatal_error (input_location, "can%'t write PCH file");
2465 }
2466 }
2467
2468 d->written[order]++;
2469 if (d->written[order] == d->d.totals[order]
2470 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2471 G.pagesize),
2472 SEEK_CUR) != 0)
2473 fatal_error (input_location, "can%'t write PCH file: %m");
2474 }
2475
2476 void
2477 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2478 {
2479 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2480 fatal_error (input_location, "can%'t write PCH file: %m");
2481 free (d);
2482 }
2483
2484 /* Move the PCH PTE entries just added to the end of by_depth, to the
2485 front. */
2486
2487 static void
2488 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2489 {
2490 unsigned i;
2491
2492 /* First, we swap the new entries to the front of the varrays. */
2493 page_entry **new_by_depth;
2494 unsigned long **new_save_in_use;
2495
2496 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2497 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2498
2499 memcpy (&new_by_depth[0],
2500 &G.by_depth[count_old_page_tables],
2501 count_new_page_tables * sizeof (void *));
2502 memcpy (&new_by_depth[count_new_page_tables],
2503 &G.by_depth[0],
2504 count_old_page_tables * sizeof (void *));
2505 memcpy (&new_save_in_use[0],
2506 &G.save_in_use[count_old_page_tables],
2507 count_new_page_tables * sizeof (void *));
2508 memcpy (&new_save_in_use[count_new_page_tables],
2509 &G.save_in_use[0],
2510 count_old_page_tables * sizeof (void *));
2511
2512 free (G.by_depth);
2513 free (G.save_in_use);
2514
2515 G.by_depth = new_by_depth;
2516 G.save_in_use = new_save_in_use;
2517
2518 /* Now update all the index_by_depth fields. */
2519 for (i = G.by_depth_in_use; i > 0; --i)
2520 {
2521 page_entry *p = G.by_depth[i-1];
2522 p->index_by_depth = i-1;
2523 }
2524
2525 /* And last, we update the depth pointers in G.depth. The first
2526 entry is already 0, and context 0 entries always start at index
2527 0, so there is nothing to update in the first slot. We need a
2528 second slot, only if we have old ptes, and if we do, they start
2529 at index count_new_page_tables. */
2530 if (count_old_page_tables)
2531 push_depth (count_new_page_tables);
2532 }
2533
2534 void
2535 ggc_pch_read (FILE *f, void *addr)
2536 {
2537 struct ggc_pch_ondisk d;
2538 unsigned i;
2539 char *offs = (char *) addr;
2540 unsigned long count_old_page_tables;
2541 unsigned long count_new_page_tables;
2542
2543 count_old_page_tables = G.by_depth_in_use;
2544
2545 /* We've just read in a PCH file. So, every object that used to be
2546 allocated is now free. */
2547 clear_marks ();
2548 #ifdef ENABLE_GC_CHECKING
2549 poison_pages ();
2550 #endif
2551 /* Since we free all the allocated objects, the free list becomes
2552 useless. Validate it now, which will also clear it. */
2553 validate_free_objects ();
2554
2555 /* No object read from a PCH file should ever be freed. So, set the
2556 context depth to 1, and set the depth of all the currently-allocated
2557 pages to be 1 too. PCH pages will have depth 0. */
2558 gcc_assert (!G.context_depth);
2559 G.context_depth = 1;
2560 for (i = 0; i < NUM_ORDERS; i++)
2561 {
2562 page_entry *p;
2563 for (p = G.pages[i]; p != NULL; p = p->next)
2564 p->context_depth = G.context_depth;
2565 }
2566
2567 /* Allocate the appropriate page-table entries for the pages read from
2568 the PCH file. */
2569 if (fread (&d, sizeof (d), 1, f) != 1)
2570 fatal_error (input_location, "can%'t read PCH file: %m");
2571
2572 for (i = 0; i < NUM_ORDERS; i++)
2573 {
2574 struct page_entry *entry;
2575 char *pte;
2576 size_t bytes;
2577 size_t num_objs;
2578 size_t j;
2579
2580 if (d.totals[i] == 0)
2581 continue;
2582
2583 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2584 num_objs = bytes / OBJECT_SIZE (i);
2585 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2586 - sizeof (long)
2587 + BITMAP_SIZE (num_objs + 1)));
2588 entry->bytes = bytes;
2589 entry->page = offs;
2590 entry->context_depth = 0;
2591 offs += bytes;
2592 entry->num_free_objects = 0;
2593 entry->order = i;
2594
2595 for (j = 0;
2596 j + HOST_BITS_PER_LONG <= num_objs + 1;
2597 j += HOST_BITS_PER_LONG)
2598 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2599 for (; j < num_objs + 1; j++)
2600 entry->in_use_p[j / HOST_BITS_PER_LONG]
2601 |= 1L << (j % HOST_BITS_PER_LONG);
2602
2603 for (pte = entry->page;
2604 pte < entry->page + entry->bytes;
2605 pte += G.pagesize)
2606 set_page_table_entry (pte, entry);
2607
2608 if (G.page_tails[i] != NULL)
2609 G.page_tails[i]->next = entry;
2610 else
2611 G.pages[i] = entry;
2612 G.page_tails[i] = entry;
2613
2614 /* We start off by just adding all the new information to the
2615 end of the varrays, later, we will move the new information
2616 to the front of the varrays, as the PCH page tables are at
2617 context 0. */
2618 push_by_depth (entry, 0);
2619 }
2620
2621 /* Now, we update the various data structures that speed page table
2622 handling. */
2623 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2624
2625 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2626
2627 /* Update the statistics. */
2628 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2629 }